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Abstract

We present a sequential approach to estimating a dynamic Hausman-Taylor model.

We first estimate the coefficients of the time-varying regressors and subsequently

regress the first-stage residuals on the time-invariant regressors. In comparison to

estimating all coefficients simultaneously, this two-stage procedure is more robust

against model misspecification, allows for a flexible choice of the first-stage estimator,

and enables simple testing of the overidentifying restrictions. For correct inference, we

derive analytical standard error adjustments. We evaluate the finite-sample properties

with Monte Carlo simulations and apply the approach to a dynamic gravity equation

for U.S. outward foreign direct investment.
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1 Introduction

This paper considers estimation methods and inference for linear dynamic panel data mod-

els with a short time dimension. In particular, we focus on the identification of coefficients

of time-invariant variables in the presence of unobserved unit-specific effects. In many

empirical applications, time-invariant variables play an important role in structural equa-

tions. In labor or health economics, researchers are interested in the effects of education,

gender, nationality, ethnic and religious background, or other time-invariant characteristics

on the evolution of wages or health outcomes, but would still like to control for unobserved

time-invariant effects such as worker’s ability and unobserved behavior of individuals. As

a recent example, Andini (2013) estimates the return to schooling in a dynamic Mincer

equation controlling for a rich set of time-invariant characteristics.1 Educational back-

ground is also a variable of interest in a study by Kropfhäußer and Sunder (2015) about

obesity effects on wages and life and work satisfaction. Osang and Weber (2017) analyze

the effects of time-invariant labor complementarity measures on immigration.

In macroeconomic cross-country studies, institutional features or group-level effects

matter in explaining economic development. For example, Hoeffler (2002) studies the

growth performance of Sub-Saharan Africa countries by introducing a regional dummy

variable in her dynamic panel data model. Cinyabuguma and Putterman (2011) focus

on within Sub-Saharan differences by adding socio-economic and geographic factors to

the analysis. In the international trade literature, geographical distance and common

border and language effects play a prominent role in gravity models for bilateral trade

or foreign direct investment (De Benedictis and Vicarelli, 2005; Mart́ınez-Zarzoso et al.,

2009; Kimura and Todo, 2010; Abbott and De Vita, 2011; Lien et al., 2012; Olivero and

Yotov, 2012; Kahouli and Maktouf, 2015). However, the identification strategy for the

coefficients of time-invariant regressors employed in these articles remains unclear.

If there is unobserved unit-specific heterogeneity, it is often hard to disentangle the

effects of the observed and the unobserved time-invariant heterogeneity. Standard fixed-

effects estimators are not applicable because the time-invariant regressors are perfectly

1Schooling itself is a time-invariant regressor in his data set. Yet, it is hard to argue that its coefficient
is identified because Andini (2013) uses only the first differences of time-varying regressors as instruments.
These instruments are generally assumed to be uncorrelated with any time-invariant variable.
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collinear with the unit-specific dummy variables. When the time dimension is short, they

additionally suffer from the familiar Nickell (1981) bias in dynamic panel data models.

Therefore, it is common practice in empirical work to apply the generalized method of

moments (GMM) framework proposed by Arellano and Bond (1991), Arellano and Bover

(1995), and Blundell and Bond (1998), among others. To identify the coefficients of time-

invariant regressors, strong orthogonality assumptions need to be imposed in order to

find valid instruments. If these conditions fail to hold, the estimators of all coefficients

including those of time-varying regressors might be biased and inconsistent.

In this paper, we propose a two-stage estimation procedure to identify the coefficients

of time-invariant regressors. In the first stage, we estimate the coefficients of the time-

varying regressors. Subsequently, we regress the first-stage residuals on the time-invariant

regressors. We achieve identification by using instrumental variables in the spirit of Haus-

man and Taylor (1981), and we adjust the second-stage standard errors to account for the

first-stage estimation error. A similar two-stage procedure has been proposed by Black and

Lynch (2001) for a static model, and Hoeffler (2002) and Cinyabuguma and Putterman

(2011) for a dynamic model. However, none of them corrects the second-stage standard er-

rors. For the static model, Pesaran and Zhou (2018) recently suggested a two-stage “fixed

effects filtered” estimator that is a special case of our two-stage GMM estimator, and it

reduces to a simple one-stage instrumental variables estimator under exact identification.2

A major advantage of the two-stage approach is the invariance of the first-stage es-

timates to incorrect assumptions needed to identify the coefficients of time-invariant re-

gressors.3 The two-stage approach further allows a simple testing procedure. Following

general model specification tests in the first stage, a test in the spirit of Hansen (1982) for

the validity of the overidentifying restrictions implied by the Hausman and Taylor (1981)

assumption can be carried out in the second stage. Our methodology applies to any first-

stage estimator that consistently estimates the coefficients of the time-varying variables

without relying on coefficient estimates for the time-invariant regressors. For example, the

quasi-maximum likelihood (QML) estimator of Hsiao et al. (2002) can be a more efficient

2Plümper and Troeger (2007) proposed a three-stage approach for the static model that they label
“fixed effects vector decomposition”. In a symposium on this method, Breusch et al. (2011) and Greene
(2011) show that the first two stages can be characterized by an instrumental variables estimation with a
particular choice of instruments, and that the third stage is essentially meaningless.

3Hoeffler (2002) argues similarly.
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alternative with attractive finite-sample properties compared to GMM estimators.4 It is

based on the model in first differences and is thus unable to identify the coefficients of

time-invariant regressors. The two-stage procedure can overcome this shortcoming.5

In our Monte Carlo experiment, the QML-based two-stage estimator proves to be

attractive compared to GMM-based alternatives. The performance of the second-stage

estimator benefits substantially from the precision of the first-stage QML estimates. While

a one-stage GMM estimator is naturally more efficient than its two-stage counterpart if the

model is correctly specified, the robustness of the two-stage approach is valuable for the

coefficients of the time-varying regressors if there is doubt on the validity of the instruments

for the time-invariant regressors. The respective second-stage overidentification tests are

shown to be a powerful alternative with better size than the established difference-in-

Hansen test. In any case, properly accounting for the first-stage estimation error in the

computation of standard errors and test statistics is crucial for valid inference.

As an empirical illustration, we consider a dynamic version of the gravity model for

foreign direct investment (FDI) estimated by Egger and Pfaffermayr (2004a). We find

strong evidence for history dependence of the real bilateral stock of United States outward

FDI. While both the static and dynamic results are sensitive to the assumption made to

identify the distance effect, neglecting the dynamic nature of the model results in a sizable

overestimation of the effect of the time-invariant geographical distance variable. Contrary

to the argumentation of Egger and Pfaffermayr (2004a), we do not find evidence for a

stronger positive effect of distance for vertical multinational enterprises (MNEs).

The paper is organized as follows. Section 2 introduces the dynamic Hausman-Taylor

model. Section 3 briefly describes one-stage GMM estimators, while Section 4 lays out

the two-stage procedure. Section 5 presents overidentification tests. In Sections 6 and

7, we discuss the results of the Monte Carlo simulation and the empirical application,

respectively. Section 8 concludes.

4As Binder et al. (2005) and Bun and Windmeijer (2010) emphasize, GMM estimators might suffer from
a weak instruments problem when the autoregressive parameter approaches unity or when the variance
of the unobserved unit-specific effects is large. Moreover, the number of instruments can rapidly become
large relative to the sample size. The consequences of instrument proliferation, summarized by Roodman
(2009), range from biased coefficient and standard error estimates to weakened specification tests.

5Our two-stage procedure fits into the framework of sequential estimators discussed by Newey (1984).
While our paper is only concerned with linear panel data models, Honoré and Kesina (2017) recently
suggested related two-stage approaches for some nonlinear models. They use a bootstrap procedure to
obtain valid standard errors in contrast to our analytical standard error correction.
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2 Model

Consider the following dynamic panel data model:

yit = λyi,t−1 + x′itβ + f ′iγ + eit, eit = αi + uit, (1)

with units i = 1, 2, . . . , N , and a fixed number of time periods t = 1, 2, . . . , T , T ≥ 2. xit is

a Kx × 1 vector of time-varying variables, fi is a Kf × 1 vector of observed time-invariant

variables that includes an overall regression constant, and αi is an unobserved unit-specific

effect. The initial observations of the dependent variable, yi0, and the regressors, xi0, are

assumed to be observed. In this paper, we look at a hybrid (or intermediate case) of the

dynamic fixed-effects and random-effects models where some, but not all, of the regressors

are correlated with αi.
6 Throughout the paper we maintain the following assumptions.

Assumption 1: The disturbances uit and the unobserved unit-specific effects αi are in-

dependently distributed across i and satisfy E[uit] = E[αi] = 0, E[uisuit] = 0 for all s 6= t,

and E[αiuit] = 0.

Assumption 2: The regressors xit and fi are strictly exogenous with respect to the dis-

turbances uit, E[uit|xi0,xi1, . . . ,xiT , fi;αi] = 0.7

Assumption 3: The explanatory variables can be decomposed as xit = (x′1it,x
′
2it)
′ and

fi = (f ′1i, f
′
2i)
′ such that E[αi|x1i0,x1i1, . . . ,x1iT , f1i] = 0, E[αi|x2it] 6= 0 for any t, and

E[αi|f2i] 6= 0.8

The resulting model is the dynamic counterpart of the Hausman and Taylor (1981)

model. For further reference, the subvectors have Kx1, Kx2, Kf1, and Kf2 entries, respec-

tively. If Kx2 = Kf2 = 0 the model collapses to the dynamic random-effects model, while

Kx1 = 0 and Kf1 = 1 (the constant term) leads to the dynamic fixed-effects model.

We can write model (1) in more compact form as

yi = λyi,(−1) + Xiβ + Fiγ + ei, ei = αiιT + ui, (2)

where yi = (yi1, yi2, . . . , yiT )′ is a vector of stacked observations for unit i. The right-hand

6Note that αi is correlated with the lagged dependent variable by construction.
7For simplicity, we abstract from predetermined or endogenous regressors xit. They can be easily

incorporated by adjusting the GMM moment conditions appropriately. See Blundell et al. (2001).
8The conditional mean independence assumptions can be relaxed by directly imposing the moment

conditions in Appendix A.
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side variables are stacked accordingly. ιT is a T × 1 vector of ones. Also, let Wyxi =

(yi,(−1),Xi) be the matrix of time-varying regressors with coefficient vector θ = (λ,β′)′,

and Wyxfi = (Wyxi,Fi) be the full regressor matrix. When the data is stacked for all

units, for example y = (y′1,y
′
2, . . . ,y

′
N )′, the subscript i is omitted.

3 One-stage GMM estimation

We can estimate all model parameters simultaneously by choosing appropriate instruments

for the variables that are endogenous with respect to the unobserved unit-specific effects.

In this section, we discuss GMM estimators that are based on the linear moment condi-

tions E[Z′iHiei] = 0, where Zi is a matrix of Kz instruments, and Hi is a deterministic

transformation matrix.9

Under Assumptions 1 and 2, conventional GMM estimators make use of the linear

moment conditions derived by Arellano and Bond (1991) that are formulated in terms of

the first-differenced errors. While it is a desired property of the first-difference transfor-

mation to wipe out the unobserved unit-specific error component, it does the same with

the observed time-invariant regressors. Blundell and Bond (1998) add further moment

conditions for the untransformed level equation under an additional assumption about

the initial observations.10 Yet, for the identification of the coefficients of time-invariant

regressors their assumption is neither necessary nor useful. For this purpose, Assumptions

2 and 3 are required. Following Arellano and Bond (1991) and Arellano and Bover (1995),

Kx1(T + 1) +Kf1 non-redundant linear moment conditions arise for the model in levels:

E[x1i0ei1] = 0, and E[x1iteit] = 0, t = 1, 2, . . . , T, (3)

E

[
T∑
t=1

f1ieit

]
= 0. (4)

Consequently, in the absence of external instruments, a necessary condition for the iden-

tification of all coefficients in equation (1) is that Kx1(T + 1) ≥ Kf2. This corresponds

9The most common transformation in practice is first differencing of the errors. Other transformations
include forward-orthogonal deviations and within-groups deviations. See the Online Appendix for an
extended discussion. In balanced panels, Hi is identical for all units. The restriction to linear moment
conditions is primarily for expositional convenience. The additional use of nonlinear moment conditions
could potentially yield sizable efficiency gains. See for example Ahn and Schmidt (1995).

10The additional assumption for the validity of the level moment conditions requires the (initial) changes
of the regressors to be uncorrelated with the unobserved unit-specific effects. The resulting extra moment
conditions can help to overcome a weak instruments problem when the data-generating process is very
persistent. All the available moment conditions under Assumptions 1 to 3, with or without this initial-
observations restriction, are listed in Appendix A. Further details are relegated to the Online Appendix.
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to the order condition of the Amemiya and MaCurdy (1986) and Breusch et al. (1989)

versions of the Hausman and Taylor (1981) estimator in the static model.11

Remark 1: It is often hard to justify that separate time periods of the exogenous time-

varying regressors provide sufficient explanatory power for the instrumented time-invariant

regressors after partialing out the initial observations x1i0 or within-group means x̄1i,

that is E[f2i|x1i0,X1i, f1i] = E[f2i|x1i0, f1i] or E[f2i|x1i0,X1i, f1i] = E[f2i|x̄1i, f1i]. The

identification condition then tightens to Kx1 ≥ Kf2 as in Hausman and Taylor (1981).

Define H = IN ⊗Hi, where ⊗ denotes the Kronecker product, Z = (Z′1,Z
′
2, . . . ,Z

′
N )′,

and let VN be a Kz×Kz weighting matrix of the moment functions. The one-stage GMM

estimator with linear moment conditions is obtained in closed form as(
θ̃
′
, γ̃ ′
)′

=
(
W′

yxfH
′ZVNZ′HWyxf

)−1
W′

yxfH
′ZVNZ′Hy, (5)

presuming that W′
yxfH

′ZVNZ′HWyxf is of full rank. The following familiar result under

the data-generating process (1) applies.

Proposition 1: Assume that weak laws of large numbers hold element-wise such that

S = plimN→∞N
−1
∑N

i=1 Z′iHiWyxfi and V = plimN→∞VN , and let the matrix Ξ =

limN→∞N
−1
∑N

i=1E[Z′iHieie
′
iH
′
iZi] be finite. If all coefficients are identified, then un-

der standard regularity conditions the one-stage GMM estimator (5) is a consistent and

asymptotically normal estimator with

√
N

θ̃ − θ
γ̃ − γ

 =
1√
N

N∑
i=1

ϕi + op(1)
d→ N (0,Ω) , (6)

where ϕi = (ϕ′θi,ϕ
′
γi)
′ is the likewise partitioned influence function given by

ϕi =
(
S′VS

)−1
S′V(Z′iHiei), (7)

with asymptotic variance matrix Ω = (S′VS)−1S′VΞVS(S′VS)−1.12

Newey and McFadden (1994) refer to an estimator as asymptotically linear if it has a

representation as in equation (6). The influence function is useful to obtain asymptotic

results. We can infer the following statement on the efficiency of the GMM estimator.

11External instruments can be incorporated in a straightforward way, relaxing this order condition.
12op(1) represents a random vector that converges to zero in probability. We provide a set of sufficient

conditions that ensure the existence of the probability limits and the applicability of a suitable central
limit theorem in our Online Appendix, together with a detailed proof of Proposition 1. For an in-depth
discussion of asymptotic results for GMM estimation, see Hansen (1982) and Newey and McFadden (1994).
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Lemma 1: The GMM estimator is asymptotically efficient for a given instruments matrix

Z and transformation matrix H if V = Ξ−1.13

To conclude this section, the following remarks briefly discuss alternative estimation

and identification strategies that might be applicable provided that all regressors xit are

strictly exogenous with respect to the idiosyncratic error component uit.

Remark 2: In the dynamic random-effects model, Kx2 = Kf2 = 0, the QML estimator of

Bhargava and Sargan (1983) might qualify as a consistent and efficient alternative. They

propose to add an equation for the initial observations, yi0 =
∑T

s=0 x′isπx,s+f ′iπf+ξi0 with

auxiliary coefficients πx,s and πf .14 The error term ξi0 is allowed to be correlated with αi.

The likelihood function can then be constructed from the joint density of yi0, yi1, . . . , yiT .

Remark 3: As an alternative to Assumption 3, we can use a correlated random-effects

(CRE) assumption in the spirit of Mundlak (1978), E[αi|Xi, fi] = b+ x̄′iκ, or Chamberlain

(1982), E[αi|Xi, fi] = b+
∑T

s=1 x′isκs, to model the correlation between the regressors and

the unobserved effects. The time-invariant regressors are allowed to be correlated with

αi but only indirectly through their correlation with the time-varying regressors.15 After

augmenting the regression model with the time-invariant variables x̄i or (x′i1,x
′
i2, . . . ,x

′
iT )′,

it can be consistently estimated with an appropriate GMM estimator, where all time-

invariant variables serve as their own instruments, or the unconditional QML estimator

of Bhargava and Sargan (1983), as discussed in Remark 2.16

Remark 4: As yet another alternative, we could modify the Mundlak (1978) or Chamber-

lain (1982) assumption by accounting for the correlation with the initial observations yi0 as

well, for example E[αi|yi0,Xi,Fi] = b+κyyi0+x̄′iκx.17 The regression model is augmented

with the time-invariant variables yi0 and x̄i0 and can be consistently estimated by feasi-

ble efficient generalized least squares (GLS) under the random-effects error components

13This result dates back to Hansen (1982) and was generalized by Newey and McFadden (1994). See the
Online Appendix for a brief discussion about feasible efficient GMM estimation with an optimal weighting
matrix VN = Ξ̂−1, where Ξ̂ is an initial consistent estimate of Ξ.

14Stationarity of yit implies the restriction πf = γ/(1− λ).
15With one time-varying regressor xit and one time-invariant regressor fi, the Mundlak (1978) assump-

tion imposes the implicit restriction Corr(fi, αi) = Corr(fi, x̄i) · Corr(x̄i, αi) on the correlations.
16The lagged dependent variable is still correlated with the unit-specific error component.
17The implicit restriction on the correlation coefficients becomes Corr(fi, αi) · [1 − Corr(x̄i, yi0)2] =

Corr(fi, x̄i) · [Corr(x̄i, αi) − Corr(x̄i, yi0) · Corr(yi0, αi)] + Corr(fi, yi0) · [Corr(yi0, αi) − Corr(yi0, x̄i) ·
Corr(x̄i, αi)]. Under stationarity of yit, Corr(yi0, αi) 6= 0, Corr(x̄i, yi0) ∝ β, and Corr(fi, yi0) ∝ γ.
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assumption, as discussed by Blundell and Bond (1998). This estimator is asymptotically

equivalent to the conditional QML estimator of Blundell and Smith (1991).

After the projections in Remarks 3 and 4, the time-invariant regressors can be treated

as exogenous. However, the required identifying assumptions are less intuitive and poten-

tially more restrictive than Assumption 3, and it is not possible to test their validity.

4 Two-stage estimation

When estimating all coefficients simultaneously, an incorrect classification of the regressors

might lead to a biased and inconsistent estimation of all coefficients. In this section, we

lay down a robust two-stage estimation procedure. In a first stage, we subsume the time-

invariant variables fi under the unit-specific effects, ηi = f ′iγ+αi, and consistently estimate

the coefficients λ and β without reliance on Assumption 3. In the second stage, we recover

γ. The first-stage model is

yit = λyi,t−1 + x′itβ + η̄ + εit, εit = ηi − η̄ + uit, (8)

where η̄ = E[ηi]. An intercept generally needs to be included in the first-stage regression

unless η̄ = 0 or a model transformation is applied that wipes out all time-invariant compo-

nents. We do not restrict the analysis to any particular first-stage estimator θ̂ = (λ̂, β̂
′
)′

but make the following assumption.

Assumption 4: θ̂ is a consistent asymptotically linear first-stage estimator with influence

function ψθi, E[ψθi] = 0 and limN→∞N
−1
∑N

i=1E[ψθiψ
′
θi] = Σθ, such that

√
N
(
θ̂ − θ

)
=

1√
N

N∑
i=1

ψθi + op(1)
d→ N (0,Σθ). (9)

In particular, consistent maximum likelihood and GMM estimators satisfy this as-

sumption under the usual regularity conditions that ensure the applicability of a suitable

central limit theorem. This includes the QML estimator of Hsiao et al. (2002), the GMM

estimators with the linear moment conditions of Arellano and Bond (1991) and Blundell

and Bond (1998), as well as GMM estimators based on the nonlinear moment conditions

of Ahn and Schmidt (1995).18 In contrast, the conventional fixed-effects estimator violates

18Proposition 1 can be easily adapted to first-stage GMM estimators of the coefficients θ only. Moment
conditions based on Assumption 3 are not valid in the first stage if the time-varying regressors x1it are
correlated with the time-invariant regressors fi. More information on first-stage GMM as well as QML
estimation is provided in the Online Appendix.
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Assumption 4 because it is inconsistent in dynamic panel data models when T is fixed.

In the second stage, we estimate the coefficients γ based on the level relationship:

yit − λ̂yi,t−1 − x′itβ̂ = f ′iγ + vit, vit = αi + uit − (λ̂− λ)yi,t−1 − x′it(β̂ − β). (10)

The first-stage estimation error shows up in the error term vit. Yet, as a consequence

of Assumption 4, we can still define the second-stage moment conditions E[Z′γiei] = 0 in

terms of ei instead of vi.
19 Under Assumption 3, the relevant moment conditions are again

given by equations (3) and (4). The corresponding matrix of Kzγ = Kx1(T + 1) + Kf1

instruments is set up as Zγi = (Zxi,F1i), with Zxi = ((x1i0,0)′, diag(x′1i1,x
′
1i2, . . . ,x

′
1iT )).

Consequently, for the identification of the coefficients γ, the order condition Kx1(T +1) ≥

Kf2 from Section 3 carries over to the second-stage GMM estimation.20 When sufficiently

many instruments are available and the rank condition is satisfied, i.e. F′ZγVγNZ′γF is

invertible, the second-stage GMM estimator is obtained as21

ˆ̂γ =
(
F′ZγVγNZ′γF

)−1
F′ZγVγNZ′γ(y −Wyxθ̂), (11)

with second-stage weighting matrix VγN . We can now formulate the following result.

Proposition 2: Assume that weak laws of large numbers hold element-wise such that

Sγ = plimN→∞N
−1
∑N

i=1 Z′γiFi, Sθ = plimN→∞N
−1
∑N

i=1 Z′γiWyxi, as well as Vγ =

plimN→∞VγN . Furthermore, let the matrices Ξe = limN→∞N
−1
∑N

i=1E[Z′γieie
′
iZγi] and

Ξθe = limN→∞N
−1
∑N

i=1E[ψθie
′
iZγi] be finite. If Assumption 4 holds and all coefficients

are identified, then under standard regularity conditions the second-stage GMM estimator

(11) is a consistent and asymptotically normal estimator with

√
N
(

ˆ̂γ − γ
)

=
1√
N

N∑
i=1

ψγi + op(1)
d→ N (0,Σγ) , (12)

where ψγi is the influence function given by

ψγi = (S′γVγSγ)−1S′γVγ(Z′γiei − Sθψθi), (13)

with asymptotic variance matrix Σγ = (S′γVγSγ)−1Sγ
′VγΞvVγSγ(S′γVγSγ)−1, where

Ξv = Ξe + SθΣθS
′
θ − Ξ′θeS

′
θ − SθΞθe.

22

19Notice that plimN→∞N
−1Z′γv = plimN→∞N

−1Z′γe− plimN→∞N
−1Z′γWyx · plimN→∞(θ̂− θ), and

plimN→∞(θ̂ − θ) = 0 under Assumption 4.
20The qualifications of Remark 1 apply again. A collapsed version of the instruments matrix would be

Zγi = (X1i,F1i) with Kzγ = Kx1 + Kf1 columns. Given that the regressors are strictly exogenous, X1i

can be replaced by the corresponding matrix of within-group averages X̄1i. Notice that X′1iF2i = X̄′1iF2i.
21A double hat denotes second-stage estimates while a single hat refers to first-stage estimates.
22We provide a detailed proof in our Online Appendix. For a more general discussion of asymptotic
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The following corollary is useful for the computation of test statistics that jointly in-

volve coefficients from both stages. For example, the calculation of Delta-method standard

errors for the long-run marginal effects of the type ˆ̂γ/(1− λ̂) relies on this result.23

Corollary 1: Under the conditions of Proposition 2, the asymptotic covariance matrix

between the first-stage estimator θ̂ and the second-stage GMM estimator ˆ̂γ is obtained as

lim
N→∞

N−1
N∑
i=1

E[ψθiψ
′
γi] = (Ξθe − ΣθS

′
θ)VγSγ(S′γVγSγ)−1. (14)

In analogy to Lemma 1, we can further state the following corollary.

Corollary 2: The second-stage GMM estimator ˆ̂γ is efficient for a given first-stage esti-

mator θ̂ and instruments matrix Zγ if Vγ = Ξ−1
v .

A consistent unrestricted estimate of Ξv can be obtained as

ˆ̂
Ξv =

ˆ̂
Ξe +

ˆ̂
SθΣ̂θ

ˆ̂
S′θ −

ˆ̂
Ξ′θe

ˆ̂
S′θ −

ˆ̂
Sθ

ˆ̂
Ξθe, (15)

where
ˆ̂
Sθ = N−1

∑N
i=1 Z′γiWyxi. An estimate of Σθ is readily available from the first-

stage regression, and Ξe can be estimated as
ˆ̂
Ξe = N−1

∑N
i=1 Z′γi

ˆ̂eiˆ̂e
′
iZγi, where ˆ̂ei =

yi −Wyx,iθ̂ − Fi
ˆ̂γ. Obtaining an estimate of Ξθe is more involved as it relies on the

product of the influence function ψθi from the first stage and the moment function from

the second stage,
ˆ̂
Ξθe = N−1

∑N
i=1 ψ̂θi

ˆ̂e′iZγi. Alternatively, a robust estimate of Ξv can be

obtained as
ˆ̂
Ξv = N−1

∑N
i=1(Z′γi

ˆ̂ei − ˆ̂
Sθψ̂θi)(Z

′
γi

ˆ̂ei − ˆ̂
Sθψ̂θi)

′.24

Importantly, ignoring the first-stage estimation error by setting
ˆ̂
Ξv =

ˆ̂
Ξe produces in-

consistent standard error estimates for ˆ̂γ and invalidates asymptotic testing procedures.

In most practical situations, Ξθe will be small or even zero. Standard error estimates ig-

noring the correction term will thus be too small because SθΣθS
′
θ is a positive-semidefinite

matrix. Ignoring the first stage is only valid exceptionally if Sθ = 0.25

Remark 5: Instead of using Assumption 3, we can achieve identification of the coefficients

γ with a CRE assumption as in Remarks 3 or 4. Under the Mundlak (1978) assumption,

two-stage GMM results, see as well Newey (1984) and Newey and McFadden (1994).
23There is no conceptional difference between the long-run effects of time-varying and time-invariant

variables.
24This robust estimate of Ξv equals that in equation (15) if Σ̂θ = N−1∑N

i=1 ψ̂θiψ̂
′
θi. Details about the

estimation of the first-stage influence function are provided in the Online Appendix.
25A generalization of this result can be found in Newey (1984). Ξθe = 0 holds for example if all second-

stage instruments Zγi are time-invariant and orthogonal to the first-stage moment conditions, and uit is
independent and identically distributed across units and time.
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we can augment the second-stage model with the within-group means x̄i and estimate it

by ordinary least squares, accounting for the first-stage estimation error analogously to

Proposition 2. An application of this projection already in the first stage is not helpful

because it would not restrict the correlation of the time-invariant regressors fi with αi.

5 Testing the overidentifying restrictions

For the identification of the coefficients of the time-invariant regressors, Assumption 3 is

crucial, and a testing procedure for the validity of the regressor classification is desirable.

Following Hansen (1982), we can test the joint validity of all overidentifying restrictions by

evaluating whether the one-stage GMM criterion function is close enough to zero. However,

a rejection of this test is not very informative about the source of misspecification due to

the typically large number of overidentifying restrictions.26

To investigate the validity of just the Kzγ moment conditions (3) and (4), a difference-

in-Hansen test in the spirit of Newey (1985) and Eichenbaum et al. (1988) can be applied.

The test statistic can be computed as the difference of the Hansen test statistics for the

full model, J̃ , and the model excluding these additional moment restrictions, Ĵθ:

Ĉγ = J̃ − Ĵθ
d→ χ2

(Kzγ−Kf ). (16)

Since the coefficients γ are unidentified in the smaller model, there are Kzγ −Kf overi-

dentifying restrictions to be tested. The degrees of freedom equal the difference of the

degrees of freedom from the two Hansen tests. In practice, this test is easily implemented

in the context of our two-stage procedure because Ĵθ is the first-stage Hansen statistic.27

Alternatively, the same null hypothesis can be investigated with the Hansen test based

on the GMM criterion function in the second stage:

ˆ̂
Jγ =

(
N−

1
2 ˆ̂e′Zγ

)
ˆ̂
Ξ−1
v

(
N−

1
2 Z′γ

ˆ̂e
)

d→ χ2
(Kzγ−Kf ). (17)

Importantly,
ˆ̂
Ξv must be a consistent estimate of the variance matrix Ξv in Proposition 2

26The test statistic for the full model is J̃ =
(
N−1/2ẽ′Z

)
Ξ̃−1

(
N−1/2Z′ẽ

)
d→ χ2

(Kz−Kyxf ), with one-stage

residuals ẽ = y−Wyxθ̃−Fγ̃ and an optimal weighting matrix Ξ̃−1. There are Kz −Kyxf overidentifying
restrictions, where Kz is the number of linearly independent instruments and Kyxf = 1 +Kx +Kf is the
total number of regressors.

27That is, Ĵθ =
(
N−1/2ε̂′Zθ

)
Ξ̂−1
θ

(
N−1/2Z′θ ε̂

)
d→ χ2

(Kzθ−Kyxη), with first-stage residuals ε̂ = y −

Wyxθ̂ − ˆ̄ηιNT , first-stage instruments Zθ, and optimal first-stage weighting matrix Ξ̂−1
θ . The number of

first-stage instruments and regressors (including an intercept) are Kzθ and Kyxη = 2 +Kx, respectively.
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that accounts for the first-stage estimation error. This second-stage test is easily imple-

mented and can be used in combination with any consistent first-stage estimator.

6 Monte Carlo simulation

6.1 Data-generating process

We conduct Monte Carlo experiments to analyze the finite-sample performance of the

two-stage approach in comparison to one-stage GMM estimators. To keep the simula-

tions economical, we consider a dynamic panel data model with one exogenous and one

endogenous time-varying regressor, x1it and x2it, and similarly one exogenous and one

endogenous time-invariant regressor, f1i and f2i, respectively.28 We generate the time-

varying variables according to the following stationary autoregressive processes:

yit = λyi,t−1 + β1x1it + β2x2it + γ1f1i + γ2f2i + κyαi + uit, (18)

xkit = φkxki,t−1 + πk1f1i + πk2f2i + κkαi + εkit, k = 1, 2. (19)

The idiosyncratic innovations are generated from a multivariate normal distribution,

(uit, ε1it, ε2it)
′ i.i.d.∼ N (0,Ω). The matrix Ω = diag

(
(1− λ2)σ2

u, (1− φ2
1)σ2

ε2, (1− φ2
2)σ2

ε1

)
imposes restrictions on the error variances that help to control the signal-to-noise ratio.

The data-generating process (19) implies that both x1it and x2it are strictly exogenous

with respect to uit.
29 Another time-invariant variable zi shall be available as an external

instrument. Together, all time-invariant variables are jointly multivariate normally dis-

tributed, (f1i, f2i, zi, αi)
i.i.d.∼ N (µ,ΣΨΣ), with mean vector µ, correlation matrix Ψ, and

diagonal matrix of the standard deviations Σ = diag(σf1, σf2, σz, σα).

We impose constraints on the matrix Ψ to guarantee that the observed time-invariant

variables f1i and zi are both uncorrelated with the unobserved time-invariant variable αi.

We let zi serve as an instrument for f2i by choosing a nonzero correlation, ρz,f2, among the

two variables. The time-varying regressor x1it shall be uncorrelated with αi but correlated

with f2i, with a correlation coefficient ρx1,f2, to qualify as an internal instrument for the

28The subscripts follow the logic of Assumption 3. In practice, a researcher will typically face a larger
number of regressors. While the fundamental results should carry over, we note that finite-sample distor-
tions from too many overidentifying restrictions might be aggravated. Conversely, overidentification tests
for a small subset of the moment restrictions should become less sensitive.

29Modeling the independent variables as predetermined does not affect the qualitative conclusions re-
garding the coefficient of the time-invariant regressor for appropriately adjusted GMM estimators. It will,
however, turn the two-stage QML estimator inconsistent because the first-difference transformation in the
first stage requires strict exogeneity, as pointed out by Kripfganz (2016).
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latter. In contrast, the correlation coefficients ρx2,α and ρf2,α are nonzero to generate an

endogeneity of x2it and f2i with respect to αi, respectively. For simplicity, we let the two

endogenous variables be uncorrelated with each other and f1i be uncorrelated with x1it,

f2i, and zi, respectively. To control the correlations, we impose the following restrictions

on the coefficients in the data-generating process (19):30

π11 = 0, π12 =
(1− φ1)ρx1,f2σε1√

(1− ρ2
f2,α)(1− ρ2

f2,α − ρ2
x1,f2)σf2

, κ1 = −π12ρf2,α
σf2

σα
,

π21 = 0, π22 = −κ2ρf2,α
σα
σf2

, κ2 =
(1− φ2)ρx2,ασε2√

(1− ρ2
f2,α)(1− ρ2

f2,α − ρ2
x2,α)σα

.

To ensure an adequate degree of fit, we obtain the population value of the coefficient of

determination for the first-differenced model in a similar fashion as Hsiao et al. (2002):31

R2
∆y =

(1− φ1)σ2
ε1 + (1− φ2)σ2

ε2

(1− φ1)σ2
ε1 + (1− φ2)σ2

ε2 + (1− λ2)σ2
u

,

where we have imposed the restrictions βk =
√

1− λφk, k = 1, 2, which allows us to

select a desired signal-to-noise ratio τ = R2
∆y/(1 − R2

∆y) independent of βk. By further

choosing a common level of persistence for all time-varying variables, λ = φ1 = φ2, we

can determine σ2
ε1 = σ2

ε2 = τ(1 + λ)σ2
u/2. By setting γ1 = γ2 = κy =

√
1− λ2 in equa-

tion (18), we guarantee that the variance ratio ω = V ar(γ1f1i + γ2f2i + κyαi)/V ar(uit) =(
σ2
f1 + σ2

f2 + σ2
α + 2ρf2,ασf2σα

)
/σ2

u does not depend on λ. We can then obtain σ2
u endoge-

nously by controlling this variance ratio.32 Finally, we initialize the processes at t = −50

with draws from their joint stationary distribution, conditional on the time-invariant vari-

ables. For the estimation, we discard the first 50 observations.

In macroeconomic applications, relatively high autocorrelations and large variance

ratios are realistic. We thus set λ = 0.8 and ω = 3 in our baseline scenario. A

reasonable value of the signal-to-noise ratio for the first-differenced model is τ = 0.5.

We fix the variances of all time-invariant variables at unity, Σ = I4, and choose a

corresponding mean vector of zeros, µ = 0. The nonzero correlation coefficients are

(ρx1,f2, ρz,f2, ρx2,α, ρf2,α) = (0.2, 0.4, 0.3, 0.3). All remaining parameters are determined

30Details on the derivation of these parametric restrictions can be found in the Online Appendix. Notice
that the admissible degrees of correlation are constrained by ρ2

f2,α + ρ2
x1,f2 < 1 and ρ2

f2,α + ρ2
x2,α < 1.

31Details on the derivation of R2
∆y can be found in the Online Appendix.

32It is appropriate to control this ratio rather than V ar(κyαi)/V ar(uit) because γ1f1i + γ2f2i becomes
part of the unobserved unit-specific effect in the first stage of our two-stage procedure. Bun and Windmeijer
(2010), among others, have demonstrated that the performance of GMM estimators might deteriorate
substantially with higher variance ratios of the unit-specific to the idiosyncratic error component.
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endogenously. While our empirical data in Section 7 constitutes an unbalanced panel data

set, we avoid this complication in our simulations but still obtain a similar sample size

with T = 6 and N = 350. The number of replications is set to 10,000.

6.2 Simulation results

We distinguish between “system GMM” estimators that make use of moment conditions

valid under mean stationarity (sGMM) and those that instead incorporate nonlinear mo-

ment conditions implied by the absence of serial correlation in the idiosyncratic errors

(nlGMM). For both types, we construct one-stage (sGMM1 and nlGMM1) and two-stage

(sGMM2 and nlGMM2) variants. Table 1 summarizes the construction of the estima-

tors.33 To tackle potential problems of instrument proliferation, we limit the lag depth

and collapse the instruments matrices, as suggested by Roodman (2009) among others.34

The total instrument count is 22 for sGMM1 and 17+T for nlGMM1. This number is

reduced by three in the first stage of the two-stage estimators. The second-stage estima-

tors utilize 4 instruments.35 As an alternative, we consider a two-stage estimator with the

Hsiao et al. (2002) QML estimator in the first stage (QML2).

Table 2 displays the baseline simulation results. The one-stage GMM estimators make

efficient use of the available moment conditions. It is thus not surprising that their root

mean square error (RMSE) is almost always smaller than that of their two-stage coun-

terparts. For the coefficients β1 and β2, this comes at the cost of a slightly larger bias.

For the other coefficients, the larger bias and RMSE of the two-stage GMM estimators

also explain the stronger size distortions of the Wald tests for parameter equality to the

true value. Yet, the rejection frequencies are still reasonably close to the nominal size of

5%. For the second-stage estimators, this hinges crucially on the correction of the stan-

dard errors. If we ignored the first-stage estimation error, the standard errors would be

on average only about one third to two third of the empirical standard deviation. The

33Our second-stage weighting matrix VγN = N(Z′γZγ)−1 is not asymptotically optimal. The estimation
of an asymptotically optimal weighting matrix can lead to poor finite-sample properties (Hayashi, 2000,
Chapter 3.5). In our simulations, we would obtain a substantially larger RMSE of the second-stage long-run
coefficients. For the Hansen test, however, we still use the optimal weighting matrix.

34Kiviet et al. (2017) recently demonstrated with extensive Monte Carlo simulations that such a combina-
tion of collapsing with a not too restrictive lag limitation results in satisfactory finite-sample performance.
We describe the respective instrument transformation matrices in the Online Appendix.

35All GMM regressions contain an intercept. Given the data-generating process (18), it could be re-
stricted to zero when µ = 0. In practice, this prior information is rarely available.
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Table 1: Construction of the estimators
Estimator First stage Second stage

sGMM1 & (A.1) with 2 ≤ s ≤ 6 for yi,t−s, collapsed
sGMM2 (A.2) with 0 ≤ s ≤ 4 for x1i,t−s and x2i,t−s, collapsed

(A.7) for ∆yi,t−1, collapsed
(A.8) for ∆x1it and ∆x2it, collapsed
(4) for the intercept
sGMM1: (3) for x1it, t ≥ 1, collapsed sGMM2: (3) for x1it, t ≥ 1, collapsed

(4) for f1i and zi (4) for f1i, zi, and the intercept
nlGMM1 & (A.1) with 2 ≤ s ≤ 6 for yi,t−s, collapsed
nlGMM2 (A.2) with 0 ≤ s ≤ 4 for x1i,t−s and x2i,t−s, collapsed

(A.4)
(4) for the intercept
nlGMM1: (3) for x1it, t ≥ 1, collapsed nlGMM2: (3) for x1it, t ≥ 1, collapsed

(4) for f1i and zi (4) for f1i, zi, and the intercept
QML2 Hsiao et al. (2002) (3) for x1it, t ≥ 1, collapsed

(4) for f1i, zi, and the intercept

Note: The trailing numbers 1 and 2 denote one-stage and two-stage estimators, respectively. The equation numbers refer to
the moment conditions listed in Section 3 and Appendix A. If indicated, instruments matrices are collapsed as suggested by
Roodman (2009). For details, see our Online Appendix. The one-stage and first-stage GMM estimators use an unrestricted
optimal weighting matrix based on initial consistent estimates. The initial weighting matrix for sGMM is the one suggested
by Windmeijer (2000) that would be optimal under homoskedastic errors and absence of the unit-specific effects. For nlGMM,
the initial weighting matrix is block diagonal, accounting for the first-order serial correlation of the first-differenced errors
while treating the nonlinear moment conditions as independent. Standard errors are computed with the Windmeijer (2005)

correction. All second-stage estimators are GMM estimators with weighting matrix VγN = N(Z′γZγ)−1, and the standard

errors are computed based on the asymptotic result in Proposition 2 and the variance estimator in equation (15).

confidence intervals would be too narrow and the Wald test would strongly overreject.

The sGMM estimators are preferred over the nlGMM estimators because the data-

generating process satisfies mean stationarity.36 The overall most convincing estimator is

the two-stage QML estimator. Due to a first-difference transformation, the second stage

is necessary to recover the coefficients of the time-invariant regressors. The small bias and

RMSE of the second-stage estimator are a direct consequence of the precise first-stage

estimates. This highlights the general suitability of the two-stage approach, in particular

if there exists no one-stage version of a desired estimator.

QML2 remains the preferred estimator when the long-run coefficients are the objects

of interest.37 For the GMM estimators, the differences between the one-stage and the

two-stage variants become more pronounced. An exception are the two-stage GMM esti-

mators for the coefficient γ1. The bias for the autoregressive coefficient and the short-run

coefficient essentially offset each other in the computation of the long-run coefficient. The

sGMM2 estimator even has a smaller RMSE than its one-stage counterpart. This is not

the case for the nlGMM2 estimator. It has by far the highest RMSE for the long-run

coefficients. This estimator occasionally produces estimates of λ very close to unity which

hugely distort the long-run estimates.38

36See Bun and Sarafidis (2015) and our Online Appendix for simulation results that favor the GMM
estimators with the nonlinear moment conditions under a violation of the mean stationarity assumption.

37Given a value of λ = 0.8 in our baseline specification and the restrictions β1 = β2 = γ1 = γ2 =√
1− 0.82 = 0.6, the true value of all long-run coefficients equals 0.6/(1− 0.8) = 3.
38Out of the 10,000 replications, 72 estimates of λ are above 0.9 for nlGMM2, and two of them beyond

0.99, while for all other estimators these estimates remain strictly below 0.9.
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Table 2: Simulation results: coefficient estimates
short-run coefficients long-run coefficients

Bias RMSE Size (uncorr.) SE/SD (uncorr.) Bias RMSE Size SE/SD

λ sGMM1 0.0016 0.0197 0.0593 0.9934
sGMM2 0.0062 0.0273 0.0802 0.9848
nlGMM1 0.0015 0.0248 0.0530 1.0004
nlGMM2 0.0091 0.0341 0.0619 0.9539
QML2 -0.0004 0.0206 0.0482 1.0003

β1 sGMM1 -0.0022 0.0368 0.0546 1.0052 0.0369 0.3086 0.0530 0.9984
sGMM2 0.0016 0.0450 0.0520 1.0001 0.1655 0.5415 0.0464 0.9763
nlGMM1 -0.0015 0.0390 0.0530 1.0036 0.0539 0.3633 0.0524 0.9948
nlGMM2 0.0014 0.0458 0.0494 1.0160 0.2515 2.5280 0.0392 0.4411
QML2 0.0000 0.0341 0.0473 1.0145 0.0251 0.3563 0.0507 0.9974

β2 sGMM1 0.0025 0.0430 0.0522 1.0033 0.0670 0.3892 0.0479 1.0022
sGMM2 0.0017 0.0448 0.0521 1.0060 0.1661 0.5385 0.0452 0.9826
nlGMM1 0.0023 0.0457 0.0506 1.0058 0.0845 0.4781 0.0455 0.9960
nlGMM2 0.0017 0.0460 0.0486 1.0137 0.2520 2.4380 0.0374 0.4513
QML2 0.0003 0.0348 0.0532 0.9961 0.0262 0.3574 0.0517 0.9945

γ1 sGMM1 -0.0089 0.0696 0.0650 0.9875 -0.0214 0.1838 0.0534 0.9901
sGMM2 -0.0187 0.0884 0.0791 0.4596 0.9794 0.3996 0.0002 0.1790 0.0488 1.0055
nlGMM1 -0.0084 0.0828 0.0572 0.9974 -0.0192 0.1836 0.0564 0.9884
nlGMM2 -0.0271 0.1076 0.0604 0.5084 0.9636 0.3288 0.0000 0.2447 0.0464 0.8709
QML2 0.0017 0.0714 0.0480 0.3309 1.0027 0.4982 0.0019 0.1775 0.0499 1.0046

γ2 sGMM1 -0.0079 0.1155 0.0526 0.9901 -0.0243 0.4465 0.0508 0.9820
sGMM2 -0.0286 0.1409 0.0666 0.2883 0.9849 0.5697 -0.0726 0.4766 0.0463 0.9864
nlGMM1 -0.0124 0.1294 0.0574 0.9938 -0.0521 0.4630 0.0512 0.9759
nlGMM2 -0.0393 0.1665 0.0640 0.3563 0.9725 0.4815 -0.1007 0.8852 0.0390 0.7374
QML2 0.0013 0.1192 0.0524 0.1862 0.9947 0.6787 -0.0117 0.4372 0.0488 0.9918

Simulation design according to the data-generating process in Section 6.1: λ = 0.8, β1 = β2 = γ1 = γ2 =
√

1− λ2, ω = 3,
τ = 0.5, µ = 0, Σ = diag(1, 1, 1, 1), (ρx1,f2, ρz,f2, ρx2,α, ρf2,α) = (0.2, 0.4, 0.3, 0.3), T = 6, and N = 350.
Note: For details on the estimators, see Table 1. The bias is the difference between the estimated and the true parameter value.
RMSE is the root mean square error. The size statistic refers to the actual rejection rate of Wald tests that the parameter
estimates equal their true value given a nominal size of 5%. SE/SD is the average standard error relative to the standard
deviation of the estimator for the 10,000 replications. The second-stage standard errors are based on Proposition 2, while the
“uncorrected” standard errors ignore the first-stage estimation error. The long-run coefficients are calculated as the short-run
coefficients divided by 1− λ̂. The corresponding standard errors are computed with the delta method.

Because the coefficients γ1 and γ2 are overidentified, we can test the validity of the

overidentifying restriction implied by Assumption 3. The one-stage GMM estimators dif-

fer from the first stage of the two-stage GMM estimators only in the three extra moment

conditions E
[∑T

t=1(x1it, f1i, zi)
′eit

]
= 0 and the two added time-invariant regressors f1i

and f2i. By contrasting the two estimators, we can thus test one overidentifying restriction

with a difference-in-Hansen test, as explained in Section 5. Table 3 presents the actual

rejection frequencies given a nominal size of 5%.39 This test is clearly oversized. Alter-

natively, we can test the same overidentifying restriction with the conventional Hansen

test in the second stage only. It is still oversized but the rejection rates are closer to

the nominal size. A higher precision of the first-stage estimators corresponds to a better

sized second-stage Hansen test. It is important to note that it is once again crucial to

correct the second-stage weighting matrix for the first-stage estimation error. Otherwise,

the rejection rates would be considerably higher.

Additional simulation results have been mostly relegated to the Online Appendix.

There, we demonstrate that the first stage of the two-stage approach is unaffected by

incorrectly classifying x2it as exogenous and x1it as endogenous according to Assumption

39We do not report a difference-in-Hansen test for the nlGMM estimators because it always took on
negative values. This can happen in finite samples because of different estimates for the weighting matrix.
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Table 3: Simulation results: overidentification tests
Size (uncorr.) Power (uncorr.)

Difference-in-Hansen sGMM 0.1128 0.8880
Second-stage Hansen sGMM2 0.0996 0.1872 0.9061 0.9697

nlGMM2 0.1382 0.2461 0.8301 0.9258
QML2 0.0685 0.1062 0.9863 0.9953

Note: See the notes for Table 2 for the data-generating process, Table 1 for the
construction of the estimators, and Section 5 for a description of the tests. The
size and power refer to the actual rejection rate of the tests given a nominal size of
5%. To compute the power, the estimators are modified by replacing the collapsed
moment condition (3) for the exogenous regressor x1it with an equivalent collapsed
moment condition for the endogenous regressor x2it.

3, while one-stage estimators can be biased for all coefficients. The bias is most pronounced

for the long-run coefficients. As shown in Table 3, all of the overidentification tests are

quite powerful to detect the model misspecification but the second-stage Hansen test beats

again the difference-in-Hansen test in the direct comparison.

We further consider estimators based on the Mundlak (1978) projection as in Remarks

3 and 5. These estimators are inconsistent given our data-generating process and they

tend to have a larger RMSE, but they still perform reasonably well for all coefficients

besides γ2 of the endogenous time-invariant regressor. For the identification of the latter,

the correct Hausman and Taylor (1981) assumption is crucial. Furthermore, we consider

static estimators that do not allow to distinguish between short-run and long-run effects.

The ignorance of the lagged dependent variable yields biased short-run coefficients for the

time-varying regressors and biased long-run coefficients for the time-invariant regressors,

in line with the findings of Egger and Pfaffermayr (2004b).

Variations in the data-generating process reveal that a lower variance ratio ω of the

time-invariant variables to the idiosyncratic errors improves the GMM estimators’ per-

formance for the coefficients of the time-varying regressors, as predicted by Binder et al.

(2005) and Bun and Windmeijer (2010), but not for the coefficients of the time-invariant

regressors. The estimators for the latter also suffer under a higher variance σ2
α of the

unobserved relative to the observed time-invariant variables, keeping ω fixed. A larger

signal-to-noise ratio τ unequivocally improves the estimates for all coefficients and estima-

tors. Moreover, we find evidence that a strong external instrument zi is more beneficial for

the coefficient γ2 of the endogenous time-invariant regressor than a strong internal instru-

ment x1it. The degree of persistence in the data-generating process plays an important

role. With larger values of λ, particularly the long-run coefficients of the time-invariant re-

gressors are less precisely estimated. Finally, given that we have taken precautions to limit
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the proliferation of instruments, a larger sample size in either the cross-sectional or the

time dimension increases the precision of the estimates. With relatively small sample sizes,

however, especially the long-run coefficients are estimated with substantial impression.

7 Empirical application: Distance and FDI

7.1 Background

Transportation costs play an important role in theoretical models of bilateral trade and

FDI. Empirically, geographical distance has been used extensively as a proxy for trans-

portation costs when confronting gravity models with the data.40 A major complication

in the estimation of such gravity equations with panel data is the time-invariant nature of

the distance variable when controlling for unobserved country-specific, industry-specific,

or firm-specific effects. The unobserved effects account for a wide range of multilateral

resistance terms, as defined by Anderson and van Wincoop (2003). Egger and Pfaffermayr

(2004a) argue that the geographical distance between two countries is correlated with the

unobserved time-invariant propensity to invest abroad, for example due to decreasing cul-

tural proximity. Therefore, appropriate instruments need to be deployed. In the absence

of external instruments, the Hausman and Taylor (1981) strategy can be of help.41

Egger and Pfaffermayr (2004a) extend this approach to a seemingly unrelated regres-

sions (SUR) setup to identify the effects of distance on trade and FDI. In this paper, we

focus on their FDI model for the United States.42 The data on U.S. outward FDI is ob-

served on an annual basis for 341 bilateral industry-level relationships from 1989 to 1999.

The panel is unbalanced with irregular patterns of missing observations.43 Among the pre-

dictor variables, Egger and Pfaffermayr (2004a) assume that the sum of both countries’

real gross domestic product (henceforth referred to as bilateral GDP) is correlated with

40See Egger and Pfaffermayr (2004a) and the references therein.
41The Hausman and Taylor (1981) estimator has been used before for static panel gravity equations,

among others by Babetskaia-Kukharchuk and Maurel (2004), Brun et al. (2005), Egger (2005), Carrère
(2006), and Rault et al. (2009) for trade, and by Leibrecht and Scharler (2009) and Daniels and von
der Ruhr (2014) for FDI. Serlenga and Shin (2007) extended the estimator to accommodate for common
correlated effects in a large-T framework.

42Egger and Pfaffermayr (2004a) estimate a static SUR model with bilateral data at the industry level
for the United States and Germany, respectively. While the SUR approach potentially yields efficiency
gains, estimating the model equation by equation still results in consistent estimates.

43See Egger and Pfaffermayr (2004a) for a description of the variables and their sources, as well as a
list of partner countries and industries. We provide summary statistics and further details in our Online
Appendix. The data set is available in the Journal of Applied Econometrics Data Archive.
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unobserved trade-partner effects. In contrast, they classify the similarity in the country

size as well as the factor endowments in physical and human capital as exogenous in the

sense of Assumption 3. The latter variables can serve as instruments for the endogenous

time-invariant distance variable. They further assume that the relative labor endowment

is endogenous with respect to the unit-specific effects.44

7.2 Empirical results for the static model

Egger and Pfaffermayr (2004a) find a large and statistically significant effect of distance on

U.S. outward FDI. To assess the robustness of their results, we first run a specification test

for the static model suggested by Wooldridge (2002, Chapter 10.6.3). In the absence of

serial correlation in the idiosyncratic error term, the first-differenced errors should exhibit

a first-order serial correlation of -0.5. With the data at hand, it is estimated to be -0.1

which is statistically significantly different from -0.5 at the 1% level. This result has several

implications. First, standard errors should be made robust to serial correlation in a static

regression for valid inference. Second, serial correlation invalidates the GLS procedure used

by Egger and Pfaffermayr (2004a) to obtain their Hausman-Taylor estimates. Third, if the

serial correlation is a result of a dynamic data-generating process with a lagged dependent

variable, static model estimates of short-run and long-run effects are potentially sizably

biased and easily misinterpreted as shown by Egger and Pfaffermayr (2004b).45

To address the first two of these concerns within the context of a static model, in the

first column of Table 4 we employ a feasible efficient GMM estimator with an unrestricted

optimal weighting matrix that is robust to serial correlation, in contrast to the GLS

estimator of Egger and Pfaffermayr (2004a). The instruments remain the same Hausman-

Taylor instruments as in the original study. The coefficients do not differ much but our

standard errors are larger.46 In the second column, we replicate the original coefficient

44In their bilateral exports equation, Egger and Pfaffermayr (2004a) treat labor endowments as exogenous
based on overidentification tests. To the extent that the unobserved time-invariant effects capture similar
country-industry characteristics in both equations, such an asymmetric treatment is disputable.

45Besides this econometric argumentation in favor of a dynamic model specification, the recent literature
on FDI determinants motivates dynamic gravity models to cope with the persistence and dynamic adjust-
ment of bilateral FDI. Lien et al. (2012) compare static Hausman and Taylor (1981) results with dynamic
system GMM estimates. Kimura and Todo (2010), Abbott and De Vita (2011), and Kahouli and Maktouf
(2015) employ system GMM estimators but all of them remain silent on the instruments used to identify
the coefficients of the time-invariant regressors. Egger (2002) develops a Hausman-Taylor estimator for a
model with autoregressive dynamics in the error term to cope with the serial correlation.

46Compare with Table II(a) in Egger and Pfaffermayr (2004a).
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estimates of the least-squares estimator based on the within-groups transformation. Our

standard errors are again substantially larger because we account for serial correlation

(and heteroskedasticity). Furthermore, we add a second stage to estimate the coefficient

of the time-invariant distance variable. The resulting two-stage estimator is the “fixed

effects filtered” instrumental variables estimator of Pesaran and Zhou (2018), which is a

special case of our more general two-stage estimator. We do not observe any statistical

difference between the two estimators for the static model. Regarding the Hausman-Taylor

Assumption 3, the Hansen overidentification test does not give rise to concern.

Egger and Pfaffermayr (2004a) include the interaction effect between distance and the

relative capital-labor ratio to allow for a differentiated effect of distance depending on the

relative importance of vertical MNEs. A higher relative capital-labor ratio should favor

the establishment of vertical compared to horizontal MNEs. Their New Trade Theory

model predicts a stronger positive effect of distance in the presence of predominantly

vertical MNEs and an ambiguous effect when horizontal MNEs dominate.47 However, the

negative sign of the interaction term is at odds with the authors’ argumentation. A closer

look at the marginal effect of distance reveals that it is cut in half when moving from the

5th to the 95th percentile of the relative capital-labor distribution, that is in the direction

of preferential conditions for vertical MNEs.

It remains the third concern about potential biases due to neglected dynamics. Egger

and Pfaffermayr (2004b) point out that “within” estimators for the coefficients of time-

varying regressors produce biased estimates of short-run effects. Besides the bias, this

should be a major concern if a researcher is actually interested in long-run effects. To

estimate the coefficient of the time-invariant distance variable, both the one-stage and the

second-stage estimator use the “between” variation. According to Egger and Pfaffermayr

(2004b), this results in biased estimates of long-run effects.48 This has the consequence

that the marginal effect of distance, 15.835− 1.807× ln(rel. capital-labor ratio) based on

column 1 in Table 4, is computed as a combination of a (biased) short-run and a (biased)

long-run estimate. The resulting effect is hardly meaningfully interpretable.

47Table II in Egger and Pfaffermayr (2004a) suggests that distance is interacted with the absolute value
of the relative capital-labor ratio. However, using the absolute value is not in line with the theoretical
model. Our replication indeed verifies that this is just a typographical error.

48Our simulation results in the Online Appendix confirm these insights.

21



Table 4: Estimation results: static and dynamic model
outward FDIit HT-GMM1a FE-IV2a sGMM1a sGMM2a sGMM1b sGMM2b QML2b

outward FDIi,t−1 0.958 0.916 0.900 0.916 0.802
(0.053)*** (0.066)*** (0.067)*** (0.066)*** (0.054)***

distancei × -1.807 -1.759 -0.118 -0.099 -0.088 -0.099 -0.842
rel. K-L ratioit (0.787)** (0.876)** (0.097) (0.141) (0.122) (0.141) (0.520)
bilateral GDPit 5.237 5.193 0.883 1.237 1.293 1.237 2.305

(0.941)*** (0.952)*** (0.402)** (0.719)* (0.591)** (0.719)* (0.605)***
bilateral GDPit × 0.024 0.026 -0.008 -0.007 -0.008 -0.007 -0.009
|relative Kit| (0.016) (0.017) (0.005) (0.007) (0.006) (0.007) (0.006)
similarityit 1.648 1.607 0.103 0.436 0.395 0.436 0.840

(0.523)*** (0.626)** (0.156) (0.233)* (0.219)* (0.233)* (0.420)**
relative Kit 15.213 14.730 1.382 1.385 1.219 1.385 7.926

(6.806)** (7.659)* (0.916) (1.384) (1.172) (1.384) (4.594)*
relative Hit 0.290 0.278 0.021 -0.040 0.124 -0.040 0.081

(0.203) (0.206) (0.088) (0.134) (0.115) (0.134) (0.090)
relative Lit -13.107 -12.897 -1.000 -0.741 -0.607 -0.741 -6.275

(6.894)* (7.460)* (0.854) (1.228) (1.075) (1.228) (4.282)
distancei 15.835 14.776 0.048 0.545 0.007 0.573 4.665

(5.311)*** (6.349)** (0.080) (0.456) (0.103) (0.467) (2.535)*

observations 2,767 2,767 2,198 2,198 2,198 2,198 1,664
units 341 341 337 337 337 337 227
1st stage
instruments 21 17 61 58 60 58
constant yes no yes yes yes yes no
year dummies 1990–1999 1990–1999 1991–1999 1991–1999 1991–1999 1991–1999 1991–1999

χ2
10=29.02 χ2

10=28.17 χ2
9=17.09 χ2

9=13.50 χ2
9=15.12 χ2

9=13.50 χ2
9=25.42

[0.001]*** [0.002]*** [0.047]** [0.141] [0.088]* [0.141] [0.003]***

Wooldridge χ2
1=79.31 χ2

1=79.15
[0.000]*** [0.000]***

Arellano-Bond z=-0.038 z=-0.016 z=-0.003 z=-0.016
[0.969] [0.987] [0.997] [0.987]

Hansen χ2
2=0.11 χ2

42=54.17 χ2
40=44.27 χ2

41=48.03 χ2
40=44.27

[0.945] [0.099]* [0.296] [0.209] [0.296]

diff.-in-Hansen χ2
2=9.90 χ2

1=3.76
[0.007]*** [0.053]*

2nd stage
instruments 4 4 3 3
constant yes yes yes yes

Hansen χ2
2=0.15 χ2

2=12.01 χ2
1=1.69 χ2

1=0.04
[0.926] [0.002]*** [0.193] [0.836]

short-run marg. eff.
of distancei at the
5th percentile 0.281 0.740 0.179 0.769 6.321

(0.229) (0.525) (0.296) (0.535) (3.186)**
mean 0.063 0.557 0.018 0.586 4.768

(0.085) (0.456) (0.110) (0.466) (2.568)*
95th percentile -0.271 0.276 -0.230 0.305 2.391

(0.247) (0.604) (0.304) (0.612) (2.170)
long-run marg. eff.
of distancei at the
5th percentile 19.387 18.233 6.655 8.852 1.799 9.198 31.856

(5.672)*** (7.052)*** (7.130) (8.244) (2.808) (8.502) (17.456)*
mean 16.055 14.990 1.487 6.658 0.176 7.004 24.027

(5.321)*** (6.382)** (2.569) (7.759) (1.115) (8.035) (14.150)*
95th percentile 10.955 10.026 -6.423 3.300 3.646 3.646 12.048

(5.528)** (6.088)* (6.123) (8.612) (2.589) (8.865) (11.574)

* p < 0.1; ** p < 0.05; *** p < 0.01
Note: See Egger and Pfaffermayr (2004a) for a data description. K, H, and L refer to physical capital, human capital, and
labor endowments, respectively. All variables are in natural logarithms. We abbreviate the estimators as follows: “HT-GMM”
refers to a GMM version of the Hausman and Taylor (1981) estimator, and “FE-IV” denotes the fixed-effects estimator (in
the first stage). “sGMM” refers to the system GMM estimator that is described in Table 1. The trailing numbers 1 or 2
denote one-stage and two-stage estimators, respectively. The exogenous variables according to Assumption 3 are the similarity

in country size(a,b), the relative physical capital endowment(a), and the relative human capital endowment(a,b). Standard
errors robust to serial correlation and heteroskedasticity are in parentheses. The test statistics are a Wald test for the joint
insignificance of the time dummies, the Wooldridge (2002) test for no serial correlation, the Arellano and Bond (1991) test
for no second-order serial correlation in the first-differenced residuals, as well as the Hansen and difference-in-Hansen tests
discussed in Section 5. The respective p-values are in brackets. The marginal effects of ln(distance)i are evaluated at the 5th
percentile (-1.966), the mean (-0.122), and the 95th percentile (2.701) of ln(rel. capital-labor ratio)it for the full sample of
2,767 observations. The long-run marginal effects in dynamic models are obtained as the short-run marginal effects divided
by one minus the coefficient of the lagged dependent variable.

7.3 Empirical results for the dynamic model

To separate the short-run from the long-run effects and to address the potential biases, we

augment the regression model with a lagged dependent variable in the last five columns of

Table 4. We use the one-stage and two-stage variants of the system GMM estimator with

the same specifications as in our Monte Carlo simulations in Section 6. Initially, in columns
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3 and 4, we retain the same instruments for the identification of the distance effect as in

the static model.49 We first notice that the estimated autoregressive coefficient reflects a

high degree of history dependence, suggesting that a static model may not be appropriate.

The magnitude of all other coefficients is reduced considerably and most of them are no

longer statistically significantly different from zero. While it is generally difficult to find

robust predictors of an outcome variable if the latter is highly persistent, this should not

be used as a justification for a static model. If the dynamics are neglected, the statistical

significance might just be a spurious consequence of the regressors themselves being highly

persistent.50 The effect of the distance variable is smaller in magnitude than in the static

model and turns statistically insignificant. This difference could be explained by a large

upward bias in the static model if the true data-generating process is indeed dynamic,

as argued by Egger and Pfaffermayr (2004b) and confirmed with our simulation results.

While we are able to distinguish between short-run and long-run marginal effects in the

dynamic model, they are all statistically insignificant for geographical distance.

In dynamic panel models, it is generally crucial to rule out the presence of remaining

serial correlation in the idiosyncratic error term. Otherwise, the instruments for the lagged

dependent variable would become invalid.51 The Arellano and Bond (1991) test for the

absence of second-order serial correlation in the first-differenced errors provides supporting

evidence that a single lag of the dependent variable is sufficient to account for the serial

correlation. However, the Hansen test of the overidentifying restrictions rejects the null

hypothesis of joint validity at the 10% level for the one-stage GMM estimator. Besides

other forms of model misspecification, this might indicate that the mean stationarity

assumption is violated. This concern is lessened by the first-stage Hansen test after the

corresponding two-stage estimator that no longer rejects the null hypothesis. If instead

49For each time-varying regressor, there are 5 instruments for the first-differenced model and 1 instrument
for the level model. The 9 time dummies and the constant term are instrumented by themselves (without
a first-difference transformation). Finally, the 3 instruments implied by Assumption 3 are added. For the
two-stage estimator, the latter are only used in the second stage. See Table 1 for details.

50If xi,t−1 is a relevant predictor of yi,t−1, a large autocorrelation of xit implies that it will be correlated
with the lagged dependent variable which gives rise to an omitted variable bias in the static model.

51If there was remaining serial correlation, deeper lags of the dependent variable could be used as instru-
ments. However, such deep lags are more likely to be weak instruments. Alternatively, the model could
be augmented with additional lags of the regressors to better approximate the autocorrelation pattern.
Olivero and Yotov (2012) extend the static gravity model to motivate distributed lags. Adding such lags
in our case does not alter the qualitative conclusions. The autoregressive coefficient remains close to 0.9
and the distance effect is still small and statistically insignificant. For clarity of the exposition, we only
report the results without distributed lags.
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the Hausman-Taylor classification of the regressors is incorrect, we will expect a significant

difference between these two Hansen test statistics. Indeed, this is what the difference-in-

Hansen test indicates. The asymptotically equivalent second-stage Hansen test yields the

same conclusion.

In general, the reliability of the coefficient estimates and test results might be affected

by the presence of weak instruments.52 Indeed, the relative physical capital endowment

is virtually uncorrelated with geographical distance. We thus reestimate the model with-

out this suspicious instrument.53 The one-stage and two-stage system GMM estimates

are reported in columns 5 and 6 of Table 4. The autoregressive parameter in the one-

stage approach is a bit smaller but the qualitative conclusions remain largely unchanged.

Importantly, the Hansen test no longer rejects the joint validity of all overidentifying

restrictions. The first-stage estimates of the two-stage approach are entirely unaffected

because the modified instruments are only used in the second stage. Yet, the second-stage

distance coefficient is not affected much. While the difference-in-Hansen test still questions

the validity of the remaining Hausman-Taylor instruments, we have seen in Section 6 that

it tends to overreject the null hypothesis. The better sized second-stage Hansen test no

longer rejects the overidentifying restriction.

The results from the GMM estimators for the dynamic model cast at least considerable

doubt whether geographical distance affects plant set-up costs as predicted by the New

Trade Theory model of Egger and Pfaffermayr (2004a).54 For this conclusion, we cannot

emphasize strong enough the importance of the second-stage standard error correction

derived in Section 4. If we ignore the first-stage estimation error, the standard errors of the

distance coefficient would shrink to 0.16 for both two-stage GMM estimators, respectively.

The coefficients would thus incorrectly appear highly statistically significant in both cases.

Moreover, the second-stage Hansen test statistics would be too large, χ2
2 = 42.2 in column

52In the first stage, weak-instrument robust test statistics as suggested by Kleibergen (2005) and others
can be used without any modification. In the second stage, correction terms similar to those in Proposition
2 are needed. A rigorous discussion of weak-instrument robust test statistics in the context of a general
class of sequential GMM estimators is left for future work.

53The unconditional correlation coefficients between the log of geographical distance and the three in-
struments are 0.12 (log of similarity in country size), 0.01 (log of relative physical capital endowment), and
0.28 (log of relative human capital endowment), respectively.

54An insignificant or even negative estimate of the distance effect in (dynamic) FDI gravity models is
not uncommon. See for example Kimura and Todo (2010), Abbott and De Vita (2011), Lien et al. (2012),
and Kahouli and Maktouf (2015).
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4 and χ2
1 = 11.2 in column 6, suggesting to reject the null hypothesis with large confidence.

We have seen in our simulation experiments that the QML estimator of Hsiao et al.

(2002) can be an excellent alternative to the GMM estimators. Because it relies on a first-

difference transformation, we necessarily have to use two stages to estimate the coefficients

of time-invariant regressors. The drawback of this estimator is that it requires consecutive

observations. In our unbalanced panel data set, about one third of the country-industry

pairs have gaps in the unit-specific time series data and need to be removed from the

estimation sample. The estimates in the final column of Table 4 are thus not directly

comparable with the previous estimates. With the reduced sample, the QML2 estima-

tor yields a lower estimate of 0.8 for the autoregressive parameter, which helps to regain

statistical significance for some other regressors, in particular bilateral GDP and the sim-

ilarity in country size. The second-stage Hansen test strongly supports the choice of the

instruments and the marginal effects of distance turn statistically significantly positive for

negative relative capital-labor ratios. While the magnitude of these effects is relatively

large, so are the standard errors which does not allow us to pin down the effect size within

reasonably narrow confidence bands.

7.4 Robustness checks

If geographical distance is treated as endogenous because it is correlated with the unob-

served cultural proximity, it might be expedient to employ proxy variables for the latter.

For this purpose, we add dummy variables for common language, either official or other

languages spoken by at least 9% of the population in both countries, and current or for-

mer colonial relationship. In addition, we include a common-border dummy variable that

serves as another standard proxy for transportation costs besides geographical distance.

All of these variables are taken from the Mayer and Zignago (2011) GeoDist data base.

In the first five columns of Table 5, we reconsider both the static and the dynamic

model. Once we account for the cultural proxies, we treat geographical distance as ex-

ogenous. We allow the dummy for other languages to be correlated with the unobserved

effects because it is only an imperfect proxy of cultural proximity. The classification of

the time-varying regressors remains the same as in the last three columns of Table 4 which

still gives us one overidentifying restriction for the coefficients of the time-invariant re-
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gressors. The first-stage estimates of the two-stage estimators are identical to those in

Table 4, which highlights again the important robustness aspect of the two-stage proce-

dure. The largest difference is observed for the HT-GMM1 distance estimate in the static

model. Once we control for cultural proximity and the common-border effect, the strong

positive effect of geographical distance disappears. We still observe a significantly positive

estimate with the FE-IV2 estimator but it is much smaller than before. In the dynamic

model, not much changes. The coefficient of bilateral GDP turns statistically insignificant

with sGMM1 due to the larger standard errors that almost inevitably arise from the less

parsimonious model. With the QML2 estimator, the marginal effects of distance become

smaller as well but remain significantly positive for negative relative capital-labor ratios.

However, the overidentification tests now tend to reject the null hypothesis both in

the static and the dynamic model. This might suggest that some of the additional time-

invariant regressors should not be treated as exogenous. However, we do not have enough

internal instruments left to allow more than two of them to be endogenous. Even with

two endogenous time-invariant variables, their coefficients would be just identified and

we would not be able to test the identifying assumption.55 This lack of instruments and

the resulting necessity for strong assumptions is perhaps one of the biggest hurdles in the

estimation of the coefficients of time-invariant variables in panel data models.

In the final two columns of Table 5, we consider the Mundlak (1978) projection of

the unobserved time-invariant effects on the within-group averages of the time-varying

regressors as an alternative identifying assumption.56 In the augmented model, the time-

invariant regressors are assumed to be exogenous. The static model is estimated with

the conventional random-effects estimator, in this context often referred to as correlated

random-effects (CRE) estimator. The Wald test for joint insignificance of the within-group

averages rejects the null hypothesis at the 5% level, indicating that a pure random-effects

model would not be appropriate. The time-invariant common border, common official

language, and common colonial relationship dummies have significantly positive effects on

outward FDI, in line with the theory that these factors reduce the costs for investments

55Classifying any other dummy variable as endogenous in lieu of other common languages does not
change the picture substantially.

56See Remarks 3 and 5. Because of the unbalanced nature of the panel data set, we also include the
within-group averages of the time dummies. This is required in the static model to obtain the fixed-effects
estimates for the coefficients of the time-varying regressors. Compare columns 2 and 6 of Table 5.
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Table 5: Estimation results: robustness checks
outward FDIit HT-GMM1c FE-IV2c sGMM1c sGMM2c QML2c M-CRE1 M-sGMM1

outward FDIi,t−1 0.944 0.916 0.802 0.943
(0.068)*** (0.066)*** (0.054)*** (0.054)***

distancei × -1.110 -1.759 -0.065 -0.099 -0.842 -1.759 -0.966
rel. K-L ratioit (0.936) (0.876)** (0.132) (0.141) (0.520) (0.884)** (0.763)
bilateral GDPit 4.091 5.193 0.847 1.237 2.305 5.193 1.910

(0.917)*** (0.952)*** (0.626) (0.719)* (0.605)*** (0.960)*** (0.825)**
bilateral GDPit × 0.020 0.026 -0.005 -0.007 -0.009 0.026 -0.020
|relative Kit| (0.021) (0.017) (0.007) (0.007) (0.006) (0.017) (0.014)
similarityit 1.535 1.607 0.281 0.436 0.840 1.607 1.138

(0.638)** (0.626)** (0.212) (0.233)* (0.420)** (0.631)** (0.581)*
relative Kit 9.007 14.730 0.962 1.385 7.926 14.730 9.441

(8.198) (7.659)* (1.217) (1.384) (4.594)* (7.725)* (6.749)
relative Hit 0.244 0.278 0.048 -0.040 0.081 0.278 -0.011

(0.204) (0.206) (0.119) (0.134) (0.090) (0.207) (0.148)
relative Lit -9.557 -12.897 -0.495 -0.741 -6.275 -12.897 -7.621

(8.152) (7.460)* (1.160) (1.228) (4.282) (7.524)* (6.469)
distancei 1.248 4.367 -0.027 0.467 2.964 -0.026 -0.058

(1.549) (1.787)** (0.101) (0.250)* (1.434)** (0.381) (0.078)
common borderi 0.659 7.899 0.199 0.386 3.433 2.407 0.071

(1.603) (3.137)** (0.247) (0.292) (1.920)* (0.536)*** (0.117)
common language, 3.935 0.723 -0.149 0.156 0.616 0.742 0.037
officiali (1.686)** (2.013) (0.082)* (0.163) (0.923) (0.207)*** (0.059)
common language, 6.601 1.594 -0.262 0.738 3.572 0.348 -0.026
otheri (4.391) (4.581) (0.177) (0.419)* (2.475) (0.251) (0.045)
colonial relationi -1.965 0.796 0.184 0.098 0.829 0.837 0.048

(1.306) (1.577) (0.123) (0.109) (0.658) (0.251)*** (0.047)

observations 2,767 2,767 2,198 2,198 1,664 2,767 2,198
units 341 341 337 337 227 341 337
1st stage
instruments 24 17 64 58 79
constant yes no yes yes no yes yes
year dummies 1990–1999 1990–1999 1991–1999 1991–1999 1991–1999 1990–1999 1991–1999

χ2
10=22.18 χ2

10=28.17 χ2
9=16.80 χ2

9=13.50 χ2
9=25.42 χ2

10=27.69 χ2
9=22.64

[0.014]** [0.002]*** [0.052]* [0.141] [0.003]*** [0.002]*** [0.007]***

Mundlak χ2
7=17.96 χ2

7=8.52
[0.012]** [0.289]

Wooldridge χ2
1=80.70 χ2

1=79.15 χ2
1=79.15

[0.000]*** [0.000]*** [0.000]***
Arellano-Bond z=-0.019 z=-0.016 z=-0.011

[0.985] [0.987] [0.991]

Hansen χ2
1=6.56 χ2

41=49.97 χ2
40=44.27 χ2

40=48.53
[0.010]** [0.159] [0.296] [0.167]

diff.-in-Hansen χ2
1=5.69

[0.017]**
2nd stage
instruments 7 7 7
constant yes yes yes

Hansen χ2
1=27.19 χ2

1=3.67 χ2
1=4.20

[0.000]*** [0.055]* [0.040]**

short-run marg. eff.
of distancei at the
5th percentile 0.101 0.662 4.620 1.841

(0.307) (0.420) (2.234)** (1.493)
mean -0.020 0.479 3.066 0.059

(0.107) (0.255)* (1.475)** (0.114)
95th percentile -0.204 0.198 0.689 -2.668

(0.338) (0.395) (1.195) (2.072)
long-run marg. eff.
of distancei at the
5th percentile 3.430 7.824 1.813 7.922 23.282 3.431 32.393

(2.637) (2.854)*** (5.116) (5.952) (11.960)* (1.786)* (36.124)
mean 1.383 4.581 -0.351 5.727 15.453 0.187 1.043

(1.576) (1.824)** (1.918) (4.949) (8.026)* (0.398) (2.407)
95th percentile -1.749 -0.383 -3.663 2.369 3.474 -4.776 -46.932

(2.680) (2.464) (4.776) (5.796) (6.141) (2.411)** (49.879)

* p < 0.1; ** p < 0.05; *** p < 0.01
Note: See Egger and Pfaffermayr (2004a) and Mayer and Zignago (2011) for a data description. The exogenous variables

according to Assumption 3 are the similarity in country size(c), the relative human capital endowment(c), and all time-invariant

regressors besides other common languages(c). “M-CRE1” is a Mundlak (1978) CRE estimator and “M-sGMM” a system GMM
estimator with Mundlak (1978) projection (including time dummies) as discussed in Remark 3. Further information can be
found in the notes for Table 4.

abroad. The main effect of geographical distance is statistically insignificant. Its marginal

effect depends on the sign and magnitude of the relative capital-labor ratio because of the

significantly negative interaction effect. In the dynamic version, all coefficients of the time-

invariant regressors turn statistically insignificant. While the Hansen test does not reject

the validity of the overidentifying restrictions for the whole model, the Mundlak (1978)
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assumption itself is untestable, which is a nonnegligible drawback of this specification.

The joint insignificance of the within-group averages in the dynamic specification at least

casts some doubt whether the Mundlak (1978) projection is effective in controlling for the

correlation with the unobserved country-industry effects.

Further estimation results with only minor additional insights can be found in our

Online Appendix.57 As a summary of this section, the original static model estimates

tend to strongly overestimate the effect of distance on bilateral FDI due to the ignored

persistence of the dependent variable. Irrespective of whether we add the dynamics or

not, the results are sensitive to the assumption used to identify the coefficient of the time-

invariant distance variable, to the estimation sample, and whether we control for additional

time-invariant variables that proxy for transportation costs and cultural proximity. In this

regard, we have seen that the two-stage procedure provides partial robustness because the

first-stage estimates are invariant to the selected second-stage identification strategy.

8 Conclusion

The estimation of linear dynamic panel data models with unobserved unit-specific hetero-

geneity is a challenging task when the time dimension is short.58 We have seen that a

two-stage approach can provide partial insurance against model misspecification because

the first-stage estimates are unaffected by the choice of instruments used to identify the

coefficients of the time-invariant regressors in the second stage. The two-stage approach is

flexible regarding the choice of the first-stage estimator and it offers a simple testing strat-

egy. In the first stage, general model specification tests can be carried out. Subsequently,

the overidentifying restrictions for the time-invariant regressors can be tested separately in

the second stage with a conventional Hansen (1982) test. To avoid misleading inference, it

is crucial to account for the first-stage estimation error in the computation of second-stage

standard errors and test statistics.

57We provide results from the nlGMM1 and nlGMM2 estimators that we have analyzed in Section 6.
The performance of these estimators suffers from the highly unbalanced nature of our panel data. We
further consider the two-stage analogue of the M-sGMM1 estimator, and one-stage and two-stage QML
alternatives with the Mundlak (1978) projection.

58More sophisticated models with interactive effects can be estimated when both N and T are large. See
Moon and Weidner (2017) for recent advances in that direction.
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Appendix A GMM moment conditions

In this appendix, we list the model implied moment conditions for one-stage GMM esti-

mation. Following Arellano and Bond (1991) and Blundell et al. (2001), Assumption 1

implies the following T (T − 1)/2 moment conditions for the model in first differences:

E[yi,t−s∆uit] = 0, t = 2, 3, . . . , T, 2 ≤ s ≤ t. (A.1)

Under strict exogeneity of the variables xit according to Assumption 2, we have another

Kx(T + 1)(T − 1) moment conditions:59

E[xi,t−s∆uit] = 0, t = 2, 3, . . . , T, −(T − t) ≤ s ≤ t. (A.2)

Following Arellano and Bover (1995), the presence of time-invariant regressors provides

another Kf (T − 1) moment conditions:60

E[fi∆uit] = 0, t = 2, 3, . . . , T. (A.3)

To be valid, the moment conditions (A.1) require the idiosyncratic errors uit to be mu-

tually uncorrelated. Ahn and Schmidt (1995) show that this necessary condition provides

additional T − 2 non-redundant moment conditions that are nonlinear in the parameters:

E[uiT∆uit] = 0, t = 2, . . . , T − 1. (A.4)

Under time series homoskedasticity, they obtain another T − 1 nonlinear conditions:

E[ūi∆uit] = 0, t = 2, . . . , T, (A.5)

and they demonstrate that the previous T − 2 nonlinear moment conditions (A.4) can be

replaced by linear moment conditions:

E[yi,t−2∆ui,t−1 − yi,t−1∆uit] = 0, t = 3, . . . , T. (A.6)

For the regressors x1it, Arellano and Bond (1991) introduce the Kx1(T + 1) level

moment conditions (3). Arellano and Bover (1995) further suggest the Kf1 moment con-

ditions (4) for the time-invariant regressors f1i that are uncorrelated with the unit-specific

effects αi. To add further moment conditions, we can impose the following assumption.

59Negative values of s in equation (A.2) correspond to the use of future observations as instruments.
This is rarely done in practice.

60In practice, the time-invariant variables are likely to be weak instruments for the first-differenced
time-varying variables such that the moment conditions (A.3) are barely useful.
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Assumption A.1: E[∆yi1αi] = 0, and E[∆x2itαi] = 0, t = 1, 2, . . . , T .61

Under the additional Assumption A.1, Blundell and Bond (1998) establish the following

T − 1 linear moment conditions for the model in levels:

E[∆yi,t−1eit] = 0, t = 2, 3, . . . , T. (A.7)

Moreover, Arellano and Bover (1995) and Blundell et al. (2001) introduce another Kx2T

moment conditions for the regressors x2it under Assumption A.1:

E[∆x2iteit] = 0, t = 1, 2, . . . , T. (A.8)

All remaining moment conditions for the model in levels are redundant.62

61To guarantee that ∆yit and ∆x2it are uncorrelated with αi, a restriction on the initial conditions has
to be satisfied. Deviations of yi0 and x2i0 from their long-run means must be uncorrelated with αi. A
sufficient but not necessary condition for Assumption A.1 to hold is joint mean stationarity of the processes
yit and xit. Moreover, E[∆yitαi] = 0, t = 2, 3, . . . , T , is implied by Assumption A.1. See Blundell and
Bond (1998), Blundell et al. (2001), and Roodman (2009) for a discussion.

62The moment conditions (A.7) and (A.8) do not help identifying γ because it is unlikely that these
instruments are correlated with the time-invariant regressors. Compare Arellano (2003, Chapter 8.5.4).
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