Effect of climate on electrical performance of finned phase change material integrated solar photovoltaic

Sourav Khannaa,⁎, K.S. Reddyb, Tapas K. Mallicka,⁎

a Environment and Sustainability Institute, Penryn Campus, University of Exeter, Cornwall TR10 9FE, United Kingdom
b Heat Transfer and Thermal Power Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India

A B S T R A C T

Photovoltaic (PV) cells absorb the incident solar radiation while operation of which, majority part causes heating leading to the hampered electrical efficiency. PVs can be integrated with phase change material (PCM) to maintain cell temperature within desired limits and the effect can be improved by deploying fins. The current work aims at analysing the effect of climate on the electrical performance of finned PCM integrated PV. Modelling of system has been done which has been validated using experimental results. For the study, fins with various spacings, thicknesses and lengths are used. The main conclusions of the study are, (a) for less alternative climate, the improvement in the PV electrical output (using finned PCM) is 9.7%, 10.8%, 11.3%, 11.6% and 11.6% respectively for a spacing of 1 m, 1/2 m, 1/3 m, 1/4 m and 1/5 m. For highly alternative climate, the respective values reduce to 6.6%, 7.6%, 8.1%, 8.4% and 8.4%, (b) for warmer climate, the output increases by 10.1%, 11.3%, 11.8%, 12.1% and 12.1% while for colder climate, it increases only by 5.4%, 6.1%, 6.5%, 6.7% and 6.7%, (c) for windy climate, the power increments are significantly lesser as compared to the other case, (d) climate having higher wind azimuth results in better performance of finned PCM, and (e) for clear sky climate, performance of finned PCM is better.

1. Introduction

The temperature rise of photovoltaic (PV) adversely affects its electrical performance (Kaplani and Kaplanis, 2014; Khanna et al., 2017). In the current section, the experimental and theoretical studies for the passive cooling of PV using phase change material (PCM) have been presented.

1.1. Experimental studies

Baygi and Sadrameli (2018) have studied the thermal variations of PV using polyethylene glycol as PCM for the climate of Tehran, Iran. The results conclude that the PCM decreases the PV temperature from 60 °C to 45 °C. Huang et al. (2006, 2007) have investigated the thermal variations of an imitated PV system integrated with paraffin wax 25 PCM. The results conclude that the temperature rise of the PV can be reduced from 62 °C to 36 °C using PCM and from 62 °C to 26 °C using finned PCM. Hasan et al. (2015) have investigated the PV-PCM system for two different weather conditions (Dublin and Vehari). It is shown that for Dublin, the largest temperature drop in PV is from 49 °C to 39 °C and for Vehari, it is from 63 °C to 41.5 °C using CaCl\textsubscript{2} 6H\textsubscript{2}O PCM. Indartono et al. (2014) have compared roof integrated PV and stand integrated PV systems for the climate of Indonesia using vaselinum flavum PCM. It is shown that a decrease in the PV temperature from 60 °C to 54.3 °C can be achieved for roof integrated system and from 44.8 °C to 42.2 °C for stand integrated system. Hasan et al. (2010) have analysed five different PCMs. It is shown that the largest PV temperature drop can be achieved from 57 °C to 39 °C using CaCl\textsubscript{2} and C-P. Kamkari and Groulx (2018) have investigated the melting rate of PCM by applying heat source at bottom using lauric acid as PCM and found that the horizontal position of the system leads to faster melting than that of vertical position. Sharma et al. (2016) have used paraffin wax 42 PCM integrated with asymmetric compound parabolic CPV. The PV temperature drop from 60 °C to 51 °C is shown, Sharma et al. (2017) have used a nano enhanced PCM with micro finned arrangement for cooling and shown a drop of 12.5 °C in the PV temperature. Preet et al. (2017) have analysed the PV and PVT-PCM systems at Gurdaspur using paraffin wax 30 PCM and reported a decrease of PV temperature from 80 °C to 55 °C. Browne et al. (2016a, 2016b) and Browne et al. (2015) have used eutectic mixture of capric and palmitic fatty acids as PCM. An enhancement of 5.5 °C in the water temperature is achieved using PVT-PCM as compared to PVT system. Su et al. (2018) have studied the tracking integrated CPV-T and CPV-T-PCM systems. An enhancement of 10% in the electrical efficiency is achieved using paraffin wax PCM at Macau. Many theoretical studies are also carried out by researchers (Browne et al., 2015; Ma et al., 2015; Du et al., 2013; Shukla et al., 2017; Chandel and Agarwal, 2017; Preet, 2018).

⁎ Corresponding authors.
E-mail addresses: s.khanna@exeter.ac.uk (S. Khanna), t.k.mallick@exeter.ac.uk (T.K. Mallick).

https://doi.org/10.1016/j.solener.2018.09.023
Received 8 May 2018; Received in revised form 7 September 2018; Accepted 11 September 2018
Available online 24 September 2018
0038-092X/ © 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_{PV})</td>
<td>aperture area of PV panel (m²)</td>
</tr>
<tr>
<td>(C_p)</td>
<td>specific heat (J/kg K)</td>
</tr>
<tr>
<td>(D)</td>
<td>heat of fusion's distribution function during change of phase</td>
</tr>
<tr>
<td>(E)</td>
<td>electrical output (W)</td>
</tr>
<tr>
<td>(F)</td>
<td>shape factor</td>
</tr>
<tr>
<td>(g)</td>
<td>acceleration due to gravity (m/s²)</td>
</tr>
<tr>
<td>(Gr)</td>
<td>Grashof number</td>
</tr>
<tr>
<td>(h)</td>
<td>convective heat transfer coefficient (W/m² K)</td>
</tr>
<tr>
<td>(H_f)</td>
<td>heat of fusion (J/kg)</td>
</tr>
<tr>
<td>(I_f)</td>
<td>incident solar flux on PV (W/m²)</td>
</tr>
<tr>
<td>(k)</td>
<td>thermal conductivity (W/m K)</td>
</tr>
<tr>
<td>(l)</td>
<td>part of total PCM mass in liquefied form</td>
</tr>
<tr>
<td>(L)</td>
<td>length of system (m)</td>
</tr>
<tr>
<td>(L_{ch})</td>
<td>characteristic length (m)</td>
</tr>
<tr>
<td>(L_f)</td>
<td>length of fins (m)</td>
</tr>
<tr>
<td>(Nu)</td>
<td>Nusselt number</td>
</tr>
<tr>
<td>(p)</td>
<td>pressure (Pa)</td>
</tr>
<tr>
<td>(Pr)</td>
<td>Prandtl number</td>
</tr>
<tr>
<td>(Ra)</td>
<td>Rayleigh number</td>
</tr>
<tr>
<td>(s_f)</td>
<td>distance between fins (m)</td>
</tr>
<tr>
<td>(t)</td>
<td>time (s); thickness (m)</td>
</tr>
<tr>
<td>(T)</td>
<td>temperature (K)</td>
</tr>
<tr>
<td>(t_f)</td>
<td>fin’s thickness (m)</td>
</tr>
<tr>
<td>(T_m)</td>
<td>phase change material's melting temperature (K)</td>
</tr>
<tr>
<td>(T_{m,s})</td>
<td>temperature below which whole PCM is fully solid (K)</td>
</tr>
<tr>
<td>(T_{m,l})</td>
<td>temperature above which PCM is fully liquid (K)</td>
</tr>
<tr>
<td>(t_s)</td>
<td>silicon thickness (m)</td>
</tr>
<tr>
<td>(u)</td>
<td>phase change material's velocity (m/s)</td>
</tr>
<tr>
<td>(\nu_w)</td>
<td>wind velocity (m/s)</td>
</tr>
</tbody>
</table>

Greek symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)</td>
<td>inclination angle of the system (rad)</td>
</tr>
<tr>
<td>(\beta_c)</td>
<td>temperature coefficient (/K)</td>
</tr>
</tbody>
</table>

Abbreviations

- EVA: ethylene vinyl acetate
- PCM: phase change material
- PV: photovoltaic
- STC: standard test conditions

Subscripts

- a: ambient
- al: aluminium
- avg: average
- c: critical
- f: forced
- gl: glass
- gr: ground
- l: liquid phase
- P: PCM
- s: solid phase
- si: silicon
- sk: sky
- STC: standard test conditions
- te: Tedlar
- x: along length
- y: along depth

1.2. Theoretical studies

Brano et al. (2014) and Ciulla et al. (2012) have used forward difference model for time and first-order central difference model for the space derivative. The experimental and the computed results match significantly with maximum deviations being -6.53°C to +7.55°C using paraffin wax 27 as PCM at Italy. Atkin and Farid (2015) have studied the infusion of PCM into graphite for the thermal regulation. The results show an enhancement of 7% in the electrical efficiency. Khanna et al. (2016) have used fully implicit model for enthalpy formulation of PCM. For simulation, paraffin wax 20, 25 and 28 are used for the climate of Dharan. The results conclude that after eight hours of charging, first PCM becomes liquid completely. However, for second and third PCM, only 0.8 and 0.65 portions become liquid. Biwole et al. (2013, 2018) and Groulx and Biwole (2014) have modelled the drastic shift PCM undergoes during phase change and shown that the same must be modelled and handled with care as the chances for divergence and errors are immense. Mahamudul et al. (2016) have used paraffin wax 35 and reported a drop in PV temperature from 51°C to 41°C at university of Malaya. Kant et al. (2016) have reported that the consideration of conduction in PCM leads to drop in PV temperature from 60°C to 58.5°C and the consideration of both conduction and convection in PCM leads to drop in the PV temperature from 60°C to 55°C using paraffin wax 35 for the climate of Uttar Pradesh. Park et al. (2014) have worked on finding the optimal melting temperature of PCM for the climatic conditions of Incheon and 25°C is reported as the optimum one. The effect of installation direction on the optimum PCM quantity is also investigated. Su et al. (2017b) have optimized the melting temperature of PCM for maximum energy output from PVT-PCM system at Ninjangh and reported that the PCM with melting temperature of 40°C is the best. Khanna et al. (2018a, 2017, 2018b, 2018c, 2018d, 2018f) and Al Siyabi et al. (2018a, 2018b) have worked on analysing the effect of operating conditions and optimization of PCM quantity for different working conditions, daily solar irradiance levels and system dimensions. Emam and Ahmed (2017) have analysed different configurations of PCM heat sinks and concluded that the parallel cavities are better than the series ones. Huang et al. (2004, 2011) have investigated the thermal variations of an imitated PV system integrated with finned PCM. It has been found that the temperature rise of the PV can be reduced by 87°C to 38°C using paraffin wax 32 as PCM and from 87°C to 35°C using finned PCM. Emam et al. (2017) have studied the influence of tilt angle of the concentrated PV-PCM. It is shown that the slanted system is better compared to vertical or horizontal. Cui et al. (2016) have integrated the CPV thermoelectric system with PCM and found a 25% drop in the PV temperature using NaOH-KOH PCM at Nanjing. Su et al. (2017a) have integrated air based PVT system with PCM and investigated the method of separation of PCM. It is shown that the use of PCM drops the PV temperature from 60°C to 58.5°C and the consideration of both conduction and convection in PCM is better than the series ones. S. Khanna et al. (2016) have incorporated the effect of non-uniform solar flux distribution (Khanna and Sharma, 2016; Sharma et al., 2016), thermal variations (Khanna et al., 2016), and errors are immense.
and Sharma, 2015, 2016) and angle of incidence of sun rays (Khanna et al., 2014) which can be helpful in computing temperature distribution in PV-PCM system.

Thus, performance study of PCM integrated PVs has been reported in literature. However, climatic conditions for which a particular finned PCM would work best/worst are not laid down. In the previous work, the current authors have analysed the PV-PCM system (Khanna et al., 2018b). Thus, the current work aims at analysing the effect of climate on Finned-PV-PCM’s electrical performance.

2. Methodology

Current investigation involves two setups: one being PV-alone and the other being finned-PCM integrated PV as depicted in Fig. 1. PCM box has the fins attached within. The whole assembly of PV and PCM box is kept at an inclination of β. PV panel is a typical stack of five films. The PCM box is kept at an inclination of Lch meter long and δ meter deep. Fins’ dimensions viz. length, spacing and width have been denoted by Lf, sf, and wf.

The assumptions made in the investigation are as follows

(i) The PV surface is exposed to a uniform solar radiation spread
(ii) Insulation applied on side-walls and rear leads to adiabatic condition at respective walls
(iii) PV layers and PCM individual phases are isotropic and homogeneously distributed.
(iv) PV’s traits do not change with temperature (thermal dependency of efficiency is, however, accounted for).
(v) PCM’s thermal traits in individual phases do not change with temperature.
(vi) Thermal resistance by layers’ interfaces is neglected.

Analytical modelling for system’s components has been done subsequently.

2.1. Glass

At any instant t, the temperature profiles along the length and depth of the topmost glass can be found solving the following equation

$$\frac{\partial T_{gl}}{\partial t} = \frac{k_g}{\delta_x} \left(\frac{\partial^2 T_{gl}}{\partial x^2} + \frac{\partial^2 T_{gl}}{\partial y^2} \right)$$

subjected to the following boundary and initial conditions

$$\frac{\partial T_{gl}}{\partial y} = h_{gl} \left[T_{gl} - T_{a} \right] + F_{gl,sk} \sigma \varepsilon \left[T^4_{gl} - T^4_{sk} \right] \text{ at glass top}$$

$$\frac{\partial T_{gl}}{\partial x} = 0 \text{ at edges of glass}$$

$$\frac{\partial T_{gl}}{\partial y} = k_{EVA} \frac{\partial T_{EVA}}{\partial y} \text{ at glass–EVA interface}$$

$$T_{gl} = T_{a} \text{ when } t = 0$$

where the symbols have their respective meanings as per the nomenclature. Eq. (2) shows the convective heat transfer from glass to ambient, radiative heat transfer from glass to sky and from glass to ground. h_{gl} is calculated incorporating both the forced and natural effects of convection. The natural effect is calculated in terms of Nusselt number as follows (Khanna et al., 2017)

$$Nu = \begin{cases} 0.13 \left(Pr^{1/3} \right) & \text{if } \beta \leq 30^\circ \\ 0.13 \left((Gr \ Pr)^{1/3} - (Gr \ Pr)^{1/3} \right) + 0.56 \left(Gr \ Pr \sin \beta \right)^{1/4} & \text{if } \beta > 30^\circ \end{cases}$$

Fig. 1. Setups studied under current investigation (Khanna et al., 2018b).
2.3. Silicon

At any instant t, the temperature profiles along the length and depth of the silicon layer can be found solving the following equation

$$\rho_{sil} C_{p,sil} \frac{\partial T_s}{\partial t} = k_{sil} \left(\frac{\partial^2 T_s}{\partial x^2} + \frac{\partial^2 T_s}{\partial y^2} \right)$$

subjected to the following boundary and initial conditions

$$k_{sil} \frac{\partial T_s}{\partial x} = 0 \quad \text{at edges of silicon}$$

$$k_{sil} \frac{\partial T_s}{\partial y} = k_{EVA} \frac{\partial T_{EVA}}{\partial y} \quad \text{at silicon–EVA interface}$$

$$T_s = T_a \quad \text{when} \ t = 0$$

2.4. Second EVA layer

At any instant t, the temperature profiles along the length and depth of the second EVA layer can be found solving the following equation

$$\rho_{EVA} C_{p,EVA} \frac{\partial T_{EVA}}{\partial t} = k_{EVA} \left(\frac{\partial^2 T_{EVA}}{\partial x^2} + \frac{\partial^2 T_{EVA}}{\partial y^2} \right)$$

subjected to the following boundary and initial conditions

$$k_{EVA} \frac{\partial T_{EVA}}{\partial x} = 0 \quad \text{at edges of EVA}$$

$$k_{EVA} \frac{\partial T_{EVA}}{\partial y} = k_{EVA} \frac{\partial T_{EVA}}{\partial y} \quad \text{at EVA–tedlar interface}$$

$$T_{EVA2} = T_s \quad \text{when} \ t = 0$$

2.5. Tedlar

At any instant t, the temperature profiles along the length and depth of the tedlar can be found solving the following equation

$$\rho_{ted} C_{p,ted} \frac{\partial T_t}{\partial t} = k_{ted} \left(\frac{\partial^2 T_t}{\partial x^2} + \frac{\partial^2 T_t}{\partial y^2} \right)$$

subjected to the following boundary and initial conditions

$$k_{ted} \frac{\partial T_t}{\partial x} = 0 \quad \text{at edges of tedlar}$$

$$k_{ted} \frac{\partial T_t}{\partial y} = \begin{cases} h_f \left[T_{ted} - T_a \right] + F_{e,air} \sigma_{air} \left[T_{air}^4 - T_{ted}^4 \right] + F_{e,sky} \sigma_{sky} \left[T_{sky}^4 - T_{ted}^4 \right] & \text{at rear PV alone} \\ k_{ted} \frac{\partial T_t}{\partial y} & \text{at tedlar–aluminium interface} \end{cases}$$

$$T_t = T_a \quad \text{when} \ t = 0$$

For PV-alone system, Eq. (23) shows the convective heat transfer from tedlar to ambient, radiative heat transfer from tedlar to sky and from tedlar to ground. h_f is calculated incorporating both the forced and natural effects of convection. The natural effect is calculated in terms of Nusselt number as follows (Khanna et al., 2017)

$$Nu = \begin{cases} 0.58 (Ra)^{1/3} & \text{if} \ \beta \leq 2^\circ \\ 0.56 (Ra)^{1/5} & \text{if} \ 2^\circ < \beta < 30^\circ \\ 0.825 + \frac{0.387 (Ra)^{1/6}}{1 + 0.492 (Ra)^{1/6} \beta^{3/2}} & \text{if} \ \beta \geq 30^\circ \end{cases}$$

The forced effect of convection incorporating the effect of wind speed and wind azimuth is calculated as (Khanna et al., 2017)

$$h_f = \begin{cases} 3.83 \cdot 10^8 T_n^{-0.5} & \text{for laminar flow} \\ 5.74 \cdot 10^8 T_n^{-0.2} - 16.46 L_{ch}^{-1} & \text{for mixed flow} \\ 5.74 \cdot 10^8 L_{ch}^{-0.2} & \text{for fully turbulent flow} \end{cases}$$

where L_{ch} is the length towards the wind direction.

2.6. Aluminium box with fins

At any instant t, the temperature profiles along the length and depth of the aluminium container with fins can be found solving the following equation

$$\rho_{al} C_{p,al} \frac{\partial T_{al}}{\partial t} = k_{al} \left(\frac{\partial^2 T_{al}}{\partial x^2} + \frac{\partial^2 T_{al}}{\partial y^2} \right)$$

subjected to the following boundary and initial conditions

$$k_{al} \frac{\partial T_{al}}{\partial x} = 0 \quad \text{at edges of aluminium box}$$

$$k_{al} \frac{\partial T_{al}}{\partial y} = k_{p} \frac{\partial T_{F}}{\partial y} \quad \text{at aluminium–PCM interface along box length}$$

$$k_{al} \frac{\partial T_{al}}{\partial y} = k_{p} \frac{\partial T_{F}}{\partial x} \quad \text{at aluminium–PCM interface along box depth}$$

2.7. PCM

At any instant t, the temperature profiles along the length and depth of the PCM can be found solving the following equations

$$\rho_{p} C_{p,PCM} \frac{\partial T_{PCM}}{\partial t} = \nabla \cdot (k_{PCM} \nabla T_{PCM}) - \frac{\partial}{\partial x} \left(\rho_{p} C_{p,PCM} u_x T_{PCM} \right)$$

$$\rho_{p} \frac{\partial \bar{u}}{\partial t} + \rho_{p} \left(\bar{u} \nabla \bar{u} \right) \bar{u} = -\frac{\partial p}{\partial x} + \mu_{PCM} \nabla^2 \bar{u} + \rho_{p} g$$

subjected to the following boundary and initial conditions

$$k_{PCM} \frac{\partial T_{PCM}}{\partial y} = k_{al} \frac{\partial T_{al}}{\partial y} \quad \text{for aluminium–PCM interface along box length}$$

$$k_{PCM} \frac{\partial T_{PCM}}{\partial x} = k_{al} \frac{\partial T_{al}}{\partial x} \quad \text{for aluminium–PCM interface along box depth}$$

$$T_{ jTable} = T_a \quad \text{when} \ t = 0$$

$$u_x = u_y = 0 \quad \text{for every inside surface of PCM box}$$

$$u_x = u_y = 0 \quad \text{when} \ t = 0$$

Next challenge is to model the drastic shift PCM undergoes during phase change vis-a-vis its thermal traits. The same must be modelled incorporating both the forced and natural effects of convection. The natural effect is calculated in terms of Nusselt number as follows (Khanna et al., 2017)
\[l_{at} \tau_{p,s} = 0, \quad l_{at} \tau_{m} = \frac{1}{2}, \quad l_{at} \tau_{p,l} = 1 \]

\[
\frac{dt}{dT} \tau_{p,s} = \frac{d^2t}{dT^2} \tau_{p,s} = \frac{dt}{dT} \tau_{p,l} = \frac{d^2t}{dT^2} \tau_{p,l} = 0
\]

The relations given by Eqs. (42) and (43) lead to solution of (Eq. (41)) and estimation of the coefficients \(a_0, a_1, a_2, a_3, a_4, a_5\) and \(a_6\) in following manner

\[
\begin{bmatrix}
 a_0 \\
 a_1 \\
 a_2 \\
 a_3 \\
 a_4 \\
 a_5 \\
 a_6
\end{bmatrix} = \begin{bmatrix}
 1 & \tau_{p,s}^2 & \tau_{p,s}^3 & \tau_{p,s}^4 & \tau_{p,s}^5 & \tau_{p,s}^6 & 0 \\
 1 & \tau_{m}^2 & \tau_{m}^3 & \tau_{m}^4 & \tau_{m}^5 & \tau_{m}^6 & 0 \\
 1 & \tau_{p,l}^2 & \tau_{p,l}^3 & \tau_{p,l}^4 & \tau_{p,l}^5 & \tau_{p,l}^6 & 0 \\
 0 & 1 & 2\tau_{p,s} & 3\tau_{p,s}^2 & 4\tau_{p,s}^3 & 5\tau_{p,s}^4 & 6\tau_{p,s}^5 & 0 \\
 0 & 1 & 2\tau_{m} & 3\tau_{m}^2 & 4\tau_{m}^3 & 5\tau_{m}^4 & 6\tau_{m}^5 & 0 \\
 0 & 1 & 2\tau_{p,l} & 3\tau_{p,l}^2 & 4\tau_{p,l}^3 & 5\tau_{p,l}^4 & 6\tau_{p,l}^5 & 0 \\
\end{bmatrix}^{-1}
\]

(44)

In order to model the solid and liquid portions of the PCM, its cooler portion having \(T < T_{p,s}\) is assumed to be a highly viscous fluid which can be equated to the state of the solid phase. Similarly, the hotter portion having \(T > T_{p,s}\) is modelled as a very less viscous fluid. In this way, the viscosity satisfies the following expression (Biwole et al., 2013)

\[
\mu(T) = \mu_1 + \frac{10^4(1-\eta(T))^2}{(T)^{10/3} + 10^3}
\]

(45)

The other thermal properties of phase change material as function of liquefied mass are modelled as

\[
C_{p,P}(T) = \begin{cases}
 C_{p,P,s} & \text{ if } T < T_{p,s} \\
 C_{p,P,s} + (C_{p,P,l}-C_{p,P,s})\eta(T) + H_f D(T) & \text{ if } T_{p,s} \leq T \leq T_{p,l} \\
 C_{p,P,l} & \text{ if } T > T_{p,l}
\end{cases}
\]

(46)

\[
\rho_{P}(T) = \begin{cases}
 \rho_{P,s} & \text{ if } T < T_{p,s} \\
 \rho_{P,s} + (\rho_{P,l}-\rho_{P,s})\eta(T) & \text{ if } T_{p,s} \leq T \leq T_{p,l} \\
 \rho_{P,l} & \text{ if } T > T_{p,l}
\end{cases}
\]

(47)

\[
k_{P}(T) = \begin{cases}
 k_{P,s} & \text{ if } T < T_{p,s} \\
 k_{P,s} + (k_{P,l}-k_{P,s})\eta(T) & \text{ if } T_{p,s} \leq T \leq T_{p,l} \\
 k_{P,l} & \text{ if } T > T_{p,l}
\end{cases}
\]

(48)

2.8. Electrical output

The effects of average temperature of PV (\(T_{PV,avg}\)), solar irradiance at tilted PV (\(I_t\)), temperature coefficient (\(\beta_t\)), solar irradiance coefficient (\(\gamma_t\)), efficiency of PV panel at standard test conditions (\(\eta_{STC}\)) and area of PV (\(A_{PV}\)) on the electrical output of the systems are incorporated as follows (Kaplan and Kaplanis, 2014)

\[
E = \eta_{STC} \left(1 + \beta_t (T_{PV,avg}-25) + \gamma_t \ln \left(\frac{I_t}{1000} \right) \right) I_t A_{PV}
\]

(49)

3. Solving approach

Both setups under investigation viz. PV-alone and Finned-PV-PCM have been constructed geometrically using two-dimensional model in ANSYS 17.1. Individual setup components: 5 PV layers, PCM, fins and box are constructed using ‘Design Modeler’. In order to construct the interfaces, the contact surfaces of individual components are connected with each other using energy balance. The respective interfaces are joined using ‘Wall coupling’ to integrate the whole Finned-PV-PCM. System’s walls are incorporated with the suitable boundary constraints. Meshing has been done using ‘Face Meshing’ with quadrilateral geometry (Fig. 2). ‘Edge Sizing’ has been used to generate the mesh by setting the number of divisions. It has been observed that results change by significant ± 1.5 °C if the number of elements in the mesh is increased to 50,000 from the initial 25,000. However, further increment in the number of elements to 100,000 doesn’t lead to any significant improvement in results (± 0.2 °C). Similar study has been performed to fix the desired time interval as 0.1 s for which all the parameters are assumed to remain constant.

‘Pressure-Based’ type of solver has been applied for solving the equations. ‘Planar’ and ‘Transient’ modes have been applied for ‘2D Space’ and ‘Time’ respectively. ‘PRESTO’, ‘First Order Upwind’ and ‘First Order Upwind’ discretization methods have been applied for ‘Pressure’, ‘Energy’ and ‘Momentum’ respectively.

4. Experimental validation

For the purpose of validating the proposed work experimentally, the work of Hasan et al. (2015) has been used. PCM used for the purpose was Calcium chloride hexahydrate. Polycrystalline PV panel having dimensions 771 mm × 665 mm integrated with 5 mm thick aluminium container (for PCM) having internal dimensions of 700 mm × 600 mm × 40 mm was used. Fins inside the container were deployed with a spacing of 75 mm. The system performance was studied under the ambient conditions of Vehari on 30th October. The current model has been applied with the same system. PV temperature’s plot as function of time using proposed work is given in Fig. 3 and has been compared against the reported experimental work.

5. Results and discussion

Current investigation involves the computation of power produced and its dependency on time and different climates (in the month of June) for two setups under consideration: PV-alone and finned phase change material integrated PV considering polycrystalline silicon based PV panels. For the study, fins with different geometries have been studied. The improvement in power production with effective cooling in case of Finned-PV-PCM is reported too. Details of various thermal and geometrical properties of the two systems under investigation are tabulated in Table 1. The three PCMs chosen for the work have been RT – 18, 25 and 35 HC (Rubitherm Phase Change Material, 2018) respectively suitable for the typical outside temperatures in the respective
climates. The PCM s are chosen such that all the thermophysical properties are almost same except the melting points. For the chosen cold climate, the ambient temperature remains lesser than 17 °C. Thus, RT18HC is used for cold climate. Similarly, RT35HC is used for hot climate, the ambient temperature remains lesser than 17 °C. Thus, the most suitable PCM will always be in liquid state thereby having no operational use. Even if someone tries to use PCM having melting range on higher side of temperature of fusion, it will remain melted during whole operation.

5.1. Highly alterative vs lesser alterative climates

For different fin geometries, the electrical outputs from the two systems are found out for Madrid (40.4°N 3.7°W) and Benidorm (38.5°N 0.1°W) representing highly alterative and lesser alterative climates respectively and have been presented in Fig. 4. The climates of Madrid and Benidorm are chosen for the comparison due to the fact that they have almost similar solar irradiance profiles, similar average ambient temperature over the day, similar wind speeds (≈ 3.5–4.0 m/s) and similar wind azimuth angles (≈ 90°) but differ drastically in the variation in the ambient temperature over the day. Thus, the effect of highly alterative and lesser alterative features can be studied in isolation by studying these climates.

For highly alterative climate, the ambient temperature varies over the day within 17.9 °C to 30.1 °C and for lesser alterative climate, it varies within 22.7 °C to 24.8 °C (Fig. 4a). For former case, the PV electrical output increases from 164.9 W (in PV-alone) to 181.2 W, 183.1 W, 184.0 W, 184.5 W and 185.4 W (in Finned-PV-PCM) for \(s_f = 1 \), 1/2, 1/3, 1/4 and 1/5 m respectively and for latter case, it increases from 166.1 W (in PV-alone) to 188.8 W, 190.7 W, 191.6 W, 192.1 and 192.1 (in Finned-PV-PCM) for respective \(s_f \) values (Fig. 4c).

The results show that for highly alterative climate, the increments in electrical output using finned phase change material are 6.6%, 7.6%, 8.1%, 8.4% and 8.4% for \(s_f = 1 \), 1/2, 1/3, 1/4 and 1/5 m respectively (Fig. 4d), 7.3%, 7.6% and 8.4% for \(L_f = \delta /3, 2\delta /3 \) and \(\delta \) respectively (Fig. 4e) and 7.4%, 8.0%, 8.4% and 8.4% for \(\tau_f = 0.5 \) mm, 1 mm, 2 mm and 4 mm respectively (Fig. 4f). For less alterative climate, the enhancements in electrical output increase to 9.7%, 10.8%, 11.3%, 11.6% and 11.6% for different spacings (Fig. 4d), 10.4%, 10.7% and 11.6% for different lengths (Fig. 4e) and 10.6%, 11.2%, 11.6% and 11.6% respectively for different thicknesses (Fig. 4f).

From numbers, it can be noted that finned phase change material is lesser useful if the outside temperature variation per day or month is more. Because, in that case, with higher temperatures outside, there would be significant amount of time in a day and month for which the PCM will always be in liquid state thereby having no operational use. Even if someone tries to use PCM having melting range on higher side of the temperature scale, still there would be a significant time for which it can’t be used as it will remain solid until it reaches the higher temperature of fusion.

It must be mentioned that fin length, spacing and thickness are important parameters affecting the power generation from PV. The case of fin’s length equalling depth of PCM box \(\delta \) is the one having maximum power as compared to other lengths (Fig. 4f). When fin’s length is \(\delta \), its tip comes in contact with the box’s bottom and given the highly conducting characteristics of aluminium, the box’s bottom absorbs heat and makes more PCM to melt nearby which was previously done only near fins and front. Thus, in this case, PCM extracts more heat from the system and thus cools the PV more effectively. Additionally, it can be observed that decrease in spacing beyond 25 cm (Fig. 4e) and increase in thickness beyond 2 mm (Fig. 4g) have marginal impact on electrical output. Thus, the most suitable fin geometry for power has been found as 25 cm of fins’ spacing, length as box’s depth and thickness as 2 mm.

5.2. Colder vs warmer climates

For different fin geometries, the electrical outputs from the two systems are found out for Monaco (43.7°N 7.4°E) and Chennai (13.1°N 80.3°E) representing colder and warmer climates respectively and have been presented in Fig. 5 respectively. The climates of Chennai and Monaco are chosen for the comparison due to the fact that they have almost similar solar irradiance profiles, similar alterative feature, similar wind speeds (≈ 4.0–5.0 m/s) and similar wind azimuth angles (≈ 0°) but differ drastically in the average ambient temperature. Thus, the effect of warmer and colder features can be studied in isolation by studying these climates.

For colder climate, the average ambient temperature over the day is around 16.1 °C and for warmer climate, it is around 30.6 °C (Fig. 5a). For former case, the PV electrical output increases from 178.9 W (in PV-alone) to 194.8 W, 196.3 W, 197.0 W, 197.4 and 197.4 W (in Finned-PV-PCM) for \(s_f = 1 \), 1/2, 1/3, 1/4 and 1/5 m respectively and
for latter case, it increases from 157.2 W (in PV-alone) to 181.0 W, 182.9 W, 183.9 W, 184.4 W and 184.4 W (in Finned-PV-PCM) for respective sf values (Fig. 5c).

The results show that for colder climate, the increments in electrical output using finned phase change material are 5.4%, 6.1%, 6.5%, 6.7% and 6.7% for sf = 1 m, 1/2 m, 1/3 m, 1/4 m and 1/5 m respectively (Fig. 5d), 5.8%, 6.1% and 6.7% for Lf = δ/3, 2δ/3 and δ respectively (Fig. 5e) and 5.9%, 6.4%, 6.7% and 6.7% for tf = 0.5 mm, 1 mm, 2 mm and 4 mm respectively (Fig. 5f).

For warmer climate, the enhancements in electrical output using finned phase change material increase to 10.1%, 11.3%, 11.8%, 12.1% and 12.1% for sf = 1 m, 1/2 m, 1/3 m, 1/4 m and 1/5 m respectively (Fig. 5d), 10.9%, 11.2% and 12.1% for Lf = δ/3, 2δ/3 and δ respectively (Fig. 5e) and 11.1%, 11.7%, 12.1% and 12.1% for tf = 0.5 mm, 1 mm, 2 mm and 4 mm respectively (Fig. 5f).

Fig. 4. Electrical output from the PV-alone and Finned-PCM integrated PV systems for various fin geometries for highly alterative and less alterative climates keeping sj = 25 cm, Lf = δ and tf = 2 mm wherever fixed.
1 mm, 2 mm and 4 mm respectively (Fig. 5f).

From the results, it can be inferred that if climates are colder, use of finned phase change material is lesser effective idea. Because, colder climates keep cooling the PV systems already leaving less substantial scope for improving performance through finned phase change material.

5.3. Windy vs lesser windy climates

For different fin geometries, the electrical outputs from the two systems are found out for windy and lesser windy climates and have been presented in Fig. 6. For windy climate, the average wind velocity...
over the day is around 6.3 m/s and for lesser windy climate, it is around 1.2 m/s (Fig. 6a). For former case, the PV electrical output increases from 179.5 W (in PV-alone) to 191.3 W, 192.3 W, 192.8 W, 193.1 W and 193.1 W (in Finned-PV-PCM) for \(sf = 1\) m, \(1/2\) m, \(1/3\) m, \(1/4\) m and \(1/5\) m respectively and for latter case, it increases from 167.2 W (in PV-alone) to 188.9 W, 190.7 W, 191.7 W, 192.2 W and 192.2 W (in Finned-PV-PCM) for respective \(sf\) values (Fig. 6b).

The results show that for windy climate, the increments in electrical output using finned phase change material are 4.2%, 4.8%, 5.1%, 5.3% and 5.3% for \(sf = 1\) m, \(1/2\) m, \(1/3\) m, \(1/4\) m and \(1/5\) m respectively. For lesser windy climate, the increments are 4.6%, 4.8% and 5.3% for \(Lf = \delta/3\), \(2\delta/3\) and \(\delta\) respectively (Fig. 6d), and 4.6%, 5.0%, 5.3% and 5.3% for \(tf = 0.5\) mm, 1 mm, 2 mm and 4 mm respectively (Fig. 6e).

Fig. 6. Electrical output from the PV-alone and Finned-PCM integrated PV systems for various fin geometries for windy and lesser windy climates keeping \(sf = 25\) cm, \(Lf = \delta\) and \(tf = 2\) mm wherever fixed.
and 4 mm respectively (Fig. 6e).

For lesser windy climate, the enhancements in electrical output using finned phase change material increase to 8.6%, 9.6%, 10.2%, 10.5% and 10.5% for $s_f = 1$ m, 1/2 m, 1/3 m, 1/4 m and 1/5 m respectively (Fig. 6c), 9.3%, 9.6% and 10.5% for $L_f = \delta/3$, 25/3 and δ respectively (Fig. 6d) and 9.4%, 10.1%, 10.5% and 10.5% for $t_f = 0.5$ mm, 1 mm, 2 mm and 4 mm respectively (Fig. 6e).

To summarise, for windy climates, finned phase change material is lesser useful for cooling PV as speedy winds remove heat on their own reducing the relevance of finned phase change material. It is also found that for windy climates, flow is mixed and for lesser windy climates, flow is laminar.

Fig. 7. Electrical output from the PV-alone and Finned-PCM integrated PV systems for various fin geometries for high wind-azimuth and low wind-azimuth climates keeping $s_f = 25$ cm, $L_f = \delta$ and $t_f = 2$ mm wherever fixed.
5.4. High wind-azimuth vs low wind-azimuth climates

For different fin geometries, the electrical outputs from the two systems are found out for high wind-azimuth and lesser wind-azimuth climates and have been presented in Fig. 7. For high wind-azimuth climate, the average wind-azimuth over the day is around 85° and for low wind-azimuth climate, it is near to 0° (Fig. 7a).

The results show that for high wind-azimuth climate, the increments in electrical output using finned phase change material are 7.2%, 8.1%, 8.5%, 8.7% and 8.7% for $s_f = 1\ m, 1/2\ m, 1/3\ m, 1/4\ m$ and $1/5\ m$ respectively (Fig. 7c), 7.8%, 8.1% and 8.7% for $L_f = 8/3, 28/3$ and δ respectively (Fig. 7d) and 7.9%, 8.4%, 8.7% and 8.7% for $t_f = 0.5\ mm$, etc.

Fig. 8. Electrical output from the PV-alone and Finned-PCM integrated PV systems for various fin geometries for clear sky and non-clear sky climates keeping $s_f = 25\ cm, L_f = \delta$ and $t_f = 2\ mm$ wherever fixed.
6. Conclusions

Current investigation involves the modelling of system which has been validated using experimental results. It also involves the computation of power produced and its dependency on time and different climates. Fins with different spacings (sf), thicknesses (tf) and lengths (Lf) have been studied. The improvement in power production with effective cooling in case of Finned-PV-PCM is reported too. The main conclusions of the study are

(i) For highly alternatively climate, the increments in electrical output using finned phase change material are 6.6%, 7.6%, 8.1%, 8.4% and 8.4% for sf = 1 m, 1/2 m, 1/3 m, 1/4 m and 1/5 m respectively, 7.3%, 7.6% and 8.4% for Lf = δ/3, 2δ/3 and δ respectively and 7.4%, 8.0%, 8.4% and 8.4% for tf = 0.5 mm, 1 mm, 2 mm and 4 mm respectively. For less alternative climate, the enhancements in electrical output increase to 9.7%, 10.8%, 11.3%, 11.6% and 11.6% for different spacings, 10.4%, 10.7% and 11.6% for different lengths and 10.6%, 11.2%, 11.6% and 11.6% respectively for different thicknesses.

(ii) To increase the power output from finned PCM integrated PV, the most suitable fin geometry has been found as 25 cm of fins’ spacing, length as box’s depth and thickness as 2 mm.

(iii) For warmer climate, the increments in electrical output using finned phase change material reach to 12.1% and for colder climate, the increment is only 6.7%.

(iv) For windy climate, the increment in electrical output using finned PCM is 5.3% and for lesser windy climate, the increment is 10.5%.

(v) For high wind azimuth climate, the increments in electrical output using finned PCM are larger than that of low wind azimuth climate.

(vi) Finned phase change material is more beneficial for climate having clear sky. The larger solar flux incident in such places produces more heat and thus requires external cooling.

Acknowledgement

The authors gratefully acknowledge the financial support from Engineering and Physical Sciences Research Council funded Reliable and Efficient System for Community Energy Solution - RESCUES project (Grant Number: EP/K03619X/1). In support of open access research, all underlying article materials (such as data, samples or models) can be accessed upon request via email to the corresponding author.

References

Al Siyabi, I., Khanna, S., Mallick, T., Sundaram, S., 2018. Electricity enhancement and thermal energy production from concentrated photovoltaic integrated with a 3-

