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While recent experiments on the spin Seebeck effect have revealed the decisive role of the magnon contribution
to the heat current Q in hybrid systems containing thin ferromagnetic layers, the available acoustic mismatch
theory does not account for their magnetic properties. Here, we analyze theoretically the heat transfer through
an insulating ferromagnet (F) sandwiched between two insulators (I). Depending on the relation between the F
thickness d, and the mean free path of phonons generated by magnons /;;, we reveal two qualitatively different
regimes in the nonlinear heat transport through the F/I interfaces. Namely, in thick F layers the regime of
conventional “Joule” heating with Q T;‘ is realized, in which the detailed structure of the F/I interfaces is
inessential. Here T is the magnon temperature. By contrast, in thin F layers with d < [;;, most of the phonons
emitted by magnons can leave F without being absorbed in its interior, giving rise to the magnon overheating
regime with Q o« 7" and m 2 7. Conditions for the examination of both regimes and the determination of 7,
from experiments are discussed. The reported results are relevant for the theoretical analysis of the spin Seebeck
effect and the development of magnon-based spin caloritronic devices.
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I. INTRODUCTION

When heat passes through an interface between two dis-
similar solids, scattering of heat carriers at the boundary
between them leads to a temperature jump AT =T — 1>,
where T; and 7, are the temperatures of the substances.
This temperature jump appears in consequence of the thermal
boundary resistance, discovered by Kapitza at boundaries of
solids emersed in liquid helium [1,2], and known as Kapitza
resistance. Within the framework of the acoustic mismatch
theory, Little showed [3] that at low temperatures 7 < ®p
the heat current through the interface between two media
is expressed by Q = A(T\* = T»*). Here, ©p is the De-
bye temperature and the coefficient A is determined by the
acoustic properties of the contacting substances. If phonons
hit the interface at oblique angles 6, then A is proportional
to the interface transparency «(6) averaged over the angles
0, a quantity representing the probability that a given phonon
will pass through the interface between the two media. In the
linear approximation in 7', from Little’s result follows the
Newton relation Q = (R;,')AT, where R;,(T) ~ (4AT>)"!
is the Kapitza resistance R, which increases as ~1/T3 with
decreasing temperature.

The last decade has been marked by a growing interest
in the generation of pure spin currents in spintronics [4—6]
and spin caloritronics [7-9]. The latter domain combines
thermoelectrics with spintronics and nanomagnetism and it
is concerned with the interplay between spin and heat cur-
rents in materials. The interest in this topical area is, in
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particular, stipulated by recent discoveries related to thermal
spin injection via the spin Seebeck effect (SSE) [10-16] that
can produce spin current densities that are two orders of
magnitude larger than those produced via electronic or res-
onant excitation approaches. For instance, within the context
of energy conversion applications, thermal spin transport pro-
vides conceptually new mechanisms for solid-state thermal-
to-electrical energy conversion that may be used for waste
heat recovery and temperature control [9]. In general, the SSE
has been observed in two different configurations; reviews
can be found in Refs. [15,16]. While earlier works primar-
ily used a transverse configuration in which a spin current
flowing perpendicular to a temperature gradient was measured
[10-13,17,18], a longitudinal configuration, in which a spin
current is parallel to a temperature gradient, is often used in re-
cent experiments [8,15,19-23]. Owing to its simple structure,
the longitudinal configuration becomes the mainstream of the
SSE research, and the longitudinal SSE has been observed in
various magnetic materials in a wide temperature range from
4.2 K to room temperature [8,14,18,22,24-30].

In general, a spin current may be formed by charge currents
with opposite flow directions for spin-up and spin-down carri-
ers, or it can consist of magnons, the quanta of collective spin
excitations [31]. In particular, the spin current is an inherent
ingredient in spin pumping [32-36], the SSE where the spin
current is induced by a thermal gradient in and a temperature
jump at the interface with a magnetic material, and the spin
Hall magnetoresistance [37—40]. These effects have been ex-
tensively studied experimentally [10,11,17,23,30,33,38] and
theoretically [32,37,41-44], both taken alone as well as in
comparison [14,34,41,45,46]. From a theoretical point of
view, all these effects are governed by the generation of a
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current of angular momentum via a nonequilibrium process.
Furthermore, in the field of magnon spintronic [47], con-
cerned with structures, devices, and circuits that use spin cur-
rents carried by magnons, the quanta of spin waves (magnons)
are used to carry and process information as alternative to
charge-current-driven spintronic devices [48,49]. Recently,
pure magnonic spin currents in insulating ferromagnets have
been suggested for the implementation of efficient logic de-
vices [50]. At the same time, spin waves can transport heat in
the same manner as the lattice excitations (phonons) transport
heat through perturbations of the atom positions [51,52]. In
this respect, heat transport by magnons and their relaxation on
phonons become especially important in such insulating mag-
netic materials as, e.g., Y3FesOj, (YIG) [53], in contradistinc-
tion to metallic ferromagnets whose thermal conductivity is
dominated by the conduction electrons. In particular, the SSE
can be enhanced with an increase of the YIG film thickness
[21-23,54,55] and suppressed by an external magnetic field
[54,56]. The latter effect becomes more pronounced at low
temperatures [56].

In the context of recent research, our study of the nonlinear
heat transport across an F/I interface has been chiefly mo-
tivated by two experimental works on the longitudinal SSE
[8,22]. Namely, the authors of Ref. [8] calculated the phonon,
electron, and magnon temperature profiles in YIG/Pt bilayers
[57] taking into account the thermal boundary resistances in
the linear approximation. The analysis [8] has revealed that in
thin-film hybrids the magnetic heat conductance qualitatively
affects the magnon temperature and especially for magnetic
insulators the determination of the phonon temperature profile
is of central importance. The other work [22] was devoted to a
study of the temperature-dependent SSE in heavy-metal/YIG
hybrid structures as a function of the YIG thickness and
the magnetic field strength for different heavy metal layers.
The SSE signal exhibited a pronounced peak at low tem-
peratures, and the SSE peak temperature strongly depended
on the film thickness and the magnetic field. These results
can be explained well within the framework of the magnon-
driven SSE by taking into account the temperature-dependent
effective propagation length of thermally excited magnons,
which is also discussed in recent work [23]. In this way,
the experimental results [8,22,23] emphasize the decisive role
of interface effects in the temperature-dependent SSE and
that magnon energy relaxation mechanisms by the phononic
environment must be invoked generally for a complete un-
derstanding of thermal spin transport, and particularly for
the physics underlying the SSE. The magnon free path is
crucial for the understanding of the general peculiarities of the
magnon-phonon interaction [16,58—63] as for the engineering
of SSE spin-caloritronic devices [64,65].

In our previous work [66] we investigated theoretically
the nonlinear relaxation between magnons and phonons in an
insulating ferromagnet, and calculated the nonlinear heat cur-
rent from magnons to phonons microscopically in terms of the
Cherenkov radiation of phonons by magnons. In the present
work, we solve a kinetic, spatially dependent problem in an
insulator/ferromagnet/insulator (I/F/T) heterostructure. While
for the interpretation of experiments on the heat transport
through an F/I boundary the acoustic-mismatch theory [3] is
usually applied, in which the temperature discontinuity at the
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FIG. 1. Size effect in the considered problem. An insulating
ferromagnet is sandwiched between two insulators I; and I,. Two
regimes are considered. (a) The mean free pass /;; of thermal phonons
generated by magnons is much smaller than the thickness of F.
Only phonons within thin layers of the order of /;; at the interfaces
may leave F and get absorbed in I;. This regime corresponds to the
“Joule” heating, described well by the Little approach [3]. (b) The
thickness d of F is much smaller than /;;. Most of the phonons emitted
by magnons leave F without being absorbed in its interior and do
not return into F. This case corresponds to the magnon overheating
regime which is of primary interest to us. In both cases, the magnons
existing within F are characterized by the magnon temperature 7.
The phonon temperature in I; and I, is 7, = T. The Kapitza jump
at the boundaries of the thick F layer in (a) does not depend on the
properties of F while it depends on the properties of the thin F layer in
(b). The interfaces are characterized by the transparency coefficients
o, (6), where 6 is the angle between the phonon wave vector and the
Z axis.

interface is determined only by the acoustic characteristics of
the media. Here, we show that the acoustic-mismatch theory
is valid only for sufficiently thick insulating ferromagnets.
Of primary interest to us is the opposite limiting case of F
thin films where the role of magnons in the formation of
the temperature discontinuity at the F/I interface becomes
decisive. In particular, we show that at T < ®p a size effect
exists for the nonlinear heat current Q crossing an insulating
ferromagnet/insulator (F/I) interface. Namely, Q depends on
the magnetic properties of thin heated F films and the role of
magnons is essential in the heat transfer regime which we term
magnon overheating. By contrast, for thick heated F layers Q
can be described by the Little formula which does not account
for the magnetic properties of the F layer.

II. PROBLEM STATEMENT

We consider an insulating ferromagnetic film F of thick-
ness d sandwiched between two bulky insulators I; and Iy,
whose temperatures are known (Fig. 1). We choose the z
axis perpendicular to the interfaces of the media and assume
the problem to be spatially homogeneous in the oxy plane.
The magnon temperature 7; in F is constant over the film
thickness, i.e., along the z axis, as will be justified next.
Specifically, we consider the stationary case which can be
realized in two different ways. The first case is when the
temperatures of I; and I, are different, 7; # T5. In the second
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case, illustrated in Fig. 1, T = T, = T and the stationary heat
current is supported by a parametric pumping with power W.
The transparencies «; and o, of the F/I interfaces for the
phonons are known. The task is to derive the heat currents
through the interfaces Q; and Q5.

The calculation of the heat currents in the system at ar-
bitrary values of «j, oy, and d/[;5(T;) is possible because
of two physical circumstances simplifying the considered
problem. First, a homogenous magnon distribution over the
film thickness can be assumed when K;/K, > 1, where K;
and K, are the heat conduction coefficients for the magnons
and the phonons in F, respectively. In particular, this condi-
tion is justified at low temperatures when either ®¢ > ©p

leads to K, /K, ~ /@p®%/T5 > 1 for T, « ©p?/O¢ [67]

or K;/K, ~,/0%/T30} > 1 for ®p > Oc [68]. Further-
more, K;/K, > 1 at Ty € ©®p when ©p =~ O¢ [67], which
is the case, i.e., for YIG (O >~ ®p ~ 600K) [53]. Here, O¢
is the Curie temperature. Secondly, even when the magnon
temperature of the Boze-Einstein distribution can no longer
be established on the basis of direct intermagnon collisions, T
can still be introduced [67]. Namely, the value of Tj is justified
in the limit d >> [;; because of the effective intermagnon col-
lisions via the phonons. These two circumstances allow us to
reduce the formulated problem to a solution of the stationary
kinetic equation for the phonon distribution function, and then
to determine 7 as a function of Q and the temperatures of the
insulators from the heat-balance equation.

In addition, the good-transparency case o ~ 1 will be
of special interest to us as it allows for simple boundary
conditions for the phonon distribution function. The ballistic
propagation of the phonons emitted by the F film not only sim-
plifies the expressions for the heat dissipation in the sample,
but it also stipulates the necessary condition for the realization
of the size effect.

In accordance with the considerations above, we assume
that the distribution of magnons is characterized by the tem-
perature 7;. In the limit d <« [;; the inhomogeneity of T
along the z axis can be neglected because of K,/K; < 1.
At the same time, the Bose-Einstein distribution for phonons
Ny(z), where q is the phonon wave vector, can be essentially
inhomogeneous and it should be determined from the kinetic
equation,

dNg(2)
9z

with appropriate boundary conditions. In Eq. (1), s, is the
projection of the phonon velocity on the z axis and L is
the phonon-magnon collision integral [67], which can be
expressed as

Lis{N, n} = vis(T;, g){n(T;) — Nq(2)}. @

Here, n(Ty) is the equilibrium Bose-Einstein distribution at
the magnon temperature 7; with the dispersion law g =
Oc(ak)? in the long-wave ka < 1 limit, a is the lattice
constant, k is the magnon wave number, and v (7, q) is
the average frequency of collisions between the phonons of
frequency w, = sq and the magnons.

Adapting the solution scheme from Ref. [69] for the kinetic
equation, with details placed in the appendix section, we

s, = L;{N, n}, ()

denote the phonon reflection coefficients at boundaries 1 and
2 as By and By, suchthat 8; = 1 — o;,i = 1, 2, where «;(0) is
the transparency coefficient. We consider the case of ballistic
propagation of the phonons emitted by F through the F/I
boundary, taking into account the finite transparency of the
F/1 interface within the framework of the acoustic-mismatch
theory [3]. We introduce two new functions N 2(q,2) =
N(z,q, q; 2 0) allowing us to write the boundary conditions
for N(z)inEq. (1)atz =0and z =d as

N7(0) = ain(T1) + BiN=(0),
N=(d) = aon(T2) + BN~ (d). 3)
These boundary conditions are written for the assumed ab-

sence of reversed phonons in I; and I,. This assumption is
justified when I; and I, are bulk.

III. MAIN RESULTS

The solution of Eq. (1) allows us to express the heat current
0= Zq(}ia)q)Nq crossing the respective interface as

Q1 = lain(l = Bx){n(Ty) — n(Ty))

qz>0

— arx{n(Tr) = n(T)},
0> = — ) [ean(l = Bix*){n(T2) — n(T,)}

gz<0

—ax{n(T) — n(Tp)}l, “

where 1 = hawys, /(1 — 1fax?), x = exp(—d/1),| = |I| de-
pends on the angle 6 between the direction of the vector
q and the z axis. The value of 7 is determined from the
heat balance equation for the magnons Q = Q| — Q», where
Q = Wd is the total density of the heat currents passing
through the interfaces. We note that the presence of two
temperatures 7y and 7;, namely Ty > T;, is a consequence of
the magnon-magnon collision frequency being larger than the
magnon-phonon collision frequency [30,67].

The relation between Q, T, and T;, which follows from
(4), can be essentially simplified in the case 77 = T, = T,

Q=Y hwys.a(q, d)n(Ty) — ()], )

4z>0

where &(q, d) is the combined interface transparency,

(1 —)[or (1 + Bax) + (1 + Brx)]
(1 — B1Bax?) ’

We note that in contrast to the “bare” transparencies «; (6),
which depend only on the phonon incidence angle at the in-
terface, & contains not only an additional angular dependence
mediated by x, but it also depends on the phonon frequency.
Proceeding in Eq. (5) from the sum to integration, the heat
current Q can be presented as

(6)

a

277 52

Q= Zuny

qp
/0 @*dgxo(q)n(e,/Ty) — n(ey/T)], (1)
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FIG. 2. The form factor ¢ (g) calculated by Eq. (8) as a function
of the parameter 2d/[;; and the combined transparency & = 2a(1 —
x)/(1 — Bx) for the case B; = B,.

where xo(q) is the effective transparency “form factor” aver-
aged over the angles 6 and defined as

1
xo(@) =f0 V& (v, ¢)dv. ®

Here v = cos 8, g is the phonon wave number, ¢, = sq, and
a(v, q), where s is the average sound velocity, is given by
Eq. (6). In this way, Egs. (6)—(8) link Q(7;) with the film
thickness d and the transparencies of the interfaces. In the
general case, the dependence of the effective transparency
“form factor” xo(q) on the phonon momentum g = fiw,/s
can be calculated by numerical integration and is illustrated
in Fig. 2. In the two limiting cases discussed in what follows,
expressions for xo(q) can be derived analytically.

To this end, we introduce the temperature-dependent
parameter,

L2 Pb
Ly (1= Bipa)’

where [;; = s/v;(Ty, q) is the mean free path of phonons at
typical g (for which fiw, ~ T;) and

®

vs(Ty, ) = D(T,) Y (1 — e"”‘)/ y(y +x)e”Pdy (10)
A

p=1 0

has a physical meaning of the inverse lifetime of a phonon
with frequency w, with respect to the absorption or emission
of the phonon by a magnon.

The dependence of the parameter ¢ on the interface trans-
parency and the ratio 2d /s is plotted in Fig. 3. The “bulk”
case, in which the magnon contribution to the thermal bound-
ary resistance is neglected is obtained from Eqgs. (7) and (8) in
the limiting case ¢ >> 1. Indeed, in this limit& = o) + o, = &
and at Ty < ®p the well-known Little result follows from
Eq. (7),

0=Wwd=A(T" - T,"), (11)

where the constant A = 72&/sh> is determined only by the
acoustic characteristics of F. We note that if W is constant,

" 2dil

1 041

FIG. 3. Dependence of the parameter ¢ on the interface trans-
parency and the ratio 2d/[;; by Eq. (9) when 8, = 8,. While the
conventional regime of “Joule” heating is realized for € >> 1 in thick
films with d > 2d/l;; and/or bad interface transparencies o < 1,
the magnon overheating regime ensues for ¢ < 1 in thin films with
d K 2d/l;; and good interface transparencies o ~ 1.

then T, ~ d'/4, i.e., it weakly increases with increasing thick-
ness of F. This thermal regime corresponds to the conventional
“Joule” heating. In particular, the spectrum of phonons emit-
ted by F is described by the equilibrium temperature T, so
that the maximum of its spectral intensity corresponds to the
energy fiw,, ~ 2.8T;, where T is in energy units (throughout
the manuscript we use kg = 1).

In the opposite limiting case ¢ << 1 we consider thin films
d < Iy with d > X, where L = A(T;) is the wavelength of
thermal phonons in F, when the deformation of the phonon
spectrum in F can be neglected. In this case, from Eq. (6)
we obtain & ~ 2d /I and xo(q) = 2d/1;;(T). It can be shown
that Eq. (5) is reduced to

Q=Wd= dzhquls(Tsv On(Ty) —n(1)]. (12

qz>0

As it is seen from Eq. (12), in this case T does not depend
on the transparency of the interfaces at all. Most of the
phonons radiated by magnons manage to leave the film as
they are not reabsorbed inside the film. Accordingly, magnons
and the lattice are described by two different temperatures
T; and T;, T; > T, to be refereed to as a regime of magnon
overheating. The result of the calculation of the heat current
by Eq. (12) is

W =K(p), (13)
where
_ N ®%) Oc¢ 3 4
T (2n)? ﬁ®_p(Ts/®C) (T5/©p) (14)

and ®, = Ms?. The function K (p) is given [66] by

ex —1
— Ip(Ty, x = u/y, y0)/v*1, (15)

* w3du
K(p)= [Jp(Ts, x = u, yo)
0
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FIG. 4. Size effect in the nonlinear heat current Q, normalized to
its maximal value Q ., given by Eq. (7) through the F/I interface.
While in thick F layers with ¢ >> 1 the regime of “Joule” heating
is described by the well-known Little result Q o< TS“ [3], for thin F
layers with a good interface transparency (¢ < 1) the dependence
Q o T with m 2 7 results in the magnon overheating regime. The
plot is calculated for ¢ = ©p.

where y = T/ T; is the magnon overheating parameter,

[Jp() — Jp/y)/v*]

=Y upil(l—e )=y (A —e /7))

p=I
+gal(1 —e ™) —y~ 1 —e ™). (16)

Here,  ¢1(p,yo) = e ™ (yo/p+1/P%),  ¢a(p,y0) =
e (yo?/p + 2y0/p* +2/p*), and yo = ©p* /4T Oc.

The size effect in the nonlinear heat current Q given
by Eq. (7) through the F/I interface is illustrated in Fig. 4.
Namely, while in the limit of thick F layers with ¢ >> 1 the
regime of “Joule” heating is described by the well-known
Little result [3] corresponding to Q o T in Eq. (11), for thin
F layers with a good interface transparency ¢ < 1 the depen-
dence Q o< T;" with m 2 7 results in the magnon overheating
regime described by Eq. (14). While the exponent m =7
for T enters Eq. (14), an additional temperature dependence
(ox T, n < 1) is brought about by the function K (p) [66].

IV. DISCUSSION

Before entering the discussion, we would like to emphasize
the temperature range of validity of Eq. (1). Specifically,
while the magnon-phonon collision term represents the core
of the solved problem, no further terms, such as intrinsic
phonon-phonon collisions and phonons scattering from lattice
defects, are considered in Eq. (1). For the latter, it is known
that phonons are not sensitive to lattice defects whose spatial
extent is much smaller than the phonon wavelength. For the
former, in the low-temperature regime 7 < ®p, which is of
primarily interest to us, this is justified as follows. Namely,
the phonon-phonon collision frequency at T < ®p can be

estimated as v, & (@D/h)(T/®D)5 [67]. We note that it
decreases more rapidly with decrease of temperature than
vs(T)at T < Op and ©% /40T < 1, for which Egs. (A8)—
(A11) yield v, =~ e*@%/“@CT(®D/h)(T/A)(®D/®C)4. For
instance, with parameters for YIG [53] this condition is justi-
fied in the temperature range 20-100 K. Here, A >~ ®pvg/s
is the energy gap of the insulating ferromagnet while v is the
Fermi velocity.

We now proceed to a general discussion of the obtained
results and begin with the elucidation of the physical origin
of the increasing magnon contribution with decrease of the
thickness of F. First, we consider qualitatively the mechanism
of the heat transfer through the F/I interfaces in the I,/F/I,
trilayers sketched in Fig. 1. Obviously, although magnons are
the principal heat carriers in F, they cannot enter the I layers.
This is why the heat transfer through the F/I boundaries is
mediated by phonons and it depends on the acoustic trans-
parency of the interfaces. In the F layer, near its boundaries,
transition layers exist in which the thermal energy transported
by magnons is transformed into the phonon flux. The thick-
ness of these layers is on the order of the mean free pass [;; of
the thermal phonons relative to their scattering on magnons.
Then, if the thickness of the insulating F layer d is much larger
than the phonon mean free pass, d >> [, the detailed structure
of the transition layer becomes inessential for the calculation
of the heat current through the F/I boundary. This corre-
sponds to the conventional approach used by Little within the
acoustic-mismatch theory [3] in which the magnon contribu-
tion to the heat current is neglected. The size effect becomes
apparent in the opposite case d < [;;, when in the ballistic
regime o ~ 1 most of the phonons emitted by magnons leave
F without being absorbed in its interior even after several
successive reflections from its boundaries. Therefore, in con-
trast to the previous case, the spectral distribution of the
phonons emitted by the F film contains more information on
the magnon-phonon interaction in the insulating F than on the
transparency « of the F/I boundary.

To augment the appearance of the size effect, we analyze
in more detail the expression for the phonon distribution
function. For simplicity, we consider the symmetric case when
o = o) = apand T; = Ty = T,. Then, the expressions for NZ
acquire the form,

N7 (2) = xe™/"'n(T) + (1 — xe=*/"n(Ty),
—d = a7
N=(@z) =xe T n(T)+ (1 —xe 7 )n(Ty),

where »x = «/(1 — Bx). From Eq. (17) it is seen that the
characteristic length of the spatial variation of N< is [ =
Is.|/vis = I(q, 8). The functions N< are “weighted” sums of
two equilibrium Bose distributions. Namely, n(7;) stands for
the “cold” phonons from the bath while n(7;) for the “hot”
phonons emitted by magnons of F. The relative weight of these
terms is determined by the quantity ». The physical meaning
of x is the effective probability, 0 < » < 1, that a phonon,
which is incident from F on the F/I interface, will leave F
without collisions with magnons. It can be shown that even
in the case of small bare transparencies @ < 1, the quantity »
can nevertheless be of the order of unity if § = d/l < «. This
means that if § < «, then practically all phonons emitted by
magnons and satisfying this condition will leave F without
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being reabsorbed in its interior with a probability on the order
of unity, despite the possibility for a series of successive
reflections from the film boundaries. In accordance with this
scenario, from the definition of » follows dx/do > 0 and
dx/d& < 0, so that the effective probability x increases with
increase of o and decreases with increase of the thickness of
F. In the limiting cases, » — 1 whend — 0 and » — « when
d — oo.

Now we turn to a discussion of the size effect on the
magnon heat current in the investigated I/F/I system. From the
preceding analysis it follows that in the magnon overheating
regime at ¢ < 1 both the Q(7;) dependence and the spectral
distribution of phonons emitted by F are determined only by
the properties of F and are practically independent of the I
characteristics. Thus, in contrast to the “Joule” heating regime
at ¢ > 1, in the case of magnonic overheating regime there is
no need to explicitly take into account the mechanisms of the
heat removal from F. Accordingly, the results of experiments
in the ¢ < 1 regime contain information on the magnon-
phonon interaction in F. In particular, experiments on the de-
termination of the thermal resistance of an F/I interface should
allow for the estimation of the microscopic quantity /;;(7y). In
this regard, we would like to comment on the possibility of
experimental realizations of the magnon overheating regime.

The main point, which should be easily grasped from
Fig. 3, is that the magnon overheating regime at ¢ < 1 re-
quires d < lj; in conjunction with the ballistic propagation
of phonons through the F/I interface such that so-called re-
versed phonons can be neglected. From the plot in Fig. 3 it
follows that the magnonic overheating mechanisms can be
most easily realized at & ~ 1. Still, the presence of a small
number of reverse phonons can affect experimental results
even if the criterion ¢ < 1 is formally satisfied. To reduce the
number of reverse phonons, in addition to using single-crystal
bulk substrates two other experimental possibilities should be
mentioned. One is to decrease the width of the investigated
F film, to maximally exploit the effect of “spreading” the
heat into the substrate. Another possibility is to use pulsed
heating of F in such a way that the characteristic time for the
reversed phonons to enter the film is longer than the duration
of the pulse. Still, the pulse duration should be long enough to
establish a stationary state in the film. In the case of pulsed
heating, the requirements on the width of the film can be
greatly relaxed as compared to the case of stationary heating,
owing to the lack of a characteristic thermal “background” in
the pulsed regime.

An experimental criterion to prove that the film is indeed
in the magnon overheating regime is the absence of disconti-
nuities in the observed physical quantities when the helium
bath temperature goes through the A point. In fact, since
the physical characteristics of magnons in F in this regime
are no longer dependent on the bare transparency «, the
inequality ¢ < 1 can only be strengthened when the sample
is emersed in superfluid helium and, hence, is efficiently
cooled. Moreover, if discontinuities exist nevertheless, their
magnitude can serve as a measure of the “distance” from the
magnon overheating regime.

A major experimental difficulty to examine our theoretical
predictions are uncertainties about temperature gradients in-
side the films. In the absence of relevant experiments carried

out on I/F/T structures, we would like to mention two exper-
iments on normal metal/F heterostructures [23,30]. Namely,
the problem of discrimination between the bulk temperature
gradient and the interface temperature jumps in SSE het-
erostructures has recently been overcome by Kimpling et al.
[30] who used picosecond heat pulses which were too short
for contributions from a bulk temperature gradient in yttrium
iron garnet. There, temperature differences across Au/YIG
and Cu/YIG interfaces were of the order of 10-100 K. While
a discussion of the size effect in the nonlinear heat transport
was beyond the scope of that work [30], from our theoretical
results it follows that a difference between the magnon and
phonon temperatures of 5 K should be enough to increase the
heat current in I/F/I structures by two orders of magnitude.
Accordingly, for a sufficiently thin F layer with d < Ij; our
theory predicts a huge enhancement of the heat current in the
magnon overheating regime. Obviously, this is not just a small
correction to the conventional Little’s theory, but the predicted
exponent change in the power-law dependence of the heat
current on temperature should have important implications for
future I/F/I-based spin caloritronic devices.

Finally, it is worth noting that evidence for the role of the
magnon energy relaxation length in the SSE has been pre-
sented by Prakash ef al. [23], where relaxation processes were
parametrized by the length over which magnon-to-phonon
thermalization occurs. As a comparison with their theoretical
approach, the magnon energy relaxation length in Ref. [23]
plays the role of /;; in our work. At the same time, that model
[23] represents a concept, rather than a complete theory of
transport, at short thicknesses. Namely, in order to analyze
the corresponding contribution to the injected spin current, the
magnon heat Kapitza length at the interface is treated in [23]
as a free parameter and there is no estimate for the interfacial
thermal conductance. While in the present work we have
been able to microscopically account for the phonon-magnon
energy relaxation length at different thicknesses of the F
layer and temperatures, a theoretical account for the nonlinear
Kapitza resistance of the F/I interface, which exhibits a size
effect as well, will be presented in a follow-up work.

V. CONCLUSION

To summarize, we have investigated the heat transfer
through interfaces of an insulating ferromagnet sandwiched
between two dissimilar insulators. A closed-form expression
(7) for the heat current Q(T;) has been derived at an arbitrary
value of the parameter ¢ ~ 2d/al;;(Ts). Depending on the
relation between the ferromagnet thickness d and the mean
free path of phonons generated by magnons /;;, two qualita-
tively different heat-removal mechanisms have been revealed.
If € > 1, this is the conventional “Joule” heating, which has
been extensively investigated in a number of works on the
thermal resistance between two dissimilar solids. In the case
& < 1 the magnonic overheating regime becomes possible
for the ballistic propagation of phonons through the F/I in-
terfaces. In the magnon overheating regime, the nonlinear in
temperature effects are determined only by the properties of
F and do not depend on the acoustic transparency of the F/I
interface. The predicted magnon overheating regime should
be examined in hybrid structures with thin ferromagnetic
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layers with interfaces exhibiting a good transparency for ther-
mal phonons. In all, the reported results are relevant for the
analysis of the spin Seebeck effect hybrid nanostructures and
the development of magnon-based spin caloritronic devices.

ACKNOWLEDGMENTS

V.A.S. thanks Dmytro A. Bozhko for a fruitful discussion.
Research leading to these results received funding from the
European Union’s Horizon 2020 research and innovation pro-
gram under Marie Sklodowska-Curie Grant Agreement No.
644348 (MaglC).

APPENDIX

This appendix provides details on the derivation of the
kinetic equation and its solution.

1. Number of phonons

The change of the number of phonons with a given wave
vector q caused by absorption and emission of a phonon by
magnon per unit of time can be presented [Eq. (26.3.1) in [67]]
as

(N,)s = Lis{N, n}, (A1)

where the right part is the collision integral between phonons
and magnons with the distribution functions N and n, respec-
tively,

2
LislNn} = == 3 (. kKD P{(Ng + DOn+ D

K.k,
— Nan(nk] + 1)} x 6(ﬁa)q —+ &k — Skl)

x A(q +k — k). (A2)

V\’ lth the momentum conservation laW, l:(l. (AZ) IeadS
Is n ¢bl q l( l( q

X {(Ng + Dk + Dngsq —

x 8(hwy + ek — Ek4q)-

"k (Mkyq + 1D}
(A3)

Here, |V (q, k|k + q)|? is expressed by [Eq. (26.1.4) in
[671]

Oc? I
[V (q. kIk + q)> = %(MT)a“kz(Hq)Z 2, (A4
q

where p = M /a3, M is the magnetic ion mass, a is the lattice
constant, ®¢ is the Curie temperature, N is the number of
atoms, w, = sq is the phonon frequency with wave vector q,
and s is the average sound velocity. In the collision integral
between phonons and magnons (A3) Nq and ny are the Bose-
Einstein distributions at the temperature 7', which in the equi-
librium state read Nq = [eha% — 117! and 7x = [e%k — 1774
where g, = O¢(ak)? is the dispersion law of magnons in the
long-wave ka < 1 limit. Obviously, Li{N,n} =0.

2. Relaxation frequency

If the number of phonons and magnons is weakly distin-

guished from the equilibrium case at the temperature 7, then

itis possible to determine the inverse lifetime of a phonon with

the frequency w with respect to the absorption or emission of
the phonon by a magnon by the formulas,
1 8L

75 (@) SNy (@)

Uiy = (A5)

which yields for the relaxation frequency,

21 ®C2 h
v (T) = Z <T> (M_a)q
k

x {ng — ﬁk+q} X S(Flwq + ek — 8k+q).

)a4k2q2(k2 + 2kq + ¢*)

(A6)

In the long-wave limit ka < 1 the sum is replaced by the
integral,

4 Na®
P /dk = _“3/dkk2d0k,
— " () 2n)

where d O = 2m sin6d6, where 6 is the polar angle of the
vector k with respect to the vector q. With

(A7)

1
S(hwy + &k — €kqq) = m&f —cos0),
where f = ﬁ(g—? —qa), at low temperatures 7T <

©p?/O¢ one obtains

vis(T, q) = D(T)Jp(T)

&0 1
= D(T)/yo dyy(x +y)<ey e 1>,
(A8)
where D(T) = @C(T/®c)3/(8nMaS), x =¢4/T,

y=¢&/T, yo= ®%)/(4T®C), and ®p = fis/a. The final
limit of integration yy in Eq. (A8) over the dimensionless
magnon energy y = &/ T is due to the fact that the emission
of phonons is possible only for magnons with the energy
larger than © % /4.

In Eq. (A8),
In(Ty, %, y0) = ) (1 — e )¢ + ¢o), (A9)
p=1
where
$1(p, y0) = e P (yo/p + 1/p%),
$2(p. yo) = e P (3o’ /p +2y0/P> +2/p°).  (Al0)

Because of Jp(Ts, x, yo) ~ e 2 « 1 for p =2 we can
confine our consideration by p =1 in the limit yy > 1,
obtaining

Ip(Ty, x, y0)~ (1 — e )e™ [x(yo + 1) + (3o + 2y0 + 2)].
(A1)

3. Collision integral

The collision integral L;{N,n} in the case, when N, is
arbitrary and ny is the equilibrium distribution function for
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magnons with the momentum Kk at the temperature 7, reads

2 Oc? h 472 2 2
Lig{N,n} = — — | —— )a"k"(k
N np = = ; N <pa3wq)“ (k+q)’q
X 8(hwy + ex — exrq)P(Ng, Nk, Niyq),  (Al2)
where
¢(Ng, n, Nitq) = (Ng + D(nk + Dngq
— Nymi(niyq + 1). (A13)

£k £k teg
Here, ny =[e” —1]7" and nyy =[e & —1)7'], where

&r = Oc(ak)? and &, = how, = fisq. If we determine x =
g4/ Ts and y = g/ T, then it can be shown that nyq(ng +
D=e/(e™ = 1) — 1), ng(ngyq+1) =" /(e —
1)(e¥ — 1). Then

_@l(Ng+ 1) — Nye*]
@t =) —1)

e’ [(Ng + 1) — Nye*]
(" = e e — 1)

E)

(A14)
and, finally,

! e ¢ AlS5
=|N, — — .
¢ [ 7 (ex—l):“:eyﬂ—l e>‘—1:| (AL3)
Equation (A15) can be written in a more compact form if one

presents the two terms in the second bracket as two sums of
the geometric series e~**>) and e~”, namely,

¢=[n(T)— N ePA—e ™).  (Al6)

p=l1

Proceeding, again from summation to integration, at low
temperatures 7 < © D2 /©¢ we obtain

Lis{Ng, n(T))} = [n(T,) = NJID(Ty) Y (1 —e™ ")
p=1

o0
X / y(y +x)e Pdy. (A17)
Yo
Finally, Eq. (A17) can be written as
Lis{Ng, n(T)} = [n(Ts) — Nglvis(Ty, q), (A18)

where

e 00
vl‘v(Tm 6]) = D(TV)Z(l —Eipx) y(y-'-x)e*pydy
p=1 Yo

(A19)

has a physical meaning of the inverse lifetime of a phonon
with the frequency w, with respect to absorption or emission
of the phonon by a magnon,

vis(Ty, q) = 1/715(T5, q) = _SLZS/SNq' (A20)
4. Solution of the kinetic equation
The general solution of Eq. (1) reads [69]
N(z) = Cexp(—z/l;) + n(Ty), (A21)

where C is an arbitrary constant and [, = s, /v;;. We introduce
two new functions N2(q, z) = N(z, ¢, ¢. = 0) and denote

|l;| = I, where [ depends on the angle 6 between the direction
of the vector q and the z axis. We then have for N< the
relations,

N2 (z) = C2 exp(Fz/1) + n(Ty), (A22)

where the coefficients must be determined from the two
boundary conditions for N(z) at z =0 and z = d, respec-
tively. We consider the case of ballistic propagation of the
phonons emitted by F through the F/I boundary, taking into
account the finite transparency of the F/I interface within the
framework of the acoustic-mismatch theory [3]. We denote the
coefficients of the phonon reflection from boundaries 1 and 2
as By and B,. Then, B; =1 — «;,i = 1, 2, where «;(0) is the
transparency coefficient, and the boundary conditions read

N7(0) = ayn(Ty) + 1N ~=(0),

N=(d) = apn(Ty) + BN~ (d). (A23)

Within the framework of the acoustic-mismatch theory,
the interface transparency coefficient « is determined by the
phonon incidence angle 6, at the interface, the refraction angle
6,, and the acoustic impedances z; of the adjacent media
via [3]

4(z2/z1)(cos 6/ cos 61 )

[(z2/z1) + (cos 62/ cos 61)]?
(A24)

a=a(0) =axth) =

where the angles 6, and 6, at a given boundary are connected
via s sin0; = s sin6,. Here, subscripts 1 and 2 pertain to
one of the F/I interfaces. Combining Eqs. (A22) and (A23)
we obtain the following expression for C~:

_an(Ty) + Broon(To)x + n(Ty)(ar — Bronx)
1 — Bipox?
The expression for C= differs from (A25) by interchanged

subscripts 1 and 2, and by an additional factor x =
exp(—d/1). These expressions are used in Eq. (4).

C>

. (A25)

5. Heat current

With the passage from the sum to integration and after
the introduction of the magnon “overheating” parameter y =
T;/T; > 1, the heat current Q = Zq(ha)q)Nq from magnons
to phonons acquires the form,

0 = (N/87%)(03,0¢/2110,)(T;/Oc) (T;/Op) K (p),

(A26)
© w3du
K(p)= ——[Jp(Ty, x = u, yo)
0 e’ — 1
— Ip(Ty. x = u/y, y0)/v*. (A27)
The difference in the bracket is given by
o0
1= upi[(1—e?)—y (1 —e 7))
p=1
+ ol —e ™) —y (1 —e ™). (A28)
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The dependence of K(p) on the magnon overheating parameter y and the effective inverse temperature y, is discussed in
Ref. [66]. The corresponding integrals were calculated using Eq. (2.3.13.22) in [70]:

/~oo un—l(e—pu)du
0

et — 1

For instance,

K(p=1=¢TO + 1’[cG, 1+ p) — LT+ ¢TI + ple@, 1+ p) — c(@11

=T, 1+ p)l.

(A29)

(A30)

Here u =1/y = T;/Ts, ['(n) is the y function of n and ¢ (n, 1 4+ w) is the generalized Riman ¢ function of n and (1 + u),

namely

Fn+D=n!, &)=Y B,
k=1

(s, )=2¢0s), s, 14+p)=) [k+(1+p)].

(A31)
k=0
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