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Abstract

Finding communities of connected individuals in social networks is essential for

understanding our society and interactions within the network. Recently attention

has turned to analyse these communities in complex network systems. In this thesis,

we study three challenges. Firstly, analysing and evaluating the robustness of new

and existing score functions as these functions are used to assess the community

structure for a given network. Secondly, unfolding community structures in static

social networks. Finally, detecting the dynamics of communities that change over

time. The score functions are evaluated on different community structures. The

behaviour of these functions is studied by migrating nodes randomly from their

community to a random community in a given true partition until all nodes will be

migrated far from their communities. Then Multi-Objective Evolutionary Algorithm

Based Community Detection in Social Networks (MOEA-CD) is used to capture the

intuition of community identification with dense connections within the community

and sparse with others. This algorithm redirects the design of objective functions

according to the nodes’ relations within community and with other communities.

This new model includes two new contradictory objectives, the first is to maximise

the internal neighbours for each node within a community and the second is to

minimise the maximum external links for each node within a community with respect

to its internal neighbours. Both of these objectives are optimised simultaneously to

find a set of estimated Pareto-optimal solutions where each solution corresponds to

a network partition.



Moreover, we propose a new local heuristic search, namely, the Neighbour Node

Centrality (NNC) strategy which is combined with the proposed model to improve

the performance of MOEA-CD to find a local optimal solution.

We also design an algorithm which produces community structures that evolve over

time. Recognising that there may be many possible community structures that ex-

plain the observed social network at each time step, in contrast to existing methods,

which generally treat this as a coupled optimisation problem, we formulate the prob-

lem in a Hidden Markov Model framework, which allows the most likely sequence of

communities to be found using the Viterbi algorithm where there are many candi-

date community structures which are generated using Multi-Objective Evolutionary

Algorithm.

To demonstrate that our study is effective, it is evaluated on synthetic and real-life

dynamic networks and it is used to discover the changing Twitter communities of

MPs preceding the Brexit referendum.
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Chapter 1

Introduction

The recent science of network systems has brought important advances to represent

and deeper understanding of the main characteristic of complex networks [Duan

et al., 2014]. Understanding the configuration of networks provides positive effects in

different fields such as computer science, engineering, biology, economics, etc. These

techniques have attracted many researchers since these systems include real-world

networks such as technological networks, networks, information networks (World

Wide Web networks) [Broder et al., 2000], biological networks (protein-protein net-

works and neural networks) [Girvan and Newman, 2002], scientific collaboration

networks [Newman, 2001], and transportation networks [Banavar et al., 2000].

A graph representation is the simplest method to represent complex real-world net-

works where nodes (vertices) represent objects such as individuals, neurones, pro-

teins or countries and the connections between these objects are represented by

edges or links such as communication, friendship or collaboration (for example, two

authors (nodes) write a paper together and can therefore be joined by an edge). In

general, a network can be divided into groups of nodes, called communities, modules

or clusters, each group has dense connections within it (intra-connections) and is

only sparsely connected with the rest (inter-connections), see Figure. 1.1. This type

1



1. Introduction

Figure 1.1 (a) A graph is partitioned into three communities. (b) The synthetic
network consisting of four communities [Lancichinetti et al., 2008]. Different
colours for each community.

of organisation is known as the graph’s community structure. It is crucial to identify

communities as it helps to determine the structural properties of the networks.

A common way of discovering community structure is to define an objective function

or quality measure that quantifies the quality of a proposed partition of the nodes

of a network into communities and then to optimise the objective function over

possible partitions. This approach depends on (a) defining an appropriate quality

function and (b) a search algorithm to efficiently locate good quality partitions.

Generally speaking, all the proposed quality functions have the same two goals: they

favour partitions with more connections inside communities and few connections

with the rest [Girvan and Newman, 2002; Lancichinetti et al., 2010]. This definition

of community is known and accepted by most network scientists. Also, it is similar

to general clustering techniques [Jain and Dubes, 1988] which attempt to partition

a set of data to maximise the similarity of members within the cluster and minimise

similarity with the rest.

Many algorithms have been suggested to uncover communities in networks based on

connections between nodes and these connections may be weighted or unweighted,

directed or undirected [Girvan and Newman, 2002; Lancichinetti et al., 2011; Miyauchi

2



1. Introduction

and Kawase, 2016; Pizzuti, 2012]. However, understanding these networks is very

challenging especially when the configuration of these networks is evolving as many

real-world networks are complex and dynamic. Therefore, analysing community

structures is still an open problem and it needs more investigations. In 2004, Girven

and Newman made a most exciting contribution to the community detection research

area when they used the modularity score to measure the strength of partitioning

of the network into communities [Newman and Girvan, 2004]. If the modularity is

high, the network partition has dense connections between nodes within the commu-

nity but sparse connections between different communities. Although it is the most

popular measure for evaluating community structures, it suffers from a resolution

limitation as it cannot detect small communities even if there are sparse connections

between these small communities [Chen et al., 2014; Lancichinetti and Fortunato,

2011].

In the last few years, single objective evolutionary algorithms have been used to

optimise a partition quality measure to detect community structure. Although these

algorithms have been successful in identifying correct partitions on some real-world

networks, they have failed on others because they have produced a solution with fixed

property for the community structure as SOEA optimise one objective [Hafez et al.,

2014]. Based on the general definition of communities, we can usefully consider the

optimisation of the two objectives. One of them tends to increase intra-connections,

while the second decreases inter-connections. In this way, this problem has been

formulated as the multi-objective optimisation problem to produce a set of trade-off

solutions by optimising two conflicting objective functions [Shi et al., 2012; Pizzuti,

2012; Gong et al., 2014; Wu and Pan, 2015].

Furthermore, Shi et al. [2014] proposed an algorithm to select objective functions

in multi-objective community detection and they concluded that optimising two

conflicting objectives using an evolutionary algorithm outperformed single objective

evolutionary algorithms.

3



1. Introduction

There is another important factor which should be taken into account when nodes

and their connections change over time. It is generally expected that networks evolve

slowly, so dramatic changes in community structure are unlikely. This is commonly

modelled by the addition of a temporal cost that penalises abrupt changes in commu-

nity structure from one time to the next. Existing methods for analysing community

evolution have used only one objective to evaluate snapshot quality such as Mod-

ularity, Community Score, CONductance, Normalised Cut. [Folino and Pizzuti,

2010, 2014; Ma et al., 2014; Zhou et al., 2015] while the community detection issue

is proved as multi-objective optimisation since networks having multiple structural

properties [Shi et al., 2012; Pizzuti, 2012; Gong et al., 2014; Wu and Pan, 2015].

After this scenario, we wish to develop the analysis of the structure of communities in

different types of synthetic and real-world networks. This analysis will be described

in details in chapter 3 and 4.

The following chapters will present the algorithms that have been used to unfold

community structures in static and dynamic networks.

1.1 Key Challenges and Novel Contributions

In the last few years, community detection has become an important research topic

in complex network analysis. So far, many methods have been proposed to analyse

these communities and provide a good understanding of the configuration of these

networks, see [Fortunato and Hric, 2016] for a review. However, some of the critical

issues are still open questions. In this section, we describe some of these issues and

attempt to deal with them as our main contributions in this thesis.

Objective Evaluation

As we discussed earlier, the nodes in the network are to be grouped by the community

detection algorithm. In order to detect the structures of these communities, a score
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function is needed to evaluate these structures. The study of score functions to

determine the quality of a partitioning of the graph into communities is important.

A few works of literature have been developed to evaluate the utility of the quality

scores for community detection. Also, the evaluation of these scores based on the

correct partition is missing in the literature. For example, Hafez et al. employed

the single objective optimisation technique to investigate the quality of different

objective functions [Hafez et al., 2014]. However, this method produces just one

solution to validate the quality of the optimised objective with respect to the true

partition. Therefore, the investigation in this research area is still not clear to

determine the utility of scoring functions as the objective evaluation strategies need

much of useful network partitions for the evaluation.

A New Methodology for Evaluating Partition Quality Scores

An evaluation technique is proposed to evaluate the accuracy of the community

detection scores that are used to assess a given network partition. The proposed

method is based on a random migration strategy and allows a proper empirical

assessment of the suitability of objective functions for finding partitions.

Community Detection in Static Networks

Many quality measures have been suggested so far to uncover communities in net-

works [Girvan and Newman, 2002; Lancichinetti et al., 2011; Miyauchi and Kawase,

2016; Pizzuti, 2012]. Although these measures have been used to successfully detect

the true partition or more similar to the true partition on some real-world networks

such as the Karate and Dolphin networks [Zachary, 1977; Lusseau, 2003], they have

failed on others such as American football network [Girvan and Newman, 2002].

The vast majority of the current score functions attempt to minimise all connec-

tions between communities, while in real networks the best partitions still have a

few connections remaining between communities. This means that current score

functions are ineffective at detecting some community structures in these networks.

5



1. Introduction

Therefore, the critical question about the accurate structure of communities is still

open: what score function or functions should be used to accurately recover the

community structure in a wide range of real networks? The mathematical design

includes the formulation of the intuition of intra-connections within a community

and inter-connections with nodes outside the community. This issue needs more

investigation and development on a variety of configurations of synthetic and real-

world networks. An effective method is needed to capture the intuition of natural

community identification.

A New Multi-Objective Algorithm for Static Community Detection

We define two novel objectives for optimisation by an evolutionary algorithm. These

objectives are optimised to find a set of network partitions that trade-off between

intra-connections and inter-connections to reflect different network partitions in a

single run. These objectives are inspired by our investigation of relations between

nodes in the network rather than relations between communities which has charac-

terised most previous work such as Modularity [Newman and Girvan, 2004], Com-

munity Fitness [Lancichinetti et al., 2009], Normalised Cut [Dhillon et al., 2004],

etc. The first objective attempts to increase the number of connections for each

node within the community with respect to external connections. In contrast, the

second objective minimises the maximum connections between communities. The

new algorithm is shown to successfully locate network partitions in synthetic and

real-world networks (see chapter 3).

Evolutionary Algorithms and Local Minima

Although the existing evolutionary algorithms for revealing community structure

are able to explore large parts of the space of partitions, evolutionary algorithms

tend to become stuck in local minima. In addition, few studies to tackle this issue

by combining local search techniques with evolutionary algorithms for community

detection [Gong et al., 2014; Wu and Pan, 2015; Hariz et al., 2016]. Therefore this
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area needs more investigation to derive heuristic techniques by studying the natural

network partition.

Heuristic to Guide Evolutionary Algorithm Optimisation

We introduce a novel mutation operator that is based on neighbour relationships

to assign nodes to more suitable communities, thus enhancing the performance of

the mutation process and speeding up the convergence of the proposed evolutionary

algorithm. In combination with the new objective functions, this heuristic facilitates

the efficient location of community structure in complex networks.

Community Detection in Dynamic Networks

Although many techniques are now available to computationally analyse unchang-

ing networks, particularly for detecting communities of interconnected nodes (e.g.,

[Newman and Leicht, 2007; Hofman and Wiggins, 2008; Hafez et al., 2014; Wu and

Pan, 2015; Chen et al., 2014]), a characteristic of many real networks is that they

evolve over time [Hopcroft et al., 2004; Nguyen et al., 2014; Sun and Sun, 2017; Piz-

zuti, 2012; Gong et al., 2014] as nodes and edges are added or deleted. Identifying the

changing structures of communities in these networks is important for understanding

the underlying processes generating the networks and for making predictions about

future configurations. However, analysing and understanding these structures is a

challenging research topic because communities must be detected and tracked over

time. Although several algorithms have been proposed to detect communities and

their evolution in dynamic networks [Lin et al., 2009; Folino and Pizzuti, 2010; Tang

et al., 2008; Xu et al., 2014; Ma et al., 2014; Cazabet and Amblard, 2014], further

work is needed due to the wide variety of networks and how they evolve.

7
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Evaluating and Tracking the Structure of Communities in Dynamic Net-

works

The detection of dynamic communities is formulated as a Hidden Markov Model to

capture the evolution of these communities over time in the dynamic networks. Our

Multi-Objective Evolutionary Algorithm (MOEA) is used to produce a candidate

states at each time steps. Then the Viterbi algorithm is used to find the most likely

sequence of network partitions over time as the communities evolve in time. We

demonstrate the efficiency of the proposed algorithm on synthetic and real networks.

1.2 Organization of the Thesis

The thesis is organised as follows.

Chapter 2

We present background and the relevant work for analysing communities in static

and dynamic networks. In particular, we discuss the existing score functions for eval-

uating a given network partition. Then, we review community detection algorithms

that have been used for detecting of community structures in static and dynamic

networks and discuss their advantages and disadvantages.

Chapter 3

In this chapter, we evaluate the utility of existing and novel objective/score functions

to identify the correct network partition. We then formulate two novel objective

functions that characterise the intra and inter-community connections in a network.

These are incorporated into an MOEA algorithm for community detection in static

networks. This algorithm is combined with a heuristic strategy to speed up the

convergence of our algorithm. We evaluate our model against three existing models

with and without a local heuristic search, on synthetic and real-world networks.
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Chapter 4

We examine the detection of communities evolving over time. This problem is

formulated as a Hidden Markov Model (HMM) to find the most likely network

partitions over time. The MOEA developed in chapter 3 is used to generate a set of

possible partitions (states) at each time step by optimising two objective functions.

A Viterbi algorithm is then used to find the most likely sequence of partitions.

The proposed algorithm is evaluated on synthetic and real-world networks, and

the evolving social network structure between MPs in the approach to the Brexit

referendum is analysed.

Chapter 5

This chapter summarises our contribution for evaluating and detecting community

structures in static and dynamic networks and the results that are presented in this

thesis. In addition, we present the possible directions that are derived from our

study for future work.
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Chapter 2

Background

In this chapter, we introduce some fundamental concepts of graph theory and rele-

vant studies which have a relation to the aim of this thesis. Specifically, we discuss

the current evaluation scores that have been used to judge whether the generated

network partition is fit to a given network or not. Following this, we present the

current literature on detecting community structure in both static networks where

the given network is a snapshot at a specific time and dynamic networks when the

input is a set of snapshots at successive time steps.

2.1 Network Theory

Network theory is the research area concerned with the analysis and understanding

of the structure of complex networks. It is a part of graph theory, which is a

mathematical method for modelling relations between objects (the structure of the

graph). We begin by describing the basic notations that will be used throughout

this thesis and some ways of characterising the structure of a network.

We model a static network as a graph G = (V,E), where V represents the set of

nodes or vertices, V (G) = {v1, v2, . . . , vN} with N = |V | and E(G) represents a

10



2. Background

Figure 2.1 (a) A graph which consists of three communities. (b) Adjacency matrix which
consists of three communities.

set of L links or edges between nodes; L = |E(G)|. The graph is considered to be

undirected and unweighted. Each node has some connections to other nodes, and

this number of connections is the degree d of the node. Let G be represented as an

adjacency matrix A ∈ RN×N , where Aij = 1 if there is a link (edge) between vi and

vj where i, j ∈ {1, 2, ..., N}, while Aij = 0 otherwise. The adjacency matrix contains

all the important information about the graph. Each row and column is indexed by

a node’s number, and each element indicates whether there is a link between a pair

of nodes or not. All elements on the main diagonal in the adjacency matrix are zero

as there are no connections between a node and itself. Figure 2.1a shows a graph

that partitions into three communities in different colours and Figure 2.1b displays

the corresponding adjacency matrix for the graph representation that partitions into

three communities shown in three different colours.

The objective of community detection is to partition the graph, or equivalently,

A into a set of K clusters or communities C = {C1, C2, . . . , CK}. We denote the

number of nodes in cluster Ck as nk = |Ck|.
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Degree

As noted above the degree of node vi is the number of edges between node vi and

other nodes:

d(vi) =

N∑
j=1

Aij (2.1)

In addition to the degree of a node, we consider the degree of communities. The

number of links within a particular community and between the community and

other communities is important for the definition of communities. The degree of

community Ck is defined as:

D(Ck) =
∑
i∈Ck

N∑
j=1

Aij (2.2)

We also define the external degree,

D(Ck) =
∑
i∈Ck

∑
j /∈C

Aij (2.3)

and the internal degree

D(Ck) =
∑
i∈Ck

∑
j∈Ck

Aij (2.4)

which respectively count the number of links between nodes in Ck to nodes not in

C and the number of links from nodes in Ck to other nodes also in Ck. Note that

D(Ck) is the twice the number of intra-connections in Ck, as each edge is counted

twice in the undirected graph. In a similar manner we define the external degree for

a node vi in community Ck:

d(vi, Ck) =
∑
j /∈Ck

Aij . (2.5)
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Likewise, the internal degree of node vi ∈ Ck is

d(vi, Ck) =
∑
j∈Ck

Aij . (2.6)

Then

d(vi) = d(vi, Ck) + d(vi, Ck) (2.7)

is the degree of node vi.

A node vi in a community Ck is strong if

d(vi, Ck) > d(vi, Ck), (2.8)

And it is a weak if

d(vi, Ck) < d(vi, Ck), (2.9)

Strong and Weak Communities

A community Ck is termed strong [Radicchi et al., 2004] if

d(vi, Ck) > d(vi, Ck), ∀i ∈ Ck. (2.10)

That is, all nodes in a strong community make more connections to other nodes in

the community than they do to nodes in other communities. A community is weak

if there are more internal connections between nodes in the community than there

are connections to external nodes:

∑
i∈Ck

d(vi, Ck) >
∑
i∈Ck

d(vi, Ck). (2.11)

The summation is used here to compare all the internal degree of nodes within the

community with all the external degree of these nodes. These nodes could be either

weak or strong while Equation 2.10 ensures that each node in community Ck should
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be strong.

Clearly, a strong community is also a community in the weak sense, but a community

is not necessarily either weak or strong.

Degree distribution is the distribution of node degrees in the network p(d). In

real networks, these degrees are high for some nodes and low for others, and this

distribution often follows power law p(d) ∝ dα where α is a constant. This type of the

network is called a scale-free network, in contrast to random networks where edges

are put randomly between any pairs of nodes. Therefore, the degree distributions

in random networks are homogeneous [Lancichinetti et al., 2008]. Many real-world

networks are scale-free such as the Internet, World Wide Web and others [Broder

et al., 2000]. Scale-free networks are inhomogeneous where many nodes have a few

connections and a few nodes have large connections [Wang and Chen, 2003].

Shortest path, or geodesic distance, is the minimum number of edges in any path

between two given nodes in a graph. Dijkstra’s algorithm could be used to find the

shortest paths in the graph [Cherkassky et al., 1996].

Average path length measures the average number of edges between all possible

pairs of nodes in the network [Albert and Barabási, 2002]. Suppose, we have a graph

that consists of N nodes and δ(i, j) is the distance between vi and vj . The average

shortest path length is calculated as:

l =
1

N(N − 1)

∑
i,j∈V

δ(vi, vj) (2.12)

Betweenness Centrality represents the number of times that a node is passed

through on the shortest path between two other nodes [Freeman, 1977; Wasserman

and Pattison, 1996; Brandes, 2001; Faust, 1997]:

BC(v) =
∑

i ̸=j ̸=v∈V

σi,j(v)

σi,j
(2.13)
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where σi,j(v) represents the number of shortest paths between two nodes i and j

that involved node v. σi,j is the number of possible shortest paths between two

nodes i and j.

Closeness Centrality is defined as the reciprocal of the distance of a node to all

other nodes in the network [Preparata et al., 2008]:

CC(v) =
N − 1∑
i∈V δ(v, i)

, i ̸= v (2.14)

Thus a node with a high closeness centrality is in some senses close to the centre of

the network.

2.2 Community Structure Evaluation Scores

Community structure is an important feature in complex networks where this

network is divided into groups of nodes that have dense connections within the

group and sparsely with the others. These groups represent a fundamental concept

for analysing and understanding the complex networks, because analysing at a group

level is easier than at a node level. These structures are most often found in real

networks, for example in social networks, communities may represent common inter-

ests, or in biological networks, communities may refer to proteins that have similar

functions [Scott, 2017; Lee and Lee, 2013; Newman, 2018]. The natural partition

for a given network is based on connections between nodes. Each node is assigned

to only one community, and nodes that have connections tend to be in the same

community rather than nodes that are not connected. Finding community structure

is a difficult issue as the number of communities and their size in real networks

is unknown and the computational complexity of evaluating all possible partitions

O(2N ). Despite these difficulties, many algorithms have been proposed to unfold

these communities as will be described later in sections 2.5, 2.6 and 2.7.

One of the valuable aspects that reflect an interesting investigation in network com-
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munity detections is evaluation scores: that is, what type of score is suitable to eval-

uate community structures. We describe the most common score functions which

have been used for quantifying how well a particular community structure fits a

given network. The idea is that given a community structure, and the score func-

tion, we can evaluate whether this structure is fitted to a given network or not.

Some of the scores are minimised while the others are maximised. However, all of

them are formulated with the same intuition that there are dense connections within

communities, while communities are sparsely connected with the other communities

in the network.

Many scores have been introduced for evaluating network partitions. We focus on

the following scores:

Modularity: Modularity measures the strength of partitioning a network into com-

munities [Newman and Girvan, 2004]. Network partitions that have high values of

modularity have dense connections within the community and sparse connections

with the others. It is widely accepted as a score that has been used in optimisation

methods for community detection in the networks. Modularity is defined as:

Q(C) =
K∑
k=1

.

[
D(Ck)

2L
−
(
D(Ck)

2L

)2
]

(2.15)

Q(Ck) may be shown to be the summed differences between the fraction of links

within a community minus the expected fraction of links within the community if the

graph were rearranged at random but preserving the degree distribution [Newman

and Girvan, 2004]. The range values for modularity falls in the range of (-0.5,

1) where 1 point to accurate community structures [Brandes et al., 2008]. The

modularity value is positive if the number of connections with the community is

more than the number of expected from a random arrangement in which the degree

distribution is preserved. It is negative when each node is in one community (or

sometimes when the network is partitioned into very small communities) and 0

when all nodes are in one community.
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Much existing literature uses Q for evaluating results. However, Fortunato and

Barthelemy [2007] have shown that it may fail to identify clusters if their size is

smaller than a scale which depends on the size of the network and the interconnec-

tions between clusters. They concluded that the generated partition due to mod-

ularity optimisation has a resolution limitation and optimising Q(C) may generate

partitions which fail to identify small communities.

Community Fitness (CF): This score is proposed by Lancichinetti et al. [2009]:

CF (C) =
K∑
k=1

D(Ck)

(D(Ck) +D(Ck))α
(2.16)

where α is a positive value which controls the size of communities. If α is large then

the network will be divided into small communities, while if it is small large commu-

nities will predominate. Therefore, the external connections between communities

will be minimised when the CF gets a high value (when α is small).

Normalised Cut (NC): This score minimises edge weights between clusters rela-

tive to degrees of a cluster [Dhillon et al., 2004]. It aims to minimise the external

degree of community with respect to the internal and external degree of this com-

munity:

NC(C) =
K∑
k=1

D(Ck)

D(Ck) +D(Ck)
. (2.17)

Network partitions that have a small NC produce good communities, as these com-

munities are well connected within themselves and sparsely with the other commu-

nities in the network.

Kernel K-Mean (KKM): This objective is related to Kernel K-Means cluster-

ing because KKM is a decreasing function and can generate a small number of

communities [Angelini et al., 2007]. The KKM score is defined as:

KKM(C) = 2(N −K)−
K∑
k=1

D(Ck)

| Ck |
. (2.18)
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The second term is maximised by maximising the average internal degree of the

clusters; subtracting this term from the sufficient minuend (2(N −K)) to consider

this objective as a minimisation objective and make the result of this score as a

positive value. For example, if the partition C is divided into N communities that

means each node in one community then the result is 0 due to the values of the

first and second terms are 0. Otherwise, the result is positive. This score is used by

Gong et al. [2014] for community detection.

Ratio Cut (RC): This score is an adaption of the Normalised Cut to solve the

community detection problem. It is minimised when there are few edges between

clusters relative to the size of the cluster [Gong et al., 2014; Dhillon et al., 2004]:

RC(C) =
K∑
k=1

D(Ck)

| Ck |
. (2.19)

By minimising RC, partition with sparse connections between communities are pro-

duced.

CONductance (CON): This score measures the fraction of edges that connect to

the nodes out of community [Yang and Leskovec, 2015]. It is defined as follows:

CON(C) =
K∑
k=1

D(Ck)

D(Ck) +D(Ck)
. (2.20)

Community Score (CS): The community score is an attempt to increase the

weight of the degree of the internal nodes within community [Pizzuti, 2008]. CS is

calculated by the summation of the local score for each cluster:

CS(C) =
K∑
k=1

1

| Ck |
∑
v∈Ck

(
d(v, Ck)

| Ck |

)r

×D(Ck) (2.21)

Where r controls the size of communities, as an attempt to increase the weight of

the degree of the internal nodes within the community.

Internal Density (ID): The internal density measures the density of the internal
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degree of the community [Yang and Leskovec, 2015].

ID(C) =
K∑
k=1

1− D(Ck)

| Ck | (| Ck | −1)
(2.22)

Thus maximising ID(C) yields communities with strongly connected nodes within

each community.

Although many objective functions have been proposed, there is little literature

evaluating the quality of community detection scores. In 2015, Yang and Leskovec

proposed an exciting method to evaluate quality scores based on the ground-truth

partition [Yang and Leskovec, 2015]. However, this method has not presented how

well correlated the optimising score on the generated partitions and evaluating mea-

sure between generated and correct partitions is. Hafez et al. investigated the

performance of different objectives for community detection using single and multi-

objective evolutionary algorithms [Hafez et al., 2014]. They used a single objective

to optimise each of the existing objectives separately, and the authors used MOEA

to optimise each pair of these objectives.

In general, all objectives have the same aim: either the objective is to increase

the number of connections within the community (intra-connections) or decrease

the number of connections with the rest (inter-connections). Later in chapter 3, we

investigate the accuracy of these scores in assessing the difference between a partition

and the true partition in terms of the Normalised Mutual Information [Danon et al.,

2005].

2.3 Multi-Objective Optimisation Problems

In this thesis, we attempt to generate a set of network partitions with dense intra-

connection and sparse inter-connection by optimising two conflicting objectives si-

multaneously. Therefore, we now describe the basic ideas of multi-objective op-

timisation. An Optimisation algorithm attempts to find the best solution among
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many feasible solutions under the specific constraints. Some real-world problems

require more than one objective function to be optimised simultaneously. This pro-

cess is called Multi-Objective Optimisation (MOO) which produces a set of trade-off

optimal solutions, called Pareto-optimal solutions [Coello et al., 2007].

Consider the following Multi-Objective Optimisation Problem (MOP) which seeks

to simultaneously minimise m objectives:

Minimise F (C) = (f1(C), f2(C), ...fm(C)) (2.23)

where C ∈ Ω is a solution and Ω denotes the space of feasible solutions. If the

objectives are competing, then at the optimum any improvement in one objective

must diminish the performance on at least one other. This idea is made precise

through the notion of dominance. Given two solutions C1 and C2, C1 is said to

dominate C2 (denoted as C1 ≺ C2) iff

∀i fi(C1) ⩽ fi(C2) ∧ ∃i fi(C1) < fi(C2). (2.24)

If neither solution dominates the other they are said to be mutually non-dominating.

A solution C∗ ∈ Ω is a Pareto-optimal solution to the minimisation problem (2.23) if

it is not dominated by any other feasible solution. The set of all Pareto optimal solu-

tions is named the Pareto Set (PS) and the image of the Pareto set under F is known

as the Pareto front. For these solutions, an improvement in one objective makes a

degradation on at least another one. The goal of practical search algorithms is to

produce a set of mutually non-dominating solutions that approximate the Pareto

set. We use this method of optimisation to capture the community structures and

evolution of communities in chapters 3 and 4.

In the last two decades, Genetic Algorithms have played a useful and vital role in op-

timising multiple objectives to solve real-world problems in different domains [Konak

et al., 2006]. A Genetic Algorithm (GA) is an optimisation and search method which
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is proposed by Holland [1975] to generate solutions based on biologically-inspired

operators (selection, crossover and mutation). It evolves a population of chromo-

somes where each chromosome has a fitness value which is the result of computing

the objective function to evaluate each chromosome separately. The fitness func-

tion has a vital role to develop the genetic algorithm, for more details about GA

background see [Bäck et al., 1997; Goldberg and Holland, 1988; Boyd and Vanden-

berghe, 2004; Konak et al., 2006; Corne and Lones, 2018]. GA has been developed

to optimise more than one objective. In this case, multi-objectives are optimised by

an evolutionary algorithm to find a set of feasible solutions called Pareto optimal

set [Coello et al., 2007; Zhou et al., 2011].

2.4 Multi-Objective Evolutionary Algorithms

In last few decades, evolutionary algorithms (EAs) have been successfully used for

optimization problems involving more than one conflicting objective, as these algo-

rithms are capable to produce a set of solutions in a single run. This set of solutions

are an approximation to the Pareto-optimal set, as described above. In 1985, the

first real multi-objective genetic was proposed by Schaffer [1985]. This approach

involves generating subpopulations at each generation. The number of subpopu-

lations are equal to the number of objectives. Each sub-population is responsible

for searching one objective. Since 1985, different evolutionary algorithms have been

proposed for multiobjective optimisation using evolutionary algorithms (MOEAs).

For example, [Fonseca et al., 1993; Srinivas and Deb, 1994; Fonseca and Fleming,

1996; Zitzler, 1999; Zitzler and Künzli, 2004; Zhou et al., 2011]

Multiobjective evolutionary algorithms can be classified into three groups:

Dominance-based algorithms: These are the most popular multi-objective evo-

lutionary algorithms that have been proposed by many researchers. In 1999, Zitzler

and Thiele [1999] proposed the Strength Pareto Evolutionary Algorithm (SPEA) for
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approximating the Pareto-optimal set for multi-objective optimization problems. It

combined different features from the previous multi-objective EAs in one algorithm.

For example, it stores a non-dominant evaluated set of solutions in an external pop-

ulation, assigns scalar fitness values to individuals based on the Pareto dominance

concept and if the size of the Pareto set is larger than a predefined limit, then

the Pareto set is reduced without destroying its characteristics by using clustering

methods.

In 2000, Knowles and Corne proposed the Archived Evolution Strategy (PAES)

that uses the dominance concept to evaluate solutions [Knowles and Corne, 2000].

It is used a single-parent single-offspring EA similar to a (1+1) evolution method.

They used binary strings and bitwise mutations to create offsprings. This algorithm

compares the offspring with respect to the parent. If the parent is dominated by

the offspring, the offspring is the next parent while if the offspring is dominated by

the parent, the offspring is rejected and it finds a new one. On the other hand, if

neither dominates the other, both the parent and the offspring are compared with

an archive of best solutions found so far.

The Nondominated Sorting Genetic Algorithm II (NSGA-II) [Deb et al., 2002] is

a commonly used MOEA. It is an elitist algorithm in which the approximation to

the Pareto set (the maximal set of non-dominated solutions) is kept from generation

to generation. A crowding distance strategy is used to limit the size of the Pareto

set and help improve the spread of solutions across the Pareto front. The crowd-

ing distance strategy is used to perform density estimation of solutions surrounding

a specific solution in the population and create a Pareto rank for each individual.

Nondomination individual rank and crowding distance are needed to create a pop-

ulation of individuals. In addition, there are other algorithms based on dominance

concepts such as the Niched Pareto Genetic Algorithm (NPGA) [Abido, 2003] and

Multi-objective Differential Evolution (MODE)[Varadarajan and Swarup, 2008].

Indicator based algorithms The main issue with multi-objective evolutionary al-
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gorithms is the approximation of the Pareto optimal set. Indicator based approaches

use a scalar indicator such as hypervolume and generational distance to measure

the quality of the Pareto front [von Lücken et al., 2014]. These algorithms used the

indicator to direct the search. Zitzler and Künzli [2004] proposed the first indicator-

based an evolutionary algorithm (IBEA). In this algorithm, a pair of solutions are

compared using a binary indicator and it does not need any diversity preservation

mechanism. In 2005, Emmerich et al. [2005] proposed S-metric selection-EMOA

(SMS-EMOA) which is based on the hypervolume measure to combine the concept

of a selection operator and non-dominated sorting. It is similar to NSGA-II except

in selection and there is a different ranking method used for the Pareto optimal

solutions. This algorithm is designed to maximise hypervolume which is the size

of dominated space [Hopfe, 2009]. However, the complexity of computing the hy-

pervolume indicator in high dimensions is expensive. This algorithm showed good

results for two or three objective problems. In order to deal with this problem Bader

and Zitzler [2011] proposed the approximation of exact hypervolume values using

a Monte Carlo algorithm and they presented this idea as Hypervolume Estimation

Algorithm for Multi-objective Optimization (Hype).

Decomposition based algorithms: Another promising multi-objective evolution-

ary algorithm for optimising multi objectives by using the scalar functions are de-

composition algorithms [Jaszkiewicz, 2004; Hughes, 2007; Li and Zhang, 2006; Zhang

and Li, 2007]. Two difficulties associated with solving multi-objective problems need

to be determined: 1- The number of solutions to approximate the Pareto front in-

creases exponentially [Ishibuchi et al., 2008]. 2- The ability of search will deteriorate.

The advantage of these algorithms is computational efficiency for calculating the

scalarisation function. One of the most popular decomposition methods is MultiOb-

jective Evolutionary Algorithm based on Decomposition (MOEA/D which has been

developed by Zhang and Li [2007]. A lot of literature demonstrated that MOEA/D

has a high ability of search on different test problems and it has a low computation

of complexity [Chang et al., 2008; Ishibuchi et al., 2009, 2010; Konstantinidis et al.,
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2010; Li and Zhang, 2009; Peng et al., 2009; Zhang et al., 2010]. The main idea

behind MOEA/D is to decompose the multiobjective optimisation problem into a

number of scalar optimisation subproblems rather than solving a MOP as a whole.

There are three approaches which have been used by Zhang and Li [2007] for the

decomposition process. The simplest one is the weighted sum aggregation method.

This method works well when the Pareto Front (PFs) is concave, but that disad-

vantage is the nonconcave Pareto front can not be handled. The second one is the

Boundary Intersection method which is used with nonconcave PFs. The last one

and most popularly used is the Tchebycheff approach. This approach can be used

with fronts that contain concave and convex regions. We have therefore used this

method for the work presented here and the algorithm is described in more detail

in Chapter 3.

In this thesis, we will use MOEA/D to optimise two conflicting objectives simultane-

ously to produce a set of candidate solutions in evolutionary optimisation method;

this will be discussed in chapters 3 and 4.

2.5 Survey of Network Community Detection.

In this section, we survey the existing methods for community detection in a given

network. These methods attempt to divide G into small groups of nodes based on

their relations. If the number of edges within these groups is large and between

these groups are small, then a good partition could be generated.

In recent years, many efficient techniques have been proposed to unfold communities

structure in the complex networks [Gong et al., 2014; Shi et al., 2012; Pizzuti, 2012;

Wu and Pan, 2015; Zhao et al., 2018]. At the heart of all these methods lies the

definition of a score function to evaluate the quality of a candidate partition. Many

authors also propose methods to generate “good” candidate partitions.
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Hierarchical methods

Hierarchical methods are traditional methods that have been used to reveal the struc-

ture of communities. In real-world, many graph structures have been represented

as dendrograms where each dendrogram displays a multilevel structure. Each level

reflects the grouping of nodes with small groups inside large groups, which are in

turn within larger groups, etc. There are two types of strategies for constructing

hierarchical structures: agglomerative and divisive hierarchical algorithms. Agglom-

erative algorithms (bottom-up) start with every single node forming one cluster as

the initial partition. After that, in each iteration, the most similar pair of clusters

are merged and so on until all clusters are merged into one cluster [Jain et al., 1999].

Divisive algorithms (top-down) reverse the agglomerative algorithms: it considers

all vertices as one big cluster initially. Recursively a division is implemented as each

iteration moves down a level by removing edges. There are two advantages of the

hierarchical methods:1) There is no need to specify in advance the number or size of

the clusters in the network. 2) It can find a large number of network partitions. On

the other hand, the disadvantage of this method that it can not correct a mistake

made in early iterations. A similarity between clusters measure is required for each

generation in both algorithms.

In 2002, Girvan and Newman used a divisive clustering method to detect commu-

nity structure in biological networks [Girvan and Newman, 2002]. This process was

performed by calculating the edge betweenness; the edge with the highest edge be-

tweenness is removed, and betweenness recomputed. The computational complexity

of this method is O(N3) due to the cost of computing betweenness for all edges

which makes this algorithm impractical for large networks.

In 2004, Newman and Girvan improved this method by maximising the modularity

[Newman and Girvan, 2004]. Divisive clustering was again used to iteratively remove

edges with high edge betweenness to divide the network into communities, and the

authors chose the partition which maximised the modularity. However, the time
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complexity O(L2N) restricts this procedure from treating large networks. In the

same year, Newman also proposed an agglomerative clustering algorithm to greedily

maximise modularity without computing edge betweenness [Clauset et al., 2004].

While this algorithm has the advantage that the number of communities does not

have to be pre-specified, the greedy nature of the search means that sub-optimal

partitions may be located.

Evolutionary Algorithms

Many real-world problems have been solved using multi-objective evolutionary algo-

rithms (MOEAs). The network can be clustered into communities and this clustering

process can be formulated as an optimisation problem. Recently, a group of scien-

tists have been working on community detection using evolutionary algorithms. In

2008 Pizzuti used a Genetic Algorithm (GA) for community detection, potentially

avoiding some of the problems associated with the greedy search which can become

stuck in local minima [Pizzuti, 2008]. Pizzuti used a Single-Objective Evolutionary

Algorithm (SOEA) to optimise the community score (Equation 2.21). However, the

disadvantage of using single objective is that it may be biased on community parti-

tion which is obtained through optimisation process [Shi et al., 2014]. In this case,

the network partition is generated with the fixed property. Recognising that many

alternative definitions of community quality are possible, Pizzuti developed her work

by using the multi-objective evolutionary optimisation to approximate the optimal

trade-off between more than one measure of community quality[Pizzuti, 2012]. She

proposed MOGA-Net which employed NSGA-II for community detection in net-

works. The author formulated community detection as a two-objective optimisation

problem. The first objective is Community Score (CS) (Equation 2.21) and the sec-

ond one is Community Fitness (CF) (Equation 2.16), proposed by Pizzuti [2008] and

Lancichinetti et al. [2009] respectively. The CS objective maximised by partitions

with many connections within the same community (intra-connections), while the

CF objective is optimised by partitions with few inter-connections.
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Solutions to the multi-objective problem are partitions which are globally non-

dominated: that is, no other feasible partition has a wholly better CF (C) and CS(C).

Thus this set of solutions – known as the Pareto set – represents the optimal trade-off

between partitions optimising CS and CF and generally presents a variety of dif-

ferent possible community structures. The results showed that MOGA-Net reflects

a good performance to produce accurate community structures compared with the

state-of-art methods at that time. Therefore, many researchers were encouraged to

develop MOEA for community detection as a set of near-optimal solutions (different

community structures) will be generated rather than one solution that is generated

using SOEA.

In the same year, Shi et al. also formulated community detection as a multi-objective

minimisation problem [Shi et al., 2012]. They divided modularity (Equation 4.2)

into two terms as these terms describe conflicting properties of the structures of

the communities, measuring the degree of intra-connection and the degree of inter-

connections. They, therefore, define two objectives to be minimised as follows. The

first measures the intra-connections:

Intra(C) = 1−
K∑
k=1

D(Ck)

2L
, (2.25)

The maximum value for D(Ck)
2L is 1 when all nodes in one community. The maximum

value for D(Ck)
2L is 1 when all nodes in one community (D is double of L). The

authors subtracted the first term of modularity from 1 to formulate this problem

as a minimisation optimization problem and 1 is sufficient to make the result of

this score as a positive value or zero. The second objective measures the degree of

inter-connections:

Inter(C) =
K∑
k=1

[
D(Ck)

2L

]2
(2.26)

Shi et al. showed that the simultaneous optimisation of these two objectives can

yield a wide range of possible community structures, placing more or less weight on

intra and inter-community connections. Since the modularity is the sum of these
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two objectives, it is clear that the partition that maximises the modularity must be

a member of the Pareto set.

In 2014, Gong et al. introduced a Discrete Particle Swarm Optimization algorithm

to unfold the structure of communities in the networks [Gong et al., 2014]. In

this method minimisation of the first objective is Kernel K-Means (Equation 2.18)

which maximises the average internal degree of the clusters: The second objective

is the Ratio Cut (Equation 2.19) which is minimised when there are few edges

between clusters relative to the size of the cluster. Like the other multi-objective

optimisation algorithms, simultaneous optimisation of the Ratio Cut and Kernel K-

Means objective results in a set of solutions trading off partitions with a high degree

of intra-community connectedness with partitions possessing few inter-connections.

Recently, Cheng et al. developed a multi-objective evolutionary algorithm, termed

LMOEA to solve the community detection problem [Cheng et al., 2018]. Two

conflicting objectives are optimised in this algorithm: Negative Ratio Association

(NRA) and Ratio Cut (RC) (Equation 2.19), respectively. The NRA is defined as:

NRA(C) = −1×
K∑
k=1

D(Ck)

| Ck |
. (2.27)

Mininmising the NRA promotes partitions with communities that have a high pro-

portion of internal connections. This objective is conflict to the RC which minimises

the connections between communities.

Empirical results indicated that this algorithm can detect the community structures

with high quality.

In chapter 3, we will introduce a new two conflicting objectives are optimised simul-

taneously using an MOEA/D to unfold more accurate community structures and

we will propose a new heuristic strategy as a mutation operator to speed up the

converge our algorithm.
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Stochastic Block Model

We review the Stochastic Block Models (SBMs; [Holland et al., 1983]) which have

been used in complex network analysis. SBM is classified as a random graph model

which represents a generative model for communities in networks to fit the observed

adjacency matrix by the maximization of a likelihood (generative models). In SBM,

each node is assigned to one block or community. Links between paired nodes

are generated according to probabilities which depend on cluster memberships of

the connecting nodes. This method of clustering has been used in literature for

community detection in networks [Amini et al., 2013; Bickel and Chen, 2009; Karrer

and Newman, 2011].

Hofman and Wiggins proposed a general Bayesian approach infer community assign-

ments where each observed link is modelled with a mixture of Bernoulli distributions

and a community label for each node is assigned with a prior probability [Hofman and

Wiggins, 2008]. Newman and Leicht proposed a mixture model with the expectation-

maximization algorithm to model the community structure of networks [Newman

and Leicht, 2007]. The authors classified nodes into groups based on the observed

connections between them. In general, these studies model the distribution of nodes

and determine the structures of communities. However, most SBM methods do not

consider the distribution of the degree of nodes as these methods generate edges ran-

domly between nodes. Karrer and Newman proposed degree-corrected SBM [Karrer

and Newman, 2011]. They incorporated degree heterogeneity into block models. In

this case, expected degrees close to the observed degrees.

SBM is also used for detecting communities and their evolution in dynamic net-

works. In 2008, Lin et al. proposed FacetNet for analysing communities and their

evolution in dynamic networks [Lin et al., 2009]. This method is the first probabilis-

tic generative model to address the problem of evolutionary clustering based on a

probabilistic perspective. These methods require high memory.
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Spectral clustering

Spectral clustering uses the eigenvectors of matrices to partition a network into

clusters. The initial set of objects are transformed into a set of points, elements of

eigenvectors are coordinated for these points. The traditional clustering methods

could be used to cluster these points (for example, k-means). The first spectral clus-

tering was by Donath and Hoffman [1973]. The most popular spectral approaches are

unnormalized spectral clustering which has been proposed by Shi and Malik [2000]

and normalized spectral clustering methods [Ng et al., 2002]. This method fails to

cluster the datasets that have different structures at density and size scales [Nadler

and Galun, 2007]. For an extensive review of spectral clustering see [Von Luxburg,

2007]

Algorithms based on Modularity

Modularity measure (Equation 2.2) has been proposed by Newman and Girvan [2004]

is the most popular and best known quality measure which has been used by many

scholars in community detection algorithms. We will classify clustering methods

based on modularity as follows:

• Greedy algorithm: The greedy algorithm is the first algorithm that has been

used to maximise modularity by Newman and Girvan [2004]. It is an agglom-

erative algorithm as we discuss on page 25. Later on, work improved the speed

of the Newman and Girvan algorithm by using the max-heaps data structures

[Clauset et al., 2004]. Although this algorithm is fast, it is biased to large

communities. Danon et al. [2006] suggested a better modularity optima (in

terms of community size) compared with the previous one by normalising the

variation in modularity. This normalisation was accomplished by the merging

of pairs of communities by the fraction of edges incident to one of the pair com-

munities. In 2008, Blondel et al. [2008] proposed a different greedy algorithm

(it is known as Louvain algorithm) to find communities in weighted networks.
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This method starts by considering each node as a community and merging

these communities based on the maximising of modularity. This process is

repeated on the set of nodes until a maximum of modularity is reached. This

method is low in time complexity. However, it depends on the order in which

nodes are visited. As a result, the greedy optimisation tends to be inaccurate.

• Simulated annealing: Simulated annealing [Kirkpatrick et al., 1983] is a prob-

abilistic method for a global optimisation to find an approximate global opti-

mum in the search space. In 2004, simulated annealing was used by Guimera

et al. [2004] for the first time to find the best network partition by maximising

modularity. Its base implementation, Guimera and Amaral [2005] is where a

single node is randomly selected and shifted from one community to another.

A global movement is applied by splitting and merging communities using

computational temperature to avoid trapping in local minima [Massen and

Doye, 2005]. These methods accurately detected community structures, but

were very expensive in terms of time complexity.

• Other optimization methods: A framework of mathematical programming was

developed to maximise modularity by Agarwal and Kempe [2008] as the opti-

mization of modularity can be formulated as a linear program. Mathematical

programming approaches are promising but the limitation of this method is

high computational complexity. White and Smyth [2005] used spectral clus-

tering approach for modularity optimisation. Brandes et al. [2008] maximised

modularity by an integer programming formulation to facilitate optimization

without enumeration of all clusters.

Random walk

Random walk [Hughes, 1995] has been used by several algorithms for community

detection. The idea is to find the similarity between nodes based on a random walk.

Random walk overcomes the limitation of finding similarity (distance) between nodes
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based on the shortest path. The shortest path based distance is six-degree separation

which works well with small world networks [Newman, 2008] but it does not work

with large social networks. In 2003, Zhou used random walks to find a distance

between two nodes [Zhou, 2003]. The distance is the average number of links that

a random walker visits from node i to node j. The nodes that have small distance

are more likely to be in the same community. If the community is strong then the

random walk consumes more time within the community since this community has

dense connections.

In 2006, a different distance measure was introduced by Latapy and Pons [Pons and

Latapy, 2006]. The authors proposed an algorithm which is called the walk trap

community detection algorithm. The authors used a random walk to find similarity

between nodes in the graph based on diffusion distance (a random walk). The

distance which is defined as the probability of random walker moves from one node

to another (one of its neighbour in one step) with a constant number of steps. The

transition probability from node i to node j at each step is Pij =
Aij

d(vi)
, P = D−1A,

where D is a diagonal matrix with Dii = d(vi). P t
ij is the probability of random

walk from node i to node j in t steps. The length of t (t is the number of time steps)

should be sufficient to find important information about the network. The distance

between two nodes is calculated by the following equation:

rij(t) =

√√√√ N∑
u=1

(P t
iu − P t

ju)
2

d(vu)
(2.28)

This similarity measure is used in an agglomerative method where communities are

merged based on the short random walk as existing in one community is better than

leaving it. The modularity is used to select the best partition from the resulting

structure. Although this approach works well to capture the information on the

community structure, it needs more memory space.
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2.6 Evaluation Measures

To evaluate the quality of generated partitions against ground-truth partitions an

evaluation measure is needed. There are several measures to evaluate how well the

network partition matches the true partition. In this section, we present the com-

monly used measures for comparing the detected network partitions with ground-

truth partition.

Purity is a simple external criteria for evaluating cluster quality and the first mea-

sure that has been used in context of community detection [Zhao and Karypis, 2001;

Schütze et al., 2008]. Let P ∗ denotes the ground-truth partition whose communities

are {P ∗
j } and C is the partition that found by community detection algorithm, then

the Purity measure can be calculated by the following equation:

Purity(C) =
K∑
k=1

|Ck|
N

max
j

Precision(Ck, P
∗
j ) (2.29)

The precision is defined as:

Precision(Ck, P
∗
j ) =

|Ck ∩ P ∗
j |

|Ck|
(2.30)

The purity measure is not symmetric which leads researchers to take the harmonic

mean of Purity(C, P ∗) and Purity(P ∗, C). Higher purity corresponds to a better

match between the partitions. However, the maximum Purity value can be achieved

if each node form one community as the Purity measures biases to the partition that

has small cluster size. Purity does not reward grouping elements from the same

class together. Each individual cluster has a Purity and any change inside other

clusters do not change the Purity of that individual [Amigó et al., 2009]. Despite

these disadvantages, it is still considered as an important measure as it provides an

important information about clustering evaluation.

Inverse Purity (IP ) is proposed to use the cluster with maximum recall for each
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cluster in the true partition. It rewards grouping elements together. This measure

is defined as:

IP (C) =
K∑
k=1

|P ∗
k |
N

max
j

Precision(P ∗
k , Cj) (2.31)

F measure (harmonic mean) is combined by both Purity and Inverse Purity

[Van Rijsbergen, 1979]. It is defined by the following equation:

F =
K∑
k=1

|P ∗
k |
N

max
j

F (P ∗
k , Cj) (2.32)

where

F (P ∗
k , Cj) =

2×Recall(P ∗
k , Cj)× Precision(P ∗

k , Cj)

Recall(P ∗
k , Cj) + Precision(P ∗

k , Cj)
(2.33)

Recall(P ∗, C) = Precision(C, P ∗) (2.34)

Exactly matching partitions have an F-score of 1, while the minimum value is 0 for

partitions that do not intersect. The F score prefers coarse clustering in contrast

to purity which prefers small size clusters. However, this measure has the same

problem as purity where the F score is calculated for each individual clusters, so the

individual score will not be affected by any change in other clusters [Amigó et al.,

2009].

Jaccard Index is the similarity measure to compare two partitions. It is defined

by dividing the size of intersection with respect to the size of the union [Jaccard,

1908],

J(C, P ∗) =
C ∩ P ∗

C ∪ P ∗ (2.35)

Normalised Mutual Information [Danon et al., 2005] is the most widely used

similarity measure to assess the accuracy of community detection algorithms. The

NMI has been proven to be reliable [Lancichinetti and Fortunato, 2009]. The

NMI value increases gradually when the two partitions become more similar and

vice versa. In addition, NMI is symmetric and unbiased in terms of the cluster

distribution.
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Let P and C be two partitions of a network with KP and KC communities respec-

tively. Also, let Z be the confusion matrix whose elements Zij are defined as the

number of nodes in community i of partition P that are also in community j of

partition C. If ZP
i =

∑KC
j Zij is the number of nodes in community i of partition P

and similarly for ZB
j , then the NMI is defined as follows:

NMI(P, C) =
−2

∑KP
i=1

∑KC
j=1 Zij log(ZijN/ZP

i ZC
j )∑KP

i=1 Z
P
i log(ZP

i /N) +
∑KC

j=1 Z
C
j log(ZC

j /N)
(2.36)

The NMI is non-negative and equal to zero if and only if the joint distribution

Zij/N can be written as a product of the distributions ZP
i /N and ZC

j /N , that

is if knowledge of the partition P provides no information about membership of

partition C. The NMI(P, C) = 1 when P and C are identical up to relabelings of

the communities.

Therefore, we choose NMI as a measure of the similarity between the known correct

partition and a detected one as it can overcome the problem of comparing different

community structures.

If the ground-truth partition for the network is unknown then the modularity is

often used as the internal measure to assess the network partitions. However, it

has a resolution limitation: it does not detect small communities well and tends

to be skewed by the size of the whole network. To be more clear when the size of

communities are small then each term of the modularity (see Equation 4.2) will be

small thus the modularity value will be small. In this case, if the true partition

is small communities, then the modularity never gets a large value [Fortunato and

Barthelemy, 2007; Pizzuti, 2012; Lancichinetti and Fortunato, 2012; Miyauchi and

Kawase, 2016]. Later in chapter 3 and 4, we use Q and NMI as evaluation mea-

sures for evaluating the goodness of the network partitions obtained by existing and

proposed algorithms.
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2.7 Community Detection in Dynamic Networks

In this thesis, we are interested in analysing the evolving communities over successive

time steps. The networks are ubiquitous in many fields of science and society, ranging

from computer science and mathematics to the biological and social fields. These

networks have evolved rapidly over time such as Facebook, Twitter and LinkedIn

[Hopcroft et al., 2004; Nguyen et al., 2014]. Dynamic networks can be represented as

a sequence of snapshots at different time steps. Understanding different structures

for communities in these networks (i.e. change over time) provides an opportunity to

understand the configuration of the networks by analysing these networks. However,

analysing and understanding these structures is extremely challenging due to the

difficulty in tracking and detecting communities that change over time. Therefore,

recently scholars put their attention towards studying temporal networks where

nodes leave or join communities, a new community could appear or delete, a new

edge connects existing nodes and edge removal over time. Figure 2.2 shows samples

of the behaviour of dynamic communities evolve, for instance how the structure of

communities can change (merge and expand) at successive times.

Although several algorithms have been proposed to detect communities and their

evolutions in dynamic networks [Lin et al., 2009; Folino and Pizzuti, 2010, 2014; Xu

et al., 2014; Ma et al., 2014], this problem is still open due to prompt changes in the

structure of communities. Some of the proposed techniques detect communities in

each snapshot independently and then track community evolving at different time

steps [Leskovec et al., 2005; Kumar et al., 2005]. Despite the fact that these methods

can track the evolution of communities, the weakness of these methods is analysing

communities separate from their evolution produces community structures which

tend to have a high difference [Lin et al., 2009]. As a result, these two steps produce

undesirable community structure and evolution.

On the other hand, Chakrabarti et al. proposed the first evolutionary clustering
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Figure 2.2 Possible structures for communities in dynamic networks [Palla et al., 2007].

framework to address the evolution of communities where the community at time t

is based on the community at time t − 1 [Chakrabarti et al., 2006]. The meaning

of evolutionary here is temporal evolution. Their formulation confers a temporal

smoothness on the solution embodying the idea that dramatic changes in community

structure from one time step to the next are undesirable. Their formulation is based

minimising the weighted sum of two measures: two measures: Snapshot Cost (SC)

and Temporal Cost (TC). Snapshot Cost measures how well a network is partitioned

into communities. Temporal Cost measures the distance or dissimilarity between

clusters at the current time and the previous one. The overall cost to be minimised

is:

Cost = α.SC + (1− α).TC (2.37)

Here α is a variable to control the preference of each sub-cost. This objective in

Equation 2.37 became a source for many works of literature [Tang et al., 2008;

Lin et al., 2009; Folino and Pizzuti, 2010, 2014] by performing a trade-off between

snapshot cost and historical cost.
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In 2008, Lin et al. proposed FacetNet for analysing communities and their evolution

in dynamic networks [Lin et al., 2009]. The framework employs two models to

capture the evolution of communities: the stochastic block model for generating

communities and Dirichlet distribution to capture the evolution of communities.

The snapshot cost is defined by using the KL-divergence to measure how to fit the

approximate community structure that is computed by using a mixture model for the

observed data. At each iteration, the value of the approximate structure is updated

to decrease the cost function. This method converges to an optimal solution by

the monotonic decrease of the cost function. However, the number of communities

should be fixed over time.

Kim and Han proposed an efficient particle-and-density based evolutionary clus-

tering method to address the problem of a variable number of communities over

time [Kim and Han, 2009]. They introduced two concepts: nano-communities and

l-clique-by-clique (l-KK). Nano-communities are a set of particles to model the dy-

namic network (which captures the evolution of communities over time) and l-clique-

by-clique (l-KK) is a densely connected subset of particles (nano-communities) which

form a community. Two nodes are connected if they are in different parties. Tempo-

ral smoothing is achieved using a cost embedding technique. The clustering method

based density to partition the network. The algorithms that have been proposed

by Lin et al. and Kim and Han, need specification of a parameter to control the

preference to the snapshot quality or temporal quality.

In 2010, Folino and Pizzuti proposed a dynamic optimisation model using a multi-

objective evolutionary algorithm [Folino and Pizzuti, 2010]. The authors used Com-

munity Score as the first objective that maximises the quality of community struc-

ture at the current time step while the second oneNMI that minimises the difference

between the structures of communities over consecutive time steps as the dramatic

shift between successive time steps is undesirable. They proposed the algorithm

named DYNMOGA [Pizzuti, 2012] which employed NSGA-II [Deb et al., 2002] for

this study. At each time step, a set of trade-off solutions between these two objec-
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tives (CS and NMI) are generated. They used modularity to select one solution

among these set of solutions. In the next time step NMI is calculated between the

solution that has the highest modularity in the previous time step and the solutions

at the current time step. This the first study to use MOEA to analyse the evolu-

tion of communities over time. Their results outperform the previous study such as

[Lin et al., 2009] and [Kim and Han, 2009]. After that, in 2014, the same authors

used different scores as the first objective such as modularity, Community Score,

CONductance and Normalised Cut [Folino and Pizzuti, 2014]. The results showed

that their algorithm has a good performance for detecting the dynamic communities

specifically when Q or CS is used as the first objective

In the same year, Ma et al. employed a multi-objective evolutionary algorithm based

on decomposition (MOEA/D) [Zhang and Li, 2007] to detect dynamic communities

over time [Ma et al., 2014]. The authors also used Q as the first objective to measure

the quality of the structure of communities and NMI as the second objective to

measure the temporal cost. NMI assesses the similarity between the best solution

in the previous time step and the current community structures. Modularity density

(QD) has been used to choose the best trade-off solution from the nondominated

solutions at each time step.

QD(C) =
K∑
k=1

D(Ck)−D(Ck)

| Ck |
(2.38)

QD [Li et al., 2008] measures the ratio of the difference between internal and exter-

nal degree corresponding to the size of the community. The partition maximising

QD is chosen as the best partition at each timestep. This algorithm has a good con-

tribution to capture community evolution. However, depending on just modularity

for snapshot quality is not enough as we mentioned earlier that modularity has the

resolution limitation problem.

In this section, we have reviewed the algorithms that have been used by the state-

of-the-art to detect dynamic communities. We extend the work of Chakrabarti et
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al. for evolutionary clustering to formulate this problem in a Hidden Markov Model

(HMM) to capture the evolving of communities over time in chapter 4.

2.8 Summary

In this chapter, we have reviewed some of the basic concepts that are related to

the objectives for evaluating and revealing the structure of communities in static

and dynamic networks. In chapter 3, we propose two new conflicting objectives to

discover community structures in synthetic and real-world networks.

As we can see, all related works are designed based on the relationship between

communities except community score which it is design based on the relations be-

tween communities and between nodes as well, see Equation 2.21. According to our

investigation, focusing on the relationship between nodes can provide valuable fea-

tures about each node within the community. For example, the strong community

is achieved by ensuring that each node should be strong rather than the summation

of connections for all nodes within the community.

On the other hand, in the case of dynamic networks, all the existing methods for

analysing community evolution have similar aspects which are snapshot quality and

temporal cost. The authors used only one objective to evaluate snapshot quality such

as modularity, Community Score, CONuctance, Normalised Cut, etc. [Folino and

Pizzuti, 2010, 2014; Ma et al., 2014; Zhou et al., 2015] while community detection

issue has been proved as multi-objective optimisation due to networks have multiple

structural properties [Shi et al., 2012; Pizzuti, 2012; Gong et al., 2014; Wu and Pan,

2015].

In chapter 4 we, therefore, formulate the evolution of communities as a Hidden

Markov Model in which the hidden states are found using a multi-objective algo-

rithm, thus allowing a wide range of partitions to be considered and the Viterbi

algorithm is used to find the most likely sequence of partitions over time.
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Chapter 3

Community Detection in Static

Networks

Detecting accurate community structures is important to understand the behaviour

of the networks (see [Fortunato and Lancichinetti, 2009] for a review), i.e., a group

of nodes that have dense connections within a community than the rest communi-

ties. Many algorithms have been proposed in the last two decades for community

detection [Gong et al., 2014; Shi et al., 2012; Pizzuti, 2012; Wu and Pan, 2015;

Zhao et al., 2018]. However, all these algorithms attempted to minimise all con-

nections between communities without taking into account that there may be small

connections between communities in the natural network partition. In addition, the

proposed objective functions in the existing literature are designed based on com-

munity information for example, the number of connections inside community, the

number of connections between communities, etc. rather than node information for

example, the number of internal connections for each node within the community,

the number of external connections for each node among different communities. If

we ensure that as much as nodes in each community is, for example, strong then the

detected partition will be tend to consist of strong communities. We note, however,

that the Community Score considers the information at both community and node
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3. Community Detection in Static Networks

level and therefore information at the node level has an effect on the evaluation of

community structures. That motivates us to propose new objectives based on node

relations within communities and between communities.

In this chapter, we formulate community detection as a multi-objective optimisa-

tion problem. A Multi-Objective Evolutionary Algorithm, named Multi-Objective

Evolutionary Algorithm Based Community Detection in Networks (MOEA-CD) is

used to optimise two new contradictory objectives simultaneously. This algorithm

attempts to detect the structure of communities in static networks by employing

the MOEA/D evolutionary algorithm [Zhang and Li, 2007], which has proved to be

successful in solving Multi-objective Optimising Problems (MOPs) [Zhang and Li,

2007; Konstantinidis and Yang, 2011]. These references show that the MOEA/D

algorithm outperforms or performs similarly to the most popular NSGA-II which

has been proposed by Deb et al. [2002]. In general, Evolutionary Algorithms have

demonstrated the possibility to reach global optima, and they do not need any prior

knowledge which is very difficult to specify for real networks. Although the existing

evolutionary algorithms for revealing community structure are effective, they need

improvement to speed up convergence to the optimal solution. Also, there are a few

studies to tackle this issue by combining local search technique with an evolutionary

algorithm for community detection [Gong et al., 2014; Wu and Pan, 2015]. This issue

motivates us to propose a new local heuristic search called the Neighbourhood Node

Centrality (NNC) strategy to speed up the convergence of an EA to the optimal

solution.

In addition, we propose a perturbation strategy that is different from perturbation

strategies which have been proposed by Yang and Leskovec [2015] to evaluate the

existing and new objectives by determining either the objective is strong or weak.

The main contributions of this chapter are threefold:

1. A community structure score function evaluation technique is proposed based

on a random migration strategy. This strategy is implemented by migrating
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3. Community Detection in Static Networks

random nodes from original communities to random communities. The aim of

this method to validate the quality of the existing and new scores.

2. A new multi-objective optimisation method is proposed to detect the structure

of communities in real and synthetic networks. This model includes two new

contradictory objectives to capture the intuition of community detection in

the complex network system.

3. A new local heuristic search approach is suggested which is combined with our

model to produce effective results.

As a consequence, we formulate the main milestones for our algorithm and provide an

opportunity to produce a more accurate model to unfold the structure of communi-

ties against three current state-of-the-art models. This formulation will be presented

in section 3.1 by introducing the formulation of our two objective functions.

In section 3.2 we describe our technique to assess the objective functions based on

the ground-truth partition. Section 3.3 introduces our formulation for the commu-

nity detection problem. Section 3.4 presents the proposed algorithm for network

clustering. In section 3.5 we evaluate our model against three existing models with

and without a local heuristic search on synthetic and real-world networks. Finally,

the conclusion is presented in section 3.6.

3.1 Objective Function Formulation

Section 3.2 evaluates a range of objective functions. In order to include our objec-

tives, we formulate them here. We attempt to simultaneously minimise two objective

functions, one quantifying the density of internal connections within communities

and the other quantifying the sparsity of connections between communities.

Let C be a network partition that is divided into K communities {Ci}Ki=1. Then an
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objective quantifying the average proportion of internal neighbours in a relative to

the degree of the node is:

fIntra(C) = 2(N −K)−
K∑
k=1

1

|Ck|
∑
v∈Ck

d(v, Ck)
2

d(v)
(3.1)

where N is the number of nodes, d(v) is the degree of node v and the internal degree

of v ∈ C d(v, C) is the number of edges from v to other nodes in C (Equation

2.6); We refer to this objective as the Intra-Score. The second term is maximised

by increasing the average number of internal neighbours; subtraction of this term

from its maximum value 2(N −K). The minuend is used to consider this objective

as minimisation objective and it is sufficient to make the value of this objective

as positive value. The range of d(v,Ck)
2

d(v) is between 0 and N − 1. It is 0 when

the partition C is divided into N communities and that mean each node in one

community (N = K). Therefore to make the minuend is 0 we need to put N−K. It

is N − 1 when all the network is considered as one community. In this case, N −K

is equal to N − 1 and we used 2 in the term (2(N −K)) to produce a positive value.

The second objective function quantifies the average maximum number of links

between communities. Let I(v, Cj) be the ratio of the maximum number of edges

between node v ∈ Cj and any other community and the internal degree of v:

I(v, Cj) =
maxCi ̸=Cj

∑
w∈Ci

Avw

max(
∑

w∈Cj
Avw, 1)

(3.2)

Then the Inter-Score is defined as

fInter(C) =
K∑
j=1

1

|Cj |
∑
v∈Cj

I(v, Cj). (3.3)

Clearly fInter(C) is minimised by partitions comprising communities which make

few connections to other communities. Simultaneous minimisation of fIntra(C) and

fInter(C) is not generally possible, but the set of partitions that trade-off one against

the other contains good approximations to the true partition when it is known.
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3.2 Empirical Evaluation of Objective Fidelity

Although many objective functions to detect and quantify community structure in

networks have been proposed in the literature, it is unclear how well these objectives

represent the Normalised Mutual Information (NMI) between a candidate partition

and the correct partition. As we discussed in chapter 2 that the NMI has been

proven to be reliable [Lancichinetti and Fortunato, 2009] and it’s value increase

gradually when the generated and ground-truth partitions become more similar and

vice versa. However the ground truth partitions have not always strong communities

but in general, the structures of ground truth partitions are resemble the natural

partitions (more connections within community and less between communities).

To ascertain which objectives are effective for identifying community structure,

we assess a range of objectives by generating partitions, P , which are pertur-

bations of a given ground-truth partition, P ∗, and compare the objective f(P )

with NMI(P, P ∗). We aim to find objectives f(P ) which are well correlated with

NMI(P, P ∗) so that an optimisation algorithmmay use f(P ) as a proxy forNMI(P, P ∗).

Without loss of generality, suppose that f(P ) is to be minimised, then it is desirable

that f(P ) < f(P ′) if and only if NMI(P, P ∗) > NMI(P ′, P ∗). In particular, we

desire that there are no partitions for which f(P ) < f(P ∗); we call such partitions

misleading. One measure of the quality of an objective function is the fraction, µf ,

of partitions in a sample for which f is misleading.

One way of generating random partitions would be to assign each node in the graph

to one of a fixed number of communities at random (we suppose the number of

communities does not change). However, this procedure tends to generate parti-

tions which are far from the true partition P ∗, and we are especially interested in

partitions close to P ∗ (that is, with NMI ≈ 1) because minimising a score func-

tion to find the ”best” partition must distinguish between partitions close to P ∗.

We, therefore, generate partitions by reassigning the community of randomly cho-
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3. Community Detection in Static Networks

Algorithm 3.1 Method for objective evaluation based on ground truth partition.
At each iteration m-node in the true partition, leave the original communities and
migrate to random communities.

Inputs
1 : P ∗ : Ground-truth partition
2 : N : Number of nodes in the network

Steps
1 : P ∗ = {C1, C2, . . . , CK} ▷ K Maximum number of communities in P ∗

2 : for i = 1 to N do
3: for j = i to N − i+ 1 do
4 : for m = 1 to i do
5 : v ← rand(v1, v2, ..., vN ) ▷ v is a random node that is selected

from P ∗.
6 : Cv ← Community(v) ▷ Cv is the community of the node v
7 : NewCv ← rand{C1, C2, . . . , CK}, Cv ̸= NewCv ▷ NewCv is a

random new community for the node v
8 : Community(v)← NewCv

9: end for
10: A new m random partitions (Pm) are generated
11: end for
12: end for

sen nodes of P ∗. Clearly, reassigning only a few nodes will yield partitions close to

P ∗, while reassignment of many nodes produces partitions distant from P ∗, with

small NMI(P, P ∗). The total number of possible partitions that could be generated

is very large. We, therefore, adopt the following scheme to generate an ensemble

of random partitions. N partitions P
(1)
i are generated by randomly selecting each

node in P ∗ and are assigned to a random community. Sets of partitions P (m) with

m randomly selected nodes and assigned to random communities, m = 1, 2, ..., N as

illustrated in Algorithm 3.1. The total generated partitions is N(N + 1)/2, with a

greater number of partitions close to P ∗ and smaller numbers more distant.

We evaluate the performance of new and existing score functions using the random

sampling technique described above on six real-world networks: These networks are

the Zachary karate club network [Zachary, 1977], the Bottlenose Dolphin network

[Lusseau, 2003], the American football network [Girvan and Newman, 2002] and the

Kreb’s American politics network [Newman, 2006]. Figure 3.1 and 3.2 show plots

of f(P ) versus NMI(P, P ∗) for the random sample of partitions and some different

objective functions f(P ) (Modularity (Q), Community Score (CS), CONductance

(CON), Normalised Cut (NC)[Folino and Pizzuti, 2010, 2014; Ma et al., 2014; Zhou
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Table 3.1 The average of the number of misleading partitions over twenty runs for each
objective. These objectives are tested on six real-world networks.

Objectives Karate Dolphin Football2000 Football2001 Kreb books

Q 1 2 1.3 0.4 0.8
CS 0 0 0.3 0.1 0.8
CF 2.5 0 1.3 0.4 1.2

KKM 0 0.3 0.3 0.2 1.3
Intra 0 0 1.3 0.4 0.8

Intra-Score 0 0 0.3 0 0.7
RC 3.6 13.3 0.3 2.2 3.4
Inter 55.5 1777 206 646 127

Inter-Score 2.5 0 0.3 0.5 2.1

et al., 2015]) which have been suggested in the literature. The figures show illus-

trative results for the Karate and Dolphin networks [Zachary, 1977; Lusseau, 2003].

Objectives plotted on the top row are to be maximised, whereas those in the bottom

two rows should be minimised. In each panel, the objective value corresponding to

the true partition f(P ∗) is plotted with a green asterisk. Partitions P for which the

objective is misleading because f(P ) < f(P ∗) for minimisation or f(P ) > f(P ∗) for

maximisation are shown in red. Clearly, a good objective function acts as a proxy for

NMI(P, P ∗) and should, therefore, be well correlated with NMI(P, P ∗) and should

not be misleading. As the figures show the majority of objective functions are quite

well correlated with NMI(P, P ∗), but we note that the correlation in all cases is

imperfect so that optimising f(P ) does not necessarily find the best partition. The

“Inter” objective function [Shi et al., 2012] is particularly poorly correlated with

NMI(P, P ∗) and it appears that on average maximising the inter score will lead to

partitions closer to P ∗, although its proposers suggest minimising it.

In fact, all the objective functions are misleading when they are evaluated on six

real networks because there are partitions for which the objective function score is

better than the score for the correct partition.

Table 3.1 summarises the number of misleading partitions found for each objective

function six real-world networks. As the table shows, none of the scoring functions

is completely reliable on all of the networks evaluated.
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Figure 3.1 Objective function fidelity on Karate club network. Correlations of community
scoring functions with NMI to the true partition P ∗. The NMI between a randomly
generated partition P and P ∗ is plotted horizontally versus the scoring function f(P ) plotted
vertically. Partitions for which the scoring function is misleading are shown in red, and f(P ∗)
is shown in green.

As Figures 3.1, 3.2 and Table 3.1 show, the proposed Intra-Score (equation 3.1), is

generally well correlated with the NMI and yields relatively few misleading parti-

tions. The proposed Inter-Score (3.3) which focuses on the maximum (rather than

the average) number of inter-community connections is also generally well-correlated

with the NMI. These two scores evaluate different aspects of a candidate commu-

nity, and we, therefore, seek to find good communities by simultaneously optimising

both scores using a multi-objective evolutionary algorithm.

One of the limitations of our strategy is that it does not consider the reliability

of ground-truth partitions. It could be that the generated partitions are better

than ground-truth partitions in terms of some good structure. Although the ground

truth partitions have not always strong communities but in general the structures of

ground truth partitions are resemble to the natural network partitions. In addition,

alternative similarity measures (see section 2.6) could be used to measure the simi-

larity between generated partitions and the true partition. However, we used NMI
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Figure 3.2Objective function fidelity on Dolphin network. Correlations of community
scoring functions with NMI to the true partition P ∗. The NMI between a randomly
generated partition P and P ∗ is plotted horizontally versus the scoring function f(P ) plotted
vertically. Partitions for which the scoring function is misleading are shown in red, and f(P ∗)
is shown in green.

as it is a reliable measure to find the similarity between two different community

structures.

3.3 The proposed MOEA-CD for Community Detection

This section introduces our novel evolutionary algorithm for community detection,

which we call MOEA-CD. Firstly, we briefly describe the MOEA/D algorithm, which

has been shown to be successful for a wide variety of multi-objective optimisation

problems [Zhang and Li, 2007]. The representation of communities in the algo-

rithm is crucial for its efficient operation, and we describe the genotype encoding

together with the genetic and local heuristic operators that promote diversity in the

evolutionary population and allow exploitation of promising solutions.

A popular and robust multi-objective evolutionary algorithm is MOEA/D [Zhang
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and Li, 2007] which we adapt to community detection. The cornerstone of MOEA/D

is to decompose the multi-objective problem into some distinct scalar sub-problems

using the Tchebycheff distance function in which the weighted objectives are linearly

combined. Each sub-problem is a single objective optimisation, and it corresponds

to an individual solution in an evolutionary population. All these sub-problems are

optimised simultaneously with different weight vectors. The vector of weights for

each of the Npop sub-problems is denoted by λj = (λj
1, λ

j
2, ..., λ

j
m) for 1 ≤ j ≤ Npop;

the weights are chosen to be integer multiples of 1/Npop and to satisfy
∑m

i=1 λ
j
i = 1.

For the two objective problems that we consider here λj = (j/Npop, 1 − j/Npop).

With these weight vectors the Npop scalar sub-problems are defined as:

gj(Cj |λj , z∗) = min
1⩽i⩽m

{|λj
ifi(Cj)− z∗i |} (3.4)

where z∗ = (z1, z2, . . . , zm) is the reference point which represents the optimal value

generated so far for each objective: z∗i = min fi(C).

At each generation of the evolutionary optimisation, each of the solutions Cj is com-

bined with another solution chosen from its neighbours using the genetic crossover.

Here the neighbours of Cj are defined to be the solutions whose weight vectors, λk

are closest to λj using the Euclidean distance. The products of the crossover may

then be mutated, after which the best solution for sub-problem j is selected using

dominance from the crossed-over and mutated solutions for sub-problem j and its

neighbours. In this way the population of sub-problem solutions {Cj}
Npop

j=1 can only

move towards the Pareto front [Zhang and Li, 2007].

At the end of the procedure, the set of sub-problem solutions {Cj}
Npop

j=1 is an estimate

of the Pareto set. These solutions represent a variety of partitions of the network

which trade-off the two objectives.

50



3. Community Detection in Static Networks

Figure 3.3 Genetic representation. (a) A simple graph with communities indicated by node
colours. (b) The community structure induced by the given locus-based genetic represen-
tation, Cj = (gj1, g

j
2, . . . , g

j
N ). Here each gji is initialised to one of the neighbours of node i

[Pizzuti, 2012]. (c) The community structure resulting from Pizzuti modified initialisation.
(d) Genotype induced by the given locus-based genetic representation. Here our modified
initialisation in which all the unassigned neighbours of i are assigned the same gji , so that
they are all in the same community. (e) The community structure by our modification.

3.3.1 Genetic Representation

The chromosome representation has a vital role in the efficiency of EAs. The pro-

posed algorithm adopts the locus-based adjacency representation which has been

proposed by Park and Song in 1998 for genotype encoding [Park and Song, 1998].

This representation has been employed by Handl and Knowles [2007] for multi-

objective clustering and is commonly used by evolutionary algorithms for commu-

nity detection [Pizzuti, 2008, 2012; Shi et al., 2012; Gong et al., 2014; Hafez et al.,

2014; Wu and Pan, 2015]. In this method, each individual Cj corresponds to a net-
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Algorithm 3.2 Individual initialisation.

Inputs
1 : A : Adjacency matrix
2 : N : Number of nodes in the network
3 : C : Individual (partition)

Steps
1 : C = (g1, g2, . . . , gN )← 0 ▷ individual consists of a number of genes.
2 : for v = 1 to N do ▷ Each node v corresponds to one gene
3: if gv == 0) then
4: u← random(Neighbor(v))
5 : for i = v to N do
6: if gi == 0)&&(A(i, u) == 1)then
7: gi ← u ▷ spread random neighbor as allel to all neighbors.
8: end if
9: end for
10: end if
11: end for
12: return(C) ▷ Individual

work partition and consists of N genes, Cj = (gj1, g
j
2, . . . , g

j
N ) where N is the number

of nodes in the network. Each gene corresponds to a node in the network, and gji

indicates that node i and node j belong to the same community. In the initial Park

and Song formulation, the gji were initialised randomly. This representation has the

advantage that the number of communities does not have to be specified a priori.

However, the initialisation of the gji to random values may often lead to nodes which

are distant from the original network being assigned to the same community.

As illustrated in Figure 3.3b, Pizzuti improved the initialisation by insisting that j is

initialised to one of the neighbours of node i [Pizzuti, 2012]. Intuitively we expect a

node to have links to other nodes in the same community. Here we therefore further

bias the initialisation towards strong nodes in strong communities by initialising

to the same community all the neighbours of i which have not yet been assigned

communities. Figure 3.3d illustrates that the allele (node 2) for gene 1 (node 1) is

chosen randomly from its neighbours and the same allele (node 2) is given to all

genes that have connections with node 2 such as genes 3 and 4, as illustrated in

Algorithm 3.2.
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Algorithm 3.3 Local heuristic search (Neighbour Node Centrality algorithm).

Inputs
1 : d : The degree of each node in the network
2 : N : Number of nodes in the network
3 : C : Individual (partition)
3 : pm : The mutation probability

Steps
1 : C = {C1, C2, . . . , CK} ▷ K Maximum number of communities in C
2 : for v = 1 to N do
3 : if(d(v)) > 0)&&(rand ≤ pm) then
4 : Cv ← Community(v) ▷ Cv is the community of the node v
5 : if(d(v, Cv)) ≤ d(v, Cv)) then ▷ Node v is a weak node
6 : u∗ ← argmaxu∼v d(u)
7 : Community(v)← Community(u∗)
8: end if
9: end if
10: end for
11: return(C)

3.3.2 Genetic and Neighbour Node Centrality Operators.

Before we introduce a novel local heuristic search based mutation operator, we de-

scribe briefly the crossover operator used in the algorithm. In general, a crossover

operator combines the features from two chromosomes to generate offspring. Here

we use a standard uniform crossover operator, in which each gene of the offspring

is selected from one parent with probability pc and from the other with probability

1 − pc; here pc = 1
2 . This operator is adopted because, in conjunction with this

genetic representation, it avoids generating worthless solutions in which a node is

completely disconnected [Pizzuti, 2012]. A single offspring is generated for each

sub-problem, where the parents for the offspring are chosen at random from the five

nearest neighbours to the sub-problem.

A standard mutation strategy used by many authors [Shi et al., 2012; Pizzuti, 2012;

Hafez et al., 2014] is as follows. Each gene in each chromosome is mutated with prob-

ability pm by changing the node to which it is connected in the genetic representation,

which determines the node’s community, to a randomly chosen neighbouring node.

We propose an alternative mutation procedure based on Neighbour Node Centrality,

which we show in section 3.4 aids convergence. If the node to be mutated is a strong

53



3. Community Detection in Static Networks

node (the node that has internal connections more than external connections, see

Equation 2.10), then its community is left unchanged. On the other hand, if it is a

weak node (the node that has internal connections less than external connections,

see Equation 2.11), then its community is set to be the community of its neighbour

with the most connections. Specifically, if v is the weak node to be mutated, then

let u∗ = argmaxu∼v d(u) be the central neighbour of v, where u ∼ v indicates that

u and v are neighbours. Then the community of v is assigned to be the community

of u∗, as illustrated in Algorithm 3.3.

The time complexity per generation of the algorithm is dominated by the time taken

to evaluate the objectives, which takes O(N2) time. At each generation Npop new

solutions must be evaluated, so the overall worst case complexity per generation is

O(N2 ×Npop).

3.4 Experiments

In this section, we present and discuss the results which show the effectiveness of the

proposed MOEA-CD algorithm compared to three state-of-the-art methods, namely,

MOGA-Net [Pizzuti, 2012], MOCD [Shi et al., 2012] and MODPSO [Gong et al.,

2014]. Here the name of these algorithms refers to the authors’ objectives and not

the authors’ algorithms. In order to evaluate the efficacy of our new objectives

and to provide a fair comparison, we used our algorithm for optimising the ob-

jectives defined by each of these authors rather than re-implementing their entire

algorithms. The methods are evaluated on 28 networks, which are classified into

three groups: The first group contains the LFR benchmark networks [Lancichinetti

et al., 2008]. The second group comprises five real-world networks for which the

ground-truth partitions are known. These networks are the Zachary karate club

network1 [Zachary, 1977], the Bottlenose Dolphin network2 [Lusseau, 2003], the

1http://networkdata.ics.uci.edu/data/karate/
2http://networkdata.ics.uci.edu/data/dolphins/
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Table 3.2 Network characteristics.

Networks Nodes Edges Clusters

Karate 34 78 2

Dolphin 62 159 2

Krebs’ books 105 440 3

Football2000 115 613 12

Football2001 115 613 19

SFI 118 200 unknown

Jazz 198 2742 unknown

Netscience 1589 2742 unknown

American football network3 [Girvan and Newman, 2002], and the Krebs’ American

politics network4 [Newman, 2006]. Finally, the third group comprises three real-

networks for which the ground-truth partitions are unknown. These networks are

the Santa Fe Institute (SFI) network5 [Girvan and Newman, 2002], the Jazz Mu-

sician network6 [Gleiser and Danon, 2003]) and the Netscience network7 [Newman,

2006]. Characteristics of the real-world networks are given in Table 3.2.

We used the MOEA/D algorithm with the following parameters. Both the num-

ber of sub-problems (population size) and the number of generations were 300, the

neighbourhood size was 5, and the cross-over probability was pc = 0.8. The mutation

probability pm = 0.6. The mutation rate is larger than usually used, however pre-

liminary investigations showed that this higher rate was beneficial. Higher mutation

rates do not provide any further benefit.

In order to evaluate the algorithms, we calculated the maximum NMI between

the true partition P ∗ and the union of all partitions forming the Pareto fronts of

twenty runs of the algorithm together with average (over the twenty runs) of the

maximum NMI between the correct partition and partitions in a Pareto front from

one run. These are denoted NMImax and NMIav respectively. We also evaluate

the maximum and average modularity over the twenty runs, denoted by Qmax and

Qav respectively.

3http://networkdata.ics.uci.edu/data/football/
4http://networkdata.ics.uci.edu/data/polbooks/
5http://dsec.pku.edu.cn/~jliu/
6http://konect.uni-koblenz.de/networks/arenas-jazz
7http://vlado.fmf.uni-lj.si/pub/networks/data/collab/netscience.htm

55

http://networkdata.ics.uci.edu/data/football/
http://networkdata.ics.uci.edu/data/polbooks/
http://dsec.pku.edu.cn/~jliu/
http://konect.uni-koblenz.de/networks/arenas-jazz
http://vlado.fmf.uni-lj.si/pub/networks/data/collab/netscience.htm


3. Community Detection in Static Networks

Figure 3.4 Average best NMI between ground truth and detected partitions for MOGA-
Net (black), MOCD (green), MODPSO (blue) and MOEA-CD (red) over twenty runs on
the LFR128 benchmark networks (10 networks) with and without the Neighbourhood Node
Centrality heuristic. Dashed and solid lines indicate results without and with the heuristic
respectively.

3.4.1 Synthetic Networks.

In our first set of experiments, we test all models on computer-generated benchmark

networks. These benchmark networks where proposed by Girvan and Newman [2002]

and extended by Lancichinetti et al. [2008].

In the first group of the LFR benchmarks, each network has 128 nodes, and each is

constructed to contain 4 communities of 32 nodes. The extent of connections between

communities is controlled by the mixing parameter γ, which is the probability that

a node has an edge to a node outside its community. Thus when γ is small, the

community structure is strong and diminishes as γ increases. Here we compare the

performance of the algorithms on networks generated with γ in the range [0.05, 0.5].

We denote these networks by LFR128.
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Figure 3.4 shows summary results for the performance of all models in terms of the

average NMI. Dashed lines indicate results for each algorithm without the Neigh-

bourhood Node Centrality heuristic and solid lines show NMI for algorithms using

the Neighbourhood Node Centrality heuristic. Unsurprisingly, all algorithms tend

to do better when the community structure is strong (γ small). As the mixing pa-

rameter increases, the performance drops as the communities become less distinct.

However, in all cases, the addition of the Neighbourhood Node Centrality mutation

heuristic substantially enhances the performance because it focuses on construct-

ing strong communities. Also, the proposed MOEA-CD algorithm shows superior

performance, particularly for large γ. The MODPSOH model ([Gong et al., 2014]

with Neighbourhood Node Centrality) also performs well. This method optimises

the ratio cut and kernel k-means objectives which, as shown above (Figures 3.1 and

3.2), perform well for strong communities.

The second group of the LFR benchmarks is used to test the four models with larger

size networks which are similar to real-world networks. These benchmarks comprise

10 networks, each one consisting of 1000 nodes, and we, therefore, denote this group

as LFR1000. The degree and community size distributions of these networks obey

power laws with exponents 2 and 1 respectively [Lancichinetti et al., 2009]. As

before, networks are generated with different mixing parameters γ, which controls

the probability of an edge making an inter-community connection. We tested our

algorithm on networks with γ ranging from 0.05 to 0.5 in steps of 0.05.

Figure 3.5 summarises the NMIav over twenty runs for the four models on the

LFR1000 benchmark datasets. The lower four dashed lines represent the results

for these models without the Neighbourhood Node Centrality heuristic, and it is

clear that employing this method enhances the evolutionary search, allowing better

partitions to be found. With the Neighbourhood Node Centrality heuristic, all

algorithms except MOGA-Net perform well, yielding Pareto fronts which contain

partitions close to the correct partition.
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Figure 3.5 Average best NMI between ground truth and detected partitions for MOGA-
Net (black), MOCD (green), MODPSO (blue) and MOEA-CD (red) over twenty runs on
the LFR1000 benchmark networks (10 networks) with and without the Neighbourhood Node
Centrality heuristic. Dashed and solid lines indicate results without and with the heuristic
respectively.

3.4.2 Real-world networks with ground-truth partitions

Tables 3.3 and 3.4 compare the performance of the MOGA-Net, MOCD, MODPSO

and MOEA-CD algorithms on 5 real-world networks for which the correct partition

is known. Tables 3.3 shows the results without heuristic (NNC) while 3.4 shows

the results with heuristic (NNC).

Table 3.3 reports the statistical results of four models over twenty different runs on

five real-world networks whose correct partitions are known without usingNeighbour-

hood Node Centrality procedure. The bold number refers to the detected partition

which most resembles the true partition. Here we used two evaluation scores: NMI

and Q.

First, we start with the Zachary’s Karate Club network [Zachary, 1977]; it is the
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Table 3.3 Maximum and average of NMI and modularity for testing four models without
Neighbourhood Node Centrality on five real-world networks whose the ground-truth parti-
tion is known. NMIQmax measures the similarity between Qmax and true partition for each
network. POSav is the average size of the Pareto optimal sets which have been generated by
different algorithms over twenty independent runs. POSmin and POSmax are the smallest
and the largest values among the approximation sets for each algorithm on each network
respectively. The best score achieved for each network is in bold font.

Networks Criteria MOCD MOGA-Net MODPSO MOEA-CD

Karate NMImax 0.8372 0.8372 0.8372 0.8372
NMIav 0.8370 0.8065 0.8371 0.8371
Qmax 0.4087 0.4018 0.4188 0.4188

NMIQmax 0.5305 0.6317 0.5866 0.5866
Qav 0.3952 0.3832 0.4092 0.5866

POSav 30 7.5 13.4 11.7
POSmin 22 5 10 8
POSmax 35 12 18 18

Dolphin NMImax 1 0.88888 1 1
NMIav 0.9532 0.8125 0.9778 1
Qmax 0.4674 0.4675 0.5199 0.48742

NMIQmax 0.5338 0.5980 0.5821 0.5909
Qav 0.4578 0.4440 0.4800 0.4719

POSav 54 9.3 41.9 43.2
POSmin 45 5 29 32
POSmax 66 14 51 52

Football 2000 NMImax 0.7224 0.5433 0.7814 0.8803
NMIav 0.7029 0.6207 0.7291 0.7625
Qmax 0.4356 0.4206 0.4666 0.5490

NMIQmax 0.6718 0.5980 0.6163 0.8803
Qav 0.4104 0.3898 0.4212 0.4566

POSav 68.5 10.7 22 21.9
POSmin 56 7 16 12
POSmax 91 14 26 27

Football 2001 NMImax 0.7550 0.7252 0.8111 0.8367
NMIav 0.7390 0.6680 0.7890 0.8102
Qmax 0.4300 0.4177 0.4708 0.4869

NMIQmax 0.7070 0.5807 0.7391 0.6809
Qav 0.4090 0.3810 0.4328 0.4611

POSav 68.4 10.1 22.4 24
POSmin 57 8 19 15
POSmax 85 15 26 31

Krebs’ NMImax 0.6656 0.6042 0.6947 0.7331
NMIav 0.6174 0.5307 0.6040 0.5975
Qmax 0.5107 0.4806 0.5190 0.5165

NMIQmax 0.5629 0.6042 0.5671 0.5866
Qav 0.4882 0.4655 0.5014 0.4963

POSav 63.8 7.6 48.6 30.8
POSmin 52 4 41 21
POSmax 73 11 60 41
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most popular network which has been used as a benchmark to evaluate commu-

nity detection algorithms. In this study, Zachary observed 34 club members over

a period of two years in the United States. Due to a conflict between the club

administrator (node 34) and the instructor (node 1), the club was separated into

small communities. Nodes 3 and 10 fall between two communities. These nodes are

usually represented as local optima by most community detection algorithms. Table

3.3 indicates that all models misclassify either node 3 or 10 when they are tested

without using the NNC strategy. Thus, the produced NMI values of all models are

quite close (NMI = 0.8372). The larger Qmax and Qav values mean that the algo-

rithm has a good convergence capability. NMIQmax measures how good the single

partition that would be selected from the Pareto set on the basis of maximising Q

over 20 runs.

Table 3.3 also shows the size of the approximations to the Pareto optimal solu-

tions. POSav represents the average number of the Pareto optimal solutions that

have been generated by four different algorithms over twenty runs for each network.

The POSmin and POSmax are the smallest and the largest values among the ap-

proximation sets for each algorithm respectively. The results show that the MOCD

algorithm has the largest number of Pareto optimal solutions among the other algo-

rithms while MOGA-Net algorithm produces the smallest number. MODPSO and

our algorithms have similar numbers of Pareto optimal solutions. Therefore MOCD

algorithm has the more opportunity to choose the NMImax among a large number

of solutions compare with other algorithms.

The second real-world network represents the social interaction of Bottlenose Dol-

phins living in Doubtful, New Zealand, over a period of seven years. It was compiled

by Lusseau [2003]; nodes represent dolphins and links represent frequent associations

between dolphin pairs. On this network, only our algorithm (MOEA-CD) converges

to the global optimum, and it can figure out the correct partition at NMI = 1 while

all the remaining algorithms are trapped at different local optima.
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Figure 3.6 Dolphin network partition without heuristic. (a) Community structure obtained
by MODPSO. This partition corresponds to the partition that have maximum modularity
(Qmax = 0.5199) and NMI = 0.5820. (b) Community structure obtained by MOEA-CD.
This partition corresponds to the partition that have maximum NMI of 1 and Q = 0.3734.

The MODPSOmodel misplaces node 31 in some runs although node 31 has d(v31, Ck) >

d(v31, Ck) while in the other runs it finds the true partition of the network. There-

fore, the NMI average over twenty runs is 0.9778. Also, frequently MOGA-Net

misclassifies nodes 31 and 8 among other misclassified nodes in some runs, and

MOCD misclassifies node 31 in some runs. We can infer that only our model is

succeeding in classifying these nodes correctly by minimising the maximum node

external connections with respect to the connections inside the community for that

node. Although our algorithm can detect the true partition, the best value of mod-

ularity Qmax and Qav is for MODPSO. The NMI value for the partition that has

maximum modularity is 0.5821. This partition is illustrated in Figure 3.6a in five

communities. On the other hand, the modularity value for the partition that has a

maximum NMI of 1 is 0.3734. Figure 3.6b corresponds to the true partitioning of

this network into two strong communities.

It is worth noting that the larger value of modularity does not always correspond

to the best partition over Pareto-optimal solutions. Maximising modularity has

limitations in community detection as it tends to split large communities when

the resolution is high [Lancichinetti and Fortunato, 2011]. We have seen earlier in
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Figure 3.7 Correlations of modularity for the partition that has maximum Q at each gen-
eration with NMI to the true partition. The NMI between the true partition P ∗ and the
partition P that has maximum modularity is plotted horizontally versus the modularity Q
plotted vertically. SOEA is used to optimise modularity and produce partitions P without
Neighbourhood Node Centrality. (a) Modularity evaluation on the Karate club networks (b)
Modularity evaluation on the Dolphins networks. (c) Modularity evaluation on the Football
2000 networks. (d) Modularity evaluation on the Football 2001 networks.

section 3.1 that Q is misleading in the Karate and Dolphins network partitions.

In addition to that, we optimise modularity using a Single Objective Evolutionary

Algorithm to show the correlation between modularity and NMI where NMI is

calculated between the true partition and the partitions that are obtained by the

single evolutionary algorithm as illustrated in Figures 3.7 and 3.8. We conclude from

these two figures that the modularity has many misleading points on the Karate and

Dolphin networks while it looks has a good behaviour on the Football networks.

Now, Table 3.4 shows the effect of applying the NNC method through mutation

operator on the performance of these four models to detect the structure of com-

munities on real-world networks. In general, there is a clear improvement in the

performance of all models gained by using the NNC method. For the Dolphin net-

62



3. Community Detection in Static Networks

Table 3.4 Maximum and average of NMI and modularity for testing four models with Neigh-
bourhood Node Centrality on five real-world networks whose the ground-truth partition is
known. NMIQmax measures the similarity between Qmax and true partition for each net-
work. POSav is the average size of the Pareto optimal sets which have been generated by
different algorithms over twenty independent runs. POSmin and POSmax are the smallest
and the largest values among the approximation sets for each algorithm on each network
respectively. The best score achieved for each network is in bold font.

Networks Criteria MOCD MOGA-Net MODPSO MOEA-CD

Karate NMImax 0.8822 1 1 1
NMIav 0.8372 1 1 1
Qmax 0.4198 0.4198 0.4198 0.4198

NMIQmax 0.6873 0.6873 0.6873 0.6873
Qav 0.4141 0.4156 0.5014 0.4142

POSav 34 11.4 19.8 19
POSmin 28 11 17 13
POSmax 46 12 26 26

Dolphin NMImax 1 1 1 1
NMIav 0.8941 1 1 1
Qmax 0.5277 0.5277 0.5263 0.5268

NMIQmax 0.5932 0.5932 0.6363 0.5715
Qav 0.5255 0.5216 0.5126 0.5189

POSav 71.6 29.1 42.2 30.2
POSmin 59 26 33 21
POSmax 84 37 63 45

Football 2000 NMImax 0.9361 0.8772 0.9286 0.9315
NMIav 0.9276 0.8523 0.9253 0.9271
Qmax 0.6046 0.5881 0.6043 0.6046

NMIQmax 0.8903 0.7949 0.8850 0.8903
Qav 0.6037 0.5725 0.6034 0.6034

POSav 92.4 22 23.7 30.3
POSmin 72 19 19 18
POSmax 112 26 29 39

Football 2001 NMImax 0.9757 0.9241 0.9690 0.9690
NMIav 0.9696 0.9038 0.9686 0.9673
Qmax 0.6046 0.5861 0.6046 0.6046

NMIQmax 0.9328 0.9017 0.9328 0.9328
Qav 0.6037 0.5725 0.6035 0.6034

POSav 96.7 23.2 21.6 18.7
POSmin 78 20 17 14
POSmax 117 29 27 23

Krebs’ books NMImax 0.6776 0.6339 0.6210 0.6366
NMIav 0.6171 0.5939 0.6064 0.5861
Qmax 0.5254 0.5245 0.5251 0.5247

NMIQmax 0.5405 0.5537 0.5289 0.5735
Qav 0.5237 0.5215 0.5289 0.5226

POSav 107.7 24.5 45 27.8
POSmin 63 17 37 22
POSmax 138 34 51 42
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Figure 3.8 Correlations of modularity for the partition that has maximum Q at each gen-
eration with NMI to the true partition. The NMI between the true partition P ∗ and
the partition P that has maximum modularity is plotted horizontally versus the modular-
ity Q plotted vertically. SOEA is used to optimise modularity and produce partitions P
with Neighbourhood Node Centrality at each generation. (a) Modularity evaluation on the
Karate club networks (b) Modularity evaluation on the Dolphins networks. (c) Modularity
evaluation on the Football 2000 networks. (d) Modularity evaluation on the Football 2001
networks.

work, all models can reveal the true structure of communities except MOGA-Net.

For the Football 2000 network, we can clearly see that there is a competition between

our and MOCD models. In addition, these results show that the average number

of Pareto optimal set is increased for all algorithms on most networks as there are

different solutions are added due to the combined NNC strategy.

Figure 3.9a shows archive solutions for our model on the Karate network in one run.

Figure 3.9b displays the correct partition which is detected by MOEA-CD atNMI =

1. It shows the positive effect of applying NNC strategy by reassigning nodes (like

node 3 here) which have same connections within the community and with the rest

to the community of the neighbour node that has more strong connections (like node

1 here), in the same case, node 10 is reassigned to node 34. As a result, these nodes

64



3. Community Detection in Static Networks

Figure 3.9 Community detection results on the karate club network by MOEA-CD model.
(a) Pareto front of one run with the NNC method. The colour bar represents the range
of NMImax values. (b) Detected correct community structure which corresponds to so-
lution b at NMI = 1. This is the best among a set of trade-off solutions. (c) Detected
community structure which is corresponding to solution c at NMI = 0.8371, only node
10 is misclassified. (d) Detected community structure which is corresponding to solution
d at NMI = 0.6872, the network is divided into four communities. Colours indicate the
community that a node belongs to.

(node 3 and node 10) are assigned to the correct community. Figure 3.9c represents

the partition at NMI = 0.8372, this partition corresponds to local optima in these

models as these models misclassify node which has the same number of connections

within the community and with other communities. Figure 3.9d shows the division

of the network into four communities that correspond to solution d in the Pareto

front plot.

Figure 3.10a displays archive solutions which are obtained in one run on the Dolphin
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Figure 3.10 Community detection results on the Dolphin network by MOEA-CD model. (a)
Pareto front of one run with NNC method. (b) Detected correct community structure which
is corresponding to solution b at NMI = 1. (c) Detected community structure which is
corresponding to solution c atNMI = 0.8499, the network is divided into three communities.
(d) Detected community structure which is corresponding to solution d at NMI = 0.6516,
the network is divided into four communities. Colours indicate the community that a node
belongs to.

network. The detected correct partition by our model is illustrated in Figure 3.10b.

Figure 3.10c shows the division of the upper community of the correct partition into

two communities while Figure 3.10d shows the division of the lower community of

the correct partition into three communities.

On the other hand, Figure 3.11a shows that both objectives contribute to producing

Pareto-optimal solutions. Thus, we conclude that SOEA can successfully detect

community structures on some real-world networks while it fails on others. Note

also for Football 2001, Table 3.4 shows that there is strong competition among three
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Figure 3.11 Community detection results on the Football network by MOEA-CD model.
(a) Pareto front of one run with NNC method. (b) Detected community structure which
is corresponding to solution b at NMI = 0.926879. (c) Detected community structure
which is corresponding to solution c at NMI = 0.8940, the network is divided into thir-
teen communities. (d) Detected community structure which is corresponding to solution
d at NMI = 0.8273, the network is divided into eight communities. Colours indicate the
community that a node belongs to.

models (MOEA-CD, MOCD and MODPSO) to reveal community structures.

Finally, for the Krebs’ network, based on what is recorded in Table 3.4, our model

classifies most nodes correctly and produces the best solution with NMImax =

0.6788 while from the perspective of NMIav, MOCD generates the best solution

with NMIav = 0.6087. As seen here, the results have shown the positive effect of

the NNC procedure with all models where this heuristic strategy overcomes the

sensitivity of these models to local optima.

All the last three networks (Football 2000, Football 2001 and Krebs’ networks)

have weak nodes (the number of external connections being more than the number

of internal connections), so the communities detected by the algorithm with the

heuristic strategy could be better than the ”true” partitions. For example, the
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correct partition for the Football 2000 network has 15 weak nodes. However, the

detected community structures by our algorithm have 10 weak nodes. This is because

our model together with the NNC strategy has assigned these nodes to what may be

considered to be more meaningful communities. The correct partition is more likely

to has communities that shared specific property and nodes within the community

have internal connections more than external. In the same manner for the Football

2001 and Krebs’ networks which have 9 and 15 weak nodes respectively.

Figure 3.12 Box plots of the maximum NMImax between the detected partitions and the
true partition versus generation on the Karate network. The box plots show the distribution
of maximum NMI over 20 runs for each of the four models: (a) Our proposed model; (b)
MODPSO; (c) MOCD; (d) MOGA-Net.

Despite all models finding the correct partition, except MOCD which is trapped at

a local optima at NMIav = 0.8372, our model is the fastest to reach the optimal

solution, as illustrated in Figures 3.12 and 3.13. As shown in Figure 3.12, our
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Figure 3.13 Box plots of the maximum NMI between the detected partitions and the true
partition versus generation on the Dolphin network. The box plots show the distribution
of maximum NMI over 20 runs for each of the four models: (a) Our proposed model; (b)
MODPSO; (c) MOCD; (d) MOGA-Net.

model can detect the correct partition in the second generation in several runs while

MODPSO for the same generation can detect correct partition in only one run, the

most runs stuck in local optima at NMImax = 0.8372. MOGA-Net can identify the

correct partition in the second generation, but it is still stuck at NMImax = 0.8372

until the fifth generation. MOCD cannot find the true partition in the first ten

generations. In Figure 3.13, the results show also our model is faster one to find the

true partition.

Table 3.5 shows the computational time in seconds for the four algorithms (MOCD,

MOGA-Net, MOPSO and MOEA-CD) where these algorithms are different in only

the objective functions. Although there are fluctuations in the running times among

these algorithms, MOGA-Net has the longest running time due to the computation
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Table 3.5 The average computational time in seconds over twenty runs of four algorithms
(MOCD, MOGA-Net, MOPSO and MOEA-CD) per generation on real-world networks.

Networks MOCD MOGA-Net MOPSO MOEA-CD

Karate 0.14 0.2 0.1933 0.1567

Dolphin 0.4133 0.53 0.3967 0.3567

Football2000 1.0433 1.37 1.1533 1.2333

Football2001 1.1433 1.3467 1.1367 1.1167

Krebs’ books 0.8333 0.9133 0.7200 0.7333

time for the Community Score (see Equation 2.21) which needs to calculate the in-

ternal connections for each node within the community and the internal connections

for each community in the network. As we can see, the running time is longer when

the size of the network is increased.

3.4.3 Real-world networks with unknown ground-truth partitions

In our final set of experiments, we investigate the performance of four models on

real-world networks whose the ground-truth partitions are unknown. Table 3.6 com-

pares all the models across real networks without the NNC heuristic based on the

statistical of the average maximum modularity Q over twenty runs. Q is used as the

evaluation criteria rather than NMI because the ground-truth partitions for these

networks are unknown.

Firstly, we evaluate the four models on the SFI network [Girvan and Newman, 2002].

This is the network of collaborations of scientists at Santa Fe Institute in Santa Fe,

New Mexico, USA during the calendar year 1999-2000. This network consists of 118

scientists who are represented by vertices. An edge exists between any two scientists

if there is a collaboration between them due to publishing a paper together. There

are 200 edges in this network.

Figure 3.14a shows the Pareto front that is produced by our algorithm. This is a

set of nondominated solutions where each one represents a network partition and we

choose the partition that has maximum modularity to represent the SFI network.

Figure 3.14b illustrates the network partition into seven main communities.
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Figure 3.14 Community structure by MOEA-CD on the SFI network. (a) The trade-off
set between Intra-Score and Inter-Score. Each blue circle in the estimated Pareto front is
a solution that represents a different network partition to the SFI network. The red star
is the network partition that corresponds to the solution at Q = 0.763. (b) SFI network
is partitioned into seven main communities. Colours indicate the community that a node
belongs to.

Table 3.6 Experimental results for testing four models without NNC strategy on three
real-world networks whose the ground-truth partition is unknown.

Networks Criteria MOCD MOGA-Net MODPSO MOEA-CD

SFI Qav 0.7338 0.7272 0.7373 0.7385

Jazz Qav 0.2756 0.2387 0.3032 0.3178

Netscience Qav 0.8956 0.8797 0.9054 0.9211

Secondly, the Jazz musician network consists of 198 bands which obtained from

the Red Hot Jazz Archive digital database. These bands performed between 1912

and 1940 [Gleiser and Danon, 2003]. Finally the Netscience coauthors, this network

contains authors working on network theory and experiments. It is interesting to

note in Table 3.6 and Table 3.7 that our model can produce useful partitions without

and with the NNC procedure based on Qav for all these networks.

3.5 Summary

In this chapter, we have presented an evaluation methodology to assess the per-

formance of objective functions that have been used for community detection on

real-world networks based on their accuracy. The proposed method is based on a
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Table 3.7 Experimental results for testing four models with NNC strategy on three real-
world networks whose the ground-truth partition is unknown.

Networks Criteria MOCD MOGA-Net MODPSO MOEA-CD

SFI Qav 0.7447 0.7394 0.7452 0.7463

Jazz Qav 0.4141 0.4102 0.4313 0.4374

Netscience Qav 0.9410 0.9281 0.9400 0.9427

random migration strategy to validate the quality of the existing and new scores.

In other words, how well different definitions for the structure of communities aug-

mented with the correct partition. In addition, although many algorithms have been

proposed to solve community detection in static networks; this field need more in-

vestigation for discovering the accurate structure or analysing these communities.

Therefore, we present the new Multi-Objective Evolutionary Algorithm for Commu-

nity Detection (MOEA-CD). We optimise two conflicting objectives using MOEA/D

where these objectives are derived from our investigation of node relationships in

the networks. The first objective attempts to increase the number of connections

inside the community (Intra-connections) and the second one to minimise the num-

ber of connections between different communities (inter-connections). In this case,

a set of the best trade-off between these objectives is produced where each solution

corresponding to different network partitions. These non-dominated solutions in the

Pareto front are very important to investigate the analysing the community struc-

tures at the different level (variety of network partitions that are close to correct

partition).

In this chapter, there is another improvement to the community detection algorithm

that has been suggested. We proposed Neighbour Node Centrality as a heuristic

mutation operator to speed up the convergence ability of the evolutionary algorithm.

We evaluate these partitions using NMI and modularity measures. The experi-

mental results show that our algorithm can accurately detect community structures

compared with three state-of-the-art pairs of objectives on both synthetic and real-

life networks. This algorithm opens up avenues for future work on weighted networks

where the degree of correlation between nodes is considered. Therefore we need to
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extend our objectives to work with this type of networks or others like signed or

directed networks. Moreover another avenue that needs more investigation is how

to choose the best solution among the set of estimated Pareto optimal solutions

which are generated using an MOEA. The approximation set consists of the differ-

ent structure of network partitions. Based on our experiments in this chapter, some

of them are the true partition or close to the true partition. We used Q to select the

best solution. However, Figures 3.7 and 3.8 show that Q is quite a good method,

but not perfect. Therefore, more investigations are needed in this area.
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Chapter 4

Detecting Dynamic

Communities Using Viterbi and

Evolutionary Algorithms

Recently, the configuration of social networks is changed rapidly (like Facebook and

Twitter) where communities are recognised by a sequence of evolutionary events

(these events such as addition deletion, merge or split). The process of discov-

ering the dynamics of these networks is challenging because this process needs to

simultaneously identify community structures and their evolution over time. There-

fore, a number of researchers have been motivated to analyse dynamic networks

and proposed algorithms to find community structure in them. Perhaps the earliest

works in this area are proposed by Hopcroft et al. [2004], who in 2004 introduced

the first algorithm to detect dynamic communities in the NEC CiteSeer database.

The agglomerative clustering method was used to find natural communities in each

snapshot; after which similar communities at different times were grouped together.

One approach to analysing evolving communities is to detect communities at each

timestep independently of other communities and then link the detected communi-
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ties using a measure of their similarity [Leskovec et al., 2005; Kumar et al., 2005]. A

weakness of these techniques, however, is that noise in the observed networks may

yield quite dissimilar community structures which can be difficult to link [Lin et al.,

2009; Kim and Han, 2009].

An alternative general approach, proposed by Chakrabarti et al. [2006] is to couple

the detection of the communities at a particular timestep with the detected commu-

nities at the previous timestep. As briefly discussed in chapter 2, Chakrabarti et al.

suggest two measures: the “Snapshot Cost” (SC), which measures the quality of the

community structure and the “Temporal Cost” (TC), which penalises community

structures which are dissimilar to the community structure at the previous timestep.

For each timestep they, therefore, minimise a cost.

Cost = α× SC + (1− α)× TC (4.1)

where α controls the balance between detecting community structures that fit the

observed network well and structures that are similar to those detected at the pre-

vious timestep. The range of α is between 0 and 1.

Rather than minimising a single, weighted cost, Folino and Pizzuti proposed a dy-

namic optimisation model by using a multi-objective evolutionary algorithm to find

solutions which trade-off quality of the detected community structure (Snapshot

Cost) at current timestep with the similarity to communities at the previous timestep

(Temporal Cost) [Folino and Pizzuti, 2010]. They used Community Score as the

first objective to maximise the quality of community structure at the current time

step, while the second objective was the Normalised Mutual Information (NMI)

[Danon et al., 2005] to measure the similarity between the community structure

at the current timestep and the structure selected at the previous timestep. The

NMI measures the difference between the structures of communities over consec-

utive time steps and thus penalises dramatic shifts between successive time steps.

Their algorithm, named DYNMOGA, employed the well-known multi-objective op-
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timisation algorithm NSGA-II [Deb et al., 2002]. This algorithm was the first study

to use multi-objective evolutionary algorithms to analyse the evolution of commu-

nities over time and their results outperformed previous studies such as [Lin et al.,

2009; Kim and Han, 2009]. Subsequently, Folino and Pizzuti have investigated us-

ing other measures of the snapshot quality, including modularity, Community Score,

CONductance and Normalised Cut [Folino and Pizzuti, 2014]. In a similar work [Ma

et al., 2014] used modularity and NMI as quality and temporal smoothing objec-

tives, although with a different multi-objective evolutionary algorithm (MOEA/D)

[Zhang and Li, 2007].

All the existing methods for analysing community evolution have used only one

objective to evaluate the snapshot quality such as Modularity, Community Score,

CONductance, Normalized Cut, etc [Folino and Pizzuti, 2010, 2014; Ma et al., 2014;

Zhou et al., 2015] while community detection is often beneficially treated as a multi-

objective problem due to networks have multiple structure properties [Shi et al.,

2012; Pizzuti, 2012; Gong et al., 2014; Wu and Pan, 2015]. That motivates us to

employ two objectives to evaluate the snapshot quality at each snapshot.

In this chapter, we view the communities themselves as evolving according to a

Markov model, with observations at each time step governed by the latent state of

the communities. However, the straightforward application of filtering and smooth-

ing algorithms based on Hidden Markov Models (HMMs) is hampered by the vast

number of possible states—partitions of nodes into communities—for any real net-

work. To combat this, we use a multi-objective evolutionary algorithm to locate a

small number of probable states at each time step. Within the space of these prob-

able states, we then use the Viterbi algorithm [Rabiner, 1989] which is a dynamic

programming algorithm to find the most probable sequence of states, that is the

most probable sequence of communities.

In order to find probable candidate states, we simultaneously optimise two objectives

as functions of the community structure. Communities are characterised by dense
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connections within each community and sparse connections between them. The

first objective (the Intra-Score (Equation 3.1 )) therefore quantifies the density of

links within communities, while the second objective (the Inter-Score (Equation

3.3)) measures inter-community sparsity. As described in chapter 3, we adopt our

algorithm MOEA-CD to locate an approximation to the Pareto front, the optimal

trade-off set between the two objectives. As shown in chapter 3, this algorithm is

able to locate a wide range of network partitions that are close to the true partition.

We generate approximations to the Pareto-optimal solutions at each time step and

then use the Viterbi algorithm to find the most likely sequence of communities

from within these candidate sets. This sequence of communities has the minimum

temporal transition cost between the different Pareto sets. The structures of these

communities represent the best network partitions that could be the true partitions

or very close to the true partitions.

This study is different from existing algorithms in two aspects. First, detecting com-

munities at each time step separately by optimising two conflicting objectives then

the most likely partitions are found over different time steps. This idea comes from

our investigation of community detection in a static network when network parti-

tions are evaluated by using multi-objectives to produce a more accurate structure

than the single objective optimisation. The other aspect is that this algorithm can

produce the most likely sequence of partitions among the available Pareto optimal

solutions (states) by using the Viterbi algorithm for the dynamic networks when the

true partition for a given network is known or unknown. The Viterbi algorithm is a

common method to produce the most likely sequence of states for different purposes.

The main contributions of this chapter lie in formulating the detection of dynamic

communities as an HMM to capture the evolution of these communities, and the use

of an MOEA to produce the candidate states at each time step.

This chapter is organised as follows. We first describe our formulation of dynamic

community detection as a hidden state problem, we describe the multi-objective
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evolutionary algorithm used to locate candidate states, after which the algorithm is

demonstrated on synthetic and real dynamic networks.

4.1 Dynamic Community Detection with HMMs

We now a formulate the problem of detecting dynamic communities in a hidden

Markov model framework. We model a dynamic network as a sequence of graphs

G = (G1, G2, . . . , GT ) observed over T discrete time steps. For simplicity, each graph

is considered as undirected and unweighted. Each observed graph is Gt = (V,Et)

where V represents set of nodes in the network, which for simplicity we regard as

fixed in number (although perhaps not all observed and we assign the nodes that

are not observed to a community zero). Let V (G) = {v1, v2, . . . , vN} with N = |V |

and E(Gt) represents a set of links between nodes at time step t in Gt. We denote

by Lt the number of edges in the graph at time t; Lt = |E(Gt)|.

Let Gt be represented as an N ×N adjacency matrix At so that At
ij = 1 if there is

a link between vi and vj , while At
ij = 0 otherwise.

∑N
j=1A

t
ij = 0 for the unobserved

node i at any t and we supposed the community of this node is 0. At each time step

t we model the graph Gt as partitioned into Kt communities {Ct
i}

Kt
i=1 so that each

node belongs to exactly one community. We regard the community structure as a

latent variable whose value is unobserved. Let the set of all partitions be Ω. Then,

clearly the number of possible partitions is 2N . However, rather than consider all

these hidden states we restrict the model to consider a smaller number M ≪ 2N

of more likely configurations. We denote by ct the M -dimensional vector specifying

which of the M states/partitions the graph is in at time t.

Community membership itself is unobserved. Instead, observations comprise the

links (edges) between some of the nodes, so that the entire observation at time t is

captured by the adjacency matrix At of the graph Gt. The emission probability of

observing a particular adjacency matrix models how well a particular community
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structure ct fits the observed adjacency matrix At. For example, the modularity

Q(Gt, {Ct
i}

Kt
i=1) is a popular measure for evaluating community structure [Newman

and Girvan, 2004]:

Q(t, ct) =

Kt∑
t=1

[
D(Ct

i )

2Lt
−
(
D(Ct

i )

2Lt

)2
]

(4.2)

where we regard ct as specifying the partition {Ct
i}

Kt
i=1 and the degree D(C) and

internal degree D(C) of a community C are defined in chapter 2(see Equations(2.2

and 2.4) respectively):

The modularity may be shown to be the summed differences between the fraction of

links within a community minus the expected fraction of links within the commu-

nity if the graph were rearranged at random but preserving the degree distribution

[Newman and Girvan, 2004]. Partitions of the network that have high values of

modularity, therefore, have dense connections within the community and sparse

links with the others. The modularity may be used to define the probability of

observing the network At given a community structure ct as follows:

p(At | ct) ∝ Q(At, ct). (4.3)

Thus adjacency matrices that conform well to a particular latent community struc-

ture are regarded as probable. Other measures of the community structure might

be used in place of Q.

Temporal smoothness is incorporated into hidden Markov models via the transition

probability. Our model for the transition probability between states encodes the

belief that transitions between similar states are more likely than those between dis-

similar states; that is, the network tends to evolve slowly, making small transitions.

We model the probability of a transition from ct−1 to ct as:

p(ct | ct−1) ∝ NMI(ct, ct−1) (4.4)
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Figure 4.1 An example of the Viterbi algorithm captures the evolution of dynamic commu-
nities over three time steps.

where NMI(ct, ct−1) is the Normalised Mutual Information [Danon et al., 2005]

between the partitions specified by ct−1 and ct. The NMI is commonly used to

compare the similarity of cluster or community configurations and has been used by

other authors to penalise abrupt transitions between community structures [Folino

and Pizzuti, 2010, 2014; Ma et al., 2014].

As we mentioned earlier, we consider the number of nodes as constant despite the

fact that some nodes may be not observed either hide or birth at all time steps. This

number is determined by the maximum observed nodes over different time steps. In

this case, we can calculate NMI(ct, ct−1) even when the number of visible nodes for

each partition changes over time [Folino and Pizzuti, 2014; Ma et al., 2014]. With

the probability of transitions between states (partitions) and the the probability of

observing a graph given the latent partition defined by (4.4) and (4.3), the well-

known Viterbi algorithm may be used to find the most likely sequence of states–the

Viterbi path–to have given rise to the observations [Rabiner, 1989]. The Viterbi

algorithm is initialised with the probabilities of the initial state p(c0 = m) = πm for

m = 1, . . . ,M . Then define vt(m) be the value of the mth state at time t, which is

proportional to the probability that the most probable path ends at time t in state
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Algorithm 4.1 Viterbi algorithm for capturing the evolution of dynamic commu-
nities.

Inputs
1 : A : Adjacency matrix.
2 : N : Number of nodes in the network

Steps
1 : Initialisation : v1(i) =

1
MQ(A1 | c1 = i)

2 : Path(i) = 0
3 : Recursion : vt(m) = maxi vt−1(i)Q(At | ct = m)NMI(ct = m, ct−1 = i)
4 : Path(m) = argmaxi vt−1(i)Q(At | ct = m)NMI(ct = m, ct−1 = i)
5 : Termination : c∗T = argmaxi vT (i)
6 : Backtracking : c∗t = patht+1(c

∗
t+1), t = T − 1, T − 2, ..., 1

m. Then vt(m) is recursively updated as:

vt(m) = max
i

vt−1(i)p(A
t | ct = m)p(ct = m | ct−1 = i) (4.5)

= max
i

vt−1(i)Q(At | ct = m)NMI(ct = m, ct−1 = i) (4.6)

Once the end of the sequence is reached, the finishing state of the most probable

sequence is identified and back pointers (constructed during the forward sweep)

used to recover the most probable sequence of states leading to it. We denote this

Viterbi path/sequence of states by {c∗t }Tt=1. Figure 4.1 shows an example of the

calculation of Viterbi algorithm over three time steps. The Viterbi algorithm is

shown in Algorithm 4.1.

The computational complexity of the Viterbi algorithm is proportional to the num-

ber of observations and the square of the number of states. In practice, the overall

computational time is dominated by the time to discover candidate partitions for

all the timesteps.

4.1.1 Multi-Objective Evolutionary Algorithm

We use the same algorithm for community detection in static networks (MOEA-CD)

by optimising two objectives that have been used in chapter 3, one quantifying the

density of internal connections within communities and the other quantifying the
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Figure 4.2 The trade-off set between the Inter-Score and Intra-Score for a single snapshot
(t = 5) for Var-Net, z = 5 data which will be described in section 4.2.

sparsity of connections between communities. This algorithm generates solutions

which represent a variety of partitions of the network. These solutions trade-off the

two objectives. Full details of the algorithm, genetic representation and heuristics

to improve the convergence rate are given in chapter 3.

As an illustration, Figure 4.2 shows the approximation to the Pareto optimal set

resulting from 300 iterations of the MOEA on a single snapshot (t = 5) for the Var-

Net, z = 5 dataset (see below) for optimising the inter-score and the Intra-Score

objectives. This set consists of 27 mutually non-dominating solutions. We use the

set of approximations to the Pareto optimal solutions located like this as the basis

for the Hidden Markov Model.
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4.2 Results

In this section, we present and discuss the results which show the efficacy of our

proposed algorithm and compare the results obtained by our algorithm with the

algorithm of Lin et al. [2009], Kim and Han [2009] and Folino and Pizzuti [2014]

on synthetic networks for which the true partitions are known. We first illustrate

these algorithms on eight synthetic networks drawn from the literature for which

the correct partitions are known. Subsequently, we apply our algorithm to two real

datasets, one the well-known Paraiso cell-phone network [Grinstein et al., 2008] and

the other a new data set concerning tweets between British Members of Parliament

during the weeks preceding the Brexit referendum [Weaver et al., 2018].

In all the results shown the MOEA was run 5 times for 300 iterations on each

snapshot with a neighbourhood size of 5 and the union of the results of each run

used as the set of candidate hidden states for that snapshot t.

4.2.1 Synthetic Datasets

Kim and Han datasets.

The first synthetic datasets that we examine were proposed by Kim and Han [2009].

Each is formed of 10 consecutive snapshots of the graph as it evolves: G = (G1, G2, . . . , G10).

To generate dynamically evolving networks, some of the nodes leave their home

communities in Gt−1 and are assigned randomly to other communities in Gt. The

parameter z determines the number of inter-connections made by a node: increasing

z leads to noisier network structures. In these experiments, we use data with z = 3

and z = 5.

The Fix-Net dataset comprises a fixed number of communities, while the number of

communities varies with time in the Var-Net data. In Fix-Net there are 128 nodes,
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Figure 4.3 Kim and Han [2009] synthetic networks. NMI between candidate partitions
located by the MOEA and the true partition at each timestep (blue circles). NMI between
the true partitions and the Viterbi optimal path of partitions c⋆t are shown as red squares.

which form 4 equally-sized communities of 32 nodes each. The average degree of

each node is 16. At time step Gt−1, three nodes are selected randomly from each

community and join randomly to three other communities in the time step Gt.

The number of communities in the Var-Net data varies during the evolution of the

network. Initially, it has 256 nodes partitioned into 4 communities of 64 nodes

each. The average degree of each node is half the size of its community. During the

succeeding timesteps (2 ≤ t ≤ 10) 16 nodes are deleted at random from the network

and 16 new nodes are added randomly. Furthermore, during the first half of the

evolution (1 ≤ t ≤ 5) eight nodes are chosen at random from each community in

Gt−1 and combined to produce a new community inGt; during subsequent timesteps,

the nodes are returned to their initial communities. Thus the number of communities

during the 10 timesteps is 4, 5, 6, 7, 8, 8, 7, 6, 5. Direct visualisation of these networks

at each timestep is not revealing and consumes a lot of space, so we, therefore,
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Figure 4.4 Kim and Han [2009] synthetic networks. NMI between partitions detected by
the DYNMOGA and Kim-Han and the true partition with blue and red lines respectively
over 10 time steps. (a) Fix-Net-z3. (b) Fix-Net-z3. (c)Var-Net-z3. (d) Var-Net-z5. The
figure was taken from Folino and Pizzuti [2014]

calculate at each timestep the normalised mutual information between the partition

c⋆t located by the Viterbi algorithm and the true partition, which we denote by Ct,

namely: NMI(c⋆t , Ct). Figure 4.3 shows, for each timestep, the Normalised Mutual

Information between Ct and each of the members of the Pareto set comprising the

candidate hidden states (blue circles). In addition, mutual information for c⋆t is

indicated by a red square. As the figure shows, the MOEA algorithm has located

a range of candidate solutions, some of them close to the true partition and some

of them distant. However, the hidden Markov model formulation and the Viterbi

algorithm identifies the sequence of solutions that are closest to the true sequence

of states. With one exception, the NMI between the true partitions and Viterbi

path partitions is 1, indicating that the correct sequence of partitions has been

located. The single exception is the first timestep for Fix-Net with z = 3 (Figure
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4.3a) in which the Viterbi path identifies the candidate solution second closest to

the true solution, even though the true partition has been located by the MOEA.

We attribute this to the choice of uniform initial probabilities πm in the Viterbi

algorithm (Equation 4.5) which biases the initial state away from the true partition.

Figure 4.4 shows the average value of NMI obtained by the DYNMOGA [Folino and

Pizzuti, 2014] and the Kim-Han algorithms [Kim and Han, 2009] on Kim and Han

datasets. The results founded by the DYNMOGA outperform Kim-Han’s algorithm

specifically when z = 3. However, our results outperform both the DYNMOGA and

Kim-Han as our algorithm located the true partitions on the four networks due to

the collaboration of two objectives: fIntra, fInter to evaluate the snapshot quality.

fIntra, fInter are optimised to generate the possible partitions at each time step

and modularity measures how well a particular partition fits the observed adjacency

matrix. As a result, we conclude that Intra-Score and Inter-scores provide better

results if both of them are used to evaluate snapshot quality.

Green et al. datasets.

The second set of datasets for evaluating dynamic networks has been proposed by

Greene et al. [2010]. They developed four benchmarks each with 1000 nodes evolving

over 5-time steps. The benchmarks are described briefly as follows:

Birth and death: BD-Net. At each time step some nodes leave their original com-

munities and are combined to create new communities. 10% of existing com-

munities are dissolved, and 10% of new communities emerge. The number of

communities at each time step is 33.

Expansion and contraction: EC-Net. At each time step 10% of randomly selected

communities expand or contract by 25% of their size. Nodes are joining ex-

panding communities or leaving shrinking communities are selected at random.

Intermittent communities: H-Net. All nodes in 10% of communities are not ob-
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Figure 4.5 Greene et al. [2010] synthetic networks. NMI between candidate partitions
located by the MOEA and the true partition at each timestep (blue circles). NMI between
the true partitions and the Viterbi optimal path of partitions c⋆t are shown as red squares.

served from the second time step onwards.

Merging and splitting: MS-Net. At each time step, 10% of randomly selected com-

munities are split, and 10% of communities are merged.

Figure 4.5 shows the performance of the proposed algorithm. On the birth-death

network, the MOEA has located partitions that include the true partition, and

the Viterbi algorithm has correctly identified the true partition at all time steps.

Likewise, partitions including the correct partition have been located and the correct

partition identified by the Viterbi algorithm for the merge-split networks.

The evolution of the intermittent networks and the expansion and contraction net-

works produce many nodes that are “weak” in the sense that they have a high propor-
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Figure 4.6 Cell phone calls networks. Community structures which are detected by our algo-
rithm on the cell phone network. (a): Community structure on day one. The five important
nodes in this partition (nodes 2(green), 3(orange), 4(blue), 6(purple) and 201(orange)) are
assign to four communities. (b) partition is divided into four communities on day six, the
five important nodes (nodes 2(green), 3(orange), 4(blue), 6(purple) and 201(orange)) are
assigned to four communities. (c) Community structure on day seven. The important nodes
are (2(green), 3(blue), 4(blue) and 6(purple)) are assigned to three communities. (d) Com-
munity structure on day eight. The important nodes 2, 3, 4, 6 and 201 changed their number
to 310(green), 398(blue), 361(blue), 307(purple), 301(blue))

.

tion of connections to nodes outside their community rather than intra-community

connections. In these cases, the MOEA has not always located a Pareto set which

includes the correct partition. Nonetheless, we emphasise that the hidden Markov

model formulation and the Viterbi algorithm have in each case identified the most

similar partition to the true partition among the partitions (states) located by the

evolutionary algorithm. It is possible that augmenting the set of candidate parti-

tions with a richer set of partitions, such as those found during the evolutionary

search, might find additional partitions closer to the true partition.
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4.2.2 Real-life Datasets

Of course, the real networks are interesting to evaluate the proposed algorithm as

these networks reflect different statistical properties of networks. Our algorithm is

evaluated on two the following real-world networks:

Cell phone call: This network consists of 400 Paraiso cell-phones which intro-

duced by IEEE Visual Analytics Science and Technology (VAST) 2008 Challenge

[Grinstein et al., 2008]. It is ten days data sets based on the cell phone call of the

Catalano/Vidro social communication in June 2006 in the Isla Del Sueno. Each

node represents one cell phone, and an edge occurs between two nodes if there is

a phone call between them. In this network, five persons that are considered as

more active nodes than the others: Ferdinando Catalano (node 201) and his brother

Estaban Catalano (node 6), David Vidro (node 2), and his two brothers Jorge and

Juan represent in nodes 3 and 4 respectively. After day 7, these five members change

their phone call numbers to 301, 307, 310, 398 and 361 until day 10.

Figure 4.6 shows the visualisation of network partition at time step 1, 6, 7 and

8 where these partitions are produced by evaluating our algorithm on cell phone

benchmark. There are four important communities that describe in this figure at

time step 1 where nodes (2, 4, 6) are assigned to three communities and nodes 3 and

201 are grouped in one community. These four important communities are evolving

at time step 6, 7 and 8, as described in this figure. At day 8, these nodes (2, 3, 4,

6, 201) changed their number to 310, 398, 361, 307, 301 respectively.

MP Twitter network

Finally, we illustrate our algorithm by applying it to the evolving network of Twitter

connections between UK Members of Parliament (MPs) in the 85 consecutive weeks

from December 2014 to August 2016, the period including a general election on 7th
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Communities Party affiliation

3  05/01/2015 to 12/01/2015    Election - 16

Figure 4.7 Communities and party affiliations for the MP twitter communities data. Left:
Communities discovered by the evolutionary and Viterbi algorithms. Nodes representing
MPs belonging to the same community are depicted in the same (arbitrary) colour; grey
symbols indicate MPs who did not tweet that week. Right: Political party affiliation of the
MPs: red: Labour; blue: Conservative; yellow Liberal Democrat; cyan: Scottish National
Party; purple: United Kingdom Independence Party (UKIP); dark green: Plaid Cymru;
black: speaker and independent.

May 2015 and the Brexit referendum held on 23rd June 2016 [Weaver et al., 2018].

This network consists of 648 nodes corresponding to the MPs and a link between

nodes is made when one MP names another in at least one tweet that week. Of

course, not all MPs tweet each week and 21 MPs did not use Twitter at all during

the 85 weeks, so that the effective network consists of 626 nodes.

For much of the time, we find that the MPs may be divided into four main commu-

nities roughly corresponding to the political parties of the MPs, but with a number

of (short-lived) smaller communities present. For example Figure 4.7 shows a visu-

alisation of the communities for the week 05/01/2015 to 12/01/2015. Comparison

of the left and righthand panels shows that the larger political parties for the main

communities, but there are smaller communities, such as MPs in Sinn Fein depicted

in light green (left panel) and dark green (right panel) near to the top of the figures.

As Figure 4.8 illustrates we find in contrast to MPs of other parties, that the Con-

servative Party MPs sometimes tend to form much smaller, short-lived communities,

rather than a single community.
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Communities Party affiliation

42  05/10/2015 to 12/10/2015    Brexit referendum - 36

Figure 4.8 Communities and party affiliations for the MP twitter communities data illus-
trating the many smaller communities formed by Conservative Party MPs in contrast to
the single larger communities representing other political parties. Left: Nodes representing
MPs belonging to the same community are depicted in the same (arbitrary) colour; grey
symbols indicate MPs who did not tweet that week. Right: Political party affiliation of the
MPs: red: Labour; blue: Conservative; yellow: Liberal Democrat; cyan: Scottish National
Party; purple: United Kingdom Independence Party (UKIP); dark green: Plaid Cymru;
light green: Sinn Feinh; black: speaker and independent.

The visualisation was produced using a force-directed algorithm [Fruchterman and

Reingold, 1991] with the spring constant for edges in the same community a factor

of 5 larger than edges connecting nodes in different communities. The force-directed

the algorithm to obtain the visualisation for each week’s data was initialised using

the node locations resulting from the previous week’s data. Since the nodes com-

prising a community may change at each timestep, corresponding communities at

successive time steps were identified using the Hungarian algorithm [Kuhn, 1955]

with the similarity of communities being proportional to the number of MPs that

were members of both communities divided by the total number of MPs in the two

communities. Therefore, the Hungarian algorithm solves the assignment problem by

finding the best matching between communities over different time steps. In other

words, we find the weight of similarity in terms of a number of nodes that share be-

tween the community at time step t and time step t−1. Then a community label at

time step t−1 that has maximum weight is assigned to each node in the community

at time step t− 1. In this case, we keep nearly the same community label for each

node over time. This is very important to track communities over time.
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Figure 4.9 Weekly MP Twitter communities before and after the Brexit referendum. Suc-
cessive panels show the community structure and party affiliations 7 and 3 weeks before
the referendum, the week of the referendum and the week immediately following it. As
the referendum approaches, two of the three main communities (Labour, Conservative plus
UKIP, and Scottish National Party) merge to form a single community, which immediately
after the referendum again splits apart along party lines.
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Figure 4.10 The distribution of the number of communities in each of the Pareto optimal
solutions found by the MOEA-CD algorithm on 85 weeks of MP Twitter network.

Figure 4.9 shows the development of the communities surrounding the Brexit ref-

erendum on 23rd June 2016. Several weeks before the referendum, the network

comprises three main communities: Labour, the Conservatives and UKIP, and the

Scottish National Party. As the referendum approaches, Conservative, Labour and

UKIP MPs merge to form a single large community including both leavers and re-

mainers, but the mainly SNP community remains distinct. Immediately following

the referendum, the large community splits again along party lines. Figure 4.10

shows the number of communities for each partition within a set of possible par-

titions that are found by MOEA algorithm over 85 weeks (time steps). There is

considerable variation in the number of communities in partitions found by the

MOEA at each timestep. However, the average number of communities is generally

between 15 and 20. Despite the fact that most partitions have many possible com-

munities, the usual structure is between 3 and 6 large communities corresponding to

the major political groupings together with a number of much smaller communities
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Figure 4.11 Modularity and Viterbi results on MPs Twitter networks. Red stars represent
the modularity values for each state (network partition). Blue stars are the most likely
sequence of states (network partitions) over 85-time step using the Viterbi algorithm.

corresponding to small groups of a few MPs.

Figure 4.11 shows the modularity value for each state (network partition) in each

time step of MPs Twitter networks. The modularity values are represented by red

stars. The blue stars are the most likely sequence of states (network partitions)

over 85-time step using the Viterbi algorithm. As we can see that the sequence

of partitions located by the Viterbi algorithm does not always correspond to the

partition with the largest modularity. This is because the Viterbi algorithm balances

the modularity at each time with the probability of a transition to that partition

from the partition at the previous time.

4.3 Summary

In this chapter, we have presented a new methodology to detect and capture the

evolution of community structures over time in networks using a Hidden Markov
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Model (HMM). In each time step, community structures are detected using a Multi-

Objective Evolutionary Algorithm. This algorithm optimises two contradictory ob-

jectives which are derived from the investigation of the node relationship within a

community and with the rest of communities. After that, the Viterbi algorithm

has located the sequence of partitions that are true or closest to the true evolving

community structure. However our algorithm doesnt include the similarity measure

through optimisation using MOEA to generate Pareto optimal solutions. We rely

on Viterbi algorithm to choose the more similar partition over time. In this case,

the generated partitions at this stage could lack of the more similar partitions. The

results show that our algorithm is effective and promising. It seems more likely to

understand the relations of each node with other nodes within the community and

with the rest, provides more opportunity to understand the evolution of communi-

ties over time. The proposed algorithm is presented for unweighted and undirected

networks. However, in the real world, there are many weighted and directed net-

works that could be suggested as future research. In addition, we can develop our

algorithm to detect complex models in Protein-Protein Interaction Networks. These

networks are different from social networks because the size of communities in bio-

logical networks is generally smaller than the size of communities in social networks,

while the number of communities in biological networks is larger than the number

of communities in social networks.
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Chapter 5

Conclusion and Future Work

In this chapter, we describe the main contributions of this thesis and then point to

the further future directions that could be extended by this thesis.

5.1 Summary of Contributions

In the last one and half decades, community analysis of complex networks has be-

come an important research topic. Much of the work is devoted for community

analysis in the networks. Some of them have a good contribution to discover com-

munities. However, they still suffer from accuracy limitations in term of identifying

the structure of communities when they evaluated different real-life networks. These

networks have different structural properties. As a result, the question of discover-

ing community structures is still open. Therefore we started our investigation by

studying the smallest level node relationships with its neighbour nodes. Then we

studied the scores that have been proposed to capture the best network partition

into clusters. Following this, we proposed an algorithm for community detection

in static networks. Finally, this algorithm is developed to capture the evolution of

communities in dynamic networks.
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In the following sections, we draw our main contributions in this thesis separately

for community analysing in the network systems.

5.1.1 Evaluation of Community Scores

The score functions represent the heart of any optimisation algorithm for commu-

nity detection as these algorithms use the score functions to evaluate the network

partition. These scores quantify how well a particular network partition fits a given

network. Therefore it is an exciting study to find a strategy to evaluate these scores.

Without loss of generality, suppose that an objective is to be maximised, then the

goodness score is achieved if its value is the largest value when it is evaluated on the

correct partition. We assess community scores on five real networks. The results

showed that some of the score functions have a good performance to evaluate network

partitions while others need more improvement. This study is very important to

evaluate the score quality before optimisation and show the correlation between

the objective and NMI. However, the difficulty in this study that the ground-

truth partition may not be reliable, particularly when the ground-truth partition

has weak nodes. In addition, the randomly generated partitions could lack the

structures of a natural network partition (dense connections within the community

and few connections with others communities) as there are no constraints on which

nodes will be selected. For example, the selected strong nodes could become weak

nodes in other communities.

On the other hand, the ground-truth partitions are more similar to the natural par-

titions in term of community structures (dense connections within the community

and sparse connections with others) as these partitions are created in real-world

networks. Small perturbations of the true partitions represent a useful set of parti-

tions for objective evaluation as these partitions are more structures than the large

perturbations
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5.1.2 Community Detection in Static Networks

We introduce two new objectives Intra-score and Inter-score to evaluate the good-

ness of network partitions by optimising these two objectives using a Multi-Objective

Evolutionary Algorithm presenting a new Multi-Objective Evolutionary Algorithm

for Community Detection (MOEA-CD). The objectives are derived from our inves-

tigation into the node relationship within a community and with the rest of com-

munities. The first objective (Intra-score) is to increase the number of connections

inside communities while the second one (Inter-score) is to decrease the number of

connections between communities.

We can see from our results for evaluating the performance of the scores in chapter

three that these two objectives have a good correlation with NMI. Moreover, a

new local heuristic search method based on Neighbour Node Centrality definition

is combined with our algorithm to speed up the converge of MOEA-CD to an op-

timal solution. As mentioned before, this heuristic procedure has a positive impact

on optimising the objectives of four models on both synthetic and real-world net-

works. However, there is additional time complexity due to this process. From our

experiments, we have observed that our algorithm is effective and promising by in-

vestigating its performance in comparison to three state-of-the-art models with and

without the local heuristic search on 28 real-world and synthetic networks. We be-

lieve that MOEA-CD can produce more accurate community structure than others

because it concentrates on node relationships. However, one of the limitations in

this algorithm is the time complexity compared with the traditional optimisation

algorithms. The execution time for an evolutionary algorithm is dominated by the

calculation of the objective function specifically when the population size is large

when using the multi-objective algorithm.

There is another difficulty with using an MOEA for community detection. We know

that MOEAs generate a set of candidate solutions or partitions, so the difficulty in

choosing the best partition among these available candidate partitions, i.e. the best
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partition means the community structure where each community contains nodes that

share specific activity. We used modularity in our study to select the best partition

and it is a good measure but it is not perfect.

5.1.3 Community Detection in Dynamic Networks

We have developed our algorithm (MOEA-CD) to analyse the evolution of com-

munities over time using a Hidden Markov Model. MOEA-CD is used to generate

many possible states which represent Pareto-optimal solutions (network partitions)

at each time step. Then the Viterbi algorithm is used to find the most likely se-

quence of partitions over time. The performance of this method has been assessed

on the synthetic and real-world network. The results showed that our algorithm is

successful in simultaneously detecting accurate community structures at each time

step and similarity between successive time steps. However the problem in the num-

ber of possible states at each time step. As we are mentioned it is impossible to

consider all possible network partitions as they are huge. Therefore, our algorithm

is still constrained by the quality of given partitions (hidden states). The possible

solutions that could be done to minimise this limitation, for example, keeping some

of the solutions behind the Pareto front or starting the MOEA from the solutions

found at the previous timestep, etc. Also, note that this is likely to be a problem

for any dynamic algorithm.

5.2 Future work

In this section, we offer suggestions for future research directions and open question

that extend our study.
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5.2.1 Community Score Evaluation

Further future work can be followed by our strategy for evaluating the score func-

tions. As the number of partitions that are used for evaluating the quality of the

score function is large, the evaluation method will be more accurate. However, the

number of possible partitions for a given network is huge. Therefore, it is very inter-

esting to find another method that could generate another set of network partitions.

These partitions could be combined with our set of partitions which are generated by

random migration strategy. We plan to improve our random migration strategy to

include more perturbations of the network partition and investigate how the new set

of network partitions is the effect on the behaviour of community scores. One of the

possible methods that could generate useful network partitions is Single Objective

Evolutionary Algorithm and other different optimisation algorithms.

In addition, Metropolis-Hastings algorithm [Hastings, 1970] could be used to gen-

erate another sequence of a random sample of network partitions that could be

combined with the above sets to produce a variety of network partitions where the

score functions are evaluated on them. As we discussed earlier, the ground-truth

partition is unreliable. Therefore, it will be an interesting study if a gold standard

partition is generated based on the ground-truth partition. At least the weak nodes

that exist in the true partition should be removed from the ground-truth partition to

generate gold standard partition. In addition, constraints are needed on the selected

nodes to keep the intuition of community structures (more connections within the

community and few with other communities).

5.2.2 Community Detection in Static Networks

It seems more likely to understand the relations of each node with other nodes within

the community and with the rest communities as that provide more opportunity to

understand the structure of communities. The networks investigated in this thesis
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are unweighted, undirected and unsigned. It is more interesting if we extend our

study on these different types of networks. The communities in signed networks are

detected by density and signs as well as the links between nodes. That means the

links are positive and negative between nodes in these networks. In this case, the

nodes that have negative relations with the neighbour nodes, they may be assigned

to different communities. Therefore, these relations between nodes need more in-

vestigation to detect the accurate and fast community structures at the same time

in signed networks. From this point, we plan to develop and harness our objective

functions and heuristic strategy for detecting the community structures in these

networks.

We also are interested in investigating how to select the best solution in Pareto front

when the true partition is unknown.

5.2.3 Community Detection in Dynamic Networks

As we discussed earlier that we could not directly apply filtering and smoothing

algorithms based on HMM as the number of possible states is vast. Therefore the

likely venue for future direction in detecting communities in dynamic networks is

how to find another possible set of possible states (network partitions) at each time

step. Dirichlet processes can be used to represent HMM with a very large number

of hidden state. In addition, it could generate useful network partitions is Single

Objective Evolutionary Algorithm and other different optimisation algorithms to

combined with the set of possible states at each time step in the dynamic algorithm.

Another direction to investigate our algorithm to analyse the evolution of protein-

protein interaction networks. In these networks, the proteins represent nodes and

edges represent the interaction between the two proteins. These interactions are

changed with the change of protein’s age, and that will change the biological func-

tions. It is essential to understand the evolution of these interactions over time.
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