Perceived Ambiguity, Ambiguity
Attitude and Strategic Ambiguity in
Games

Lorenz Hartmann

Department of Economics

University of Exeter

Submitted for the degree of
Doctor of Philosophy in Economics

Supervised by: David Kelsey
Dieter Balkenborg

October 2018



Perceived Ambiguity, Ambiguity Attitude and Strategic Ambiguity in

Games

Submitted by Lorenz Hartmann to the University of Exeter as a thesis for the

degree of Doctor of Philosophy in Economics in October 2018.

This thesis is available for Library use on the understanding that it is copyright
material and that no quotation from the thesis may be published without proper

acknowledgement.

I certify that all material in this thesis which is not my own work has been
identified and that any material that has previously been submitted and approved

for the award of a degree by this or any other University has been acknowledged.

Signature: ..o




Abstract

This thesis contributes to the theoretical work on decision and game theory when
decision makers or players perceive ambiguity. The first article introduces a new ax-
iomatic framework for ambiguity aversion and provides axiomatic characterizations
for important preference classes that thus far had lacked characterizations. The
second article introduces a new axiom called Weak Monotonicity which is shown to
play a crucial role in the multiple prior model. It is shown that for many important
preference classes, the assumption of monotonic preferences is a consequence of the
other axioms and does not have to be assumed. The third article introduces an
intuitive definition of perceived ambiguity in the multiple prior model. It is shown
that the approach allows an application to games where players perceive strategic
ambiguity. A very general equilibrium existence result is given. The modelling
capabilities of the approach are highlighted through the analysis of examples. The
fourth article applies the model from the previous article to a specific class of games
with a lattice-structure. We perform comparative statics on perceived ambiguity
and ambiguity attitude. We show that more optimism does not necessarily lead
to higher equilibria when players have a-Maxmin preferences. We present neces-
sary and sufficient conditions on the structure of the prior sets for this comparative
statics result to hold.

The introductory chapter provides the basis of the four articles in this thesis.
An overview of axiomatic decision theory, decision-making under ambiguity and
ambiguous games is given. It introduces and discusses the most relevant results

from the literature.
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1 Axiomatic Decision Theory,
Decision-Making under Ambiguity

and its Application to Games

This chapter provides the basis for the four articles of this thesis. We start with
the famous axiomatic representation of expected utility theory by Von Neumann
and Morgenstern as well as the insights of De Finetti on subjective probabilities.
We then introduce the subjective expected utility theories of Savage as well as
Anscombe and Aumann. This is followed by the introduction to two of the main
approaches of decision-making under ambiguity: Choquet Expected Utility theory
and the Multiple Prior approach. We discuss the concepts of perceived ambiguity
and ambiguity attitude as well as the separation of these two concepts. Eventually
we illustrate how these theories can be used to model strategic interaction when
players perceive ambiguity about the strategic behaviour of other players. We focus
on the approach of Eichberger and Kelsey (2014) and illustrate our own contribution
to model ambiguous beliefs of players in the Multiple Prior model.

Throughout the chapter we, for convinience and consistency, occasionally deviate
from the original notation as well as state simplified versions of the theorems. Our
main objective is to provide the reader with the necessary background for the articles

presented in this thesis.
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1 Axiomatic Decision Theory, Ambiguity and Games

1.1 Foundations of Decision Theory

This section provides an overview of some of the groundbreaking achievements in

decision theory.

Von Neumann and Morgenstern

Consider the following game. A fair coin is repeatedly tossed. The game ends when
Heads comes up for the first time. The payout is the following: if the coin is tossed
n-times you receive 2" in monetary terms. How much would you pay to play this
game?

Nicolas Bernoulli states this game in a letter to Pierre Raymond De Montmort
in 1713 (see De Montmort (1713)). At that time, expected value maximization
was considered the rational approach to decision making under risk. Given the
choice between two risky lotteries, the decision maker (DM) should always choose
the lottery with the higher expected value. Bernoulli points out that the game has
an infinite expected value. Thus an expected value maximizer is willing to pay any
finite amount to play this game. This is obviously ridiculous. Bernoulli’s game!
thus shows that people are not expected value maximizers.

Nicolas’ cousin Daniel Bernoulli shows in Bernoulli (2011) that peoples’ prefer-
ences in this game can be describes as maximization of an expectation of a function
which maps monetary payouts to real numbers. This approach can lead to a finite
expectation of Bernoulli’s game.? Such a function if referred to as a utility function.
Daniel Bernoulli thus introduces expected utility maximization, a concept that has
been and still is hugely important in decision theory.

Daniel Bernoulli’s suggestion that peoples preferences in risky choice situations
can be described by expected utility maximization triggered the hugely influential
contribution by Von Neumann and Morgenstern (1944). They introduce a set of

3

axioms® on preferences over risky lotteries which they show to be equivalent to

expected utility maximization.

! The game is often referred to as the St. Petersburg Paradox. The word paradoz is frequently
used in decision-theory when theories of allegedly rational choice clash with observed choice
behaviour or intuition. Personally we are of the opinion that the term paradox is used wrongly.
A deviation from a theory is not paradoxical, it merely highlights the limitations of the model
or arguably the irrationality of peoples’ preferences.

2 For instance with this function being of some logarithmic type.

3 In decision theory, axioms can be understood as assumptions about preferences.

14



1.1 Foundations of Decision Theory

In the theory of Von Neumann and Morgenstern the objects of choice are objective
lotteries, i.e. lotteries where the probabilities of alternatives are known. Examples
are bets on the outcome of a roulette wheel or a die with known probabilities. Their
theory stays silent on decisions in which probabilities are not known to the DM such
as bets on horse races or a die with unknown probabilities.

Von Neumann and Morgenstern assume a set of consequences X which is not
constrained to have any particular topological structure. They denote by L the set
of finite-support lotteries over X. Preferences over lotteries are modelled by a binary
relation 27 on L, i.e. 77 C L x L.

Two lotteries can be mixed, resulting in a new lottery. For two lotteries P, Q) € L
and some « € [0, 1], the compound lottery aP + (1 — a)Q € L is defined by

(P + (1 - a)Q)(z) = aP(z) + (1 - a)Q(z)

for all x € X. This construction of compount lotteries induces a mixture space over
L, a concept that is crucial for the framework of Anscombe and Aumann (1963)
which is introduced later and provides the conceptual basis of the papers in this
thesis.

Von Neumann and Morgenstern provide the following axioms.

Aziom 1.1 (Weak Order). For all P,Q,R € L
. Pz Qor @z P.
2. If Pz Qand Q7 R, then P R.

Aziom 1.2 (Continuity). For all P,Q, R € L with P > @) > R there exist o, 5 €
(0,1) such that
aP+(1-—a)R>Q > BP+(1-P)R.

Aziom 1.3 (Independence). For every P,Q, R € L and « € (0, 1)
PrQ < aP+(1—a)RzZaQ+ (1 —a)R.

Weak Order consists of two assumptions: Completeness and Transitivity. Con-

tinuity is a technical assumption.* Independence states that a preference of one

4 Note that this axiom cannot be refuted by a finite number of choices.

15



1 Axiomatic Decision Theory, Ambiguity and Games

lottery over another is not reversed when both lotteries are mixed with a third
lottery. It is the most interesting and controversial axiom.®
Von Neumann and Morgenstern show that these three axioms characterize expec-

ted utility maximization.

Theorem 1.1 (Von Neumann and Morgenstern). Let -, be a preference relation
on L, the set of finite-support lotteries over some set of consequences X. Then the

following are equivalent:
1. = satisfies Weak Order, Continuity and Independence.

2. There exists a function u : X — R such that for all P,Q) € L

PZQ < Y Plu(x)>) Q)ulz).

zeX rzeX

Furthermore, u is unique up to positive affine transformations.

From a normative viewpoint the Von Neumann and Morgenstern axioms are com-
pelling in the sense that a violation of these axioms can never be advisable. If this
is accepted, the theorem suggests that expected utility maximization is the correct
way to make decisions under risk. From a descriptive viewpoint the issue is more
debatable. Allais (1953) introduces a choice-problem in which observed behaviour

is typically inconsistent with expected utility maximization.

De Finetti

In the framework of Von Neumann and Morgenstern, choices are made over objective
lotteries: the probabilities of consequences are known. However, in hardly any
decision that we make in the real world are probabilites of consequences known to us.
De Finetti (1937) studies preferences over monetary bets in which no probabilistic
information is available.” Through the DM’s willingness to bet, De Finetti aims to
derive subjective probabilities. His aim is thus to derive probabilities from observable

choice behaviour.

5 We discuss this axiom and its limitations for constructing a descriptive model of decision
making in section 2.

6 The choice-problem of Allais (1953) inspired a very interesting and important area of research.
It is however a very different direction from this thesis. We therefore only mention its existence.

7 Ramsey (1931) independently suggests a very similar approach.
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1.1 Foundations of Decision Theory

De Finetti’s framework consists of a finite state space S = (s1,. .., s|5|) and prizes
in monetary terms. A bet is a function from S to R!SI. The set of bets is X = RIS
A bet x € X can be written as (z1,...,2s)), where x(s;) = x;. Preferences are
modelled by a binary relation =~ over X.

De Finetti provides the following axioms.

Aziom 1.4 (Weak Order). For all z,y,z € X
l.xzyoryz .
2. Ifx—yand y = 2z then z 77 2.

Aziom 1.5 (Continuity). For every x € X the sets

{yly = 2}, {ylz =y}

are open.

Aziom 1.6 (Additivity). For all z,y,z € X
Ty <= r+zoy+z.
Aziom 1.7 (Monotonicity). For all z,y € X, if x; > y; for all : € {1,...,n}, then
Ty
Aziom 1.8 (Non-Degeneracy). There exist z,y € X such that z > y.

De Finetti shows that these axioms are equivalent to the existence of a subject-
ive probability distribution over the state space according to which the DM is an

expected value maximizer.

Theorem 1.2 (De Finetti). Let S be a state space and 7, a preference relation over
the set of bets X = RI°l. Then the following are equivalent:

1. = satisfies Weak Order, Continuity, Additivity, Monotonicity and

Non-Degeneracy.

2. There exists a probability distribution P over S such that

Ty == Y Pls)a(s) =) Pls)y(s).

seS ses

Moreover, P 1is unique.
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1 Axiomatic Decision Theory, Ambiguity and Games

The crucial and most debatable axiom is Additivity. The framework is criticized
as Additivity implies that DM’s are expected value maximizers and therefore risk-

neutral. It thus ignores the insights of Bernoulli.®

Savage

Recall the different approaches taken by Von Neumann and Morgenstern and De
Finetti. Von Neumann and Morgenstern take objective probabilities as primitive
and use it to measure the utility function. De Finetti can be interpreted as taking
utilities as given and using it to measure subjective probabilities. Thus von Neumann
and Morgenstern assume linearity in probabilities, De Finetti assumes linearity in
utilities. Savage (1954) combines these ideas.

He assumes an abstract framework with no mathematical machinery. Neither
probabilities, nor utilities are taken as primitive. Rather they are measured at the
same time. Savage introduces seven axioms and shows their equivalence to subjective
expected utility maximization. This means that a preference relation satisfies the
seven axioms if and only if it can be represented by a unique probability distribution
over the state space and a utility function over consequences according to which the
DM maximizes expected utility.

Savage’s framework consists of an exogenous state space S and a set of con-
sequences X. Acts are mappings from S to X and F = {f : S — X} is the set of
acts. Preferences are modelled by a binary relation 7~ over F. A state in Savage’s
framework “resolves all uncertainty” in the sense that if the DM has chosen an act
f € F and is informed that state s € S has ocurred she knows that the consequence
is x = f(s).?

It is remarkable that Savage does not assume anything else. The state space
is not restricted by any kind of measurability of events requirement. The set of
consequences and the set of acts do not require any topological structure. We do
not have a mixture-space as we do in Von Neumann and Morgenstern or Anscombe
and Aumann (1963), see next subsection.

We do not state all of Savage’s axioms but restrict attention to the axiom P,

typically referred to as the Sure-Thing Principle. It is the most crucial and most

8 One way around this is to interpret the monetary payouts as utilities. The additivity axiom
would then be about adding utils.

9 A consequence of this is that the state space is typically very large if one aims to model
choice-problems in the Savage framework.

18



1.1 Foundations of Decision Theory

frequently criticized axiom and will become important in the second section when

ambiguity takes the stage.

Aziom (Savage’s P,). For all acts f, g, f',¢' € F and all events E C S such that it
holds that f(s) = f'(s),g(s) = ¢'(s) for all s € E and f(s) = g(s), f'(s) = ¢'(s) for
all s ¢ E it holds that

fzg = fzd.

The Sure-Thing Principle requires that the preference between two acts does not
depend on the states of the world where both acts have identical consequences.
When comparing two acts, it suffices to consider the states of the world in which
these acts yield different outcomes. It is thus a separability axiom.

Savage shows that a DM’s preferences satisfy his 7 axioms if and only if there
exists a utility function u over X, unique up to positive affine transformations, and
a unique subjective probability distribution P over S, such that the DM’s preferences

can be modelled as maximization of expected utility according the these entities.!? !

Theorem 1.3 (Savage). Let S be a state space, X a set of consequences and 77 a

preference relation over acts F = {f : S — X}. Then the following are equivalent:
1. 7 satisfies the azioms P, — Px.

2. There exists a non-atomic finitely-additive probability distribution Pon S and
a non-constant, bounded function u : X — R such that for all f,g € F

fro = [updrz [ug)ap

where [u(f) dP denotes the expected utility of f, given u and P.
Moreover, P is unique and u is unique up to positive affine transformations.

A huge amount is to be and has been said, discussed, praised and criticized about

Savage. We refrain from adding to this discussion at this point, but return to

10 The probability distribution has the properties of being non-atomic and finitely additive. Non-
atomic means that for every event A C S and every « € [0, 1] there exists an event E' C E
such that P(E’) = aP(F). Finitely additive means that for all £, E’ C S for which ENE' =
it holds that P(FE) + P(E') = P(EUE').

I Savage’s axioms Pg rules out the possibility that the state space is finite. The model of
Anscombe and Aumann (1963), introduced in the next subsection, does not suffer from this
limitation.
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1 Axiomatic Decision Theory, Ambiguity and Games

Savage and the Sure-Thing Principle in the next section when we discuss the Ellsberg

Thought Experiment.

Anscombe and Aumann

The model of Anscombe and Aumann (1963) provides the basis for the models on
decision-making under ambiguity that are introduced and discussed in this thesis.
Just like Savage, Anscombe and Aumann provide a set of axioms that are equivalent
to subjective expected utility maximization. However, their framework has more
structure.

Just like Savage, their framework consists of a state space S and a set of con-
sequences X. The difference is that acts do not map from S into X but from S
into L, the set of finite-support lotteries over X which we already encountered in
Von Neumann and Morgenstern (1944). The set of acts is thus F = {f : S — L}.
An act which assigns the same lottery to every state is called a constant act. With
a slight abuse of notation the set of constant acts can be associated with the set of
lotteries L. Preferences are modelled as usual by a binary relation - over F.

The interpretation of this framework is that the DM faces two sources of un-
certainty: a horse lottery and a roulette lottery. When choosing amongst acts the
DM does not necessarily have information on objective probabilites over the state
space: she faces a horse lottery over the state space. For every state the DM faces
a roulette lottery over the set of consequences: she knows the probabilities over the
consequences. She thus faces subjective uncertainty about which state will occur
and once the true state has been determined she faces objective uncertainty about
consequences.

The disadvantage of this framework compared to Savage’s are the structural as-
sumptions that make it less general. The first advantage is that it allows the state
space to be finite. The second and more crucial advantage is that the mixture-space
on L, which we already know from Von Neumann and Morgenstern, allows the con-
struction of a mixture-space on F. Mixtures are performed pointwise: for f,g € F
and « € [0, 1] the act af + (1 — «)g is defined by

(af + (1 - a)g)(s) = af(s) + (1 —a)gls) Vs €S

The fact that we have this mixture-space over F is crucial for our first chapter in

20



1.1 Foundations of Decision Theory

which we define different levels of ambiguity aversion via different levels of preference
for mixing amongst acts. Since the Savage-framework does not have a mixture-space,
this cannot be done there.!?

Anscombe and Aumann consider the following axioms.

Aziom (AA1l: Weak Order). For all f,g,h € F
L fZgorgZ f.
2. If f >~ gand g h, then f - h.

Aziom (AA2: Continuity). For all f,g,h € F with f = g > h there exist o, 5 €
(0,1) such that
af+(1—a)h=g>=Bf+(1—p)h.

Aziom (AA3: Independence). For every f,g,h € F and « € (0,1)
frmg <= af+(1l—-a)hzag+(1—a)h

Aziom (AA4: Monotonicity). For all f,g € F, if f(s) 2 g(s) for all s € S, then
fzy
Aziom (AA5: Non-Degeneracy). There exist x,y € X such that x > y.

Recall that the axioms of Von Neumann and Morgenstern are defined for pref-
erences over L. The first three axioms of Anscombe and Aumann are the same as
the ones from Von Neumann and Morgenstern, however defined on F instead of L.
Axioms 4 and 5 are basically the last two axioms from De Finetti, adapted to the
framework.

Anscombe and Aumann show that their five axioms are equivalent to subjective
expected utility maximization: preferences satisfy their axioms if and only if they are
representable by a unique probability distribution over the state space and a utility
function over consequences, unique up to positive affine transformations, according
to which the DM maximizes expected utility. The following theorem states their

result for a finite state space.' 4

12 In Ghirardato et al. (2003) the authors construct a mixture-space in the Savage framework.
However they need some typological assumptions on the set of consequences.

13 In the following we denote by the term [ u(f) dP the double integration that is needed in this
framework: the inner expected utility calculation and the outer subjective expected utility cal-
culation. Since S is assumed to be finite we have that [u(f) dP = Y P(s) > f(s)(z)u(z).

seS zeX

14 In Savage’s model this assumption of a finite state space is not possible as the axioms imply
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1 Axiomatic Decision Theory, Ambiguity and Games

Theorem 1.4 (Anscombe and Aumann). Let S be a finite state space, L the set of
finite-support lotteries over a set of consequences X and - a preference relation on
F=A{f:S— L}. Then the following are equivalent:

1. 7 satisfies the axioms AA1 - AAS.

2. There exists a probability distribution P on S and a non-constant function
u: X — R such that for all f,g € F

fZg = /u(f) dPZ/u(g) dP.

Furthermore, P is unique and u is unique up to positive affine transformations.

1.2 Decision Making under Ambiguity

The theories of Savage as well as Anscombe and Aumann are very appealing. The ax-
ioms make sense from a normative perspective. Furthermore the axiomatic systems
teach us what exactly we are assuming by modelling DM’s as subjective expected
utility maximizers. However, peoples’ preferences systematically violate these the-
ories even in simple choice problems. The most prominent example for this is the
1-urn thought experiment of Daniel Ellsberg (1961).1

Ezample 1.1 (The Ellsbergs 1-Urn Thought Experiment). Assume that a DM is
confronted with an urn containing 90 balls. She receives the information that exactly
30 of these balls are red and that the other 60 balls are either yellow or black, but
the exact number is not given. The DM is asked to choose amongst different bets
before a ball is randomly drawn from the urn. Two different bets are offered.

In the first bet she can either choose to bet on a red ball being drawn or altern-
atively on a yellow ball being drawn. If she bets correctly she receives a payout of
100, otherwise she receives nothing.

In the second bet she can choose to bet on a red or black ball being drawn or
alternatively on a yellow or black ball being drawn. Again she receives 100 if she

bets correctly, otherwise nothing.

an infinite state space.

15 Tn the literature Ellsberg’s thought experiments are often referred to as paradoxes. As already
mentioned we do not agree with how the word “paradox” is used in decision theory. We
therefore refer to the “Ellsberg Thought Experiment” throughout this chapter.
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1.2 Decision Making under Ambiguity

These choice-problems can be modelled in the Savage framework. The state space
S has three elements: red (R), yellow (Y') and black (B). The relevant consequences
are 100 and 0. There are four acts: f; is the bet on R, f5 is the bet on Y, ¢; is the
bet on RU B and g, is the bet on Y U B. This is illustrated in Table 1.1.

R Y B

fi 100 0 0
fo 0 100 0
g1 100 0 100
g 0 100 100

Table 1.1: The Ellsberg Thought Experiment

Ellsberg realizes that the typical preferences are f; = fo and ¢go = ¢1.1% People
tend to prefer the acts for which the probability of winning is known. They dislike
the acts for which the probability of winning is unknown. These preferences are
incompatible with SEU theory. There does not exist a probability distribution
which is compatible with this choice behaviour. To see why, assume for contradiction
that the DM’s preferences can be represented by the probability distribution!'” P :
P(S) — [0,1] and a utility function v : X — R. Assume that «(100) > u(0).'®

Since the DM strictly prefers f; to fo, the bet f; results in a higher subjective
expected utility than f,, i.e.

P(R)u(100) + (1 — P(R))u(0) > P(Y)u(100) + (1 — P(Y))u(0),

which implies
(P(R) — P(Y))(u(100) — u(0)) > 0.

Since u(100) > u(0) it follows that

P(R) > P(Y).

16 Ellsberg did not conduct experiments in the lab, but asked economists about their preferences.
His findings were later replicated in the lab.

17 P(S) denotes the powerset of S.

18 Note that this assumption is not needed to obtain a contradiction, but is easily justified. The
assumption %(100) < u(0) would suffice as well.
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1 Axiomatic Decision Theory, Ambiguity and Games

Furthermore the DM strictly prefers g to g;. It follows that
P(RU B)u(100) + (1 — P(RU B))u(0) < P(Y U B)u(100) + (1 — P(Y U B))u(0),

which implies
(P(RUB)— P(YUB))(u(100) — u(0)) < 0.

Again with «(100) > u(0) it follows that
P(RUB) < P(Y UB).
Combined this leads to the contradiction
1=P(R)+PYUB)>PY)+P(RUB) =1

This implies, through the theorems of Savage as well as Anscombe and Aumann,
that the axiomatic systems for SEU are violated by the typical preferences in the
Ellsberg Thought Experiment. In the following we demonstate how the preferences
violate the Sure-Thing Principle (STP) as well as the Independence axiom.

The violation of STP is straight-forward. Consider the event £ = B. For all
s ¢ F we have that fi(s) = gi1(s) and fa(s) = g2(s) as well as for all s € E we have
fi(s) = fa(s) and g1(s) = ga(s). Thus the STP implies that

HhZfo = a2 o,

in contradiction to the typical preferences.

To see that the Independence axiom is violated consider the acts h; = 10050 and
hy = 0.1 Note that 3 + 2hy = 191 + Sho and 1 fo + Shy = g0 + 2hs. Due to
the Independence axiom f; > fo implies %fl + %hl — %fg + %hl and g, > ¢, implies
%gg + %hQ - %gl + %hQ, a contradiction.

The question that springs to mind now is: why does the SEU theory fail so sys-
tematically? Or put differently: what makes people violate the allegedly convincing
axioms so consistently?

In all four acts of the Ellsberg Thought Experiment the DM faces uncertainty

19 The notation h; = 10050 means that the act h; results in consequence 100 on the state B
and consequence 0 on the states R and Y.
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1.2 Decision Making under Ambiguity

in the sense that the consequence is not known ex-ante. However the type of un-
certainty is very different. The acts f; and gy are risky acts as the probabilities of
consequences are known. For the acts fy and g; the probabilities of consequences are
unknown: these acts are ambiguous. This distinction between risk and ambiguity
was propagated by Knight (1921).20 The typical preferences in the Ellsberg Thought
Experiment suggest that people tend to dislike betting on ambiguous events: they
are ambiguity averse.?!

The Ellsberg Thought Experiment and its lessons from it unfold the necessity to
construct alternative approaches to model preferences in ambiguous choice-problems.
In the following, two approaches are presented that can accommodate phenomena
observed in choice under ambiguity. The first one is Choquet Ezpected Utility theory,
the second one is the Multiple Prior approach. Both the Savage and the Anscombe
and Aumann framework have been used in the literature as the basis of these ap-
proaches. We focus on the ones that use the Anscombe-Aumann framework as they

provide the basis for the papers of this thesis.

1.2.1 The Choquet Expected Utility Model

Itzhak Gilboa points out in Gilboa (2009) that “P, [the Sure-Thing Principle] im-
plies, among other things, that the decision maker should be indifferent between
likelihood judgements that are well-reasoned and those that are arbitrary.”??

With this in mind consider the following scenario which goes back to David
Schmeidler.?® There are two coins. The first coin is known to be fair, i.e. Heads and
Tails are known to occur with equal probabilities There is no information on the
second coin. Assume that the DM is forced to assign a probability to the second coin
coming up Heads. As there is no information, ignorance on probabilities of Heads
and Tails is symmetric. The DM thus assigns probability % to Heads. The coins now

have been assigned the same probability distributions, however Schmeidler suggests

20 What we refer to as Ambiguity is also referred to Uncertainty or Knightian Uncertainty.
Throughout this thesis we use the term Uncertainty in its generic sense. Risk refers to un-
certainty with known probabilities, Ambiguity refers to uncertainty with possibly unknown
probabilities.

21 Of course not all people have the typical preferences. Some exhibit ambiguity loving prefer-
ences. Some do not violate the SEU axioms at all. See subsection 2.3 for a discussion on
ambiguity attitude and how to model different attitudes towards ambiguity.

22 Gilboa (2009), page 188.

23 The Ellsberg 2-urn Thought Experiment is very similar.
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1 Axiomatic Decision Theory, Ambiguity and Games

that they still feel very different.

This different feel of the probability judgements in Schmeidler’s Thought Exper-
iment and Gilboa’s explanation of the implications of the STP suggests that this
axiom has a hard time in choice-problems in which ambiguity plays a role. Indeed we
have already seen that the typical preferences in the Ellsberg Thought Experiment
violate the STP.

Schmeidler’s approach to cope with this is to provide an axiomatic system which
does not imply beliefs to be representable by a probability distribution. In his model,
beliefs are not additive, but are represented by not necessarily additive set functions

called capacities.

Capacities

Definition 1.1 (Capacity). Let S be a set and A a o-algebra on S.* A function
v:A—[0,1] is called capacity if the following holds:

8. ECE =v(E)<v(E) VE,E CS.

A capacity is a normalized and monotonic, but not necessarily additive, set func-
tion. A probability distribution is therefore a special case of a capacity.

The concept of capacities can be applied to choice-problems. We can apply them
to achieve a representation of beliefs which takes into account the ambiguity that
the DM faces. For instance we can construct the following capacities 1; and 1»
to represent beliefs over the two coins in Schmeidler’s Thought Experiment. The
state space is S = {H,T} and the o-algebra is A = P(S) = {0, H, T, S} for both
coins. Define 11(0) = 15(0) = 0, 11(S) = w»(S) = 1, n(H) = n(T) = 3 and
vs(H) = 15(T) = 2. The DM’s information about the first coin is reflected in
vy, which is the uniform probability distribution over S. The DM does not have
information on probabilities about coin 2. This is reflected by the values % for
both H and T, an assignment which is allowed in this framework as additivity is
not required for capacities. The fact that v5(H) = 1v»(T) reflects the symmetric

ignorance about Heads and Tails.

24 For finite S, which is what we assume in all our articles, A is the powerset of S.
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1.2 Decision Making under Ambiguity

The interpretation of the capacity v» may be that it represents a lower bound
of the DM’s belief about the probability of events, i.e. the DM might believe that
Heads will come up with probability at least % Capacities are thus one approach

to represent beliefs of a DM who perceives ambiguity.

The Choquet Integral

When beliefs are represented by a capacity, the evaluation of acts can be carried out
with the Choquet Integral which is introduced in Choquet (1954).

Definition 1.2 (Choquet Integral). Let S be a set and A a o-algebra on S. Let
X : S = R be a A-measurable function and v : A — [0,1] a capacity. The Choquet
Integral of X with respect to v is defined as

/Xdz/_/ V({5 € S|X(s) > 2}) — 1) x+/y{sesp( §) > ah)dr, (L1)

where the integrals on the right side of the equation are Riemann integrals.

With the Choquet Integral, an expectation of a real-valued function X given a
capacity v can be calculated. When v is additive, the Choquet integral reduces to
the Riemann integral and is the normal expected value of X, given v.

We apply the Choquet Integral in the framework of Anscombe and Aumann.
This means that acts map from states into objective lotteries. The real-valued
functions that we consider are mappings from the state space into expected utilities.
Furthermore we assume a finite state space.

Under these assumptions consider an act f € F. There exist lotteries ly,...1, € L
and a partition (E,..., F,) of S such that on E; the act f results in lottery [; for
i € {1,...,n}. Consider a utility function v : L — R. With slight abuse of
notation we denote by u(l;) the expected utility of lottery /;, given u. Without loss
of generality we can assume that w(ly) > -+ > u(l,). By defining U3:1 = () the
Choquet Integral in (2.2) reduces to

fu -3 o (Us) -+ (U)

i=1
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1 Axiomatic Decision Theory, Ambiguity and Games

Throughout the thesis we use the simplified notation [ u(f) dv for the Choquet
expected utility (CEU) of the act f, given utility function u and capacity v. The

state space is always clear from the context and is thus omitted in the notation.

Solving Ellsberg with CEU

One strength of the Choquet Expected Utility approach is that we can easily model
the typical preferences in the Ellsberg Thought Experiment. This can be done by
assigning weights to the ambiguous events Y, B, RUY and R U B that are smaller
than the weight assigned by the uniform distribution over the state space. Assume
that for 6 € (0, %] the beliefs of the DM are represented by the following capacity
v:P(S)—1[0,1]:

(

0, E=1

1/3, E=R

1/3—6, FEed{Y,B

g~ 1Y {v.B)

2/3, E=YUB
2/3—6, Ee€{RUY,RUB}
1, E=S5

\

The DM has the information that the probability of R is % and the probability of
YUBis % About the events Y, B, RUY and RU B the DM perceives the ambiguity
6.% If § = 3, the decision maker perceives the maximum amount of ambiguity. If
0 = 0, v is additive which coincides with no perceived ambiguity. We have already

shown that this case cannot explain the typical preferences.

With the Choquet Integral we can now calculate the expectation of the acts

f1, f2, g1 and g with respect to the capacity v. Without loss of generality we assume

25 The parameter 6 can be interpreted as a measure of the amount of ambiguity that the DM
perceives. The topic of perceived ambiguity is exceptionally important throughout this thesis.
We introduce and discuss this topic in subsection 2.3. For the current example the same
conclusion holds for all considered values of § in the allowed range.
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1.2 Decision Making under Ambiguity

that u(0) = 0 and »(100) = 100.

/U(fl) dv = u(100)[v(R) — v(0)] + w(0)[v(S) — v(R)]
— 100v(R)
> 1000(Y)
= u(100)[v(Y) — v(0)] + u(0)[v(S) — v(Y)]

_ /u(fg) dv.

/u(gg) dv = u(100)[v(Y U B) — v(0)] + u(0)[»(S) — v(Y U B)]

= 100v(Y U B)
> 100v(R U B)
— w(100)[(R U B) — v(0)] + u(0)[v(S) — v(R U B)]

- / u(gy) dv.

Given v, the Choquet expected utility is larger for f; than for f, as well as larger
for g, than for g;. We have thus shown that the CEU approach can model the
typical preferences in the Ellsberg Thought Experiment.

Schmeidler’'s Axiomatization of CEU

Schmeidler (1989) axiomatizes CEU preferences in the Anscombe-Aumann frame-
work.?6 The crucial axiom is Comonotonic Independence. It is a weakening of the
Independence axiom of Anscombe and Aumann. The intuition behind this axiom
can be explained through the Ellsberg Thought Experiment. One reason why DMs
violate the Independence axiom may be that the miz of the unambiguous f; and
the ambiguous fy; with the act hy = 10050 shifts the ambiguity from one act to the
other: % fi+ %hl is ambiguous, % fot+ %hl is unambiguous. The act h; is thus a better
hedge against ambiguity for fo than it is for f;. We have an asymmetric effect on

ambiguity due to the mix. Schmeidler’s idea is that the independence axiom must

26 Sarin and Wakker (1992) axiomatize CEU preferences in the Savage framework. Through-
out the thesis we rely on the Anscombe-Aumann framework and thus in the following only
introduce Schmeidler’s contribution.
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1 Axiomatic Decision Theory, Ambiguity and Games

be preserved only for cases in which such asymmetry is impossible, as in such a case
the mix effects ambiguity in the same way. Such asymmetry cannot occur when two
acts, and a third act with which it is mixed, order states in the same way in terms

of expected utility. Schmeidler calls such acts comonotonic acts.
Definition 1.3. Two acts f,g € F are comonotonic if there exist no s,s" € S such
that
f(s)=g(s)  and  g(s) = f(5).
Schmeidler weakens the Independence axiom to pairwise comonotonic acts.

Aziom 1.9 (Comonotonic Independence). For all pairwise comonotonic acts f, g, h €
F and a € (0,1) it holds that

frg <= af+(1—-a)hzag+ (1 —a)h.

Schmeidler shows that the Anscombe-Aumann axioms with Independence re-
placed by Comonotonic Independence are equivalent to preferences being repres-
entable within the CEU framework.

Theorem 1.5 (Schmeidler). Let S be a finite state space, L the set of finite-support
lotteries over a set of consequences X and 7, a preference relation on F = {f : S —

L}. Then the following are equivalent:
1. - satisfies the axioms AA1, AA2, Comonotonic Independence, AA4 and AAS5.

2. There exists a capacity v : P(S) — [0,1] and a function u : L — R such that
forall f,g e F

fZg = /u(f) de/u(g) dv.

Furthermore, v is unique and u is unique up to positive affine transformations.

To get some intuition on this result, note that Comonotonic Independence implies
that the representation functional is additive for comonotonic acts. Furthermore
since constant acts are comonotonic to all acts and every act is comonotonic to
itself we have linearity of the functional for such acts. All these properties are easily
checked to be true for the Choquet Integral: for a capacity v, comonotonic acts f, g,

constant act [ and « € [0, 1] we have that

/u(af—l—(l—a)g—{—l) duza/u(f) d1/+(1—a)/u(g) dv + u(l).
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The reason the CEU model can explain the typical preferences in the Ellsberg
Thought Experiment is that Comonotonic Independence does not restrict prefer-
ences as much as the standard Independence axiom or the Sure-Thing Principle
does. The acts f; and f5 as well as g; and go are not comonotonic, thus Comono-
tonic Independence does not per se rule out preferences that are observed in the
Ellsberg Thought Experiment. Of course, the modelling capabilities of the CEU

approach do not end here.

Capacity Subclasses

In the following we introduce some if the most important capacity subclasses, in-
cluding the ones that are relevant for this thesis. The important ideas behind and
results on them are explained.

A capacity v is called conver if
v(E)+v(E)<v(EUE)+v(ENE) VEE CS. (1.2)

Schmeidler shows that, under the standard CEU axioms, a capacity is convex
if and only if the DM always has a preference for mixing amongst acts, an axiom
he calls Uncertainty Aversion.?” Thus he suggests that convex capacities reflect

ambiguity aversion.

Aziom 1.10 (Uncertainty Aversion). For all f, g € F such that f ~ g and a € (0,1)

af+(1-a)gZ [

A capacity v is called concave if in equation (1.2), < is replaced by >. Of course,
this capacity class is axiomatized by the axiom in which =~ is replaced by = in
Uncertainty Aversion.

A capacity v is called neo-additive if v = 6(1 — ) + (1 — §)m, where 7 is a
probability distribution on S and «,d € [0,1]. We denote them by v, s5,. A neo-
additive capacity for which a =1 is called simple.

Neo-additive capacities are introduced and axiomatized in Chateauneuf et al.
(2007). They can be viewed as a d-mixture of the additive capacity = and the
capacity that puts weight 1 — a on all events (except () and S). The latter only

27 Schmeidler calls “Uncertainty” what we call “Ambiguity”.
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distinguishes between whether an event is impossible, possible or certain. The in-
terpretation is that the DM has additive beliefs 7 over S but she may not be abso-
lutely confident in m. The parameter 1 — § represents this confidence, ¢ represents
the degree of perceived ambiguity. The larger 0 is, the less confidence the DM has in
her beliefs. If 6 = 0 , then v = 7w corresponding to absolute confidence in beliefs. If
0 = 1, the DM has no confidence in her beliefs. The parameter o can be interpreted
as the DM’s ambiguity attitude. The larger «, the more pessimistic is the DM. Thus
« can be interpreted as the degree of pessimism.?

Chateauneuf et al. (2007) show that when v = v, 5, is a neo-additive capacity

and v is a utility function, the Choquet integral of an act f is

[ dvase = =) [l dr+ 81~ @) supu(s(s) + Gainf u((s). (13)
Thus the Choquet integral is the mix of the evaluation at the probability estimate 7
as well as the best and the worst case scenario for the act f. Neo-additive capacities
can therefore be used to represent beliefs of decision makers that are both ambi-
guity averse and ambiguity loving. Furthermore they provide a clear separation of
perceived ambiguity and ambiguity attitude through the parameters 6 and a.

JP-capacities were introduced by Jaffray and Philippe (1997). These capacities
take the form v = au + (1 — a)p, where p is a convex capacity, 7 is its dual?
and « € [0,1]. The convex p represents perceived ambiguity and « represents the
ambiguity attitude. By choosing u = (1 — §)m we get a neo-additive capacity. Thus
neo-additive capacities are a subclass of JP-capacities.

The core of a capacity v is the set of probability distributions over S that pointwise

dominate v:3°

Core(v) ={P € A(S)|P(F) > v(E) VE € P(S)}.

The core of a capacity may be empty. The capacities that have a non-empty core
are called balanced. A capacity is exact if its values are equal to the lower envelope

of the core, i.e. if v(E) = B Iélin( )P(E) for all £ € P(S). It is a well-known
eCore(v

fact that convex capacities are exact and exact capacities are balanced but that

28 Note that in the original paper Chateauneuf et al. (2007), the authors use « for the degree of
optimism. We deviate from this as most of the literature uses « as the degree of pessimism.

29 The dual capacity is defined by ji(E) = 1 — u(E¢) for all E C S.

30 The set A(S) is the set of probability distribution over S.
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the reverse implications do not hold. Balanced, exact and convex capacities are
extremely important in the first article of this thesis. We provide an axiomatization
of exact capacities, an open problem in decision-theory ever since these set functions
were introduced in Schmeidler (1972).3! Chateauneuf and Tallon (2002) characterize
balanced capacities. However their characterization is not an axiomatization as it
is not stated purely in terms of preferences. Inspired by their result we propose the

axiom 1 - Ambiguity Aversion which we show axiomatizes balanced capacities.

1.2.2 The Multiple Prior Approach

The Ellsberg Thought Experiment shows that DMs systematically violate the SEU
models, i.e. their preferences cannot be described by a unique probability distri-
bution over the state space. We have already seen that we can explain the typical
preferences by replacing Independence by Comonotonic Independence which leads
to a relaxation of the additivity assumption and to the CEU model. A different
approach is to allow beliefs to be represented not by a single prior as in SEU, but
by a set of priors: the Multiple Prior (MP) approach. In Siniscalchi (2006) the MP

approach is motivated as follows:

“The decision maker may wish to consider multiple possible probabilistic

descriptions of the underlying uncertainty.” 3

The aim is to represent the ambiguity that the DM perceives by a set of priors over
the state space. Let S be a state space and A(S) the set of probability distributions
over S. A prior set is a subset of A(S) which is typically assumed to be non-empty,
convex and compact.®® The probability distributions contained in the prior set can
be interpreted as the priors that the DM cannot rule out. In this sense a prior set

can reflect the perceived ambiguity of the DM.3*

31 We call the relevant axiom 2 - Ambiguity Aversion.

32 Siniscalchi (2006), page 3.

33 Convexity is for convenience as it is behaviourally equivalent if one assumed a prior set or its
convex hull. Compactness is assumed to guarantee a well-defined minimum for acts, given the
prior set.

34 This interpretation poses some problems as a preference relation may have multiple prior set
representations, see later discussion and Siniscalchi (2006) as well as its online appendix.
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Maxmin Expected Utility

The most prominent class of MP models is the Mazmin Expected Utility (MEU)
model. The DM evaluates acts at the worst case scenario of some prior set. The

evaluation of an act f, given a prior set C and utility function u is

pPeC

min / u(f) dP.

This is illustrated in Figure 1.1 for the state space S = {si,s2,s3}. The MEU
approach can be interpreted as modelling preferences of a DM who cannot rule out

the priors in C and has a pessimistic attitude towards ambiguity.

S1

wr)

S3 52

Figure 1.1: The line u(f) is the lowest indifference curve of f. It is evaluated at Q.
Arrows show the direction of increase in expected utility.

Solving Ellsberg with MEU

The pessimism in the MEU model allows us to model the typical preferences of

the Ellsberg Thought Experiment. For some § € [0, 1), consider the prior set C =
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B Y

Figure 1.2: The prior set C reflects the perceived ambiguity of the DM in the Ellsberg
Thought Experiment. It has length 20.

{PeA(S)|P(R)=13%,5 —0 < P(B) < 5+ 6}. The set is depicted in Figure 1.2.%
The prior set reflects the information about the urn. It contains only probability
distributions that put weight % on red. The number § can be interpreted as the

perceived ambiguity. The MEU-evaluations of the four acts can now be calculated.

1

. 1 :
%é?/u(fl) dP = 5100 > (5 —0)100 = Ifl’)lelél/u(fg) dP

and

. 2 2 :
Ilglellcl/u<gg) dP = §100 > (g —4)100 = r}glelg/u(gl) dP.

The Maxmin Expected Utility of f; is therefore greater than for f5 as well as greater
for go than for g;.

35 For the same value of §, the set C and the capacity v from above represent the same preferences.
This is because v is convex and C is the core of v, see later discussion.
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Gilboa and Schmeidler’'s Axiomatization of MEU

Gilboa and Schmeidler (1989) axiomatize MEU preferences in the Anscombe-Aumann
framework. They introduce the following axiom, which is a weakening of Comono-
tonic Independence. It requires independence only when the act with which is mixed

1S constant.

Aziom 1.11 (Certainty Independence). For all acts f,g € F, constant acts [ € L
and o € (0,1)
frmg <= af+(1—-a)lzag+ (1—a)l.

The intuition behind this axiom is that it is not possible to hedge against ambi-
guity when mixing with a constant act, thus preferences should not be affected by
such a mix. The axiom stays silent about mixtures amongst pairwise comonotonic
acts and is thus much weaker than Comonotonic Independence.

Gilboa and Schmeidler (1989) furthermore assume the Uncertainty Aversion ax-

iom.

Theorem 1.6 (Gilboa and Schmeidler). Let S be a finite state space, L the set of
finite-support lotteries over a set of consequences X and - a preference relation on
F=A{f:5— L}. Then the following are equivalent:

1. = satisfies the axioms AA1, AA2, Certainty Independence, AA4, AA5 and

Uncertainty Aversion.

2. There exists a non-empty, compact and convexr set C C A(S) and a non-
constant function u : X — R such that for all f,qg € C

. . . _
fzg I]glelg/U(f) dP_I;lelg/U(g) dp

Furthermore, C is unique and u s unique up to positive affine transformations.

Uncertainty Aversion is responsible for the min-functional. The axiom is thus
responsible for the pessimistic attitude towards ambiguity.?¢ The CEU model does

not have this restriction. However the MEU model has more degrees of freedom

36 We show in our second article that this statement is only true in the presence of the other MEU
axioms, most importantly Certainty Independence. We provide an example of a preference
relation that satisfies Uncertainty Aversion but that cannot be represented by a prior set in
combination with the min-functional.
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than CEU regarding the limitations due to its independence axiom as Comonotonic
Independence constrains beliefs much more than Certainty Independence does. For
instance an MEU preference relation that can be represented by a ball-shaped prior
set does not have a CEU representation. The CEU and MEU models however
have an overlap: convex capacities. Schmeidler shows that a CEU DM with convex

capacity v has the same preferences as an MEU DM with prior set C = Core(v).

a-MEU Preferences

A more general model than MEU is a-MEU, introduced by Ghirardato and Marin-
acci (2002). The idea is to extend MEU to allow also optimistic attitudes towards
ambiguity. Preferences are represented by a non-empty, convex and compact prior
set C, a utility function u and a parameter a € [0,1]. The evaluation of an act is
the a-mix of the worst and the best case scenario, given the prior set and the utility

function. The evaluation of an act f is thus

amin/u(f) dP + (1 —a)%g/u(f) dP.

pPeC

The o parameter reflects the ambiguity attitude of the DM. The case a = 1 coin-
cides with pure pessimism and thus corresponds to MEU. The case o = 0 coincides
with pure optimism and corresponds to Maxmax Expected Utility (MMEU). For
values strictly between 0 and 1, the DM exhibits both pessimistic and optimistic
attitudes towards ambiguity.

The a-MEU approach is intuitively very appealing as an extension of MEU but
poses a few problems. Thus far there does not exist a satisfactory axiomatization of
a-MEU preferences. In Ghirardato et al. (2004) an axiomatization is provided, but
Eichberger et al. (2011) show that in a finite state space the axioms imply o € {0, 1},
i.e. either MEU or MMEU. Furthermore the a-MEU axiom of Ghirardato et al.
(2004) is not purely in terms of preferences. In the third article of this thesis we
provide an equivalent version to their a-MEU axiom which is purely in terms of
preferences. However our axiom does not solve the problem highlighted in Eichberger
et al. (2011).

Another problem of the a-MEU model is that the distinction between perceived
ambiguity represented through the prior set C and ambiguity attitude « is not given.
Siniscalchi (2006) shows that there can be more than one representation of the same

preferences, i.e. for some preference relation - there may exist C, « and C’, o’ which
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both represent »=.3” Thus the a-MEU model does not achieve a clear separation of

perceived ambiguity and ambiguity attitude.

Invariant Biseparable Preferences

Ghirardato et al. (2004) introduce a class of MP preferences which they call in-
variant biseparable (IB) preferences, a class that contains CEU and a-MEU pref-
erences. Crucially, they suggest a solution to the earlier highlighted problem of
non-uniqueness of the prior set for these preferences. They assume the standard
Anscombe-Aumann axioms except Independence, which they replace by Certainty
Independence.® They show that the axioms guarantee the existence of a smallest
prior set which represents an IB preference relation. They interpret this set as the
perceived ambiguity of the preference relation. Furthermore they prove the exist-
ence of a function a which assigns an ambiguity attitude between 0 and 1 to every

act.?® The evaluation of an act f is thus*’
o) min [ () dP+ (1= a(f)max [ u(s) dp

Their set of priors is characterized via the unambiguous preference relation in
the style of Bewley (2002), introduced by Nehring (2001): For - the unambiguous

preference relation ~* is constructed such that for f, g € F
g = af+(1—a)hZag+ (1—a)h, Vh e F.

The act f is unambiguously preferred to g if no hedge can reverse the preference of
f over g. The preference 7—* is an incomplete preference relation on F. Ghirardato
et al. (2004) show that if 7~ satisfies the axioms AA1, AA2, Certainty Independence,
AA4 and AA5, there exists a unique prior set C such that

Frtg e /u(f) sz/u(g) iP vPecC. (1.4)

37 A simple example is C = B.(P) C A(S), i.e. a ball of radius € around some P € A(S), a =
and C' = Bg,a’' = 1.

38 Or put differently: the MEU axioms of Gilboa and Schmeidler (1989) without Uncertainty
Aversion.

39 If we assume Uncertainty Aversion we are back to the Gilboa and Schmeidler (1989). Here
the ambiguity attitude function is constant 1, i.e. pure pessimism.

40 This is a simplified version. We omit some characteristics of the ambiguity attitude function
here. The next pages for details.

3
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1.2 Decision Making under Ambiguity

The act f is unambiguously preferred to ¢ if and only if f results in a higher expected
utility than g for every P € C. The set C is not only the smallest prior set that can
represent =~ but also the Clarke-Differential at 0.*! Throughout this thesis we refer
to this prior set C as the GMM prior set of Z.

Ghirardato et al. (2004) furthermore show that, under their axioms, ambiguity
attitude is constant for acts that perceive “similar ambiguity” given the GMM prior
set C. The acts f and g perceive similar ambiguity (denoted by f =< g, this definition
is also derived from the unambiguous preference relation) if they order the elements

of C in the same way, i.e.

fXg¢:>(/mﬁdpz/ﬁujag¢iL/mmdpz/ﬁ@w@vagec).

They denote by [f] the equivalence class of < that contains f. The acts in [z] are

called crisp acts. Thus an act is crisp if

/mndpz/ﬁuw@ VP, Q € C.

Of course all constant acts are crisp. We can now state the representation result of
Ghirardato et al. (2004).

Theorem 1.7 (Ghirardato et al.). Let 2Z be a preference relation on F that satisfies
AA1, AA2, Certainty Independence, AA4 and AAS5. Then there exists a non-empty,
convex, compact prior set C, a non-constant affine functionu : L — R and a function
a: F= —[0,1] such that 7 is represented by the functional I : F — R defined by

1) = allf)gin [ uf) dP+ (1= a(f)max [ul)aP. (15)

pPeC pPeC

and u and C represent 7* in the sense of (1.4). Moreover C is unique, u is unique up

to positive affine transformations and the function a restricted to F,-\|x] is unique.

Via this construction of the preference functional, Ghirardato et al. (2004) claim
to have achieved a separation of perceived ambiguity and ambiguity attitude. Note
however that there may still be (and will almost always be) multiple representations

of the same preferences.

41 (Clarke-differentiability is a generalization of the Gateaux-differentiability of functionals. The
set of priors is obtained by this “appropriately generalized notion of derivative of a preference
functional”, see Ghirardato et al. (2004).
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Furthermore note that Theorem 1.7 is an only if statement, thus it is possible
that - can be represented by a functional I which has the properties in the theorem
but which does not satisfy the stated axioms. For instance the ambiguity attitude
function may be very steep such that preferences violate the Monotonicity axiom.*?

To sum up this section on CEU and MP approaches, we want to highlight where
the axiomatic differences between these two approaches lie. The crucial difference is
the different version of the Independence axiom implying the different characteristics
of the representation functional. Where CEU assumes Comonotonic Independence,
the classic MP approaches assume Certainty Independence.*®> For instance pref-
erences representable by a convex capacity are characterized by the same axioms
as MEU preferences except that we have Comonotonic Indepedence instead of Cer-
tainty Independence. JP-capacities and the a-MEU model are the natural extensions

of convex capacities and the MEU model to allow also optimistic attitudes towards

ambiguity.

1.2.3 Perceived Ambiguity, Ambiguity Attitude and their

Separation

The question of what perceived ambiguity and ambiguity attitude is behaviourally
and axiomatically and how these two concepts can be separated is a much debated
topic in the literature on decision-making under ambiguity. Several approaches
have already been introduced here. In this subsection we take a detailed look at the

approaches on this topic which are relevant for this thesis.

Two Definitions of Ambiguity Aversion and our Hierarchy of Ambiguity

Aversion

Schmeidler’s definition of ambiguity aversion has been already introduced. He
defines it via the Uncertainty Aversion axiom. In the CEU framework this implies
convex capacities. In the MP approach it implies MEU.

A different approach is taken by Ghirardato and Marinacci (2002). In the spirit
of Yaari (1987), they define ambiguity aversion via a benchmark for ambiguity neut-

rality as well as a comparative notion of ambiguity aversion. Combined this allows

42 See the second article for an example of a MP preference that violates Monotonicity.
43 See the second article for an axiomatization of MP preferences without the Certainty Inde-
pendence axiom.
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1.2 Decision Making under Ambiguity

an absolute notion of ambiguity aversion. Their benchmark for ambiguity neutrality
is subjective expected utility.** Their comparative notion states that if for a prefer-
ence relation some act f is preferred to a constant act [, then a less ambiguity averse
preference relation prefers f to [ as well. That is 77; is more ambiguity averse than

o if for all acts f and constant acts [

fZil = [fZal (1.6)

Kelsey and Nandeibam (1996) independently suggests the same comparative no-
tion of ambiguity aversion for CEU preferences. The absolute notion of Ghirardato

and Marinacci is thus the following.

Definition 1.4 (Ghirardato and Marinacci). A preference relation - reveals ambi-
guity aversion if there exists a subjective expected utility preference Zspy such that
for all acts f € F and all constant acts | € L:

fzl = fZsevl

The intuition is clear: a DM is ambiguity averse if she is more ambiguity averse
than some ambiguity neutral (SEU) DM. Restricted to the CEU framework, a pref-
erence relation 77 is ambiguity averse if and only if the corresponding capacity v has
a non-empty core, i.e. is balanced. Every element of P € Core(r) induces an SEU
preference gy such that - is more ambiguity averse than ~sgy.

Balanced capacities are characterized in the Anscombe-Aumann framework by
Chateauneuf and Tallon (2002) via their “Sure Expected Utility Diversification”.
As already highlighted, this characterization is not purely in terms of preferences
and therefore not a proper axiom. We present in our first article of this thesis an
axiom on mixing preferences that we call 1 - Ambiguity Aversion. It states that if the
mix of indifferent acts constitutes a constant act, then this constant act is preferred.
We show this axiom to be equivalent to Sure Expected Utility Diversification. We
thus provide an axiomatization of balanced capacities. We therefore also axiomatize

the definition of ambiguity aversion by Ghirardato and Marinacci (2002) in the

44 Epstein (1999) introduces a similar approach but takes probabilistic sophistication (Machina
and Schmeidler (1992)) as the benchmark for ambiguity neutrality.
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CEU framework.*® Crucially this implies that the concept of ambiguity aversion by
Ghirardato and Marinacci (2002) is equivalent to an axiom on mixing preferences,
just like Schmeidler’s, but weaker. This crucial insight leads to our Hierarchy of
Ambiguity Aversion, which we introduce in our first article.

The axiom 1 - Ambiguity Aversion is the weakest axiom of the Hierarchy. Our ax-
iom 2 - Ambiguity Aversion is stronger and requires a preference for mixing when the
mix constitutes a binary act.“® We show that this axiom characterizes exact capacit-
ies, an open problem in decision-theory. The hierarchy proceeds in this fashion until
it reaches |S| - Ambiguity Aversion which we show to be equivalent to Schmeidler’s
Uncertainty Aversion and thus to his definition of ambiguity aversion. We therefore
introduce a new conceptual framework with different levels of preference for mixing
amongst acts which has the above two popular definitions of ambiguity aversion as

its extreme cases.

Perceived Ambiguity

In the Multiple Prior model, one would like to interpret prior sets as the perceived
ambiguity of the DM. We have already highlighted the problem that MP preferences
have multiple representations. If there are many representations, then which prior
set is the correct representation of perceived ambiguity? Only after answering this
question one can aim at separating perceived ambiguity from ambiguity attitude.
Ghirardato et al. (2004) provide a uniqueness result via their unambiguous pref-
erence relation that induces a prior set which they interpret as the perceived ambi-
guity. They suggest a comparative notion of perceived ambiguity for their invariant

biseparable preferences: 771 perceives more ambiguity than =, if for all f, g € F
fZeg = 219

Ghirardato et al. show that this is equivalent to the utility functions being pos-
itive affinely related and Cy C Cy, where C; is the GMM prior set of 7Z;,i = {1,2}.
At first this makes intuitive sense: when one prior set is a subset of another then it
reflects less ambiguity. In the third article we criticize their approach. We propose
that perceived ambiguity is location independent, i.e. whether one prior set reflects

more ambiguity than another should not depend on their location within the prob-

45 Actually we axiomatize their definition of ambiguity aversion in a larger framework than CEU.
46 A binary act maps to at most two different lotteries.
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1.2 Decision Making under Ambiguity

ability simplex. We claim that we hereby provide a more satisfactory definition of
comparative perceived ambiguity. As we show in the article, our approach allows
an application to games as well as a very general equilibrium existence result, since

we can exogenously fix degrees of perceived ambiguity for players.

Separation of Perceived Ambiguity and Ambiguity Attitude: Exact Capacities

We have introduced several definitions and comparative notions for both perceived
ambiguity and ambiguity attitude. Separating these two concepts is tricky. To
illustrate that this separation still allows a fruitful debate consider the following
absurdity: restricted to exact capacities, the comparative notion of ambiguity aver-
sion by Ghirardato and Marinacci (2002) as well as Kelsey and Nandeibam (1996)
and the comparative notion of perceived ambiguity by Ghirardato et al. (2004) are
identical. To illustrate this, assume that 7~; and 7 are representable by the exact
capacities v and v, respectively. Assume that 77; is more ambiguity averse than
5 according to the definition of Ghirardato and Marinacci as well as Kelsey and
Nandeibam.
Kelsey and Nandeibam (1996) shows that this is equivalent to

11 (E) < 1y(E) for all E € P(S).
It is easily shown that this in turn is equivalent to
Core(vy) C Core(vy)

and that this is equivalent to
CQ g Cla

where C; and Cy are the GMM prior sets of the preferences —; and =, respectively.*”
This in turn, according to Ghirardato et al., is equivalent to 77; perceiving more
ambiguity than 77,.

This illustrates the curious fact that for exact capacities, the notion of compar-
ative ambiguity aversion by Ghirardato and Marinacci (2002) as well as Kelsey and

Nandeibam (1996) is exactly the notion of comparative perceived ambiguity by Ghir-

47 Note that the GMM set of priors is not equal to the core, it is always a superset as well as
equal to the core if and only if the capacity is convex.
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ardato et al. (2004). In our opinion this suggests that the questions about the correct
definition of perceived ambiguity and ambiguity aversion is still very controversial.

In this thesis we suggest that, in a to be specified way, a larger set of priors re-
flects more perceived ambiguity than a small set of priors, see our third article. We
furthermore suggest that comparative ambiguity aversion is captured by our Hier-
archy of Ambiguity Aversion, hereby following the spirit of Schmeidler’s intuition of
defining ambiguity aversion via a preference for mixing amongst acts, see our first

article.

Separation of Perceived Ambiguity and Ambiguity Attitude: JP-Capacities

JP-capacities and especially their subclass neo-additive capacities allow a nice separ-
ation of perceived ambiguity and ambiguity attitude. These classes of preferences do
not suffer from having multiple representations within their class.*® The perceived
ambiguity is uniquely represented by the core of the convex part of the capacity
and ambiguity attitude is represented by the a-parameter. Eichberger and Kelsey
(2014) successfully use this fact in application to games as we illustrate in the fourth
article. The clear separation of perceived ambiguity and ambiguity attitude makes
it possible to perform comparative statics in one factor whilst holding the other
constant. This way the influence of one factor can be analyzed without the other

one interfering.

48 For instance a JP-capacity v cannot be represented by both some convex capacity p and
a € ]0,1] as well as some different p/, o/
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1.3 Ambiguous Games

1.3 Ambiguous Games

The CEU and MP models introduced thus far can be utilised to model strategic
interaction under ambiguity. Capacities or prior sets can for instance represent
ambiguous beliefs of players about the strategic behaviour of the other players.
The crucial part is to construct an equilibrium concept. In a Nash equilibrium,
players choose optimal strategies given their beliefs. These beliefs are probability
distributions over the pure strategy set of the other players and are consistent in
the sense that the support of the beliefs only contain optimal responses of the other
players. One approach for ambiguous games is to extend this idea of consistency to
ambiguous beliefs by defining a convincing support notion for capacities or prior sets.
Several approaches have been proposed. In the following we introduce the theories
of the papers that are relevant for our contribution, most importantly Eichberger
and Kelsey (2014). In the third and fourth article of this thesis we add to the
literature on ambiguous games. We introduce a concept of perceived ambiguity in
the MP approach which allows an application to normal-form games. We prove a
very general equilibrium existence result and illustrate a broad range of modelling
capabilities. Here we only sketch our contribution as it is discussed in detail in the
third article.

Framework, Notation and Motivation for Ambiguous Games

We study normal-form games. A normal-form game I' = (V; S;,u; : 1 < i < N)
consists of a finite set of players N, finite pure strategy sets S; and payoft function
u; for player i. The set of pure strategy combinations is denoted by S and S_; is the
set of strategy combinations of player i’s opponents. Player ¢ has payoff function
u; S — R. The set A(S_;) denotes the set of probability distributions over S_;.

Player 2
L R
U [100,1 | 0,0
Player 1 99.1 | 99,0

Figure 1.3: Is the Nash Equilibrium a good prediction?

We illustrate the ideas and theories by means of the game in Figure 1.3. The

game has the strategy combination (U, L) as its unique Nash Equilibrium. However
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strategy D is very tempting for player 1 as it avoids getting 0 when R is played
and is hardly worse then U when L is played. It is thus imaginable that the Nash
Equilibrium provides a bad prediction of the outcome and that we observe (D, L)
instead.

We illustrate how models with ambiguous beliefs provide the flexibility to have the
strategy combination (D, L) as an equilibrium under ambiguity. Such models thus
have the potential to model behaviour patterns that are closer to real-life behaviour

in games where the Nash Equilibrium fails.

1.3.1 Eichberger and Kelsey (2014)

Eichberger and Kelsey (2014) represent beliefs of players about the strategic choice
of their opponents by JP-capacities. As already highlighted this capacity class has
the nice characteristic of a clean separation of perceived ambiguity from ambiguity
attitude. The perceived ambiguity of a JP-capacity v = au+ (1 —«)f is represented
by the convex capacity p and its core. The ambiguity attitude is represented by
the parameter o. This separation makes comparative statics exercises in perceived
ambiguity and ambiguity attitude possible.*

To define an equilibrium concept, Eichberger and Kelsey (2014) need a support
notion for JP-capacities. This allows the definition of Equilibrium under Ambigu-
ity. In equilibrium, the support of the beliefs of the players only contain optimal
strategies for the other players, given their beliefs. Through this approach the idea
of consistency of Nash Equilibrium is generalized to ambiguous games.

Eichberger and Kelsey (2014) define the support of a JP-capacity v = apu + (1 —
a)i:P(S) —[0,1] as

supp(v) = (] supp(P),
PeCore(p)
where as usual supp(P) = {s € S|P(s) > 0} for P € A(S). This support notion for
prior sets, in this case Core(u), goes back to Ryan (2002).
In equilibrium the players maximize Choquet Expected Utility given their beliefs.

The following equilibrium concept captures this.

49 We introduce their approach for performing comparative statics in detail in our fourth article.
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Definition 1.5 (Equilibrium under Ambiguity: Eichberger and Kelsey). Let I' =
(N;S;j,u; 1 < i < N) be a normal-form game and consider JP-capacities v; :
P(S—;) — [0,1] for i € {1,...,N}. Then v = (D1,...,Un) is an equilibrium in
beliefs under ambiguity (EUA) if for alli € {1,..., N}

0 # supp(v;) C Xz arg magc/uj(sj,s_j) dv;,
$5€5;
with [ u;(sj, s_;) db; being the Choquet integral of the strategy s; given the capacity
Uj.
If supp(;) contains just one element §; for alli € {1,..., N} then § = (51,...,5n)
is called singleton equilibrium in beliefs under ambiguity.
Eichberger and Kelsey apply this model to games with positive externalities and

increasing differences. We illustrate their results in detail on our fourth article.

1.3.2 Our Multiple Prior Approach

In our third article, we represent beliefs of players by MP preferences: a prior set
C; over A(S_;) as well as an ambiguity attitude «; € [0, 1] over the players’ own
strategies S;.%° For player ¢ with belief C; C A(S_;) and ambiguity attitude function

«; the evaluation of a strategy s; € S; is therefore
(o 1C ) = s mi s ) dP - (1 — o s ) dP.
Vi(silCi, ci) 051,11}1618/“(8175 i) dP + ( al)gleacéf/U(Sz,s i) d

To define an equilibrium notion, we adapt the support and equilibrium notion of
Eichberger and Kelsey (2014). It is the natural extension of their approach to the
MP model and also uses the support notion of Ryan (2002).

Definition 1.6. Let C be a prior set on A(S). The support of C is defined by

supp(C) = () supp(P).
peC

The support of a prior set consists of the strategies that receive positive weight by

all elements of the prior set. In equilibrium, the support of the prior set is non-empty

50 For a simpler illustration we reduce attention to a-MEU preferences in this subsection. In
the third article we assume a much larger class of preferences where ambiguity attitude is not
necessarily constant.
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and only contains the opponents’ best responses given their beliefs.

Definition 1.7 (Equilibrium under Ambiguity). Let I' = (N;S;,u; : 1 < i < N) be
a normal-form game. The tuple (C;, ;)N is an Equilibrium under Ambiguity if for
alll1 <1< N,

0 # supp(Ci) C Xz arg max [V(s;|C;, )]

If supp(C;) contains just a single element §; € S; for all i € {1,..., N} we refer
to the equilibrium as a singleton equilibrium and § = (§;,...,S5y) as its strategy
profile.

In the third article we introduce a measure of perceived ambiguity in the MP
model. The key and desired implication of this measure is that two prior sets reflect
the same perceived ambiguity if and only if they only differ in location. This is
illustrated in Figure 1.4. This definition allows us to exogenously fix perceived

ambiguity for the players without loosing dynamics.

S1

S3 52

Figure 1.4: The prior sets C; and C, differ only in location and thus reflect the same
ambiguity.

We prove equilibrium existence for normal-form games. The class of preferences
considered is a superclass of IB preferences and therefore also of CEU and a-MEU.

Thus our equilibrium existence result holds for these preference classes as well.
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1.3.3 Back to the Example

Reconsider the normal-form game from Figure 1.3. We have argued that strategy
D for player 1 is likely to occur, even though the strategy combination (U, L) is the
unique Nash equilibrium. We show that both of the above approaches can easily

induce the strategy combination (D, L) as an equilibrium under ambiguity.

Eichberger and Kelsey (2014) applied to the Game

Assume that we can represent the beliefs of players by the neo-additive capacities
VI = Unygy.0q a0 Vo = Uy 5, 0,00 Since L strictly dominates R, player 2 will always
play L, regardless of the beliefs about what player 1 does. We can thus restrict
attention to player 1.

Player 1 believes that player 2 plays the optimal strategy L, i.e. 7(L) = 1. But she
is not completely confident in this belief. Her confidence is reflected by (1 — d;), her
degree of perceived ambiguity by d;. Furthermore she has degree of pessimism «;.
Thus the belief of player 1 can be represented by the capacity v4 : P({L, R}) — [0, 1]
with

(

0,
(1 — &1)51,
(1 — 041)61 +1-— 51,
1

ey IS I S B ey
I
h NS

b

The Choquet expected utilities of the two strategies U and D, given v; can be
calculated with equation (1.3):

/U dVl = (1 — a1)51100 + @1510 + (1 — 51)100

/D dV1 = 99.

Thus D = U if and only if a;6; > ﬁ. Thus for a;6; > 1—(1)0, the pair of capacities

(v1,10) with vy = vy, 5,4, such that (D) = 1 constitutes an Equilibrium under

51 Recall that neo-additive capacities are a subclass of JP-capacities. Thus we are within the
framework of Eichberger and Kelsey (2014). We choose neo-additive capacities for this example
because of their intuitive interpretation.
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Ambiguity. The strategy combination (D, L) is a singleton equilibrium. Indeed it is

straightforward to see that for values of §; and oy such that a6, > the above

ot
is the unique equilibrium under ambiguity.

This result makes sense intuitively. When the degrees of perceived ambiguity §; as
well as pessimism « are sufficiently large, player 1 does not choose U, but D instead
to avoid the possibility of the bad outcome 0. Mathematically this is possible since
when «16; gets larger, the Choquet integral puts more weight on the bad outcome
R when U is evaluated. This holds even when R is not in the support of v.

The example shows how the model of Eichberger and Kelsey (2014) can cope with

behaviour patterns that are intuitive but clash with the Nash Equilibrium concept.

The Multiple Prior Approach applied to the Game

In a game with two players and two strategies the set S_; consists of two elements.
This implies that prior sets are intervals. A prior set in the game is thus of the
kind C; = Conv(P,Q|P,Q € A(S_;)). We can represent perceived ambiguity by the
length of this interval, i.e. by a parameter §; € [0,1].52

The evaluation of strategy U, given a prior set C; and ambiguity attitude a; is

almin/U dP+(1—a1)max/U dP.
PeCy

PeCy

Ci

=~ @
[
[

A(SS)
01

Figure 1.5: The equilibrium belief of player 1 with perceived ambiguity d;.

For the prior set C; with interval length ¢; depicted in Figure 4.7, the evaluation
of U is
a1(010 + (1 — 61)100) + (1 — a)100.

L
100"

Consider any prior set Cy such that supp(Cy) = {D} and some ambiguity attitude

The evaluation of D is again 99. Thus again D > U if and only if a1, >

52 To exogenously fix perceived ambiguity would mean to fix an interval-length. Our result in
the third article implies equilibrium existence for any exogenously fixed interval length.
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ay € [0,1]. Note that supp(C1) = {L}. Now for and; > 5 the tuple (C;, o),

constitutes an Equilibrium under Ambiguity. This illustrates how our MP approach

can model deviations from the Nash Equilibrium prediction.
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2 A Hierarchy of Ambiguity Aversion
and the Axiomatization of

Balanced and Exact Capacities

Abstract

This article introduces a new conceptual framework of ambiguity aversion. Higher
levels of ambiguity aversion are axiomatically characterized by a more pronounced
preference for mizing amongst acts. The weakest level of this hierarchy corresponds
to a preference for mixing, conditional on this mix eliminating all ambiguity. We
show that this axiomatically characterizes the definition of ambiguity aversion by
Ghirardato and Marinacci (2002). The strongest level of the hierarchy corresponds
to an unconditional preference for mixing and matches the definition of ambiguity
aversion by Schmeidler (1989). We illustrate how preferences can exhibit mixing
preferences that lie strictly in between these two approaches.

We show that every level of the hierarchy is characterized by a specific geometric
property concerning the set of measures that dominate the preference relation. By-
products of our approach are the axiomatizations of balanced and exact capacities,
thus far open problems in decision theory.

Keywords: Ambiguity Aversion, Choquet Expected Utility, Balanced Capacit-

ies, Exact Capacities, Multiple Priors

2.1 Introduction

Ambiguity aversion is the aversion towards unknown risk. Ellsberg (1961) and

others have demonstrated that ambiguity aversion occurs systematically in human
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2 Hierarchy of Ambiguity Aversion

decision-making. This sparked several approaches for defining ambiguity aversion
in terms of preferences.

Schmeidler (1989) defines ambiguity aversion through preference for mixing amongst
acts.! The intuition is that mixing smooths out utility distributions across states
and thus provides a hedge against ambiguity. An ambiguity averse decision maker
(DM) is thus better off. Ghirardato and Marinacci (2002) propose an alternative
definition. A DM is ambiguity averse if she is, in the spirit of Yaari (1987), more
ambiguity averse then some subjective expected utility (SEU)? DM: whenever the
DM prefers an act to a constant, the SEU DM does so as well. This article shows
that their definition is characterized by a preference for mixtures which eliminate
all ambiguity, i.e. a preference for mixtures that constitute a constant act. An
ambiguity averse DM is thus only guaranteed to prefer perfect hedges.

Schmeidler’s definition is strong as it postulates a preference for mixing regardless
of what act the mix constitutes. In contrast, the definition of Ghirardato and Mar-
inacci is weak as it postulates a preference for mixing only when the mix eliminates
all ambiguity.

These two approaches are the extreme cases of what we refer to as the Hierarchy
of Ambiguity Aversion. We illustrate how DM’s can exhibit levels of ambiguity
aversion that lie strictly in between those approaches. Every level of the hierarchy
is characterized through an axiom on mixing preferences. As we go up the hierarchy

the corresponding axiom increases in strength.

An Example

To build intuition consider the following example. There are three states of the
world si, $o, 53 and three acts f, g, h. The consequences [y, s, 3 are lotteries over
some set of prizes.

Assume that the DM is indifferent between f,g and h. The %—mix between the
acts f and g results in the lottery %ll + %lg in every state and thus eliminates all

ambiguity. It is a perfect hedge against ambiguity. The %—mix between f and h

reduces ambiguity to two different lotteries: %ll + %13 and %ll + %IQ. It reduces

1

5-mix between g and A results in three

ambiguity but does not eliminate it. The

different lotteries: %lg + %lg, l, and [;.

1 Acts are mappings from the state space into finite-support lotteries on some set of prizes.
Mixtures are performed pointwise. See section 2.2 for the details.
2 Ghirardato and Marinacci (2002) suggest that SEU decision makers are ambiguity neutral.
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S1 S2  S3
Flh bl
glla o kL

Is 1o

It is plausible that an ambiguity averse DM prefers the %—mix between the acts
f and g. However, one may ask whether ambiguity aversion necessarily leads to a

preference for the %-mix between f and h as well as between g and h.

Consider three types of our decision maker: DM 1, DM 2 and DM 3. Assume
that DM 1 prefers all three mixes. DM 2 prefers the mix between f and g as well as
between f and h. DM 3 only prefers the mix between f and g. We suggest that DM
1 exhibits a stronger level of ambiguity aversion than DM 2, who exhibits a stronger
level of ambiguity aversion than DM 3. The rationale for this is the following: DM
3 is willing to mix if this eliminates all ambiguity, but she is not willing to mix
otherwise. DM 2 is willing to mix in the cases where ambiguity is reduced to one
or two different lotteries. Thus DM 2 is willing to mix when ambiguity is reduced
by a lesser extent and thus exhibits a higher level of ambiguity aversion then DM
3. DM 1 is always willing to mix, regardless of how much the ambiguity is reduced

by, and thus exhibits a higher level of ambiguity aversion than DM 2.

The Hierarchy of Ambiguity Aversion

In the above example DM 1 is ambiguity averse in the spirit of Schmeidler (1989).
DM 3 is ambiguity averse in the spirit of Ghirardato and Marinacci (2002). DM 2

exhibits a level of ambiguity aversion that lies strictly in between the two.

We characterize different levels of ambiguity aversion in the spirit of this example.
Let S be a finite state space. A DM who prefers all mixtures that reduce ambiguity
to at most k different lotteries, k € {1,...,|S]|}, is called k - ambiguity averse. The
higher is k, the more pronounced is the preference for mixing and thus the ambiguity

aversion. This axiomatic structure is the Hierarchy of Ambiguity Aversion.
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Outline

The article is organized as follows. After introducing the framework and notation
in Section 2.2, we introduce our Hierarchy of Ambiguity Aversion in Section 2.3
and show that the extreme cases are equivalent to the well-known approaches by
Schmeidler (1989) and Ghirardato and Marinacci (2002). Section 2.4 discusses the
special case of Choquet Expected Utility preferences. Section 2.5 provides examples.

Section 2.6 concludes. All proofs are in the Appendix.

2.2 Framework and Notation

We assume the classic framework of Anscombe and Aumann (1963). Consider a

finite state space S. The powerset of S, P(S) is the set of events.

We study preference relations 77 on the set of acts F = {f : S — L}, where
L is the set of finite-support lotteries over some set of prizes X. The asymmetric
and symmetric components of 7~ are denoted by > and ~, respectively. With the
usual abuse of notation, L also denotes the set of constant acts. Mixtures of acts
are performed pointwise: for f,g € F and X\ € [0, 1] we denote by Af 4+ (1 — X)g the
act which results in Af(s) + (1 — X)g(s) € L for all s € S.

An act is called n - act if it maps to at most n different lotteries, i.e. it holds that
{l € L|F3s € S: f(s) =1} < n. The set of n - acts is denoted by F,,. Thus F; = L
is the set of constant acts and F is the set of binary acts. Binary acts map to at
most two different lotteries. They can be written as Igl’ with [,I'’ € L and F C S,
i.e. the act results in the lottery [ on E and lottery I’ on E€, the complement of E.

Let w : L — R be a non-constant affine function (utility function). An act is
called n - expected utility act if it maps to at most n different expected outcomes,
i.e. it holds that |{a € R|3s € S : u(f(s)) = a}| < n, where u(f(s)) is the expected
utility of the act f in state s. The set of n - expected utility acts is denoted by F.
Note that for every utility function w it holds that F,, C F* but the reverse does
not hold.

We denote by By the set of real-valued functions on S. For f € F and utility
function v : L — R, the function u(f) is the element of By defined by u(f)(s) =
u(f(s)) for all s € S. A functional I : By — R and utility function v : L — R
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2.2 Framework and Notation

represent a preference relation - if for all f, g € F

fzg = Iu(f) = 1(u(g))-

The function Iou : F — R is called a representational functional of 7. A functional
I : By — R is monotonic if I(¢) > I(¢) for all ¢,¢» € By for which it holds
that ¢(s) > 1(s) for all s € S. A functional I : By — R is constant-linear if
I(ap+b) =al(¢) +bfor all p € By,a >0 and b € R.

To prepare for later discussion we introduce the concept of capacities and the
Choquet Integral that will be of specific interest later on. A capacity is a normalized
and monotonic set-function on S. The Choquet Integral (Choquet (1954)) of a
function Y € By with respect to a capacity v : P(S) — [0, 1] is defined by

0 00
/(V({SES|Y( )>x}) —1) x+/V{SES|Y s) > x})dx
o 0
where the integrals on the right side of the equation are Riemann integrals.
The set of probability distributions over S is denoted by A(S). The core of a
capacity v : P(S) — [0, 1] is the set of probability distributions over S that pointwise

dominate v:
Core(v) = {P € A(S)|P(E) > v(E), VE € P(S)}.
For E € P(S) and capacity v we define
,(E) ={P € A(S)|P(E) =v(E)},

the set of probability distributions over S that put the same weight on E as the
capacity does. There are three capacity classes that are particularly relevant for
this paper: balanced, exact and convex capacities. A capacity v is balanced if its
core is non-empty. A capacity v is ezact if its capacity values are equal to the lower

envelope of the core, i.e. when v(E) = . rélin( )P(E) for all £ € P(S). A capacity
€Core(v

v is convex if v(Ey) +v(Ey) < v(EyUEy) +v(E1NE,) for all By, Ey € P(S). Itisa
well-known fact that convex capacities are exact and exact capacities are balanced
but that the reverse implications do not hold. A preference relation is a Subjective

FEzpected Utility (SEU) preference if it can be represented by a utility function and
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an additive capacity.

Axioms and the Set of Dominating Measures D-

Throughout this article we consider preferences that satisfy the following axioms.

Aziom 2.1 (Weak Order). 1. For all f,g € F either f =~ gor g f.
2. Forall f,g,h € Fif f 2~ g2z hthen f = h.

Aziom 2.2 (Certainty Independence). For all f,g € F,l € L and X € (0, 1]

frmg <= AM+{A=-NlZ I+ (1=AL
Aziom 2.3 (Archimedean). For all f,g,h € F if f > g > h then there exist \, u €
(0,1) such that A\f + (1 = XN)h = g = uf + (1 — p)h.
Aziom 2.4 (Monotonicity). For all f,g € F if f(s) 7 g(s) for all s € S then f 77 g.
Aziom 2.5 (Non-Degeneracy). There are f, g € F such that f = g.

Ghirardato et al. (2004) refer to preferences satisfying these five axioms as invari-
ant biseparable. They show that a preference relation 7 satisfies these five axioms if
and only if there exists a nonconstant affine v : L — R and a monotonic, constant-
linear functional I : By — R such that for all f,g € F

fzg = Iu(f) = 1(ulg)),

i.e. I owu represents 2~. This result makes possible the following definition. For an
act f € F define

Hioulf) = {P e AS) S ulf(s)P(s) = I<u<f>>} -

seS

The set Hou(f) consists of the probability distributions over S that result in an
evaluation of f that is at least as good as the evaluation of f with the representation

functional. Furthermore define

ses

Hiou(f) = {P € A(S)| Y _ulf(s))P(s) = I(U(f))} :
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2.2 Framework and Notation

The set Hpo,(f) consists of the probability distributions over S that result in an
evaluation of f that is exactly as good as the evaluation of f with the representation
functional.

These sets are guaranteed to be non-empty for all f € F due to Proposition 7 in
Ghirardato et al. (2004) which states that

PrerlAagé) 2 u(f(s)P(s) > I(u(f)) > PrenAi?S) 2 u(f(s))P(s)text forallf € F.

Consider the set

Dy = {P € A(S)| Y _ulf(s)P(s) = L(u(f)) Vfe f},

seS

a set that is introduced in Ghirardato and Marinacci (2002).3 Tt is the set of SEU
measures inducing preferences which assign weakly higher expected utility to all

acts. Or put differently: D> = () Hiou(f). The set Dy is convex as well as compact
feF

and may be empty. An important special case is when 2~ can be represented by the

Choquet Integral with respect to some capacity v. It then holds that D> = Core(r).

To see that this is the case consider a capacity v : P(S) — [0,1]. For a binary act

f =1gl' € F with [ 7 I' it holds that Hyo,(f) = {P € A(S)|P(E) = v(E)} =

H,(E) due to the way the Choquet Integral is defined. This implies

With this insight we can state an alternative definition of exact capacities which

becomes convenient in Section 2.4. A capacity v : P(S) — [0, 1] is exact if

Hio(f) N Core(v) # 0 for all f € F.

3 Note that this is not the set C derived from the above five axioms in Ghirardato et al. (2004),
i.e. the Clarke-Differential at 0. One can show that D C C with equality if and only if the
preferences are of the Maxmin expected utility type.

4 We therefore view Dy as a generalization of the core concept.
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2 Hierarchy of Ambiguity Aversion

2.3 The Hierarchy

For k € {1,...,]S|} consider the following axiom.

Aziom 2.6 (k - Ambiguity Aversion). If f1,...,fn € F, aq,..., 0 >0, >y = 1,
i=1

> aifi = [ € Fi, then fi ~ -~ f, implies f Z fi.

i=1

The axiom states a preference for mixing amongst acts if the mixture constitutes
a k - act. A DM satisfying this axiom wants to mix amongst acts if this mix
results in an act which maps to at most k different lotteries. The strength of the
axiom increases with k: as k becomes larger the preference for mixing amongst acts
increases.

In this section we show that the case k = 1 corresponds to the definition of ambi-
guity aversion by Ghirardato and Marinacci (2002) and that the case k = |S| corres-
ponds to the definition of ambiguity aversion by Schmeidler (1989). This provides
the justification for our interpretation of Axiom 2.6 as an axiomatic Hierarchy of

Ambiguity Aversion.

2.3.1 Definition of Ambiguity Aversion by Ghirardato and
Marinacci (2002)

Ghirardato and Marinacci (2002) define comparative ambiguity aversion in the spirit
of Yaari (1987): a preference relation 7Z is more ambiguity averse than 2=’ if for all
f € Fand !l € L it holds that

ol = 7L

The intuition is that if a DM prefers some act to a constant act, then a less ambiguity
averse DM does so as well. Ghirardato and Marinacci suggest that SEU preferences
are ambiguity neutral.’

This allows the following absolute notion of ambiguity aversion, the intuition being
that a preference relation reveals ambiguity aversion if it is more ambiguity averse

then some ambiguity neutral preference relation.

° Epstein (1999) introduces a similar approach but takes probabilistic sophistication (Machina
and Schmeidler (1992)) as the benchmark for ambiguity neutrality.
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2.3 The Hierarchy

Definition 2.1 (GM - Ambiguity Aversion). A preference relation 7 is ambiguity
averse if there exists an SEU preference sgy such that for oll f € F and l € L it
holds that

[zl = fZseul

The following theorem shows that this definition is characterized by the axiom 1

- Ambiguity Aversion.

Theorem 2.1. Under the five standard azxioms, a preference relation satisfies GM

- Ambiguity Aversion if and only if it satisfies the axiom 1 - Ambiguity Aversion.

2.3.2 Definition of Ambiguity Aversion by Schmeidler (1989)

Schmeidler (1989) introduces the following axiom.”

Aziom 2.7 (Schmeidler - Ambiguity Aversion). For all f,g € F with f ~ ¢ and
a € [0,1] it holds that af + (1 — a)g = g.

The axiom states that the DM always has a preference for mixing. Schmeidler
suggests that this axiom characterizes ambiguity aversion as mixing smooths out

utility distributions across states and thus reduced ambiguity.

Definition 2.2 (Schmeidler - Ambiguity Aversion). Under the five standard axioms,
a preference relation 7, is ambiguity averse if it satisfies the axiom Schmeidler -

Ambiguity Aversion.

The following theorem shows that our axiom |S| - Ambiguity Aversion is equival-

ent to this definition.

Theorem 2.2. A preference relation satisfies Schmeidler - Ambiguity Aversion if

and only if it satisfies the axiom |S| - Ambiguity Aversion.

Note that this result is model free, i.e. Theorem 2.2 does not rely on preferences

to satisfy the five standard axioms, which Theorem 2.1 does.”

6 Schmeidler calls the axiom “Uncertainty Aversion”. Recall that in this thesis, the term “un-
certainty” is used in its generic sense, comprising risk and ambiguity. We therefore deviate
from Schmeidler’s terminology.

7 We conjecture that there is a model-free version of Theorem 2.2. See discussion at the end of
the main text of this article.
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2 Hierarchy of Ambiguity Aversion

2.3.3 The Hierarchy

The two preceding subsections illustrate that two of the most popular definitions
of ambiguity aversion are characterized by the extreme cases k = 1 and k = |S]
of our axiomatic hierarchy introduced through Axiom 2.6. This suggests that the
intermediate cases k € {2,...,]S|—1} of Axiom 2.6 correspond to levels of ambiguity
aversion in between these popular definitions. The following definition thus suggests
itself.

Definition 2.3 (k - Ambiguity Aversion). Under the five standard axioms, a prefer-
ence relation exhibits k - Ambiguity Aversion if it satisfies the axiom k - Ambiguity

Awversion.

Thus a DM exhibits level k£ ambiguity aversion if her preferences satisfy the axiom

k - Ambiguity Aversion.

2.3.4 The Relationship between k£ - Ambiguity Averse

Preferences and the set Dt

Consider some preference relation 2Z. Recall that D- corresponds to the set of
probability measures that induce preferences which assign weakly higher expected
utility to all acts. If for some act f € F there is a gap between Hjp.,(f) and
Dy, i.e Hiou(f)NDx =0, then f is evaluated in a pessimistic way in the sense that

I(u(f)) < Ignipn Y ses u(f(s))P(s). The act f is evaluated more pessimistic then any
€Dy

SEU DM, whose preferences can be represented by some P € Dy, does. Conversely,
if for some f € F there is no gap between Hyo,(f) and Dy, i.e. Hiow(f) N D # 0,
then f is not evaluated in such a pessimistic way. We can find an SEU DM, whose
preferences can be represented by some P € Dy, who evaluates f in the same way.

The following theorem shows that there is an intuitive relationship between the
axiomatic Hierarchy of Ambiguity Aversion and the abovementioned gaps between
Hpow(f) and Dx. A preference relation is level k - ambiguity averse if and only if

there are no gaps for all k - acts.®

Theorem 2.3. Let = be a preference relation on F satisfying the five standard

axioms. Then the following are equivalent:

8 The reason for the truth of this result is that there is a gap for some f € F if and only if f
is not necessarily preferred when it constitutes the mix of some indifferent acts. This is the
crucial step in the proof of Theorem 2.3.
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1. = satisfies k - Ambiguity Aversion.
2. Hiow(f) "Dy # 0 for all f € Fi.

The case £ = 1 is a consequence of Theorem 2.1 and Theorem 12 from Ghir-
ardato and Marinacci (2002).° The case k = |S| is a consequence of the classic
Maxmin Expected Utility representation result from Gilboa and Schmeidler (1989)

in combination with Theorem 2.2.

2.4 A Special Case: the Choquet Expected Utility
Model

This section analyses the consequences that the Hierarchy of Ambiguity Aversion
has for the Choquet Expected Utility (CEU) model. We show that the case k = 1
characterizes balanced capacities!® and that the case k = 2 characterizes exact
capacities. Both of these preference classes have thus far lacked an axiomatization.
The case k = |S| characterizes convex capacities, a direct consequence of Theorem
2.2.

Furthermore we show that within the CEU model, for k = 3,...,|S|, the axioms
k - Ambiguity Aversion are not independent, i.e. they all characterize the same
class of capacities: convex capacities. At first this result may be surprising as k
- Ambiguity Aversion increases in strength with k. It turns out however that the
crucial axiom of the CEU framework, Comonotonic Independence, is sufficiently
strong to prevent a distinction between these levels of ambiguity aversion. The
axiom Certainty Independence however is weak enough to allow a proper distinction

between levels of the hierarchy, see in particular Example 2.2 below.

2.4.1 Choquet Expected Utility

The CEU model was introduced and axiomatized by Schmeidler (1989). The axioms

of the model are the five axioms from above with Certainty Independence replaced

9 Note that Hyo,(f) N Dy # () for all f € F1 is equivalent to the non-emptyness of D:-.

10 Chateauneuf and Tallon (2002) characterize balanced capacities with their Sure Expected
Utility Diversification. However this characterization is not a proper axiomatization as it is
not purely in terms of preferences over acts. Their result was however a huge, if not the
biggest, inspiration for this article.
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2 Hierarchy of Ambiguity Aversion

by the axiom Comonotonic Independence. It requires independence only for acts

that are pairwise comonotonic.!?

Aziom 2.8 (Comonotonic Independence). For all pairwise comonotonic acts f, g, h €

F and o € (0,1)
frmg <= af+(1—-a)hzZag+ (1 —a)h.
Schmeidler states the following representation result.

Theorem 2.4 (Schmeidler (1989)). Let 7 be a preference relation on F. The

following are equivalent:

1. = satisfies the axioms Weak Order, Monotonicity, Comonotonic Independence,

Archimedean and Non-Degeneracy.

2. There exists a capacity v : P(S) — [0,1] and an affine function v : L — R
such that for all f,g € F

fro = [una= [ a
where [u(f) dv is the Choquet Expected Utility of the act f, given u and v.

Furthermore, v is unique and u is unique up to positive affine transformations.

We have the following corollary of Theorem 2.3 which characterizes balanced and
exact capacities. It follows directly from the fact that Core(r) = Dy when 2 is

represented by the capacity v.

Corollary 2.1. Let = be a preference relation on F satisfying the CEU axioms
from Theorem 2.4. Let v be the corresponding capacity. Then for k € {1,2,|S|} the

following are equivalent:
1. 7= satisfies k - Ambiguity Aversion.

2. Hiou(f) N Core(v) # 0 for all f € Fy.

" Two acts f,g € F are comonotonic if there exist no s,s’ € S such that f(s) = g(s) and

9(s") = ().
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Corollary 2.1 implies that 1 - Ambiguity Aversion axiomatizes balanced capa-
cities,'? that 2 - Ambiguity Aversion axiomatizes exact capacities and that |S| -
Ambiguity Aversion axiomatizes convex capacities.

The following theorem shows that these three cases correspond to the only levels
of the hierarchy that the CEU model can distinguish amongst. It implies in par-
ticular that a CEU preference satisfying 3 - Ambiguity Aversion is automatically
represented by a convex capacity. Thus within the CEU framework, for £ > 3, the

k - Ambiguity Aversion axiom is equivalent to Schmeidler - Ambiguity Aversion.

Theorem 2.5. Under the CEU axioms from Theorem 2.4, k - Ambiguity Aversion

characterizes convex capacities for all k > 3.

2.5 Examples

This section contains 4 examples. The first example demonstrates that preferences
can be 2 - ambiguity averse without being 3 - ambiguity averse. The second ex-
ample demonstrates that preferences can be 3 - ambiguity averse without being 4
- ambiguity averse. The other two examples live within the CEU framework. The
third example introduces a preference relation that is 1 - ambiguity averse but not
2 - ambiguity averse, i.e. it is represented by a capacity that is balanced but not
exact. The last example introduces a preference relation that is 2 - ambiguity averse
but not 3 - ambiguity averse, i.e. it is represented by a capacity that is exact but
not convex.

Throughout the examples we assume for simplicity that acts map to utilities,
i.e. to the real numbers. In the first two examples the following notation is con-
venient: for any act f € F there exists a (non-unique) ordering of the state space
87875 ,s‘fl such that f(s}) > f(s7) > --- > f(s‘f'). For a partition E,, ..., E, of
the state space S we use the notation x5 22 .. Tp-1p, ,Tn tO denote the act that
results in z; on E;, i € {1,...,n}.

Ghirardato et al. (2004) show that invariant biseparable preferences, i.e. pref-
erences that satisfy the five standard axioms, can be represented by a prior set
C C A(S), which is also the Clarke-Differential at 0, as well as an ambiguity atti-

tude function a : F — [0, 1].1* We make use of this result for the first two examples

12 Recall that Hrou(f) N Core(v) # O for all f € Fy is equivalent to the non-emptyness of
Core(v).
13 See introductory chapter for the details.
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and introduce the preference relations via this representation.

Ezxample 2.1. Consider the state space S = {si, so,3}. Consider the preference
relation - represented by the following polyhedral prior set C and ambiguity attitude

for non-constant acts a:
11 1 1 11
C - OOHU{(§,§,0> y <§707§) ) (07575)}7
1 f
alf) =1-3 ( ;

Note that C is the Clarke-Differential at 0. The set of dominating measures is

111 111 111
Di = HI<1$10)QHI<1520)OHI<1S3O) = Conv { (57 Z_]:’ Z) ) <Z_]:’ 57 Z) ) <17 1)5) } .

The sets C and D are illustrated in Figure 2.1.

S1

83 111(1,20)

Figure 2.1: The sets C and D from Example 2.1.

Observe that for all f € F, it holds that H;(f) N D- # 0. Theorem 2.3 thus
implies that 2 - Ambiguity Aversion holds for ~~. The preferences do not however
satisfy 3 - Ambiguity Aversion. Consider the acts f = 3,,1,,0 € F3 and f; =
44,0, fo = 25,.5,0 € Fo. We have f = %fl + %fg. It holds that I(f;) = I(f2) = 1 and
I(f) = %. Therefore 3 - Ambiguity Aversion fails.

The next example is particularly important. It illustrates that preference relations
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exist that satisfy 3 - Ambiguity Aversion but not 4 - Ambiguity Aversion. Recall
Theorem 2.5 which states that this is not possible within the CEU framework. The
example thus shows that the axioms 3 - Ambiguity Aversion and 4 - Ambiguity

Aversion are indeed independent of each other, given the five standard axioms.*

Ezxample 2.2. Consider the state space S = {sy, s2, $3,54}. Consider the preference
relation 77 represented by the following polyhedral prior set C and ambiguity attitude

for non-constant acts a:

L smin{fs}) = f). 13 = F(51). £(sH) — T}
(H=5+3 Fsh) — F(s) ‘

Note that again C is the Clarke-Differential at 0. It holds that a(f) = 1 for all
feFsanda(f) >3 forall f ¢ Fy All f € Fy are thus evaluated at the uniform
distribution Py, = (i, %1, %‘, %1) € A(S), i.e. I(f) = [ f dPynis for all f € Fs. This
implies that Dy = {Pyyis}, i.e. the set Dy consists just of the uniform distribution
over S.

Theorem 2.3 implies that =~ satisfies 3 - Ambiguity Aversion. It does not however
satisfy 4 - Ambiguity Aversion. Consider the acts f = 4,3,,25,1 € Fy and f; =
Aoy 1, fo = 45,345,650, f3 = 45,2 € F3. It holds that f =1+ 1fo+1f;

Given the prior set C and ambiguity attitude a we can determine that a(f) =1
and argr}gei?ff dP = (3,4, 1,2). It follows that I(f) = &. Furthermore I(f;) = 2
for i € {1,2,3}. Thus f; > f and therefore 4 - Ambiguity Aversion fails.

The next two examples are on preferences that can be represented within the
CEU framework. Recall that for a preference relation - represented by capacity v

it holds that D~ = Core(v).

M Our conjecture is that it is possible to construct examples for preferences that satisfy k -
Ambiguity Aversion but not £ + 1 - Ambiguity Aversion in general. For k = 4 we need at
least 5 states which makes the analysis very complicated.
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Ezxample 2.3. Consider the state space S = {si, so,83}. Consider the preference

relation 77 represented by the capacity v. The core of v is illustrated in Figure 2.2.

(

1, for E=S
0, for E=10
v(E) = %, for |[E| =1
5, for E={s1,} E = {s2,53}
1, for B = {s,s3}

7

S1

Hl/(827 83)

H,(s1,83) = H/(g)

wl. A\

Figure 2.2: The capacity v is balanced, but not exact.

The capacity v is balanced as the core is non-empty, but it is not exact. Non-
exactness can be determined through the standard definition by observing that
v({s1,s3}) < Percnoigi(y) P({s1,s3}). Alternatively by observing that for the binary
act g = 15,0 it holds tha<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>