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Abstract

This thesis contributes to the theoretical work on decision and game theory when

decision makers or players perceive ambiguity. The first article introduces a new ax-

iomatic framework for ambiguity aversion and provides axiomatic characterizations

for important preference classes that thus far had lacked characterizations. The

second article introduces a new axiom called Weak Monotonicity which is shown to

play a crucial role in the multiple prior model. It is shown that for many important

preference classes, the assumption of monotonic preferences is a consequence of the

other axioms and does not have to be assumed. The third article introduces an

intuitive definition of perceived ambiguity in the multiple prior model. It is shown

that the approach allows an application to games where players perceive strategic

ambiguity. A very general equilibrium existence result is given. The modelling

capabilities of the approach are highlighted through the analysis of examples. The

fourth article applies the model from the previous article to a specific class of games

with a lattice-structure. We perform comparative statics on perceived ambiguity

and ambiguity attitude. We show that more optimism does not necessarily lead

to higher equilibria when players have α-Maxmin preferences. We present neces-

sary and sufficient conditions on the structure of the prior sets for this comparative

statics result to hold.

The introductory chapter provides the basis of the four articles in this thesis.

An overview of axiomatic decision theory, decision-making under ambiguity and

ambiguous games is given. It introduces and discusses the most relevant results

from the literature.
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1 Axiomatic Decision Theory,

Decision-Making under Ambiguity

and its Application to Games

This chapter provides the basis for the four articles of this thesis. We start with

the famous axiomatic representation of expected utility theory by Von Neumann

and Morgenstern as well as the insights of De Finetti on subjective probabilities.

We then introduce the subjective expected utility theories of Savage as well as

Anscombe and Aumann. This is followed by the introduction to two of the main

approaches of decision-making under ambiguity: Choquet Expected Utility theory

and the Multiple Prior approach. We discuss the concepts of perceived ambiguity

and ambiguity attitude as well as the separation of these two concepts. Eventually

we illustrate how these theories can be used to model strategic interaction when

players perceive ambiguity about the strategic behaviour of other players. We focus

on the approach of Eichberger and Kelsey (2014) and illustrate our own contribution

to model ambiguous beliefs of players in the Multiple Prior model.

Throughout the chapter we, for convinience and consistency, occasionally deviate

from the original notation as well as state simplified versions of the theorems. Our

main objective is to provide the reader with the necessary background for the articles

presented in this thesis.
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1 Axiomatic Decision Theory, Ambiguity and Games

1.1 Foundations of Decision Theory

This section provides an overview of some of the groundbreaking achievements in

decision theory.

Von Neumann and Morgenstern

Consider the following game. A fair coin is repeatedly tossed. The game ends when

Heads comes up for the first time. The payout is the following: if the coin is tossed

n-times you receive 2n in monetary terms. How much would you pay to play this

game?

Nicolas Bernoulli states this game in a letter to Pierre Raymond De Montmort

in 1713 (see De Montmort (1713)). At that time, expected value maximization

was considered the rational approach to decision making under risk. Given the

choice between two risky lotteries, the decision maker (DM) should always choose

the lottery with the higher expected value. Bernoulli points out that the game has

an infinite expected value. Thus an expected value maximizer is willing to pay any

finite amount to play this game. This is obviously ridiculous. Bernoulli’s game1

thus shows that people are not expected value maximizers.

Nicolas’ cousin Daniel Bernoulli shows in Bernoulli (2011) that peoples’ prefer-

ences in this game can be describes as maximization of an expectation of a function

which maps monetary payouts to real numbers. This approach can lead to a finite

expectation of Bernoulli’s game.2 Such a function if referred to as a utility function.

Daniel Bernoulli thus introduces expected utility maximization, a concept that has

been and still is hugely important in decision theory.

Daniel Bernoulli’s suggestion that peoples preferences in risky choice situations

can be described by expected utility maximization triggered the hugely influential

contribution by Von Neumann and Morgenstern (1944). They introduce a set of

axioms3 on preferences over risky lotteries which they show to be equivalent to

expected utility maximization.

1 The game is often referred to as the St. Petersburg Paradox. The word paradox is frequently
used in decision-theory when theories of allegedly rational choice clash with observed choice
behaviour or intuition. Personally we are of the opinion that the term paradox is used wrongly.
A deviation from a theory is not paradoxical, it merely highlights the limitations of the model
or arguably the irrationality of peoples’ preferences.

2 For instance with this function being of some logarithmic type.
3 In decision theory, axioms can be understood as assumptions about preferences.
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1.1 Foundations of Decision Theory

In the theory of Von Neumann and Morgenstern the objects of choice are objective

lotteries, i.e. lotteries where the probabilities of alternatives are known. Examples

are bets on the outcome of a roulette wheel or a die with known probabilities. Their

theory stays silent on decisions in which probabilities are not known to the DM such

as bets on horse races or a die with unknown probabilities.

Von Neumann and Morgenstern assume a set of consequences X which is not

constrained to have any particular topological structure. They denote by L the set

of finite-support lotteries over X. Preferences over lotteries are modelled by a binary

relation % on L, i.e. % ⊆ L× L.

Two lotteries can be mixed, resulting in a new lottery. For two lotteries P,Q ∈ L
and some α ∈ [0, 1], the compound lottery αP + (1− α)Q ∈ L is defined by

(αP + (1− α)Q)(x) = αP (x) + (1− α)Q(x)

for all x ∈ X. This construction of compount lotteries induces a mixture space over

L, a concept that is crucial for the framework of Anscombe and Aumann (1963)

which is introduced later and provides the conceptual basis of the papers in this

thesis.

Von Neumann and Morgenstern provide the following axioms.

Axiom 1.1 (Weak Order). For all P,Q,R ∈ L

1. P % Q or Q % P .

2. If P % Q and Q % R, then P % R.

Axiom 1.2 (Continuity). For all P,Q,R ∈ L with P � Q � R there exist α, β ∈
(0, 1) such that

αP + (1− α)R � Q � βP + (1− β)R.

Axiom 1.3 (Independence). For every P,Q,R ∈ L and α ∈ (0, 1)

P % Q ⇐⇒ αP + (1− α)R % αQ+ (1− α)R.

Weak Order consists of two assumptions: Completeness and Transitivity. Con-

tinuity is a technical assumption.4 Independence states that a preference of one

4 Note that this axiom cannot be refuted by a finite number of choices.

15



1 Axiomatic Decision Theory, Ambiguity and Games

lottery over another is not reversed when both lotteries are mixed with a third

lottery. It is the most interesting and controversial axiom.5

Von Neumann and Morgenstern show that these three axioms characterize expec-

ted utility maximization.

Theorem 1.1 (Von Neumann and Morgenstern). Let % be a preference relation

on L, the set of finite-support lotteries over some set of consequences X. Then the

following are equivalent:

1. % satisfies Weak Order, Continuity and Independence.

2. There exists a function u : X → R such that for all P,Q ∈ L

P % Q ⇐⇒
∑
x∈X

P (x)u(x) ≥
∑
x∈X

Q(x)u(x).

Furthermore, u is unique up to positive affine transformations.

From a normative viewpoint the Von Neumann and Morgenstern axioms are com-

pelling in the sense that a violation of these axioms can never be advisable. If this

is accepted, the theorem suggests that expected utility maximization is the correct

way to make decisions under risk. From a descriptive viewpoint the issue is more

debatable. Allais (1953) introduces a choice-problem in which observed behaviour

is typically inconsistent with expected utility maximization.6

De Finetti

In the framework of Von Neumann and Morgenstern, choices are made over objective

lotteries: the probabilities of consequences are known. However, in hardly any

decision that we make in the real world are probabilites of consequences known to us.

De Finetti (1937) studies preferences over monetary bets in which no probabilistic

information is available.7 Through the DM’s willingness to bet, De Finetti aims to

derive subjective probabilities. His aim is thus to derive probabilities from observable

choice behaviour.

5 We discuss this axiom and its limitations for constructing a descriptive model of decision
making in section 2.

6 The choice-problem of Allais (1953) inspired a very interesting and important area of research.
It is however a very different direction from this thesis. We therefore only mention its existence.

7 Ramsey (1931) independently suggests a very similar approach.
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1.1 Foundations of Decision Theory

De Finetti’s framework consists of a finite state space S = (s1, . . . , s|S|) and prizes

in monetary terms. A bet is a function from S to R|S|. The set of bets is X = R|S|.
A bet x ∈ X can be written as (x1, . . . , x|S|), where x(si) = xi. Preferences are

modelled by a binary relation % over X.

De Finetti provides the following axioms.

Axiom 1.4 (Weak Order). For all x, y, z ∈ X

1. x % y or y % x.

2. If x % y and y % z, then x % z.

Axiom 1.5 (Continuity). For every x ∈ X the sets

{y|y � x}, {y|x � y}

are open.

Axiom 1.6 (Additivity). For all x, y, z ∈ X

x % y ⇐⇒ x+ z % y + z.

Axiom 1.7 (Monotonicity). For all x, y ∈ X, if xi ≥ yi for all i ∈ {1, . . . , n}, then

x % y.

Axiom 1.8 (Non-Degeneracy). There exist x, y ∈ X such that x � y.

De Finetti shows that these axioms are equivalent to the existence of a subject-

ive probability distribution over the state space according to which the DM is an

expected value maximizer.

Theorem 1.2 (De Finetti). Let S be a state space and % a preference relation over

the set of bets X = R|S|. Then the following are equivalent:

1. % satisfies Weak Order, Continuity, Additivity, Monotonicity and

Non-Degeneracy.

2. There exists a probability distribution P over S such that

x % y ⇐⇒
∑
s∈S

P (s)x(s) ≥
∑
s∈S

P (s)y(s).

Moreover, P is unique.
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1 Axiomatic Decision Theory, Ambiguity and Games

The crucial and most debatable axiom is Additivity. The framework is criticized

as Additivity implies that DM’s are expected value maximizers and therefore risk-

neutral. It thus ignores the insights of Bernoulli.8

Savage

Recall the different approaches taken by Von Neumann and Morgenstern and De

Finetti. Von Neumann and Morgenstern take objective probabilities as primitive

and use it to measure the utility function. De Finetti can be interpreted as taking

utilities as given and using it to measure subjective probabilities. Thus von Neumann

and Morgenstern assume linearity in probabilities, De Finetti assumes linearity in

utilities. Savage (1954) combines these ideas.

He assumes an abstract framework with no mathematical machinery. Neither

probabilities, nor utilities are taken as primitive. Rather they are measured at the

same time. Savage introduces seven axioms and shows their equivalence to subjective

expected utility maximization. This means that a preference relation satisfies the

seven axioms if and only if it can be represented by a unique probability distribution

over the state space and a utility function over consequences according to which the

DM maximizes expected utility.

Savage’s framework consists of an exogenous state space S and a set of con-

sequences X. Acts are mappings from S to X and F = {f : S → X} is the set of

acts. Preferences are modelled by a binary relation % over F . A state in Savage’s

framework “resolves all uncertainty” in the sense that if the DM has chosen an act

f ∈ F and is informed that state s ∈ S has ocurred she knows that the consequence

is x = f(s).9

It is remarkable that Savage does not assume anything else. The state space

is not restricted by any kind of measurability of events requirement. The set of

consequences and the set of acts do not require any topological structure. We do

not have a mixture-space as we do in Von Neumann and Morgenstern or Anscombe

and Aumann (1963), see next subsection.

We do not state all of Savage’s axioms but restrict attention to the axiom P2,

typically referred to as the Sure-Thing Principle. It is the most crucial and most

8 One way around this is to interpret the monetary payouts as utilities. The additivity axiom
would then be about adding utils.

9 A consequence of this is that the state space is typically very large if one aims to model
choice-problems in the Savage framework.
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1.1 Foundations of Decision Theory

frequently criticized axiom and will become important in the second section when

ambiguity takes the stage.

Axiom (Savage’s P2). For all acts f, g, f ′, g′ ∈ F and all events E ⊆ S such that it

holds that f(s) = f ′(s), g(s) = g′(s) for all s ∈ E and f(s) = g(s), f ′(s) = g′(s) for

all s /∈ E it holds that

f % g ⇐⇒ f ′ % g′.

The Sure-Thing Principle requires that the preference between two acts does not

depend on the states of the world where both acts have identical consequences.

When comparing two acts, it suffices to consider the states of the world in which

these acts yield different outcomes. It is thus a separability axiom.

Savage shows that a DM’s preferences satisfy his 7 axioms if and only if there

exists a utility function u over X, unique up to positive affine transformations, and

a unique subjective probability distribution P over S, such that the DM’s preferences

can be modelled as maximization of expected utility according the these entities.10,11

Theorem 1.3 (Savage). Let S be a state space, X a set of consequences and % a

preference relation over acts F = {f : S → X}. Then the following are equivalent:

1. % satisfies the axioms P1 − P7.

2. There exists a non-atomic finitely-additive probability distribution Pon S and

a non-constant, bounded function u : X → R such that for all f, g ∈ F

f % g ⇐⇒
∫
u(f) dP ≥

∫
u(g) dP,

where
∫
u(f) dP denotes the expected utility of f , given u and P .

Moreover, P is unique and u is unique up to positive affine transformations.

A huge amount is to be and has been said, discussed, praised and criticized about

Savage. We refrain from adding to this discussion at this point, but return to

10 The probability distribution has the properties of being non-atomic and finitely additive. Non-
atomic means that for every event A ⊆ S and every α ∈ [0, 1] there exists an event E′ ⊆ E
such that P (E′) = αP (E). Finitely additive means that for all E,E′ ⊆ S for which E∩E′ = ∅
it holds that P (E) + P (E′) = P (E ∪ E′).

11 Savage’s axioms P6 rules out the possibility that the state space is finite. The model of
Anscombe and Aumann (1963), introduced in the next subsection, does not suffer from this
limitation.
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1 Axiomatic Decision Theory, Ambiguity and Games

Savage and the Sure-Thing Principle in the next section when we discuss the Ellsberg

Thought Experiment.

Anscombe and Aumann

The model of Anscombe and Aumann (1963) provides the basis for the models on

decision-making under ambiguity that are introduced and discussed in this thesis.

Just like Savage, Anscombe and Aumann provide a set of axioms that are equivalent

to subjective expected utility maximization. However, their framework has more

structure.

Just like Savage, their framework consists of a state space S and a set of con-

sequences X. The difference is that acts do not map from S into X but from S

into L, the set of finite-support lotteries over X which we already encountered in

Von Neumann and Morgenstern (1944). The set of acts is thus F = {f : S → L}.
An act which assigns the same lottery to every state is called a constant act. With

a slight abuse of notation the set of constant acts can be associated with the set of

lotteries L. Preferences are modelled as usual by a binary relation % over F .

The interpretation of this framework is that the DM faces two sources of un-

certainty: a horse lottery and a roulette lottery. When choosing amongst acts the

DM does not necessarily have information on objective probabilites over the state

space: she faces a horse lottery over the state space. For every state the DM faces

a roulette lottery over the set of consequences: she knows the probabilities over the

consequences. She thus faces subjective uncertainty about which state will occur

and once the true state has been determined she faces objective uncertainty about

consequences.

The disadvantage of this framework compared to Savage’s are the structural as-

sumptions that make it less general. The first advantage is that it allows the state

space to be finite. The second and more crucial advantage is that the mixture-space

on L, which we already know from Von Neumann and Morgenstern, allows the con-

struction of a mixture-space on F . Mixtures are performed pointwise: for f, g ∈ F
and α ∈ [0, 1] the act αf + (1− α)g is defined by

(αf + (1− α)g)(s) = αf(s) + (1− α)g(s) ∀s ∈ S.

The fact that we have this mixture-space over F is crucial for our first chapter in
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1.1 Foundations of Decision Theory

which we define different levels of ambiguity aversion via different levels of preference

for mixing amongst acts. Since the Savage-framework does not have a mixture-space,

this cannot be done there.12

Anscombe and Aumann consider the following axioms.

Axiom (AA1: Weak Order). For all f, g, h ∈ F

1. f % g or g % f .

2. If f % g and g % h, then f % h.

Axiom (AA2: Continuity). For all f, g, h ∈ F with f � g � h there exist α, β ∈
(0, 1) such that

αf + (1− α)h � g � βf + (1− β)h.

Axiom (AA3: Independence). For every f, g, h ∈ F and α ∈ (0, 1)

f % g ⇐⇒ αf + (1− α)h % αg + (1− α)h.

Axiom (AA4: Monotonicity). For all f, g ∈ F , if f(s) % g(s) for all s ∈ S, then

f % g.

Axiom (AA5: Non-Degeneracy). There exist x, y ∈ X such that x � y.

Recall that the axioms of Von Neumann and Morgenstern are defined for pref-

erences over L. The first three axioms of Anscombe and Aumann are the same as

the ones from Von Neumann and Morgenstern, however defined on F instead of L.

Axioms 4 and 5 are basically the last two axioms from De Finetti, adapted to the

framework.

Anscombe and Aumann show that their five axioms are equivalent to subjective

expected utility maximization: preferences satisfy their axioms if and only if they are

representable by a unique probability distribution over the state space and a utility

function over consequences, unique up to positive affine transformations, according

to which the DM maximizes expected utility. The following theorem states their

result for a finite state space.13,14

12 In Ghirardato et al. (2003) the authors construct a mixture-space in the Savage framework.
However they need some typological assumptions on the set of consequences.

13 In the following we denote by the term
∫
u(f) dP the double integration that is needed in this

framework: the inner expected utility calculation and the outer subjective expected utility cal-
culation. Since S is assumed to be finite we have that

∫
u(f) dP =

∑
s∈S

P (s)
∑
x∈X

f(s)(x)u(x).

14 In Savage’s model this assumption of a finite state space is not possible as the axioms imply
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1 Axiomatic Decision Theory, Ambiguity and Games

Theorem 1.4 (Anscombe and Aumann). Let S be a finite state space, L the set of

finite-support lotteries over a set of consequences X and % a preference relation on

F = {f : S → L}. Then the following are equivalent:

1. % satisfies the axioms AA1 - AA5.

2. There exists a probability distribution P on S and a non-constant function

u : X → R such that for all f, g ∈ F

f % g ⇐⇒
∫
u(f) dP ≥

∫
u(g) dP.

Furthermore, P is unique and u is unique up to positive affine transformations.

1.2 Decision Making under Ambiguity

The theories of Savage as well as Anscombe and Aumann are very appealing. The ax-

ioms make sense from a normative perspective. Furthermore the axiomatic systems

teach us what exactly we are assuming by modelling DM’s as subjective expected

utility maximizers. However, peoples’ preferences systematically violate these the-

ories even in simple choice problems. The most prominent example for this is the

1-urn thought experiment of Daniel Ellsberg (1961).15

Example 1.1 (The Ellsbergs 1-Urn Thought Experiment). Assume that a DM is

confronted with an urn containing 90 balls. She receives the information that exactly

30 of these balls are red and that the other 60 balls are either yellow or black, but

the exact number is not given. The DM is asked to choose amongst different bets

before a ball is randomly drawn from the urn. Two different bets are offered.

In the first bet she can either choose to bet on a red ball being drawn or altern-

atively on a yellow ball being drawn. If she bets correctly she receives a payout of

100, otherwise she receives nothing.

In the second bet she can choose to bet on a red or black ball being drawn or

alternatively on a yellow or black ball being drawn. Again she receives 100 if she

bets correctly, otherwise nothing.

an infinite state space.
15 In the literature Ellsberg’s thought experiments are often referred to as paradoxes. As already

mentioned we do not agree with how the word “paradox” is used in decision theory. We
therefore refer to the “Ellsberg Thought Experiment” throughout this chapter.
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1.2 Decision Making under Ambiguity

These choice-problems can be modelled in the Savage framework. The state space

S has three elements: red (R), yellow (Y ) and black (B). The relevant consequences

are 100 and 0. There are four acts: f1 is the bet on R, f2 is the bet on Y , g1 is the

bet on R ∪B and g2 is the bet on Y ∪B. This is illustrated in Table 1.1.

R Y B

f1 100 0 0

f2 0 100 0

g1 100 0 100

g2 0 100 100

Table 1.1: The Ellsberg Thought Experiment

Ellsberg realizes that the typical preferences are f1 � f2 and g2 � g1.16 People

tend to prefer the acts for which the probability of winning is known. They dislike

the acts for which the probability of winning is unknown. These preferences are

incompatible with SEU theory. There does not exist a probability distribution

which is compatible with this choice behaviour. To see why, assume for contradiction

that the DM’s preferences can be represented by the probability distribution17 P :

P(S)→ [0, 1] and a utility function u : X → R. Assume that u(100) > u(0).18

Since the DM strictly prefers f1 to f2, the bet f1 results in a higher subjective

expected utility than f2, i.e.

P (R)u(100) + (1− P (R))u(0) > P (Y )u(100) + (1− P (Y ))u(0),

which implies

(P (R)− P (Y ))(u(100)− u(0)) > 0.

Since u(100) > u(0) it follows that

P (R) > P (Y ).

16 Ellsberg did not conduct experiments in the lab, but asked economists about their preferences.
His findings were later replicated in the lab.

17 P(S) denotes the powerset of S.
18 Note that this assumption is not needed to obtain a contradiction, but is easily justified. The

assumption u(100) < u(0) would suffice as well.
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1 Axiomatic Decision Theory, Ambiguity and Games

Furthermore the DM strictly prefers g2 to g1. It follows that

P (R ∪B)u(100) + (1− P (R ∪B))u(0) < P (Y ∪B)u(100) + (1− P (Y ∪B))u(0),

which implies

(P (R ∪B)− P (Y ∪B))(u(100)− u(0)) < 0.

Again with u(100) > u(0) it follows that

P (R ∪B) < P (Y ∪B).

Combined this leads to the contradiction

1 = P (R) + P (Y ∪B) > P (Y ) + P (R ∪B) = 1.

This implies, through the theorems of Savage as well as Anscombe and Aumann,

that the axiomatic systems for SEU are violated by the typical preferences in the

Ellsberg Thought Experiment. In the following we demonstate how the preferences

violate the Sure-Thing Principle (STP) as well as the Independence axiom.

The violation of STP is straight-forward. Consider the event E = B. For all

s /∈ E we have that f1(s) = g1(s) and f2(s) = g2(s) as well as for all s ∈ E we have

f1(s) = f2(s) and g1(s) = g2(s). Thus the STP implies that

f1 % f2 ⇐⇒ g1 % g2,

in contradiction to the typical preferences.

To see that the Independence axiom is violated consider the acts h1 = 100B0 and

h2 = 0.19 Note that 1
2
f1 + 1

2
h1 = 1

2
g1 + 1

2
h2 and 1

2
f2 + 1

2
h1 = 1

2
g2 + 1

2
h2. Due to

the Independence axiom f1 � f2 implies 1
2
f1 + 1

2
h1 � 1

2
f2 + 1

2
h1 and g2 � g1 implies

1
2
g2 + 1

2
h2 � 1

2
g1 + 1

2
h2, a contradiction.

The question that springs to mind now is: why does the SEU theory fail so sys-

tematically? Or put differently: what makes people violate the allegedly convincing

axioms so consistently?

In all four acts of the Ellsberg Thought Experiment the DM faces uncertainty

19 The notation h1 = 100B0 means that the act h1 results in consequence 100 on the state B
and consequence 0 on the states R and Y .
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in the sense that the consequence is not known ex-ante. However the type of un-

certainty is very different. The acts f1 and g2 are risky acts as the probabilities of

consequences are known. For the acts f2 and g1 the probabilities of consequences are

unknown: these acts are ambiguous. This distinction between risk and ambiguity

was propagated by Knight (1921).20 The typical preferences in the Ellsberg Thought

Experiment suggest that people tend to dislike betting on ambiguous events: they

are ambiguity averse.21

The Ellsberg Thought Experiment and its lessons from it unfold the necessity to

construct alternative approaches to model preferences in ambiguous choice-problems.

In the following, two approaches are presented that can accommodate phenomena

observed in choice under ambiguity. The first one is Choquet Expected Utility theory,

the second one is the Multiple Prior approach. Both the Savage and the Anscombe

and Aumann framework have been used in the literature as the basis of these ap-

proaches. We focus on the ones that use the Anscombe-Aumann framework as they

provide the basis for the papers of this thesis.

1.2.1 The Choquet Expected Utility Model

Itzhak Gilboa points out in Gilboa (2009) that “P2 [the Sure-Thing Principle] im-

plies, among other things, that the decision maker should be indifferent between

likelihood judgements that are well-reasoned and those that are arbitrary.”22

With this in mind consider the following scenario which goes back to David

Schmeidler.23 There are two coins. The first coin is known to be fair, i.e. Heads and

Tails are known to occur with equal probabilities There is no information on the

second coin. Assume that the DM is forced to assign a probability to the second coin

coming up Heads. As there is no information, ignorance on probabilities of Heads

and Tails is symmetric. The DM thus assigns probability 1
2

to Heads. The coins now

have been assigned the same probability distributions, however Schmeidler suggests

20 What we refer to as Ambiguity is also referred to Uncertainty or Knightian Uncertainty.
Throughout this thesis we use the term Uncertainty in its generic sense. Risk refers to un-
certainty with known probabilities, Ambiguity refers to uncertainty with possibly unknown
probabilities.

21 Of course not all people have the typical preferences. Some exhibit ambiguity loving prefer-
ences. Some do not violate the SEU axioms at all. See subsection 2.3 for a discussion on
ambiguity attitude and how to model different attitudes towards ambiguity.

22 Gilboa (2009), page 188.
23 The Ellsberg 2-urn Thought Experiment is very similar.
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that they still feel very different.

This different feel of the probability judgements in Schmeidler’s Thought Exper-

iment and Gilboa’s explanation of the implications of the STP suggests that this

axiom has a hard time in choice-problems in which ambiguity plays a role. Indeed we

have already seen that the typical preferences in the Ellsberg Thought Experiment

violate the STP.

Schmeidler’s approach to cope with this is to provide an axiomatic system which

does not imply beliefs to be representable by a probability distribution. In his model,

beliefs are not additive, but are represented by not necessarily additive set functions

called capacities.

Capacities

Definition 1.1 (Capacity). Let S be a set and A a σ-algebra on S.24 A function

ν : A → [0, 1] is called capacity if the following holds:

1. ν(∅) = 0,

2. ν(S) = 1,

3. E ⊆ E
′ ⇒ ν(E) ≤ ν(E

′
) ∀E,E ′ ⊆ S.

A capacity is a normalized and monotonic, but not necessarily additive, set func-

tion. A probability distribution is therefore a special case of a capacity.

The concept of capacities can be applied to choice-problems. We can apply them

to achieve a representation of beliefs which takes into account the ambiguity that

the DM faces. For instance we can construct the following capacities ν1 and ν2

to represent beliefs over the two coins in Schmeidler’s Thought Experiment. The

state space is S = {H,T} and the σ-algebra is A = P(S) = {∅, H, T, S} for both

coins. Define ν1(∅) = ν2(∅) = 0, ν1(S) = ν2(S) = 1, ν1(H) = ν1(T ) = 1
2

and

ν2(H) = ν2(T ) = 2
5
. The DM’s information about the first coin is reflected in

ν1, which is the uniform probability distribution over S. The DM does not have

information on probabilities about coin 2. This is reflected by the values 2
5

for

both H and T , an assignment which is allowed in this framework as additivity is

not required for capacities. The fact that ν2(H) = ν2(T ) reflects the symmetric

ignorance about Heads and Tails.

24 For finite S, which is what we assume in all our articles, A is the powerset of S.
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The interpretation of the capacity ν2 may be that it represents a lower bound

of the DM’s belief about the probability of events, i.e. the DM might believe that

Heads will come up with probability at least 2
5
. Capacities are thus one approach

to represent beliefs of a DM who perceives ambiguity.

The Choquet Integral

When beliefs are represented by a capacity, the evaluation of acts can be carried out

with the Choquet Integral which is introduced in Choquet (1954).

Definition 1.2 (Choquet Integral). Let S be a set and A a σ-algebra on S. Let

X : S → R be a A-measurable function and ν : A → [0, 1] a capacity. The Choquet

Integral of X with respect to ν is defined as

∫
S

Xdν :=

0∫
−∞

(ν({s ∈ S|X(s) ≥ x})− 1)dx+

∞∫
0

ν({s ∈ S|X(s) ≥ x})dx, (1.1)

where the integrals on the right side of the equation are Riemann integrals.

With the Choquet Integral, an expectation of a real-valued function X given a

capacity ν can be calculated. When ν is additive, the Choquet integral reduces to

the Riemann integral and is the normal expected value of X, given ν.

We apply the Choquet Integral in the framework of Anscombe and Aumann.

This means that acts map from states into objective lotteries. The real-valued

functions that we consider are mappings from the state space into expected utilities.

Furthermore we assume a finite state space.

Under these assumptions consider an act f ∈ F . There exist lotteries l1, . . . ln ∈ L
and a partition (E1, . . . , En) of S such that on Ei the act f results in lottery li for

i ∈ {1, . . . , n}. Consider a utility function u : L → R. With slight abuse of

notation we denote by u(li) the expected utility of lottery li, given u. Without loss

of generality we can assume that u(l1) ≥ · · · ≥ u(ln). By defining
⋃0
j=1 = ∅ the

Choquet Integral in (2.2) reduces to

∫
u(f) dν =

n∑
i=1

u(li)

[
ν

(
i⋃

j=1

Ej

)
− ν

(
i−1⋃
j=1

Ej

)]
.
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Throughout the thesis we use the simplified notation
∫
u(f) dν for the Choquet

expected utility (CEU) of the act f , given utility function u and capacity ν. The

state space is always clear from the context and is thus omitted in the notation.

Solving Ellsberg with CEU

One strength of the Choquet Expected Utility approach is that we can easily model

the typical preferences in the Ellsberg Thought Experiment. This can be done by

assigning weights to the ambiguous events Y,B,R ∪ Y and R ∪ B that are smaller

than the weight assigned by the uniform distribution over the state space. Assume

that for δ ∈ (0, 1
3
] the beliefs of the DM are represented by the following capacity

ν : P(S)→ [0, 1]:

ν(E) =



0, E = ∅

1/3, E = R

1/3− δ, E ∈ {Y,B}

2/3, E = Y ∪B

2/3− δ, E ∈ {R ∪ Y,R ∪B}

1, E = S

.

The DM has the information that the probability of R is 1
3

and the probability of

Y ∪B is 2
3
. About the events Y,B,R∪Y and R∪B the DM perceives the ambiguity

δ.25 If δ = 1
3
, the decision maker perceives the maximum amount of ambiguity. If

δ = 0, ν is additive which coincides with no perceived ambiguity. We have already

shown that this case cannot explain the typical preferences.

With the Choquet Integral we can now calculate the expectation of the acts

f1, f2, g1 and g2 with respect to the capacity ν. Without loss of generality we assume

25 The parameter δ can be interpreted as a measure of the amount of ambiguity that the DM
perceives. The topic of perceived ambiguity is exceptionally important throughout this thesis.
We introduce and discuss this topic in subsection 2.3. For the current example the same
conclusion holds for all considered values of δ in the allowed range.
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that u(0) = 0 and u(100) = 100.∫
u(f1) dν = u(100)[ν(R)− ν(∅)] + u(0)[ν(S)− ν(R)]

= 100ν(R)

> 100ν(Y )

= u(100)[ν(Y )− ν(∅)] + u(0)[ν(S)− ν(Y )]

=

∫
u(f2) dν.

∫
u(g2) dν = u(100)[ν(Y ∪B)− ν(∅)] + u(0)[ν(S)− ν(Y ∪B)]

= 100ν(Y ∪B)

> 100ν(R ∪B)

= u(100)[ν(R ∪B)− ν(∅)] + u(0)[ν(S)− ν(R ∪B)]

=

∫
u(g1) dν.

Given ν, the Choquet expected utility is larger for f1 than for f2 as well as larger

for g2 than for g1. We have thus shown that the CEU approach can model the

typical preferences in the Ellsberg Thought Experiment.

Schmeidler’s Axiomatization of CEU

Schmeidler (1989) axiomatizes CEU preferences in the Anscombe-Aumann frame-

work.26 The crucial axiom is Comonotonic Independence. It is a weakening of the

Independence axiom of Anscombe and Aumann. The intuition behind this axiom

can be explained through the Ellsberg Thought Experiment. One reason why DMs

violate the Independence axiom may be that the mix of the unambiguous f1 and

the ambiguous f2 with the act h1 = 100B0 shifts the ambiguity from one act to the

other: 1
2
f1 + 1

2
h1 is ambiguous, 1

2
f2 + 1

2
h1 is unambiguous. The act h1 is thus a better

hedge against ambiguity for f2 than it is for f1. We have an asymmetric effect on

ambiguity due to the mix. Schmeidler’s idea is that the independence axiom must

26 Sarin and Wakker (1992) axiomatize CEU preferences in the Savage framework. Through-
out the thesis we rely on the Anscombe-Aumann framework and thus in the following only
introduce Schmeidler’s contribution.

29



1 Axiomatic Decision Theory, Ambiguity and Games

be preserved only for cases in which such asymmetry is impossible, as in such a case

the mix effects ambiguity in the same way. Such asymmetry cannot occur when two

acts, and a third act with which it is mixed, order states in the same way in terms

of expected utility. Schmeidler calls such acts comonotonic acts.

Definition 1.3. Two acts f, g ∈ F are comonotonic if there exist no s, s′ ∈ S such

that

f(s) � g(s) and g(s′) � f(s′).

Schmeidler weakens the Independence axiom to pairwise comonotonic acts.

Axiom 1.9 (Comonotonic Independence). For all pairwise comonotonic acts f, g, h ∈
F and α ∈ (0, 1) it holds that

f % g ⇐⇒ αf + (1− α)h % αg + (1− α)h.

Schmeidler shows that the Anscombe-Aumann axioms with Independence re-

placed by Comonotonic Independence are equivalent to preferences being repres-

entable within the CEU framework.

Theorem 1.5 (Schmeidler). Let S be a finite state space, L the set of finite-support

lotteries over a set of consequences X and % a preference relation on F = {f : S →
L}. Then the following are equivalent:

1. % satisfies the axioms AA1, AA2, Comonotonic Independence, AA4 and AA5.

2. There exists a capacity ν : P(S) → [0, 1] and a function u : L → R such that

for all f, g ∈ F
f % g ⇐⇒

∫
u(f) dν ≥

∫
u(g) dν.

Furthermore, ν is unique and u is unique up to positive affine transformations.

To get some intuition on this result, note that Comonotonic Independence implies

that the representation functional is additive for comonotonic acts. Furthermore

since constant acts are comonotonic to all acts and every act is comonotonic to

itself we have linearity of the functional for such acts. All these properties are easily

checked to be true for the Choquet Integral: for a capacity ν, comonotonic acts f, g,

constant act l and α ∈ [0, 1] we have that∫
u(αf + (1− α)g + l) dν = α

∫
u(f) dν + (1− α)

∫
u(g) dν + u(l).
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The reason the CEU model can explain the typical preferences in the Ellsberg

Thought Experiment is that Comonotonic Independence does not restrict prefer-

ences as much as the standard Independence axiom or the Sure-Thing Principle

does. The acts f1 and f2 as well as g1 and g2 are not comonotonic, thus Comono-

tonic Independence does not per se rule out preferences that are observed in the

Ellsberg Thought Experiment. Of course, the modelling capabilities of the CEU

approach do not end here.

Capacity Subclasses

In the following we introduce some if the most important capacity subclasses, in-

cluding the ones that are relevant for this thesis. The important ideas behind and

results on them are explained.

A capacity ν is called convex if

ν(E) + ν(E
′
) ≤ ν(E ∪ E ′) + ν(E ∩ E ′) ∀E,E ′ ⊆ S. (1.2)

Schmeidler shows that, under the standard CEU axioms, a capacity is convex

if and only if the DM always has a preference for mixing amongst acts, an axiom

he calls Uncertainty Aversion.27 Thus he suggests that convex capacities reflect

ambiguity aversion.

Axiom 1.10 (Uncertainty Aversion). For all f, g ∈ F such that f ∼ g and α ∈ (0, 1)

αf + (1− α)g % f.

A capacity ν is called concave if in equation (1.2),≤ is replaced by ≥. Of course,

this capacity class is axiomatized by the axiom in which % is replaced by - in

Uncertainty Aversion.

A capacity ν is called neo-additive if ν = δ(1 − α) + (1 − δ)π, where π is a

probability distribution on S and α, δ ∈ [0, 1]. We denote them by νπ,δ,α. A neo-

additive capacity for which α = 1 is called simple.

Neo-additive capacities are introduced and axiomatized in Chateauneuf et al.

(2007). They can be viewed as a δ-mixture of the additive capacity π and the

capacity that puts weight 1 − α on all events (except ∅ and S). The latter only

27 Schmeidler calls “Uncertainty” what we call “Ambiguity”.
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distinguishes between whether an event is impossible, possible or certain. The in-

terpretation is that the DM has additive beliefs π over S but she may not be abso-

lutely confident in π. The parameter 1 − δ represents this confidence, δ represents

the degree of perceived ambiguity. The larger δ is, the less confidence the DM has in

her beliefs. If δ = 0 , then ν = π corresponding to absolute confidence in beliefs. If

δ = 1, the DM has no confidence in her beliefs. The parameter α can be interpreted

as the DM’s ambiguity attitude. The larger α, the more pessimistic is the DM. Thus

α can be interpreted as the degree of pessimism.28

Chateauneuf et al. (2007) show that when ν = νπ,δ,α is a neo-additive capacity

and u is a utility function, the Choquet integral of an act f is∫
u(f)dνπ,δ,α = (1− δ)

∫
u(f) dπ + δ(1− α) sup

s∈S
u(f(s)) + δα inf

s∈S
u(f(s)). (1.3)

Thus the Choquet integral is the mix of the evaluation at the probability estimate π

as well as the best and the worst case scenario for the act f . Neo-additive capacities

can therefore be used to represent beliefs of decision makers that are both ambi-

guity averse and ambiguity loving. Furthermore they provide a clear separation of

perceived ambiguity and ambiguity attitude through the parameters δ and α.

JP-capacities were introduced by Jaffray and Philippe (1997). These capacities

take the form ν = αµ + (1 − α)µ, where µ is a convex capacity, µ is its dual29

and α ∈ [0, 1]. The convex µ represents perceived ambiguity and α represents the

ambiguity attitude. By choosing µ = (1− δ)π we get a neo-additive capacity. Thus

neo-additive capacities are a subclass of JP-capacities.

The core of a capacity ν is the set of probability distributions over S that pointwise

dominate ν:30

Core(ν) = {P ∈ ∆(S)|P (E) ≥ ν(E) ∀E ∈ P(S)}.

The core of a capacity may be empty. The capacities that have a non-empty core

are called balanced. A capacity is exact if its values are equal to the lower envelope

of the core, i.e. if ν(E) = min
P∈Core(ν)

P (E) for all E ∈ P(S). It is a well-known

fact that convex capacities are exact and exact capacities are balanced but that

28 Note that in the original paper Chateauneuf et al. (2007), the authors use α for the degree of
optimism. We deviate from this as most of the literature uses α as the degree of pessimism.

29 The dual capacity is defined by µ̄(E) = 1− µ(Ec) for all E ⊆ S.
30 The set ∆(S) is the set of probability distribution over S.
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1.2 Decision Making under Ambiguity

the reverse implications do not hold. Balanced, exact and convex capacities are

extremely important in the first article of this thesis. We provide an axiomatization

of exact capacities, an open problem in decision-theory ever since these set functions

were introduced in Schmeidler (1972).31 Chateauneuf and Tallon (2002) characterize

balanced capacities. However their characterization is not an axiomatization as it

is not stated purely in terms of preferences. Inspired by their result we propose the

axiom 1 - Ambiguity Aversion which we show axiomatizes balanced capacities.

1.2.2 The Multiple Prior Approach

The Ellsberg Thought Experiment shows that DMs systematically violate the SEU

models, i.e. their preferences cannot be described by a unique probability distri-

bution over the state space. We have already seen that we can explain the typical

preferences by replacing Independence by Comonotonic Independence which leads

to a relaxation of the additivity assumption and to the CEU model. A different

approach is to allow beliefs to be represented not by a single prior as in SEU, but

by a set of priors: the Multiple Prior (MP) approach. In Siniscalchi (2006) the MP

approach is motivated as follows:

“The decision maker may wish to consider multiple possible probabilistic

descriptions of the underlying uncertainty.”32

The aim is to represent the ambiguity that the DM perceives by a set of priors over

the state space. Let S be a state space and ∆(S) the set of probability distributions

over S. A prior set is a subset of ∆(S) which is typically assumed to be non-empty,

convex and compact.33 The probability distributions contained in the prior set can

be interpreted as the priors that the DM cannot rule out. In this sense a prior set

can reflect the perceived ambiguity of the DM.34

31 We call the relevant axiom 2 - Ambiguity Aversion.
32 Siniscalchi (2006), page 3.
33 Convexity is for convenience as it is behaviourally equivalent if one assumed a prior set or its

convex hull. Compactness is assumed to guarantee a well-defined minimum for acts, given the
prior set.

34 This interpretation poses some problems as a preference relation may have multiple prior set
representations, see later discussion and Siniscalchi (2006) as well as its online appendix.
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Maxmin Expected Utility

The most prominent class of MP models is the Maxmin Expected Utility (MEU)

model. The DM evaluates acts at the worst case scenario of some prior set. The

evaluation of an act f , given a prior set C and utility function u is

min
P∈C

∫
u(f) dP.

This is illustrated in Figure 1.1 for the state space S = {s1, s2, s3}. The MEU

approach can be interpreted as modelling preferences of a DM who cannot rule out

the priors in C and has a pessimistic attitude towards ambiguity.

Figure 1.1: The line u(f) is the lowest indifference curve of f . It is evaluated at Q.
Arrows show the direction of increase in expected utility.

Solving Ellsberg with MEU

The pessimism in the MEU model allows us to model the typical preferences of

the Ellsberg Thought Experiment. For some δ ∈ [0, 1
3
), consider the prior set C =
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1.2 Decision Making under Ambiguity

Figure 1.2: The prior set C reflects the perceived ambiguity of the DM in the Ellsberg
Thought Experiment. It has length 2δ.

{P ∈ ∆(S)|P (R) = 1
3
, 1

3
− δ ≤ P (B) ≤ 1

3
+ δ}. The set is depicted in Figure 1.2.35

The prior set reflects the information about the urn. It contains only probability

distributions that put weight 1
3

on red. The number δ can be interpreted as the

perceived ambiguity. The MEU-evaluations of the four acts can now be calculated.

min
P∈C

∫
u(f1) dP =

1

3
100 > (

1

3
− δ)100 = min

P∈C

∫
u(f2) dP

and

min
P∈C

∫
u(g2) dP =

2

3
100 > (

2

3
− δ)100 = min

P∈C

∫
u(g1) dP.

The Maxmin Expected Utility of f1 is therefore greater than for f2 as well as greater

for g2 than for g1.

35 For the same value of δ, the set C and the capacity ν from above represent the same preferences.
This is because ν is convex and C is the core of ν, see later discussion.
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Gilboa and Schmeidler’s Axiomatization of MEU

Gilboa and Schmeidler (1989) axiomatize MEU preferences in the Anscombe-Aumann

framework. They introduce the following axiom, which is a weakening of Comono-

tonic Independence. It requires independence only when the act with which is mixed

is constant.

Axiom 1.11 (Certainty Independence). For all acts f, g ∈ F , constant acts l ∈ L

and α ∈ (0, 1)

f % g ⇐⇒ αf + (1− α)l % αg + (1− α)l.

The intuition behind this axiom is that it is not possible to hedge against ambi-

guity when mixing with a constant act, thus preferences should not be affected by

such a mix. The axiom stays silent about mixtures amongst pairwise comonotonic

acts and is thus much weaker than Comonotonic Independence.

Gilboa and Schmeidler (1989) furthermore assume the Uncertainty Aversion ax-

iom.

Theorem 1.6 (Gilboa and Schmeidler). Let S be a finite state space, L the set of

finite-support lotteries over a set of consequences X and % a preference relation on

F = {f : S → L}. Then the following are equivalent:

1. % satisfies the axioms AA1, AA2, Certainty Independence, AA4, AA5 and

Uncertainty Aversion.

2. There exists a non-empty, compact and convex set C ⊆ ∆(S) and a non-

constant function u : X → R such that for all f, g ∈ C

f % g ⇐⇒ min
P∈C

∫
u(f) dP ≥ min

P∈C

∫
u(g) dP.

Furthermore, C is unique and u is unique up to positive affine transformations.

Uncertainty Aversion is responsible for the min-functional. The axiom is thus

responsible for the pessimistic attitude towards ambiguity.36 The CEU model does

not have this restriction. However the MEU model has more degrees of freedom

36 We show in our second article that this statement is only true in the presence of the other MEU
axioms, most importantly Certainty Independence. We provide an example of a preference
relation that satisfies Uncertainty Aversion but that cannot be represented by a prior set in
combination with the min-functional.
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1.2 Decision Making under Ambiguity

than CEU regarding the limitations due to its independence axiom as Comonotonic

Independence constrains beliefs much more than Certainty Independence does. For

instance an MEU preference relation that can be represented by a ball-shaped prior

set does not have a CEU representation. The CEU and MEU models however

have an overlap: convex capacities. Schmeidler shows that a CEU DM with convex

capacity ν has the same preferences as an MEU DM with prior set C = Core(ν).

α-MEU Preferences

A more general model than MEU is α-MEU, introduced by Ghirardato and Marin-

acci (2002). The idea is to extend MEU to allow also optimistic attitudes towards

ambiguity. Preferences are represented by a non-empty, convex and compact prior

set C, a utility function u and a parameter α ∈ [0, 1]. The evaluation of an act is

the α-mix of the worst and the best case scenario, given the prior set and the utility

function. The evaluation of an act f is thus

αmin
P∈C

∫
u(f) dP + (1− α) max

P∈C

∫
u(f) dP.

The α parameter reflects the ambiguity attitude of the DM. The case α = 1 coin-

cides with pure pessimism and thus corresponds to MEU. The case α = 0 coincides

with pure optimism and corresponds to Maxmax Expected Utility (MMEU). For

values strictly between 0 and 1, the DM exhibits both pessimistic and optimistic

attitudes towards ambiguity.

The α-MEU approach is intuitively very appealing as an extension of MEU but

poses a few problems. Thus far there does not exist a satisfactory axiomatization of

α-MEU preferences. In Ghirardato et al. (2004) an axiomatization is provided, but

Eichberger et al. (2011) show that in a finite state space the axioms imply α ∈ {0, 1},
i.e. either MEU or MMEU. Furthermore the α-MEU axiom of Ghirardato et al.

(2004) is not purely in terms of preferences. In the third article of this thesis we

provide an equivalent version to their α-MEU axiom which is purely in terms of

preferences. However our axiom does not solve the problem highlighted in Eichberger

et al. (2011).

Another problem of the α-MEU model is that the distinction between perceived

ambiguity represented through the prior set C and ambiguity attitude α is not given.

Siniscalchi (2006) shows that there can be more than one representation of the same

preferences, i.e. for some preference relation % there may exist C, α and C ′, α′ which
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1 Axiomatic Decision Theory, Ambiguity and Games

both represent %.37 Thus the α-MEU model does not achieve a clear separation of

perceived ambiguity and ambiguity attitude.

Invariant Biseparable Preferences

Ghirardato et al. (2004) introduce a class of MP preferences which they call in-

variant biseparable (IB) preferences, a class that contains CEU and α-MEU pref-

erences. Crucially, they suggest a solution to the earlier highlighted problem of

non-uniqueness of the prior set for these preferences. They assume the standard

Anscombe-Aumann axioms except Independence, which they replace by Certainty

Independence.38 They show that the axioms guarantee the existence of a smallest

prior set which represents an IB preference relation. They interpret this set as the

perceived ambiguity of the preference relation. Furthermore they prove the exist-

ence of a function a which assigns an ambiguity attitude between 0 and 1 to every

act.39 The evaluation of an act f is thus40

a(f) min
P∈C

∫
u(f) dP + (1− a(f)) max

P∈C

∫
u(f) dP.

Their set of priors is characterized via the unambiguous preference relation in

the style of Bewley (2002), introduced by Nehring (2001): For % the unambiguous

preference relation %∗ is constructed such that for f, g ∈ F

f %∗ g ⇐⇒ αf + (1− α)h % αg + (1− α)h, ∀h ∈ F .

The act f is unambiguously preferred to g if no hedge can reverse the preference of

f over g. The preference %∗ is an incomplete preference relation on F . Ghirardato

et al. (2004) show that if % satisfies the axioms AA1, AA2, Certainty Independence,

AA4 and AA5, there exists a unique prior set C such that

f %∗ g ⇐⇒
∫
u(f) dP ≥

∫
u(g) dP ∀P ∈ C. (1.4)

37 A simple example is C = Bε(P ) ⊆ ∆(S), i.e. a ball of radius ε around some P ∈ ∆(S), α = 3
4

and C′ = B ε
2
, α′ = 1.

38 Or put differently: the MEU axioms of Gilboa and Schmeidler (1989) without Uncertainty
Aversion.

39 If we assume Uncertainty Aversion we are back to the Gilboa and Schmeidler (1989). Here
the ambiguity attitude function is constant 1, i.e. pure pessimism.

40 This is a simplified version. We omit some characteristics of the ambiguity attitude function
here. The next pages for details.
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1.2 Decision Making under Ambiguity

The act f is unambiguously preferred to g if and only if f results in a higher expected

utility than g for every P ∈ C. The set C is not only the smallest prior set that can

represent % but also the Clarke-Differential at 0.41 Throughout this thesis we refer

to this prior set C as the GMM prior set of %.

Ghirardato et al. (2004) furthermore show that, under their axioms, ambiguity

attitude is constant for acts that perceive “similar ambiguity” given the GMM prior

set C. The acts f and g perceive similar ambiguity (denoted by f � g, this definition

is also derived from the unambiguous preference relation) if they order the elements

of C in the same way, i.e.

f � g ⇐⇒
(∫

u(f) dP ≥
∫
u(f) dQ ⇐⇒

∫
u(g) dP ≥

∫
u(g) dQ ∀P,Q ∈ C

)
.

They denote by [f ] the equivalence class of � that contains f . The acts in [x] are

called crisp acts. Thus an act is crisp if∫
u(f) dP =

∫
u(f) dQ ∀P,Q ∈ C.

Of course all constant acts are crisp. We can now state the representation result of

Ghirardato et al. (2004).

Theorem 1.7 (Ghirardato et al.). Let % be a preference relation on F that satisfies

AA1, AA2, Certainty Independence, AA4 and AA5. Then there exists a non-empty,

convex, compact prior set C, a non-constant affine function u : L→ R and a function

a : F/� → [0, 1] such that % is represented by the functional I : F → R defined by

I(f) = a([f ]) min
P∈C

∫
u(f) dP + (1− a([f ])) max

P∈C

∫
u(f) dP, (1.5)

and u and C represent %∗ in the sense of (1.4). Moreover C is unique, u is unique up

to positive affine transformations and the function a restricted to F/�\[x] is unique.

Via this construction of the preference functional, Ghirardato et al. (2004) claim

to have achieved a separation of perceived ambiguity and ambiguity attitude. Note

however that there may still be (and will almost always be) multiple representations

of the same preferences.

41 Clarke-differentiability is a generalization of the Gateaux-differentiability of functionals. The
set of priors is obtained by this “appropriately generalized notion of derivative of a preference
functional”, see Ghirardato et al. (2004).
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Furthermore note that Theorem 1.7 is an only if statement, thus it is possible

that % can be represented by a functional I which has the properties in the theorem

but which does not satisfy the stated axioms. For instance the ambiguity attitude

function may be very steep such that preferences violate the Monotonicity axiom.42

To sum up this section on CEU and MP approaches, we want to highlight where

the axiomatic differences between these two approaches lie. The crucial difference is

the different version of the Independence axiom implying the different characteristics

of the representation functional. Where CEU assumes Comonotonic Independence,

the classic MP approaches assume Certainty Independence.43 For instance pref-

erences representable by a convex capacity are characterized by the same axioms

as MEU preferences except that we have Comonotonic Indepedence instead of Cer-

tainty Independence. JP-capacities and the α-MEU model are the natural extensions

of convex capacities and the MEU model to allow also optimistic attitudes towards

ambiguity.

1.2.3 Perceived Ambiguity, Ambiguity Attitude and their

Separation

The question of what perceived ambiguity and ambiguity attitude is behaviourally

and axiomatically and how these two concepts can be separated is a much debated

topic in the literature on decision-making under ambiguity. Several approaches

have already been introduced here. In this subsection we take a detailed look at the

approaches on this topic which are relevant for this thesis.

Two Definitions of Ambiguity Aversion and our Hierarchy of Ambiguity

Aversion

Schmeidler’s definition of ambiguity aversion has been already introduced. He

defines it via the Uncertainty Aversion axiom. In the CEU framework this implies

convex capacities. In the MP approach it implies MEU.

A different approach is taken by Ghirardato and Marinacci (2002). In the spirit

of Yaari (1987), they define ambiguity aversion via a benchmark for ambiguity neut-

rality as well as a comparative notion of ambiguity aversion. Combined this allows

42 See the second article for an example of a MP preference that violates Monotonicity.
43 See the second article for an axiomatization of MP preferences without the Certainty Inde-

pendence axiom.
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an absolute notion of ambiguity aversion. Their benchmark for ambiguity neutrality

is subjective expected utility.44 Their comparative notion states that if for a prefer-

ence relation some act f is preferred to a constant act l, then a less ambiguity averse

preference relation prefers f to l as well. That is %1 is more ambiguity averse than

%2 if for all acts f and constant acts l

f %1 l =⇒ f %2 l. (1.6)

Kelsey and Nandeibam (1996) independently suggests the same comparative no-

tion of ambiguity aversion for CEU preferences. The absolute notion of Ghirardato

and Marinacci is thus the following.

Definition 1.4 (Ghirardato and Marinacci). A preference relation % reveals ambi-

guity aversion if there exists a subjective expected utility preference %SEU such that

for all acts f ∈ F and all constant acts l ∈ L:

f % l =⇒ f %SEU l.

The intuition is clear: a DM is ambiguity averse if she is more ambiguity averse

than some ambiguity neutral (SEU) DM. Restricted to the CEU framework, a pref-

erence relation % is ambiguity averse if and only if the corresponding capacity ν has

a non-empty core, i.e. is balanced. Every element of P ∈ Core(ν) induces an SEU

preference %SEU such that % is more ambiguity averse than %SEU .

Balanced capacities are characterized in the Anscombe-Aumann framework by

Chateauneuf and Tallon (2002) via their “Sure Expected Utility Diversification”.

As already highlighted, this characterization is not purely in terms of preferences

and therefore not a proper axiom. We present in our first article of this thesis an

axiom on mixing preferences that we call 1 - Ambiguity Aversion. It states that if the

mix of indifferent acts constitutes a constant act, then this constant act is preferred.

We show this axiom to be equivalent to Sure Expected Utility Diversification. We

thus provide an axiomatization of balanced capacities. We therefore also axiomatize

the definition of ambiguity aversion by Ghirardato and Marinacci (2002) in the

44 Epstein (1999) introduces a similar approach but takes probabilistic sophistication (Machina
and Schmeidler (1992)) as the benchmark for ambiguity neutrality.
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CEU framework.45 Crucially this implies that the concept of ambiguity aversion by

Ghirardato and Marinacci (2002) is equivalent to an axiom on mixing preferences,

just like Schmeidler’s, but weaker. This crucial insight leads to our Hierarchy of

Ambiguity Aversion, which we introduce in our first article.

The axiom 1 - Ambiguity Aversion is the weakest axiom of the Hierarchy. Our ax-

iom 2 - Ambiguity Aversion is stronger and requires a preference for mixing when the

mix constitutes a binary act.46 We show that this axiom characterizes exact capacit-

ies, an open problem in decision-theory. The hierarchy proceeds in this fashion until

it reaches |S| - Ambiguity Aversion which we show to be equivalent to Schmeidler’s

Uncertainty Aversion and thus to his definition of ambiguity aversion. We therefore

introduce a new conceptual framework with different levels of preference for mixing

amongst acts which has the above two popular definitions of ambiguity aversion as

its extreme cases.

Perceived Ambiguity

In the Multiple Prior model, one would like to interpret prior sets as the perceived

ambiguity of the DM. We have already highlighted the problem that MP preferences

have multiple representations. If there are many representations, then which prior

set is the correct representation of perceived ambiguity? Only after answering this

question one can aim at separating perceived ambiguity from ambiguity attitude.

Ghirardato et al. (2004) provide a uniqueness result via their unambiguous pref-

erence relation that induces a prior set which they interpret as the perceived ambi-

guity. They suggest a comparative notion of perceived ambiguity for their invariant

biseparable preferences: %1 perceives more ambiguity than %2 if for all f, g ∈ F

f %∗2 g =⇒ f %∗1 g.

Ghirardato et al. show that this is equivalent to the utility functions being pos-

itive affinely related and C2 ⊆ C1, where Ci is the GMM prior set of %i, i = {1, 2}.
At first this makes intuitive sense: when one prior set is a subset of another then it

reflects less ambiguity. In the third article we criticize their approach. We propose

that perceived ambiguity is location independent, i.e. whether one prior set reflects

more ambiguity than another should not depend on their location within the prob-

45 Actually we axiomatize their definition of ambiguity aversion in a larger framework than CEU.
46 A binary act maps to at most two different lotteries.
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ability simplex. We claim that we hereby provide a more satisfactory definition of

comparative perceived ambiguity. As we show in the article, our approach allows

an application to games as well as a very general equilibrium existence result, since

we can exogenously fix degrees of perceived ambiguity for players.

Separation of Perceived Ambiguity and Ambiguity Attitude: Exact Capacities

We have introduced several definitions and comparative notions for both perceived

ambiguity and ambiguity attitude. Separating these two concepts is tricky. To

illustrate that this separation still allows a fruitful debate consider the following

absurdity: restricted to exact capacities, the comparative notion of ambiguity aver-

sion by Ghirardato and Marinacci (2002) as well as Kelsey and Nandeibam (1996)

and the comparative notion of perceived ambiguity by Ghirardato et al. (2004) are

identical. To illustrate this, assume that %1 and %2 are representable by the exact

capacities ν1 and ν2, respectively. Assume that %1 is more ambiguity averse than

%2 according to the definition of Ghirardato and Marinacci as well as Kelsey and

Nandeibam.

Kelsey and Nandeibam (1996) shows that this is equivalent to

ν1(E) ≤ ν2(E) for all E ∈ P(S).

It is easily shown that this in turn is equivalent to

Core(ν2) ⊆ Core(ν1)

and that this is equivalent to

C2 ⊆ C1,

where C1 and C2 are the GMM prior sets of the preferences %1 and %2, respectively.47

This in turn, according to Ghirardato et al., is equivalent to %1 perceiving more

ambiguity than %2.

This illustrates the curious fact that for exact capacities, the notion of compar-

ative ambiguity aversion by Ghirardato and Marinacci (2002) as well as Kelsey and

Nandeibam (1996) is exactly the notion of comparative perceived ambiguity by Ghir-

47 Note that the GMM set of priors is not equal to the core, it is always a superset as well as
equal to the core if and only if the capacity is convex.
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ardato et al. (2004). In our opinion this suggests that the questions about the correct

definition of perceived ambiguity and ambiguity aversion is still very controversial.

In this thesis we suggest that, in a to be specified way, a larger set of priors re-

flects more perceived ambiguity than a small set of priors, see our third article. We

furthermore suggest that comparative ambiguity aversion is captured by our Hier-

archy of Ambiguity Aversion, hereby following the spirit of Schmeidler’s intuition of

defining ambiguity aversion via a preference for mixing amongst acts, see our first

article.

Separation of Perceived Ambiguity and Ambiguity Attitude: JP-Capacities

JP-capacities and especially their subclass neo-additive capacities allow a nice separ-

ation of perceived ambiguity and ambiguity attitude. These classes of preferences do

not suffer from having multiple representations within their class.48 The perceived

ambiguity is uniquely represented by the core of the convex part of the capacity

and ambiguity attitude is represented by the α-parameter. Eichberger and Kelsey

(2014) successfully use this fact in application to games as we illustrate in the fourth

article. The clear separation of perceived ambiguity and ambiguity attitude makes

it possible to perform comparative statics in one factor whilst holding the other

constant. This way the influence of one factor can be analyzed without the other

one interfering.

48 For instance a JP-capacity ν cannot be represented by both some convex capacity µ and
α ∈ [0, 1] as well as some different µ′, α′.
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1.3 Ambiguous Games

The CEU and MP models introduced thus far can be utilised to model strategic

interaction under ambiguity. Capacities or prior sets can for instance represent

ambiguous beliefs of players about the strategic behaviour of the other players.

The crucial part is to construct an equilibrium concept. In a Nash equilibrium,

players choose optimal strategies given their beliefs. These beliefs are probability

distributions over the pure strategy set of the other players and are consistent in

the sense that the support of the beliefs only contain optimal responses of the other

players. One approach for ambiguous games is to extend this idea of consistency to

ambiguous beliefs by defining a convincing support notion for capacities or prior sets.

Several approaches have been proposed. In the following we introduce the theories

of the papers that are relevant for our contribution, most importantly Eichberger

and Kelsey (2014). In the third and fourth article of this thesis we add to the

literature on ambiguous games. We introduce a concept of perceived ambiguity in

the MP approach which allows an application to normal-form games. We prove a

very general equilibrium existence result and illustrate a broad range of modelling

capabilities. Here we only sketch our contribution as it is discussed in detail in the

third article.

Framework, Notation and Motivation for Ambiguous Games

We study normal-form games. A normal-form game Γ = 〈N ;Si, ui : 1 ≤ i ≤ N〉
consists of a finite set of players N , finite pure strategy sets Si and payoff function

ui for player i. The set of pure strategy combinations is denoted by S and S−i is the

set of strategy combinations of player i’s opponents. Player i has payoff function

ui : S → R. The set ∆(S−i) denotes the set of probability distributions over S−i.

Player 1

Player 2
D02 A02

D01
172
187

; 172
183

172
187

; 172
183

A01
172
187

; 172
183

Game A

Player 1

Player 2
L R

U 100, 1 0, 0
D 99, 1 99, 0

1

Figure 1.3: Is the Nash Equilibrium a good prediction?

We illustrate the ideas and theories by means of the game in Figure 1.3. The

game has the strategy combination (U,L) as its unique Nash Equilibrium. However
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strategy D is very tempting for player 1 as it avoids getting 0 when R is played

and is hardly worse then U when L is played. It is thus imaginable that the Nash

Equilibrium provides a bad prediction of the outcome and that we observe (D,L)

instead.

We illustrate how models with ambiguous beliefs provide the flexibility to have the

strategy combination (D,L) as an equilibrium under ambiguity. Such models thus

have the potential to model behaviour patterns that are closer to real-life behaviour

in games where the Nash Equilibrium fails.

1.3.1 Eichberger and Kelsey (2014)

Eichberger and Kelsey (2014) represent beliefs of players about the strategic choice

of their opponents by JP-capacities. As already highlighted this capacity class has

the nice characteristic of a clean separation of perceived ambiguity from ambiguity

attitude. The perceived ambiguity of a JP-capacity ν = αµ+(1−α)µ̄ is represented

by the convex capacity µ and its core. The ambiguity attitude is represented by

the parameter α. This separation makes comparative statics exercises in perceived

ambiguity and ambiguity attitude possible.49

To define an equilibrium concept, Eichberger and Kelsey (2014) need a support

notion for JP-capacities. This allows the definition of Equilibrium under Ambigu-

ity. In equilibrium, the support of the beliefs of the players only contain optimal

strategies for the other players, given their beliefs. Through this approach the idea

of consistency of Nash Equilibrium is generalized to ambiguous games.

Eichberger and Kelsey (2014) define the support of a JP-capacity ν = αµ+ (1−
α)µ̄ : P(S)→ [0, 1] as

supp(ν) =
⋂

P∈Core(µ)

supp(P ),

where as usual supp(P ) = {s ∈ S|P (s) > 0} for P ∈ ∆(S). This support notion for

prior sets, in this case Core(µ), goes back to Ryan (2002).

In equilibrium the players maximize Choquet Expected Utility given their beliefs.

The following equilibrium concept captures this.

49 We introduce their approach for performing comparative statics in detail in our fourth article.
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1.3 Ambiguous Games

Definition 1.5 (Equilibrium under Ambiguity: Eichberger and Kelsey). Let Γ =

〈N ;Si, ui : 1 ≤ i ≤ N〉 be a normal-form game and consider JP-capacities ν̂i :

P(S−i) → [0, 1] for i ∈ {1, . . . , N}. Then ν̂ = 〈ν̂1, . . . , ν̂N〉 is an equilibrium in

beliefs under ambiguity (EUA) if for all i ∈ {1, . . . , N}

∅ 6= supp(ν̂i) ⊆ ×j 6=i arg max
sj∈Sj

∫
uj(sj, s−j) dν̂j,

with
∫
uj(sj, s−j) dν̂j being the Choquet integral of the strategy sj given the capacity

ν̂j.

If supp(ν̂i) contains just one element ŝi for all i ∈ {1, . . . , N} then ŝ = (ŝ1, . . . , ŝN)

is called singleton equilibrium in beliefs under ambiguity.

Eichberger and Kelsey apply this model to games with positive externalities and

increasing differences. We illustrate their results in detail on our fourth article.

1.3.2 Our Multiple Prior Approach

In our third article, we represent beliefs of players by MP preferences: a prior set

Ci over ∆(S−i) as well as an ambiguity attitude αi ∈ [0, 1] over the players’ own

strategies Si.
50 For player i with belief Ci ⊆ ∆(S−i) and ambiguity attitude function

αi the evaluation of a strategy si ∈ Si is therefore

Vi(si|Ci, αi) = αi min
P∈Ci

∫
u(si, s−i) dP + (1− αi) max

P∈Ci

∫
u(si, s−i) dP.

To define an equilibrium notion, we adapt the support and equilibrium notion of

Eichberger and Kelsey (2014). It is the natural extension of their approach to the

MP model and also uses the support notion of Ryan (2002).

Definition 1.6. Let C be a prior set on ∆(S). The support of C is defined by

supp(C) =
⋂
P∈C

supp(P ).

The support of a prior set consists of the strategies that receive positive weight by

all elements of the prior set. In equilibrium, the support of the prior set is non-empty

50 For a simpler illustration we reduce attention to α-MEU preferences in this subsection. In
the third article we assume a much larger class of preferences where ambiguity attitude is not
necessarily constant.
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and only contains the opponents’ best responses given their beliefs.

Definition 1.7 (Equilibrium under Ambiguity). Let Γ = 〈N ;Si, ui : 1 ≤ i ≤ N〉 be

a normal-form game. The tuple (Ci, αi)Ni=1 is an Equilibrium under Ambiguity if for

all 1 ≤ i ≤ N ,

∅ 6= supp(Ci) ⊆ ×j 6=i arg max
sj∈Sj

[V (sj|Cj, αj)] .

If supp(Ci) contains just a single element ŝi ∈ Si for all i ∈ {1, . . . , N} we refer

to the equilibrium as a singleton equilibrium and ŝ = (ŝi, . . . , ŝN) as its strategy

profile.

In the third article we introduce a measure of perceived ambiguity in the MP

model. The key and desired implication of this measure is that two prior sets reflect

the same perceived ambiguity if and only if they only differ in location. This is

illustrated in Figure 1.4. This definition allows us to exogenously fix perceived

ambiguity for the players without loosing dynamics.

Figure 1.4: The prior sets C1 and C2 differ only in location and thus reflect the same
ambiguity.

We prove equilibrium existence for normal-form games. The class of preferences

considered is a superclass of IB preferences and therefore also of CEU and α-MEU.

Thus our equilibrium existence result holds for these preference classes as well.
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1.3.3 Back to the Example

Reconsider the normal-form game from Figure 1.3. We have argued that strategy

D for player 1 is likely to occur, even though the strategy combination (U,L) is the

unique Nash equilibrium. We show that both of the above approaches can easily

induce the strategy combination (D,L) as an equilibrium under ambiguity.

Eichberger and Kelsey (2014) applied to the Game

Assume that we can represent the beliefs of players by the neo-additive capacities

ν1 = νπ1,δ1,α1 and ν2 = νπ2,δ2,α2 .51 Since L strictly dominates R, player 2 will always

play L, regardless of the beliefs about what player 1 does. We can thus restrict

attention to player 1.

Player 1 believes that player 2 plays the optimal strategy L, i.e. π(L) = 1. But she

is not completely confident in this belief. Her confidence is reflected by (1− δ1), her

degree of perceived ambiguity by δ1. Furthermore she has degree of pessimism α1.

Thus the belief of player 1 can be represented by the capacity ν1 : P({L,R})→ [0, 1]

with

ν1(E) =



0, E = ∅

(1− α1)δ1, E = R

(1− α1)δ1 + 1− δ1, E = L

1, E = S

.

The Choquet expected utilities of the two strategies U and D, given ν1 can be

calculated with equation (1.3):∫
U dν1 = (1− α1)δ1100 + α1δ10 + (1− δ1)100∫
D dν1 = 99.

Thus D � U if and only if α1δ1 >
1

100
. Thus for α1δ1 >

1
100

, the pair of capacities

(ν1, ν2) with ν2 = νπ2,δ2,α2 such that π2(D) = 1 constitutes an Equilibrium under

51 Recall that neo-additive capacities are a subclass of JP-capacities. Thus we are within the
framework of Eichberger and Kelsey (2014). We choose neo-additive capacities for this example
because of their intuitive interpretation.
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Ambiguity. The strategy combination (D,L) is a singleton equilibrium. Indeed it is

straightforward to see that for values of δ1 and α1 such that α1δ1 >
1

100
, the above

is the unique equilibrium under ambiguity.

This result makes sense intuitively. When the degrees of perceived ambiguity δ1 as

well as pessimism α1 are sufficiently large, player 1 does not choose U , but D instead

to avoid the possibility of the bad outcome 0. Mathematically this is possible since

when α1δ1 gets larger, the Choquet integral puts more weight on the bad outcome

R when U is evaluated. This holds even when R is not in the support of ν1.

The example shows how the model of Eichberger and Kelsey (2014) can cope with

behaviour patterns that are intuitive but clash with the Nash Equilibrium concept.

The Multiple Prior Approach applied to the Game

In a game with two players and two strategies the set S−i consists of two elements.

This implies that prior sets are intervals. A prior set in the game is thus of the

kind Ci = Conv(P,Q|P,Q ∈ ∆(S−i)). We can represent perceived ambiguity by the

length of this interval, i.e. by a parameter δi ∈ [0, 1].52

The evaluation of strategy U , given a prior set C1 and ambiguity attitude α1 is

α1 min
P∈C1

∫
U dP + (1− α1) max

P∈C1

∫
U dP.

Figure 1.5: The equilibrium belief of player 1 with perceived ambiguity δ1.

For the prior set C1 with interval length δ1 depicted in Figure 4.7, the evaluation

of U is

α1(δ10 + (1− δ1)100) + (1− α1)100.

The evaluation of D is again 99. Thus again D � U if and only if α1δ1 > 1
100

.

Consider any prior set C2 such that supp(C2) = {D} and some ambiguity attitude

52 To exogenously fix perceived ambiguity would mean to fix an interval-length. Our result in
the third article implies equilibrium existence for any exogenously fixed interval length.
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1.3 Ambiguous Games

α2 ∈ [0, 1]. Note that supp(C1) = {L}. Now for α1δ1 >
1

100
the tuple (Ci, αi)2

i=1

constitutes an Equilibrium under Ambiguity. This illustrates how our MP approach

can model deviations from the Nash Equilibrium prediction.
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2 A Hierarchy of Ambiguity Aversion

and the Axiomatization of

Balanced and Exact Capacities

Abstract

This article introduces a new conceptual framework of ambiguity aversion. Higher

levels of ambiguity aversion are axiomatically characterized by a more pronounced

preference for mixing amongst acts. The weakest level of this hierarchy corresponds

to a preference for mixing, conditional on this mix eliminating all ambiguity. We

show that this axiomatically characterizes the definition of ambiguity aversion by

Ghirardato and Marinacci (2002). The strongest level of the hierarchy corresponds

to an unconditional preference for mixing and matches the definition of ambiguity

aversion by Schmeidler (1989). We illustrate how preferences can exhibit mixing

preferences that lie strictly in between these two approaches.

We show that every level of the hierarchy is characterized by a specific geometric

property concerning the set of measures that dominate the preference relation. By-

products of our approach are the axiomatizations of balanced and exact capacities,

thus far open problems in decision theory.

Keywords: Ambiguity Aversion, Choquet Expected Utility, Balanced Capacit-

ies, Exact Capacities, Multiple Priors

2.1 Introduction

Ambiguity aversion is the aversion towards unknown risk. Ellsberg (1961) and

others have demonstrated that ambiguity aversion occurs systematically in human
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2 Hierarchy of Ambiguity Aversion

decision-making. This sparked several approaches for defining ambiguity aversion

in terms of preferences.

Schmeidler (1989) defines ambiguity aversion through preference for mixing amongst

acts.1 The intuition is that mixing smooths out utility distributions across states

and thus provides a hedge against ambiguity. An ambiguity averse decision maker

(DM) is thus better off. Ghirardato and Marinacci (2002) propose an alternative

definition. A DM is ambiguity averse if she is, in the spirit of Yaari (1987), more

ambiguity averse then some subjective expected utility (SEU)2 DM: whenever the

DM prefers an act to a constant, the SEU DM does so as well. This article shows

that their definition is characterized by a preference for mixtures which eliminate

all ambiguity, i.e. a preference for mixtures that constitute a constant act. An

ambiguity averse DM is thus only guaranteed to prefer perfect hedges.

Schmeidler’s definition is strong as it postulates a preference for mixing regardless

of what act the mix constitutes. In contrast, the definition of Ghirardato and Mar-

inacci is weak as it postulates a preference for mixing only when the mix eliminates

all ambiguity.

These two approaches are the extreme cases of what we refer to as the Hierarchy

of Ambiguity Aversion. We illustrate how DM’s can exhibit levels of ambiguity

aversion that lie strictly in between those approaches. Every level of the hierarchy

is characterized through an axiom on mixing preferences. As we go up the hierarchy

the corresponding axiom increases in strength.

An Example

To build intuition consider the following example. There are three states of the

world s1, s2, s3 and three acts f, g, h. The consequences l1, l2, l3 are lotteries over

some set of prizes.

Assume that the DM is indifferent between f, g and h. The 1
2
-mix between the

acts f and g results in the lottery 1
2
l1 + 1

2
l2 in every state and thus eliminates all

ambiguity. It is a perfect hedge against ambiguity. The 1
2
-mix between f and h

reduces ambiguity to two different lotteries: 1
2
l1 + 1

2
l3 and 1

2
l1 + 1

2
l2. It reduces

ambiguity but does not eliminate it. The 1
2
-mix between g and h results in three

different lotteries: 1
2
l2 + 1

2
l3, l2 and l1.

1 Acts are mappings from the state space into finite-support lotteries on some set of prizes.
Mixtures are performed pointwise. See section 2.2 for the details.

2 Ghirardato and Marinacci (2002) suggest that SEU decision makers are ambiguity neutral.
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s1 s2 s3

f l1 l1 l2

g l2 l2 l1

h l3 l2 l1

It is plausible that an ambiguity averse DM prefers the 1
2
-mix between the acts

f and g. However, one may ask whether ambiguity aversion necessarily leads to a

preference for the 1
2
-mix between f and h as well as between g and h.

Consider three types of our decision maker: DM 1, DM 2 and DM 3. Assume

that DM 1 prefers all three mixes. DM 2 prefers the mix between f and g as well as

between f and h. DM 3 only prefers the mix between f and g. We suggest that DM

1 exhibits a stronger level of ambiguity aversion than DM 2, who exhibits a stronger

level of ambiguity aversion than DM 3. The rationale for this is the following: DM

3 is willing to mix if this eliminates all ambiguity, but she is not willing to mix

otherwise. DM 2 is willing to mix in the cases where ambiguity is reduced to one

or two different lotteries. Thus DM 2 is willing to mix when ambiguity is reduced

by a lesser extent and thus exhibits a higher level of ambiguity aversion then DM

3. DM 1 is always willing to mix, regardless of how much the ambiguity is reduced

by, and thus exhibits a higher level of ambiguity aversion than DM 2.

The Hierarchy of Ambiguity Aversion

In the above example DM 1 is ambiguity averse in the spirit of Schmeidler (1989).

DM 3 is ambiguity averse in the spirit of Ghirardato and Marinacci (2002). DM 2

exhibits a level of ambiguity aversion that lies strictly in between the two.

We characterize different levels of ambiguity aversion in the spirit of this example.

Let S be a finite state space. A DM who prefers all mixtures that reduce ambiguity

to at most k different lotteries, k ∈ {1, . . . , |S|}, is called k - ambiguity averse. The

higher is k, the more pronounced is the preference for mixing and thus the ambiguity

aversion. This axiomatic structure is the Hierarchy of Ambiguity Aversion.
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Outline

The article is organized as follows. After introducing the framework and notation

in Section 2.2, we introduce our Hierarchy of Ambiguity Aversion in Section 2.3

and show that the extreme cases are equivalent to the well-known approaches by

Schmeidler (1989) and Ghirardato and Marinacci (2002). Section 2.4 discusses the

special case of Choquet Expected Utility preferences. Section 2.5 provides examples.

Section 2.6 concludes. All proofs are in the Appendix.

2.2 Framework and Notation

We assume the classic framework of Anscombe and Aumann (1963). Consider a

finite state space S. The powerset of S, P(S) is the set of events.

We study preference relations % on the set of acts F = {f : S → L}, where

L is the set of finite-support lotteries over some set of prizes X. The asymmetric

and symmetric components of % are denoted by � and ∼, respectively. With the

usual abuse of notation, L also denotes the set of constant acts. Mixtures of acts

are performed pointwise: for f, g ∈ F and λ ∈ [0, 1] we denote by λf + (1− λ)g the

act which results in λf(s) + (1− λ)g(s) ∈ L for all s ∈ S.

An act is called n - act if it maps to at most n different lotteries, i.e. it holds that

|{l ∈ L|∃s ∈ S : f(s) = l}| ≤ n. The set of n - acts is denoted by Fn. Thus F1 = L

is the set of constant acts and F2 is the set of binary acts. Binary acts map to at

most two different lotteries. They can be written as lEl
′ with l, l′ ∈ L and E ⊆ S,

i.e. the act results in the lottery l on E and lottery l′ on Ec, the complement of E.

Let u : L → R be a non-constant affine function (utility function). An act is

called n - expected utility act if it maps to at most n different expected outcomes,

i.e. it holds that |{a ∈ R|∃s ∈ S : u(f(s)) = a}| ≤ n, where u(f(s)) is the expected

utility of the act f in state s. The set of n - expected utility acts is denoted by Fun .

Note that for every utility function u it holds that Fn ⊆ Fun but the reverse does

not hold.

We denote by B0 the set of real-valued functions on S. For f ∈ F and utility

function u : L → R, the function u(f) is the element of B0 defined by u(f)(s) =

u(f(s)) for all s ∈ S. A functional I : B0 → R and utility function u : L → R
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represent a preference relation % if for all f, g ∈ F

f % g ⇐⇒ I(u(f)) ≥ I(u(g)).

The function I ◦u : F → R is called a representational functional of %. A functional

I : B0 → R is monotonic if I(φ) ≥ I(ψ) for all φ, ψ ∈ B0 for which it holds

that φ(s) ≥ ψ(s) for all s ∈ S. A functional I : B0 → R is constant-linear if

I(aφ+ b) = aI(φ) + b for all φ ∈ B0, a ≥ 0 and b ∈ R.

To prepare for later discussion we introduce the concept of capacities and the

Choquet Integral that will be of specific interest later on. A capacity is a normalized

and monotonic set-function on S. The Choquet Integral (Choquet (1954)) of a

function Y ∈ B0 with respect to a capacity ν : P(S)→ [0, 1] is defined by

0∫
−∞

(ν({s ∈ S|Y (s) ≥ x})− 1)dx+

∞∫
0

ν({s ∈ S|Y (s) ≥ x})dx,

where the integrals on the right side of the equation are Riemann integrals.

The set of probability distributions over S is denoted by ∆(S). The core of a

capacity ν : P(S)→ [0, 1] is the set of probability distributions over S that pointwise

dominate ν:

Core(ν) = {P ∈ ∆(S)|P (E) ≥ ν(E), ∀E ∈ P(S)}.

For E ∈ P(S) and capacity ν we define

Hν(E) = {P ∈ ∆(S)|P (E) = ν(E)},

the set of probability distributions over S that put the same weight on E as the

capacity does. There are three capacity classes that are particularly relevant for

this paper: balanced, exact and convex capacities. A capacity ν is balanced if its

core is non-empty. A capacity ν is exact if its capacity values are equal to the lower

envelope of the core, i.e. when ν(E) = min
P∈Core(ν)

P (E) for all E ∈ P(S). A capacity

ν is convex if ν(E1) + ν(E2) ≤ ν(E1∪E2) + ν(E1∩E2) for all E1, E2 ∈ P(S). It is a

well-known fact that convex capacities are exact and exact capacities are balanced

but that the reverse implications do not hold. A preference relation is a Subjective

Expected Utility (SEU) preference if it can be represented by a utility function and
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an additive capacity.

Axioms and the Set of Dominating Measures D%

Throughout this article we consider preferences that satisfy the following axioms.

Axiom 2.1 (Weak Order). 1. For all f, g ∈ F either f % g or g % f .

2. For all f, g, h ∈ F if f % g % h then f % h.

Axiom 2.2 (Certainty Independence). For all f, g ∈ F , l ∈ L and λ ∈ (0, 1]

f % g ⇐⇒ λf + (1− λ)l % λg + (1− λ)l.

Axiom 2.3 (Archimedean). For all f, g, h ∈ F if f � g � h then there exist λ, µ ∈
(0, 1) such that λf + (1− λ)h � g � µf + (1− µ)h.

Axiom 2.4 (Monotonicity). For all f, g ∈ F if f(s) % g(s) for all s ∈ S then f % g.

Axiom 2.5 (Non-Degeneracy). There are f, g ∈ F such that f � g.

Ghirardato et al. (2004) refer to preferences satisfying these five axioms as invari-

ant biseparable. They show that a preference relation % satisfies these five axioms if

and only if there exists a nonconstant affine u : L→ R and a monotonic, constant-

linear functional I : B0 → R such that for all f, g ∈ F

f % g ⇐⇒ I(u(f)) ≥ I(u(g)),

i.e. I ◦ u represents %. This result makes possible the following definition. For an

act f ∈ F define

HI◦u(f) =

{
P ∈ ∆(S)|

∑
s∈S

u(f(s))P (s) ≥ I(u(f))

}
.

The set HI◦u(f) consists of the probability distributions over S that result in an

evaluation of f that is at least as good as the evaluation of f with the representation

functional. Furthermore define

HI◦u(f) =

{
P ∈ ∆(S)|

∑
s∈S

u(f(s))P (s) = I(u(f))

}
.
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The set HI◦u(f) consists of the probability distributions over S that result in an

evaluation of f that is exactly as good as the evaluation of f with the representation

functional.

These sets are guaranteed to be non-empty for all f ∈ F due to Proposition 7 in

Ghirardato et al. (2004) which states that

max
P∈∆(S)

∑
s∈S

u(f(s))P (s) ≥ I(u(f)) ≥ min
P∈∆(S)

∑
s∈S

u(f(s))P (s)textforallf ∈ F .

Consider the set

D% =

{
P ∈ ∆(S)|

∑
s∈S

u(f(s))P (s) ≥ I(u(f)) ∀f ∈ F

}
,

a set that is introduced in Ghirardato and Marinacci (2002).3 It is the set of SEU

measures inducing preferences which assign weakly higher expected utility to all

acts. Or put differently: D% =
⋂
f∈F
HI◦u(f). The set D% is convex as well as compact

and may be empty. An important special case is when % can be represented by the

Choquet Integral with respect to some capacity ν. It then holds thatD% = Core(ν).4

To see that this is the case consider a capacity ν : P(S) → [0, 1]. For a binary act

f = lEl
′ ∈ F2 with l % l′ it holds that HI◦u(f) = {P ∈ ∆(S)|P (E) = ν(E)} =

Hν(E) due to the way the Choquet Integral is defined. This implies

Core(ν) =
⋂
f∈F2

HI◦u(f).

With this insight we can state an alternative definition of exact capacities which

becomes convenient in Section 2.4. A capacity ν : P(S)→ [0, 1] is exact if

HI◦u(f) ∩ Core(ν) 6= ∅ for all f ∈ F2.

3 Note that this is not the set C derived from the above five axioms in Ghirardato et al. (2004),
i.e. the Clarke-Differential at 0. One can show that D ⊆ C with equality if and only if the
preferences are of the Maxmin expected utility type.

4 We therefore view D% as a generalization of the core concept.
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2.3 The Hierarchy

For k ∈ {1, . . . , |S|} consider the following axiom.

Axiom 2.6 (k - Ambiguity Aversion). If f1, . . . , fn ∈ F , α1, . . . , αn ≥ 0,
n∑
i=1

αi = 1,

n∑
i=1

αifi = f ∈ Fk, then f1 ∼ · · · ∼ fn implies f % f1.

The axiom states a preference for mixing amongst acts if the mixture constitutes

a k - act. A DM satisfying this axiom wants to mix amongst acts if this mix

results in an act which maps to at most k different lotteries. The strength of the

axiom increases with k: as k becomes larger the preference for mixing amongst acts

increases.

In this section we show that the case k = 1 corresponds to the definition of ambi-

guity aversion by Ghirardato and Marinacci (2002) and that the case k = |S| corres-

ponds to the definition of ambiguity aversion by Schmeidler (1989). This provides

the justification for our interpretation of Axiom 2.6 as an axiomatic Hierarchy of

Ambiguity Aversion.

2.3.1 Definition of Ambiguity Aversion by Ghirardato and

Marinacci (2002)

Ghirardato and Marinacci (2002) define comparative ambiguity aversion in the spirit

of Yaari (1987): a preference relation % is more ambiguity averse than %′ if for all

f ∈ F and l ∈ L it holds that

f % l =⇒ f %′ l.

The intuition is that if a DM prefers some act to a constant act, then a less ambiguity

averse DM does so as well. Ghirardato and Marinacci suggest that SEU preferences

are ambiguity neutral.5

This allows the following absolute notion of ambiguity aversion, the intuition being

that a preference relation reveals ambiguity aversion if it is more ambiguity averse

then some ambiguity neutral preference relation.

5 Epstein (1999) introduces a similar approach but takes probabilistic sophistication (Machina
and Schmeidler (1992)) as the benchmark for ambiguity neutrality.
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Definition 2.1 (GM - Ambiguity Aversion). A preference relation % is ambiguity

averse if there exists an SEU preference %SEU such that for all f ∈ F and l ∈ L it

holds that

f % l =⇒ f %SEU l.

The following theorem shows that this definition is characterized by the axiom 1

- Ambiguity Aversion.

Theorem 2.1. Under the five standard axioms, a preference relation satisfies GM

- Ambiguity Aversion if and only if it satisfies the axiom 1 - Ambiguity Aversion.

2.3.2 Definition of Ambiguity Aversion by Schmeidler (1989)

Schmeidler (1989) introduces the following axiom.6

Axiom 2.7 (Schmeidler - Ambiguity Aversion). For all f, g ∈ F with f ∼ g and

α ∈ [0, 1] it holds that αf + (1− α)g % g.

The axiom states that the DM always has a preference for mixing. Schmeidler

suggests that this axiom characterizes ambiguity aversion as mixing smooths out

utility distributions across states and thus reduced ambiguity.

Definition 2.2 (Schmeidler - Ambiguity Aversion). Under the five standard axioms,

a preference relation % is ambiguity averse if it satisfies the axiom Schmeidler -

Ambiguity Aversion.

The following theorem shows that our axiom |S| - Ambiguity Aversion is equival-

ent to this definition.

Theorem 2.2. A preference relation satisfies Schmeidler - Ambiguity Aversion if

and only if it satisfies the axiom |S| - Ambiguity Aversion.

Note that this result is model free, i.e. Theorem 2.2 does not rely on preferences

to satisfy the five standard axioms, which Theorem 2.1 does.7

6 Schmeidler calls the axiom “Uncertainty Aversion”. Recall that in this thesis, the term “un-
certainty” is used in its generic sense, comprising risk and ambiguity. We therefore deviate
from Schmeidler’s terminology.

7 We conjecture that there is a model-free version of Theorem 2.2. See discussion at the end of
the main text of this article.
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2.3.3 The Hierarchy

The two preceding subsections illustrate that two of the most popular definitions

of ambiguity aversion are characterized by the extreme cases k = 1 and k = |S|
of our axiomatic hierarchy introduced through Axiom 2.6. This suggests that the

intermediate cases k ∈ {2, . . . , |S|−1} of Axiom 2.6 correspond to levels of ambiguity

aversion in between these popular definitions. The following definition thus suggests

itself.

Definition 2.3 (k - Ambiguity Aversion). Under the five standard axioms, a prefer-

ence relation exhibits k - Ambiguity Aversion if it satisfies the axiom k - Ambiguity

Aversion.

Thus a DM exhibits level k ambiguity aversion if her preferences satisfy the axiom

k - Ambiguity Aversion.

2.3.4 The Relationship between k - Ambiguity Averse

Preferences and the set D%

Consider some preference relation %. Recall that D% corresponds to the set of

probability measures that induce preferences which assign weakly higher expected

utility to all acts. If for some act f ∈ F there is a gap between HI◦u(f) and

D%, i.e HI◦u(f)∩D% = ∅, then f is evaluated in a pessimistic way in the sense that

I(u(f)) < min
P∈D%

∑
s∈S u(f(s))P (s). The act f is evaluated more pessimistic then any

SEU DM, whose preferences can be represented by some P ∈ D%, does. Conversely,

if for some f ∈ F there is no gap between HI◦u(f) and D%, i.e. HI◦u(f) ∩ D% 6= ∅,
then f is not evaluated in such a pessimistic way. We can find an SEU DM, whose

preferences can be represented by some P ∈ D%, who evaluates f in the same way.

The following theorem shows that there is an intuitive relationship between the

axiomatic Hierarchy of Ambiguity Aversion and the abovementioned gaps between

HI◦u(f) and D%. A preference relation is level k - ambiguity averse if and only if

there are no gaps for all k - acts.8

Theorem 2.3. Let % be a preference relation on F satisfying the five standard

axioms. Then the following are equivalent:

8 The reason for the truth of this result is that there is a gap for some f ∈ F if and only if f
is not necessarily preferred when it constitutes the mix of some indifferent acts. This is the
crucial step in the proof of Theorem 2.3.
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1. % satisfies k - Ambiguity Aversion.

2. HI◦u(f) ∩ D% 6= ∅ for all f ∈ Fk.

The case k = 1 is a consequence of Theorem 2.1 and Theorem 12 from Ghir-

ardato and Marinacci (2002).9 The case k = |S| is a consequence of the classic

Maxmin Expected Utility representation result from Gilboa and Schmeidler (1989)

in combination with Theorem 2.2.

2.4 A Special Case: the Choquet Expected Utility

Model

This section analyses the consequences that the Hierarchy of Ambiguity Aversion

has for the Choquet Expected Utility (CEU) model. We show that the case k = 1

characterizes balanced capacities10 and that the case k = 2 characterizes exact

capacities. Both of these preference classes have thus far lacked an axiomatization.

The case k = |S| characterizes convex capacities, a direct consequence of Theorem

2.2.

Furthermore we show that within the CEU model, for k = 3, . . . , |S|, the axioms

k - Ambiguity Aversion are not independent, i.e. they all characterize the same

class of capacities: convex capacities. At first this result may be surprising as k

- Ambiguity Aversion increases in strength with k. It turns out however that the

crucial axiom of the CEU framework, Comonotonic Independence, is sufficiently

strong to prevent a distinction between these levels of ambiguity aversion. The

axiom Certainty Independence however is weak enough to allow a proper distinction

between levels of the hierarchy, see in particular Example 2.2 below.

2.4.1 Choquet Expected Utility

The CEU model was introduced and axiomatized by Schmeidler (1989). The axioms

of the model are the five axioms from above with Certainty Independence replaced

9 Note that HI◦u(f) ∩ D% 6= ∅ for all f ∈ F1 is equivalent to the non-emptyness of D%.
10 Chateauneuf and Tallon (2002) characterize balanced capacities with their Sure Expected

Utility Diversification. However this characterization is not a proper axiomatization as it is
not purely in terms of preferences over acts. Their result was however a huge, if not the
biggest, inspiration for this article.
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2 Hierarchy of Ambiguity Aversion

by the axiom Comonotonic Independence. It requires independence only for acts

that are pairwise comonotonic.11

Axiom 2.8 (Comonotonic Independence). For all pairwise comonotonic acts f, g, h ∈
F and α ∈ (0, 1)

f % g ⇐⇒ αf + (1− α)h % αg + (1− α)h.

Schmeidler states the following representation result.

Theorem 2.4 (Schmeidler (1989)). Let % be a preference relation on F . The

following are equivalent:

1. % satisfies the axioms Weak Order, Monotonicity, Comonotonic Independence,

Archimedean and Non-Degeneracy.

2. There exists a capacity ν : P(S) → [0, 1] and an affine function u : L → R
such that for all f, g ∈ F

f % g ⇐⇒
∫
u(f) dν ≥

∫
u(g) dν,

where
∫
u(f) dν is the Choquet Expected Utility of the act f , given u and ν.

Furthermore, ν is unique and u is unique up to positive affine transformations.

We have the following corollary of Theorem 2.3 which characterizes balanced and

exact capacities. It follows directly from the fact that Core(ν) = D% when % is

represented by the capacity ν.

Corollary 2.1. Let % be a preference relation on F satisfying the CEU axioms

from Theorem 2.4. Let ν be the corresponding capacity. Then for k ∈ {1, 2, |S|} the

following are equivalent:

1. % satisfies k - Ambiguity Aversion.

2. HI◦u(f) ∩ Core(ν) 6= ∅ for all f ∈ Fk.

11 Two acts f, g ∈ F are comonotonic if there exist no s, s′ ∈ S such that f(s) � g(s) and
g(s′) � f(s′).
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Corollary 2.1 implies that 1 - Ambiguity Aversion axiomatizes balanced capa-

cities,12 that 2 - Ambiguity Aversion axiomatizes exact capacities and that |S| -

Ambiguity Aversion axiomatizes convex capacities.

The following theorem shows that these three cases correspond to the only levels

of the hierarchy that the CEU model can distinguish amongst. It implies in par-

ticular that a CEU preference satisfying 3 - Ambiguity Aversion is automatically

represented by a convex capacity. Thus within the CEU framework, for k ≥ 3, the

k - Ambiguity Aversion axiom is equivalent to Schmeidler - Ambiguity Aversion.

Theorem 2.5. Under the CEU axioms from Theorem 2.4, k - Ambiguity Aversion

characterizes convex capacities for all k ≥ 3.

2.5 Examples

This section contains 4 examples. The first example demonstrates that preferences

can be 2 - ambiguity averse without being 3 - ambiguity averse. The second ex-

ample demonstrates that preferences can be 3 - ambiguity averse without being 4

- ambiguity averse. The other two examples live within the CEU framework. The

third example introduces a preference relation that is 1 - ambiguity averse but not

2 - ambiguity averse, i.e. it is represented by a capacity that is balanced but not

exact. The last example introduces a preference relation that is 2 - ambiguity averse

but not 3 - ambiguity averse, i.e. it is represented by a capacity that is exact but

not convex.

Throughout the examples we assume for simplicity that acts map to utilities,

i.e. to the real numbers. In the first two examples the following notation is con-

venient: for any act f ∈ F there exists a (non-unique) ordering of the state space

s1
f , s

2
f , . . . , s

|S|
f such that f(s1

f ) ≥ f(s2
f ) ≥ · · · ≥ f(s

|S|
f ). For a partition E1, . . . , En of

the state space S we use the notation x1E1
x2 . . . xn−1En−1

xn to denote the act that

results in xi on Ei, i ∈ {1, . . . , n}.
Ghirardato et al. (2004) show that invariant biseparable preferences, i.e. pref-

erences that satisfy the five standard axioms, can be represented by a prior set

C ⊆ ∆(S), which is also the Clarke-Differential at 0, as well as an ambiguity atti-

tude function a : F → [0, 1].13 We make use of this result for the first two examples

12 Recall that HI◦u(f) ∩ Core(ν) 6= ∅ for all f ∈ F1 is equivalent to the non-emptyness of
Core(ν).

13 See introductory chapter for the details.
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and introduce the preference relations via this representation.

Example 2.1. Consider the state space S = {s1, s2, s3}. Consider the preference

relation % represented by the following polyhedral prior set C and ambiguity attitude

for non-constant acts a:

C = Conv

{(
1

2
,
1

2
, 0

)
,

(
1

2
, 0,

1

2

)
,

(
0,

1

2
,
1

2

)}
,

a(f) = 1− 1

2

(
f(s1

f )− f(s2
f )

f(s1
f )− f(s3

f )

)2

.

Note that C is the Clarke-Differential at 0. The set of dominating measures is

D% = HI(1s10)∩HI(1s20)∩HI(1s30) = Conv

{(
1

2
,
1

4
,
1

4

)
,

(
1

4
,
1

2
,
1

4

)
,

(
1

4
,
1

4
,
1

2

)}
.

The sets C and D are illustrated in Figure 2.1.

Figure 2.1: The sets C and D from Example 2.1.

Observe that for all f ∈ F2 it holds that HI(f) ∩ D% 6= ∅. Theorem 2.3 thus

implies that 2 - Ambiguity Aversion holds for %. The preferences do not however

satisfy 3 - Ambiguity Aversion. Consider the acts f = 3s11s20 ∈ F3 and f1 =

4s10, f2 = 2s1,s20 ∈ F2. We have f = 1
2
f1 + 1

2
f2. It holds that I(f1) = I(f2) = 1 and

I(f) = 5
6
. Therefore 3 - Ambiguity Aversion fails.

The next example is particularly important. It illustrates that preference relations
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exist that satisfy 3 - Ambiguity Aversion but not 4 - Ambiguity Aversion. Recall

Theorem 2.5 which states that this is not possible within the CEU framework. The

example thus shows that the axioms 3 - Ambiguity Aversion and 4 - Ambiguity

Aversion are indeed independent of each other, given the five standard axioms.14

Example 2.2. Consider the state space S = {s1, s2, s3, s4}. Consider the preference

relation % represented by the following polyhedral prior set C and ambiguity attitude

for non-constant acts a:

C = Conv

{(
3

8
,
1

4
,
1

4
,
1

8

)
,

(
3

8
,
1

4
,
1

8
,
1

4

)
,

(
3

8
,
1

8
,
1

4
,
1

4

)
,

(
1

4
,
3

8
,
1

4
,
1

8

)
,(

1

4
,
3

8
,
1

8
,
1

4

)
,

(
1

8
,
3

8
,
1

4
,
1

4

)(
1

4
,
1

4
,
3

8
,
1

8

)
,

(
1

4
,
1

8
,
3

8
,
1

4

)
,(

1

8
,
1

4
,
3

8
,
1

4

)
,

(
1

4
,
1

4
,
1

8
,
3

8

)
,

(
1

4
,
1

8
,
1

4
,
3

8

)
,

(
1

8
,
1

4
,
1

4
,
3

8

)}
.

a(f) =
1

2
+

3

2

min{f(s1
f )− f(s2

f ), f(s2
f )− f(s3

f ), f(s3
f )− f(s4

f )}
f(s1

f )− f(s4
f )

.

Note that again C is the Clarke-Differential at 0. It holds that a(f) = 1
2

for all

f ∈ F3 and a(f) > 1
2

for all f /∈ F3. All f ∈ F3 are thus evaluated at the uniform

distribution PUnif =
(

1
4
, 1

4
, 1

4
, 1

4

)
∈ ∆(S), i.e. I(f) =

∫
f dPUnif for all f ∈ F3. This

implies that D% = {PUnif}, i.e. the set D% consists just of the uniform distribution

over S.

Theorem 2.3 implies that % satisfies 3 - Ambiguity Aversion. It does not however

satisfy 4 - Ambiguity Aversion. Consider the acts f = 4s13s22s31 ∈ F4 and f1 =

4s1,s21, f2 = 4s13s2,s30, f3 = 4s12 ∈ F3. It holds that f = 1
3
f1 + 1

3
f2 + 1

3
f3.

Given the prior set C and ambiguity attitude a we can determine that a(f) = 1

and arg min
P∈C

∫
f dP = (1

8
, 1

4
, 1

4
, 3

8
). It follows that I(f) = 17

8
. Furthermore I(fi) = 5

2

for i ∈ {1, 2, 3}. Thus f1 � f and therefore 4 - Ambiguity Aversion fails.

The next two examples are on preferences that can be represented within the

CEU framework. Recall that for a preference relation % represented by capacity ν

it holds that D% = Core(ν).

14 Our conjecture is that it is possible to construct examples for preferences that satisfy k -
Ambiguity Aversion but not k + 1 - Ambiguity Aversion in general. For k = 4 we need at
least 5 states which makes the analysis very complicated.
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Example 2.3. Consider the state space S = {s1, s2, s3}. Consider the preference

relation % represented by the capacity ν. The core of ν is illustrated in Figure 2.2.

ν(E) =



1, for E = S

0, for E = ∅
1
6
, for |E| = 1

1
3
, for E = {s1, s2};E = {s2, s3}

1
4
, for E = {s1, s3}

Figure 2.2: The capacity ν is balanced, but not exact.

The capacity ν is balanced as the core is non-empty, but it is not exact. Non-

exactness can be determined through the standard definition by observing that

ν({s1, s3}) < min
P∈Core(ν)

P ({s1, s3}). Alternatively by observing that for the binary

act g = 1s1,s30 it holds that
∫
g dν = ν({s1, s3}) = 1

4
< 1

3
= min

P∈Core(ν)

∫
g dP , i.e.

HI(g) ∩ Core(ν) = ∅.
Theorem 2.3 thus implies that % violates 2 - Ambiguity Aversion. To illustrate

this consider the binary acts g = 1s1,s30, f1 = 2s10 and f2 = 2s30. Obviously f1 ∼ f2

and 1
2
f1 + 1

2
f2 = f . However f1 � g, hence % violates 2 - Ambiguity Aversion.

68



2.5 Examples

Example 2.4. Consider the state space S = {s1, s2, s3, s4}. Consider the preference

relation % represented by the capacity µ. The edges of the core of µ are illustrated

in Figure 2.3.

µ(E) =



1, for E = S

1
10
, for E = {s1, s2};E = {s1, s3};E = {s1, s2, s3};

E = {s1, s2, s4};E = {s1, s3, s4};E = {s2, s3, s4}

0, for E otherwise

.

Figure 2.3: The capacity µ is exact, therefore balanced, but not convex.

The capacity µ is exact but not convex. To illustrate that µ is exact via the

standard definition consider the distribution Q1 = ( 1
10
, 0, 0, 9

10
) ∈ ∆(S), pictured

in Figure 2.3. The distribution Q1 is an element of Core(µ) and also of Hµ(E)
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2 Hierarchy of Ambiguity Aversion

for E ∈
{
{s1, s2}, {s1, s3}, {s1, s2, s3}

}
.15 Thus Hµ(E) ∩ Core(µ) 6= ∅ for all E ⊆ S

which shows that µ is exact. Non-convexity follows from Corollary 2.1 and Theorem

2.5 if we find an act f ∈ F3 such that Hµ(f) ∩ Core(µ) = ∅. Consider the act

f = 2s11s2,s30 ∈ F3. It holds that∫
f dµ = 2µ({s1}) + µ({s1, s2, s3}) =

1

10
<

2

10
=

∫
f dQ1 = min

P∈Core(µ)

∫
f dP.

Figure 2.3 illustrates that Hµ(f) ∩ Core(µ) = ∅.
To illustrate that % does not satisfy 3 - Ambiguity Aversion consider the acts

f1 = 2s1,s20 and f2 = 2s1,s30. It holds that f1 ∼ f2 as well as f = 1
2
f1 + 1

2
f2. It holds

that f1 � f , therefore the 3 - Ambiguity Aversion axiom fails.

2.6 Conclusion

This article shows that two of the most prominent definitions of ambiguity aversion

are the extreme cases of a conceptual framework that we call Hierarchy of Ambiguity

Aversion. We show that preferences can exhibit levels of ambiguity aversion that lie

strictly in between the two known ones. We show that every level of the hierarchy can

be characterized by a geometric property concerning the set of dominating measures

D%. We show that within the CEU framework the hierarchy has only three levels,

regardless of the cardinality of the state space. A consequence of our work is the

axiomatization of balanced and exact capacities, important preference classes that

thus far had lacked an axiomatization.

We view the insights of this article as a starting point for future research. We

conjecture that model-free versions of Theorems 2.1 and 2.3 can be proved, i.e.

that we can drop the assumption that preferences satisfy the five standard axioms.

If completely model-free versions of these theorems do not exist, we should aim

to find the weakest axiomatic foundation that allow these results. One may for

instance relax Certainty Independence to Risk Independence or Monotonicity to

Weak Monotonicity, see the next article for details on these axioms.

Another promising extension of this work is to generalize the analysis to a purely

subjective framework (Savage (1954)). We do not have a mixture-space in Savage,

15 These are the crucial events. With the help of Figure 2.3 it can be checked that also the
hyperplanes of all other events intersect Core(µ).
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thus the approach would be quite different. We suspect however that a similar kind

of hierarchy can be defined.
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2.7 Appendix

First we show that we do not lose any generality by assuming that acts are mappings

into utilities when discussing the axiom k - Ambiguity Aversion. Consider the

following definition.

Definition 2.4 (k - “Expected” Utility Ambiguity Aversion).

A preference % satisfies k - “Expected” Utility Ambiguity Aversion if f1 ∼ · · · ∼
fn,

n∑
i=1

αifi = f ∈ Fuk , α1, . . . , αn ≥ 0,
n∑
i=1

αi = 1 =⇒ f % f1.

The k = 1 version is introduced in Chateauneuf and Tallon (2002) under the

name sure “expected” utility diversification. They show that in the CEU framework

it characterizes balanced capacities. However this does not provide a proper axio-

matization as it is not purely in terms of preferences over acts. The following lemma

shows that we can drop the expected utility part of the definition.

Lemma 2.1. Under the five standard axioms, k - “Expected” Utility Ambiguity

Aversion is equivalent to the axiom k - Ambiguity Aversion.

Proof. The non-trivial direction is that k - Ambiguity Aversion implies k - “Ex-

pected” Utility Ambiguity Aversion. Assume that k - Ambiguity Aversion holds.

Assume that g1 ∼ · · · ∼ gn,
n∑
i=1

αigi = g ∈ Fuk . We need to show that g % g1.

There exist x∗, x
∗ ∈ X with x∗ � x∗ such that x∗ % gi(sj) % x∗ for all i ∈

{1, . . . , n} and j ∈ {1, . . . , |S|}. Define the acts f1, . . . , fn in the following way:

fi(sj) = βijx∗ + (1 − βij)x
∗ such that fi(sj) ∼ gi(sj) for all i ∈ {1, . . . , n} and

j ∈ {1, . . . , |S|}. Due to the Archimedean axiom (continuity) these β-values always

exist, are unique and are between 0 and 1. Furthermore

βx∗ + (1− β)x∗ � β′x∗ + (1− β′)x∗ ⇐⇒ β < β′, (2.1)

thus the function which maps β to βx∗+(1−β)x∗ is injective. Monotonicity implies

fi ∼ gi for all i ∈ {1, . . . , n}. Define the act f such that f(s) =
n∑
i=1

αifi(s). Certainty

Independence implies independence for constant acts, thus due to the construction

of f, f1, . . . , fn we achieve f(s) ∼ g(s) for all s ∈ S. Monotonicity implies f ∼ g.

Assume g(s) ∼ g(s′). This implies f(s) =
n∑
i=1

αifi(s) ∼
n∑
i=1

αifi(s
′) = f(s′).

Observation (2.1) implies f(s) = f(s′). Thus f ∈ Fk. The k - Ambiguity Aversion

axiom implies that f % f1. Thus g ∼ f % f1 ∼ g1. This finishes the proof.
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Proof of Theorem 2.1

For two acts f, g ∈ F such that f(s) ∼ g(s) for all s ∈ S the Monotonicity axiom

implies f ∼ g. This fact was already used twice in the proof of Lemma 2.1. It

implies that for an act f we can replace the resulting lotteries in every state, f(s),

by its expected utility, u(f(s)), without losing any generality. We thus assume from

now on that acts are mappings from the state space into the real numbers. We

denote by IE the indicator function of the event E.

Consider the following more general version of Theorem 2.1.

Theorem 2.6. Let % be a preference relation satisfying the five standard axioms.

The following are equivalent:

1. % is GM - ambiguity averse

2. D% 6= ∅

3. % satisfies 1 - Ambiguity Aversion

4. sup

{
n∑
i=1

λiI(fi)|λi ≥ 0,
n∑
i=1

λi = 1, fi ∈ F ,
n∑
i=1

λifi ≤ IS
}

= 1, where I is the

normalized functional that represents %, i.e. I(IS) = 1, I(0) = 0.

Theorem 2.1 is the equivalence of 1. and 3. The equivalence of 2. and 4. is a

generalization of a result of Kannai (1992) in which he characterizes balanced games,

i.e. games with a non-empty core. Statement 1. ⇐⇒ 2. is shown in Ghirardato and

Marinacci (2002). The crucial step if 3. =⇒ 2., for which we need the following

Lemma.

Lemma 2.2. Let % be a preference relation satisfying the five standard axioms. The

following are equivalent:

1. D% 6= ∅.

2.
n⋂
i=1

HI(fi) 6= ∅ for all finite subsets of acts f1, . . . , fn ∈ F .

3.
n⋂
i=1

HI(fi) 6= ∅ for all finite subsets of acts f1, . . . , fn ∈ F such that
n∑
i=1

αifi =

IS,
n∑
i=1

αi = 1, α1, . . . , αn ≥ 0.
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4.
n⋂
i=1

HI(fi) 6= ∅ for all finite subsets of acts f1 ∼ · · · ∼ fn ∈ F such that

n∑
i=1

αifi = IS,
n∑
i=1

αi = 1, α1, . . . , αn ≥ 0.

Proof. 1. =⇒ 2., 2. =⇒ 3. and 3. =⇒ 4. are straightforward.

2. =⇒ 1.:

Note that the set of acts FQ = {f : S → Q} is dense in F . Furthermore FQ is

countable.

2. implies that for all f1, . . . , fn ∈ F there exists some P ∈ ∆(S) such that

I(fi) ≤
∫
fi dP for all i ∈ {1, . . . , n}. Continuity of I implies that for all sequences

(fi)i∈N, fi ∈ FQ there exists some P ∈ ∆(S) such that I(f) ≤
∫
fi dP for all i ∈ N.

Countability of FQ and continuity of I imply that D% 6= ∅.
3. =⇒ 2.:

Assume that 2. fails. Then there are acts f1, . . . , fn ∈ F such that
n⋂
i=1

HI(fi) = ∅.

There exists an act fn+1 and some α > 0 such that
n+1∑
i=1

1
n+1

fi
α

= IS. Constant-

linearity of the preference functional I implies that HI(af) = HI(f) for all a > 0

and f ∈ F . Therefore
n+1⋂
i=1

HI(
fi
α

) ⊆
n⋂
i=1

HI(fi) = ∅. Thus 3. fails.

4. =⇒ 3.:

Assume that 3. fails. Then there exist acts f1, . . . , fn ∈ F such that
n∑
i=1

αifi =

IS,
n∑
i=1

αi = 1, α1, . . . , αn ≥ 0 and
n⋂
i=1

HI(fi) = ∅. We can find constants x1, . . . , xn

such that f1 + x1 ∼ · · · ∼ fn + xn. Now
n∑
i=1

αi(fi + xi) = (1 +
n∑
i=1

xi)IS. Define

f ′ = fi+xi

1+
n∑
i=1

xi

. It holds that f ′1 ∼ · · · ∼ f ′n and
n∑
i=1

αif
′
i = IS. Constant-linearity of I

implies that HI(f
′
i) = HI(fi), thus

n⋂
i=1

HI(f
′
i) =

n⋂
i=1

HI(fi) = ∅, which shows that 4.

fails.

Proof of Theorem 2.6. 3. =⇒ 2.:

Assume that 1 - Ambiguity Aversion holds. Then for f1 ∼ · · · ∼ fn,
n∑
i=1

αifi = x,

n∑
i=1

αi = 1, α1, . . . , αn ≥ 0 it holds that x % f1. This implies the existence of some

P ∈ ∆(S) such that
∑
S

P (s)fi(s) ≤
∑
S

P (s)x(s) = I(x) for all i ∈ {1, . . . , n}. This
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is because if such a P does not exist then x % fi fails for at least one i ∈ {1, . . . , n}
and thus for all fi. This implies that 5. from Lemma 2.2 holds. Lemma 2.2 thus

implies that D% 6= ∅.

2. =⇒ 3.: Consider some P ∈ D%. Consider f1 ∼ · · · ∼ fn,
n∑
i=1

αi = 1,

α1, . . . , αn ≥ 0,
n∑
i=1

αifi = x. It holds that

n∑
i=1

αiI(fi) ≤
n∑
i=1

αi

∫
fi dP =

∫ n∑
i=1

αifi dP =

∫
x dP = x.

Thus x % f1, so 1 - Ambiguity Aversion holds.

4. =⇒ 3.: Assume that 1 - Ambiguity Aversion fails. Then there exist f1 ∼
· · · ∼ fn,

n∑
i=1

αi = 1, α1, . . . , αn ≥ 0,
n∑
i=1

αifi = x and
n∑
i=1

αiI(fi) > x. It holds that

n∑
i=1

αi
fi
x
> IS. Define f ′i = fi

x
for i ∈ {1, . . . , n}. Constant-linearity of I implies that

f ′1 ∼ · · · ∼ f ′n. It thus holds that
n∑
i=1

αiI(f ′i) > 1. Thus 4. fails.

3. =⇒ 4.: Assume that 4. fails, so we can find
n∑
i=1

λi = 1, λ1, . . . , λn ≥ 0,

n∑
i=1

λifi = IS and
n∑
i=1

λiI(fi) > 1.

Define f ′i = λifi for i ∈ {1, . . . , n}, which implies
n∑
i=1

f ′i = IS. Constant-linearity

of I implies that there exist x1, . . . , xn ∈ R such that
n∑
i=1

xi = 0 and f ′1 + x1 ∼ · · · ∼

f ′n + xn. Define f †i = n(f ′i + xi) for i ∈ {1, . . . , n}. This implies that
n∑
i=1

1
n
f †i = IS.

Constant-linearity implies that
n∑
i=1

λiI(f †i ) =
n∑
i=1

λiI(fi) > 1. It follows that f †1 % IS,

therefore 1 - Ambiguity Aversion fails.

Proof of Theorem 2.2

Proof of Theorem 2.2. The nontrivial direction is that Schmeidler - Ambiguity Aver-

sion implies |S| - Ambiguity Aversion. We prove it by induction over n, the amount

of indifferent acts. The base case is n = 2 which holds by assumption. Assume that

it holds for n− 1. We need to show that it then also holds for n.
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Assume that f1 ∼ · · · ∼ fn with αi ≥ 0 for all i ∈ {1, . . . , n},
n∑
i=1

αi = 1 and

n∑
i=1

αifi = f . Consider the act

f ′ =

n∑
i=2

αifi

1− α1

.

Note that it holds that

n∑
i=2

αi

1−α1
= 1. So the act f ′ is a convex mix of the n − 1 acts

f2, . . . , fn. By the induction hypothesis we have f ′ % f2 which implies that f ′ % f1.

It holds that f = α1f1 +(1−α1)f ′. Therefore by Schmeidler - Ambiguity Aversion

we have that

f % f1.

This finishes the induction step.

Proof of Theorem 2.3

Recall that we assume a finite state space S. Throughout the proofs of this section

we again assume that acts map from the state space S into utilities, i.e. the real

numbers. Without loss of generality we assume throughout that I is the normalized

representation functional of the preference relation %, i.e. I(0) = 0 and I(IS) = 1.

Let F≥0 = {f ∈ F|f(s) ≥ 0 ∀s ∈ S} be the set of acts that map to the non-

negative reals. Due to the constant-linearity of the preference functional I, HI(f +

x) = HI(f) for all f ∈ F , x ∈ R. This implies that

HI(f) ∩ D% 6= ∅ ∀ f ∈ Fk ⇐⇒ HI(f) ∩ D% 6= ∅ ∀ f ∈ Fk ∩ F≥0.

It thus suffices to consider acts in F≥0 to prove Theorem 2.3.

Definition 2.5. For a preference relation % with D% 6= ∅ define the following func-

tions V̂ : F≥0 → R and Ṽ : F≥0 → R:

V̂ (f) := inf

{∑
S

P (s)f(s)|P ∈ D%

}
.

Ṽ (f) :=

sup
{∑

aiI(fi)− a|(ai, fi) finite sequence in R≥0 ×F≥0, a ∈ N,
∑

aifi − aIS ≤ f
}
.
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The following Lemma establishes the remarkable observation that if D% 6= ∅, V̂
and Ṽ are identical. This result is crucial for the proof of our main theorem. The

proof is inspired by Schmeidler (1972) where a similar approach is used.

Lemma 2.3. Let % be a preference relation satisfying the five standard axioms.

Assume that D% 6= ∅. Then for all f ∈ F≥0

V̂ (f) = Ṽ (f).

To prove the Lemma a separating hyperplane theorem is used.

Theorem 2.7 (Separating Hyperplane Theorem (Dunford and Schwartz (1958))).

In a linear topological space, any two disjoint convex sets, one of which has an

interior point, can be separated by a non-zero continuous linear functional.

Proof of Lemma 2.3. V̂ ≥ Ṽ : Consider an act f ∈ F≥0 and an arbitrary P ∈ D%.

Assume that
n∑
i=1

aifi − aIS ≤ f.

It follows that

∑
S

P (s)f(s) ≥
∑
S

P (s)

(
n∑
i=1

aifi(s)− a

)

=
n∑
i=1

ai
∑
S

P (s)fi(s)− a

≥
n∑
i=1

aiI(fi)− a.

It follows that
∑
S

P (s)f(s) ≥ Ṽ (f). Since P was arbitrary and D% is compact we

have that V̂ (f) ≥ Ṽ (f).

V̂ ≤ Ṽ :

The function Ṽ is obviously monotonic. Schmeidler (1972) shows that Ṽ is also

homogenous and superlinear, i.e.

Ṽ (αf) = αṼ (f) ∀α ∈ R+ ∀f ∈ F≥0

Ṽ (f + g) ≥ Ṽ (f) + Ṽ (g) ∀f, g ∈ F≥0.
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Consider an act h ∈ F≥0. The idea is to construct a set function F ∈ ∆(S) which

is an element of D% such that F (h) = Ṽ (h), which implies Ṽ (h) ≥ V̂ (h).

Case 1: Ṽ (h) 6= 0. Consider the following sets

A = {f ∈ F≥0|Ṽ (f) ≥ 1}, B = {f ∈ F≥0|f ≤ IS},

C =

{
f ∈ F≥0|f ≤

h

Ṽ (h)

}
.

The set A is convex due to the superlinearity of Ṽ and the set D := Co(B ∪ C)

is convex by construction. The set int(A) is convex and has an interior point. To

apply Theorem 3 for the sets int(A) and D we need to show that int(A)∩D = ∅. It

suffices to show that Ṽ (f) ≤ 1 for all f ∈ D. Due to the monotonicity of Ṽ it suffices

to show that Ṽ
(
rIS + (1− r) h

Ṽ (h)

)
≤ 1 for 0 ≤ r ≤ 1. Due to the homogeneity of

Ṽ it suffices to show that

Ṽ (IS + th) = 1 + tṼ (h) (2.2)

for t > 0. The ≥ direction follows from the superlinearity of Ṽ . For the ≤ direction

let

∑
aifi − aIS ≤ IS + th.

Rearrange to get ∑
aifi − (1 + a)IS ≤ th.

From the definition of Ṽ we get∑
aiI(fi)− (1 + a) ≤ tṼ (h) ,

implying ∑
aiI(fi)− a ≤ 1 + tṼ (h) .

It therefore holds that

Ṽ (IS + th) ≤ 1 + tṼ (h) .

The requirements for Theorem 2.7 for the sets int(A) and D are therefore fulfilled
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and we can conclude the existence of a linear functional F : F≥0 → R such that

F (f) ≤ F (IS) = 1 = F

(
h

Ṽ (h)

)
≤ F (g)

for all f ∈ D and g ∈ A. The equalities are due to the fact that both IS and h
Ṽ (h)

are in A ∩D. Since F is linear and F (IS) = 1 we have that F ∈ ∆(S). The second

equality and the linearity of F furthermore imply that F (h) = Ṽ (h).

We need to show that Ṽ (f) ≤ F (f) for all f ∈ F≥0, which implies that F ≥ Ṽ

and so F ∈ D%.

Fix some f ∈ F≥0. The linearity of F implies that F (f) ≥ 0. If Ṽ (f) = 0 then

F (f) ≥ Ṽ (f). So assume that Ṽ (f) > 0. There exists an r > 0 such that Ṽ (rf) = 1.

This implies that rf ∈ A and therefore F (f) ≥ 1. Homogeneity of Ṽ and F then

implies the required Ṽ (f) ≤ F (f). Therefore

Ṽ (h) = F (h) ≥ inf

{∑
S

P (s)h(s)|P ∈ D%

}
= V̂ (h).

Case 2: Ṽ (h) = 0. Define A and B as above and

C =
∞⋃
n=1

{f ∈ F≥0|f ≤ nh} .

To show int(A)∩D = ∅ we show with the same approach as above that for 0 ≤ r ≤ 1

Ṽ (rIS + (1− r)nh) = r + (1− r)nf

(
k∑
i=1

F ∗i

)
= r ≤ 1 ∀ 0 ≤ r ≤ 1.

So again we can use Theorem 3 to get the separating function F as above with

F (IS) = 1, which implies F ∈ ∆(S). We need to show F (h) = 0. Assume that

F (h) > 0. Then there exists an n such that F (nh) > 1. So nh ∈ A as well as

nh ∈ D which contradicts the separating property of F . Therefore F (h) = 0. To

show F (f) ≥ Ṽ (f) for all f ∈ F≥0 the above approach is used. So F ∈ D% which

implies Ṽ (h) ≥ V̂ (h). This finishes the proof.
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We can now prove Theorem 2.3.

Proof of Theorem 2.3. Fix some k ∈ {1, . . . , |S|}.

“1. =⇒ 2.”: Assume that 2. fails. Then there exists an f ∈ Fk ∩ F≥0 such that

I(f) < Ṽ (f). It follows that there exist (ai, fi)
m
i=1 ∈ Rm+ ×Fm≥0, a ∈ N with

m∑
i=1

aifi − aIS = f (2.3)

such that

I(f) <
m∑
i=1

aiI(fi)− a. (2.4)

We get strict equality in (2.3) since we can always add other terms of the form aifi.

Define gi = aifi for i ∈ {1, . . .m} and gm+1 = −a. By (2.3) it holds that

f =
m+1∑
i=1

gi.

Due to the constant-linearity of the preference functional I we can find constant

acts b1, . . . , bm+1 ∈ R with
m+1∑
i=1

bi = 0 such that for the acts g′i := gi + bi, i ∈

{1, . . . ,m+ 1} it holds that

g′1 ∼ · · · ∼ g′m+1.

Obviously f =
m+1∑
i=1

g′i. For g†i := (m+ 1)g′i it holds that

g†1 ∼ · · · ∼ g†m+1 (2.5)

and

f =
m+1∑
i=1

1

m+ 1
g†i . (2.6)
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Now

I(f)
(2.4)
<

m∑
i=1

aiI(fi)− a

=
m+1∑
i=1

I(gi)

=
m+1∑
i=1

I(g′i)

=
m+1∑
i=1

1

m+ 1
I(g†i )

= I(g†1).

Therefore g†1 � f and this in combination with (2.5) and (2.6) contradicts the

axiom k - Expected Utility Ambiguity Aversion. Lemma 2.1 implies that we get a

contradiction to k - Ambiguity Aversion.

“2. =⇒ 1.”: Consider some act h ∈ Fk and acts f1 ∼ · · · ∼ fm with
m∑
i=1

αifi =

h,
m∑
i=1

αi = 1 and αi ≥ 0.

Consider some Q ∈ arg min
P∈D%

∫
h dP . It holds that

I(f1) =
m∑
i=1

αiI(fi)

≤
m∑
i=1

αi min
P∈D%

∑
S

P (s)fi(s)

≤
m∑
i=1

αi
∑
S

Q(s)fi(s)

=
∑
S

m∑
i=1

αiQ(s)fi(s)

=
∑
S

Q(s)h(s)

= I(h),

where the second inequality holds since Q ∈ D%. We have therefore shown that

h % f1, so the axiom k - Ambiguity Aversion holds.
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Proof of Theorem 2.5. We need to show that when the capacity is not convex the

axiom 3 - Ambiguity Aversion is violated. This implies that for k ∈ {3, . . . , |S|} the

axioms characterize the same class of capacities: convex capacities.

The case where Core(ν) = ∅ is trivial. Assume that Core(ν) 6= ∅. Assume that

the capacity ν is not convex. Then there exist events E,F ∈ P(S) such that

ν(E) + ν(F ) > ν(E ∪ F ) + ν(E ∩ F ).

Consider the act f = 2E∩F1E∪F\(E∩F )0 ∈ F3. The Choquet expected utility of f is∫
f dν = 2ν(E ∩ F ) + 1(ν(E ∪ F )− ν(E ∩ F ))

= ν(E ∩ F ) + ν(E ∪ F )

< ν(E) + ν(F )

≤ min
P∈Core(ν)

P (E) + P (F )

= min
P∈Core(ν)

P (E ∪ F ) + P (E ∩ F )

≤ min
P∈Core(ν)

∫
f dP.

Thus we have found an f ∈ F3 such that HI(f) ∩ Core(ν) = ∅. Corollary 2.1

implies that 3 - Ambiguity Aversion fails.
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3 Weak Monotonicity and Multiple

Priors

Abstract

This article introduces a new axiom called Weak Monotonicity. It is shown that

Weak Monotonicity is, given some standard axioms, necessary and sufficient for a

preference relation to be representable within the multiple prior (MP) model. It

is furthermore shown that in the popular axiomatizations of Subjective Expected

Utility by Anscombe and Aumann (1963) and Maxmin Expected Utility by Gilboa

and Schmeidler (1989), the standard Monotonicity axiom can be replaced by Weak

Monotonicity without changing the result. We suggest that these characterizations

are attractive as axioms can more easily be traced back from the representation

functional. We illustrate by example how non-monotonic preferences as well as

preferences that do not satisfy Certainty Independence can be modelled within the

MP model. We illustrate that convex preferences do not necessarily imply the min-

functional that is characteristic for the Maxmin Expected Utility model.

Keywords: Multiple Priors, Monotonicity, Weak Monotonicity, Maxmin Expec-

ted Utility, Subjective Expected Utility

3.1 Introduction

Basically all influencial papers on axiomatic decision theory assume some kind of

monotonicity of preferences: if an act is preferred to another in every state, then it

is preferred overall. Such monotonicity of preferences also implies a separation of

beliefs and tastes.
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We propose an axiom that we call Weak Monotonicity : if the worst case scenario

of an act is preferred to the best case scenario of another, then it is preferred

overall. As the name suggests this is a weak version of Monotonicity.1 It does not

imply a separation of beliefs and tastes. We show that in the classic representations

of Subjective Expected Utility (SEU) by Anscombe and Aumann (1963) and of

Maxmin Expected Utility (MEU) by Gilboa and Schmeidler (1989), Monotonicity

can be replaced by Weak Monotonicity without changing the result. Monotonicity

is a consequence of the other axioms (Lemma 3.2 and its corollaries) and thus

in addition implies that the separation of beliefs and tastes does not need to be

assumed, rather it is also a consequence of the other axioms.

Furthermore we show that, under very standard and weak axioms, Weak Mono-

tonicity is necessary and sufficient for the existence of a multiple prior (MP) repres-

entation of preferences (Lemma 3.1). In light of this result we view our version of the

axiomatizations of SEU and MEU worthy of consideration. The reason being that

Weak Monotonicity can be directly traced back from the respective representation

functional as it is responsible for the MP representation in the first place.2

The insight of the role that Weak Monotonicity has in the MP model allows

modelling of preferences that cannot be modelled in any of the existing frameworks

that we are aware of. We illustrate by example that non-monotonic preferences can

be modelled by a MP-functional (Example 3.2). We illustrate how preferences can

be convex without being MEU, i.e. they cannot be represented by a prior set in

combination with the min-functional (Example 3.3).

Outline

Section 3.2 introduces the framework, the MP model and the relevant axioms. Sec-

tion 3.3 discusses Weak Monotonicity and illustrates its important role in the MP

model. Section 3.4 discusses the consequences for the important preference classes

SEU and MEU. Section 3.5 presents examples of MP preferences that cannot be

modelled within the known frameworks. All proofs are in the Appendix.

1 Weaker in the sense that it restricts preferences less.
2 Note that SEU preferences are merely a special class of MP preferences.
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3.2 Preliminaries

We assume the classic framework of Anscombe and Aumann (1963). Consider a

finite state space S. The powerset of S, P(S) is the set of events and ∆(S) is the

set of probability distributions over S. We study preference relations % on the set

of acts F = {f : S → L}, where L is the set of finite-support lotteries over some

set of prizes X. The asymmetric and symmetric components of % are denoted by

� and ∼, respectively. With the usual abuse of notation, L also denotes the set of

constant acts. Mixtures of acts are performed pointwise: for f, g ∈ F and λ ∈ [0, 1]

we denote by λf + (1− λ)g the act which results in λf(s) + (1− λ)g(s) ∈ L for all

s ∈ S. A function u : L→ R that is nonconstant and affine is called (Von Neumann

Morgenstern) utility function. We define Fu1 as the set of constant expected utility

acts, i.e.

Fu1 = {f ∈ F|u(f(s)) = u(f(s′)) ∀s, s′ ∈ S}.

Multiple Prior Preferences

Consider a preference relation %. Assume that there exists

1. a utility function u : L→ R

2. a non-empty, convex and compact set of priors C ⊆ ∆(S)

3. a function a : F → [0, 1], continuous on F\Fu1

such that for all f, g ∈ F

f % g ⇐⇒ I(f) ≥ I(g),

where I(f) = a(f) min
P∈C

∫
u(f) dP + (1− a(f)) max

P∈C

∫
u(f) dP . We then say that %

has a MP representation, or % is a MP preference.

The utility function u of a MP preference is unique up to positive affine trans-

formations. The prior set C and the function a are not unique in general.3

A MP preference that has a representation in which the function a : F → [0, 1]

is constant 1 is called a Maxmin Expected Utility (MEU) preference. MEU pref-

erences are axiomatized in Gilboa and Schmeidler (1989). A MP preference that

3 If we want to interpret C as perceived ambiguity and a as ambiguity attitude this is problematic
as we then do not achieve a separation of these two concepts. However this separation is not
a topic of this article.
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has a representation in which the prior set C is a singleton is called a Subjective

Expected Utility (SEU) preference. SEU preferences are axiomatized in Anscombe

and Aumann (1963).

Axioms

The following three axioms are well-known.

Axiom 3.1 (Weak Order). 1. For all f, g ∈ F either f % g or g % f .

2. For all f, g, h ∈ F if f % g % h then f % h.

Axiom 3.2 (Archimedean). For all f, g, h ∈ F if f � g � h then there exist λ, µ ∈
(0, 1) such that λf + (1− λ)h � g � µf + (1− µ)h.

Axiom 3.3 (Non-Degeneracy). There are f, g ∈ F such that f � g.

The following axioms are independence axioms, increasing in strength. Risk Inde-

pendence means independence for constant acts and is introduced in Cerreia-Vioglio

et al. (2011). Certainty Independence is introduced in Gilboa and Schmeidler (1989)

and means independence when acts are mixed with constant acts. Independence it-

self is introduced in Anscombe and Aumann (1963).

Axiom 3.4 (Risk Independence). For all l1, l2, l3 ∈ L, α ∈ [0, 1]

l1 % l2 ⇐⇒ αl1 + (1− α)l3 % αl2 + (1− α)l3.

Axiom 3.5 (Certainty Independence). For all f, g ∈ F , l ∈ L and α ∈ (0, 1]

f % g ⇐⇒ αf + (1− α)l % αg + (1− α)l.

Axiom 3.6 (Independence). For acts f, g, h ∈ F and α ∈ [0, 1]

f % g ⇐⇒ αf + (1− α)h % αg + (1− α)h.

The following axiom is introduced in Schmeidler (1989). It states a preference for

mixing, i.e. convex preferences.

Axiom 3.7 (Uncertainty Aversion). For f, g ∈ F and α ∈ [0, 1] if f % g then

αf + (1− α)g % g.
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The following axioms are the main topic of this article.

Axiom 3.8 (Monotonicity). For f, g ∈ F if f(s) % g(s) for all s ∈ S then f % g.

Axiom 3.9 (Weak Monotonicity). For all f, g ∈ F if f(s) % g(s′) for all s, s′ ∈ S

then f % g.

Given Weak Order, Weak Monotonicity has an equivalent version which at times

is easier to interpret.

Axiom 3.10 (Weak Monotonicity’). For all f ∈ F and l ∈ L

1. If f(s) % l for all s ∈ S then f % l.

2. If l % f(s) for all s ∈ S then l % f .

Weak Monotonicity’ states that if some act is preferred (disliked) to some constant

in every state, then this act is preferred (disliked) to that constant overall. The

axiom does not separate beliefs and tastes as Monotonicity does. This is because it

does not rule out that for some f ∈ F , l1, l2 ∈ L and E ⊆ S it holds that l1 � l2

and fEl2 � fEl1.4

3.3 Weak Monotonicity

The following lemma shows that, under the axioms Weak Order, Archimedean, Non-

Degeneracy and Risk-Independence,5 Weak Monotonicity is necessary and sufficient

for preferences to have a MP representation. It illustrates the crucial role that this

axiom plays for models in which preferences have a MP representation.

Lemma 3.1. Let % be a preference relation on F that satisfies Weak Order, Archimedean,

Non-Degeneracy and Risk-Independence. The following are equivalent:

1. % satisfies Weak Monotonicity.

2. % has a MP representation.

4 gEf is the act that results in g(s) for s ∈ E and f(s) for s /∈ E.
5 These axioms guarantee the existence of a nonconstant and affine utility function, i.e. the

DM’s preferences over constant acts are of the expected utility type.
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3.4 Implication for MEU and SEU Preferences

The following lemma shows that under the axioms of Lemma 3.1 and under the

assumption that th set of prizes X is unbounded, Uncertainty Aversion implies

Monotonicity.6

Lemma 3.2. Assume that X is unbounded. Let % be a preference relation that sat-

isfies Weak Order, Archimedean, Non-Degeneracy, Risk-Independence, Weak Mono-

tonicity and Uncertainty Aversion. Then % satisfies Monotonicity.

Gilboa and Schmeidler (1989) show that a preference relation satisfies Weak Or-

der, Archimedean, Non-Degeneracy, Monotonicity, Certainty Independence and Un-

certainty Aversion if and only if the preferences have an MEU representation. The

following corollary of Lemma 3.2 shows that we can replace Monotonicity by Weak

Monotonicity without changing this result.7

Corollary 3.1. Assume that X is unbounded. Let % be preference relation on F .

Then the following are equivalent:

1. % satisfies Weak Order, Archimedean, Non-Degeneracy, Certainty Independ-

ence, Weak Monotonicity and Uncertainty Aversion.

2. % has an MEU representation.

In light of Lemma 3.1 we suggest that the representation of MEU in Corollary

3.1 has an advantage over the original. Firstly, it provides a weaker set of axioms

which is desirable. More importantly, the axiom Weak Monotonicity can be traced

back from the preference functional more easily than the axiom Monotonicity. This

is because it is clear why an MEU functional satisfies Weak Monotonicity: Lemma

3.1 shows that the axiom is necessary for the MP representation in the first place.

Monotonicity of preferences is then implied by the existence of a MP representation

in combination with Uncertainty Aversion. We therefore suggests that Monotonicity

should not be an assumption. Rather monotonicity of preferences should be viewed

as a consequence of the other axioms.

Another consequence of Lemma 3.2 is that the same conclusion can be drawn for

the original axiomatization of SEU by Anscombe and Aumann (1963).

6 Note that the unboundedness condition could also be stated axiomatically via the Unboun-
dedness axiom in Maccheroni et al. (2006).

7 We conjecture that the unboundedness condition can be dropped, see conclusion.
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Corollary 3.2. Assume that X is unbounded. Let % be preference relation on F .

Then the following are equivalent:

1. % satisfies Weak Order, Archimedean, Non-Degeneracy, Independence and

Weak Monotonicity.

2. % has an SEU representation.

Corollary 3.2 shows that, as for MEU preferences, Monotonicity can be replaced by

Weak Monotonicity without changing the result. Again monotonicity of preferences

is a consequence of the other axioms. Corollary 3.2 thus also shows that the usual

separation of beliefs and tastes does not need to be assumed. It is a consequence.

3.5 Examples

This section discusses three examples of MP preferences that cannot be modelled

within the frameworks known to us. The preferences in the examples all violate

Certainty Independence, one of them (Example 2) violates Monotonicity and one

of them (Example 3) cannot be represented by the min-functional even though it

satisfies Uncertainty Aversion. Throughout the examples the state space is S =

{s1, s2}. To simplify analysis we assume that acts map to utilities.

Example 1: A MP preference that violates Certainty Independence

Consider the preference relation % represented by the following prior set C ⊆ ∆(S)

and continuous function a : F → [0, 1]. A representative indifference curve is

illustrated in Figure 3.1.

C =

{
P ∈ ∆(S)|1

4
≤ P (s1) ≤ 3

4

}
, a(f) =



1
2

if |f(s1)− f(s2)| ≤ 1

1 if |f(s1)− f(s2)| ≥ 2

3
2
− 1

f(s1)−f(s2)
if f(s1)− f(s2) ∈ [1, 2]

3
2
− 1

f(s2)−f(s1)
if f(s2)− f(s1) ∈ [1, 2]

.

The prior set C is the convex hull of the probability distributions P1 = (1
4
, 3

4
) and

P2 = (3
4
, 1

4
).
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3 Weak Monotonicity and Multiple Priors

Figure 3.1: Preferences violate Certainty Independence.

To see that Certainty Independence is violated consider the acts f = 1
2 s1

2 and

l = 1. From the prior set C and the function a we can check that f ∼ l. Consider

the act g = 1
2
f + 1

2
l = 3

4 s1

3
2
. It can be checked that I(g) = 9

8
> 3

4
= I(f), so g � f

which is a violation of Certainty Independence. This is illustrated in Figure 3.1.

Example 2: A MP preference that violates Certainty Independence as well as

Monotonicity

Consider the preference relation % represented by the following prior set C ⊆ ∆(S)

and continuous function a : F → [0, 1]. A representative indifference curve is

illustrated in Figure 3.2.
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C =

{
P ∈ ∆(S)|1

4
≤ P (s1) ≤ 3

4

}
, a(f) =



1
2

if |f(s1)− f(s2)| ≤ 1

1 if |f(s1)− f(s2)| ≥ 4
3

5
2
− 2

f(s1)−f(s2)
if f(s1)− f(s2) ∈ [1, 4

3
]

5
2
− 2

f(s2)−f(s1)
if f(s2)− f(s1) ∈ [1, 4

3
]

.

Figure 3.2: Non-monotonic preferences.

The function a is steeper as in Example 3.1, leading to non-monotonic preferences.

To see that preferences are not monotonic consider the act f = 3
2 s1

1
2
. It is strictly

worse than the act g = 2s1
3
5

in every state, but nonetheless I(f) = 1 > 3
5

= I(g), so

f � g. This is illustrated in Figure 3.2.
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Example 3: A MP preference that violates Certainty Independence and

satisfies Uncertainty Aversion but cannot be represented by the

min-functional

Consider the preference relation % represented by the following prior set C ⊆ ∆(S)

and continuous function a : F → [0, 1]. A representative indifference curve is

illustrated in Figure 3.3.

C =

{
P ∈ ∆(S)|1

4
≤ P (s1) ≤ 3

4

}
, a(f) =


1
2

if |f(s1)− f(s2)| ≤ 1

5
6
− 1

3(f(s1)−f(s2))
if f(s1)− f(s2) ≥ 1

5
6
− 1

3(f(s2)−f(s1))
if f(s2)− f(s1) ≥ 1

.

Figure 3.3: Convex Preferences that cannot be represented by the min-functional.

From the figure it can be seen that preferences are convex, i.e. they satisfy
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Uncertainty Aversion. What is interesting is that these preferences are not MEU,

i.e. these preferences cannot be represented by a prior set in combination with the

min-functional. The reason for this is that Uncertainty Aversion implies an MEU

representation only in the presence of Certainty Independence, which is violated

here.8

3.6 Conclusion

This article introduces the new axiom Weak Monotonicity. We show that it plays

a crucial role when preferences can be represented within the multiple prior model.

We furthermore show that in some of the most influencial results in decision the-

ory monotonicity must not be assumed. Rather, under Weak Monotonicity it is a

consequence of the other axioms. These results are merely a starting point for fu-

ture research. The consequences of Weak Monotonicity for other preference classes

should be examined in more detail.

We conjecture that the results from this article have an analogues consequence

in the purely subjective framework of Savage (1954). In this framework, the axiom

P3 implies monotonic preferences. We believe that it should be possible to find

an axiom in the style of Weak Monotonicity which, in combination with the other

axioms, implies P3.

Another important question is whether the assumption of unboundedness of the

set of prizes is really necessary. The proof of Lemma 3.2 relies on it. We conjecture

that the assumption is not necessary which would make the result stronger.

8 Consider for instance the acts f = 1
4 s1

2 and l = 1 which lie on the same indifference curve. The

act g = 1
2f + 1

2 l = 5
8 s1

3
2 is strictly preferred to f and l. This violates Certainty Independence.
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3.7 Appendix

Proof of Lemma 3.1. Weak Order and Non-Degeneracy imply that there exists a

nonconstant functional I : F → R which represents %. Note that, reduced to the

constant acts L, the axioms Weak Order, Archimedean, Non-Degeneracy and Risk-

Independence constitute the von Neumann Morgenstern axioms which implies the

existence of the affine utility function u : L → R and its uniqueness up to positive

affine transformations.

1. =⇒ 2.: We need to show that Weak Monotonicity is sufficient for the prefer-

ence relation to have a multiple prior representation. First note that if a preference

relation % is represented by (C, a, u) then there exists a continuous function a′ such

that % is also represented by (∆(S), a′, u). Thus we can reduce attention to the

prior set ∆(S).

Consider some f ∈ F . Weak Monotonicity implies that

f(arg max
s∈S

u(f(s))) % f % f(arg min
s∈S

u(f(s))).

This implies that

I(f) ∈ [I(f(arg min
s∈S

u(f(s)))), I(f(arg max
s∈S

u(f(s))))]

= [min
s∈S

u(f(s)),max
s∈S

u(f(s))]

= [ min
P∈∆(S)

∫
u(f)dP, max

P∈∆(S)

∫
u(f)dP ].

It follows that there exists an a ∈ [0, 1] such that

I(f) = a min
P∈∆(S)

∫
u(f)dP + (1− a) max

P∈∆(S)

∫
u(f)dP.

This implies the existence of the ambiguity attitude function a : F → [0, 1]. Con-

tinuity of a on F\Fu1 is implied by the Archimedean axiom.

Thus we have shown the existence of some C, a and u with the required properties

that represent %.

2. =⇒ 1.: Assume that % is represented by (C, a, u). We need to show that

Weak Monotonicity holds. Assume that for f, g ∈ F it holds that f(s) % g(s′) for
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all s, s′ ∈ S. This implies min
s∈S

u(f(s)) ≥ max
s∈S

u(g(s)). It follows that

∫
u(f) dP ≥

∫
u(g) dQ ∀P,Q ∈ ∆(S).

Thus for any a(f), a(g) ∈ [0, 1] we have

a(f) min
P∈∆(S)

∫
f dP + (1− a(f)) max

P∈∆(S)

∫
f dP

≥ a(g) min
P∈∆(S)

∫
g dP + (1− a(g)) max

P∈∆(S)

∫
g dP.

Thus I(f) ≥ I(g) and therefore f % g, so Weak Monotonicity holds.

Proof of Lemma 3.2. Assume that Monotonicity fails. Then there exist some f, g ∈
F with f(s) % g(s) for all s ∈ S such that g � f . The Archimedean axiom implies

that there exists an act f ′ such that f ′(s) � g(s) for all s ∈ S and g � f ′.

For all α ∈ (0, 1) there exists an act hα ∈ F such that (αg+ (1−α)hα)(s) ∼ f ′(s)

for all s ∈ S. This can be done since we assume unboundedness of the set of prizes.

It follows that αg + (1− α)hα ∼ f ′.

For α sufficiently large it holds that hα(s) � g(s′) for all s, s′ ∈ S. Weak Mono-

tonicity thus implies that hα % g.

Uncertainty Aversion now implies that f ′ ∼ αg + (1 − α)hα % min{hα, g} = g

which contradicts g � f ′.
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4 A Definition of Perceived

Ambiguity and its Application to

Games

Abstract

This article introduces a multiple prior model in which perceived ambiguity is loca-

tion invariant, i.e. two prior sets reveal the same ambiguity if and only if they differ

only in location within the probability simplex over the state space. We pin down

exactly what our definition of perceived ambiguity implies in terms of preferences

and show that our approach allows a straightforward application to games. Our

equilibrium existence result for normal-form games generalizes many results from

the existing literature. We illustrate the modelling capabilities of our approach

through several examples.

Keywords: Multiple Priors, Perceived Ambiguity, Ambiguity Attitude, Ambigu-

ous Games.

4.1 Introduction

Ellsberg (1961) and others have demonstrated that, when facing ambiguity, i.e. when

exact probabilities of events are unknown, decision makers systematically violate the

Subjective Expected Utility (SEU) theory of Savage (1954). Several approaches have

been suggested for a more realistic modelling of human decision making under am-

biguity. A particularly successful and intuitive approach is to relax the postulation

that preferences can be represented by a unique subjective probability distribution

over the state space, as the axiomatic approaches by Savage (1954) and Machina and
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Schmeidler (1992) imply. Preferences are represented instead by a set of probability

distributions over the state space, the so called multiple prior (MP) approach. The

objective is that this set of priors reflects the perceived ambiguity of the decision

maker (DM) about the probabilities of occurrence of states. A large literature suc-

cessfully demonstrates the potential of the MP approach, see for instance Siniscalchi

(2006) and Gilboa and Schmeidler (1989).

The pivotal question addressed in this article is how to measure and compare per-

ceived ambiguities in the MP model. We provide a definition of perceived ambiguity

which is very intuitive and generalizes numerous measures suggested in the existing

literature. The key property of this definition is location-invariance: the ambiguity

reflected by a prior set is independent of the location of this prior set within the

set of probabilities over states. A consequence is that prior sets that differ only

in location reflect the same ambiguity, even though they may induce very different

preferences.

We illustrate the implication that the location-invariance of perceived ambigu-

ity has on preferences, hereby focusing on Invariant Biseparable (IB) preferences

introduced in Ghirardato et al. (2004).

We show that our MP model can be applied to normal-form games to model

players that perceive strategic ambiguity. The location-invariance of perceived am-

biguity allows a very general equilibrium existence result: for any exogenously fixed

perceived ambiguity and ambiguity attitude for each player there exists an Equilib-

rium under Ambiguity. Since the class of preferences considered is very rich, this

result generalizes many results from the existing literature. We illustrate the mod-

elling capabilities based on several examples. We show that our model can explain

intuitive deviations from the Nash Equilibrium solution concept and that it can

rationalize cooperation in the Prisoners Dilemma.

4.1.1 Motivation: Perceived Ambiguity is Location - Invariant

Consider the state space S = {s1, s2, s3} and the prior sets C1, C2 and C3 in the

probability simplex ∆(S) in Figure 4.1. Imagine that these prior sets reflect the

ambiguity perceived by three DM’s. It is undebatable that C1 reflects more ambigu-

ity than C2 since C2 is a subset of C1. What about C3? Can we compare this prior set

with the other two in terms of the perceived ambiguity that it reflects? We claim

that we can. The prior set C3 differs from C2 only in location and thus these prior
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Figure 4.1: C1 reflects more ambiguity than C2. What about C3?

sets reflect the same ambiguity. This in turn implies that C1 reflects more ambiguity

than C3.

To justify this claim consider two subjective expected utility (SEU) preferences

represented by singleton prior sets P1 and P2. Clearly these prior sets reflect the

same ambiguity (as they reflect no ambiguity at all) even though they are not subsets

of each other. Consider now as prior sets ε-balls around some P1 and P2 with ε > 0

small. This tiny change from P to Bε(P ) changes the perceived ambiguity in exactly

the same way for both prior sets. In our opinion it would thus be inconsistent to not

proclaim that Bε(P1) and Bε(P2) reflect the same ambiguity. Once this location-

invariance for ε prior sets is accepted it suggests itself that this logic of thought has

to be driven further. It leads us to the conclusion that reflected ambiguity does not

depend on the location of the prior set. Going back to Figure 4.1 this implies that

C2 and C3 reflect the same ambiguity as they only differ in location within ∆(S).

This then implies that C1 reflects more ambiguity than C2 as well as C3.

In this article we introduce a definition of perceived ambiguity which implies this

location-invariance. Thus in our model two DM’s perceive the same ambiguity if and

only if their prior sets only differ in location. The comparative notion of perceived

ambiguity then becomes: DM 1 perceives more ambiguity than DM 2 if and only if

there exists a translation of DM 2’s prior set1 such that this translated prior set is

1 A translation is a geometric transformation that moves every point of a figure or a space by
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a subset of DM 1’s prior set. Figure 4.2 illustrates this in terms of our example.

Figure 4.2: C1 reflects more ambiguity than C2 and C3. C2 and C3 reflect the same
ambiguity.

4.1.2 Outline of the Paper

We introduce the framework in section 4.2. In section 4.3 we formally introduce our

definition of perceived ambiguity. In section 4.4 we analyze what our definition of

perceived ambiguity implies for IB preferences. In section 4.5 we provide compar-

ative notions in terms of preferences for both perceived ambiguity and ambiguity

attitude. We also provide an axiomatization of α-MEU preferences that is derived

purely from preferences over acts. Throughout the section we focus in particular

on the relationship to the model of Ghirardato et al. (2004) to which our model is

related. In section 4.6 we apply our model to games. We define Equilibrium under

Ambiguity in the spirit of Eichberger and Kelsey (2014) and prove equilibrium ex-

istence for normal-form games. All proofs are in the Appendix A. In the Appendix

B we show how our definition of perceived ambiguity is related to existing measures,

for instance from Marinacci (2000) and Chateauneuf et al. (2007).

the same amount in a given direction. A translation of a prior set is thus a change in location
of this prior set.

100



4.2 Notation and Preliminaries

4.2 Notation and Preliminaries

We assume a framework in the style of Anscombe and Aumann (1963). Our setting

consists of a finite state space S and a set of prizes X. The powerset P(S) of S is

the set of events. We denote by L the set of finite support lotteries over X. By F
we denote the set of functions f : S → L, called acts. As is common in the literature

we abuse notation and denote by l the act such that l(s) = l for all s ∈ S. Thus L

also denotes the set of constant acts and X the set of constant acts that result in a

degenerate lottery.

This setup allows the usual mixture-space over F . For f, g ∈ F , λ ∈ [0, 1] we

denote by λf + (1 − λ)g the act which results in λf(s) + (1 − λ)g(s) ∈ L for all

s ∈ S.

We assume X to be a 1-dimensional vector space, for instance the real numbers.

For f ∈ F and x ∈ X we denote by f + x the act which results in f(s) + x for all

s ∈ S, i.e. state s results in the lottery f(s) with prize x unconditionally added.2

We model a DM’s preferences over F by a binary relation %, where � and ∼
respectively denote the asymmetric and symmetric components of %. A functional

I : F → R represents % if I(f) ≥ I(g) ⇐⇒ f % g. A functional I is constant-linear

if for all f ∈ F , l ∈ L and α ∈ [0, 1] it holds that I(αf+(1−α)l) = αI(f)+(1−α)I(l).

This implies that I(f + x) = I(f) + I(x).

We denote by B0(S) the set of real-valued functions on S. For an affine util-

ity function u : L → R and f ∈ F we denote by u(f) the element of B0(S)

defined by u(f)(s) = u(f(s)) for all s ∈ S. We tacitly assume throughout that

the considered utility functions are nonconstant and affine, i.e. of the Von Neu-

mann and Morgenstern type. We call two utility functions cardinally equivalent

if they are positive affinely related. We define u(F) = {u(f) ∈ B0(S)|f ∈ F}
and u(X) = {u(x) ∈ B0(S)|x ∈ X}. For a utility function u we denote by

Fu1 = {f ∈ F|u(f(s)) = u(f(s′)) ∀s, s′ ∈ S} the constant - expectation acts.

The set 〈f〉u contains the acts that are positive affinely related to f in utility terms,

i.e. g ∈ 〈f〉u if and only if au(g)+b = u(f) for some a ∈ R+ and b ∈ R. We suppress

the subscript u when convenient.

A probability over S is a normalized, monotonic and additive set-function on

2 For instance if f(s) is the lottery that results in prize y with probability α and z with probab-
ility 1− α, then for x ∈ X, f(s) + x is the lottery that results in prize y + x with probability
α and z + x with probability 1− α.
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P(S). We denote by ∆(S) the set of probability distributions on S. A non-empty,

compact and convex set C ⊆ ∆(S) is called a prior set. We denote by C the set of

prior sets. An ambiguity attitude is a function a : F → [0, 1]. For a prior set C,
ambiguity attitude function a and utility function u we say that (C, a, u) represents

the preference relation % if IC,a,u represents %, where

IC,a,u(f) = a(f) min
P∈C

∫
u(f) dP + (1− a(f)) max

P∈C

∫
u(f) dP.

Here
∫
u(f) dP denotes the expected value of the function u(f) : S → R, given the

probability distribution P .

A translation is a geometric transformation that moves every point of a figure or

a space by the same amount in a given direction. We are interested in translations

of prior sets within ∆(S). For this we define the following vector-subspace T = {t ∈
B0(S)|

∑
S

t(s) = 0}. We say that two prior sets C and C ′ are translations if there

exists a t ∈ T such that C ′ = C + t, denoted by C ≈ C ′.3 We denote by [C] the

equivalence class of ≈ that contains C and by C/[≈] the quotient of C with respect

to ≈.

4.3 A Measure for Perceived Ambiguity

In this section we introduce our definition of perceived ambiguity for prior sets and

illustrate its consequence: the location-invariance of perceived ambiguity. Consider

the state space S = {s1, s2, s3} and the prior set C in Figure 4.3. Consider the

indifference curves of the act f depicted in Figure 4.3 for some utility function

u : L→ R.4

The probability distributions P and Q in Figure 4.3 represent the worst and best

scenarios for the act f , given prior set C and utility function u.5 We suggest that the

difference between the indifference curves through these extreme scenarios measures

the perceived ambiguity for the act f . That is perceived ambiguity is characterized

by the function δC,u : F → [0, 1] defined by

3 Recall that prior sets are subsets of ∆(S). Translations of prior sets beyond the border of ∆(S)
are not translations in our sense.

4 The indifference curve of f through some P ∈ ∆(S) is given by {Q ∈ ∆(S)|
∫
u(f)dQ =∫

u(f)dP}. Recall that we assume u to be affine, which implies that the indifference curves
are straight and parallel.

5 Note that in general these extreme scenarios will not be unique.
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Figure 4.3: Worst and best scenario for the act f given prior set C and utility function
u.

δC,u(f) =


max
P∈C

∫
u(f) dP−min

P∈C

∫
u(f) dP

max
P∈∆(S)

∫
u(f) dP− min

P∈∆(S)

∫
u(f) dP

, f /∈ Fu1

0, f ∈ Fu1 .
(4.1)

For f /∈ Fu1 , δC,δ(f) is the difference in evaluation of the best and worst case

scenario. The denominator normalizes the measures.

Definition 4.1 (Perceived Ambiguity of Prior Sets). Consider a prior set C and

utility function u. The perceived ambiguity reflected by C is characterized by δC,u.

Given C and u, an act f is called unambiguous if δC,u(f) = 0.

An act f ∈ Fu1 is always unambiguous. Whether an act f /∈ Fu1 is unambiguous

depends on the prior set C and the utility function u: it is unambiguous if the

difference in evaluation between the best and the worst case scenario is zero. This

in particular implies the desired consequence that all acts are unambiguous when

the prior set is a singleton, i.e. when preferences are SEU.

The following comparative notion of perceived ambiguity for prior sets suggests

itself.
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Definition 4.2 (Comparative Perceived Ambiguity of Prior Sets). Let C and C ′

be prior sets and u a utility function. Then C reflects more ambiguity than C ′ if

δC,u(f) ≥ δC′,u(f) for all f ∈ F . The prior sets C and C ′ reflect the same ambiguity

if and only if δC,u ≡ δC′,u.

The proposed measure has several desirable consequences that make it worthy

of consideration. Firstly it is simple and makes intuitive sense. The further the

extreme scenarios are apart for an act, the more ambiguity is perceived for this act.

Secondly the measure generalizes and unifies all the proposed measures suggested in

the literature that we are aware of.6 Thirdly, as already highlighted, Definition 4.1

implies for SEU preferences that all acts are unambiguous which is clearly desirable.

It thus implies that any two SEU preferences represent the same perceived ambigu-

ity. Fourthly the comparative notion in Definition 4.2 is independent of the utility

function (see Observation 4.1) as well as any kind of ambiguity attitude. Thus per-

ceived ambiguity indeed only depends on the prior set and not on risk or ambiguity

attitudes which is desirable. Finally Definition 4.1 implies the location-invariance

of perceived ambiguity that we aspire. The following Observation provides some

properties of the function δC,u leading up to this result.

Observation 4.1. Let C be a prior set and u a utility function. Then

1. δC,u is translation-invariant, i.e. δC,u ≡ δC+t,u for all t ∈ T for which C + t ⊆
∆(S).

2. δC,u is constant on affinely related acts, i.e. f ∈ 〈g〉u∪〈−g〉u implies δC,u(f) =

δC,u(g).

3. The comparative notion in Definition 4.2 is independent of the utility function,

i.e. for two utility functions u1 and u2 we have

δC,u1(f) ≥ δC′,u1(f) ∀f ∈ F ⇐⇒ δC,u2(f) ≥ δC′,u2(f) ∀f ∈ F .

Parts 1. and 3. of Observation 4.1 imply that Definition 4.1 captures exactly the

location invariance of perceived ambiguity that we want to achieve.

6 We address this in Appendix B.
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Observation 4.2. Let C and C ′ be prior sets. Then C reflects more ambiguity than

C ′ if and only if there exists a translation t ∈ T such that C ′ + t ⊆ C. Furthermore

C and C ′ reflect the same ambiguity if and only if C and C ′ are translations of each

other.

The equivalence class [C], which contains all the translations of C within ∆(S),

thus contains exactly those prior sets that reflect the same ambiguity according

to Definition 4.1. We illustrate in section 4.6 how this allows exogenous fixation

of perceived strategic ambiguity for players in normal-form games, allowing a very

general equilibrium existence results.

4.4 Location-Invariance and Preferences

Section 4.3 introduces a definition of perceived ambiguity for prior sets which leads to

the desired location-invariance property. What does this location-invariance imply

for preferences? When does one preference relation reflect more ambiguity than

another? When is one preference relation more ambiguity averse than another? To

answer these questions we need to answer the following:

How are two preference relations related, if they can be represented

by the same ambiguity attitude and utility functions as well as prior sets

that only differ in location?

We focus on Invariant Biseparable (IB) preferences, introduced in Ghirardato et al.

(2004).7 The reason we focus on IB preferences is that it is a large class of MP

preferences containing important preference subclasses such as CEU and α-MEU.

Furthermore IB preferences induce a preference functional that is constant-linear,

which is necessary to answer the above question as will become clear. Another reason

is that Ghirardato et al. (2004) suggest notions of comparative perceived ambiguity

and comparative ambiguity attitude to which our notion can be compared easily.

4.4.1 The Effect of a Translation on Preferences

Consider the four priors in Figure 4.4. The translation t ∈ T is the difference

between P and P ′ as well as between Q and Q′. Consider a utility function u. For

7 See the introductory chapter for details.
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Figure 4.4: P and Q translated by t.

all f ∈ F we then have∫
u(f) dP ′ −

∫
u(f) dP =

∑
s∈S

u(f(s))P ′(s)−
∑
s∈S

u(f(s))P (s)

=
∑
s∈S

u(f(s))(P ′(s)− P (s))

=
∑
s∈S

u(f(s))t(s)

=
∑
s∈S

u(f(s))(Q′(s)−Q(s))

=
∑
s∈S

u(f(s))Q′(s)−
∑
s∈S

u(f(s))Q(s)

=

∫
u(f) dQ′ −

∫
u(f) dQ. (4.2)

That is for a given translation t the resulting difference in evaluation of acts is

location independent. The difference in evaluation only depends on t and on the

utility function u.

Now consider two IB preference relations %1 and %2 that are represented by the

same ambiguity attitude function a and utility function u as well as GMM prior sets8

8 Recall that the GMM prior set is the unique prior set induced by the unambiguous pref-
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C1 and C2 that are translations of each other, see Figure 4.5. Let their representation

functionals be I1 and I2, respectively. By applying Equation (4.2) twice we observe

that for every f ∈ F

I2(f)− I1(f) = a([f ]) min
P∈C2

∫
u(f) dP + (1− a([f ])) max

P∈C2

∫
u(f) dP

− a([f ]) min
P∈C1

∫
u(f) dP + (1− a([f ])) max

P∈C1

∫
u(f) dP

= max
P∈C2

∫
u(f) dP −max

P∈C1

∫
u(f) dP

=

∫
u(f) dP2 −

∫
u(f) dP1 ∀P1, P2 ∈ ∆(S) such that P2 = P1 + t.

(4.3)

This shows that the change in evaluation of act f going from %1 to %2 only

depends on the translation t and the utility function u, this property being inherited

from Equation (4.2). It does not depend on the ambiguity attitude function a, the

prior sets C1 and C2 or their location within ∆(S).

Figure 4.5: C1 and C2 differ only in location: C2 = C1 + t.

For an IB preference % and act f ∈ F define x%f as some certainty prize of f ,

erence relation and is interpreted by the authors as reflecting the perceived ambiguity, see
introductory chapter.

107



4 A Definition of Perceived Ambiguity and its Application to Games

given preferences %, i.e. f ∼ x%f . This prize exists since X is a 1-dimensional vector

space and due to the Archimedean axiom.9 It holds that

I2(f)− I1(f) = I2(x%2

f )− I1(x%1

f )

= u(x%2

f )− u(x%1

f ).

For f ∈ F , t ∈ T and utility function u define

xu(f, t) = {x ∈ X|u(x) = u(x%1

f )− u(x%2

f )}.

The prize xu(f, t) exists.10 It can be interpreted as the prize that has to be added

to the act f as compensation when preferences change from %1 to %2, i.e. when,

ceteris paribus, the prior set changes location by the translation t.

It holds that u(xu(l, t)) = 0 for all l ∈ L and thus also u(xu(x, t)) = 0 for all

x ∈ X. Furthermore xu(f, 0) = xu(g, 0) for all f, g ∈ F .11

Now assume that for two acts f and g we have f %1 g. What does this imply for

%2? Going from %1 to %2 the evaluations of f and g change from I1(f) to I2(f)

and from I1(g) to I2(g). Given the insight that xu(·, t) is the compensation due to

translation t we can conclude that f + xu(f, t) %2 g + xu(g, t).
12 By adding the

unconditional prizes xu(f, t) and xu(g, t) to the acts f and g we thus eliminate the

effect that the translation t has on the evaluation of these acts.13

We state this result formally in the following theorem, hereby answering the ques-

tion stated at the beginning of this section.

9 Note that x
%
f is not necessarily unique. We abuse notation slightly and denote by x

%
f an

arbitrary element of the set.
10 Again it is not necessarily unique. Again xu(f, t) denotes an arbitrary element of the set.
11 Note that all these insights are unaffected by a replacement of the utility function by a car-

dinally equivalent one. Most crucially, the set xu(f, t) stays the same.
12 Recall that the act f +x is defined as the act f with the prize x unconditionally added to the

resulting lotteries in every state.
13 Note that this last step is where we need the constant-linearity of the preference functional,

implying a(f) = a(f + x). Without this property the set xu(f, t) would in addition depend
on the ambiguity attitude. In principle this could be done, for instance by relaxing Certainty
Independence to Risk Independence.
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Theorem 4.1. Let %1 and %2 be IB preference relations on F with the same am-

biguity attitude function, utility functions that are cardinally equivalent and GMM

prior sets C1 and C2, respectively. Then for t ∈ T the following are equivalent:

1. C1 + t = C2.

2. f %1 g ⇐⇒ f + xu(f, t) %2 g + xu(g, t).

From Theorem 4.1 we can deduce the following for the unambiguous preference

relation. Note that Corollary 4.1 does not require identical ambiguity attitudes.

Corollary 4.1. Let %1 and %2 be IB preferences on F with utility functions that are

cardinally equivalent and GMM prior sets C1 and C2, respectively. Then for t ∈ T
the following are equivalent:

1. C1 + t = C2.

2. f %∗1 g ⇐⇒ f + xu(f, t) %∗2 g + xu(g, t).

4.5 Comparative Perceived Ambiguity, Comparative

Ambiguity Attitude and α-MEU Preferences

This section builds on the insights of the previous section. It introduces comparative

notions for perceived ambiguity and ambiguity attitude for preferences that respect

the location-invariance of perceived ambiguity.

4.5.1 Comparative Perceived Ambiguity

Ghirardato et al. (2004) suggest a comparative notion in which %1 perceives more

ambiguity than %2 if for all f, g ∈ F

f %∗1 g =⇒ f %∗2 g. (4.4)

If a DM unambiguously prefers f to g, then another DM who perceives less ambiguity

does so as well. Ghirardato et al. show that this is the case if and only if the utility

functions are cardinally equivalent and C1 ⊇ C2, where C1 and C2 are the GMM prior

sets of %1 and %2, respectively.
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4 A Definition of Perceived Ambiguity and its Application to Games

In section 4.3 we suggest that the comparative notion should respect location-

invariance of perceived ambiguity. The following definition achieves this, as shown

in Lemma 4.1.

Definition 4.3 (Comparative Perceived Ambiguity of Preferences). Let %1 and %2

be IB preference relations on F . Then %1 reflects more ambiguity than %2 if there

exists a translation t ∈ T such that for all f, g ∈ F

f %∗1 g =⇒ f + xu(f, t) %
∗
2 g + xu(g, t). (4.5)

Note the close relationship between (4.4) and (4.5). In section 4.3 we deduced

that by adding the unconditional prizes xu(f, t) and xu(g, t) to the acts f and g we

eliminate the effect that the translation t has on the evaluation of these acts. The

case t = 0 gives exactly the Ghirardato et al. (2004) notion since xu(f, 0) = xu(g, 0)

for all acts f, g ∈ F and preferences are constant-linear. The following lemma shows

that Definition 4.3 reflects the desired location-invariance.

Lemma 4.1. Let %1 and %2 be two IB preference relations on F . Then the following

are equivalent:

1. %1 reflects more ambiguity than %2.

2. %1 and %2 have utility functions that are cardinally equivalent and there exists

a t ∈ T such that C1 + t ⊇ C2.

4.5.2 Comparative Ambiguity Attitude

We suggest two different notions of comparative ambiguity aversion. The first one

is in the spirit of Ghirardato and Marinacci (2002). In order to compare ambiguity

attitudes the DMs are required to perceive the same ambiguity. In the second notion

this requirement can be dropped, i.e. it is independent of perceived ambiguity being

identical which we believe is superior.

The First Notion of Comparative Ambiguity Attitude

Ghirardato and Marinacci (2002) suggest a comparative notion in which %1 is more

ambiguity averse than %2 if for all l ∈ L and f ∈ F

f %1 l =⇒ f %2 l.
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If one DM prefers the act f to a constant act l, then a less ambiguity averse DM

does so as well. Ghirardato et al. adopt this notion for their model and show

that if for two IB preference relations the GMM prior sets are identical and utility

functions cardinally equivalent, then %1 is more ambiguity averse than %2 if and

only if a1([f ]) ≥ a2([f ]) for all f ∈ F\[x].

The following definition is in this spirit but respects the location-invariance of

perceived ambiguity as shown in Lemma 4.2.

Definition 4.4 (Comparative Ambiguity Aversion of Preferences Type I). Let %1

and %2 be IB preferences with utility functions that are cardinally equivalent. Then

%1 is more ambiguity averse of type I than %2 if there exists a t ∈ T such that for

all f ∈ F and all l ∈ L

f %1 l =⇒ f + xu(f, t) %2 l.

Recall that u(xu(l, t)) = 0 which is why it does not show up in this definition.

Again the case t = 0 gives exactly the definition of Ghirardato and Marinacci (2002).

Lemma 4.2. Let %1 and %2 be IB preferences with utility functions that are car-

dinally equivalent. Assume that there exists a t ∈ T such that C2 + t = C1. Let a1

and a2 be the ambiguity attitude functions. Then the following are equivalent:

1. %1 is more ambiguity averse of type I than %2.

2. a1([f ]) ≥ a2([f ]) for all f ∈ F\[x].

The Second Notion of Comparative Ambiguity Attitude

If we have a separation of perceived ambiguity and ambiguity attitude, which Ghir-

ardato et al. (2004) claim to have found, we should aim to define comparative

ambiguity attitude without requiring identical perceived ambiguity. Why? Because

of the separation! The ambiguity attitude is clearly characterized by a function

and thus a comparative notion should only depend on this characterization. In the

following we present a definition which achieves this.
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Assume that % is an IB preference relation on F . Define

x(f) = inf
x∈X
{x %∗ f} = inf

x∈X
{λx+ (1− λ)h % λf + (1− λ)h ∀λ ∈ [0, 1], h ∈ F},

x(f) = sup
x∈X
{f %∗ x} = sup

x∈X
{λf + (1− λ)h % λx+ (1− λ)h ∀λ ∈ [0, 1], h ∈ F}.

Thus x(f) is the infimum of the prizes that are unambiguously preferred to f and

x(f) is the supremum of the prizes to which f is unambiguously preferred. Since

X is a 1-dimensional vector-space, these sets are non-empty.14 Note that x(f) ∼∗ f
does not hold. This is the case if and only if f is crisp in which case it also holds

that x(f) ∼ x(f).15 With C being the GMM prior set of % it is easy to see that

u(x(f)) = max
P∈C

∫
u(f)dP,

u(x(f)) = min
P∈C

∫
u(f)dP.

Thus the DM is indifferent between x(f) and the best scenario for f within C as

well as indifferent between x(f) and the worst scenario for f within C.
We can now state our second definition of comparative ambiguity attitude. If a

DM prefers the act f to the α-mixture of x(f) and x(f), then a less ambiguity averse

DM will also prefer f to this mixture. Note however that x(f) and x(f) may differ

for the two DM’s.16

Definition 4.5 (Comparative Ambiguity Aversion of Preferences Type II). Let %1

and %2 be IB preferences with utility functions that are cardinally equivalent. %1 is

more ambiguity averse of type II than %2 if for all f ∈ F and α ∈ [0, 1]

f %1 αx1(f) + (1− α)x1(f) =⇒ f %2 αx2(f) + (1− α)x2(f).

This definition allows an analogue to Lemma 4.2 without the requirement C2 +t =

C1.

14 Once more we abuse notation and refer to x(f) and x(f) as arbitrary elements of these sets.
15 See the introductory chapter for the definition of crispness of an act.
16 The set x(f) and x(f) are the same for both DM’s and all acts f if and only if the utility

functions are cardinally equivalent and the prior sets are identical. The latter however is
exactly what we want to relax.
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Lemma 4.3. Assume that %1 and %2 are IB preferences with utility functions that

are positive affinely related. Let a1 and a2 be the ambiguity attitude functions. Then

the following are equivalent:

1. %1 is more ambiguity averse of type II than %2.

2. a1([f ]) ≥ a2([f ]) for all f ∈ F\[x].

We thus have a definition of comparative ambiguity attitude which does not need

to assume that the DMs have the same perceived ambiguity. We think that this

second notion is superior to the first. If we have a separation of perceived ambiguity

and ambiguity attitude then we should aim at defining the comparative notion of

the one independent of the other.

4.5.3 Excursus: α-MEU

With the entities x(f) and x(f) we can also axiomatize α-MEU, i.e. IB preferences

with a constant ambiguity attitude α ∈ [0, 1]. Ghirardato et al. (2004) also provide

such an axiomatization. It has the drawback that it is not derived purely from

preferences over acts. The following axiom however is just in terms of the preference

relation.17

Axiom (α-MEU). There exists an α ∈ [0, 1] such that f ∼ αx(f) + (1− α)x(f) for

all f ∈ F .

Theorem 4.2. Let % be a IB preference relation on F . Then the following are

equivalent:

1. % satisfies the axiom α-MEU.

2. a([f ]) = α for all f ∈ F\[x], i.e. the ambiguity attitude function is constant.

17 Eichberger et al. (2011) critizise the axiomatization of α-MEU preferences by Ghirardato et al.
(2004). They show that in a finite state space the prior set will never be equal to the set from
(Ghirardato et al. (2004)), i.e. the Clarke differential at 0, when α ∈ (0, 1). Thus they show
inconsistency of the axioms. We cannot solve this problem with our axiomatization, thus this
criticism applies to our axiomatization as well.
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4.6 Application to Games

This section applies the insights thus far to strategic interaction. We utilize our

MP approach to represent players’ ambiguous beliefs about the strategy choice of

the other players. We introduce an equilibrium notion, our approach being closely

related to Eichberger and Kelsey (2014). We prove equilibrium existence in normal-

form games for any exogenously fixed perceived ambiguities via the equivalence class

[·] and exogenously fixed ambiguity attitudes for all players.18 Several examples

illustrate the modelling capabilities of the approach.

4.6.1 Normal-Form Games and Strategic Ambiguity

A normal-form game Γ = 〈N ;Si, ui : 1 ≤ i ≤ N〉 consists of a finite set of players N ,

finite pure strategy sets Si and payoff function ui for player i. The set of pure strategy

combinations is denoted by S and S−i is the set of pure-strategy combinations of

player i’s opponents. Player i has payoff function ui : S → R.

Players perceive ambiguity about the strategic choice of the other players. Beliefs

are represented by a prior set over the pure strategy combinations of the opponents

as well as an ambiguity attitude function over the players’ own strategies. For player

i with belief Ci ⊆ S−i and ambiguity attitude function ai : Si → [0, 1] the evaluation

of a strategy si ∈ Si is therefore

Vi(si|Ci, ai) = ai(si) min
P∈Ci

∫
u(si, s−i) dP + (1− ai(si)) max

P∈Ci

∫
u(si, s−i) dP.

Note that we do not restrict the ambiguity attitude in any way.19 The following

analysis and equilibrium result holds in this surpisingly general framework.

4.6.2 Equilibrium under Ambiguity and Equilibrium Existence

In equilibrium, players choose optimal pure strategies, given their beliefs. Mixed

strategies are not an object of choice. Furthermore beliefs must be consistent in the

sense that the support of the belief only contains best responses of the opponents,

given their beliefs. The notion of support of a prior set pins down this consist-

18 Recall that [·] contains exactly the prior sets that reflect the same ambiguity according to
Definition 4.1, i.e. prior sets that differ only in location.

19 Thus preferences are not even constant-linear.
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ency. Following Eichberger and Kelsey (2014), we use the following support notion

introduced by Ryan (2002).

Definition 4.6 (Support notion: Ryan (2002)). For some finite state space S let C
be a prior set on ∆(S). The support of C is defined by

supp(C) =
⋂
P∈C

supp(P ),

where for a probability distribution P ∈ ∆(S) the support is defined as is usual by

supp(P ) = {s ∈ S|P (s) > 0}.

In a game context, a strategy combination s−i is in the support of some prior set

Ci if all elements of Ci assign strictly positive weight to s−i. Thus the elements of

supp(Ci) are the opponents’ strategy combinations which player i cannot rule out.

The consistency requirement in equilibrium is that these strategy combinations that

the player cannot rule out have to be optimal for the other players.

The strategy combinations in the support are guaranteed to always receive posit-

ive weight by the evaluation functional. Elements that are not in the support may

however also receive positive weight. It is this property of the model which distin-

guishes it mathematically from Nash Equilibrium and allows us to model non-Nash

behaviour.

We now formally introduce our equilibrium notion.

Definition 4.7 (Equilibrium under Ambiguity). Let Γ = 〈N ;Si, ui : 1 ≤ i ≤ N〉 be

a normal-form game. The tuple (Ci, ai)Ni=1 is an Equilibrium under Ambiguity if for

all 1 ≤ i ≤ N

∅ 6= supp(Ci) ⊆ ×j 6=iRj(Cj, aj),

where Rj(Cj, aj) = arg max
sj∈Sj

[V (sj|Cj, aj)] is the best response correspondence.

If supp(Ci) contains just a single element ŝi ∈ Si for all i ∈ {1, . . . , N} we refer

to the equilibrium as a singleton equilibrium and ŝ = (ŝi, . . . , ŝN) as its strategy

profile.

If there are just two players and the prior sets are singletons then Definition 5.6

coincides with the standard Nash Equilibrium. With three or more players it is

however possible in an Equilibrium under Ambiguity that prior sets are singletons
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but this does not constitute a Nash Equilibrium. For instance players 1 and 2 may

have different beliefs about what player 3 will do.

Recall that mixed strategies are not an object of choice. An equilibrium in which

some support contains multiple strategy combinations cannot be interpreted as an

equilibrium in which players randomize. Instead the equilibrium notion should be

interpreted as an equilibrium in beliefs.

The following theorem shows that for any exogenously chosen perceived ambigu-

ities [C1], . . . , [CN ] and ambiguity attitudes a1, . . . , aN there exists an Equilibrium

under Ambiguity. To rule out uninteresting cases we assume that [Ci] does not only

contain the element Ci, or equivalent that supp(Ci) 6= ∅.

Theorem 4.3 (Equilibrium Existence). Let Γ = 〈N ;Si, ui : 1 ≤ i ≤ N〉 be a

normal-form game. Then for any exogenously given n-tuples of perceived ambiguities

([Ci])Ni=1 such that supp(Ci) 6= ∅ for all i ∈ {1, . . . , N} and ambiguity attitudes (ai)
N
i=1

there exist (C∗i )Ni=1 with C∗i ∈ [Ci] for all i ∈ {1, . . . , N} such that (C∗i , ai)Ni=1 is an

Equilibrium under Ambiguity.

Due to the weak assumptions that we make about the preferences of players,

Theorem 4.3 is an extremely general existence result. We can conclude equilib-

rium existence for subclasses like IB preferences, α-MEU preferences, neo-additive

capacities or MEU preferences. The theorem also generalizes several equilibrium

existence results from the literature, for instance Eichberger and Kelsey (2014) and

Marinacci (2000).

4.6.3 Examples

In this subsection we study some 2-player games with which the modelling capab-

ilities of the approach introduced in this section can be illustrated. The intuitive

appeal of the resulting equilibria is highlighted.

Example 1 illustrates that our approach allows modelling of intuitive outcomes

that cannot be explained by the Nash Equilibrium solution concept. Example 2

illustrated the flexibility of our model and provides comparative statics in perceived

ambiguity and ambiguity attitude. Example 3 is the Rock-Paper-Scissors game. We

show that for sufficient perceived ambiguity the game has a singleton Equilibrium

under Ambiguity. Example 4 is the Prisoners Dilemma. We show that by allowing

non-constant ambiguity attitude functions we can explain cooperation.
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In a game with two players and two strategies the set S−i consists of two ele-

ments. This implies that prior sets are intervals. A prior set in the game is thus of

the kind Ci = Conv(P,Q|P,Q ∈ ∆(S−i)). We can represent perceived ambiguity by

the length of this interval, i.e. by a parameter δi ∈ [0, 1]. To exogenously fix per-

ceived ambiguity means to fix an interval-length, i.e. an exogenously fixed perceived

ambiguity [C] consists of the prior sets with the same interval length as C.

Example 1: Modelling intuitive non-Nash behaviour

Player 2

L R

Player 1
U (100, 1) (0, 0)

D (99, 1) (99, 0)

Figure 4.6: Is the Nash Equilibrium realistic?

Consider the 2-player game in Figure 4.6. The unique Nash equilibrium is the

strategy combination (U,L). It is however quite intuitive that player 1 plays D,

in which case the strategy combination (D,L) results. We show in the following

that for sufficient perceived ambiguity as well as sufficient pessimism, the strategy

combination (D,L) will indeed constitute an Equilibrium under Ambiguity.

The evaluation of strategy U , given a prior set C1 ⊆ ∆({L,R}) and ambiguity

attitude a1 : {U,D} → [0, 1] is

a1(U) min
P∈C

∫
U dP + (1− a1(U)) max

P∈C

∫
U dP.

For the prior set C1 with interval length δ1 depicted in Figure 4.7 the evaluation

of U is

a1(U)(δ10 + (1− δ1)100) + (1− a1(U))100.

The evaluation of D is 99. Thus, given the prior set C1, D � U if and only if

a1(U)δ1 > 1
100

. Consider any prior set C2 such that supp(C2) = {D} and any

ambiguity attitude a2 : {L,R} → [0, 1]. Note that supp(C1) = {L}. Now for

a1(U)δ1 > 1
100

the tuple (Ci, ai)2
i=1 constitutes an Equilibrium under Ambiguity.

This is because D is optimal as well as the unique element of supp(C2) and L is

optimal as well as the unique element of supp(C1).
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Figure 4.7: The equilibrium belief of player 1 with perceived ambiguity δ1.

We have thus shown that (D,L) is the unique equilibrium strategy profile when

player 1 perceives sufficient ambiguity and is sufficiently ambiguity averse, i.e. when

a1(U)δ1 >
1

100
. This result is very much in line with intuition and cannot be ex-

plained within the Nash-framework.

Example 2: A Game with a safe strategy for both Players

Player 2

L R

Player 1
U (2, 1) (0, 0)

D (1, 1) (1, 2)

Figure 4.8: A Game with Safe Strategies.

Consider the game in Figure 4.8. It has two pure strategy Nash Equilibria: (U,L)

and (D,R). Both players have a safe strategy that guarantees a payout of 1 and

a risky strategy that either results on 0 or 2. We show that, depending on the

levels of perceived ambiguity and ambiguity attitude, every strategy combination can

constitute a singleton Equilibrium under Ambiguity in a way that is in our opinion

very much in line with intuition. Throughout the analysis δi denotes the exogenously

fixed perceived ambiguity and ai the exogenously fixed ambiguity attitude of player

i, i ∈ {1, 2}.20

The strategy combination (D,L) constitutes a singleton Equilibrium under Am-

biguity when 1
2
≤ a1δ1 and 1

2
≤ a2δ2. This is very intuitive. When the players are

pessimistic and perceive sufficient ambiguity, they will choose the safe strategy even

when they believe that the other player will play the safe strategy as well.

20 We assume constant ambiguity attitude. No generality is lost in this case since the ambiguity
attitude plays no role in the evaluation of the safe strategy that guarantees payout 1.
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It might at first look curious that (U,R) can constitute a singleton Equilibrium

under Ambiguity. This is the case if 1
2
≤ (1 − a1)δ1 and 1

2
≤ (1 − a2)δ2. When the

players are sufficiently optimistic and perceive sufficient ambiguity, they play the

risky strategy even when they believe that the other player will do so as well.

The strategy combination (D,R) constitutes a singleton Equilibrium under Am-

biguity when 1
2
≥ (1−a1)δ1 and 1

2
≥ a2δ2. This can be understood by looking at the

two above cases: considering the strategy combination (D,L), player 2 will deviate

to R when it is not the case that 1
2
≤ a2δ2. Considering the strategy combination

(U,R), player 1 will deviate to D when it is not the case that 1
2
≤ (1− a1)δ1.

Due to symmetry, (U,L) constitutes a singleton Equilibrium under Ambiguity if
1
2
≥ a1δ1 and 1

2
≥ (1− a2)δ2.

Example 3: Rock-Paper-Scissors

In the previous examples the players had two strategies each. All the results could

have been achieved by restricting attention to neo-additive capacities.21

In the following example the players have three strategies which allows model-

ling of behaviour that cannot be achieved with neo-additive capacities or the CEU

framework in general.

Player 2

R2 P2 S2

Player 1
R1 (0, 0) (−1, 1) (1,−1)

P1 (1,−1) (0, 0) (−1, 1)

S1 (−1, 1) (1,−1) (0, 0)

Figure 4.9: Rock-Paper-Scissors

The unique Nash Equilibrium consists of the uniform mixing over the three pure

strategies for both players. Our equilibrium notion allows a rich set of equilibria in

this game.

First assume that both players’ perceived ambiguity is represented by

[Ci] =

{
C ⊆ ∆(S−i)|C = Bεi(P ), P ∈ ∆(S−i), εi ∈

(
0,

1

3

)}
,

21 This is because when the state space has just two elements, preferences with a constant
ambiguity attitudes have a representation as a neo-additive capacity.

119



4 A Definition of Perceived Ambiguity and its Application to Games

i.e. the set of balls within the simplex of radius εi.
22 Assume that ambiguity attitude

ai is constant for both players, i.e. ai ≡ αi for i ∈ {1, 2}. Then there is the unique

Equilibrium under Ambiguity(
Bεi

(
1

3
,
1

3
,
1

3

)
, αi

)2

i=1

.

In equilibrium the perceived ambiguity is represented by the circular prior set

centered around the uniform distribution. It is easy to check that this is indeed

an Equilibrium under Ambiguity. All three strategies result in the same evaluation

and the support of the prior sets contain all three strategies. Note that this result

allows the players to have different ε and ambiguity attitudes. The equilibrium is

illustrated for the case ε1 = 1
6

and ε2 = 1
12

in Figure 4.10.

The equilibrium can be interpreted in the following way: the players believe that

the opponent will uniformly mix amongst pure strategies, however the players per-

ceive ambiguity about this belief. This ambiguity is represented by ε.

Figure 4.10: The unique equilibrium for ε1 = 1
6

and ε2 = 1
12

and arbitrary α1 and
α2.

Our framework is capable of modelling other equilibria in Rock-Paper-Scissors,

even singleton ones. Lets assume that player 2 is a subjective expected utility

22 This radius must not be bigger than 1
3 as [Ci] would be empty. The case εi = 1

3 corresponds
to the case where [Ci] consists of a single element with an empty support, which we want to
rule out.
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maximizer, i.e. perceived ambiguity is represented by the set of singletons. Player

1 perceives ambiguity about whether player 2 will play P2 or S2. She does not

perceived any ambiguity about the strategy R2. This belief can be represented by

[C1] = {C ⊆ ∆(S2)|C = Conv(P,Q), P (R2) = Q(R2), P (P2)−Q(P2) = δ ∈ (0, 1)}.

The parameter δ measures the ambiguity that player 1 perceives about whether

P2 or S2 is played. In the following we consider two cases: player 1 is a complete

pessimist, i.e. has Maxmin Expected Utility preferences and player 1 is a complete

optimist, i.e. has Maxmax Expected Utility preferences.

The equilibria of the game depend on the parameter δ. When this parameter is

sufficiently small, the equilibrium will be close to the Nash Equilibrium. However

when δ is large we get equilibria that are very different from the Nash Equilibrium,

we can even get singleton equilibria. The reason and intuition why a singleton

equilibrium is possible here is the following: assume that player 1 perceives a lot of

ambiguity, i.e. δ is close to 1. When evaluating strategy R1, the player assigns a

lot of weight on the worst case scenario P2 due to ambiguity and pessimism. When

evaluating strategy P1, the player assigns a lot of weight on the worst case scenario

S2. When evaluating S1 however, the player assigns less weight on the worst case

scenario R2 as most of the weight goes to the scenario S2. This is because, given

a large δ, there is simply no room for the prior set to get close to the R2 corner of

the simplex, see Figure 4.11a. Exogenously fixing perceived ambiguity the way we

do in our model allows this kind of phenomena. Thus for δ sufficiently large, player

1 plays S1 even when he believes that player 2 plays R2. Player 2, being an SEU

decision maker, believes that player 1 plays S1. She responds optimally and thus

plays R2. Therefore the strategy profile (S1, R2) indeed constitutes an Equilibrium

under Ambiguity for δ sufficiently large.23 By fixing perceived ambiguity via the

δ-parameter, we prevent that the prior set can get close to the R2 corner of the

simplex. For large δ this strategy thus receives very little weight, even when the

support contains just R2.

The following two tables illustrate equilibria of the game for different values of δ

for the pessimism and optimism case.

23 Whether this makes sense is surely debatable. There is room for critique on this result and
the fact that these phenomenon are possible in our model. Note that exactly this phenomenon
is also possible in the model of Eichberger and Kelsey (2014) as the belief of player 1 is the
core of a JP-capacity, which is the preference class that they consider.
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δ C∗1 supp(C∗1) C∗2 supp(C∗2)

δ ∈ [2
3
, 1) Conv {(1− δ, δ, 0); (1− δ, 0, δ)} {R2} (0, 0, 1) {S1}

δ ∈ [1
2
, 2

3
) Conv

{
(1

3
, δ, 2

3
− δ); (1

3
, 0, 2

3
)
}

{R2, S2} (0, 1
3
, 2

3
) {P1, S1}

δ ∈ [0, 1
2
) Conv

{
(1

3
, 1−2δ

3
, 1+2δ

3
); (1

3
, 1+δ

3
, 1−δ

3
)
}
{R2, P2, S2} (1

3
, 1

3
, 1

3
) {R1, P1, S1}

Table 4.1: Equilibria under Ambiguity with a pessimistic player 1.

δ C∗1 supp(C∗1) C∗2 supp(C∗2)

δ ∈ [1
2
, 1) Conv

{
(2−2δ

3
, 1+2δ

3
, 0); (2−2δ

3
, 1−δ

3
, δ)
}
{R2, P2} (2

3
, 0, 1

3
) {R1, S1}

δ ∈ [0, 1
2
) Conv

{
(1

3
, 1+2δ

3
, 1−2δ

3
); (1

3
, 1−δ

3
, 1+δ

3
)
}
{R2, P2, S2} (1

3
, 1

3
, 1

3
) {R1, P1, S1}

Table 4.2: Equilibria under Ambiguity with an optimistic player 1.

Figure 4.11 and Figure 4.12 illustrate these equilibria for the cases δ = 5
6
, 7

12
, 1

4

and a pessimistic player 1 as well as δ = 3
4
, 1

4
and an optimistic player 1.

Example 4: Cooperation in the Prisoners Dilemma

Consider the Prisoners Dilemma in Figure 4.13.

Assume that both players perceive ambiguity [C] = {C ⊆ ∆({Coop,NoCoop})|C =

Conv(P,Q), P (Coop)−P (NoCoop) = 3
4
} and have ambiguity attitudes a(NoCoop) =

1, a(Coop) = 0. Thus the players perceive ambiguity represented by an interval in

∆({Coop,NoCoop}) of length 3
4
. The players are optimistic when evaluating Coop

and pessimistic when evaluating NoCoop.

Under these conditions there are three Equilibria under Ambiguity, two of them

singletons. The first Equilibrium is given by

(C∗, a)2
i=1,

such that C∗ = [0, 3
4
] ⊆ ∆({Coop,NoCoop}). It holds that C∗ ∈ [C] and supp(C∗) =

{Coop}. To check that this is indeed an Equilibrium under Ambiguity is suffices to

check that

V (Coop|C∗, a) = max
P∈C∗

∫
u(Coop, Coop) dP = 3,

V (NoCoop|C∗, a) =
1

4
max
P∈C∗

∫
u(Coop, Coop) dP +

3

4
min
P∈C∗

∫
u(NoCoop, Coop) dP =

5

2
.
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(a) δ = 5
6

(b) δ = 7
12

(c) δ = 1
4

Figure 4.11: Equilibrium for pessimistic player 1 and δ = 5
6
, 7

12
, 1

4
.
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(a) δ = 3
4

(b) δ = 1
4

Figure 4.12: Equilibrium for optimistic player 1 and δ = 3
4
, 1

4
.
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Player 2

Coop NoCoop

Player 1
Coop (3, 3) (1, 4)

NoCoop (4, 1) (2, 2)

Figure 4.13: A Prisoners Dilemma.

The second Equilibrium is given by

(C†, a)2
i=1,

such that C† = [1
4
, 1] ⊆ ∆({Coop,NoCoop}). It holds that C† ∈ [C] and supp(C†) =

{NoCoop}. We have that V (Coop|C†, a) = 3
2
< 2 = V (NoCoop|C†, a), thus this is

an Equilibrium under Ambiguity.

There is a third equilibrium in which the support of the prior sets are not singletons:

C‡ = [1
8
, 7

8
] ∈ [C]. Given these beliefs, the players are indifferent between the two

strategies.

All equilibrium prior sets are illustrated in Figure 4.14.

Figure 4.14: The prior sets of the three Equilibria.

In the first equilibrium the players cooperate. The reason our model allows co-

operation in the prisoners dilemma is very simple: ambiguity attitude is not restric-

ted to being constant and thus allows non-monotonic preferences.24 The assumed

24 See the article on Weak Monotonicity on how to model non-monotonic preferences in the
multiple prior model.
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preference structure therefore does not rule out that strictly dominated strategies

are part of an equilibrium. We achieve this result because we artificially choose

ambiguity attitudes such that the players are pessimistic when evaluating NoCoop

and optimistic when evaluating Coop. Whether this is realistic is a question that is

surely debatable. Personally we do not believe that ambiguous beliefs in combina-

tion with extreme ambiguity attitude is a suitable approach to explain cooperation

in the prisoners dilemma. The example does however illustrate the potential of our

approach in modelling a large variety of phenomena in strategic interaction. By

adding assumptions we can filter out unrealistic equilibria. By restricting attention

to monotonic preferences we can for instance eliminate cooperation in the Prisoners

Dilemma.

4.7 Conclusion

This article introduces a new definition of perceived ambiguity in the multiple prior

model which implies location-invariance of perceived ambiguity. The definition gen-

eralizes and unifies the existing definitions of perceived ambiguity that we are aware

of. We illustrate what our approach implies for preferences and suggest comparative

notions for perceived ambiguity and ambiguity attitude. We also provide an axio-

matization of α-MEU preferences. We show that our approach can be used to model

players that perceive strategic ambiguity in normal-form games. Our equilibrium

existence proof generalizes many results from the literature.

The next step is to analyse whether and how our model can be used for eco-

nomic applications. What are for instance the implications for Bertrand/Cournot

Oligopoly interactions. Furthermore the models’ flexibility should be tested against

empirical results. An interesting extension would be to study how the model can be

applied to dynamic interaction.
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4.8 Appendix A: Proofs of Theorems in the Main

Text

Proofs of Section 4.4

Proof of Theorem 4.1. 1. =⇒ 2.: First note that u(xu(h, t)) = I1(h)− I2(h) for all

h ∈ F .

Consider the acts f and g and assume that f %1 g. This is equivalent to I1(f) ≥
I1(g). Since C1 + t = C2, u(xu(f, t)) = I1(f)− I2(f) and u(xu(g, t)) = I1(g)− I2(g)

this is equivalent to

I2(f) + u(xu(f, t)) ≥ I2(g) + u(xu(g, t)).

The constant linearity of the functionals implies that this is equivalent to

I2(f + xu(f, t)) ≥ I2(g + xu(g, t)),

which is equivalent to f + xu(f, t) %2 g + xu(g, t).

2. =⇒ 1.: Assume that C1 + t 6= C2. Then there exists an f ∈ C such that

I1(f)−I2(f) 6= u(xu(f, t)). Consider x%1

f ∈ X, i.e. f ∼1 x
%1

f which implies u(x%1

f ) =

I1(f). It holds that

I2(f) + u(xu(f, t)) 6= u(xx%1

f ) + u(xu(x
%1

f , t)).

Recall that u(xu(x
%1

f , t)) = 0 which together with the constant linearity of I2 implies

I2(f + xu(f, t)) 6= I2(x%1

f ).

This implies f + xu(f, t) �2 x
%1

f . Therefore 2. fails.

Proof of Corollary 4.1. 1. =⇒ 2.: Assume that C1 + t = C2. Consider the acts f

and g and assume that f %∗1 g. This is equivalent to∫
u(f)dP ≥

∫
u(g)dP ∀P ∈ C1.

Since C2 = {Q ∈ ∆(S)|Q = P + t, P ∈ C1} and due to the way xu(·, t) is defined

we have u(xu(h, t)) =
∫
u(h) d(P + t) −

∫
u(h) dP for all h ∈ F and for all
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P, P − t ∈ ∆(S) we have that for any P, P + t ∈ ∆(S)∫
u(f) + u(xu(f, t)) dP ≥

∫
u(g) + u(xu(g, t)) dP, ∀P ∈ C2.

The constant linearity of u implies than this is equivalent to f + xu(f, t) %∗2 g +

xu(g, t).

2. =⇒ 1.: Assume that C1 + t 6= C2. One of the following most hold: Either these

exists P ∈ (C1 + t)\C2 or there exists P ∈ C2\(C1 + t) or both. Assume that the

first holds (considering the second is nearly identical and omitted). The separating

hyperplane theorem for the separation of two disjoint convex sets implies that there

exists an f ∈ F such that
∫
u(f) dP > 0 > max

Q∈C2

∫
u(f) dQ. Intuition: The zero-

indifference curve {P ∈ ∆(S)|
∫
u(f)dP = 0} of f is this hyperplane. Consider

x ∈ X such that u(x) = 0. Then x %∗2 f . However
∫
u(f) dP > u(x) and since

P ∈ C1 + t we have that x �∗1 f + xu(f, t).

Proofs of Section 4.5

Proof of Lemma 4.1. 2. =⇒ 1.: Assume that 1. fails, i.e. that there exist f, g ∈ F
such that f %∗1 g and f+xu(f, t) �∗2 g+xu(g, t). The latter implies that there exists

a P ∈ C2 such that∫
u(f) + u(xu(f, t))dP <

∫
u(g) + u(xu(g, t))dP.

If C1 + t ⊇ C2 holds this implies P ∈ C1 + t which implies that f �∗1 g. Thus 2. fails.

1. =⇒ 2.: Assume that %1 reflects more ambiguity than %2, i.e. there exists

a t ∈ T such that f %∗1 g =⇒ f + xu(f, t) %∗2 g + xu(g, t). Ghirardato et al.

(2004) show in Corollary B.3 that u1 and u2 are positive affinely related if and only

if u1(l1) ≥ u1(l2) =⇒ u2(l1) ≥ u2(l2) for all l1, l2 ∈ L. Recall that u(xu(l, t)) = 0

for all l ∈ L. It holds that

u1(l1) ≥ u1(l2) =⇒ l1 %1 l2 =⇒ l1 %
∗
1 l2 =⇒ l1 + xu(l1, t) %

∗
2 l2 + xu(l2, t)

=⇒ u2(l1 + xu(l1, t)) ≥ u2(l2 + xu(l2, t)) =⇒ u2(l1) ≥ u2(l2).

Thus we have shown that the utility functions are positive affinely related. Assume
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that C1 + t + C2. This implies that there exists a P ∈ C2\(C1 + t). Therefore with a

similar construction as in Corollary 4.1 we get a contradiction to 1.

Proof Lemma 4.2. 1. =⇒ 2.: Assume that a1(f) < a2(f) for some f ∈ F . Theorem

4.1 implies that I1(f) < I2(f) + u(xu(f, t)). Consider l ∈ L such that f ∼1 l. The

above inequality implies that f + xu(f, t) �2 l. Thus 1. fails.

2. =⇒ 1.: Assume that for some f ∈ F and l ∈ L we have f %1 l and f +

xu(f, t) �2 l. Thus I1(f) ≥ u(l) and I2(f + xu(f, t)) < u(l). This implies that

I1(f) > I2(f + xu(f, t)) = I2(f) + u(xu(f, t)). Through the way xu(f, t) is defined

we conclude that a2(f) > a1(f). Thus 2. fails.

Proof of Lemma 4.3. Assume that 1. holds or equivalently for all f ∈ F\[x], x ∈ X
and α ∈ [0, 1]

I1(f) ≥ αu(x1(f)) + (1− α)u(x1(f)) =⇒ I2(f) ≥ αu(x2(f)) + (1− α)u(x2(f)).

Recall that u(x(f)) = min
P∈C

∫
u(f) dP and u(x(f)) = max

P∈C

∫
u(f) dP . This implies

that the above is equivalent to

I1(f) ≥ IC1,α,u =⇒ I2(f) ≥ IC2,α,u.

This is equivalent to

a1([f ]) ≤ α =⇒ a2([f ]) ≤ α.

Since this holds for all f ∈ F this is equivalent to a1([f ]) ≥ a2([f ]).

Proof of Theorem 4.2. Assume that 1. holds and consider some f ∈ F\[x]. This is

equivalent to

I(f) = αu(x(f)) + (1− α)u(x(f)).

This is equivalent to

I(f) = αmin
P∈C

∫
u(f) dP + (1− α) max

P∈C

∫
u(f) dP.

This is equivalent to a([f ]) = α.
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Proofs of Section 4.6

Before we can prove Theorem 4.3 we need a preliminary result, which is interesting

in its own respect.

An Isomorphism from Σ−i to [Ci]

Consider a prior set Ci ⊆ ∆(S−i) and assume that supp(Ci) 6= ∅. We first show that

there exists an isomorphism from Σ−i to [Ci], where Σ−i is the set of mixed strategy

combinations of player i’s opponents.

The first step is to show that for every pure-strategy combination s∗−i ∈ S−i there

exists a unique prior set Cs
∗
−i
i ∈ [Ci] such that supp(Ci) = {s∗−i}. The intuition is

that Cs
∗
−i
i is the prior set in [Ci] “in the s∗−i” corner of the simplex. See Figure 4.15

for illustration.

For s−i ∈ S−i consider the set Cs−i[Ci] = {C ∈ [Ci]|s−i /∈ supp(C)}, i.e. the prior sets

in [Ci] that do not have s−i in their support. Consider the set
⋂

s−i∈S−i\{s∗−i}
Cs−i[Ci] . For

an element of this set it holds that the support equals s∗−i. We need to show that

this set contains exactly one element.

Uniqueness: Assume that Ci1 and Ci2 are elements of
⋂

s−i∈S−i\{s∗−i}
Cs−i[Ci] . Then

supp(Ci1) = supp(Ci1) = {s∗−i}. Since Ci1 and Ci2 are elements of [Ci] there exists a

t ∈ T such that Ci2 + t = Ci1.

Assume that t(s−i) < 0 for s−i ∈ S−i\{s∗−i}. Consider some P ∈ Ci2 such that

P (s−i) = 0. This P exists since Ci2 ∈ [Cs−i[Ci] ] and the way the support of a prior set of

defined. Thus it holds that P + t ∈ Ci1 and P + t /∈ ∆(S−i) which is a contradiction

to Ci1 ⊆ ∆(S−i). Since t ∈ T is holds that
∑

s−i∈S−i
t(s−i) = 0 and we can conclude

that t ≡ 0 and therefore Ci1 = Ci2.

Existence: Consider an arbitrary C ∈ [Ci]. Define

t(s−i) =


−min

P∈C
P (s−i) , s−i 6= s∗−i∑

s−i∈S−i\{s∗i }
min
P∈C

P (s′−i) , s−i = s∗−i

The minima are well-defined as prior sets are compact. Thus t is well-defined and
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an element of T . Consider the prior set C ′ = C+ t ∈ [Ci]. It holds that min
P∈C′

P (s−i) =

min
P∈C

P (s−i) + t(s−i) = 0 for all s−i ∈ S−i\{s∗−i}, implying that supp(C ′) ⊆ {s∗−i}. As

supp(C ′) 6= ∅ we can conclude that supp(C ′) = {s∗−i}. Therefore C ′ ∈ Cs
∗
−i

[Ci] .

This shows that
⋂

s−i∈S−i\{s∗−i}
Cs−i[Ci] contains exactly one element. We call this prior

set Cs
∗
−i

[Ci] .

For [Ci] define for any s−i ∈ S−i

t[Ci] = min
P∈C

s−i
[Ci]

P (s−i) ∈ (0, 1].

The number t[Ci] does not depend on s−i and can be interpreted as a measure for

the space that the prior sets in [Ci] have to move around in ∆(S−i).

Next note that for s∗−i ∈ S−i,

[Ci] = {C ⊆ ∆(S−i)|C = Cs
∗
−i

[Ci] + t, t(s−i) ≥ 0 ∀ s−i 6= s∗−i,
∑

s−i∈S−i\{s∗−i}

≤ t[Ci], t ∈ T}.

For σ−i ∈ Σ−i we define Cσ−i[Ci] = Cs
∗
−i

[Ci] + t
s∗−i,σ−i
[Ci] with t

s∗−i,σ−i
[Ci] = (σ−i − 1s∗−i)t[Ci].

The prior set Cσ−i[Ci] is the “σ−i mix” of the sets Cs−i[Ci] , s−i ∈ S−i. Thus we have

found an isomorphism from Σ−i to [Ci], where

σ−i 7→ Cσ−i[Ci] .

Figure 4.15 illustrates the work done for the case S−i = {s−i1, s−i2, s−i3}. The

isomorphism maps the strategy s−i1 to the set Cs−i1[Ci] . It maps the mixed strategy

1
2
s−i1 + 1

2
s−i3 to the set C

1
2
s−i1+ 1

2
s−i3

[Ci] .

Note that due to this construction we have that

• supp(σ−i) = supp(Cσ−i[Ci] ) for all σ−i ∈ Σ−i.

• For every prior set Ci we have

[Ci] = {Cσ−i[Ci] |σ−i ∈ Σ−i}.

• Let ai : Si → [0, 1] be an ambiguity attitude function. Then the evaluation
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Figure 4.15: The sets Cσ−i[Ci] .

functional V is linear in σ−i, i.e. for si ∈ Si

V (si|Cσ−i[Ci] , ai) =
∑

s−i∈S−i

σ−i(s−i)V (si|Cs−i[Ci] , ai).

The Distorted Game Γdist

For a normal-form game Γ and any exogenous perceived ambiguities and ambiguity

attitudes we can define what we call the distorted game of Γ.

Definition 4.8. Let Γ = 〈N ;Si, ui : 1 ≤ i ≤ N〉 be a normal-form game. For

exogenous perceived ambiguities ([Ci])Ni=1 and ambiguity attitudes (ai)
N
i=1 define the

distorted game Γdist = 〈N ;Si, u
dist
i : 1 ≤ i ≤ N〉 by

udisti (si, s−i) = ai(si) min
P∈C

s−i
[Ci]

∫
ui(si) dP + (1− ai(si)) max

P∈C
s−i
[Ci]

∫
ui(si) dP.

The game Γdist is well-defined. It is a normal-form game with exactly the same

players and strategy sets as Γ. The payoff functions will differ unless the players do

not perceive any ambiguity, i.e. the [Ci]’s are not the singleton sets. The game Γdist

is therefore guaranteed to have a mixed Nash Equilibrium. The following Lemma is
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the crucial step for proving Theorem 4.3. It shows that the Nash Equilibria of Γdist

induces an Equilibria under Ambiguity of Γ.

Lemma 4.4. Let Γ = 〈N ;Si, ui : 1 ≤ i ≤ N〉 be a normal-form game and ([Ci])Ni=1

and (ai)
N
i=1 exogenous perceived ambiguities and ambiguity attitudes. Then for every

strategy combination (σi)
N
i=1 it holds that

(σi)
N
i=1 is a Nash Equilibrium of Γdist

⇓
(Cσ−i[Ci] , ai)

N
i=1 is an Equilibrium under Ambiguity of Γ.

Proof. Assume that σ = (σi)
N
i=1 is a Nash Equilibrium of Γdist. Then

∅ 6= supp(σ−i) ⊆ ×j 6=i arg max
sj∈Sj

udistj (sj, σ−j).

Since supp(σ−i) = supp(Cσ−i[Ci] ) and by the definition of udistj this is equivalent to

∅ 6= supp(Cσ−i[Ci] ) ⊆ ×j 6=i arg max
sj∈Sj

V (sj|Cσ−i[Cj ] , aj).

This implies that (Cσ−ii , ai)
N
i=1 is an Equilibrium under Ambiguity.

Note that the reverse direction does not hold in Lemma 4.4 since in a Nash

Equilibrium beliefs of two players about a third player must be identical. Thus Γ

may have an Equilibrium under Ambiguity that does not induce a Nash Equilibrium

in Γdist.

Proof of Theorem 4.3. The proof follows directly from Lemma 4.4. The game Γdist

always has a Nash Equilibrium which induces an Equilibrium under Ambiguity in

Γ.

The following two games are the distorted games from the Rock-Paper-Scissors

example from the main text, where player 1 perceives ambiguity [C1] = {C ⊆
∆(S2)|C = Conv(P,Q), P (R2) = Q(R2), P (P2) − Q(P2) = δ ∈ (0, 1)} and is a

complete pessimist/optimist. Player 2 does not perceive any ambiguity, i.e. she is

an SEU DM.
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Player 2

R2 P2 S2

Player 1
R1 (−δ, 0) (−1, 1) (1− 2δ,−1)

P1 (1− 2δ,−1) (−δ, 0) (−1, 1)

S1 (−1 + δ, 1) (1− δ,−1) (0, 0)

Figure 4.16: The pessimism distorted Rock-Paper-Scissors game

Player 2

R2 P2 S2

Player 1
R1 (δ, 0) (−1 + 2δ, 1) (1,−1)

P1 (1− δ,−1) (0, 0) (−1 + δ, 1)

S1 (−1 + 2δ, 1) (1,−1) (δ, 0)

Figure 4.17: The optimism distorted Rock-Paper-Scissors game

4.9 Appendix B: Implications of our Definition of

Perceived Ambiguity on Important Preference

Classes

We show in this appendix that our definition of perceived ambiguity generalizes

several of the existing definitions of perceived ambiguity for specific preference sub-

classes. We thus unify these definitions. The existing definitions of perceived ambi-

guity in the literature are used mainly to study the influence that ambiguous beliefs

have on behaviour in games. This is needed if one wants to exogenously fix perceived

ambiguity or ambiguity attitude in order to perform equilibrium existence results or

perform comparative static exercises. Throughout this section the term δC denotes

the function introduced in Definition 4.1.25

4.9.1 Marinacci (2000): Convex Capacities

Recall that a capacity is a normalized and monotone set-function on P(S). The

core of a capacity ν is defined by

Core(ν) = {P ∈ ∆(S)|P (E) ≥ ν(E) for all E ∈ P(S)}.

25 For simplicity we assume in this Appendix that payouts are in utilities.
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A capacity ν is convex if for all E1, E2 ∈ P(S)

ν(E1) + ν(E2) ≤ ν(E1 ∪ E2) + ν(E1) ∩ E2.

Convex capacities can be represented by the core of the capacity (which is also the

GMM set) and ambiguity attitude function a ≡ 1, i.e. pure pessimism. Marinacci

(2000) introduces a measure of ambiguity levels for convex capacities. For a convex

capacity ν and an event A ⊆ S the number

1− ν(A)− ν(Ac) (4.6)

measures the perceived ambiguity of A (and Ac). Marinacci (2000) introduces the

function

Ψν :P(S)→ [0, 1],

Ψν(A) = 1− ν(A)− ν(Ac).

He then defines Λ(S,Ψν) to be the set of all convex capacities over S which have

the same Ψ-function, i.e. Λ(S,Ψν) contains all the convex capacities for which the

perceived ambiguity via (4.1) is the same for all events. The following Lemma

shows that two convex capacities that perceive the same ambiguity according to our

definition have the same Ψ. Or put differently: if the cores of two convex capacities

are translations of each other then this implies that the capacities have the same

Ψ-function.

Lemma 4.5. Let % and %′ be representable by convex capacities ν and ν ′, respect-

ively. Then

δCore(ν) = δCore(ν′) =⇒ Ψν = Ψν′ .

The reverse does not hold. This shows that our definition of perceived ambiguity

restricted to convex capacities is finer than the one from Marinacci (2000), illustrated

in Example 4.1. The reason for this is that the Ψ-function only fixes perceived

ambiguity for binary acts (bets). It stays silent however about more complex acts

which our definition does address.

Example 4.1. Consider the following two convex capacities over the state space
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S = {A,B,C}.

ν(E) =



0, for E = ∅
1
6
, for |E| = 1

1
3
, for |E| = 2

1, for E = S

ν ′(E) =



0, for E = ∅
1
6
, for E = A,B

1
8
, for E = C

1
3
, for E = A ∪ C,B ∪ C

3
8
, for E = A ∪B

1, for E = S

It is easily checked that Ψν = Ψν′ . However the cores depicted in Figure 4.18

are not translations of each other. It therefore follows from Observation 4.2 that

δCore(ν) 6= δCore(ν′).

Figure 4.18: The cores of ν and ν ′.

4.9.2 Eichberger and Kelsey (2014): JP-capacities

Eichberger and Kelsey (2014) assume that players beliefs can be represented by
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JP-capacities, introduced by Jaffray and Philippe (1997). These capacities take the

form ν = αµ+ (1− α)µ, where µ is a convex capacity, µ is its dual26 and α ∈ [0, 1].

The core of µ represents perceived ambiguity and α represents ambiguity attitude.

It is therefore a special case of α-MEU preferences.

Eichberger and Kelsey (2014) define the maximal and minimal degree of perceived

ambiguity for a convex capacity µ by

λ(µ) = max
∅6=A 6=S

{1− µ(A)− µ(Ac)}

γ(µ) = min
∅6=A 6=S

{1− µ(A)− µ(Ac)}.

Again our definition is a generalization.

Lemma 4.6. Let % and %′ be representable by the JP-capacities ν = αµ+ (1−α)µ̄

and ν ′ = α′µ′ + (1− α′)µ̄′, respectively. Then

δCore(µ) = δCore(µ′) =⇒ λ(µ) = λ(µ′) and γ(µ) = γ(µ′).

4.9.3 Chateauneuf et al. (2007): Neo-additive capacities

Chateauneuf et al. (2007) introduce and axiomatize neo-additive capacities. These

capacities allow both optimistic and pessimistic attitudes towards ambiguity. A

neo-additive capacity ν is characterized by an additive distribution π over S and

two parameters δ, α ∈ [0, 1] such that ν = (1− δ)π + δα.

The authors interpret δ as the degree of perceived ambiguity27 and α as the

degree of optimism.28 They show that neo-additive capacities are a subclass of JP-

capacities. Their definition of perceived ambiguity is equivalent to ours restricted

to neo-additive capacities.

Lemma 4.7. Let % and %′ be representable by the neo-additive capacities ν =

(1− δ)π + δα and ν ′ = (1− δ′)π′ + δ′α′, respectively. Then

δCore((1−δ)π) = δCore((1−δ)π) ⇐⇒ δ = δ′.

26 Recall that the dual capacity is defined by µ̄(E) = 1− µ(Ec) for all E ⊆ S.
27 This notation is where our δ-notation was inspired from.
28 A special case are the so called simple capacities which are neo-additive with α = 1, i.e. pure

pessimism. Eichberger and Kelsey (2000) represent beliefs of players by simple capacities and
also interpret δ as the degree of perceived ambiguity.
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4.9.4 Dominiak and Eichberger (2016): Belief Functions

A belief function Φγ takes the form

Φγ(E) =
∑
A⊆E

γ(A) ∀E ⊆ S,

where γ is a probability distribution over P(S), also called the Mbius transformation

of the capacity Φγ. Belief functions are a special case of convex capacities.

For a belief function Φγ, Dominiak and Eichberger (2016) suggest as a measure

for perceived ambiguity the function δ = γ|{E||E|≥2}. It is the part of the Mbius

transformation restricted to events with at least two elements. We show that two

belief functions have the same δ if and only if they perceive the same ambiguity

according to our definition.

Lemma 4.8. Let % and %′ be representable by the belief functions Φγ and Φγ′.

Then

δCore(Φγ) = δCore(Φγ′ ) ⇐⇒ δγ = δγ′ .

Proofs of Appendix B

Proof of Lemma 4.5. For a binary act f = aEb we have that

δ(Core(ν), f) = 1− ν(E)− ν(Ec),

which is all we need for the proof.

Proof of Lemma 4.6. Follows directly from Lemma 4.5

Proof of Lemma 4.7. Assume that the cores of the capacities (1− δ)π and (1− δ′)π
are translations. Due to Lemma 4.5 this is equivalent to 1 − (1 − δ)π(Ec) − (1 −
δ)π(Ec) = 1− (1− δ′)π(Ec)− (1− δ′)π(Ec). This is equivalent to δ = δ′.

Proof of Lemma 4.8. ⇒ follows from Lemma 4.5 since belief functions are convex

capacities. ⇐ is obvious.
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5 Optimism and Pessimism in Games

with α-MEU Preferences

Abstract

Using the theory presented in the previous article, we extend the theory of Eich-

berger and Kelsey (2014) to α-MEU preferences. The authors study a class of games

which are characterized by a lattice-structure over the pure-strategy space. We rep-

licate their equilibrium existence result as well as the equilibrium uniqueness result

for sufficient ambiguity. We show that their comparative statics result in ambiguity

attitude breaks down: more optimism does not lead to higher equilibria when play-

ers have α-MEU preferences. We provide a necessary and sufficient condition on the

perceived ambiguities of the players for this comparative statics result to hold.

Keywords: Ambiguous Games, α-MEU Preferences, Perceived Ambiguity, Am-

biguity Attitude, Comparative Statics.

5.1 Motivation

The theory and results of the previous article allow a wide range of analysis and

applications to games. We focus here on a special case of the framework introduced

there. We consider the class of normal-form games with positive externalities and

increasing differences, introduces and extensively analysed in Eichberger and Kelsey

(2014). In these games the pure strategy space S has a lattice structure and Si is

ordered. This structure allows comparative statics exercises in perceived ambiguity

and ambiguity attitude.

As Eichberger and Kelsey (2014), we assume that players perceive ambiguity

about the strategic behaviour of the other players. Whereas Eichberger and Kelsey

139



5 Optimism and Pessimism in Games with α-MEU Preferences

(2014) represent beliefs by JP-capacities, we assume the larger class of α-MEU

beliefs. As in the previous article we adapt the support notion and equilibrium

concept of Eichberger and Kelsey (2014). Due to the larger class of beliefs our

model is a real generalization of their model.

The goal of this article is to analyse and highlight the similarities and differences

in modelling capabilities between the two approaches. We analyse to what extent

the results from Eichberger and Kelsey (2014) can be generalized. We show that all

but one result can be generalized. The result which cannot is on comparative statics

in ambiguity attitude: when players have α-MEU preferences, more optimism does

not necessarily lead to higher equilibria. We introduce a necessary and sufficient

condition on the prior sets for the comparative statics result to hold. For this

we introduce a generalized concept of first order stochastic dominance for lattice-

structures that we call lattice stochastic dominance.

Outline

In section 5.2 we introduce the games studied as well as α-MEU preferences and

lattice stochastic dominance. In section 5.3 we introduce in detail the model and

results from Eichberger and Kelsey (2014). Section 5.4 contains our model and the

results. Section 5.5 concludes. All proofs are in the Appendix.

5.2 Preliminaries

5.2.1 The Games studied: Positive Externalities and Increasing

Differences

We study finite normal-form games Γ = 〈N ;Si, ui : 1 ≤ i ≤ N〉. Such a game

consists of a finite set of players P1, . . . , PN , finite pure strategy set Si and payoff

function ui for Pi, i ∈ {1, . . . , N}. The set of pure strategy combinations is denoted

by S and S−i is the set of pure strategy combinations of Pi’s opponents. The payoff

function of Pi, ui, is a mapping from S to R. The set ∆(S−i) denotes the set

of probability distributions over S−i. For s−i ∈ S−i, Ps−i denotes the degenerate

lottery that results in s−i with probability 1. Thus ∆(S−i) is the convex hull of the

degenerate lotteries Ps−i .

We assume that the sets Si are ordered. This induces a partial ordering over S:
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For s = (s1, . . . , sN) and s′ = (s′1, . . . , s
′
N) we define s ≥ s′ ⇐⇒ si ≥ s′i for all

i ∈ {1, . . . , N}. This implies a partial ordering over S−i for i ∈ {1, . . . , N}. This

implies that the sets S and S−i are bounded lattices: for two arbitrary elements of

the set there exists a smallest element of the set which is weakly larger than both

as well as a largest element which is weakly smaller than both.1 For a two-player

game the lattice structure of S−i reduces to a complete order.

Given this lattice structure we assume that payouts exhibit positive externalities

and increasing differences. A normal-form game Γ = 〈N ;Si, ui : 1 ≤ i ≤ N〉 exhibits

positive externalities if for all si ∈ Si it holds that ui(si, s−i) is increasing in s−i for

all i ∈ {1, . . . , N}. A normal-form game exhibits increasing differences if for all

si, s
′
i ∈ Si with si > s′i it holds that u(si, s−i) − u(s′i, s−i) is increasing in s−i for

i ∈ {1, . . . , N}.
The interpretation of these payout assumptions is that, due to positive extern-

alities, a player is better off when an opponent plays a higher strategy. Increasing

differences creates an incentive to choose a higher strategy when an opponent chooses

a higher strategy. Eichberger and Kelsey (2014) highlight that many economic situ-

ations are of this kind, for instance Bertrand Oligopoly with linear demand and

constant marginal cost.

The term Γpeid(N,Si; 1 ≥ i ≥ N) denotes the set of all normal-form games with

players 1, . . . , N , pure strategy sets S1, . . . , SN and payouts that exhibit positive

externalities and increasing differences.

We denote by s−i ∈ S−i the strategy combination in S−i in which the opponents of

Pi play their highest strategy. We denote by s−i ∈ S−i the strategy combination in

S−i in which the opponents of Pi play their lowest strategy. Two strategies si, s
′
i ∈

Si are positive affinely related if there exist a > 0, b ∈ R such that ui(si, s−i) =

aui(s
′
i, s−i) + b for all s−i ∈ S−i. Note that si > s′i implies a ≥ 1.

5.2.2 α-MEU Preferences

We assume that players perceive ambiguity about their opponents strategic choice.

For Pi this ambiguity is represented by a non-empty, convex compact set of priors

Ci ⊆ ∆(S−i). In addition we assume that the players have a constant ambiguity

attitude αi ∈ [0, 1]. Thus the players have α-MEU preferences as introduced in

1 For instance for s = (s1, . . . , sN ), s′ = (s′1, . . . , s
′
N ) ∈ S the smallest element that is larger

than s and s′ is (max{s1, s′1}, . . . ,max{sN , s′N}).
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Ghirardato and Marinacci (2002).

For Pi with prior set Ci ⊆ ∆(S−i) and ambiguity attitude αi ∈ [0, 1] the evaluation

of a strategy si ∈ Si is therefore

Vi(si|Ci, αi) = αi min
P∈Ci

∫
u(si, s−i) dP + (1− αi) max

P∈Ci

∫
u(si, s−i) dP, (5.1)

where
∫
ui(si, s−i) dP denotes the expected utility of the strategy combination

(si, s−i) at probability distribution P ∈ ∆(S−i).

This class of α-MEU preferences is larger than the class of preferences considered

in Eichberger and Kelsey (2014) since every JP capacity2 has an α-MEU represent-

ation but the reverse is not the case.3

5.2.3 Extreme Points and Lattice Stochastic Domination

Throughout the paper the best and worst case scenarios of a strategy given a prior

set are crucial. For a prior set Ci ⊆ ∆(S−i) and strategy si ∈ Si we define

Msi(Ci) = arg max
P∈Ci

∫
ui(si, s−i) dP, msi(Ci) = arg min

P∈Ci

∫
ui(si, s−i) dP.

Msi(Ci) and msi(Ci) are the sets of probability distributions in Ci at which the expec-

ted utility of the strategy si is maximized and minimized, respectively. These sets are

well-defined and non-empty since prior sets are compact. Note that these sets may

contain more than one element. We abuse notation and write
∫
ui(si, s−i) dMsi(Ci)

and
∫
ui(si, s−i) dmsi(Ci) for the highest and lowest expected utility given strategy

si and prior set Ci. Note that
∫
ui(si, s−i) dMsi(Ci) is the expected utility of the

strategy si for a player with perceived ambiguity Ci who is a complete optimist, i.e.

for αi = 0. The term
∫
ui(si, s−i) dmf (Ci) is the expected utility of a complete pess-

imist, i.e. for αi = 1. As αi increases from 0 to 1, the weight on
∫
ui(si, s−i) dMsi(Ci)

is shifted to
∫
ui(si, s−i) dmsi(Ci). Thus (5.1) can be rewritten as

V (si|Ci, αi) = αi

∫
ui(si, s−i) dMsi(Ci) + (1− αi)

∫
ui(si, s−i) dmsi(Ci).

In the following we extend the concept of first-order stochastic dominance to

2 See section 5.3 where we introduce their model.
3 Take as prior set the core of the convex part of the JP-capacity.
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lattice structures. For two probability distributions P,Q ∈ ∆(S−i) we say that P

lattice-stochastically dominates Q if for all s′−i ∈ S−i it holds that

P ({s−i|s−i ≥ s′−i}) ≥ Q({s−i|s−i ≥ s′−i}).

The probability distribution P lattice stochastically dominates Q if for all s′−i it

assigns a weakly higher probability to the set of strategy combinations that are at

least as high as s′−i.

For two players this reduces to the standard first-order stochastic dominance since

in this case S−i is ordered. An important feature of this definition in combination

with the games studied in this paper is the following: P lattice stochastically dom-

inates Q if and only if
∫
f dP ≥

∫
f dQ for all acts f : S−i → R with positive

externalities. The concept of lattice stochastic dominance is crucial for our compar-

ative statics result on ambiguity attitude.

5.3 Eichberger and Kelsey (2014)

The majority of our results are inspired by Eichberger and Kelsey (2014). In this

section we introduce their model and results. In the next section we analyze which

of their results hold in our more general framework.

5.3.1 JP - Capacities and a Measure for Perceived Ambiguity

Eichberger and Kelsey (2014) represent beliefs by JP-capacities, introduced by Jaf-

fray and Philippe (1997). Recall that a capacity is a normalized and monotonic map-

ping from the powerset of a state space P(S) to [0, 1]. A capacity µ : P(S)→ [0, 1]

is convex if ν(A) + ν(B) ≤ ν(A ∪B) + ν(A ∩B) for all A,B ⊆ S.

Definition 5.1 (Jaffray and Philippe (1997)). A capacity ν : P(S) → [0, 1] is a

JP-capacity if there exists a convex capacity µ and an α ∈ [0, 1] such that ν =

αµ + (1 − α)µ̄, where µ̄ denotes the dual capacity of µ, i.e. µ̄(A) = 1 − µ(Ac) for

all A ⊆ S.

JP-capacities have some nice characteristics, most importantly they cleanly sep-

arate perceived ambiguity from ambiguity attitude. The perceived ambiguity of a

JP-capacity ν is represented by the convex capacity µ and its core. The ambigu-

ity attitude is represented by the parameter α. The case α = 1 represents pure
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pessimism and corresponds to Maxmin Expected Utility (MEU) preferences. The

case α = 0 represents pure optimism and corresponds to Maxmax Expected Utility

(MMEU) preferences. For α ∈ (0, 1) the player’s preferences exhibit both pessimistic

and optimistic features.

Thus in representing beliefs by JP capacities, the authors assume a class of pref-

erences that allow a clear separation of perceived ambiguity and ambiguity attitude.

This makes comparative statics exercises in perceived ambiguity and ambiguity at-

titude possible.

To perform comparative statics the authors introduce upper and lower bounds

for the perceived ambiguity of a JP-capacity. They adapt a notion from Dow and

Werlang (1994) for convex capacities to define maximal and minimal degrees of

perceived ambiguity.

Definition 5.2 (Eichberger and Kelsey (2014)). Let µ : P(S) → [0, 1] be a convex

capacity. The maximal degree of ambiguity of µ is given by λ(µ) = max{µ̄(A) −
µ(A)|∅ ( A ( S}. The minimal degree of ambiguity is given by γ(µ) = min{µ̄(A)−
µ(A)|∅ ( A ( S}.

5.3.2 Support and Equilibrium in Beliefs under Ambiguity

Recall the support notion for prior sets by Ryan (2002).

Definition 5.3 (Support notion: Ryan (2002)). Let C be a prior set on ∆(S). The

support of C is defined by

supp(C) =
⋂
P∈C

supp(P ).

where for a probability distribution P ∈ ∆(S−i) the support is defined as is usual by

supp(P ) = {s−i ∈ S−i|P (s−i) > 0}.

The support of a prior set consists of the states that receive positive weight by

all elements of the prior set. Eichberger and Kelsey (2014) define the support of a

JP-capacity in this spirit with the prior set being the core of the convex part of the
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JP-capacity. The support of a JP-capacity ν = αµ+(1−α)µ̄ : P(S)→ [0, 1] is thus

supp(ν) =
⋂

P∈Core(µ)

supp(P ).

In equilibrium the players maximize Choquet Expected Utility (CEU) given their

beliefs which are represented by JP-capacities.4 Beliefs are reasonable in the sense

that the players believe that their opponents play best responses.

Definition 5.4 (Eichberger and Kelsey (2014)). Let Γ = 〈N ;Si, ui : 1 ≤ i ≤ N〉
be a normal-form game and consider JP-capacities ν̂i : P(S−i) → [0, 1] for i ∈
{1, . . . , N}. Then ν̂ = 〈ν̂1, . . . , ν̂N〉 is an equilibrium in beliefs under ambiguity

(EUA) if for all i ∈ {1, . . . , N}

∅ 6= supp(ν̂i) ⊆ ×j 6=i arg max
sj∈Sj

∫
uj(sj, s−j) dν̂j,

with
∫
uj(sj, s−j) dν̂j being the Choquet integral of the strategy sj given the capacity

ν̂j.

If supp(ν̂i) contains just one element ŝi for all i ∈ {1, . . . , N} then ŝ = (ŝ1, . . . , ŝN)

is called singleton equilibrium in beliefs under ambiguity. Eichberger and Kelsey

(2014) provide the following equilibrium existence result for games with positive

externalities and increasing differences.

Theorem 5.1. Let Γ = 〈N ;Si, ui : 1 ≤ i ≤ N〉 be a game with positive ex-

ternalities and increasing differences. Then for any exogenous ambiguity-attitudes

α1, . . . , αN , maximal degrees of ambiguity λ1, . . . , λN and minimal degrees am ambi-

guity γ1, . . . , γN , the game Γ has a singleton equilibrium in beliefs under ambiguity

in JP-capacities ν = 〈ν1, . . . , νN〉, where νi = αiµi + (1 − αi)µ̄i such that the con-

vex capacity µi has maximal degree of ambiguity at most λi and minimal degree of

ambiguity at least γi for i ∈ {1, . . . , n}.

5.3.3 Comparative Statics

Eichberger and Kelsey (2014) have two comparative statics results. Firstly, after

strenghtening the payout assumptions to positive aggregate externalities, they show

4 See Choquet (1954) and Schmeidler (1989).
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that for any exogenous upper and lower bounds for maximal and minimal degrees of

ambiguity the highest and lowest equilibrium of the game is increasing in optimism:

more optimism leads to higher strategies in equilibrium. We show in the next section

that this result breaks down when preferences are of the α-MEU type.

In their second comparative statics result, after strenthening the payout assump-

tions to having a unique maximizer, they show that for sufficient ambiguity as well

as extreme ambiguity attitude, the EUA will be unique.

They thus show that perceived ambiguity and ambiguity attitude have distinct

effects on the set of equilibria: whereas more optimism leads to higher equilibria,

more perceived ambiguity eventually results in the uniqueness of the equilibrium.

Comparative Statics in Ambiguity Attitude

For their first comparative statics result the authors need the additional assumption

that the game has positive aggregate externalities.5

Definition 5.5 (Eichberger and Kelsey (2014)). A game Γ = 〈N ;Si, ui : 1 ≤ i ≤ N〉
has positive aggregate externalities if ui(si, s−i) = ui(si, fi(si)), where ui is increasing

in fi and fi : S−i → R is increasing in all arguments for all i ∈ {1, . . . , N}.

Positive aggregate externalities implies that S−i does not just have a lattice struc-

ture but has a complete ordering.

Theorem 5.2 (Eichberger and Kelsey (2014)). Let Γ = 〈N ;Si, ui : 1 ≤ i ≤ N〉 be

a game with positive aggregate externalities and increasing differences. Assume that

beliefs are represented by JP-capacities and let α = (α1, . . . , αN) denote the vector of

ambiguity-attitudes. Let s(α) (s(α)) denote the lowest (highest) equilibrium strategy

profile when the minimal (maximal) degree of ambiguity is γ (λ). Then s(α) and

s(α) are decreasing functions of αi for all i ∈ {1, . . . , N}.

Comparative Statics in Perceived Ambiguity

Again, the authors need an additional assumption.

Assumption 1. For i ∈ {1, . . . , N}, let ui(si, s̄−i) and ui(si, s−i) have a unique

maximizer, i.e. | arg max
si∈Si

ui(si, s̄−i)| = 1 and | arg max
si∈Si

ui(si, s−i)| = 1.

5 We highlight in the next section that indeed this assumption is needed for their result, i.e. it
breaks down if we only assume positive externalities without “aggregate”.

146



5.4 Our Multiple Prior Approach

This assumpion enables them to prove the following Proposition.

Proposition 5.1 (Eichberger and Kelsey (2014)). Let Γ = 〈N ;Si, ui : 1 ≤ i ≤
N〉 be a game with positive externalities and increasing differences that satisfies

Assumption 1. There exist α (α) and γ such that if the minimal degree of ambiguity

is γ(µi) ≥ γ and αi ≥ α (αi ≤ α) for i ∈ {1, . . . , N} then there is a unique singleton

EUA with an equilibrium strategy profile that is smaller (larger) than the smallest

(largest) equilibrium profile without ambiguity.

5.4 Our Multiple Prior Approach

In this section we analyse whether the results from Eichberger and Kelsey (2014)

can be replicated for α-MEU preferences. We show that equilibrium existence and

the second comparative statics result still hold in our more general framework. We

show that the first comparative statics result breaks down: there are games with

positive externalities and increasing differences in which the highest equilibrium is

not increasing in optimism when players have α-MEU preferences.6 We present

a neccessary and sufficient condition on the prior sets which guarantee that the

comparative statics result holds. Furthermore we show that if the payoffs of the

game are positive affinely related the comparative statics result always holds.

5.4.1 Equilibrium Existence

We use the support and equilibrium notion introduced in the previous article. It

is the natural extension of the approach in Eichberger and Kelsey (2014) to the

multiple prior model and thus α-MEU.

We restate our equilibrium notion of the previous chapter. In equilibrium the

support of the prior set is non-empty and only contains the opponents’ best responses

given their beliefs. Note that the following definition and the subsequent theorem do

not assume a constant ambiguity attitude but the more general ambiguity attitude

functions ai : S−i → [0, 1].

6 The assumption of positive aggregate externalities does not change this result.
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Definition 5.6 (Equilibrium under Ambiguity). Let Γ = 〈N ;Si, ui : 1 ≤ i ≤ N〉 be

a normal-form game. The tuple (Ci, ai)Ni=1 is an Equilibrium under Ambiguity if for

all 1 ≤ i ≤ N

∅ 6= supp(Ci) ⊆ ×j 6=iRj(Cj, aj),

where Rj(Cj, aj) = arg max
sj∈Sj

[V (sj|Cj, aj)] is the best response correspondence.

If supp(Ci) contains just a single element ŝi ∈ Si for all i ∈ {1, . . . , N} we refer

to the equilibrium as a singleton equilibrium and ŝ = (ŝi, . . . , ŝN) as its strategy

profile.

In the previous article we prove equilibrium existence for normal-form games for

any exogenous perceived ambiguity and ambiguity attitude. In this article we con-

sider a special case of normal-form games, thus equilibrium existence follows directly

from that equilibrium existence result. The following theorem is more specific as

it guarantees the existence of a singleton equilibrium for any exogenous perceived

ambiguity and ambiguity attitude. This is achieved thanks to the lattice structure

of the strategy space. Recall that for a prior set Ci ⊆ ∆(S−i), [Ci] is the set of

translations of Ci within ∆(S−i): it contains the prior sets that represent the same

perceived ambiguity as Ci.

Theorem 5.3 (Equilibrium Existence). Let Γ = 〈N ;Si, ui : 1 ≤ i ≤ N〉 be a

normal-form game with positive externalities and increasing differences. Then for

any exogenously given ([C1], . . . , [CN ]) such that supp(Ci) 6= ∅ for all i ∈ {1, . . . , N}
and ambiguity-attitudes a1, . . . , aN there exist C∗1 , . . . , C∗N with C∗i ∈ [Ci] for all i ∈
{1, . . . , N} such that (C∗i , ai)Ni=1 is a singleton Equilibrium under Ambiguity.

By restricting preferences to constant ambiguity attitude functions we achieve

existence of a singleton EUA for α-MEU preferences.

5.4.2 Comparative Statics in Ambiguity Attitude

This section contains the arguably most interesting and also probably at first counter-

intuitive results. We show that more optimism can lead to lower equilibria in games

with positive externalities and increasing differences. This insight highlights the

difference in modelling capabilities of the approach in Eichberger and Kelsey (2014)

and our own.
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Player 2

s21 s22 s23

Player 1
s11 (8, 8) (0, 7) (−4, 0)

s12 (7, 0) (1, 1) (−1, 0)

s13 (0,−4) (0,−3) (0, 0)

Table 5.1: Highest Equilibrium not increasing in Optimism.

Example 5.1. Consider the game in Table 5.1. It is a symmetric game with positive

externalities and increasing differences.7

Let Q = (17
24
, 0, 7

24
) and Q′ = ( 9

16
, 7

16
, 0) be two probability distributions in ∆(S−i)

and define C = Conv(Q,Q′), the convex hull of Q and Q′. Then supp(C) = {s−i1}.
Straightworward calculations result in the following for i ∈ {1, 2}:

V (si1| C, 1) = min
P∈C

∫
u(si, s−i)dP =

9

2

V (si1| C, 0) = max
P∈C

∫
u(si, s−i)dP =

9

2

V (si2| C, 1) = min
P∈C

∫
u(si, s−i)dP =

35

8

V (si2| C, 0) = min
P∈C

∫
u(si, s−i)dP =

14

3
.

Thus V (si1| C, 1) > V (si2| C, 1) and V (si1| C, 0) < V (si2| C, 0) for i ∈ {1, 2}.
Therefore (C, 1)2

i=1 is a singleton equilibrium under ambiguity, but (C, 0)2
i=1 is not.

Thus under pessimism (α = 1) and belief [C] for both players the highest strategy

combination constitutes an EUA, but under optimism (α = 0) it does not. Thus,

given these beliefs, the highest equilibrium is not increasing in optimism in this

game.

The example shows that the highest equilibrium is not always increasing in op-

timism when players have α-MEU preferences. Under what conditions can this

phenomenon occur? Eichberger and Kelsey (2014) show that it cannot occur when

the prior set is the core of a convex capacity as this case corresponds to preferences

given a JP-capacity. Are there other shapes or structures of prior sets that guarantee

the comparative statics result?

In the following we present a necessary and sufficient condition for the prior sets

7 It automatically has aggregate externalities as it is a 2-player game.
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that answers this question. We also present a sufficient condition on the payouts for

the highest/lowest equilibrium to increase in optimism.

Results on Beliefs: For which Beliefs is the Highest/Lowest Equilibrium

guaranteed to increase in Optimism?

The following definition introduces a class of prior sets that we call Positive Ex-

ternality Lattice Stochastic Dominance (PELSD) prior sets. It turns out that they

play a crucial role in figuring out when the comparative statics result in ambiguity

attitude holds.

Definition 5.7. Let S be a finite state space with a lattice structure and let C ⊆ ∆(S)

be a prior set. We say that C is of the Positive Externality Lattice-Stochastic Dom-

inance (PELSD) type if for all acts f with positive externalities it holds that there

exists a P ∈ Mf (C) and a Q ∈ mf (C) such that P lattice stochastically dominates

Q.

Note that the property PELSD is location independent, i.e. a prior set C has

PELSD type if and only if C ′ is of the PELSD type for all C ′ ∈ [C]. As an example

of a prior set that is not of the PELSD type, consider the prior set C = Conv(Q,Q′)

from the above example. Consider the act f = 1s210. Then Mf (C) = Q and

mf (C) = Q′. But Q does not lattice stochastically dominate Q′ since Q({s21, s22}) <
Q′({s21, s22}). Thus C is not of the PELSD type.

The following theorem shows that the highest/lowest EUA is guaranteed to in-

crease in optimism if and only if all players’ preferences can be represented by prior

sets that are of the PELSD type.

Theorem 5.4. Let S = (S1 × · · · × SN) be a set with a lattice-structure. Consider

games Γ with pure-strategy space S and assume that players have α-MEU prefer-

ences. The following are equivalent:

1. All player have prior sets of the PELSD type.

2. The highest/lowest equilibrium is increasing in optimism for all

Γ ∈ Γpeid(N,Si; 1 ≤ i ≤ N).

The following two lemmas characterize two classes of prior sets that are of the

PELSD type under positive aggregate externalities. The first class are cores of
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convex capacities. In combination with Theorem 5.4 this fact proves the first com-

parative statics result of Eichberger and Kelsey (2014). In the Appendix we also

provide an alternative (and much less complex) proof of their comparative statics

result. The second class are ball-shaped prior sets.

Lemma 5.1. Under positive aggregate externalities, cores of convex capacities are

of the PELSD type.

Lemma 5.2. Under positive aggregate externalities, prior sets of the type Bε(P ),

i.e. balls, are of the PELSD type.

If positive aggregate externalities is not assumed, both of the above lemmas fail

when the state space is sufficiently large. This is because whether a prior set C is

of the PELSD type depends on the structure of the state space. A prior set C may

be of the PELSD type if S has a complete order, but not when S is just a lattice.

The reason being that there are more acts with positive externalities when S is not

ordered. The assumption of positive aggregate externalities turns out to make the

set of acts with positive externalities sufficiently small for cores of convex capacities

and balls to always be of the PELSD type.

Result on Payouts: For which Games is the Highest/Lowest Equilibrium

guaranteed to increase in Optimism?

The following theorem provides a sufficient condition on the payouts of the game for

the highest/lowest equilibrium to be increasing in optimism, regardless of the prior

set.

Theorem 5.5. Let Γ = 〈N ;Si, ui : 1 ≤ i ≤ N〉 be a game with positive externalities

and increasing differences. Assume that the strategies are affinely related for all play-

ers and that players have α-MEU preferences. Then the highest/lowest equilibrium

is increasing in optimism.

The proof follows from the fact that the evaluation functional is linear for positive

affinely related strategies as α-MEU functionals are constant-linear. A reverse of

this theorem is not possible, i.e. there exist games in which the strategies are not

affinely related but where the highest/lowest equilibrium is increasing in optimism

for all exogenous perceived ambiguities.
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5.4.3 Equilibrium Uniqueness for Sufficient Ambiguity

The payouts of the game allow multiple Nash Equilibria. Eichberger and Kelsey

(2014) show that, with the additional assumption of a unique maximizer, the game

has a unique EUA in JP-capacities when the perceived ambiguity is sufficiently

large and ambiguity attitude sufficiently extreme. In the following we replicate this

result in our framework. For this we need to define what sufficiently large ambiguity

means. It is clear that the prior set Ci = ∆(S−i) represents the maximum possible

perceived ambiguity for Pi. Thus a set which is close to ∆(S−i) also represents a

large perceived ambiguity. Recall that ∆(S−i) = Conv(Ps−i |s−i ∈ S−i). We define

the closeness of some Ci to ∆(S−i) via the maximum distance of Ci to the degenerate

lotteries Ps−i . The term min
s−i∈S−i

max
P∈Ci

P (s−i) measures this. If this term is close to 1,

then Ci is close to ∆(S−i). For exogenous perceived ambiguity [Ci] we say that [Ci]
is close to ∆(S−i) if min

C′i∈[Ci]
min

s−i∈S−i
max
P∈C′i

P (s−i) is close to 1.

Theorem 5.6. Let Γ = 〈N ;Si, ui : 1 ≤ i ≤ N〉 be a game with positive externalities

and increasing differences for which Assumption 1 holds. There exist α (respectively

α) with 0 < α ≤ α < 1 and ε > 0 such that if for ([C1], . . . , [CN ]) it holds that

min
C′i∈[Ci]

min
s−i∈S−i

max
P∈C′i

P (s−i) > 1 − ε for all i ∈ {1, . . . , N}, there is a unique singleton

EUA with an equilibium strategy profile which is smaller (larger) than the smallest

(largest) equilibrium strategy without ambiguity.

The theorem states that for sufficiently extreme ambiguity attitude and for [Ci]
sufficiently close to ∆(S−i) for all i ∈ {1, . . . , N}, the EUA is unique. Furthermore

it is bigger/smaller than the biggest/smallest equilibrium without ambiguity.

5.5 Conclusion

In this article, we extend the studies of Eichberger and Kelsey (2014) to α-MEU

preferences. We adapt their notion of support and equilibrium in beliefs under

ambiguity to our framework. As Eichberger and Kelsey (2014), we show existence

of a singleton equilibrium, even for non-constant ambiguity-attitudes, in games with

positive externalities and increasing differences.

We also replicate their comparative statics result on perceived ambiguity. Most

importantly, we show that their comparative statics result on ambiguity attitude
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breaks down for α-MEU preferences. Thus our approach allows richer dynamics

and modelling of more behaviour patterns. This does not mean that our approach

is superior, rather it highlights some interesting limitations and capabilities of these

two models.
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5.6 Appendix

Proof of Theorem 5.3. All that needs to be shown is the existence of a singleton

equlibrium, as equilibrium existence is implied by Theorem 4.3 of the previous

chapter. Assume that (C∗i , ai)Ni=1 with C∗i ∈ [Ci] for all i ∈ {1, . . . , N} is an EUA.

Recall that the payouts induce a lattice structure over S and an ordering over Si for

i ∈ {1, . . . , N}. Let ŝi be the highest best response of Pi given (C∗i , ai) and define

ŝ = (ŝ1, . . . , ŝN). Consider the prior sets (C ŝ−i[Ci] )
N
i=1 induced by ŝ, where C ŝ−i[Ci] ∈ [Ci] is

constructed as in the proof of Theorem 4.3 of the previous chapter.

Case 1: (C ŝ−i[Ci] , ai)
N
i=1 is an EUA. Then we are finished since supp(C ŝ−i) = {ŝ−i} for

all i ∈ {1, . . . , N} by construction of C ŝ−i , which implies that the EUA is singleton.

Case 2: (C ŝ−i , ai)Ni=1 is not an EUA. Then there is an incentive for some Pi to

deviate to some strategy s̃i ∈ Si. Going from C∗i to C ŝ−i[Ci] means that player i perceives

the opponents to play higher strategies. Thus due to increasing differences this

incentive to deviate must be to a higher strategy, so s̃i > ŝi..

For the strategy combination s̃ = (ŝ1, . . . , ŝi−1, s̃i, ŝi+1, . . . , ŝN) consider the prior

sets (C s̃−i[Ci] )
N
i=1 induced by s̃.

Case 2.1: (C ŝ−1

[C1] , a1, . . . , C
ŝ−(i−1)

[Ci−1] , ai−1, C s̃−i[Ci] , ai, C
ŝ−(i+1)

[Ci+1] , ai+1, . . . , C ŝ−N[CN ] , aN) is an EUA,

then we are finished as it is singleton as in Case 1.

Case 2.2: (C ŝ−1

[C1] , a1, . . . , C
ŝ−(i−1)

[Ci−1] , ai−1, C s̃−i[Ci] , ai, C
ŝ−(i+1)

[Ci+1] , ai+1, . . . , C ŝ−N[CN ] , aN) is not an

EUA. Then the step in Case 2 can be repeated.

Since Γ is a finite game and the incentive to deviate is always upwards in S this

process has to finish after a finite amount of steps. This proves the existence of a

singleton EUA.

Proof of Theorem 5.6. For i ∈ {1, . . . , N} consider the case Ci = ∆(S−i) and αi = 0.

The functional V (si|Ci, αi), due to positive externalities, then puts all the weight

on the scenario where the opponents all play their highest strategy. The unique

maximizer assumption implies that | arg max
si∈Si

V (si|∆(S−i), 0)| = 1.

Consider a sequence of prior sets (Cij)j∈N, Cij ⊆ ∆(S−i) for all j ∈ N, which

converges to ∆(S−i) in the sense that min
s−i∈S−i

max
P∈Cij

P (s−i) −−−→
j→∞

1.

Furthermore assume that αij −−−→
j→∞

0. Thus (Cij, αij) −−−→
j→∞

(∆(S−i), 0). V is
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continuous in both entries,8 thus

V (si|Cij, αij) −−−→
j→∞

V (si|∆(S−i), 0)

for all si ∈ Si. It follows that there exists a j∗ ∈ N such that for all j ≥ j∗ and for

all C ′ij ∈ [Cij]

| arg max
si∈Si

V (si|C ′ij, αij)| = | arg max
si∈Si

V (si|∆(S−i), 0)| = 1.

Define εi = 1− min
C′i∈[Cij∗ ]

min
s−i∈S−i

max
P∈C′i

P (s−i) and ε = min
i∈{1,...,N}

εi. Define αi = αij∗ and

α = min
i∈{1,...,N}

αi.

Then for all beliefs ([Ci], αi)Ni=1 with min
C′i∈[Ci]

min
s−i∈S−i

max
P∈C′i

P (s−i) > 1 − ε and αi ≥ α

there exists just a single equilibrium in which the prior set is C ŝii ∈ [Ci] with ŝi =

arg max
si∈Si

V (si|∆(S−i), 0).

We have thus shown the existence of ε and α as required. We use the same idea

with αij −−−→
j→∞

1 to show the existence of α.

Proofs of Section 4.2

In order to prove Theorem 5.4 some definitions are necessary.

Γf,g(S) denotes a 2-act single-person decision problem with positive external-

ities and increasing differences, the ordering of acts f > g and a state space

S = (s1, . . . , sn). Thus f(s1) ≥ · · · ≥ f(sn), g(s1) ≥ · · · ≥ g(sn) and f(s1)− g(s1) ≥
· · · ≥ f(sn) − g(sn). We denote by Γpeid(S) the set of such 2-act single-person

decision problems with positive externalities and increasing differences with state

space S.

Let span(∆(S)) be the vector-space spanned by ∆(S), i.e. span(∆(S)) = {P ∈
R|S||

∑
s∈S

P (s) = 1}. For P ∈ span(∆(S)), which may have negative values, and act

f ,
∫
f dP denotes the “expected value” of f given P :∫

f dP =
∑
s∈S

f(s)P (s).

8 Continuous in the sense that small changes in (C, α) lead to small changes in V (·|C, α).
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For an act f and probability distribution Q ∈ ∆(S), IfQ denotes the vector-space

spanned by the indifference set of f containing Q, i.e.

IfQ := {P ∈ span(∆(S))|
∫
f dP =

∫
f dQ}.

With slight abuse of terminology we refer to IfQ as the indifference set of f through

Q. For a prior set C ⊆ ∆(S), with a slight abuse of notation, we denote by IfMf (C)

the highest indifference set of the act f that intersects C and Ifmf (C) the lowest

indifference set that intersects C.
For a prior set C ⊆ ∆(S) and two acts f and g we define

P f,g(C) :=

{P ∈ span(∆(S))|uP (f) = uMf (C)(f) and uP (g) = uMg(C)(g)} =
⋂

h∈{f,g}

IhMh(C)

P f,g(C) :=

{P ∈ span(∆(S))|uP (f) = umf (C)(f) and uP (g) = umg(C)(g)} =
⋂

h∈{f,g}

Ihmh(C).

The sets P f,g(C) and P f,g(C) are the intersections of the maximum and minimum

indifference sets of the two acts f and g, given C. Note that indifference sets are

n − 2 dimensional and the sets P f,g(C) and P f,g(C) are n − 3 dimensional, unless

they are positive affinely related in which case the indifference curves coincide such

that these sets are also n−2 dimensional. For a decision problem Γf,g(S) ∈ Γpeid(S)

and prior set C the sets P f,g(C) and P f,g(C) are well-defined and non-empty.

For Γf,g(S) we define

I0
f,g := {P ∈ span(∆(S))|

∫
f dP =

∫
g dP}

I+
f,g := {P ∈ span(∆(S))|

∫
f dP >

∫
g dP}

I−f,g := {P ∈ span(∆(S))|
∫
f dP <

∫
g dP}.

5.6.1 Helplemmas

The following lemmas are helplemmas to prove Theorem 5.4.
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Lemma 5.3. Consider a prior set C ⊆ ∆(S) and a decision problem Γf,g(S) ∈
Γpeid(S). For any P ∈Mf (C), Q ∈Mg(C), R ∈ P f,g(C) it holds that∫

f − g dP ≥
∫
f − g dR ≥

∫
f − g dQ.

If in addition Mf (C) ∩MgC = ∅, the inequalities are strict. Similarly for any p ∈
mf (C), q ∈ mg(C), r ∈ P f,g(C)∫

f − g dp ≤
∫
f − g dr ≤

∫
f − g dq.

If in addition mf (C) ∩mgC = ∅, the inequalities are strict.

Proof. It holds that ∫
f dP =

∫
f dR ≥

∫
f dQ.

The inequality follows from the fact that Q ∈ C and the definition of Mf (C). Simil-

arly ∫
g dP ≤

∫
g dR =

∫
g dQ.

It follows from these two inequalitiesthat∫
f − g dP ≥

∫
f − g dR ≥

∫
f − g dQ.

If Mf (C) ∩mf (C) = ∅, all inequalities are strict. The second part can be shown in

an analogue way.

Lemma 5.4. Let f, g : S → R be two acts. Every intersection of indifference sets

of the two acts f and g is a subset of some indifference set of the act f − g.

Proof. For some P ∈ C consider the two indifference curves IP (f) and IP (g) and

157



5 Optimism and Pessimism in Games with α-MEU Preferences

assume that Q ∈ IP (f) ∪ IP (g). Then∫
f − g dP =

∫
f dP −

∫
g dP

=

∫
f dQ−

∫
g dQ

=

∫
f − g dQ.

This shows that P and Q are element of the same indifference set of the act

f − g.

A consequence of Lemma 4.2 is that P f,g(C) and P f,g(C) each lie on some indiffer-

ence set of the act f − g. Furthermore both P f,g(C) and P f,g(C) are always subsets

of one of the sets If,g0 , If,g+ or If,g− .

Lemma 5.5. Let f, g : S → R be two acts with positive externalities. Then f and

g exhibit increasing differences if and only if the act f − g is an act with positive

externalities.

Proof. This follows directly from the definition of increasing differences.

We say that for Γf,g(S) ∈ Γpeid(S) and prior sets C the optimal act is increasing

in optimism if arg max
f,g

α
∫
f dmf (C)+(1−α)

∫
f dMf (C) is increasing in optimism.

Recall that α reflects the degree of pessimism and 1− α the degree of optimism.

Lemma 5.6. Consider Γf,g(S) ∈ Γpeid(S) and a prior set C ⊆ ∆(S). Then the

following are equivalent:

1. The optimal act is not increasing in optimism.

2. ∫
f dMf (C) <

∫
g dMg(C) and

∫
f dmf (C) >

∫
g dmg(C).

3.

P f,g(C) ⊆ I−f,g, P f,g(C) ⊆ I+
f,g.
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Proof. 1.⇒ 2. From 1. it follows that there exists α1 < α2 such that

α1

∫
f dmf (C) + (1− α1)

∫
f dMf (C) < α1

∫
g dmg(C) + (1− α1)

∫
g dMg(C)

α2

∫
f dmf (C) + (1− α2)

∫
f dMf (C) > α2

∫
g dmg(C) + (1− α2)

∫
g dMg(C).

Since α
∫
h dmh(C) + (1−α)

∫
h dMf (C) is strictly decreasing in α for any act h,

2. follows.

2.⇒ 3. By the definition of P f,g(C), P f,g(C) we have that 2. is equivalent to∫
f − g dP f,g(C) < 0 and

∫
f − g dP f,g(C) > 0, thus 3. holds.

3.⇒ 1. Given the belief C, the pessimist (α = 1) prefers f to g and the optimist

(α = 0) prefers g to f , thus 1. holds.

Lemma 5.7. Let S be a state space with a lattice structure and assume that C ⊆
∆(S). The following are equivalent:

1. C is of the PELSD type.

2. Given C, the optimal act is increasing in optimism for all decision problems

Γf,g(S) ∈ Γpeid(S).

Proof. 1.⇒ 2. Assume 2. fails. Then due to Lemma 5.6 there exists Γf,g(S) ∈
Γpeid(S) such that

∫
f dMf (C) <

∫
g dMg(C) and

∫
f dmf (C) >

∫
g dmg(C). Lemma

5.4 implies that
∫
f − g dP f,g(C) <

∫
f − g dP f,g(C). Lemma 5.3 implies that∫

f −g dP <
∫
f −g dQ for all P ∈Mg(C), Q ∈ mg(C). The act f −g is an act with

positive externalities due to Lemma 5.5. We have thus found an act g for which

there exists no P ∈Mg(C), Q ∈ mG(C) such that P lattice-stochastically dominates

Q. Thus 1. fails.

2.⇒ 1. Assume 1. fails. Then there exists an act f with positive externalities

such that for all P ∈ Mf (C), Q ∈ mf (C) P does not lattice-stochastically dominate

Q. This implies the existence of an s′ ∈ S such that for E = {s ∈ S|s ≥ s′} we have

that

max
P∈Mf (C)

P (E) < min
P∈mf (C)

P (E).
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There now exist real numbers a > b such that for the act h = aEb it holds that

max
P∈Mf (C)

∫
h dP < 0 < min

P∈mf (C)

∫
h dP.

Note that h is an act with positive externalities. There exists an act f ′ which is

strictly increasing in S such that

max
P∈Mf ′ (C)

∫
h dP < 0 < min

P∈mf ′ (C)

∫
h dP. (5.2)

Such an act f ′ exists since a small change in an act changes the evaluation of

the worst/best scenario by a small amount, i.e. there are no discontinuities of∫
f dMf (C) for changes in f .

Since f ′ is strictly increasing in S, there exists a c > 0 such that cf ′− h is an act

with positive externalities. Define g = cf ′ − h. Note that Mcf ′(C) = Mf ′(C) and

mcf ′(C) = mf ′(C), so (5.2) holds for the act cf ′ as well.

It holds that h = cf ′ − g and Γcf ′,g(S) is a decision problem with positive ex-

ternalities and increasing differences due to Lemma 5.5. Lemma 5.3 implies that∫
h dP cf ′,g(C) < 0 <

∫
h dP cf ′,g(C). This implies

∫
cf ′ dMcf ′(C) <

∫
g dMg(C) and∫

cf ′ dmcf ′(C) >
∫
g dmg(C). Thus the optimal act is not increasing in optimism

for Γcf ′,g(C).

Proof Theorem 5.4. 2. =⇒ 1.: Assume that 1. fails. Assume that the perceived

ambiguities are represented by [C1], . . . , [CN ]. Without loss ofgenerality assume that

player 1 has exogenous perceived ambiguity [C1] which is not of the PELSD type.

Consider the set C s̄−1

1 with s̄−1 being the highest strategy combination in S−i.

Lemma 5.7 implies the existence of some Γf,g(S−1) ∈ Γpeid(S−1) such that the op-

timal act is decreasing in optimism, given C s̄−1

1 . This implies∫
f dMf (C s̄−1

1 ) <

∫
g dMg(C s̄−1

1 ) and

∫
f dmf (C s̄−1

1 ) >

∫
g dmg(C s̄−1

1 ).

Let S1 = (s11, s12, . . . , s1|S1|) be the ordered strategy set of player 1. Construct

the game Γ as follows: Define s11(s−1) = f(s−1), s12(s−1) = g(s−1) for all s−1 ∈ S−1

and s1j = g(s1j)− ε with ε > 0 for all j ∈ {3, . . . , |S1|} and for all s−1 ∈ S−1. Thus

s12 strictly dominates the strategies s13, . . . , s1N such that these strategies do not
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play a role in determining the equilibrium.

For simplicity define the payouts of all other players to be a constant c. This

game Γ is a game with positive externalities and increasing differences.

Given belief C s̄−1

1 and complete pessimism α1 = 1 for player 1, as well as arbitrary

ambiguity attitudes for all other players, the highest EUA is

(C s̄−1

1 , 1, C s̄−2

2 , α2, . . . , C s̄−NN , αN),

i.e. the supports of the prior sets contain only the highest strategy combination of

the other players.

Now, ceteris paribus, consider the case α1 = 0. Player 1 now has an incentive to

deviate from s11 to s12 due to the way Γ is constructed. Thus the above EUA is not

an EUA in this case. The highest equilibrium is thus not increasing in optimism for

Γ.

2. =⇒ 1.: When all players have PELSD preferences then due to Lemma 5.7

there can never be an incentive to play a strategy when optimism increases. Thus

the highest/lowest equilibrium must be increasing in optimism.

The following proof of Lemma 5.1 provides a much easier proof of the comparative

statics result on ambiguity attitude of Eichberger and Kelsey (2014).

Proof of Lemma 5.1. It is sufficient to show that for C = Core(ν) for some convex

capacity ν : P(S)→ [0, 1] the optimal act is decreasing in optimism for any Γf,g(S) ∈
Γpeid(S).

Recall that positive aggregate externalities implies that S is ordered. This in

combination with increasing differences implies that the act f − g has positive ex-

ternalities. This implies that the acts f, g and f − g are pairwise comonotonic.

It thus follows from the comonotonic independence axiom that

V (f |C, α)− V (g|C, α) = V (f − g|C, α)

for all α ∈ [0, 1]. Since V (f − g|C, α) is increasing in optimism (1 − α), there can

never be an incentive to switch from the higher act f to the lower act g when

optimism increases. This rules out the possibility that the optimal act is increasing

in optimism. Thus cores of convex capacities are always of the PELSD type.
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Proof of Theorem 5.5. Acts that are affinely related are always comonotonic. Fur-

thermore due to increasing differences, for Pi and two strategies sij, sik ∈ Si with

sij > sik, the act sij − sik is comonotonic to sij and sik.

It thus holds that

V (sij|Ci, αi)− V (sik|Ci, αi) = V (sij − sik|Ci, αi)

for all (Ci, αi). The term V (sij − sik|Ci, αi) is decreasing in αi. Thus as αi de-

creases there can never be an incentive to deviate to a lower strategy. Therefore, if

(C1, α1, . . . , CN , αN) is the highest equilibrium of the game, a decrease in some αi can

never result in a lower highest equilibrium. Thus the highest equilibrium is increas-

ing in optimism 1− α. The same reasoning is used for the lowest equilibrium.
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This thesis aims to contribute to the literature on decision-making under ambigu-

ity and the study of strategic interaction between players that perceived strategic

ambiguity. Crucial questions of this field of research are:

What is perceived ambiguity? What is ambiguity attitude?

In our articles we suggest new approaches to these questions and apply them to

games. The thesis can be separated into two parts. The first two articles are on

axiomatic decision theory. We suggest a new conceptual framework for ambiguity

aversion in the first article. We view this contribution as the strongest in this

thesis. The results sparked strong interest amongst the audience at the 2018 Risk,

Uncertainty and Decision (RUD) conference. Especially the characterizations of

balanced and exact capacities were acknowledged by renowned decision theorists

including Ithzak Gilboa, Massimo Marinacci and Peter Klibanoff (David Schmeidler

acknowledged the result via email). Nonetheless there is a lot of work to be done.

Whether the results are model-free and how to extend the approach to the Savage

framework are open questions that we aim to tackle in the near future.

The second article is the newest and least exploited work. The most interesting

contribution is the insight that a weaker set of axioms is sufficient for the SEU

model in the framework of Anscombe and Aumann which implies that a separation

of beliefs and tastes is a consequence rather than an assumption that needs to be

made. Our aim for future research is to extend this result to the framework of Savage

as well as figure out what consequences Weak Monotonicity has on other important

preference classes.

The second part of the thesis is on perceived ambiguity and games. Our approach

to perceived ambiguity in the multiple prior model is intuitive and unifies the existing

measures of perceived ambiguity that we are aware of. The application of this

concept to games provides a very general model capable of modelling a huge amount

of phenomena. Critics may put forward that it is too general. We respond to this
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critique by pointing out that one can always add more assumptions on preferences,

such as an axiom on monotonicity or some version of independence, to rule out

undesirable consequences. The equilibrium existence result however holds for our

general framework. The proof of that theorem is in our opinion the most interesting

mathematical result of the thesis (and the idea of the proof rather beautiful).

The fourth article provides an application of our model and is a generalization

of Eichberger and Kelsey (2014). Interestingly we find that more optimism does

not necessarily lead to higher equilibria when preferences are α-MEU. The reason is

that perceived ambiguity, reflected by the prior set, can intervene in this dynamic:

for certain prior sets, a low strategy can benefit more from an increase in optimism

than a higher strategy. We characterize the prior sets for which this phenomenon

can occur, building on a new concept of first-order stochastic dominance for lattice

structures.
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