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Summary 1	

 2	

There is great interest in the role epigenetic variation induced by non-genetic exposures may 3	

play in the context of health and disease. In particular, DNA methylation has previously been 4	

shown to be highly dynamic during the earliest stages of development and is influenced by in 5	

utero exposures such as maternal smoking and medication. In this study we sought to 6	

identify the specific DNA methylation differences in blood-associated prenatal exposures 7	

including birth weight, gestational age and maternal smoking. We quantified neonatal 8	

methylomic variation in 1,263 infants using DNA isolated from a unique collection of archived 9	

blood spots taken shortly after birth (mean = 6.08 days; sd = 3.24 days). An epigenome-wide 10	

association study (EWAS) of gestational age and birth weight identified 4,299 and 18 11	

differentially methylated positions (DMPs) respectively, at an experiment-wide significance 12	

threshold of P < 1x10-7. Our EWAS of maternal smoking during pregnancy identified 110 13	

DMPs in neonatal blood, replicating previously reported genomic loci including AHRR. 14	

Finally, we tested the hypothesis that DNA methylation mediates the relationship between 15	

maternal smoking and lower birth weight, finding evidence that methylomic variation at three 16	

DMPs may link exposure to outcome. These findings complement an expanding literature on 17	

the epigenomic consequences of prenatal exposures and obstetric factors, confirming a link 18	

between the maternal environment and gene regulation in neonates. 19	

 20	

 21	

  22	
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Main Text 1	

 2	

Introduction 3	

Epigenetic mechanisms developmentally regulate gene expression via modifications to DNA, 4	

histone proteins, and chromatin. Because epigenetic processes can be influenced by 5	

exposure to a range of external environmental factors (1-4) and also by genetic variation(5, 6	

6) , there is great interest in the role that epigenetic variation may play in the context of 7	

health and disease(7) . As epigenetic marks are inherited mitotically in somatic cell lineages, 8	

they provide a mechanism by which disruption early in life can be propagated through 9	

development, producing long-term phenotypic variation. DNA methylation is the best-10	

characterized epigenetic modification, stably influencing gene expression via the disruption 11	

of transcription factor binding and recruitment of methyl-binding proteins that initiate 12	

chromatin compaction and gene silencing. Despite being often regarded as a mechanism of 13	

transcriptional repression, DNA methylation is associated with both increased and 14	

decreased gene expression (8), and also influences other genomic functions including 15	

alternative splicing and promoter usage (9).  16	

 17	

The availability of high-throughput profiling methods for quantifying DNA methylation across 18	

the genome at single base resolution in large numbers of samples has enabled researchers 19	

to perform epigenome-wide association studies (EWAS) aimed at identifying methylomic 20	

variation associated with environmental exposures and disease (7). Although these studies 21	

are inherently more complex to design and interpret than genetic association studies (10-22	

12), recent analyses have documented differences in DNA methylation in neonates and 23	

children following exposure to a wide range of environmental factors during gestation, 24	

including maternal smoking, maternal diet and pollution (2, 3, 13).  There is also interest in 25	

the role that DNA methylation may play as mediator through which environment exposures 26	

can influence long-term health outcomes. For example, there is evidence that the causal 27	

relationship between maternal smoking during pregnancy and low birth weight is mediated 28	

through differences in DNA methylation at specific loci across the genome (14, 15). While 29	

noteworthy, these analyses have been based on moderate samples sizes, have generally 30	

not replicated the same loci, and may have overestimated mediation effects because of 31	

invalid assumptions and misclassification of the exposure (16).  32	

 33	

Another active area of research concerns the utility of DNA methylation as a biomarker for 34	

clinical monitoring and screening. The potential of a DNA methylation based predictor has 35	

been most robustly demonstrated for age, with a number of algorithms available, referred to 36	

as “epigenetic clocks” (17-19). There is particular interest in how measures of age derived 37	
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from DNA methylation data correlate with actual chronological age, and also whether 1	

"accelerated” epigenetic age predicts aging phenotypes such as mortality, cancer and 2	

dementia (18, 20, 21). There is also interest in whether other exposures (or phenotypes) can 3	

be inferred from an epigenetic profile. The development of an epigenetic biomarker using 4	

neonatal blood samples might enable the evaluation of in utero exposures, which are hard to 5	

measure objectively, and could be a useful prospective predictor for future health outcomes. 6	

To this end, a biomarker of maternal smoking during pregnancy was recently developed 7	

using cord blood samples that demonstrates high specificity (97%) - but only moderate 8	

sensitivity (58%)(22) - demonstrating the potential application of such approaches. Because 9	

DNA methylation is known to be highly dynamic during the earliest stages of development 10	

(23, 24), insults during this period may have important functional consequences or impact 11	

upon disease susceptibility later in life. Of note, several psychiatric disorders are 12	

hypothesised to have important neurodevelopmental origins (25-27) and have been 13	

associated with a number of prenatal and perinatal risk factors. For example, 14	

epidemiological studies have reported a higher risk of autism in those born with a low birth 15	

weight (28, 29) or born pre-term (30). Although DNA methylation predictors for age (18) and 16	

smoking (31) developed in childhood or adult samples have been shown to work reasonably 17	

well, methods developed specifically in either cord blood or neonatal samples have superior 18	

performance at these ages (19).  19	

 20	

In this study, we first sought to identify specific patterns of DNA methylation in neonatal 21	

blood samples associated with three obstetric and neonatal influences measured in the 22	

same individuals: birth weight, gestational age and exposure to maternal smoking. We 23	

subsequently use our results to explore whether variable DNA methylation mediates the 24	

relationship between maternal smoking and low birth weight. We attempted to address these 25	

questions by quantifying methylomic variation in 1,263 infants using DNA isolated from 26	

archived blood spots taken shortly after birth (mean = 6.08 days; sd = 3.24 days) originally 27	

profiled in a case-control study of autism (32). Although we cannot exclude the role of DNA 28	

methylation changes occurring during the first few days after birth, our study extends 29	

previous research into the early-life epigenome that have either used samples collected later 30	

in childhood or from cord blood (13, 24, 33), which has the limitation that it may be 31	

contaminated by maternal blood (34, 35). Our findings complement the expanding literature 32	

on the epigenomic consequences of prenatal exposures and obstetric factors, confirming a 33	

link between the maternal environment and markers of gene regulation in neonates.     34	



	 6	

Methods 1	

Overview of the MINERvA cohort 2	

A description of the MINERvA cohort was recently published alongside extensive details of 3	

the profiling of DNA methylation and data quality control steps (32). Briefly, MINERvA 4	

contains a subset of 1,316 samples from the iPSYCH autism spectrum disorder case-control 5	

sample (36). All perinatal data used for case-control sample matching, plus additional 6	

information on birth weight and maternal smoking were obtained from the Danish Medical 7	

Birth Register or the Central Person Register. An overview of the demographic 8	

characteristics of the MINERvA cohort is given in Supplementary Table 1. Of note, cases 9	

and controls were matched as closely as possible. Although rates of maternal smoking were 10	

higher in autism cases, there was no significant difference in birth weight between autism 11	

cases and controls. 12	

 13	

DNA methylation profiling in MINERvA 14	

Neonatal dried blood spot samples collected on standard Guthrie cards and stored within the 15	

Danish Neonatal Screening Biobank (37) were retrieved as part of the iPSYCH study (36). 16	

Neonatal DNA extractions and DNA methylation quantification was performed at the Statens 17	

Serum Institut (SSI, Copenhagen, Capital Region, Denmark). Briefly, DNA was converted 18	

with sodium bisulfite using the EZ-96 DNA Methylation Kit (Zymo Research, California, 19	

United States of America) and DNA methylation was quantified across the genome using the 20	

Infinium HumanMethylation450k array (“450K array”) (Illumina, California, United States of 21	

America). After a stringent quality control process (outlined in (32)), 1,263 samples (96.0%) 22	

were included for subsequent analysis. Normalization of the DNA methylation data was 23	

performed used the dasen() function in the wateRmelon package(38). For each sample, we 24	

derived nine additional variables from the DNA methylation data using established 25	

algorithms: DNA methylation age(18), gestational age(19), smoking(31), and six blood cell 26	

composition variables(39, 40). Our previous publication on these data demonstrated that the 27	

smoking score, despite being trained in adults who smoked, correlated with reported 28	

maternal smoking status from the registry data (32). All quality control and statistical 29	

analyses were performed using the R statistical environment version 3.2.1 (41). 30	

 31	

Epigenome-wide association analyses (EWAS) 32	

We performed an EWAS of three obstetric/neonatal factors that were robustly measured in 33	

our cohort. First, to identify DNA methylation sites associated with birth weight (measured in 34	

grams (g)) and gestational age (measured in weeks), a linear model was fitted for each DNA 35	

methylation site with DNA methylation as the dependent variable, both birth weight and 36	

gestational age as independent variables, and a set of possible confounders as covariates: 37	
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sex, experimental array number (i.e., chip), days to sampling, maternal smoking (using the 1	

continuous variable estimated from the DNA methylation data) and six derived cell 2	

composition variables. Given the strong concordance between the findings of our maternal 3	

smoking EWAS and those of previous EWAS analyses of smoking (see Results), we used 4	

the derived maternal smoking score to make up for missing data in the registry data and 5	

maximize power for analyses. To compare results between autism spectrum disorder (ASD) 6	

cases and controls, we tested for a heterogeneous effect by including an interaction term 7	

between i) birth weight and case control status, and ii) gestational age and case control 8	

status. In these interaction models, ASD case control status was also included as a main 9	

effect. Second, to identify differentially methylated positions (DMPs) associated with registry-10	

reported maternal smoking exposure, a linear model was fitted for each DNA methylation 11	

site with DNA methylation as the dependent variable, and a binary indicator variable for in 12	

utero exposure to smoking in addition to a set of possible confounders as covariates: sex, 13	

birth weight, gestational age, experimental array number (i.e. chip), and six derived blood 14	

cell composition variables. Significant DMPs were identified at an experiment-wide multiple 15	

testing adjusted threshold of P < 1x10-7. Clustering of significant DMPs into loci was 16	

performed by taking each significant site in turn, starting with the one with the smallest p 17	

value (referred to as the index association), identifying all other significant sites within 5kb 18	

upstream and downstream and merging these into a single locus. Any less significant (i.e. 19	

larger p value) DMPs merged with an index site were then excluded from consideration as 20	

an index association. This procedure was repeated until all significant DMPs were either 21	

merged with a more significant association or considered as an index site. Conditional 22	

analyses were performed within loci with at least two DMPs by repeating the original 23	

association analysis for the secondary signal (i.e. the less significant site) including the most 24	

significant DNA methylation site in that loci as an additional covariate. 25	

 26	

Replication dataset 27	

The Accessible Resource for Integrated Epigenomic Studies (ARIES; 28	

http://www.ariesepigenomics.org.uk) cohort comprises of a sub-sample of 1018 ALSPAC 29	

(http://www.bristol.ac.uk/alspac/) child–mother pairs with Illumina 450K array DNA 30	

methylation data generated from cord blood (n = 914), and whole blood at two time points 31	

during childhood (age 7 (n = 973) and age 15 or 17 years (n = 974)). The results used in this 32	

manuscript are taken from the gestational age and birth weight EWAS performed by Simpkin 33	

et al(24) and presented in Supplementary Table 1 and Table 3 published alongside the 34	

manuscript.  35	

 36	

Mediation analyses 37	



	 8	

Mediation analyses were performed using the criteria outlined by Baron and Kenny(42) and 1	

the Sobel test(43). We considered DMPs associated with registry-reported maternal smoking 2	

without controlling for birth weight in our dataset (n = 143 DMPs) and tested whether the 3	

following criteria were met for each site:  4	

(i) smoking significantly correlated with DNA methylation level (P < 1x10-7; sex, 5	

gestational age, batch and cell composition included as covariates). 6	

(ii) smoking significantly correlated with birth weight without adjusting the model 7	

for DNA methylation (sex and gestational age included as covariates). 8	

(iii) DNA methylation significantly correlated with birth weight (P < 1x10-7; sex, 9	

gestational age, batch and cell composition included as covariates). 10	

(iv) the association between smoking and birth weight decreased upon addition 11	

of DNA methylation to the model (i.e. p value got larger; sex, gestational age, 12	

batch and cell composition included as covariates). 13	

(v) the Sobel test gave P < 3.50 x10-4 (corrected for 143 DMPs considered, 14	

implemented through the R bda package (https://cran.r-15	

project.org/web/packages/bda/index.html). 16	

 17	

DMPs meeting the criteria for mediation were taken forward for a sensitivity analysis that 18	

accounted for misclassification of the exposure following the method outlined in Valeri et 19	

al(16) using the SIMEX procedure(44). Our naive outcome regression model between birth 20	

weight and registry-reported maternal smoking exposure and naïve mediator regression 21	

model between DNA methylation and birth weight included covariates for gestational age, 22	

sex, cellular composition and experimental chip.  The naive direct effect is then the 23	

coefficient from the outcome regression model for maternal smoking and the naïve indirect 24	

effect is the naive direct effect multiplied by the estimated coefficient for maternal smoking 25	

from the mediator regression. Applying SIMEX to outcome and mediator regressions, we 26	

obtained corrected estimates of the regression parameters which were then used to 27	

calculate the direct and indirect effects. We set the parameter for specificity to 1.0 as we 28	

assume that all smokers are likely to have reported correctly, whereas we assume that some 29	

non-smokers will have reported incorrectly therefore the sensitivity parameter was set to 0.6. 30	

A bootstrap method was used to estimate the standard errors of the estimated effects and 31	

their 95% confidence intervals.   32	

  33	
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Results 1	

Blood cell proportions derived from DNA methylation data correlate with birth weight and 2	

gestational age in neonatal blood.  3	

Our first analyses aimed to explore whether measures derived from DNA methylation data at 4	

birth (i.e. gestational age and blood cell composition estimates) are associated with birth 5	

weight. We previously demonstrated the robustness of DNA methylation data derived from 6	

neonatal blood spots by implementing two DNA methylation clock algorithms to derive 7	

estimates for i) age in years(18) and ii) gestational age in weeks(19) for each sample. As 8	

expected, we observed a strong positive correlation between estimated and actual 9	

gestational age (r = 0.602, 95% CI = (0.566, 0.636), P = 3.80x10-125) and a weaker positive 10	

correlation between estimated chronological age and actual gestational age (r = 0.139, 95% 11	

CI = (0.0849, 0.193), P = 6.52x10-7)(32). We next extended these analyses to investigate 12	

how birth weight correlates with these predicted ages and whether variable birth weight 13	

explains the difference between predicted age (derived from DNA methylation data) and 14	

actual age. Birth weight was significant correlated with predicted measures of both age (r = 15	

0.119, 95% CI = (0.0638, 0.173), P = 2.40x10-5; Supplementary Figure 1A) and gestational 16	

age (r = 0.333, 95% CI = (0.0849, 0.193), P = 5.15x10-34; Supplementary Figure 1B). 17	

However, the age acceleration residuals - which are adjusted for reported gestational age - 18	

are not significantly associated with birth weight (P > 0.05, Supplementary Figure 1C, 1D) 19	

indicating that variation in birth weight does not explain the difference between reported 20	

gestational age and predicted age and that other pregnancy and/or obstetric factors may be 21	

influencing derived age estimates. Given the difficulties in collecting large volumes of blood 22	

from neonates, little is known about blood cell-type variation at this stage of life. We 23	

therefore explored how predicted cellular composition variables derived from the DNA 24	

methylation data (see Methods) correlate with birth weight and reported gestational age. 25	

Gestational age was positively correlated with the estimated proportions of CD8 T- cells (r = 26	

0.140; 95% CI = (0.0857,0.194), P = 5.63x10-7) and natural killer cells (r = 0.0722, 95% CI = 27	

(0.0171,0.127), P = 0.0103), and negatively correlated with the estimated proportion of B 28	

cells (r = -0.231, 95% CI = (-0.282, -0.178), P = 1.06x10-16) (Supplementary Figure 2). Birth 29	

weight was significantly negatively correlated with the estimated proportion of monocytes (r 30	

= -0.0604, 95% CI = (-0.115, -0.00529), P = 0.0317) and positively correlated with the 31	

estimated proportion of granulocytes (r = 0.0624, 95% CI = (0.00727, 0.117), P = 0.0266) 32	

(Supplementary Figure 3). Given the potential confounding influence of cellular 33	

heterogeneity in EWAS analyses using blood, these derived variables were included in all 34	

subsequent analyses.  35	

 36	
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Birth weight and gestational age are associated with variable DNA methylation in neonatal 1	
blood  2	

To identify DNA methylation sites associated with reported gestational age and birth weight 3	

we next performed an EWAS across all Illumina 450K array sites on the autosomes and X-4	

chromosome (n = 430,676 sites), undertaking the analyses simultaneously to minimise 5	

confounding resulting from the strong correlation between these two obstetric variables (r = 6	

0.491,95% CI = (0.448,0.532), P = 1.14x10-77; Supplementary Figure 4). In total, we 7	

identified 18 differentially methylated positions (DMPs) associated with birth weight (Figure 8	

1; Supplementary Figure 5 and Supplementary Figure 6) and 4,299 DMPs associated 9	

with gestational age (Figure 1; Supplementary Figure 7 and Supplementary Figure 8) at 10	

an experiment-wide significance threshold (P < 1x10-7) (Supplementary Tables 2 and 3). 11	

The associated DMPs were characterized by a median shift in DNA methylation of 1.40% 12	

(SD = 0.368%) per kg and 0.406% (SD = 0.275) per gestational week. Seven sites were 13	

significantly associated with both birth weight and gestational age (Table 1). Sensitivity 14	

analyses repeating the EWAS excluding samples from ‘outlier’ individuals born i) before 35 15	

weeks (N = 23) or ii) before 32 weeks (N = 5) revealed high concordance with our primary 16	

analysis (Supplementary Figure 9), suggesting that the results are robust to the presence 17	

of premature individuals.  Although the majority of DMPs associated with increased birth 18	

weight were associated with reduced DNA methylation (66.7%) there was not a significant 19	

bias (sign test P = 0.238) due to the small total number of DMPs identified. In contrast, there 20	

was a highly-significant bias towards increased DNA methylation at sites associated with 21	

older gestational age (73.2%, sign test P = 2.29x10-135). Although this contradicts results 22	

from a previous study using cord blood derived DNA from the ARIES cohort (n = 914) which 23	

identified a smaller number of DMPs that were enriched for sites showing a decrease in DNA 24	

methylation with older gestational age (24), our most significant DMPs are characterised by 25	

reduced DNA methylation with age (Supplementary Table 3) and associations at sites 26	

showing this pattern of change are significantly stronger (Mann-Whitney P = 2.58x10-228). 27	

Furthermore, we find a significant excess of consistent effects between studies indicating 28	

that age-associated changes are similar in cord and neonatal whole blood (Supplementary 29	

Figure 10). Of 148 DMPs associated with gestational age in the ARIES cohort, 146 (98.6%) 30	

had the same direction of effect (sign test P = 6.18x10-41), with 110 being significantly 31	

associated (P < 1x10-7) in both cohorts. We found similar consistency for our EWAS of birth 32	

weight; all 21 DMPs associated with birth weight in the ARIES cohort had the same direction 33	

of effect in our data (sign test P < 2x10-323), with two DMPs being significantly associated (P 34	

< 1x10-7) in both cohorts (Supplementary Figure 10). While the 18 DMPs associated with 35	

birth weight are annotated to distinct genomic loci, the 4,299 DMPs associated with 36	

gestational age are clustered into 3,550 distinct locations with up to 25 additional DMPs 37	
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located within 5kb of the index DMP characterized by the most significant association. 1	

Conditional analyses within each genomic locus containing at least two DMPs (n = 483; 2	

13.6%) revealed evidence for independent secondary signals for 240 DMPs in 193 of these 3	

loci (conditional P < 5x10-5), while 100 DMPs within 66 loci were only associated as a result 4	

of their correlation with the most significant DMP in that loci (conditional P > 0.05; 5	

Supplementary Table 4).  Finally, given the association between both low birth weight and 6	

pre term birth and autism we tested whether the DNA methylation differences we identified 7	

were consistent between individuals who later went on to develop a childhood diagnosis of 8	

autism (n = 629)	and matched controls (n = 634). There were no significant differences 9	

between autism cases and controls for DMPs associated with birth weight (min P = 0.0446) 10	

or for DMPs associated with gestation age (min P = 3.51x10-5) after correcting for the 11	

number of DMPs significant in each analysis (birth weight: P < 0.00278 corrected for 18 12	

DMPs; gestational age: P < 1.16x10-5 corrected for 4,299 DMPs) (Supplementary Table 2 13	

and Supplementary Table 3).  14	

 15	

Maternal smoking influences DNA methylation in neonates at multiple loci 16	

Exposure to tobacco smoke is known to be associated with widespread alterations in DNA 17	

methylation in whole blood (1), and previous analyses have demonstrated that these effects 18	

can be detected in cord blood from neonates exposed to prenatal smoking (13). One 19	

limitation of using cord blood is that DNA methylation estimates can be influenced by 20	

contamination of maternal blood, and we therefore sought to test these whether these 21	

associations were detectable in neonatal whole blood samples. Mothers were asked about 22	

their smoking status at their first prenatal visit, early in the second trimester of pregnancy. 23	

Amongst the mothers of neonates in our cohort, 294 (25.1%) reported smoking during 24	

pregnancy and 879 (74.9%) reported not smoking during pregnancy; we excluded 36 25	

mothers who reported giving up smoking at some time during the pregnancy and 54 mothers 26	

for whom smoking data was not available. First, we assessed whether maternal smoking 27	

influenced derived measures of age generated from DNA methylation data in these samples. 28	

Neither age, gestational age nor age acceleration was associated with in utero exposure to 29	

smoking (Supplementary Figure 11).  Next, we performed an EWAS of maternal smoking 30	

exposure (n = 1,173, controlling for sex, birth weight, gestational age, experimental batch, 31	

and derived cell composition variables), identifying 110 neonatal blood DMPs associated 32	

with maternal smoking (P < 1x10-7) representing 70 discrete genomic loci (Figure 2; 33	

Supplementary Figure 12, Supplementary Table 5). Conditional analyses within each 34	

genomic loci with at least two DMPs (n = 13) identified seven loci where a single DMP was 35	

associated with maternal smoking (conditional P for other sites > 0.05) and four loci 36	
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characterized by secondary semi-independent effects (conditional P for other sites < 5x10-5; 1	

Supplementary Table 6).  There was no significant bias towards a particular direction of 2	

effect (50.9% hypomethylated; 49.1% hypermethylated, sign test P = 0.924) and the median 3	

effect was a difference of 2.28% DNA methylation (SD = 2.19%) (Supplementary Figure 4	

13). There was considerable overlap with DMPs reported in a large EWAS of maternal 5	

smoking performed in cord blood (13) (n = 6,685; Supplementary Figure 14). Of note, 6	

4,847 (84.0%) of the 5,768 DMPs reported by Joubert et al. were characterized by the same 7	

direction of effect (sign test P < 2x10-323) in our analysis of neonatal blood, with 102 meeting 8	

criteria for experiment-wide significance (P < 1x10-7) in both studies. This included previously 9	

reported DMPs associated with tobacco smoking in adults (1, 31) such as AHRR, where five 10	

additional DMPs were clustered with the lead signal at cg05575921 none of which remained 11	

significant in the conditional analysis, GFI1 which had nine DMPs including multiple 12	

independent associations, and MYO1G which had four DMPs with evidence of multiple 13	

independent associations (Supplementary Table 6). These findings confirm that smoking 14	

behaviour by mothers during pregnancy has a profound influence on DNA methylation in 15	

their offspring at birth and in the first few days of life. 16	

 17	

DNA methylation mediates the relationship between maternal smoking and low birth weight   18	

Having established that the DNA methylation signatures associated with prenatal smoking 19	

exposure are robustly detectable in neonatal blood, and that variable DNA methylation is 20	

associated with an established outcome of maternal smoking (45, 46) we next asked 21	

whether methylomic variation might mediate the relationship between maternal smoking in 22	

pregnancy and lower birth weight. Previous attempts to explore this using data from cord 23	

blood have been relatively inconsistent (14, 15), supporting a mediation role for DNA 24	

methylation at non-overlapping DNA methylation sites. We repeated our EWAS of maternal 25	

smoking, excluding birth weight as a covariate, and identified an extended set of 143 DMPs 26	

(Supplementary Table 7) which contained 105 (95.5%) of the 110 DMPs we identified in 27	

the analysis adjusting for birth weight. Mediation analyses, performed using the Sobel test as 28	

(see Methods), showed that DNA methylation at three sites, annotated to three different 29	

genomic loci, met the five criteria set out by Baron and Kenny (42) (see Methods) as 30	

providing evidence for mediating the association between smoking and birth weight 31	

(Supplementary Figure 15; Supplementary Table 7). This included one site (cg09935388) 32	

annotated to GFI1 that has been reported previously (15) and two novel mediation sites 33	

(cg05575921 annotated to AHRR, and cg26889659 annotated to EXOC2) (Table 2). 34	

Because smoking behaviour is prone to misclassification - not only due to smokers claiming 35	
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to be non-smokers, especially during pregnancy(47), but also because a complex behaviour 1	

is simplified into a dichotomous variable - we repeated the analysis for the three significant 2	

DNA methylation sites estimating the natural direct effect between maternal smoking and 3	

low birth weight (i.e. not via DNA methylation) and the natural indirect effect (i.e. via DNA 4	

methylation) using the SIMEX (simulation and extrapolation) procedure that incorporates 5	

misclassification (44). Stringently accounting for misclassification suggests that the 6	

estimated mediation effect via DNA methylation identified using the Sobel test is potentially 7	

overestimated; although the results robustly support a significant mediation effect for DNA 8	

methylation at cg26889659, under scenarios of more extreme misclassification (see 9	

Methods) the effects of mediation via DNA methylation at cg05575921 and cg09935388 are 10	

no longer significantly different from 0 (Supplementary Table 8).  11	
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 1	

Discussion 2	

In this study we quantified neonatal variation in DNA methylation in 1,263 infants using 3	

samples isolated from archived blood spots taken shortly after birth. Our study finds that 4	

gestational age, birth weight and maternal smoking are all associated with significant DNA 5	

methylation differences in neonatal blood, with gestational age having the most effects 6	

widespread across the genome. These data add to a growing literature demonstrating that 7	

prenatal and obstetric exposures can influence epigenetic variation in early-life (3, 13, 24, 8	

48-50), providing a potential mechanism linking them to altered gene function and long-term 9	

health and disease outcomes.  10	

Our use of neonatal DNA samples means that we are uniquely positioned to identify 11	

epigenetic variation at birth, avoiding the confounding exposures that could influence the 12	

results from samples collected later in childhood (for example, health and disease, nutrition, 13	

medication, and stress). Although there have been larger studies of prenatal exposures, a 14	

strength of our study is that we profiled whole blood from neonatal infants rather than cord 15	

blood minimizing the contamination of our samples with maternal blood DNA and meaning 16	

our data can be more easily compared to the extensive blood DNA methylation datasets 17	

derived from samples later in life. A limitation of our sampling strategy, however, is that no 18	

blood cell reference DNA methylation datasets specifically for use on neonatal blood are yet 19	

available, likely reflecting the difficulties of obtaining sufficient volumes of neonatal blood for 20	

cell sorting and methylomic profiling. Although there has been much written on the 21	

importance of selecting an appropriate tissue to profile for epigenetic studies(10), the goal of 22	

this study was to identify biomarkers of exposure, and therefore our use of a peripheral 23	

tissue is justified. Furthermore, although blood spots were collected only a few days after 24	

birth (mean = 6.08 days; sd = 3.24 days), it is possible that some postnatal exposure to 25	

passive smoking during the first few days of life could also have influenced our results 26	

although the amount of exposure in ~6 days is likely to be negligible.  27	

As well as identifying specific loci at which DNA methylation is associated with with early-life 28	

factors such as smoking exposure and gestational age, we tested the hypothesis that DNA 29	

methylation mediates established epidemiological relationships between exposures and 30	

outcomes. We explored the association between maternal smoking and lower birth weight, 31	

finding evidence that methylomic variation at several DMPs may be mechanistically involved 32	

in linking exposure (maternal smoking) to outcome (birth weight). While our results are 33	

consistent with previous reports, such analyses can be influenced by misclassification bias 34	

(16). Smoking, in particular is prone to misclassification not only due to participants claiming 35	
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to be non-smokers when they are in fact smokers, a circumstance known to be worse when 1	

reflecting smoking during pregnancy(47), but also as a result of simplifying a complex 2	

behaviour into a single dichotomous variable representing the entire period of pregnancy. 3	

Given our robust prenatal smoking exposure associations, it is plausible that the mediator in 4	

our analyses - DNA methylation - is in fact a better measure of smoking exposure than self-5	

reported status(16). Of note, applying a methodology that accounts for misclassification of 6	

an exposure reduced the magnitude of the mediation effect at all three significant loci, 7	

suggesting that these results need validation using an alternative approach such as 8	

Mendelian Randomisation (51).  9	

While we explored whether DNA methylation lies on the causal pathway between maternal 10	

smoking and low birth weight, results from EWAS analyses do not distinguish cause from 11	

effect. In fact, it is likely that the DNA methylation differences we report for birth weight and 12	

gestational age reflect other in utero exposures or processes. For example birth weight is 13	

known to be associated with maternal body mass index, blood pressure and fasting glucose 14	

levels (52-54) and the epigenetic changes we report may reflect the downstream influences 15	

of these pathways. It is also possible that the birth-weight-associated DMPs identified in our 16	

study reflect exposures or influences occurring in the immediate neonatal period before the 17	

blood samples were collected. Similarly, the DNA methylation differences observed in 18	

neonates exposed to prenatal smoking might also be influenced by exposure to passive 19	

smoking from the mother or father immediately after birth, although the amount of exposure 20	

in ~6 days is likely to be negligible. Another potential limitation of our design is that the 21	

analyses were performed within the context of an autism case-control study (32). Of note, 22	

however, although autism cases had a higher exposure to maternal smoking than non-23	

autism controls, there was not significant difference in birth weight between infants who went 24	

on to develop autism than those who did not (Supplementary Table 1). Finally, the nature 25	

of the samples we profiled in this study (i.e. small amounts of neonatal blood) meant that 26	

additional DNA was not available for technical validation experiments. However, the Illumina 27	

450K array has been shown to yield highly reproducible measures of DNA methylation, and 28	

the observed consistency with previous studies of maternal smoking, gestational age, and 29	

birth weight suggests our findings are robust. 30	

 31	

Conclusions 32	

Our data demonstrate that in utero exposures are associated with detectable patterns of 33	

DNA methylation in neonatal blood samples, highlighting the role that the prenatal 34	

environment plays in influencing gene regulation in neonates.  While previous studies have 35	
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shown that maternal smoking effects persist into later childhood (13), these have found that 1	

the effects are attenuated, suggesting that obtaining a biomarker as close to birth as 2	

possible will have maximal sensitivity about exposures during gestation.  3	
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Tables 

Table 1. DNA methylation in neonatal blood is associated with birth weight and gestational age. In total, seven differentially methylated 

positions (DMPs) were associated with both birth weight and gestational age at an experiment-wide threshold of P < 1x10-7. Genomic locations 

are based on hg19. 

 

ProbeID 

EWAS of birth weight (g) EWAS of gestational age (weeks) 

Chr Pos 

Gene Annotation 

 P-value Regression coefficient  P-value Regression coefficient UCSC Gene Name UCSC Genic Region 

cg04411893 9.88E-08 -8.41E-06 2.28E-12 -0.003758699 chr3 185300709     

cg05937055 4.66E-09 -1.20E-05 5.20E-10 -0.004302303 chr1 181128764     

cg06870470 2.97E-09 -1.68E-05 6.93E-28 -0.01068899 chr19 11315767 DOCK6 Body 

cg13066703 2.50E-08 -1.11E-05 3.68E-36 -0.008742825 chr1 211526705 TRAF5 Body 

cg19744173 1.87E-10 -1.41E-05 8.41E-20 -0.006889143 chr2 112913178 FBLN7 Body 

cg20068209 5.19E-08 -1.37E-05 2.00E-41 -0.011959147 chr6 75988568 TMEM30A Body 

cg20076442 1.18E-10 -1.96E-05 3.23E-25 -0.010843225 chr8 72745197     
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Table 2. Three DNA methylation sites meet the criteria for significant mediation between birth weight and maternal smoking. 

 

ProbeID Chr Pos Gene 
Annotation 

Birth weight ~ 
maternal smoking 

EWAS of maternal 
smoking EWAS of birth weight 

EWAS of birth weight 
adjusted for maternal 
smoking Sobel 

test P-
value P-

value 
Regression 
coefficient 

P-
value 

Regression 
coefficient 

P-
value 

Regression 
coefficient P-value Regression 

coefficient 

cg09935388 chr1 92947588 GFI1 3.21E-
14 -282.418 1.39E-

55 -0.1208 2.58E-
08 4.18E-05 2.72E-08 -229.556 3.58E-

09 

cg05575921 chr5 373378 AHRR 3.21E-
14 -282.418 8.29E-

119 -0.08196 1.17E-
10 2.37E-05 0.000151 -178.772 8.52E-

14 

cg26889659 chr6 684090 EXOC2 3.21E-
14 -282.418 7.42E-

13 -0.03981 3.84E-
08 2.89E-05 2.41E-10 -238.068 1.12E-

06 
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Figure Captions 

Figure 1. Methylomic variation associated with birth weight and gestational age in 

neonates. Manhattan plots of P-values from an epigenome-wide association study (EWAS) 

of A) birth weight (g) and B) gestational age (weeks). The red horizontal line indicates 

experiment-wide significance (P < 1x10-7), the blue horizontal line indicates a ‘discovery’ 

significance threshold (P < 5x10-5). Shown are scatterplots of the top-ranked differentially 

methylated positions (DMPs) associated with C) birth weight (cg20076442) and D) 

gestational age (cg11932158).  

 

Figure 2. DNA methylation at birth is associated with maternal smoking during 

pregnancy. The red horizontal line indicates experiment-wide significance (P < 1x10-7), the 

blue horizontal line indicates a ‘discovery’ significance threshold (P < 5x10-5). A) Manhattan 

plots from an EWAS of maternal smoking. Boxplots of the three top-ranked DNA methylation 

sites associated with maternal smoking: B) cg05575921, C) cg09935388 and D) 

cg12803068. Shown are unadjusted DNA methylation values. 

 

Supplementary Table Captions (see Excel file for Supplementary Tables). 

Supplementary Table 1. Characteristics of samples included in the MINERvA cohort. * 

= primary characteristics used to match cases and controls. ** = secondary characteristics 

used to match cases and controls as closely as possible. 

 

Supplementary Table 2. Eighteen birth weight associated DMPs were identified at a 

threshold of P < 1x10-7. Genomic locations are based on hg19. 

 

Supplementary Table 3. 4,299 gestational age associated DMPs were identified at a 

threshold of P < 1x10-7. Genomic locations are based on hg19. 

 

Supplementary Table 4. Conditional analysis within 3,550 distinct loci associated with 

gestational age. 

 

Supplementary Table 5. 110 maternal smoking associated DMPs were identified at a 

threshold of P < 1x10-7. Genomic locations are based on hg19. 

 

Supplementary Table 6. Conditional analysis within 70 distinct loci associated with 

maternal smoking. 
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Supplementary Table 7. 143 DMPs associated with maternal smoking selected for 

mediation analysis. 

 

Supplementary Table 8. SIMEX adjusted mediation analysis for 3 DNA methylation 

sites identified as having significant mediation effects between maternal smoking and 

birth weight. 

 


