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Abstract

Multiple scattering is a very common phenomenon since it occurs any time a wave meets

a disordered medium. As almost any natural object has random structure in one form or

another, the variety of the processes involving multiple scattering spans from electronic

transport in solids to propagation of sound in a forest. In principle, multiple scattering

is completely deterministic, and in the absence of absorption also reversible, which

means that the information encoded into the incident wave can be perfectly recovered.

However, in practice, due to its extreme complexity we often consider this process to

be random, which leads to information loss. Within this approach correlations can

be an important instrument of information recovery, because they directly quantify the

amount of knowledge we get about the wave in a particular point from the measurement

performed in a different point.

In the first part of this thesis we study a novel type of mesoscopic correlations

between the light intensities at the opposite sides of an opaque scattering slab. We

study its dependence on the scattering medium properties and the incoming light beam

parameters. In the last chapter of the first part we show how this correlation can be used

to retrieve non-invasively the information about the shape of an object placed behind

the scattering medium.

In the second part we switch to the quantum aspects of the light propagation inside

the scattering materials. We show that certain class of quantum correlations, quantum

discord, can be present in the multimode output state of the scattered light even when

the input light is in a thermal state, which is commonly considered classical. We pro-

pose a non-classicality measure based on the strength of this correlation, applying it to

characterize the advantage due to the quantum measurement in discrimination of two

coherent states in their mixture.
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Introduction

Most of the information about the surrounding world we obtain by processing elec-

tromagnetic or acoustic waves by our body. Indeed, the ability of the waves to carry

information is truly remarkable. The light from distant galaxies travels billions of kilo-

metres before reaching the Earth, but we still can observe it. At another extreme is the

amount of data that is possible to transfer: at the moment of this thesis completion the

fastest optical-fibre cable connecting Northern America with Europe allows a staggering

160 Tb/s data transmission rate [1], through just 8 fibres around a millimetre in diame-

ter. There are multiple ways of how information can be encoded into the light wave. It

can be stored into its spatial configuration, temporal dynamics or polarization orienta-

tion. Recent developments in the non-classical light generation and manipulation allow

for additional degrees of freedom opening the way to encode information directly into

its quantum state and retrieve it using higher-order photon statistics measurements [2,

3].

When information is carried by the light intensity spatial distribution in the form of

an image, any interaction of the wave carrying this distribution with eextraneous objects

alters this wave, causing image distortion. However, in many cases information is not

lost in this process, unless the carrying wave is absorbed. When the wave transformation

can be described deterministically, the resulting distortion may be corrected by post-

processing [4, 5] or adaptive optics compensation [6]. However, obviously, this is possible

up to a certain limit. Interaction of the light even with a single obstacle of a size of its

wavelength leads to a complicated scattered light distribution [7]. When the wave meets

a structure containing thousands of such particles, the resulting intensity distribution,

called a speckle pattern [8], becomes very complicated, as well as the transformation

that relates the incident wave configuration with the outgoing one. Often, despite being

completely deterministic this process is treated as random, due to its complexity, which

means that we give up the information carried by the incident wave. In the current

work we deal exactly with this situation, showing that despite its extreme complexity

certain amount of information can survive the multiple scatting process. We also make
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steps towards using quantum features of light to increase the amount of the retrieved

information.

The problem of quantifying information is well understood [9–11]. For a single

random variable A with N possible outcomes ai, i = 1 . . . N , its information capacity is

characterized by the entropy

H(A) = −
∑

pi log(pi), (1)

where pi are the probabilities of each of the outcomes ai. This quantity is fundamentally

important, however in the current context it is useful only to characterize the variation

of A (the greater the variation the bigger is H). In most of the practical situations

the quantity of interest is rather the mutual information between the two variables

A and B. Mutual information allows to analyse any kind of relationship between A

and B directly quantifying how much knowledge about B it is possible to get from A.

Such a simple model of two dependent random variables gives a general description of

a variety of physical processes. For example in any communication scenario we can

associate A with the transmitted messages and B with the received ones. In that case

mutual information between A and B characterizes the quality of the communication

channel, imposing a boundary on the achievable information transfer rate [9–11]. In

the measurement process we can associate A with the actual physical parameter to

be measured, and B with the measurement instrument reading. In that situation the

mutual information between A and B characterizes the measurement uncertainty, and is

a primary parameter to optimize for the precision improvement [12, 13]. In the context

of our problem of the interaction of light with disordered structures, we are interested in

the mutual information between the scattered field intensities in different spatial points.

Mutual information provides a complete description of the relations between random

processes, however it might be difficult to handle, as it requires full knowledge of their

probability distribution [14]. In practice often a simpler criterion of correlation is used.

For two variables A and B correlation is usually characterized by the quantity

C =
〈AB〉 − 〈A〉〈B〉√

Var[A]Var[B]
=

〈δAδB〉√
Var[A]Var[B]

, (2)

where 〈·〉 denote ensemble averaging, Var[·] is variance and δA = A − 〈A〉. It is a

part of the mutual information that captures just linear relationships between random

processes [9]. While correlation always implies presence of mutual information, the

opposite may not always be true. For example, in the case of non-linear (deterministic)

relationship between two random variables we might have a complete knowledge of one
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of them from another, while their correlation at the same time can be weak. Here we

consider the process of elastic light scattering, which is a linear process, therefore we

expect correlation to be a suitable criterion to quantify the relationships within the

scattered field.

The thesis is organized in the following way: in chapters 1-4 we discuss classical

correlations between the reflected and transmitted scattered field intensity patterns upon

the disordered medium configuration variation. In chapters 5-7 we discuss quantum

features in the statistical fluctuations of light, scattered by a disordered medium with a

fixed configuration of scatterers. In more detail:

• In the first chapter we present the results of the experimental measurement of the

correlation between the reflected and transmitted multiply scattered light inten-

sities. We start by giving a brief introduction into the topic of coherent multiple

scattering and outline the role of the correlations in it. After that we describe the

experimental procedure and data processing algorithms that were used to observe

the reflection-transmission correlation. Then we discuss the dependence of this

correlation on the experiment parameters, such as sample thickness and mean free

path, incoming wave angle of incidence and polarization, distance of the observa-

tion planes from the sample surface.

• In the second chapter we discuss the numerical simulation of the correlation pre-

sented in the first chapter, using the coupled dipoles approximation. We start by

describing this method and the main differences between the scattering regimes in

the modelling and in the experiment. After that we present the numerical results,

comparing them to the experiment.

• The third chapter contains the detailed description of the analytical calculation of

the measured correlation function. We start by introducing the necessary concepts

from the theory of wave propagation in disordered materials, outline the model,

and present calculation of the correlation function in the diffusive regime, which

describes one of the contributions observed in the experiment. We also analyse the

origin of the other contributions observed in the experiment and in the modelling.

• In the fourth chapter we discuss how the correlation we observed can be used to

obtain information about the objects placed behind the scattering layers. For that

purpose, we propose a modification of the ghost imaging technique that exploits

the correlation between the reflected and transmitted speckle patterns, which we

call Blind Ghost Imaging. We analyse the signal-to-noise ratio of the normal

ghost imaging technique and extend this analysis to our proposed technique, and
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finally make some remarks regarding the possible improvement of the information

retrieval using the compressive sensing techniques.

• In the fifth chapter we introduce the background theory required for investigation

of the scattered field quantum features. We revise the theory of light quantization,

phase-space formulation of quantum mechanics and finally single and multimode

non-classicality criteria.

• In the sixth chapter we study quantum correlations between the output modes of

the optical beam-splitter, which is a simplified model of the multiple scattering

process. It is well known that quantum entanglement may be present between the

output modes when the input state is non-classical [15]. We show that weaker form

of quantum correlation, quantum discord can be present in the output even when

the input is a simple mixture of coherent states. We introduce a non-classicality

criterion, based on this correlation, which we call discord potential, and compare

it to the other single-mode criteria in particular recently introduced coherence

monotones [16].

• In the last chapter we finally address the question of the quantum correlations of

light scattered by a disordered medium. We extend the model described in the

previous chapter to include multiple input and output modes as in the multiple

scattering situation. We calculate the output state in that scenario, depending

on the properties of the input state and of the scattering medium. We check the

non-classicality criteria for the output state, showing that similarly to the beam-

splitter case, we can expect entanglement between the output modes if the input is

non-classical, but more interestingly quantum discord can be present in the output

even if the input is in a thermal state.
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Chapter 1

Experimental measurement of the

reflection-transmission correlation

1.1 Motivation and previous work

In the current chapter we present the first direct experimental observation of the corre-

lation between the reflected and transmitted speckle patterns during coherent multiple

scattering. The results in this, and the following three chapters are obtained in a col-

laboration with the group of R. Carminati, EPSRC, Paris, where they developed the

analytical theory and the framework for the numerical modelling, whereas our group

designed and performed the experimental measurements. These results are presented

in [17].

Multiple scattering is an omnipresent phenomenon. Almost any natural object con-

tains disordered structures, which upon interaction with a wave cause a complicated

recursive interference process, resulting in a complex output field configuration. The

parameter responsible for the strength of this effect is the mean free path, `. In the

absence of absorption it is qualitatively related to the average distance between the

scattering events. Different regimes are possible depending on the relations between λ,

the wavelength of the incident wave, `, and size of the disordered object along the wave

propagation direction, L. In the situation when L� l and especially when L is greater

than the coherence length of the source, all the interference effects are smoothed by

a huge number of scattering events and the transport of intensity is well described by

the diffusion equation [18, 19]. In another extreme, when ` < λ [20], the interference

effects become so strong that the wave may become “stuck” within a confined region

of the disordered sample, which is known as Anderson localization [21]. In this work

we are interested in an intermediate situation when ` >> λ and L ' `, but the coher-
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Figure 1.1: a) Example of a speckle pattern in transmission. When intensity in the
point A is large, the points in its vicinity are more likely to be bright as well and vice
versa. b) Correlation function of this pattern, capturing such behaviour.

ence length of the source is much greater than L. In this scenario, interference effects

lead to large spatial (or angular) fluctuations of the reflected and transmitted intensity,

called speckle patterns [8], see Fig. 1.1a. At first glance the pattern in Fig. 1.1a seems

completely chaotic. However at a closer look it is possible to notice some relationship:

it has a granular structure, meaning that when intensity is high at a certain point, it

is more likely to be high in the adjacent ones. This fact is captured by the correlation

defined in (2),

C(rA, rB) =
〈δI(rA)δI(rB)〉
〈I(rA)〉〈I(rB)〉

, (1.1)

with random variables A and B being field intensities at different spatial points. We note

that instead of position we could use any other degree of freedom of the electromagnetic

field: propagation direction angle, frequency, time or polarization orientation. The

resulting correlation functions would be related to each other and we chose spatial

correlations because they are easier for us to measure. In the case of isotropic speckle

pattern, correlation in (1.1) does not depend on the absolute positions of the observation

points, but only on their relative displacement ∆r = |rA − rB|, which leads to the

correlation function:

C(∆r) =
〈I(r)I(r + ∆r)〉
〈I(r)〉〈I(r + ∆r)〉

. (1.2)

An example of such function is shown in Fig. 1.1b, where both observation points are

behind the scattering sample (in transmission). This correlation is non-zero only for the

points within the distance of a speckle spot, or in other words this correlation is a short-

range one. However, this type of correlation is not the only possible one. Certain class of

interference events within the scattering medium may give rise to long-range correlations
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that connect the intensities within the distance of many speckle spots [18–20, 22]. We

will discuss in details the physical origin of the short and long-range correlations in Ch. 3.

For now, we focus on the experimental observation of the correlation in a particular

reflection-transmission geometry.

Correlations between the light on the opposite sides of an opaque scattering slab are

interesting from both fundamental and practical points of view. In the former case such

geometry allows to probe the validity of the theoretical description of mesoscopic corre-

lations, giving easy access to the contributions that are not described by the standard

perturbation theory [22]. On the other hand, the existence of such correlation would

mean that we obtain certain amount of information about the pattern on one of the

sides of the medium, measuring the pattern on the opposite side, which can be used for

imaging of wavefront control purpose.

Despite such apparent benefits, reflection-transmission correlations attracted little

attention in the past, being mentioned only in passing [23, 24]. The first detailed study

of the correlation function in such a geometry was performed by our collaborators in [25],

where they demonstrated the existence of long-range correlations between the reflected

and transmitted speckle patterns in the diffusive regime. The main motivation of the

current work was to validate these theoretical predictions.

There is usually no problem in observing short-range correlations in either trans-

mitted or reflected light. As we can see from Fig. 1.1, the short range contribution

completely dominates the correlation function (1.2) in transmission. In order to mea-

sure it we just need to record the speckle and correlate it with itself [26, 27]. It is

usually harder to observe the long-range correlation. In the optical domain the long-

range correlations in frequency [27, 28] and time [29] were observed by means of total

transmission fluctuation measurements. The spatially resolved long-range correlations

were experimentally studied in the microwave [30, 31] and in the optical [32, 33] domains

only in the waveguide-type geometry. Correlations between reflected and transmitted

light were observed indirectly in the experiments on focusing light scattered by ran-

dom media, where they allowed to control the intensity in the areas much larger than a

speckle spot [34, 35]. Here we present a direct measurement of the correlation function

for the 3D scattering slabs.
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1.2 Measurement set-up and procedure

1.2.1 Set-up description

The experimental apparatus is shown in Fig. 1.2a. A scattering sample is illuminated

with a monochromatic wave (2 mW He-Ne λ = 632 nm laser), incident at an angle

that we can vary from 45◦ to 80◦. As a sample we use a suspension of TiO2 (Rutile)

powder in glycerol, placed between two microscope slides. The slab thickness L is

controlled using feeler gauge stripes. The mean free path ` is controlled by varying

the TiO2 concentration. Typical samples with different optical thickness b = L/`, from

semitransparent to fully opaque are shown in Fig. 1.2b. For a given L and ` we record

the intensity patterns R(r) and T (r) on the surface of the sample in reflection and

transmission respectively, with two identical imaging systems each composed by a 10x

Figure 1.2: a) Experimental setup. A scattering slab, formed by a suspension of TiO2

particles in glycerol, is illuminated by a laser beam incident at an angle ∼ 45◦. The
speckle patterns on the two surfaces, T (x, y) and R(x, y) respectively, are recorded
with two identical imaging systems. b) Examples of samples with thickness L = 20µm
but different TiO2 concentrations: from left to right 5 g/l, 10 g/l and 40 g/l, which
correspond to a mean free path of (60, 20.4 and 9.8) ± 2.5 µm, respectively.
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microscope objective, a plano-convex 150 mm lens, and CCD camera (Allied Vision

Manta G-146). As the samples are liquid the configuration of the scatterers changes in

time due to the Brownian and fluid motion. Therefore the resulting speckle patterns

change in time as well, with a decorrelation time τ that depends strongly on the sample

thickness, increasing for the thinner ones. Choosing an integration time < τ , and a time

interval between successive measurements > τ , allows us to measure speckle images R(r)

and T (r) for a large ensemble of configurations of the disordered medium. For the cases

when the decorrelation time was significantly larger than interval between successive

exposures, the sample was additionally actuated using a piezo-transducer attached to

one of the cover slides.

1.2.2 Sample characterization

In order to determine the mean free path of the three samples with different concentra-

tions of the TiO2 we used the well known Lambert-Beer law I = I0e
−L/`e , where I0 is the

intensity of the incident beam, I is the transmitted intensity, L is the thickness of the

sample and `e the extinction length. This expression describes the attenuation of the

ballistic (unscattered) light propagating through a disordered and absorbing medium.

Since absorption in the TiO2-glycerol samples we used is negligible (albeit non zero)

Figure 1.3: Experimental data to determine the mean free path of the three different
sample concentrations we used. In red is the data corresponding to the concentration
of 50 mg of TiO2in 10 ml of glycerol, in blue the concentration of 150 mg of TiO2 in
10 ml of glycerol and in yellow, the data corresponding to the concentration of 400 mg
of TiO2 in 10 ml of glycerol. The black dashed lines represent the Lambert-Beer law
fitting to the corresponding experimental data.
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compared to scattering, we can consider `e ≈ `. The attenuation of the ballistic light

due to scattering follows from the fact that the average Green’s function decays expo-

nentially after disorder averaging, see Ch. 3.

We measured the attenuation of the ballistic beam for different thicknesses of the

sample and obtained the scattering mean free path of the three different samples by

fitting the Lambert-Beer law, as shown in Fig. 1.3.

The scattering mean free paths for the samples with concentrations of 50 mg of TiO2,

150 mg of TiO2, and 400 mg of TiO2 in 10 ml of glycerol were found to be, respectively,

60 ± 1.3 µm, 20.4 ± 0.5 µm, and 9.8 ± 0.7 µm.

1.2.3 Data processing

The correlation function between the reflected and transmitted speckle patterns is de-

fined as

CRT (∆r) =
〈δR(r)δT (r + ∆r)〉
〈R(r)〉 〈T (r + ∆r)〉

(1.3)

where ∆r = (∆x,∆y) is a transverse shift between the images, and δA = A − 〈A〉,
denotes the statistical fluctuation of the speckle intensity around the ensemble (disorder)

average. In order to calculate this function we evaluate the correlation product

CRT (∆r) =
1

N1

∫
δR(r)δT (r + ∆r)dr (1.4)

for each pair of the recorded speckle patterns, where · denotes a spatial average (over

r) and N1 is a normalization factor. After that an ensemble average of CRT (∆r) is

performed, leading to a correlation function 〈CRT (∆r)〉, which is equivalent to CRT (∆r)

under assumptions that we will discuss below.

Practically CRT (∆r) is calculated using the convolution theorem

CRT (∆r) = F−1[F [δR]×F [δT ]∗], (1.5)

where F denotes the Fourier transform and F−1 its inverse. In the earlier versions of

the setup we used a Lab-View script to record the patterns to the disc and calculated

this quantity by post-processing the raw data in Mat-Lab. Despite giving flexibility

in the data processing, such variant is very slow (due to disk operations) and storage

demanding (a typical experiment requires ∼ 10 − 50 Gb disk space). Therefore we

modified the Lab-View script to evaluate the correlation product on-fly without storing

the raw images, which allowed to process ∼ 5 speckle pairs per second.
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Figure 1.4: Typical raw speckles a) R, in reflection and b) T , in transmission, contain
a non-uniform background, which becomes apparent upon averaging, which is shown
in c) for reflection and d) in transmission. e) Correlation between the raw speckles,
dominated by the cross-product of the average patterns. f) Correlation between a single
pair of speckle patterns, CRT , with the background removed. g) 〈CRT 〉, average of CRT .
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The acquisition speed was improved even further by writing the image processing and

correlation calculation program in C, for which we used the Vimba acquisition [36] and

FFTW [37] libraries, approaching the hardware (camera max. fps) limit of 17 speckle

pairs per second.

In the case of the stored data post-processing, the disorder averages 〈R〉 and 〈T 〉
required to obtain δR and δT is calculated simply by summing the recorded speckles.

In the case of on-fly processing a certain number of runs is required to accumulate

this quantity prior to the correlation product processing. We note that contrary to the

numerical simulation and theory the disorder average subtraction is crucial for the case

of experimental measurement of the correlation function since it allows to remove the

acquisition artefacts.

In Fig. 1.4a, b we show a pair of typical speckle images in reflection and transmission.

It is impossible to notice any similarity between these patterns because the correlation

is very weak. It is also hardly visible in the raw speckles but they all lay on an irregular

fringed background pattern because of the non-uniformity of the illuminating beam and

reflections in the protective glass window in front of the CCD detectors. Performing

an ensemble average of the speckles reveals these patterns, shown in Fig. 1.4c, d. In

analytical theory 〈R〉 and 〈T 〉 refer to the uniform background reflected/transmitted

intensity. If not subtracted from R or T they will add a constant background to the

correlation product, not affecting its shape. In the numerics the situation is almost the

same apart from slight non-uniformity of 〈R〉 and 〈T 〉 due to boundary effects. In the

experiment if we don’t subtract 〈R〉 and 〈T 〉 from R and T the resulting correlation

product will be dominated by the correlation between 〈R〉 and 〈T 〉, as we show in

Fig. 1.4e, where the correlation product between R and T without average subtraction

is shown. The typical correlation product CRT (∆r) between δR and δT is shown in

Fig. 1.4f. It appears random, with a granularity similar to that of a speckle image,

because the reflection-transmission correlation we are looking for is too weak to see in

one realization of disorder (it would be possible if we had a big enough CCD) and is

covered with random noise. Upon ensemble averaging this noise disappears, revealing

the shape of the reflection-transmission correlation, as shown in Fig. 1.4g.

The final step in the calculation is the normalization. As 〈R〉 and 〈T 〉 are dominated

by the experimental artefacts, we can’t normalize the correlation as in (1.3). Instead we

use a normalization factor

N1 =
[
δR(r)− δR(r)

]2
1/2

×
[
δT (r + ∆r)− δT (r + ∆r)

]2
1/2

, (1.6)
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such that
1

N1

∫
δT (r)2dr =

1

N1

∫
δR(r)2dr = 1 (1.7)

Substituting N1 to (1.4) and assuming ergodicity and therefore equivalence of the

spatial and disorder averaging we note that 〈CRT (∆r)〉 ' N−1
2 〈δR(r)δT (r + ∆r)〉, with

N2 =
〈
[δR(r)− 〈δR(r)〉]2

〉1/2 ×
〈
[δT (r + ∆r)− 〈δT (r + ∆r)〉]2

〉1/2
. (1.8)

As we will discuss later in Ch. 4, the intensity of the speckle patterns in the regime we are

working in has a negative exponential distribution [8], according to which 〈δR2〉 = 〈R〉2

and 〈δT 2〉 = 〈T 〉2, and therefore

〈CRT (∆r)〉 ' CRT (∆r) =
〈δR(r)δT (r + ∆r)〉
〈R(r)〉〈T (r + ∆r)〉

. (1.9)

1.3 Results

In this section we present experimental results showing the dependence of the correlation

function on the parameters of the sample and illumination. Later, in the next chapters

we will compare these measurements with the numerical simulations and the analytical

theory.

1.3.1 Thickness and mean free path dependence

The main parameters that determine the shape of the correlation function are the mean

free path of the sample ` and its thickness L. We measured 〈CRT (∆r)〉 for different

values of ` and L, covering a full range from single scattering (L . `) to the diffu-

sive (L � `) regime. The results are summarized in Fig. 1.5, where both 2D maps

〈CRT (∆x,∆y)〉 and cross-sections along the line ∆y = 0 (indicated as a dotted line

in the 2D maps) are displayed. Both the shape and the sign of the measured correla-

tion substantially depend on L and `. In the single scattering regime (optical thickness

b . 1), 〈CRT 〉 is dominated by a narrow peak (still much larger than a single speckle

spot) with a negative side lobe. In the multiple scattering regime (b � 1), 〈CRT 〉 is

dominated by a wide negative dip.

Presence of a negative dip in the L > ` regime matches the theoretical prediction [25],

which confirms non-trivial character of this correlation, arising from the interference

between the diffusion paths of the waves travelling through the scattering medium,

which we discuss in Ch. 3. This negative correlation implies that for every bright spot
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Figure 1.5: Averaged reflection-transmission correlation function 〈CRT 〉 for different
L and ` and the optical thickness b = L/`. For each L and `, both 2D maps of
〈CRT (∆x,∆y)〉 and cross-sections along the line ∆y = 0 are displayed. For moderate
optical thickness (b . 1), the correlation function is dominated by a narrow peak with
a negative side lobe. For large optical thicknesses, (b > 1), the correlation function is
dominated by a wide negative dip.

in reflection (transmission) the corresponding area in transmission (reflection) is more

likely to be darker, and vice versa. In Ch. 4 we show how this can be used to retrieve

information about the objects hidden behind a scattering medium in the regime in which

the methods based on the memory effect [26], are inapplicable.

The origin of the positive contribution present at small and moderate optical thick-

ness is less clear. In Sec. 3.3.1 we present the arguments showing that this can’t be a

trivial field-field short range correlation, of the same type that normally dominates in

the speckle correlation on either side of the medium (in reflection or in transmission).

In [17] we suggest that this contribution occurs due to the field exchange between the

diffusion paths in the first scattering event near the sample surface. We explain this in

more details in Sec. 3.3.3.

To support our argument regarding the origin of these contributions we studied their

dependence on the thickness more in detail, see Fig. 1.6. We can see that in the range

where both contribution are present, i.e. Fig. 1.6b, e, their interplay complicates the

dependence of the total correlation on the sample thickness and it is hard to make any

conclusions from that measurement. However, when we isolate one of the contributions
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Figure 1.6: Dependence of the correlation function on the sample thickness. a) ` =
60µm. b) ` = 20µm. c) ` = 15µm. d) Thickness dependence of the maximal value of
the correlation function for ` = 60µm. e) Thickness dependence of the maximal and
minimal value of the correlation function for ` = 20µm. f) Thickness dependence of the
minimal value of the correlation function for ` = 15µm.

by choosing an appropriate mean free path, the thickness dependence becomes more ap-

parent. Regarding the negative contribution, the theory predicts |CRT
min| ∝ L−2. The fit

in Fig. 1.6f suggests 〈CRT
min〉 ∝ −L−1.8±0.2, which is quite close to the theoretical predic-

tion. Moreover, introducing a scaling CRT (∆r/L)/L−2 according to the theory should

remove any thickness dependence of the correlation function, which can be observed in

the Fig. 1.7.

As we discuss in Sec. 3.3.3, the mechanism leading to a positive peak implies that it

should reduce with the thickness as CRT
max(∆r) ∝ L−4. In the experiment, see Fig. 1.6a,

d, we observe slightly slower decay 〈CRT
max〉 ∝ L−3.2±0.4. This can be attributed to the

fact that the negative contribution although invisible in the data, is still present and

while reducing (in absolute value) with the thickness somehow balances the quick decay

of the peak.
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Figure 1.7: Universal scaling of the correlation function. Dividing 〈CRT 〉 from Fig. 1.6c
by L2 and rescaling ∆r by L leads to elimination of the thickness dependence of the
correlation, see Sec. 3.3.2, which agrees with the experimental data.

1.3.2 Dependence on the angle of incidence of the incoming

beam

One more argument in favour of the proposed mechanism of the correlation peak forma-

tion is its dependence on the incidence angle of the exciting wave. The field exchange

occurring at the sample surface, determines the relative phases of the following diffusion

paths and in that way can bring the dependence on the initial wave incidence angle in

the correlation shape. To support this argument we performed a measurement of the

correlation shape dependence on the angle incidence of the incoming light. We show

this dependence in Fig. 1.8a. As we can see, the amplitude of the peak reduces with

the angle of incidence. Also the relative position of the peak and the dip changes, as

can be seen from Fig. 1.8a, but more clearly from Fig. 1.8b, in which correlation is

recorded with the incident beam being inclined both in horizontal and vertical planes

with respect to the sample surface.

The sample used for this experiment had ` = 20µm. According to the theoretical

description, the origin of the dip in this configuration is different from the situation of

large optical thickness. As we describe in Sec. 3.3.3 the near-surface crossing leads to

a complex correlation shape with positive and negative parts, both of which depend

on the incidence angle, while the dip occurring due to the diffusion paths crossing in

the bulk should not depend on the illumination angle at all. According to the theory,

the projection of the incident beam on the sample surface specifies a preferred direction
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Figure 1.8: Dependence of the correlation function on the exciting light incidence angle.
a) The projection of the incident beam on the sample surface is parallel to the camera
horizontal axis. b) 2D map of the correlation at θ ≈ 45◦. c) Correlation function
measured after adding an angle of ∼ 30◦ between the beam projection onto the sample
surface and camera horizontal axis. Features in the correlation function remain aligned
along the incidence beam projection.

along which the peak and the dip are aligned. The correlation shape depends on the

angle between the incident beam and its projection on the sample surface, which is

qualitatively consistent with the experimental observations. It is hard to go beyond the

qualitative comparison since on one hand the ladder approximation, used to describe

the diffusive transport after the initial scattering, is hardly valid in the L ≈ `, while

at the larger optical density the contribution due bulk crossing should be taken into

account, which complicates the analysis.

1.3.3 Correlations between different polarization channels

In the most of the current work we deal with the scalar wave approximation, in which

we neglect the vector nature of the electromagnetic field. Such an approach is well

justified for the case of strongly scattering samples, where the initial beam polarization

state is lost at a distance of ∼ ` within the sample [38]. Good agreement between

the theory and experiment, reassures us in the appropriateness of this approximation

even for the case of moderate scattering strength. However if we aim for a complete

quantitative description, the vector nature of light should be taken into account. The

correlations between different polarization channels have been previously studied only

theoretically [39–41].

We performed an experiment in which we studied the correlations between the re-
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flected and transmitted speckle patterns in different polarization channels. The results

are presented in Fig 1.9, in which panel a) refers to the weak scattering situation of

L ≈ ` and panel b) refers to a more scattering sample. We assign the subscript ⊥ to the

R or T channels perpendicular to the incident beam polarization and ‖ to the parallel

ones, which we can select in the measurement by placing corresponding polarizers before

the cameras in reflection or transmission. The upper sub-panels in a) and b) refer to

the correlation without polarizers, while the lower ones show the correlation functions

for all four possible combinations of R⊥, R‖, T⊥ and T‖.

In both cases, as expected, the correlation between R‖ and T‖ is almost identi-

cal to 〈CRT 〉. When the polarizer in transmission is crossed with the incident beam

polarization (〈R‖T⊥〉, 〈R⊥T⊥〉 in Fig 1.9a,b), for both cases the negative part of the

correlation disappears and the remaining part is positive. This is not surprising for the

weak scattering case, as the positive part is present in the total correlation, however

presence of a positive contribution in the strong scattering case is surprising. As we will

see in Sec. 3.3.2 the analytic calculation of the correlation function involving diffusion

crossing in the bulk of the sample involves evaluation of several terms having different

signs. The observed correlation between different polarization channels suggest that

these terms may also be separated in polarization.

Figure 1.9: Measured correlation function between different polarization orientations in
reflection and transmission. Lower index indicates the orientation of the corresponding
reflection or transmission registration channel with respect to the incident beam polar-
ization. Arrows indicate the incident beam wave-vector and polarization orientations.
a) ` = 60µm sample. b) ` = 15um sample.
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Finally, in the case when the reflection channel is crossed with the incident beam

and the transmitted one is aligned with it, the correlation function behaviour is different

for the weak and strong scattering case. In the L ≈ ` case the T‖R⊥ correlation is much

weaker than the total one with both positive and negative contributions attenuated by

an order of magnitude, while in the strong scattering regime, T‖R⊥ is almost the same

as 〈CRT 〉.
In order to explain the observed behaviour we note that in the weak scattering case

both reflected and transmitted scattered light is strongly polarized in the same way as

the incident beam, while in the strong scattering case the reflected light remains strongly

polarized and the transmitted one almost depolarizes. This happens due to the fact that

reflection occurs mostly close to the surface and just a small fraction of the reflected

light comes from the bulk of the sample. Now, crossing the polarizer in reflection with

the incident beam blocks the light that is reflected closer to the surface. As the positive

contribution occurs due to the waves involved into a scattering event near the surface,

the size of the peak is reduced when we block such single-scattered light from going to

the reflection camera. It is hard to go beyond such rough explanation without modifying

the analytical theory to account for the vector nature of light, which is a challenging

problem for the future.

1.3.4 Behaviour at a distance from the surface

In this section we discuss the dependence of the correlation function on the distance

of the registration plane from the sample surface(s). Contrary to the other correlation

functions that remain present even in the far field [29–31], 〈CRT 〉 exists only near the

reflection and transmission surfaces. In the far field CRT (kb,kb′) ∼
∫
CRT (∆r)d∆r =

const. for any pair of observation directions kb, kb′ , as the information content is spread

uniformly over all degrees of freedom.

It is hard to estimate theoretically how fast the decorrelation occurs as it involves

inclusion of the additional free space propagation terms into the equation for the corre-

lation function. However, this information might be important to assess the limitations

of the imaging technique we propose in Ch. 4. In order to get such an estimate, we

performed a measurement of 〈CRT 〉 changing, df the distance of both of the observation

planes from the sample surfaces. The resulting correlation functions are presented in

Fig. 1.10. In both strong and weak scattering cases the correlation function broadens and

reduces in height, when observed farther away from the surface, however surprisingly is

still present even at a distance of 150 µm away from them, which is more than 3L. The

rates at which the correlation decays is slightly different for the positive and negative
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Figure 1.10: Dependence of the average correlation function on the distance from the
sample surfaces, df . a) Weak scattering case ` = 60µm,L = 40µm. b) Strong scattering
case ` = 10µm,L = 40µm. c) Dependence of the peak maximal value on df for the
` = 60µm sample. d) Dependence of the dip minimal value on df for the ` = 10µm
sample.

contributions, being bigger for the peak. The size of the dip changes as ∝ d−0.7±0.004
f ,

while the peak changes as ∝ d−1±0.12
f .

1.4 Summary

We have presented an experimental study of the long-range correlation between the

reflected and transmitted speckle patterns. We probed its dependence on the sample

parameters, incident beam orientation and collection plane distance from the surface. In

the diffusive regime the correlation is dominated by a broad negative dip matching the

theoretical prediction [25]. In the ballistic scattering regime the correlation reveals an

unforeseen positive contribution. In the intermediate regime, these two terms co-exist

leading to a complicated interplay, that depends on the exciting beam angle of incidence

and polarization. Both contributions decay with the distance from the surface. In the

next two chapters we continue to study this correlation numerically and analytically.
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Chapter 2

Numerical simulation of the speckle

correlations

In this chapter we present numerical simulation of the reflection-transmission correlation

introduced in the previous chapter, using the coupled dipole method [42]. This approach

was used to simulate the disordered material slabs in [25]. The author of the thesis

extended this approach to include the angle of incidence and polarization of the incoming

wave. All the simulations presented here were performed by the author except for those

in Fig. 2.3.

2.1 Coupled dipoles approximation

The coupled dipole method is a well established technique for numerical simulation

of the fields created or scattered by complex structures [42–44]. In this approach the

scattering object is split into discrete blocks and to each block a point dipole is assigned.

Assuming that these dipoles interact only through far-field radiation, it is possible to

find the effective field exciting each of the dipoles, and when it is known, to calculate

the scattered field. There are several difficulties associated with this method [45]. First

of all the discretization of the object should be done in such a way that the resulting

dipole distribution represents the original object well enough. It means that, at least,

there should be sufficient number of the discretization cells, however large numbers

of dipoles complicate the calculations. In addition, the polarizability of the dipoles

should be chosen in such a way that it reproduces the modelled material refractive

index frequency (or position if necessary) dependence. However applying this model to

a typical scattering medium we can omit these difficulties.

As we will see later (Sec. 3.1.2), a set of randomly distributed point scatterers,
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as in (3.30), is a good model of a typical disordered medium. Moreover, as we are not

interested in the exact configurations of the fields, but rather in their statistics, a random

distribution of dipoles within some volume is a perfect model of a scattering sample,

assuming that they have comparable macroscopic properties (density of scatterers, mean

free path, e.t.c). The polarizability of the scatterers can be considered to be constant as

in this chapter we consider monochromatic input wave. Moreover, as we are interested

in the field correlations, the exact amplitude of the field is not important for us (it is

excluded during the correlation normalization) and therefore the polarizability can be

arbitrary.

As the polarizability can be arbitrary, we choose ω = ω0 or that the scatterers are

in resonance, which simplifies further calculations. The polarizability of the scatterers

at the frequency close to the resonance in 3D space is

α(ω)

∣∣∣∣
ω→ω0

≈ − 2πG

k3
0(ω − ω0 + iG /2)

, (2.1)

where ω0 is their resonant frequency and G determines the linewidth. In that case

α(ω) = −4π/k3
0i and the scattering cross-section

σ(ω) =
k4

0|α(ω)|2

4π
=

4π

k2
0

, (2.2)

from which we derive the mean-free path

` =
1

ρsσ
=
LSk2

0

4πNs

, (2.3)

where ρs is the density of scatterers, L is the thickness of the sample, S is the area of

the sample surface and Ns is the number of scatterers within the sample.

Assuming that the incident field is a wave travelling from left to right along x,

E0(x) = e−ik0x, (2.4)

we can write the expression for the field exciting each scatterer as

Ej = E0(rj) + α(ω)k2
0

Ns∑
k=1,k 6=j

G0(k0|rj − rk|)Ek, (2.5)
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where G0 is the free-space Green’s function

G0(r0, r) = − eik0|r0−r|

4π|r0 − r|
. (2.6)

Here we also neglected the electric field polarization, treating electric field as a scalar

wave. We will discuss the effect of polarization later. Considering E = {Ej} to be a

vector of unknowns, (2.5) can be treated as a system of linear equations. In the matrix

form it is

−E0 = α(ω)k2
0(G0 − I)E , (2.7)

where G0 jk = G0(k0|rj − rk|). It can be solved for E by inverting the G0 matrix, or

by approximate methods [46]. When E is known the field in any point of space is

reconstructed as

E(r) = E0(r) + α(ω)k2
0

Ns∑
k=1

G0(k0|r− rk|)Ek. (2.8)

When the polarization of the incident and the scattered light is taken into account the

problem becomes more complicated. The Green’s function takes form

←→
G 0(r− r′) =

(
←→
I − u⊗ u +

ik0|r− r′| − 1

k2
0|r− r′|2

(←→
I − 3u⊗ u

))
× (2.9)

×exp(ik0|r− r′|)
4π|r− r′|2

− δ(|r− r′|)
3k2

0

←→
I ,

where u = (r− r′)/|r− r′| and
←→
(·) means the dyadic function, with

←→
I being the dyadic

identity. Upon substitution of this Green’s function into (2.5) the expression for the field

breaks into 3 coupled sets of equations, one for each of the polarization components. The

length of the vector E and correspondingly, the size of the matrix G0 in (2.7) increases

by a factor of 3, but still the resulting system can be solved in the same way as for

non-polarized case. Having the values of the three field polarization components at each

scatterer we can calculate these components everywhere in space similarly to (2.8).

2.2 Numerical analysis of the speckle correlations

In order to support the experimental observations presented in the previous section, we

performed numerical modelling of the reflection-transmission correlation using the cou-

pled dipole method. The program was implemented in MATLAB. Ns random scatterers

were distributed uniformly within a box of a size L×W 2. The field at the entering and

the exit surfaces of the box was calculated (at a distance of 0.1–1λ), assuming the excit-
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Figure 2.1: The effect of subtraction of the average field at the sample surface on the
correlation function. a) Average correlation function without average field subtraction,
L = 2λ, ` = λ. b) The same correlation, but subtracting the average field before
calculating intensity R = |ER − 〈ER〉|2 and T = |ET − 〈ET 〉|2.

ing wave travels from left to right along the L side of the box. Most of the simulations

were performed with the incident wave entering at 45◦ to the sample surface, to mimic

the experimental conditions. The correlation function was calculated in a way similar

to how it was done in the experiment, Sec. 1.2.3, with one additional step of the average

field subtraction, which we will discuss below. The rest of the procedure was the same

as in the experimental data processing: first the correlation between each pair of the

reflected and transmitted patterns was calculated, then the process was repeated Nr

times and the average correlation was calculated for each configuration of the sample.

Let’s note the main differences of the model from the experiment. First of all, in

the experiments the incident light wavelength was λHe-Ne = 632 nm. It means that even

for the thinnest sample L/λ > 30. In the simulation we need to satisfy the condition

W � L in order to avoid the boundary effects. Substituting L/λ = 30 and W = (10L)2

to (2.3), we can estimate the number of scatterers required to model a sample with

an optical thickness b = 1 to be Ns ≈ 106. Such number of scatterers is certainly

infeasible for the simulation, therefore we choose the thickness, such that L/λ ≈ 1.

With such a choice we can achieve b ≈ 1 with hundreds of scatterers, however we

no longer expect quantitative agreement between the simulation and experiment. One

more difference is that in the simulation some near-field components can be present

near the sample surface. They do not propagate [47], therefore they are not captured

in the experiment, however the calculated correlation may include a contribution from
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these components [48], which can lead to a significant mismatch between the modelling

and experiment. In the simulation, an easy solution is to calculate the correlation at

a certain distance from the surface, however as 〈CRT 〉 decays quite quickly with this

distance and extensive averaging is required in that case. An alternative solution is to

subtract the average fields 〈ER(r)〉 and 〈ET (r)〉 from ER(r) and ET (r) correspondingly

before evaluating the intensity of the reflected and transmitted speckles. In Fig. 2.1 we

show the effect of the average field subtraction. The correlation function 〈CRT
〈E〉〉 between

the original calculated speckles without average field subtraction shown in the left panel

of the Fig. 2.1, demonstrates a broad positive contribution with fine fringes. However

when the corresponding averages are subtracted from the reflected and transmitted field

distributions, i.e. R = |ER − 〈ER〉|2 and T = |ET − 〈ET 〉|2 before putting R and T

into (1.3), the resulting correlation, 〈CRT
−〈E〉〉, shows a broader negative dip (right panel

of Fig. 2.1). Comparing the optical densities of the samples used in the simulation

and in the experiment, we note that in the latter the positive part is already absent at

b = 2, which was used in the modelling, moreover the sharp fringes were never present

is the experiments. This supports our guess regarding the necessity of the average field

subtraction, therefore, from now on we assume that 〈CRT
−〈E〉〉 is equivalent to 〈CRT 〉 and

in the rest of the chapter we always assume that the average fields are subtracted before

calculating the correlation.

2.3 Thickness and mean free path dependence

The dependence of the average correlation function on the mean free path ` and sample

thickness L in a scalar wave approximation is shown in Fig. 2.2. The first thing we note

is that all the contributions, observed in the experiment are present in the simulations

as well. We see a broad peak in the low b and low L range, a negative contribution

at higher b and their superposition in the intermediate range. The most apparent

difference between the experimental and simulated correlation functions is the presence

of a sharp ∼ λ, positive contribution at low L, which we attribute to the field-field

short-range correlation. We explain the origin of this term in more detail as well as

the reason why it is not observed experimentally in Sec. 3.3.1. One more difference

is that in the experiment the negative dip becomes elongated in the direction of the

incident beam projection on the sample surface, especially at large L, while in the

simulation it remains quite symmetric in ∆x and ∆y. We can refer this discrepancy to

the limitations of the scalar wave approximation. As we will see later in this chapter,

taking into account the vector character of the incident and scattered field can lead to
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an anisotropic shape of both contributions. One more thing to note is that at large

optical densities the amplitude of the negative contribution increases with the decrease

of the mean free path. This is in striking contrast with the behaviour of the long

range correlations in transmission, which linearly depend on the mean free path in

the first approximation [22]. Finally we note that apart from the discrepancies in the

amplitudes of the positive and negative contributions, there is a good agreement between

the simulated and measured correlation functions.

2.4 Dependence on the angle of incidence

In Sec. 1.3.2 we discussed the dependence of the correlation function shape on the incom-

ing beam incidence angle. However, in the experiment the range of possible incidence

angles was limited due to mechanical constrains. In the simulation we can study a

broader range of angles. In the left panel of Fig. 2.3 we plot the simulated correlation

function at different incoming beam incidence angles (counted from the surface normal)

and in the right panel we compare the simulation to the experiment. As we can see from

this comparison, the amplitude of the positive contribution increases at more grazing

angles both in modelling and in the experiment. As we explained in Sec. 1.3.2 and will

study more in detail in Sec. 3.3.3 the change of the positive peak amplitude can be

explained by the peculiarities of the scattered waves diffusion paths crossing near the

reflection surface. In the first instance, the negative contribution should not depend on

the specified angle, however as we see from the plots at 73◦ and 68◦, the dip broadens

significantly. It might be attributed to the increase of the effective thickness of the

medium in which scattering occurs, however the increase in thickness contradicts the

fact that the amplitude of the negative contribution grows.

Overall, despite a good agreement between the experiment and simulation, for this

particular b and L we are still far from a complete understanding of the underlying

physical phenomena. For example, it is not clear if the relative position of the peak and

the dip actually changes, or the apparent shift can be explained by the amplitude/width

alteration of one or both of the contributions. Also at different ` and L there might be

quite a big mismatch between the simulation and experiment, which of course can be

related to a difference in L/λ ratio, but it is not clear why in some cases it matters and

in the others it doesn’t. Finally certain mismatch can be due to neglecting the vector

nature of light, therefore it is interesting to explore the influence of the incident light

polarization on this correlation function.
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Figure 2.2: The dependence of the average correlation function 〈CRT 〉 calculated using
the coupled dipole method, on the mean free path, ` and the thickness, L of the sample.
Number of averages is 5000 for each sample configuration.
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2.5 Correlation between different polarization com-

ponents

In Fig. 2.4 we present the correlation function calculated between different polarization

channels in reflection and transmission. Panel a) of this figure refers to a weak disorder

scenario, while panel b) refers to a stronger disorder. Analysing these graphs we see

that there is no such evident agreement between the experiment and simulation as in

the case of incidence angle dependence.

We first note similar features: first of all the correlation of the total scattered intensity

in reflection and transmission is not much different from the one calculated in the scalar

wave approximation, which justifies its validity for the situation considered here. In the

lower optical density case the dip becomes elongated in the direction of the projection

of the incident beam on the sample surface, which agrees with the experiment. Also in

that case when both analysed channels are crossed with the incident beam polarization,

the positive contribution becomes more pronounced. In the bigger optical density case,

similarly to the experiment, when only transmitted light aligned in polarisation with

Figure 2.3: Modelled angular dependence of the 〈CRT 〉 for ` = L = 2.4λ. In right panel
we compare modelling to the experiment, see Fig. 1.8 a.
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Figure 2.4: Influence of the incident light polarization on the 〈CRT 〉 and correlation
between different polarization channels. The projection of the incident beam on the
sample surface is indicated with an arrow, the angle of incidence ≈ 45◦. The incident
light polarization vector is parallel to the sample surface. a) ` = 2.67λ, L = λ. b)
` = 1.33λ, L = λ.

incident beam is taken into account, the correlation shows a broad dip, the same as for

the total intensity correlation.

The rest of the features are not matching the experiment. In the lower optical density

case in the experiment the dip disappeared when the the polarizer in transmission was

crossed with the incident beam, while in the simulation it stays there and the peak

present in the opposite situation in experiment is not observed in the simulation. At

the same time, for higher optical density the peak observed in 〈R‖T⊥〉 and 〈R⊥T⊥〉 is

not present in the simulation. Also in the stronger scattering case the discrepancy in

the negative correlation amplitudes for modelling and experiment is the same as for

the scalar wave approximation calculation. This disagreement of the modelling from

the experiment stimulates further investigation of the correlation function polarization

dependence, including extension of the analytical theory, presented in the next chapter

onto the vector wave scenario.
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2.6 Summary

We presented a numerical study of the reflection-transmission correlation by means of the

coupled dipoles approximation simulation. In this approach we modelled the disordered

medium as a set of randomly placed point scatterers. Despite such a simplification,

we are able to recover the behaviour observed in the experiment. The simplicity of

this method provides a significant advantage over the methods that model the realistic

microstructure of the disordered materials [49, 50].

The dependence of the modelled correlation on the thickness and the mean free path

is in a good qualitative agreement with the experimental data, apart from presence of

a short-range contribution at L / `, which can be explained by a smaller L/λ in the

modelling. The angular dependence of the correlation function also matches the exper-

imental data quite well, especially in the L ∼ ` regime, in which even a quantitative

agreement is achieved. Certain features of the cross-polarization correlations are repro-

duced in the modelling, however many details still need clarification, as well as reasons

of the disagreement between the correlation amplitudes outside the L ∼ ` regime. The

next steps might be to study the dependence of the correlation function on the polari-

sation orientation with respect to the sample surface (including the circularly polarized

light) and to increase the number of modelled scatterers to match the experimental

conditions, applying approximate methods [46] to solve the resulting linear system.
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Chapter 3

Theoretical analysis of the reflected

and transmitted speckle patterns

correlations

In this chapter we present the analytical calculation of the reflection-transmission corre-

lation function, based on the diagramatic technique. We first introduce the background

theory required to perform such a calculation. We start with discussing the general fea-

tures of the wave propagation in disordered material: we introduce the most commonly

used Gaussian model of such a medium, and show how to obtain the average Green’s

function and the intensity propagator, which are the building blocks of the considered

correlation functions. Then we consider the short and long-range contributions of the

intensity correlation function, providing an example of the calculation of these quanti-

ties in the transmission geometry. After that we finally apply the outlined techniques

to estimate different contributions to the correlation function between the reflected and

transmitted intensity.

The material presented in this chapter is based on the work performed by our col-

laborators from Paris [17, 25].

3.1 Wave propagation in random media

3.1.1 Green’s function of the Helmholtz equation in random

medium

When a wave of any origin encounters a disordered object, it scatters in random di-

rections and the scattered waves in its turn continuing to interact with the object lead

39



to a phenomenon we call multiple scattering. Let’s consider the formal description of

this process for the case of electromagnetic waves. In the current chapter we deal with

the situation when the source of incident wave is monochromatic, its amplitude is not

changing in time and enough time has passed for all transient processes related to the

wave propagation to finish. We also use the scalar wave approximation, as we discussed

in Ch. 1, as it significantly simplifies the discussion, still allowing to observe relevant

phenomena. In that scenario the field at any point of space is a solution of the Helmholtz

equation [51]. Wave propagation in a disordered medium can be modelled by means of

including a randomly varying permittivity ε(r) into that equation

(
∇2 + k0ε(r)

)
E(r) = j(r), (3.1)

where E is the electric field and k0 = ω/c, with ω being the frequency of the incident

field, c is the speed of light and j is source term, here in a form of the electric current

distribution. A closed solution of (3.1) is possible only for a number of simple permit-

tivity profiles, but not for a general random ε. In order to get an approximate solution

of an inhomogeneous equation we need to build a Green’s function for (3.1), which is a

solution of the equation

∇2G(r0, r) + ε(r) k2
0 G(r0, r) = δ(r0 − r), (3.2)

where δ(r0 − r) is a Dirac-delta. When the Green’s function is found the field can be

expressed as

E(r) =

∫
G(r, r′)j(r′)dr′. (3.3)

Equation (3.2) can be rewritten in the form

∇2G(r0, r) + k2
0 G(r0, r) = δ(r0 − r) + k2

0 (1− ε(r))G(r0, r). (3.4)

The right hand side of this expression can be treated as a source term, while the left

hand side is a well known free space Helmholtz equation, for which the Green’s function

in 3D space is

G0(r0, r) = − eik0|r0−r|

4π|r0 − r|
. (3.5)

Using (3.3), the solution of Eq. (3.4) can be written as

G(r0, r) = G0(r0, r) +

∫
G0(r0, r1)V (r1)G(r1, r)dr1, (3.6)
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Figure 3.1: Multiple scattering process. The total Green’s function is a sum of the terms
describing each possible combination of the scattering events, including the recurrent
paths (shown by the loops).

where V (r) = k2
0(1− ε(r)), which is known as the Dyson equation [52]. Assuming that

V (r)→ 0, it is possible to obtain a perturbative solution to this equation by an iterative

procedure

G(r, r0) = G0(r, r0) +

∫
G0(r0, r1)V (r1)G0(r1, r)dr1 + (3.7)

+

∫
G0(r0, r1)V (r1)G0(r1, r2)V (r2)G0(r2, r)dr1dr2 +

+

∫
G0(r0, r1)V (r1)G0(r1, r2)V (r2)G0(r2, r3)V (r3)G0(r3, r)dr1dr2dr3 + . . . ,

where each term has a simple physical interpretation of a scattering path, in which the

scattering occurs at the points r1, r2, . . . , as shown in Fig. 3.1. This equation has an

infinite number of terms and diagramatic notation is often used to compress the written

form of such equations and improve their readability. The free-space Green’s function

G0(r, r0) is denoted with a straight thin solid line, and its conjugate is denoted with a

thin dashed line1

G0(r, r0)→ ; G∗0(r, r0)→ (3.8)

the effective scattering potential V (r) is denoted by a dot

V (r)→ . (3.9)

1Common convention is that the solid line denotes the retarded Green’s function GR and the dashed
denotes the advanced one GA. When the time evolution is considered GR is not necessarily equal to
GA∗. Here we consider stationary picture, therefore GR = GA∗ and we omit the upper index, assuming
G to describe transport from left to right and G∗ is the opposite direction.
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When a single scattering event enters the same diagram multiple times a dotted arc is

used to denote the same scattering location (here at the point rs)

V (r− rs)V (r′ − rs)→ , (3.10)

In such a notation (3.7) can be written as

G(r, r0) = + + + + (3.11)

+ + + + . . .

The terms of a type

+ + + . . . (3.12)

within (3.11) correspond to one scattering event at a certain point. These terms can be

arranged into an object called transmission or T-matrix:

t(r, r0) = + + + . . . , (3.13)

which in the diagramatic notation is

t(r, r0)→ . (3.14)

This construction describes the interaction of the field with a single scatterer containing

all the recursive terms, i. e. the initial scattered field, the scattered field scattered once

again and so on. When a single object is considered, (3.11) transforms into

G(r, r0) = + , (3.15)

where the first term is again the free space propagation from r to r0, and the second

term reflects the interaction of the scatterer with the incident field. This equation still

has infinitely many terms due to a recurrent nature of this interaction: the scatterer

modifies the incident wave, and that, in its turn, modifies the effective field exciting the
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scatterer. In terms of the T-matrix (3.11) can be rewritten as

G(r, r0) = + + + + (3.16)

+ + + + . . .

Despite being important for fundamental understanding of the multiple scattering pro-

cess, the expression above is still far from being practically useful. It is more compact

than (3.11), since the terms referring to each single scattering are arranged into the t-

matrix, but there is still an infinite number of them, moreover the whole series converges

only in the limit of V (r)→ 0 unless special effort is given to ensure its convergence [53].

Secondly, the solution of this equation depends on the position of every scattering event

in the medium. As we already mentioned, often we do not have such a knowledge, or

even if we do, it is more convenient to assume that these positions are random and

consider the statistical properties of the scattered field. In that scenario G(r, r0) be-

comes random as well, changing from one realization of disorder to another. Although

its single realization does not carry important information being effectively a random

variable, averaging this function over different realizations of the disorder (positions of

the scatterers) is the starting point of the statistical description of the field, which we

review in the next section.

3.1.2 Model of the disordered medium

As we mentioned earlier, the disorder is included in (3.16) by means of randomly varying

permittivity ε(r), or the scattering potential V (r). These can be spatially continuous

random functions, as in the case of atmospheric turbulence description, in which case

the scattering occurs at each point where ε(r) 6= const. However, more often multiple

scattering occurs in the systems which contain a large number of discrete localized

(subwavelength) impurities at random positions. As we will show in the following section

the second (discrete) model of the scattering medium is equivalent to the continuous

one in a particular limit.

Let’s consider V (r) being a continuous Gaussian random potential with 0 mean, and

correlation function B
〈V (r)〉 = 0,

〈V (r)V (r′)〉 = B(r− r′), (3.17)
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where 〈A〉 =
∫
AP [V (r)]DV (r) and

P [V (r)] =
1

Z
e−

1
2

∫
V (r)κ(r−r′)V (r′)drdr′ (3.18)

is a generalized Gaussian probability distribution function with κ(r− ρ) such, that∫
B(r′ − ρ)κ(r− ρ)dρ = δ(r− r′), (3.19)

and Z being the normalization constant. The moment generation functional of this

probability density is

ΦG[f ] = e−
1
2

∫
f(r)B(r−r′)f(r′)drdr′ , (3.20)

from which it follows that the cumulants [54]

〈V (r1) . . . V (rn)〉c =
δn ln(Φ[f ])

δf(r1) . . . δf(rn)

∣∣∣∣
f=0

(3.21)

of any order except n = 2 are zero, while the second order cumulant 〈V (r)V (r′)〉c =

〈V (r)V (r′)〉 = B(r − r′). Such a description of the disorder is known as the Gaussian

model [55], which refers to the situation of the scattering potential being random con-

tinuous function of position. Let’s now consider the case in which scattering occurs at

the localized microscopic impurities. The scattering potential in this situation is

Vp(r) =
Ns∑
i

V0(r− ri), (3.22)

where Ns is the number of scatterers and V0 is the scattering potential of each individual

impurity. We assume that the positions of the scatterers are distributed according to

the Poisson law, for which the moment generation functional is [56]

ΦP [f ] =
1

V

∫
exp

(
Ns∑
j

∫
f(r′)V0(rj − r′)dr′

)
dr1 . . . drNs , (3.23)

where V is the volume of the sample. This functional can be written in the form

ΦP [f ] =

(
1

V

∫
eF (r)dr

)Ns

=

(
1 +

ns

Ns

∫
(eF (r) − 1)dr

)Ns

, (3.24)

where F (r) =
∫
f(r′)V0(rj − r′)dr′ and ns = Ns/V is the density of the scatterers.
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Taking a limit of V and Ns →∞ (so that ns remains constant) we obtain

ΦP [f ] = exp

(
ns

∫
(eF (r) − 1)dr

)
, (3.25)

from which, using (3.21), we can get the cumulants

〈Vp(r1)〉c = ns

∫
V0(r− r1)dr, (3.26)

〈Vp(r1)Vp(r2)〉c = ns

∫
V0(r− r1)V0(r− r2)dr, (3.27)

〈Vp(r) . . . Vp(rn)〉c = ns

∫
V0(r− r1) . . . V0(r− rn)dr1 . . . drn, (3.28)

If we take a limit of ns →∞ and V0(r)→ 0, which refers to a high density of weakly scat-

tering impurities, the cumulants of the orders higher than 2 vanish and upon subtract-

ing a constant background we recover the Gaussian model with the effective correlation

function

B(r− r′) = ns

∫
V0(ρ− r)V0(ρ− r′)dρ, (3.29)

Due to the equivalence of these two models we will further assume that even in the case

when the refractive index is a random continuous function of position, the scattering

of the incoming wave occurs at the spatially separated discrete impurities. In order

to further simplify the description we will assume that the single impurity potential is

a delta function V0(r) = v0δ(r), where v0 is a constant, characterizing the scattering

strength. In that case

Vp(r) =
Ns∑
i

v0δ(r− ri), (3.30)

and the correlation function is

B(r− r′) = nsv
2
0δ(r− r′). (3.31)

Upon the disorder averaging some terms in (3.11) vanish, which can be clearly seen

considering Eq. (3.7). Averaging the terms of the series on the right hand side of this

expression gives different moments of V (r) under the integrals. The terms containing

odd moments vanish due to the properties of the Gaussian function with 0 average. And

the moments of the order higher than 2 can be expressed as a sum of products of the
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2-nd order moments, for example

〈V (r1)V (r2)V (r3)V (r4)〉 = 〈V (r1)V (r2)〉〈V (r3)V (r4)〉+ (3.32)

+ 〈V (r1)V (r3)〉〈V (r2)V (r4)〉+ 〈V (r1)V (r4)〉〈V (r2)V (r3)〉

which significantly simplifies the description.

3.1.3 Averaged Green’s function

In the diagramatic notation, the expression for the averaged Green’s function is

〈G(r, r0)〉 = = + + (3.33)

+ + . . . ,

where is the average of the t matrix. Eq. (3.33) can be written in a more compact

form

= + Σ , (3.34)

where

Σ = + + + . . . (3.35)

is the sum of the diagrams, which is impossible to break apart without cutting a dotted

line (called irreducible). The diagrams that can be cut in such a way are called reducible

and can be expressed in terms of irreducible diagrams, which leads to pre-factors in front

of the irreducible terms, which are included in the expression for Σ. This quantity is

called self-energy and in the context of high energy physics it refers to the part of the

particle’s energy appearing due to its interaction with the field perturbation created

by itself. Here it refers to the part of the electromagnetic field appearing due to the

interaction of the scattered light with the scatterers.

Expression (3.35) is another form of the Dyson equation (3.6). This equation can be

solved by Fourier transforming both sides, which leads to the expression

〈G(k)〉 = G0(k) +G0(k)Σ(k0)〈G(k)〉, (3.36)
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and therefore the Green’s function is

〈G(k)〉 =
1

G−1
0 (k)− Σ(k0)

(3.37)

It means that the problem of finding the averaged Green’s function is equivalent to the

calculation of the self-energy. This is a very complicated problem, which is intractable

in full generality, unless certain approximations are accepted.

Firstly, we neglect all the interference terms between successive collisions in the

expression for the self-energy, keeping just the first term Σ ≈ ≈ Ns (independent

scattering approximation), which can be done assuming the disorder is not too strong.

In this approximation the scatterers interact effectively as independent dipoles. As we

already know, the disorder strength is characterized by the mean free path, which can

be expressed in terms of the properties of the scattering potential

` =
4π

〈B(r− r′)〉
. (3.38)

Weak disorder means that the mean free path is much greater than the wavelength of

the incident light (k0`� 1).

One more simplification is that in the expression for the t-matrix we keep only the

first two terms, which is called Born approximation. Physically it means that only

initially scattered field is taken into consideration during each scattering event, and this

initially scattered field does not influence the scatterer any more. The scattering matrix

for the potential (3.30) in the Born approximation is

t ≈ v0 +
iv2

0k0

4π
. (3.39)

Using (3.38) it is possible to relate the t matrix to the macroscopic properties of the

scattering medium, i.e. mean free path. In the Born approximation

〈B(r− r′)〉 = 4πNsσB (3.40)

where σB is the scattering cross-section, which characterises how much light is deflected

from the incident beam into different directions. For the potential (3.30) the scattering

cross-section is [56]

σB =
v2

0

4π
=
=(t)

k0

, (3.41)

where =(t) is the imaginary part of (3.39). This expression was obtained taking the

limit of Ns →∞ and v0 → 0, which naturally agrees with the domain of validity of the
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Born’s approximation and the disorder models introduced in the previous section. The

mean free path can be written

` =
k0

Ns=(t)
=

4π

Nsv2
0

. (3.42)

Substitution of t and ` to Eq. (3.36) leads to the following expression for the averaged

Green’s function

〈G(k)〉 =
1

k2
0 − k2 −Nst

≈ 1

k2
0 − k2 − ik0

`

, (3.43)

or in the real space

〈G(r0, r)〉 =
eiK|r0−r|

4π|r0 − r|
, (3.44)

where K =
√
k2

0 +Nst ≈
√
k2

0 +Nsv0 + i/2` ≈ k0 + i/2`. This expression resembles the

free-space Green’s function G0, however firstly the real part of K acts as a modification

of the medium refractive index, and also the imaginary part of K adds an effective field

damping, characterized by `, which happens because of the energy transfer from the

incident beam to the scattered waves. We also stress that (3.44) describes the average

Green’s function, and the exponential decay appears only after averaging over disorder,

occurring because of the dephasing of the non-averaged Green’s functions corresponding

to different disorder realizations.

3.1.4 Average intensity

The next step is to calculate the average intensity

〈I(r)〉 = 〈G(r0, r)G∗(r, r0)〉, (3.45)

which is an average of a product of two Green’s functions (3.16). We define an object

called intensity propagator as

P(r, r′) = 〈G(r, r′)G∗(r′, r)〉. (3.46)

An equation for P is obtained by multiplying Eq. (3.7) by its complex conjugate and

taking the average

P(r, r′) = P0(r, r′) + PD(r, r′) = 〈G(r, r′)G∗(r′, r)〉+ (3.47)

+

∫
〈G(r, r1)G∗(r′, r2)〉Γ(r1, r2, r3, r4)〈G(r, r3)G∗(r′, r4)〉dr1dr2dr3dr4,
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where the first term, P0, is the part of the incident beam that travels through the

medium without any collision (it deceases exponentially with `), while the second term,

PD refers to the intensity of the scattered field, where Γ is a combination of the random

potential cumulants called irreducible vertex. In the diagramatic notation it is

Γ = + + + + + . . . , (3.48)

where double dashed line is 〈G∗(r, r0)〉, which represents pairing of the diagrams in

the advanced and retarded Green’s functions expansions, here expressed in terms of

the averaged scattering matrix. In addition, the relations between Γ and Σ can be

established by means of the Ward identity [52].

The intensity can be calculated as

〈I(r)〉 = I0(r) + ID(r) = P(r0, r) = P0(r0, r) + PD(r0, r) (3.49)

Expression (3.47) is known as the Bethe-Salpeter equation, which in context of high-

energy physics describes bound states of a many-body system [52]. As in the situation

with Dyson equation, the exact solution of this equation is unattainable and we have to

use the independent scattering approximation, i.e. neglect all the successive scattering

diagrams, which can be done if the disorder is not too strong. In this approximation all

the collisions will be at least ` apart, which means that the scattering paths following

different sets of scattering events will have a difference in length of at least `. As `� λ,

such paths will accumulate a phase difference between G and G∗ and therefore will

vanish upon averaging, while the ones that follow the same scattering sequences will

remain (see Fig. 3.2a). The terms remaining in Γ upon this approximation describe

such scattering sequences and visually resemble a ladder, that is why this situation is

called the ladder approximation:

Γ ≈ L = + + + . . . , (3.50)

where L is called the ladder operator. Under this approximation (3.47) becomes

PD(r, r′) =

∫
P0(r, r1)L (r1, r2)P0(r2, r

′)dr1dr2, (3.51)

where the first term under the integral describes the propagation from some point r to
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Figure 3.2: a) Propagation of light in a scattering medium in ladder approximation.
All the scattering sequences where advanced and retarded Green’s functions do not
follow the same scattering events (grey and light red lines) accumulate a random phase
between these contributions and therefore vanish upon disorder averaging. b) Ladder
approximation also allows the paths in which advanced and retarded Green’s functions
propagate in the opposite directions (shown by errors). A crossing of Green’s functions is
required for that, which is described by a Hikami vertex (3.57-59). c) Average intensity
as a perturbative series. First order term is an average over all possible pairs of paths
as in panel a, first order correction involves a crossing as in panel b, higher order terms
contain additional crossings.

the point of the first collision r1, L takes into account all the possible scattering events

between r1 and r2 (because we integrate over these points) and finally the last terms

describes propagation from r2 to r′, as in Fig. 3.2a. Diagramatically we denote

L (r1, r2) = r1 r2. (3.52)

In order to complete the intensity transport description we need to specify L , which

depends on the disorder model and on the configuration of the experiment. For the case

of scattering potential (3.30) we can rewrite (3.51) as

L (r1, r2) =
4π

`
δ(r1 − r2) +

4π

`

∫
P0(r′, r2)L (r1, r

′)dr′. (3.53)

Now, assuming the number of scattering events in the ladder is large, the spatial vari-

ation of L on the scale of ` are small, therefore we can expand L (r′, r1) from (3.53)
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around r′ = r2.

L (r′, r1) = L (r1, r2) + (r′ − r2)∇r2L (r1, r2) +
1

2
[(r′ − r2)∇r2 ]

2
L (r1, r2) + . . . . (3.54)

Upon substitution back to (3.53) L no longer depends on the integration variable and

can be pulled out of the integral,

L (r1, r2) =
4π

`
δ(r1 − r2) +

4π

`

[
L (r1, r2)

∫
P0(r′, r2)dr′ +

+ ∇r2L (r1, r2)

∫
(r′ − r2)P0(r′, r2)dr′ +

+
1

2
∇2

r2
L (r1, r2)

∫
(r′ − r2)2 P0(r′, r2)dr′

]
. (3.55)

The expressions remaining under the integrals will contain combinations of the average

Green’s functions as in (3.44) and can be easily calculated leading to [55]

−(iω + D∇2
r2

)L (r1, r2) =
4πc

`2
δ(r1 − r2), (3.56)

with D = c`/3, which is a diffusion equation. L is therefore a solution of a diffusion

equation, the configuration of the scattering target enters this equation in the form of

boundary conditions for L and the properties of the scattering material in the form of

the diffusion constant D . In addition as L varies much slower than P0 in (3.51), it can

be pulled out of the integral

PD(r, r′) = L (r, r′)

∫
P0(r, r1)P0(r2, r

′)dr1dr2 =
`2

4π
L (r, r′), (3.57)

ID(r) =
`2

4π
L (r0, r). (3.58)

Therefore in the diffusive approximation the intensity propagator and the intensity itself

are proportional to the ladder operator.

Independent scattering approximation leading to the ladder diagrams works in a

broad range of experimental conditions, however it is easy to find examples of the

phenomena going beyond this model. Examples of such phenomena are weak local-

ization [57], coherent backscattering [58], mesoscopic conductance fluctuations [58] and,

actually, speckle correlations [20, 22, 55], which are the subject of the current work. The

first correction for the ladder approximation involves processes described in Fig. 3.2b.

As can be seen from this figure, the conditions following from the independent scatter-
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ing approximation are still satisfied, i.e. Green’s functions follow the same scattering

events, however now the retarded and advanced Green’s functions travel in the opposite

directions, as indicated by the arrows. Formally such process is described by a set of

maximally crossed diagrams, which we arrange into an operator

C = + + . . . . (3.59)

The total intensity can be represented as a series as in Fig. 3.2c. The first term of this

expression corresponds to diffusive propagation, while the second contains a crossing

of the diffusion path with itself, the loop being a described by (3.59). The volume

in which the crossing occurs (dashed oval in the figure) is denoted by a square in the

diagrams, and has a name of the Hikami box [59]. The diagrams as in Fig. 3.2c. are

important for the case of the amorphous conductors leading to a correction of their

electrical resistivity at low temperatures, which is known as weak localization [57]. In

the case of the optical fields such corrections are negligible, however interesting effects

may occur when two different diffusion paths cross entering a Hikami box. This leads

to long-range correlations in the light scattered by the disordered materials, which we

consider in the next section.

3.2 Correlations in speckle patterns

3.2.1 Correlation function

Diffusive propagation successfully describes the transport of the average intensity through

the disordered materials. However, as we know, when a coherent wave interacts with

a scattering medium, it forms speckle patterns, in which the intensity can fluctuate

dramatically about its average value, dropping almost to 0 or reaching ten times the

average in some points. In order to describe that behaviour we need to take into account

correlations between the fields in different spatial points.

The starting point of the description of the correlations between the scattered fields

is a modification of (3.47) where all the fields are taken in different spatial points.

〈I(r)I(r′)〉 = 〈G(r, r0)G∗(r, r0)G(r′, r0)G∗(r′, r0)〉. (3.60)

Formally one would need to solve an equation analogous to (3.47) for this quantity,

which is again impossible in full generality. Even when the ladder approximation, which
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Figure 3.3: Diagrams corresponding to different terms in the correlation function (3.62).
a) Short-range C1 contribution. b) Long-range C2 contribution. c) One of the diagrams
leading to the infinite range C3 contribution.

we used to obtain the average intensity, is adopted, things do not simplify a lot. The

resulting expression involves interaction between two ladder operators, which in its turn

depend on the experiment geometry. A common strategy is to identify the contributions

relevant for a given experiment configuration and then to get the correlation function

evaluating the diagrams referring to them. For that purpose 〈I(r)I(r′)〉 is conventionally

represented as [19]

〈I(r)I(r′)〉 = 〈I(r)〉〈I(r′)〉 (1 + C1(r, r′) + C2(r, r′) + C3(r, r′)) . (3.61)

The first term in this expression refers to uncorrelated diffusive intensity transport,

while the total correlation function

C(r, r′) =
〈I(r)I(r′)〉
〈I(r)〉〈I(r′)〉

− 1 = C1(r, r′) + C2(r, r′) + C3(r, r′) (3.62)

is split into three contributions described by different sets of diagrams and relevant

in different experimental configurations. The diagrams corresponding to these terms

are presented in Fig. 3.3. The first contribution involves an exchange of the Green’s

functions between the ladder diagrams at the exit of the scattering medium. This

contribution is the strongest in the optical scenario and it relates the points that are

not far from each other in space. We will discuss this contribution further in this

section. The second contribution, C2 is central to our discussion and it involves crossing

of two diffusion paths within the medium. Such correlation is much weaker than C1 in

the transmission/transmission or reflection/reflection geometry and is usually neglected,

except for the cases specifically tailored for their observation [27–31]. However as we

will show below, such a contribution is dominant in the case of reflection/transmission

correlation.
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Finally the C3, involving 2 diffusion crossings correlates effectively any two points in

transmission, however the size of the correlation is so weak that it is relevant only for

the measurements of total transmission (conductivity) of disordered conductors, being

relevant for the universal conductance fluctuation [58], however it will be negligible for

the case of speckle correlations.

We will now focus on the examples of the C1 and C2 calculation for the transmis-

sion/transmission scenario [22, 60], and will compare these contributions.

3.2.2 Short range contribution

To calculate C1 we compose an expression analogous to (3.47) for 〈I(r)I(r′)〉 in (3.60) [61].

We will also immediately use the ladder approximation and replace Γ with L and P

with P0 in that equation to obtain

C1(r, r′) =
1

〈IT (r)〉2

∫
|〈G(r0, r1)〉|2|〈G(r0, r3)〉|2L (r1, r2)L (r3, r4) (3.63)

×〈G(r2, r)〉〈G∗(r2, r
′)〉〈G(r4, r)〉〈G∗(r4, r

′)〉dr1dr2dr3dr4,

where

〈IT (r)〉 =

∫
|〈G(r0, r1)〉|2L (r1, r2)|〈G(r, r2)〉|2dr1dr2 (3.64)

is the average transmitted intensity. We first note that the integrals over r1, r2 and over

r3, r4 can be separated, leading to

C1(r, r′) =

[
1

〈IT (r)〉

∫
|〈G(r0, r1)〉|2L (r1, r2)〈G(r2, r)〉〈G∗(r2, r

′)〉dr1dr2

]2

,

The next step is similar to what we have done in (3.56) and (3.57). We assume that

the expression for the ladder operator varies on a much larger scale than the Green’s

functions and pull it out of the integrals. Taking into account that
∫
|〈G(r′, r2)〉|2dr2 ≈

`/4π and
∫
〈G(r, r2)〉〈G(r′, r2)〉dr2 = `=(〈G(|r − r2)|〉)/4π we can write the average

intensity as

〈IT (r)〉 =
`

4π

∫
|〈G(r0, r1)〉|2L (r1, r)dr1 (3.65)

and the correlation function as

C1(∆r) =

[
sin(k0∆r)

k0∆r

]2

e−∆r/`. (3.66)

This correlation function is shown in Fig. 3.5a, and it is possible to see that it relates

points separated by an order of λ. This correlation is responsible for the granular
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Figure 3.4: Three leading terms in the expression for the Hikami vertex. a) The crossing
does not involve a scattering. The diagram corresponds to HA (3.67) b) and c) involve
one scattering and refer to HB, (3.68) and HC , (3.69) respectively.

appearance of the speckle pattern. We also note that this correlation does not depend

on the sample configuration, but only on its mean free path.

3.2.3 Long-range correlation

Let’s now estimate the C2 contribution in the same geometry. As we already men-

tioned C2 correlation involves crossing of the two diffusion paths. We will consider three

variants of how this can happen, as shown in Fig. 3.4. Variant a) does not involve

a scattering event during the exchange (the variant when the advanced and retarded

Green’s functions are exchanged is equivalent), the two other possibilities imply presence

of a scatterer, which breaks the symmetry between the advanced and retarded Green’s

function. As we will see later, each scattering event adds a 1/k0` factor in front of the

corresponding contribution, therefore the terms involving two or more scattering events

are negligible in the weak disorder approximation.

Reading the diagrams in Fig. 3.4a we write the first contribution as

HA({Ri}) = 〈G(R1,R3)〉〈G∗(R3,R2)〉〈G(R2,R4)〉〈G∗(R4,R1)〉, (3.67)
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and the two others are

HB({Ri}) =

∫
〈G(R1,R3)〉〈G∗(R3,R)〉〈G∗(R,R2)〉〈G(R2,R4)〉 (3.68)

×〈G∗(R1,R)〉〈G∗(R,R4)〉d{Ri},

and

HC({Ri}) =

∫
〈G∗(R1,R3)〉〈G(R3,R)〉〈G(R,R2)〉〈G∗(R2,R4)〉 (3.69)

×〈G(R1,R)〉〈G(R,R4)〉d{Ri}.

The expression for the C2 correlation is

C2(r, r′) =

∫
|〈G(r0, r1)〉|2|〈G(r0, r2)〉|2L (r1,R1)L (r2,R2) (3.70)

×H ({Ri})L (r3,R3)L (r4,R4)|〈G(r3, r)〉|2|〈G(r4, r
′)〉|2d{ri}d{Ri},

where H = HA + HB + HC is the sum of the Hikami vertex contributions. In this

expression the first two Green’s function terms under the integral describe free space

propagation from the source to the medium boundary, the first pair of ladders describes

propagation in the medium before crossing , and the second pair after the crossing, while

H accounts for a crossing. The last two terms describe free space propagation to the

observation points.

It is hard to evaluate H in the real space. In the Fourier space:

HA({qi}) = δ(q1 + q2 + q3 + q4)

∫
〈G(p〉〈G∗(q2 − p)〉

×〈G(q2 + q3 − p)〉〈G∗(p + q1)〉dp (3.71)

HB({qi}) =
4π

`

1

(8π)3
δ(q1 + q2 + q3 + q4)

∫
〈G(p1〉〈G(p2〉〈G∗(q1 + p1)〉

×〈G∗(q2 − p2)〉〈G(p2 − q3 − q2)〉〈G(p1 − q3 − q2)〉dp1dp2 (3.72)

and by the symmetry

HC(r1, r2, r3, r4) = H ∗
B (r2, r3, r4, r1)→HC(q1,q2,q3,q4) =

= H ∗
B (−q2,−q3,−q4,−q1) (3.73)

In these equations qi are the wave vectors of the waves entering the vertex, therefore by
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the momentum conservation
∑

i qi = 0. Using the following approximate expression

〈G(p + q)〉 ≈ 〈G(p)〉 − (q2 + 2p · q)〈G(p)〉2 + (2p · q)〈G(p)〉3 (3.74)

we can transform (3.71) – (3.73) into a set of expressions containing terms:∫
〈G(p)〉n〈G(p)〉mdp,

∫
p · q〈G(p)〉n〈G(p)〉mdp,∫

(p · q)2〈G(p)〉n〈G(p)〉mdp,

which can be evaluated to give

H = hδ
(∑

i

qi
) [∑

i

q2
i + q1 · q2 + q2 · q3 + q3 · q4 + q4 · q1

]
, (3.75)

with h = `5/48πk2. The
∑

i q
2
i term, being a constant in the Fourier space leads to a

Dirac-delta function of position in the real space, which is usually neglected, if it does

not create divergence [62]. Using the
∑

i qi = 0 condition we can bring H to the form

H = 2hδ
(∑

i

qi
)
q1 · q2, (3.76)

which after the inverse transform gives

H ({Ri}) = 2h

∫
δ(r−R1)δ(r−R2)δ(r−R3)δ(r−R4)×∇R1 · ∇R2 dr, (3.77)

containing the gradients to be applied to the incoming ladder operators. It is the final

form of H that we substitute to (3.70). In the diffusive limit in (3.70) the exit ladders

vary slowly on the scale of ` and all the integrals of the single-mode Green’s functions

≈ `/4π, so using (3.65) Eq. (3.70) can be rewritten as

C2(r, r′) = 2h

∫
〈IT (R)〉2∇rL (R, r)∇r′L (r′,R)dR. (3.78)

The only ingredient we are missing is an expression for the ladder operator L . As

we know from (3.56) this operator is the solution of a diffusion equation, so we need

to specify the configuration of the scattering target and the boundary conditions. We
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Figure 3.5: Comparison of the short and long-range contributions to the correlation
function of the transmitted intensity. The parameters are L = 10, ` = 5, λ = 1.

choose the geometry as in Fig. 3.3, a slab of scattering material of the thickness L is

illuminated from the left. The boundary conditions impose zero incoming and outgoing

flux at left and right, surfaces, which for the purpose of convenience is recast to an

equivalent statement of L = 0 at certain distance z0 = 2`/3 (extrapolation length)

from the slab surfaces. The solution of the diffusion equation for that case is [19]

L (r1, r2)→ L (z1, z2,∆r) = F−1
[
L̃ (z1, z2,k)

]
; (3.79)

L̃ (z1, z2,k) =
12π

`3k

sinh [k(z0 + z1)] sinh [k(z0 + z2)]

sinh [k(L+ 2z0)]
,

where F−1 is the inverse Fourier transform, r1 changes only along z direction (r1 → z1)

and r2 is split into z2, the distance along z and ∆r, the distance in a perpendicular

plane, transformed to k. Substituting the ladder operator to (3.78) and taking into

account (3.58) we get

C2(∆r) =
2h

(2π)2

∫
L̃ (z, L− `,k)2

[
∂zL̃ (`, z,k1)

∣∣∣
k1=0

]2

eik·∆rdzdk. (3.80)

The scalar product in the exponent k · ∆r = k∆r cos(θ) integrated over θ leads to a

Bessel function 2πJ0(∆R) in (3.80) under the integral, in addition L̃ (z, L − `,k) =

` sinh[kz]/D sinh[kL] and ∂zL̃ (`, z,k1)
∣∣∣
k1=0

= −`/LD , which leads to the final expres-

sion

C2(∆r) =
1

g

3

2πL

[
L

∆r
+

∫ ∞
0

1

sinh(k)2

(
sinh(2k)

2k
− 1

)]
J0(k∆r)dk, (3.81)
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where g = Ns`/L = k0`/3πL is the dimensionless conductance. We compare this

function to the short-range correlation in Fig. 3.5, from which we can see that it connects

the points that are much farther apart, and it also depends on the sample thickness.

One more thing to note is that it is much weaker than the C1 contribution, because of

the 1/g factor. Each crossing taking part in the correlation diagram reduces its size by

a factor of g, which is a large number in the diffusive regime.

3.3 Correlation function between the reflection and

transmission

In the previous chapter we presented experimental measurements of the correlation

function between the reflected and transmitted speckle patterns. Here our aim is to

modify the theory explained in the previous sections to explain (at least qualitatively)

the behaviour observed in the experiment.

3.3.1 C1 in reflection and transmission

We start by computing the C1-type correlation, given by the diagram in Fig. 3.6a, in

order to show that this contribution will be negligible for the conditions in which the

experiment was performed. The analytical expression corresponding to the diagram in

Fig. 3.6a is

CRT
1 (r, r′) =

1

〈IT (r)〉〈IR(r)〉

∫
|〈G(r0, r1)〉|2|〈G(r0, r3)〉|2 (3.82)

×L (r1, r2)L (r3, r4)〈G(r2, r
R)〉〈G∗(r2, r

T )〉〈G(r4, r
T )〉〈G∗(r4, r

R)〉d{ri} =

=
1

〈IT 〉〈IR〉

∣∣∣∣∫ |〈G(r0, r1)〉|2L (r1, r2)〈G(r2, r
R)〉〈G∗(r2, r

T )〉dr1dr2

∣∣∣∣2 .
We already know the expression for the ladder operator, (3.79), so we can calculate the

average reflected

〈IR〉 = I0

(
1− 5

3

`

L+ 2z0

)
(3.83)

and transmitted intensity

〈IT 〉 = I0
5

3

`

L+ 2z0

, (3.84)
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Figure 3.6: Diagrams for the correlation functions between the reflected and trans-
mitted intensity patterns. a) Short-range correlation CRT

1 (3.82). b) Long-range CRT
2

contribution, (3.92).

where I0 is the source intensity. Taking into account that I0|〈G(r0, r1)〉|2 = e−z1/` and

performing the Fourier transform of the average Green’s functions we get

CRT
1 (∆R) =

1

〈IT 〉〈IR〉

∣∣∣∣∫ e−
z1
` L̃ (z1, z2,k)eik·∆R (3.85)

× 〈G(k1)〉eik1|rT−r2|〈G∗(k2)〉e−ik2|rR−r2|dz1dz2
dkdk1dk2

(2π)8

∣∣∣∣2 ,
where ∆R = |rR−rT |. We need to split r2 into the distance along z and the transverse

one, and do the same with the wave-vectors k1 and k2. After doing that, and taking

z(rR) = 0, z(rT ) = L we get a Dirac-delta term in k under the integral, which leads to

CRT
1 (∆r) =

1

〈IT 〉〈IR〉

∣∣∣∣∫ e−
z1
` L̃ (z1, z2, 0)eiq∆r (3.86)

×
(

eik1(L−z2)

k2
1 + |q|2 −K2

)(
eik2z2

k2
2 + |q|2 −K∗2

)
dz1dz2

dqdk1dk2

(2π)4

∣∣∣∣2 ,
where K is the effective refractive index defined in (3.44). In this equation we used the

Fourier representations of the average Green’s functions (3.43). Again assuming slow

variation of the ladder operator compared to the exponential with ` in the denominator,

we decouple the integrals over z1 and z2. Also, using contour integration, we can take

integrals over k1 and k2, which leads to

CRT
1 (∆r) =

`π2

〈IT 〉〈IR〉

∣∣∣∣∫ L̃ (0, z2, 0)eiq∆r e
iξLe−i(ξ−ξ

′)z2

ξξ′
dz2

dq

(2π)2

∣∣∣∣2 , (3.87)
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Figure 3.7: Short-range correlation between the reflected and transmitted intensity CRT
1 .

The values of the parameters are k0 = 2π, L = 2, ` = 1.

where ξ =
√
|q|2 −K2 and ξ′ =

√
|q|2 −K∗2. Noting that in the q→ 0 limit the ladder

operator becomes

L̃ (0, z, 0) = I0

(
3(`+ z0)

`(L+ 2z0)
(L+ z0 − z)− 2e−

z
`

)
, (3.88)

we can finally perform the integral over z2 in (3.87) to get

CRT
1 (∆r) =

I0`π
2

〈IT 〉〈IR〉

(
3(`+ z0)

`(L+ 2z0)

)2

(3.89)

×
∣∣∣∣∫ eξ

′L[1− i(ξ − ξ′)z0] + eξL[i(ξ − ξ′)(L+ z0)− 1]

ξξ′(ξ − ξ′)2
eiq∆r dq

(2π)2

∣∣∣∣2 .
We plot this expression in Fig. 3.7. From this graph we can see, that although CRT

1 is

much broader than the correlation in transmission, which is of a size of ∼ λ, it is doubtful

that it might be responsible for the positive contribution, observed in the experiment,

because of the reasons we discuss below. First of all we can estimate the dependence of

this correlation amplitude on L. We can show that

CRT
1 (0) ∼ e

−L
`

k4
0`

3L
. (3.90)

It means that this contribution decays exponentially with the slab thickness, which

contradicts experimental data. In addition, CRT
1 contains quickly varying features which

were never observed in the experiment. Even taking into account the fact that the

resolution of the imaging setup we used, is not enough to resolve these oscillations, they

would increase the uncertainty in the lineshape of the positive contribution, which was

never observed. We finally note, that in the regime of λ ∼ L ∼ `, which we probed in
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the simulations, additional short-range terms can be present, including the one involving

only the free space Green’s functions.

3.3.2 Long range correlation between reflection and transmis-

sion

We already have an intuitive feeling that the negative part of the correlation function

observed in the experiment has a long-range nature, and appear due to the diffusion

path interference. Following [17, 25], we support this guess by an analytic expression

for the long-range C2-type correlation function between the reflection and transmission

and compare it to the experiment.

All the necessary building blocks of this correlation function were introduced earlier.

We need to apply them to the diagram, shown in Fig. 3.6b. The analytical expression

for this diagram is

CRT
2 (rR, rT ) =

∫
|〈G(r0, r1)〉|2|〈G(r0, r2)〉|2L (r1,R1)L (r2,R2) (3.91)

×H ({Ri})L (r3,R3)L (r4,R4)|〈G(r3, rR)〉|2|〈G(r4, rT )〉|2d{ri}d{Ri},

which is similar to (3.70), apart from the coordinates of the enter and exit ladders.

Substituting the expression for the ladder operator (3.79), with appropriate enter and

exit coordinates and simplified expression for H , (3.77) into (3.91), and performing the

integration as we did for C2(∆r), we get the expression for the CRT
2

CRT
2 (∆r) =

−45

8k2
0`

2

∫
J0(q∆r/L) sinh(qz0/L)2

q3 sinh[q
(
1 + 2 z0

L

)
]2

×
(
−q ch(q) +

[
1 + q2

(
1 +

2z0

L
+

2z2
0

L2

)]
sh(q)

)
dq, (3.92)

In a more detailed analysis we neither can neglect the quadratic in q terms in the

Hikami vertex expression (3.75), nor assume that the gradients applied to the incoming

and outgoing ladders give the same contribution. The
∑

i q
2
i term in (3.75), in real space

leads to a sum of Laplacians ∑
i

q2
i →

∑
i

∆Ri
, (3.93)

and the sum of the dot products can be balanced in such a way that the gradients

are applied separately to the incoming and outgoing ladders. The correlation function
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Figure 3.8: Long range correlation function CRT
2 : comparison of the theory and ex-

periment. Black solid line represents theoretical model, Eq. (3.92) with λ = 0.63, L =
20, ` = 10. Red dashed line total correlation including the other terms (3.94). Blue
solid line shows experimentally measured correlation at L = 20µm, ` = 10µm (bottom
left corner in Fig. 1.5). There is a factor of cn ≈ 17 mismatch between the measured
and calculated correlation amplitudes, however no additional fitting was used in the
horizontal axis.

taking into account these factors is

CΣ
2 = C∆

2 +
C in

2 + Cout
2

2
. (3.94)

where

C∆
2 =

h

4

∫
|〈G(r0, r1)〉|2|〈G(r0, r2)〉|2L (r1,R1)L (r2,R2) (3.95)

×

(∑
i

∆Ri

)
L (r3,R3)L (r4,R4)|〈G(r3, rR)〉|2|〈G(r4, rT )〉|2d{ri}d{Ri},

C in
2 = h

∫
|∇R〈I(R)〉|2L (R, rR)L (R, rT )dR, (3.96)

and Cout
2 is equivalent to CRT

2 in (3.91) that we calculated using a simplified expression

for H, (3.76). In Fig. 3.8 we compare the resulting correlation function with the one,

obtained in the experiment. Although there is quite a big mismatch in the correlation

magnitude (∼ 17 times) between theory and experiment, when they are normalized

to the same magnitude, the shape of the experimentally measured correlation function

almost exactly matches the theoretical prediction. There is a slight mismatch on the

right side, probably due to the positive contribution present in the experiment.

The qualitative agreement between these functions, confirms our initial assumptions
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about the origin of this correlation. Taking additional terms of the Hikami vertex does

not improve the magnitude mismatch, as both C in
2 and C∆

2 are positive, and only reduce

the size of the dip, which means that there might be additional mechanisms, going

beyond the Hikami crossing. In the next section we briefly discuss such contributions.

3.3.3 Positive correlation in the semi-ballistic regime

As we have seen in Ch. 1 there are two contributions to the correlation, positive and neg-

ative. In the previous chapter we have shown that the negative part is well described by

a C2-type long-range correlation. Before that, we also have shown that the positive part

can’t be attributed to the C1 correlation, as its shape is different from the one observed

in the experiment and because it decays exponentially with the sample thickness.

The fact that the correlation function depends on the angle of incidence of the

incoming beams allows to make a guess about the origin of the positive contribution.

None of the correlation functions we considered before show any dependence on this

angle. However a contribution called C0 [63–65], introduced for the case of the point

source illumination can show such dependence. The diagrams, corresponding to this

contribution are shown in Fig. 3.9. Each diagram involves scattering paths that share

Figure 3.9: Diagrams of the C0 contribution, responsible for the broad positive peak
observed in the experiment at b ≈ 1. The exchange happens at a single scattering event
near the reflection surface, which is described by the S operator.
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a common scatterer close to the front side of the sample. The diagrams that involve a

common scatterer in the output paths can be neglected for the same reason as the CRT
1

correlation.

The C0 correlation can be formally written as

CRT
0 (∆r) =

4π

`

∫
S (r2, r3)L (r2, r4)L (r3, r5) (3.97)

×|〈G(r− r4)〉|2|〈G(r′ − r5)〉|2dr2dr3dr4dr5,

where S (r2, r3) accounts for all of the four possibilities of connecting the input free-

space propagating wave to the ladders starting at r2 and r3, as shown in Fig. 3.9 [63]. We

will not detail here its analytical derivation, just noting that first of all, this contribution

manifests in a broad positive peak, which indeed depends significantly on the incident

beam orientation. In addition it presents negative side lobes, such that
∫
CRT

0 = 0. The

amplitude of the CRT
0 grows with the increase of the angle of incidence, which due to

the zero-integral property leads to broadening of the negative lobes (see Appendix G

in [17]), which agrees with the experimental observation, as well at the dependence of

the peak hight on L (CRT
0 (0) ∝  L−4).

3.4 Summary

In this chapter we have shown an analytical theory describing the correlation of the

reflected and transmitted speckle patterns. This theory qualitatively describes the neg-

ative contribution, observed in the diffusive regime, which we consider a strong argu-

ment in favour of the non-trivial character of this correlation, arising due to exchange

of diffusion partners in the scattering sequences. Moreover, we argue that the positive

contribution, observed in the weak scattering regime is not just a field-field short-range

correlation, but also appears due to a particular type of (non-universal) interference

effects near the reflection surface of the disordered sample.

Despite this initial success we realize that there is still a huge room for improvement,

with the final goal being a qualitative agreement in the full disorder strength range.
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Chapter 4

Ghost imaging using speckle

patterns

In the first instance it might seem that correlations considered in previous chapters are

exclusively of fundamental interest. However, as we outlined in the introduction, the

existence of correlations always means non-zero mutual information. In context of the

problem we consider, it means that measurement of the reflected speckle pattern gives

us certain amount of information about the transmitted one [14]. In the current chapter

we demonstrate how this knowledge can be used to reconstruct the shape of the objects

hidden behind the scattering layers with high optical density.

Our method is based on the ghost imaging technique [66], and since it doesn’t require

direct access to the imaged object, we call it blind ghost imaging. In the beginning of

the chapter we review the regular ghost imaging modality, paying particular attention

to the case when speckle patterns are used to obtain the ghost image. We calculate the

signal-to-noise ratio (SNR) of this technique, showing how it depends on the imaged

object transparency. After that we introduce the blind ghost imaging technique and

extend the SNR calculation on the scenario of correlated speckle patterns. Then we

show the experimental results of the image reconstruction using this method. In the

remainder of the chapter we discuss different reconstruction techniques that can improve

the SNR (up to perfect reconstruction) keeping the number of measurements the same.

4.1 Regular and computational ghost imaging

The first papers on this subject described this method as relying exclusively on quantum

correlations, namely entanglement, between the photons in the two modes [67, 68].

Typical setup used in these experiments is illustrated in Fig. 4.1a. A source produces
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photons entangled in position or in momentum going into spatially separated modes.

A semi-transparent mask, the object, is placed in one of the beams, and the total

transmitted intensity after passing the mask is measured with a single photodiode. In

the second beam a scanning photodiode or a CCD is placed. As a consequence of

entanglement, when a photon is detected behind the mask, a photon in the second

beam can be detected, having the same relative position as the one passing the mask.

Therefore, the number of coincidences between the photodiodes in the two arms now

gives information about the local transmissivity of the mask. Changing the position

of the photodiode in the second beam, or registering coincidences directly with a CCD

gives the spatial transmissivity profile, or in other words, the image of an object.

As we will discuss in Ch. 6 it is often hard to decide whether quantum-mechanical

description is necessary in particular situations, especially when it comes to light. Ghost

imaging is a perfect example of that, as it was soon realized that entanglement is not

necessary for this technique [69]. The only requirement for this technique to work is

to have correlated light intensity fluctuations in two spatially separated points. One

of the ways to get such correlations is to divide a speckle pattern from a dynamically

changing scattering medium using a beamsplitter [70]. The modification of the original

setup based on the dynamical speckle is illustrated in Fig. 4.1b [71, 72]. Instead of

the source of entangled photons, a beam of pseudo-thermal light, often produced by a

moving diffuser, is split into two arms. It appears that classical correlation is enough

to get the same result as for entangled beams, although quantum correlations provide

additional information about the photons in a different beam, thus leading to faster

convergence of the method, especially in the case of low total number of photons [73].

In Ch. 6, 7 we show, that some quantum correlations are still possible between the

output beams, when a mixed (including thermal) state is incident on a beamsplitter.

This fact was noticed by Adesso et al. [74], continuing the discussion about the role of

quantum correlations in ghost imaging. The discussion was wrapped up by Shapiro [75],

noting that there is a modification of the ghost imaging setup, which does not rely on

correlations in any form: computational ghost imaging [76, 77]. The setup for this

modification is represented in Fig. 4.1c. Now instead of a source of randomly varying

patterns, an image formation device is used, which sends predetermined patterns from

an initially prepared set. The reconstruction procedure is analogous to normal ghost

imaging: the image is reconstructed as a weighted sum, where the weights are single

pixel detector readings. However, in such a configuration there is no randomness in the

illuminating patterns, and therefore no correlations are possible.

Computational ghost imaging is considered the most practically useful of the listed
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Figure 4.1: Variations of the ghost imaging setup: a) Ghost imaging using non-classical
source. b) Ghost imaging using speckle patterns or pseudo-thermal light. c) Computa-
tional ghost imaging.

above techniques. All other method still require a camera or a scanning detector, which

together with direct accessibility of the imaged object makes them impractical. In com-

putational imaging, the camera is not needed, being replaced with a spatial modulator.

This opens a possibility of imaging in the spectral ranges, in which conventional cameras

are expensive or unavailable, such as far infrared [77, 78], terahertz [79, 80] or X-ray [81]

radiation.

The main limitation of the ghost imaging methods is the signal-to-noise ratio for

the correlation-based methods and reconstruction error for the computation-based ones.

The SNR depends on the properties of the patterns (random or deterministic), number

of measurements and the overall transmissivity of the imaged object [82]. In the next

section we consider in details regular ghost imaging technique SNR for the case of the

incident patterns following speckle statistics [83].
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4.2 Ghost imaging using speckle patterns: statisti-

cal approach

4.2.1 Speckle statistics and ghost imaging observable

Let’s consider the ghost imaging setup illustrated in Fig. 4.1b with a moving scatterer

producing fluctuating speckle patterns as a source. Each pixel of the camera detects

the speckle pattern intensity R = {Rij} at a particular point xj, j = 0 . . . Np and the

moment of time ti, i = 0 . . . Nr. Assuming that the random scatterer produces well

developed speckle and moves fast enough for it to be independent at different camera

exposure events, the distribution of the intensity registered by the camera is

P (R) = R−NT

NT∏
ij

e−Rij/R, (4.1)

where NT = Np×Nr and R is the average intensity, which we assume to be equal for all

of the camera pixels (uniform illumination). Here we also assume that adjacent pixels

are uncorrelated, i.e. we neglect the short-range correlation within the speckle, which is

automatically true when the pixel size is bigger than the average speckle spot diameter,

or can be achieved with pixel binning in the opposite case.

The photodiode readings, ci are

ci =

Np∑
j

RijΛj, (4.2)

where Λj = Λ(xj), is the transmissivity of the object at a position xj.

Let’s consider an observable Op corresponding to the reconstructed image,

Op =
1

Nr

Nr∑
i

Ripci. (4.3)

As we will show below, the mean value of this observable converges to Λ(xp). We will also

calculate the variance of this observable in order to estimate how fast this convergence

occurs.
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4.2.2 Signal-to-noise ratio

The signal-to-noise ratio will be

SNROp =
〈Op〉√
∆Op

, (4.4)

where 〈Op〉 is the mean value and ∆Op = 〈O2
p〉−〈Op〉2 is the variance of this observable.

In order to calculate the 〈Op〉 we substitute ci from (4.2) to (4.3)

Op =
1

Nr

Nr∑
i

Np∑
j

RipRijΛj. (4.5)

After doing that, the expression for the mean value

〈Op〉 =

∫ ∞
0

OpP (R)dR, (4.6)

can be split into two parts

〈Op〉 =
1

Nr

∫ ∞
0

NT∑
ij

RijRipΛjP (Rij)dRij =
Λp

Nr

∫ ∞
0

Nr∑
i

R2
ipR
−1e−Rip/RdRip +

+
1

Nr

∫∫ ∞
0

NT∑
i,j 6=p

RijRipΛjR
−2e−(Rij+Rip)/RdRij dRip =

= R2

(
1 + Λp +

NT−1∑
j 6=p

Λj

)
. (4.7)

Let’s further assume that the object is a binary transmission mask Λj ∈ {0, 1}, where

0 transmission value refers to black pixels and 1 to white pixels. Also let
∑

j Λj = Nw.

Taking that into account the mean value is

〈Op〉 =

R2 (1 +Nw) , if Λp = 1

R2Nw, if Λp = 0.
(4.8)

As we can see from this expression, the intensity of a ghost image pixel, corresponding

to a white pixel in the object, has a mean value bigger by R2 than for a black pixel.

There is a simple intuitive argument of why this happens. Let’s assume that we have

just one non-zero pixel in the object Λ = δj,j′ . The photodiode measurements become

equal to the speckle intensity at this point ci = Ri,j′ and the summation in (4.5) becomes
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Op = 1
Nr

∑Nr

i RipRij′ . When p 6= j′, this is a sum of products of uncorrelated positive

random numbers, whereas when p = j′ it is a sum of squares of a single random variable,

which is guaranteed to have a bigger value. From the same argument one can see the

biggest limitation of this method. When there are two non-zero pixels, Λ = δj,j′ + δj,j′′ ,

the summation in (4.5) becomes Op = 1
Nr

∑Nr

i Rip(Rij′ +Rij′′). It means that for p = j′

apart from a sum of R2
ij′ there is also a contribution from Rij′Rij′′ , which acts, effectively,

as an additional noise, reducing the difference between the intensity of the white and

black pixels in the ghost image. Therefore we can expect that the ghost imaging SNR

will reduce with the number of white pixels in the object. To see that in more detail,

let’s calculate the variance of the Op.

To calculate the variance we need to know

〈O2
p〉 =

∫ ∞
0

O2
pP (R)dR. (4.9)

The expression for O2
p is

O2
p =

Λ2
p

N2
r

[
Nr∑
i

R2
ip

]2

+
2Λp

N2
r

(
Nr∑
i

R2
ip

)(
Nr∑
k

Np∑
j 6=p

RkjRkpΛj

)
+

+
1

N2
r

[
Nr∑
i

Np∑
j 6=p

RijRipΛj

]2

. (4.10)

We can substitute (4.10) into (4.9) and calculate the resulting integrals separately for

each term in (4.10) (see Appendix B). Taking into account the formula for the mean

value (4.9), we get the variance

∆Op =
R4

Nr


(Nw + 4)2 − 5, if Λp = 1

N2
w + 2Nw, if Λp = 0,

(4.11)

and finally the SNR

SNROp =
√
Nr


1√

(Nw + 4)2 − 5
, if Λp = 1

1√
N2

w + 2Nw

, if Λp = 0,
(4.12)

As we can see from the expression above, SNROp decreases with the number of white
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pixels in the object as O(1/Nw) and increases as O(
√
Nr) with the number of time

averages, see Fig. 4.3a,b.

4.2.3 Average subtraction

The decrease of SNR with the number of white pixels can be partially compensated by a

modification of the regular ghost imaging technique called differential ghost imaging [84].

In this method, observable Op, is modified to

ODGI
p =

1

Nr

Nr∑
i

Ripci −
1

NrNp

〈R〉
〈c〉

∑
ij

RijRip, (4.13)

where 〈R〉 = 1
NrNp

∑
ij Rij is the average total intensity of the speckle patterns and

〈c〉 = 1
Nr

∑
i ci is the average photodiode signal. This allows to partially overcome the

problem of low SNR for objects with large number of white pixels, as SNR of ODGI
p

becomes symmetric with respect to the value of Nw = Np/2 (50% of white pixels in the

image) [84]. It means that, for example, the reconstructed images of two objects with

99% and 1% white pixels, will have the same signal-to-noise ratio when the differential

technique is used. When Nw � Np differential ghost imaging is equivalent to the regular

one.

In differential ghost imaging a combination of the average intensities in both arms is

subtracted from the normal ghost imaging observable, however even subtraction of the

speckle patterns temporal average, R̃p = 1
Nr

∑
iRip, can significantly improve SNR. The

new observable is

O′p =
1

Nr

Nr∑
i

Ripci −
〈c〉
Nr

∑
i

Rip = Op − 〈c〉R̃p. (4.14)

Its mean value is

〈Op〉 = 〈Op〉 − 〈c〉〈R̃p〉. (4.15)

Taking into account that

〈R̃p〉 =
1

Nr

∫ ∞
0

Nr∑
i

RipP (R)dR = R,

and

〈c〉 =
1

Nr

∫ ∞
0

Nr∑
i

Np∑
j

RijΛjP (R)dR = NwR,
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Figure 4.2: a) An object to image, containing Nw = 20 white pixels. b) An average of
5000 patterns, distributed according to (4.1). c) Ghost image reconstructed as (4.12)
without average subtraction. d) Ghost image reconstructed as (4.21), d) is c) minus b).

from (4.15) we get

〈O′p〉 =

R2, if Λp = 1

0, if Λp = 0,
(4.16)

which looks similar to (4.8), but now the constant background in black pixels is removed.

The variance ∆O′p is

∆O′p = ∆Op + 〈c〉∆R̃p − 2〈c〉Cov
[
Op,∆R̃p

]
, (4.17)

where Cov[A,B] = 〈AB〉 − 〈A〉〈B〉 is the covariance. ∆R̃p can be calculated similarly

to the integral of the first term in (4.10).

〈c〉∆R̃p =
N2

wR
4

Nr

(4.18)

The covariance in (4.17) is

Cov
[
Op,∆R̃p

]
=

∫ ∞
0

Op R̃p P (R)dR− 〈Op〉〈R̃p〉, (4.19)
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Figure 4.3: SNR of the regular ghost imaging. a), b) SNR of the Op observable, (4.3),
without the subtraction of the average pattern. c), d) SNR of the O′p observable, (4.14),

with subtraction of the average pattern R̃p = 1
Nr

∑
iRip, depending on the number of

white pixels in the object, Nw. a) and c) correspond to black pixels, b) and d) to white
pixels. Solid lines are analytic expressions, (4.12) for a) and b), and (4.21), black solid
lines are numeric simulations.

where the first integral is calculated in Appendix B. Substituting the result into (4.17)

we get the variance

∆O′p =
R4

Nr


2Nw + 11, if Λp = 1

2Nw, if Λp = 0,

(4.20)

and SNR

SNRO′p =
√
Nr


1√

2Nw + 11
, if Λp = 1

1√
2Nw

, if Λp = 0,
(4.21)

It is possible to see that subtraction of the temporal average of the speckle pattern

improved the ghost imaging SNR, which now scales as O(1/
√
Nw), see Fig. 4.3c,d. To

illustrate the improvement, in Fig. 4.2 we compare the ghost images with and without

temporal average subtraction.
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Figure 4.4: Principle schematics of the blind ghost imaging setup. The object to be
imaged is hidden behind a scattering layer. In case when the object is fluorescent, we
don’t need the bucket detector to be behind the object, as we can collect the fluorescence
signal from the reflection side.

The statistical approach to ghost imaging has an advantage of relatively high stability

against instrumental noise (in the cameras or in the detector), however it does not

allow perfect reconstruction of the object. At the end of this chapter we will consider

deterministic approach, in which it is possible to achieve perfect reconstruction.

4.3 Blind ghost imaging

4.3.1 Description of the technique

Ghost imaging relies on the spatial correlations between the light intensities in the

bucket detector and resolving detector paths of the imaging system. For example in

the setup in Fig. 4.1b, the patterns passing the object and registered by the resolving

detector are the same, which implies perfect spatial correlation. But what happens

when this correlation is imperfect? Statistically reconstructed ghost images have quite

poor signal-to-noise ratio even in the case of the perfect correlation, especially for semi-

transparent objects. Imperfect correlation acts as an additional effective noise in one

of the patterns. Therefore, in the first instance it might seem that this additional nose

reduces the SNR so much, that the reconstruction becomes impossible. However, as we

show below, we are able to reconstruct the object even when the correlation is as weak

as the one described in Ch. 1–3 (∼10−3–10−4).

A modification of the ghost imaging technique that exploits reflection-transmission

correlations we call the blind ghost imaging. A schematic setup description for this

method is given in Fig. 4.4. A laser beam illuminates a scattering sample, that pro-

duces a dynamically changing speckle pattern. The reflection speckle is registered with a
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camera, and the transmitted speckle illuminates the object placed behind the scattering

material. Total transmitted light is registered by a photodiode placed behind the object

and the scattering slab. In this configuration transmitted speckle patterns are inaccessi-

ble for direct measurement, but since reflected and transmitted patterns are correlated,

the reconstruction is still possible if we modify the corresponding observable.

4.3.2 Signal-to-noise ratio

By analogy to (4.3), an observable for the object reconstruction is

Gp =
Nr∑
i

Ripti, (4.22)

where ti are the readings of the photodiode registering the total transmitted intensity.

ti =

Np∑
j

TijΛj, (4.23)

where T = {Tij} are the transmitted speckle patterns.

As we have seen in Sec. 4.2, average subtraction can significantly improve the re-

construction SNR, therefore we consider an observable

G′p =
Nr∑
i

Ripti − 〈t〉R̃p, (4.24)

where 〈t〉 = 1
Nr

∑
i ti.

The signal-to-noise of this observable can be calculated in a way similar to (4.21),

however to do that we need to know the joint distribution of the reflected and transmitted

speckle intensities. This distribution was estimated in [14]:

P (RT) =
1

(RT )NT

NT∏
ij

e−(Rij+Tij)/RT

CRT
(
Rij
R
− 1
)(

Tij
T
− 1
)

RT
+ 1

 , (4.25)

under the assumption of small CRT , correlation coefficient between the reflected and

transmitted intensities. Here we also neglect the spatial shape of the correlation, as-

suming that it connects only it adjacent pixels in reflection and transmission (it is of a

size of one pixel). This can always be achieved practically by binning the pixels within

the correlation range. When finite size of the correlation is taken into account the recon-

structed image becomes a convolution of the original object profile with the correlation
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line-shape, which is shown in Appendix C.

Now we can calculate the mean value of G′p

〈G′p〉 =

∫ ∞
0

G′pP (RT) dRdT =

CRT , if Λp = 1

0, if Λp = 0,
(4.26)

its variance

∆G′p =
(RT )2

Nr


8CRT (1+Nw)

RT
+ 2Nw + 3, if Λp = 1

2Nw, if Λp = 0,

(4.27)

and signal-to-noise ratio

SNRG′p = CRT
√
Nr


1√

8CRT (1+Nw)

RT
+ 2Nw + 3

, if Λp = 1

1√
2Nw

, if Λp = 0,

(4.28)

when CRT the term with CRT in the denominator of (4.28) can be neglected, which

means that the SNR linearly reduces with the correlation strength.

4.3.3 Numerical modelling

In order to check the validity of the method we performed numerical modelling of this

imaging technique applying a set of numeric mask with different N/Nw ratio to the

transmitted speckle patterns within the reflection-transmission correlation measurement

setup (Fig. 1.2). Ghost images were calculated using (4.24). The modelling results are

demonstrated in Fig. 4.5, showing the feasibility of reconstruction and also qualitatively

confirming the dependence of the signal-to-noise ratio on the number of transparent

pixels in the object.

4.3.4 Experimental results

The experimental setup is shown in Fig. 4.6a, it is very similar to the one used in the

correlations measurements. The laser was Thorlabs He-Ne (632 nm). The sample was

the same as for correlation measurement (TiO2 in glycerol), its thickness was L = 40µm

and the mean free path ` ≈ 16 ± 2.5µm. In order to speed up the sample movement

a piezo transducer was used at a frequency ∼ 9 kHz. As an object we used a negative
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1951 USAF resolution test chart. Instead of a photodiode we used the same camera as

in the correlation measurement (Allied Vision Manta-146GB), integrating its readings.

An identical camera was used to measure the reflected patterns.

The reconstructed image is shown in Fig. 4.6. Panel b) shows the original object

and panel c) is the reconstructed one. After Nr = 2.7× 106 measurements the signal to

noise ratio is 2.9.

The blind ghost imaging technique can be modified to be fully non-invasive for the

case of fluorescent objects. In Fig. 4.6a we show the setup modification for the fluores-

cent blind ghost imaging. Behind the transparency mask we place a slab of fluorescent

material, YAG:Ce3+. We replace the He-Ne laser with a blue photodiode one (FP-D-450-

5P-C-C; Flexpoint, 450nm, 5mW). The typical fluorescent spectrum of this material is

shown in Fig. 4.6e. The fluorescent light is collected in reflection using a beam-splitter

and a 500 nm long-pass color filter to separate it from the reflected laser light. In

Figure 4.5: Numerical simulation of the blind ghost imaging technique. Right col-
umn represents numerical masks applied to the data collected in the correlation func-
tion measurement, left column contains reconstructed images for different Nw/Np: a)
Nw/Np = 0.0045, SNR =3.1. b) Nw/Np = 0.05, SNR =1.22. c) Nw/Np = 0.24, SNR
=0.57.
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Fig. 4.6b we show the original object (top left), the measured correlation function (top

right), the convolution of the original object with the measured correlation function

(bottom left) and finally the reconstructed object after Nr = 4.3 × 106 measurements

(bottom right). As we discussed earlier and in the Appendix C the shape of the recon-

structed object is the convolution of the original object with the correlation function

and that is what we see in the experimental data. This also becomes the main limitation

of our method. As we discussed in Sec. 1.3.4, the correlation broadens and decreases in

hight as ∼ 1
L2 . It means that firstly more averages is needed to get the same SNR, and

more importantly that the reconstructed image resolution is degraded with the increase

of the scattering layer thickness.

Figure 4.6: Blind ghost imaging. a) Experimental setup is similar to the one used for the
correlation measurements (See Fig. 1.2). A semitransparent object (T) (USAF negative
target) is placed behind the scattering layer (S). The camera behind the sample collects
only integrated intensity acting as a photodiode (PD). The sample has L = 40µm and
` = 16 ± 2µm. b) Original object (part of the USAF target). c) Reconstructed image
after Nr ≈ 2.27× 106 averages, SNR ≈ 2.9.
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Figure 4.7: Non-invasive blind ghost imaging using of a fluorescent object. a) Experi-
mental setup is similar to the one presented in Fig. 4.6a. Instead a photodiode behind the
scattering sample (S) and the target (T), we put a layer of fluorescent material (F) just
behind them. Being illuminated by the transmitted speckle, it produces a fluorescence
signal, detected by the photodiode decoupled from the pump light by a beam-splitter
(BS) and colourfilter (CF). b) YAGCe3+ fluorescence spectrum, pump wavelength indi-
cated by a red arrow. c) Original object. d) Correlation function between the reflected
and transmitted speckles for the sample used in a). e) Convolution (calculated) between
the correlation function and the original object in c. f) Image reconstructed using blind
ghost imaging technique after Nr ≈ 4× 106 averages.

4.4 Deterministic approach to ghost imaging. Com-

pressive sensing

Let’s consider the image reconstruction problem from a different perspective. We can

rewrite the expression for the photodiode readings, (4.2), in a matrix form:

c = R ∗Λ, (4.29)
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where c = {ci}, R = {Rij} and Λ = {Λj}. Now we can treat this as a system of linear

equations, and assuming that Nr ≥ Np and that there is no noise in ci and Rij, we can

get an exact solution of this system

Λ = R−1 ∗ c, (4.30)

by inverting R. This, in principle, allows to perfectly reconstruct the object, however

the performance of this method is severely degraded by the photodiode or the imaging

device (that captures the speckle) noise. In Fig. 4.8a we compare the performance of

the statistical (left column) and matrix inversion (right column) approaches. We add

zero mean random Gaussian noise with variance s to the ci. It is possible to see that in

the absence of noise matrix inversion gives perfect reconstruction, however already at

the level of the photodiode SNR ≤ 2, the inversion method stops working. At the same

time in the statistical approach such noise just averages out, almost not affecting the

reconstructed image.

When Nr ≤ Np the inversion problem becomes underdefined. It is still possible to

use a generalized pseudoinverse [85] of R, however this again leads to an error in the

reconstruction. In Fig. 4.8b we compare the deterministic and statistical reconstruction

performance at different numbers of averages Nr. In the statistical method, as we figured

out in the previous section, SNR reduces as 1√
Nr

. The inversion method starts from a

better SNR, however it decays faster and the two methods give comparable results at

Nr ≈ Np/2.

It is possible to improve significantly the reconstruction quality of the deterministic

method in the Nr < Np domain using some prior information about the object. The

technique that allows to do that is called compressive sensing [86, 87]. One can use

optimization methods to find an approximate solution of a linear system (4.29), using

prior information about the object in a form of a set of optimization constraints. There

are two conditions that should be satisfied during the reconstruction procedure.

• The reconstructed object should be sparse in some basis [88]. In other words,

there should be a basis, in which it is described only by a few non-zero coefficients.

Mathematically sparsity is characterized by the generalized norm of the vector

||x||n, n = 0, 1 . . .∞ (4.31)

Finding the sparsity basis is often a challenging task. For most of the natural

images the basis of the discrete Fourier transform harmonics is a good choice [89].

However if a particular set of images to reconstruct is given, an optimal basis
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Figure 4.8: Performance of the statistical and inversion reconstruction in the situation
when a) white noise with the variance s is added to the bucket detector readings b)
when Nr < Np and pseudoinverse is used.

can be constructed using the machine learning algorithms [90] in terms of the

generalized wavelet functions [91].

• The measurement basis should be incoherent with the object’s sparsity basis [88].

The formal definition of the basis coherence is:

Ξ = max
k,j

(〈φkψj〉), (4.32)

where {φk} and {ψk} are the measurement and object sparsity basis respectively.

The lower Ξ the better is the reconstruction, because in such a situation a mea-

surement covers many coefficients in the sparsity basis simultaneously.

We can apply compressive sensing to improve the quality of the speckle pattern

ghost imaging. The most natural sparsity assumption follows from the conditions of the

ghost imaging best performance Nw � Np, which means that there are a few non-zero

pixels in the image and it is sparse in the canonical (pixel) basis. With such a choice

of the sparsity basis, the second requirement of the compressive sensing applicability is

automatically fulfilled, as speckle basis, being the measurement basis, is incoherent with

the canonical one. Another fair sparsity assumption for a binary object is minimal total

variation, or in other word small amount of sharp edges. We will explore this variant as

well.

For the canonical basis sparsity assumption, the mathematical formulation of the
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problem is the following: given a measurement matrix R constructed of the speckle

patterns and a vector of photodiode readings c, find a vector Λrec:

min ||Λrec||n subject to c = R ∗Λrec. (4.33)

For n=0 the problem is shown to be NP hard [89], whereas for n=2, although being

simpler, the optimization gives effectively the same result as (4.30) with R pseudoiversed.

When n = 1 the problem is known as the basis pursuit [92]. There are multiple ways

of solving that problem, such as LASSO regression [93], conjugate gradient [46], or

primal-dual algorithms [94]. We use the l1-MAGIC package for Matlab [95], which in its

turn uses the log-barrier iterative method for a quadratically constraint l1 minimization

problem:

min ||Λrec||1 subject to ||c−R ∗Λrec||2 ≤ s, (4.34)

which is equivalent to (4.33), but additionally accounts for the photodiode readings noise.

The primal-dual reconstruction is also available within this package. We also use TMSBL

package [96], based on sparse Bayesian learning algorithm exploiting correlations in

the reconstructed signal. In Fig. 4.9a we show the images of an object in Fig. 4.3

reconstructed using the log-barrier algorithm at Nr < Np, to be compared with Fig. 4.8b.

As we can see, almost perfect reconstruction is possible even at Nr = Np/7. In Fig. 4.9b

we compare the performance of 3 different compressive sensing algorithms: primal-dual,

log-barrier and sparse Bayesian learning in the presence of photodiode noise. We plot

the reconstruction error

ER = ||Λ−Λrec||2, (4.35)

as a function of Nr and s. The first thing that we see is that there is a threshold in

the number of measurements, Nr ≈ 65, under which the reconstruction is infeasible. In

the region of large Nr the noise degrades the reconstruction quality for both algorithms,

however, as we can see the log-barrier algorithm is more efficient. This means that

contrary to the statistical approach additional noisy measurements do not improve the

reconstruction quality and for a given amount of noise there is an optimal number of

measurements, which is almost the same for both algorithms.

Finally we apply the log-barrier and total variation minimization reconstruction

methods to a 2D object. The variation is defined as

TV =

∫
||∇Λ(x, y)||2 dxdy, (4.36)
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Figure 4.9: Compressive sensing algorithms performance. a) Object reconstruction
at Nr � Np (to be compared with Fig. 4.8). b) Recnotruction error ER (4.35) as
a function of number of measurements Nr and the bucket detector noise s for three
different reconstruction algorithms: log-barrier, primal-dual and TMSBL.

Figure 4.10: 2D image reconstruction using different sparsity assumptions. a) Original
image. b) Statistically reconstructed image. c) Pixel basis sparsity assumption. d) Total
variation sparsity assumption. In all of the reconstructed images Nr = 100.

where Λ(x, y) is a 2D object and ∇ is the gradient operator. The resulting reconstructed

images are shown in Fig. 4.10, from which it is possible to see that the total variation

minimization gives a reasonable reconstruction from only 100 measurements of a 200x200

image.

4.4.1 Summary and outlook

In this chapter we introduced a novel imaging technique that we call blind ghost imag-

ing. It is a modification of the normal ghost imaging method that exploits mesoscopic

correlation between the reflected and transmitted speckle patterns. We analysed the

signal-to-noise ratio of the normal ghost imaging technique and extended this analysis
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to the blind ghost imaging. In contrast to the previous attempts to apply regular ghost

imaging to retrieve the shape of the objects hidden inside or behind the scattering me-

dia [97–99], our method allows to do that in highly scattering media (OD� 1). Its only

limitation is the loss of resolution with the increase of the scattering layer thickness.

We explored the possibilities to reduce the number of measurements in regular ghost

imaging using compressive sensing. The next step is to apply the compressive sensing

methods to the blind ghost imaging, however it is a challenging task, because the low

reflection-transmission correlation in blind ghost imaging setup is equivalent to a severe

(of an order of 1/CRT ) photodiode noise in normal ghost imaging. None of the com-

pressive sensing algorithms considered here is able to work with such a noise, therefore

a custom optimization algorithm is required.
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Chapter 5

Quantum description of the

electromagnetic field

With this chapter we start the discussion of the quantum correlations in multiply scat-

tered fields. In order to do that we first need to introduce theoretical concepts related to

the analysis of the quantum states of light, non-classicality and quantum correlations,

which is the main purpose of this chapter.

We start with the theory of the second quantization and describe the transition

from the field dynamical variables to the corresponding quantum-mechanical operators.

Being a quantum object the field itself is described by a state in an abstract Hilbert

space. We identify the subspace of the Hilbert space suitable for the field description

and introduce several classes of states relevant for the further discussion. As quantum

physics contains classical physics as a limiting case, some of the states of the field might

not actually require quantum description. In the final part of this chapter we revise the

methods that allow to check if a given state requires quantum mechanical description

or the classical one is sufficient.

5.1 Quantization of electromagnetic field

In most cases light can be described as a classical wave obeying a set of Maxwell’s

equations. However, in certain situations such description is not sufficient. The idea

of light consisting of tiny discrete particles existed since the times of Newton or even

earlier, since ancient philosophers introduced it [100]. This idea was revisited in more

recent times to address numerous evidence of the light discreteness, such as photoelectric

effect, atoms stability and resolution of the ultraviolet catastrophe by means of Planck’s

summation approach, leading to the development of quantum mechanics. Despite its
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success in the description of many physical phenomena, in its early days this theory

suffered from a lot of issues. One of them was difficulty to describe the effects involving

more than one particle within the wavefunction approach. In particular, in context of

the electromagnetic field, while it was clear that it is carried by the discrete quanta, it

was not less clear how and why they appear. This problem was resolved by P. Dirac,

who developed the rigorous theory of the electromagnetic radiation quantization [101],

named second quantization. Since then, his approach is a standard method of the field

theory, that allows transition from classical to quantum picture for various systems.

For the case of the electromagnetic field,the procedure of the 2nd quantization con-

sists of the following steps [102, 103]:

• Write the Hamiltonian of the system (field) and identify the canonical conjugate

variables.

• Assign operators to these quantities and figure out their commutation relations.

• Identify the creation and annihilation operators and their commutation relations.

• Construct the state space using the creation and annihilation operators.

The classical expression for the energy (Hamiltonian) of the electromagnetic field is:

H =
1

2

∫ (
ε0E

2(r, t) +
1

µ0

B2(r, t)

)
dV. (5.1)

Its first term stands for the kinetic energy of the field, while the second is the potential

energy, therefore the Lagrangian of the system is:

L =
1

2

∫ (
ε0E

2(r, t)− 1

µ0

B2(r, t)

)
dV. (5.2)

It is convenient to replace the electric and magnetic field in these expressions with the

vector potential A, which satisfies:

B(r, t) = ∇×A(r, t), E(r, t) = −∂A(r, t)/∂t . (5.3)

The Lagrangian becomes:

L =
1

2

∫ (
ε0

(
A(r, t)

∂t

)2

− 1

µ0

(∇×A(r, t))2

)
dV. (5.4)
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If we take A as one of the canonical variables, its conjugate pair is

Π(r, t) =
∂L

∂(∂A(r, t)/∂t)
= ε0∂A(r, t)/∂t. (5.5)

According to the canonical quantization scheme we can replace the classical canonically

conjugate fields with the corresponding quantum-mechanical operators, A 7→ Â, Π 7→
Π̂, satisfying the commutation relations:[

Ân(r, t), Π̂k(r
′, t)
]

= i~δnkδ⊥(r− r′), (5.6)[
Ân(r, t), Âk(r

′, t)
]

=
[
Π̂n(r, t), Π̂k(r

′, t)
]

= 0,

where Ân and Π̂k are components of Â and Π̂, δnk is the Kronecker-delta, and δ⊥ is the

transverse delta function

δ⊥(r− r′) = δ3(r− r′) +
1

4π
∇×∇ 1

|r− r′|
. (5.7)

Commutation relations (5.6) are useful for general understanding of the field configura-

tion, however they depend on the spatial coordinates, which complicates their practical

use. One of the ways to address this problem is the monochromatic mode expansion. The

fields A and Π are decomposed over an orthogonal mode basis. In that decomposition,

the amplitudes of the expansion become the canonical variables. Their commutation

relations do not depend on the spatial coordinates, because it is transfered into the mode

configuration.

In order to perform the mode decomposition, equations of motion of the system

should be specified. This can be easily done by substituting (5.4) into the Euler-Lagrange

equations of motion, which gives the regular wave equation for the vector potential

(assuming Coulomb gauge, ∇ ·A = 0)

∇2A(r, t) =
1

c2

∂2A(r, t)

∂t2
(5.8)

The solution of this equation in free space can be written in the form of a plane wave

decomposition

A(r, t) =
∑
k

(
Ak(t)eikr +A∗k(t)e−ikr

)
. (5.9)

Substituting this expression into the wave equation (5.8) we obtain the equation of
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motion for Ak(t): (
∂2

∂t2
+ ω2

k

)
Ak(t) = 0, (ωk = kc), (5.10)

which has a solution:

Ak(t) = Ake
−iωkt . (5.11)

The full solution to the wave equation is

A(r, t) =
∑
k

∑
ν

(
akνeνe

ikr−iωkt + a∗kνe
∗
νe
−ikr+iωkt

)
, (5.12)

where eν are the polarization unit vectors. Now for each mode with a wave vector k

and polarization eν we can introduce a pair of real variables:

xkν(t) = akνe
−iωkt + a∗kνe

iωkt, (5.13)

pkν(t) = −iωk(akνe
−iωkt − a∗kνeiωkt),

that form canonically conjugate pairs

∂xkν
∂t

= pkν , (5.14)

∂pkν
∂t

= −ω2
kxkν ,

The Hamiltonian of the field is

H =
1

2

∑
k

∑
ν

(
p2
kν + ω2x2

kν

)
, (5.15)

which is a sum of the energies of individual independent modes with wave vectors k and

polarizations eν . By the same procedure as in (5.6) we can assign operators to x and p

xkν 7→
√

~
2ε0ωk

x̂kν , pkν 7→
√

~
2ε0ωk

p̂kν , (5.16)

obeying commutation relations:

[x̂kν , p̂kν ] =
i

2
δkk′δνν′ , (5.17)

[x̂kν , x̂kν ] = 0 , (5.18)

[p̂kν , p̂kν ] = 0. (5.19)

Operators x̂kν and p̂kν have a distinct physical meaning. The electric field (5.3) us-
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ing (5.12) can be expressed in terms of these variables

E(r, t) =
∑
k

∑
ν

(xkν sin (ωkt− kr)− pkν cos (ωkt− kr)) , (5.20)

which shows that x and p are the amplitudes of the two components of the field shifted

by 90◦ in phase. They are called quadratures and x̂kν and p̂kν are called quadrature

operators. These quantities are analogous to the position and momentum of a harmonic

oscillator and can be measured experimentally.

Now we can start building the state space for the electromagnetic field. The most

natural choice of that space is the set of the eigenstates of the field Hamiltonian, which

also becomes an operator in the quantized picture. It is convenient to introduce a pair

of conjugate operators

âkν = ωkx̂kν + ip̂kν (5.21)

â†kν = ωkx̂kν − ip̂kν . (5.22)

called creation and annihilation operators. As â 6= â†, they do not represent any observ-

able quantities, however they are useful in calculations. Their commutation relations

can be derived from (5.17) – (5.19).[
âkν , â

†
kν

]
= δkk′δνν′ , (5.23)

[âkν , âkν ] = 0 , (5.24)[
â†kν , â

†
kν

]
= 0. (5.25)

The Hamiltonian (5.15) can be expressed in terms of these operators

Ĥ =
∑
k

∑
ν

~ωk

[
âkν â

†
kν +

1

2

]
=
∑
k

∑
ν

Ĥkν , (5.26)

where Ĥkν is a Hamiltonian of each of the modes with a wave vector k and polarization

eν . Let’s denote the eigenvectors of Ĥkν as |nkν〉. The eigenvalues of this operator, Enkν ,

Ĥkν |nkν〉 = Enkν |nkν〉, (5.27)

correspond to the allowed energy levels of each mode. Substituting Ĥkν from (5.15)

into (5.27), multiplying both side with â†kν and using the commutation relations (5.23)
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gives

Ĥkν â
†
kν |nkν〉 = (Enkν + ~ωk)â†kν |nkν〉, (5.28)

which means that â†kν |nkν〉 is also an eigenvector of the mode’s Hamiltonian with an

eigenvalue Enkν + ~ωk. Repeating this multiple times we can see that the energy of the

mode changes in discrete portions equal to ~ωk. This is exactly what we were aiming

for, as it captures the discrete nature of light and these energy portions are the quanta

of electromagnetic radiation called photons.

The operator â†kν increases the energy of the mode by one portion, or in other words,

it adds a photon to the mode. To capture that, we can assign a different eigenvector to

the increased eigenvalue

â†kν |nkν〉 =
√
nkν + 1|nkν + 1〉, (5.29)

where the
√
nkν + 1 prefactor is added for the normalization purpose. This is where the

name “creation operator” comes from. The adjoint of the creation operator reduces the

number of photons in the mode:

âkν |nkν〉 =
√
nkν |nkν − 1〉, (5.30)

that is why it is called “annihilation” operator.

Acting on |nkν〉 consecutively with the annihilation and then with the creation op-

erator results in

â†kν âkν |nkν〉 = nkν |nkν〉, (5.31)

therefore the operator â†kν âkν = n̂kν is called a number operator. It is similar, apart from

a constant factor, to the Hamiltonian of the EM field and its eigenvalues correspond to

the number of photons in the mode. Using (5.20) the electric field operator can be

written as

Êkν(r, t) = Ê+
kν(r, t) + Ê−kν(r, t), (5.32)

where

Ê+
kν(r, t) =

√
~ωk

2ε0
âkνe

−iωkt−ikr, Ê−kν(r, t) =

√
~ωk

2ε0
â†kνe

iωkt+ikr (5.33)

are the positive and negative frequency components of the field. From this expression

follows, that when a classical field is represented as a positive frequency Fourier series

over the spatial harmonics, in order to switch to the quantum description and get the

field operator, we just need to replace the amplitudes of the modes by the correspond-

ing annihilation operators. Now we have all the instruments to explore the space of
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the possible states of the EM radiation, but before doing that, let’s make a couple of

important remarks.

First of all, due to the proposed quantization scheme the commutation relations be-

tween the mode operators do not depend on the spatial coordinates. It means that in the

considered situation of the free EM field its spatial configuration is fully determined by

classical mechanics. In other words, the interference patterns and the speckle produced

by the exotic quantum states of light will be the same as for classical field. However the

dynamics of the field depends on the state of modes, which can be observed by measuring

the photon statistics of light using homodyne detection [104] or other techniques [105].

Finally this argument can break for the systems where the separation of spatial and time

dependence of the field is impossible, such as nonlinear or inhomogeneous media[106].

Propagation of non-classical light in such media can lead to some interesting features of

the output field spatial distribution [107, 108].

5.2 Quantum states of light

In the previous chapter we outlined a basis in the Hilbert space of the states of the EM

field. For a given mode with a wave vector k and polarization ν, such a basis is formed

by a set of the eigenvectors of the number operator n̂ of this mode (for simplicity we

skip the k and ν indices)

n̂|n〉 = n|n〉. (5.34)

Any other pure state of the EM field of this mode can be expressed as a linear combi-

nation of the basis vectors

|Ψ〉 =
∑
n

cn|n〉, cn ∈ C,
∑
n

|cn|2 = 1. (5.35)

To get a complete description of the field we need to consider also statistical mixtures

of arbitrary pure states |Ψn〉

ρ =
∑
n

pn|Ψn〉〈Ψn|, 0 ≥ p ≥ 1,
∑
n

pn = 1 (5.36)

There is a whole multitude of ways to construct a valid physical state specifying cn

and pn. We now introduce the states that are relevant for the following discussion and

outline their most important properties.

• The vacuum, |0〉, is the ground state of the EM field. It is defined as such a state
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for which

â|0〉 = 0. (5.37)

Despite being minimal, the energy of the field in a vacuum state, 〈0|H|0〉 is non-

zero, which is in a drastic contradiction to the classical theory. The mean number

of photons of the field in this state is 0, however the variances of its quadratures

are non-zero, indicating presence of fluctuations. These quantum fluctuations are

responsible for such phenomena as spontaneous emission, Casimir force and Lamb

shift and establish an uncertainty limit on the simultaneous measurement of the

non-commuting field observables.

• Fock states

The basis vectors |n〉 themselves are appropriate states of the field called Fock

states. Any of these states can be obtained from the vacuum as

|n〉 =
1√
n!

(
â†
)n |0〉 (5.38)

The mode in such a state has a fixed number of photons per unit interval, equal

to n, however as it follows from the Heisenberg indeterminacy principle the uncer-

tainty in the time of emission of these photons is maximal. Returning to the wave

picture of EM radiation, a mode in such a state will have fixed amplitude, but a

completely randomized phase. Fock states exhibit features that are unavailable

for regular waves, demonstrating their genuinely quantum nature. It is captured

by various non-classicality criteria that will be discussed in the nest sections.

• Coherent states were introduced by Glauber [109] and Sudarshan [110], to explain

the photon statistics of the ideal shot noise limited laser radiation as the eigenstates

of the annihilation operator

â|α〉 = α|α〉. (5.39)

In the Fock basis a coherent state can be written as

|α〉 = e−
|α|2
2

∑
n

αn√
n!
|n〉, (5.40)

where parameter α corresponds to the classical amplitude of the electric field of
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the light mode. This expression, using (5.38) can be rewritten as

|α〉 = e−
|α|2
2

∑
n

(αâ†)
n

n!
|0〉 = e

(
αâ†− |α|

2

2

)
|0〉 =

= e(αâ
†−α∗â)|0〉 = D̂(α)|0〉, (5.41)

where D̂ = e(αâ
†−α∗â) is the displacement operator.

A set of coherent states with the amplitude α being a parameter, also form a basis

in the Hilbert space of the states of the mode. However in contrast to the Fock

basis, the coherent state basis is overcomplete, i. e.

〈α|β〉 = e−
1
2(|α|2+|β|2−2α∗β) 6= 0. (5.42)

These states have equal and minimal possible uncertainty in the quadratures or

in the phase and the amplitude.

• Squeezed states

In certain conditions it is possible to reduce or “squeeze” the uncertainty in one

of the quadratures, amplitude or phase of the mode [111, 112]. This can be

achieved when the light is emitted in the result of the nonlinear process, such as

spontaneous parametric down-conversion or optical parametric amplification or

alternatively second harmonic generation. Such states of the light field are called

squeezed and in the Fock basis they can be expressed as

|ζ〉 =
√

cosh r
∞∑
n=0

√
2n!

n!

(
eiθ tanh r

2

)n
|2n〉, (5.43)

where r is the squeezing parameter and θ is the squeezing phase. Density ma-

trix approach is not the best way of description for such states, a more natural

description will be given by the phase-space formulation.

• Thermal states

By now all the states we considered were pure. However, for example, a black

body equilibrium radiation can’t be described by a pure state. The state of the

field of the mode in that case is mixed and it is described by a density matrix

ρth =
1

n̄

∞∑
n=0

(
n̄

1 + n̄

)1+n

|n〉〈n|, (5.44)

95



where n̄ is the average number of photons it the mode. The uncertainties in the

quadratures for this state are defined by the average number of photons n̄ in it.

• Superpositions vs. mixtures of coherent states

Ability to form superpositions is considered a genuinely quantum feature. The

difference between a superposition and a mixture of two states is often illustrated

by the following example. Let’s consider two states:

|Ψsup〉 =
1√
2

(|ψ1〉+ |ψ2〉) (5.45)

and

ρmix =
1

2
(|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|) . (5.46)

When a projective measurement is performed in {|ψ1〉, |ψ2〉} basis, both for |Ψsup〉
and for ρmix the probability to observe either |ψ1〉 or |ψ2〉 is 1/2. However for

|Ψsup〉 there will be a particular basis

{|ψ1〉+ |ψ2〉√
2

,
|ψ1〉 − |ψ2〉√

2
} (5.47)

in which there will be no uncertainty in the measurement results and the outcome

related to the first basis vector will occur with 100% probability. At the same time,

for the state ρmix any projective measurement basis within the space spanned by

|ψ1〉, |ψ2〉 will result in 1/2 probability to get either of the outcomes.

Similar argumentation can be used to distinguish between the superposition

|Ψcoh sup〉 = cs|α〉+
√

1− c2
s|β〉 (5.48)

and a mixture

ρcoh mix = cm|α〉〈α|+ (1− cm)|β〉〈β|, (5.49)

of coherent states (5.40), where cs and cm are normalization constants. However

basis manipulation in the Fock space is less straightforward and the measurement

in which |Ψcoh sup〉 gives only a particular outcome is hard to interpret.

Another way to check if a particular state is a superposition is to examine the

non-diagonal elements of its density matrix. In our example the density matrix of

|Ψsup〉 is

ρsup = |Ψsup〉〈Ψsup| =
1

2

(
1 1

1 1

)
, (5.50)

96



while

ρmix =
1

2

(
1 0

0 1

)
. (5.51)

As expected, the non-diagonal elements of the second matrix are zeros. However,

it is always possible to write the density matrix of a given state in its eigenbasis,

in which it is diagonal. In order to quantify the non-classical features using the

density matrix non-diagonal elements one either needs to specify a preferred basis

(usually the energy basis of the problem), or to consider a full basis set as in the

case of the so-called coherence monotones, which will be discussed later in this

chapter.

5.3 Phase-space formulation and quasi-probability

distributions

In the early days of quantum mechanics, various interpretations of its formalism were

proposed, sometimes to complement the mainstream formulation, but more often to

oppose it and suggest a better explanation of the physical reality. Although many of

these alternative formulations were later shown to be equivalent to each other and to the

standard one, leading to the same predictions in similar conditions, some of them still

remain useful. Often developed to address a particular system/problem they provide a

more convenient way to approach it compared to the other interpretations. For exam-

ple, path integral formulation [113] is particularly useful for calculating the transition

probabilities between different states and the Bohmian formulation [114] allows to get

rid of the counterintuitive non-unitary dynamics suggested by the Born rule [115]. The

phase-space formulation [116–119], which we introduce in the current chapter is one of

these alternative approaches. It uses a well developed apparatus of the probability the-

ory to treat quantum fluctuations within the same framework as stochastic randomness

due to incomplete description of the system.

As we figured out in the previous chapter, the states of the EM radiation of a par-

ticular mode occupy a space spanned by the basis vectors |n〉. This is an infinitely

dimensional set, therefore a generic state of the mode is described by an infinite dimen-

sional density matrix. The joint state of two modes will reside in the Hilbert space,

which is a tensor product of the Hilbert spaces of the individual modes. The density

matrix of such a state is not an easy object to handle and the situation gets even worse

when additional modes are taken into account.
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In phase space, instead of a density matrix, a mode of light is described by a function

of two variables, usually the field quadratures. The value of this function is related to

the probability to observe certain quadrature values in a measurement. However, since

Heisenberg uncertainty relation poses constraints on the simultaneous knowledge of these

values, this function might have some features inappropriate for a normal probability

distribution (negative or singular values). This is a reason why such functions are

called quasiprobability distributions. When additional modes are taken into account,

the number of arguments of the quasiprobability distribution increases by two per mode,

which makes it convenient to handle using the normal methods of multivariate calculus.

In order to see how it works in details, let’s consider a set of N modes with creation

operators âk, k = 1 . . . N , obeying commutation relations similar to (5.23) - (5.25)[
âk, â

†
l

]
= δkl, [âk, âl] = 0,

[
â†k, â

†
l

]
= 0. (5.52)

Let’s arrange the quadrature operators, x̂k and p̂k of these modes into a vector

R̂ = {x̂1, p̂1, ..., x̂N , p̂N} (5.53)

The commutation relation of the elements of R̂ are

[R̂k, R̂l] = iΩkl, (5.54)

where Ωkl are the elements of the symplectic matrix

Ω =

(
0 1

−1 0

)⊕N
=



0 1 0 0 . . . 0 0

−1 0 0 0 . . . 0 0

0 0 0 1 . . . 0 0

0 0 −1 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 0 . . . 0 1

0 0 0 0 . . . −1 0


. (5.55)

The first step to get the quasiprobability distributions of a state ρ is to compute its

characteristic function

χκ(ξ) = Tr[ρ D̂(ξ)] e
1
2
κ||ξ||2 , κ ∈ {−1, 0, 1}, (5.56)

where D̂(ξ) = {D̂k(ξk)} is a multimode generalization of the displacement opera-
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tor (5.41)

D̂k(ξk) = e(ξkâ
†
k−ξ

∗
k âk) (5.57)

and ξ is a 2N -dimensional vector of phase-space variables, ξ ∈ R2N . After writing (5.57)

in a more compact form

D̂(ξ) = eiR̂
TΩξ, (5.58)

the κ parametrized set of the quasiprobability distributions is obtained from the char-

acteristic function via a complex Fourier transform [120],

Wκ(R) =
1

(2π2)N

∫
eiζ

TΩRχκ(ζ)d2Nζ, (5.59)

where R = {x1, p1, ..., xN , pN} in analogy to (5.53). Depending on the value of κ we get

the following distributions:

• Wigner function [116]: κ = 0

It is the most commonly used quasiprobability distribution. For a single mode

and κ = 0 (5.59) simplifies to

W (x, p) =
1

2π

∫
〈x+

~y
2
|ρ|x− ~y

2
〉eiypdy. (5.60)

This expression gives some context about the physical meaning of W : the marginal

distributions of this function coincide with the quadrature distributions of the

mode, which are available for a direct measurement via the homodyne tech-

nique [104] ∫
W (x, p)dx = 〈p|ρ|p〉 (5.61)∫
W (x, p)dp = 〈x|ρ|x〉 (5.62)

Despite this, the Wigner function can’t be considered as a joint distribution of

the field quadratures. As, already mentioned, in quantum mechanics these values

are not measurable simultaneously and this leads to negative values of the Wigner

function. This negativity, actually is often used as a criterion for non-classicallity.

When a given state has a positive Wigner function, it is considered classical. In

the next chapter we will discuss the limitation of such argumentation.

• Glauber-Sudarshan P-function [109, 110]: κ = 1

The P-function is the most straightforward way of mapping from the density op-
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erators in Hilbert space to the real-valued functions [109]. It appears that any

density matrix ρ can be diagonalized in the coherent state basis:

ρ =

∫
P (α)|α〉〈α|d2α, (5.63)

where |α〉 are coherent states (5.40) and d2αmeans dRe(α)dIm(α). The real-valued

function (because ρ is Hermitian) P is equivalent to the one obtained from (5.59)

by taking κ = 1.

P-function is related to the Wigner function as

W (α, α∗) =
2

π

∫
P (β, β∗)e−2|β−α|2d2β, (5.64)

from which a relation between the P -function and the density matrix of a state

can be derived

P (α, α∗) =
e|α|

2

π

∫
〈−β|ρ|β〉e|β|2−βα∗+β∗αd2β. (5.65)

As well as the Wigner function, the P function can become negative, and it is also

considered as a non-classicallity signature. In addition to that whenever Wigner

function has any features less than ~/2 in width, the P function becomes singular

(∼ derivative of a delta function). This makes it inaccessible for direct observation.

• Husimi Q-function [121]: κ = −1

The Q-function is the easiest to calculate of all the distributions. Given the density

matrix ρ

Q(α) = 〈α|ρ|α〉. (5.66)

It is also the most well-behaved of the quasiprobabilities, being always positive,

Q(α) ≥ 0. The non-classicality of ρ is captured by some details of its variation. It

is also accessible for direct measurement, however due to the sharp dependence of

the state properties of fine features of its shape, it is highly sensitive to the noise

and measurement imperfections [122].

One of the key features of the phase space formulation that determined its success

is the optical equivalence theorem [103]. It provides a intuitive and straightforward

way to calculate expectation values of the observables for a system described by a

quasiprobability distribution. Let’s consider an observable Ô represented by an function

of operators â and â†: Ô = f(â, â†). The optical equivalence theorem states that
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the expected value of this observable for a state ρ with a Wigner function W can be

calculated as

Tr[ρ Ô] =

∫
W (x, p)OS(x, p) dx dp, (5.67)

where OS(x, p) is a Wigner representation of ÔS = f (S)(â, â†), a symmetrically ordered

version of f(â, â†)

OS(x, p) =
1

2π

∫
〈x+

~y
2
|ÔS|x−

~y
2
〉eiypdy. (5.68)

Expressions equivalent to (5.67) can be obtained by replacing the Wigner function by the

P -function and using the normally ordered version of Ô, ÔN = f (N)(â, â†) or by replacing

it with the Q-function and using the antinormally ordered version of Ô, ÔA = f (A)(â, â†).

Having set a general framework of the phase-space formalism, we are now ready to

explore particular examples of the states within this interpretation. The set of all possi-

ble states is divided into two classes: Gaussian and non-Gaussian states. It appears that

for Gaussian states the phase space formalism significantly simplifies any calculations,

which is due to the properties of the Gaussian functions. For non-Gaussian states usu-

ally the advantage is not that apparent, therefore a combination of different approaches

might be required.

5.3.1 Gaussian states

The states for which characteristic function χκ(ξ), (5.56) is a Gaussian distribution, are

called Gaussian states [120, 123, 124]. Any multivariate Gaussian distribution can be

written in a vector form

FG(x) = Ae−
1
2
xTBx+cTx, (5.69)

where x ∈ RN is a vector of variables, B ∈ RN × RN is a real-valued matrix that

characterizes the variances of the random variables and their correlations, c ∈ RN is a

vector of mean values and C is a normalization constant.

In the expression for the characteristic function vector ξ has a particular structure

(it consists of pairs of x and p quadratures of the modes) therefore there are additional

constraints on the elements of the matrix B. The Gaussian form of the characteristic

function is

χκ(ξ)
∣∣
κ=0

= χ(ξ) = e
1
2
ξTΩσΩTξ−iξTΩd, (5.70)
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Figure 5.1: Examples of the quasiprobability distributions (Wigner functions) of Gaus-
sian states: a) coherent state (5.40). b) thermal state (5.44). c) squeezed state (5.43).

where σ is a covariance matrix

σµ,ν =
1

2
〈R̂µR̂ν + R̂νR̂µ〉+ 〈R̂µ〉〈R̂ν〉 (5.71)

and d is a vector of displacements. The uncertainty relation, derived from the commu-

tation relations (5.17) - (5.19) put additional constraints on the elements of σ

σ + iΩ ≥ 1

2
. (5.72)

For a Gaussian state covariance matrix and the displacement vector fully describe the

system. Performing the Fourier transform (5.59) it is possible to find the Wigner function

(and other quasiprobability distributions) of a Gaussian state

W (R) =
1

(2π)N
√

det(σ)
e−(R−d)Tσ−1(R−d), (5.73)

from which a conversion to the density matrix formalism is possible.

Let’s now look at the particular examples of the Gaussian states:

• Coherent states and Vacuum

Coherent states are the simplest of the Gaussian states. Their covariance ma-

trix σcoh = 1
2
I is just an identity matrix (N × N) multiplied by 1/2, and the

displacement vector

dcoh = {Re(α1), Im(α1) . . .Re(αN), Im(αN)} (5.74)

is determined by the field amplitudes of each of the modes. Particularly, for the

vacuum state d = 0.

For a single mode coherent state Wigner function is a 2D Gaussian with the
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variance of 1/2 centered at (x0, y0), where α = x0 + iy0 is the complex amplitude

of the field (see Fig. 5.1a).

• Squeezed states

Squeezed states are described by multivariate Gaussian distributions with a certain

structure. A single mode squeezed state has a covariance matrix

σsq =

(
cosh r + sinh r cos θ sinh r sin θ

sinh r sin θ cosh r − sinh r cos θ

)
(5.75)

This matrix corresponds to a Gaussian distribution elongated along an axis that

makes an angle of θ with respect to the positive direction of the x-quadrature (see

Fig. 5.1b). The variances of the widest and the narrowest projections of this 2D

Gaussian are er/2 and e−r/2 respectively. The second variance can go beyond

1/2, which is the shot noise limit. That is the reason why this class of states is

considered to be non-classical.

• Thermal states

As we already mentioned, thermal states are mixed. In contrast with coherent

and squeezed states, where the only source of uncertainty in the quadrature (or

amplitude and phase) measurements is quantum indeterminacy in the form of shot

noise, thermal states describe chaotic fluctuations of the field. These fluctuation

are, in principle, deterministic, but as they depend on the position of each emitting

atom, their full description is inaccessible. Instead, as is usual in statistical physics,

they are treated as a random process, for which the phase space formalism is

convenient, since in naturally unifies stochastic randomness with the one from

quantum indeterminacy [116]. The covariance matrix associated with one mode

thermal light is σth = (1/2 + n̄)I. Wigner function of these states is a symmetric

Gaussian with a variance n̄ + 1/2 and, normally, centred at 0 (see Fig. 5.1c) (in

the case of regular black-body radiation). Although non-zero displacement d 6= 0

is also possible. Thermal states with non-zero d are called displaced [125].

The most general Gaussian state is a squeezed and displaced multimode thermal state [126].

Covariance matrix σ of such a state is a 2N × 2N real valued symmetric matrix that

may contain pretty much arbitrary entries, as long as they satisfy the uncertainty rela-

tion (5.72). In addition, this matrix has a particular block structure

σ =

(
α γ

γT β

)
, (5.76)
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where the 2×2 blocks along the diagonal refer to the properties of the individual modes

and the off-diagonal elements describe the correlations between different modes. All the

possible types of classical or quantum correlations can be described by these submatrices.

In the next section we will examine different methods and criteria for their analysis, but

now let’s briefly discuss the states for which Gaussian formalism is not applicable.

5.3.2 Non-Gaussian states

A state for which characteristic function χκ(ξ), (5.56) is anything rather than a Gaussian

distribution is called non-Gaussian. As any state that has negative values of the Wigner

function (and therefore is non-classical by that criterion) belongs to that class, non-

Gaussianity is often linked to non-classicality. Indeed, such non-Gaussian states as

Fock states [127], photon added or photon subtracted states [128], Yurke states [129],

superpositions of coherent states [130], are all highly non-classical. However mixtures

of coherent states, that are often considered to be completely classical, are also non-

Gaussian. In Fig 5.2 we compare the Wigner functions of a mixture of two coherent

states (|α〉〈α| + | − α〉〈−α|)/2, with a Wigner function of their superposition (|α〉 +

| − α〉)/
√

2 . The side lobes of both function represent the two states |α〉 and | − α〉.
The fringes in the center of the second graph are due to quantum interference of |α〉
and | − α〉 and they are responsible for the non-classicality of this superposition, as the

Wigner function becomes negative within that region. When the distance between the

peaks of the superposition increases (or in other words when the amplitude α grows),

the fringes become sharper and more fine. The Wigner function of the mixture remains

positive at any value of α, however, as we will show in the next chapter, some quantum

features are present within that mixture. In order to reveal them we need to develop a

non-classicality criterion that can capture that type of non-classicality, but before doing

that we will review the currently known criteria.

5.4 Non-classicality criteria

It is often not obvious whether a given system requires a quantum-mechanical description

or not. On the one hand there are examples of phenomena, such as the Hanbury Brown

and Twiss effect [131] or ghost imaging [132], that originally were considered to have

quantum nature [67, 74, 133], but were later described classically [71, 75, 103]. On the

other hand even such undoubtedly quantum features as entanglement can be mimicked

by completely classical systems [134, 135].
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Figure 5.2: Wigner functions of a superposition |α〉 + | − α〉, left panel and a mixture
|α〉〈α|+ | − α〉〈−α| of two coherent states.

The most evident non-classicality criteria are related to the Bell’s inequality viola-

tion. In his work addressing the famous EPR paradox [136], Bell suggested a test of

completeness of the quantum theory [137]. This test was based on an inequality relating

the properties of two particular correlated systems and having a tight bound for a clas-

sical ”hidden-variable” variant of the system description. Getting a value beyond that

bound (violation of the inequality) would mean that the theories based on the classical

picture are not able to explain the experimental results. On the other hand quantum

theory accepted such a possibility, giving a higher value of the bound. The Bell’s test

was performed numerous times, eliminating any possible ”loopholes” or experimental

imperfections that questioned the validity of the final result and each time the violation

of the classical prediction was achieved [138]. As the validity of quantum theory that

was tested by the Bell’s inequalities is now reliably confirmed, they can be a criterion

for the state non-classicality: any state that violates them is definitively non-classical.

As Bell’s inequalities are formulated for the systems of at least two spatially separated

parties and rely on the correlations between their properties, we first review the features

of such multimode systems that make them non-classical.

5.4.1 Multimode state non-classicality: entanglement and dis-

cord

In order to violate the Bell’s inequality a state must be entangled. Entanglement is a

property of a quantum system, which is responsible for the situation when two or more

spatially separated parts of such a system act as a whole. In particular, the outcome of

a measurement performed on one of the parts of an entangled state will depend on the
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outcome of a measurement on the other part.

The entanglement criteria are well understood for the pure states. For a pure state

there are only two options: it can either be a product state of two subsystems and they

are completely independent in that case, or the state is entangled. Let’s consider an

example of two qubitss, A and B.

The general pure state of the first qubit is

|ΨA〉 = α1|ψ1〉+ β1|ψ2〉; (5.77)

where |ψ1〉, |ψ2〉 is a pair of orthonormal vectors and α1, β1 ∈ C. By analogy, the state

of the second qubit

|ΦB〉 = α2|φ1〉+ β2|φ2〉, (5.78)

Their product state is of the form

|ΨAΦB〉 = (α1|ψ1〉+ β1|ψ2〉)⊗ (α2|φ1〉+ β2|φ2〉)

= α1α2|ψ1φ1〉+ α1β2|ψ1φ2〉+ α2β1|ψ2φ1〉+ β1β2|ψ2φ2〉,

However a general state in a 2-qubit Hilbert space

|ΨAΦB〉 = u1|ψ1φ1〉+ u2|ψ1φ2〉+ u3|ψ2φ1〉+ u4|ψ2φ2〉 (5.79)

doesn’t necessarily has such a form. It can be easily shown that a state

|ΨΦ〉Bell =
|ψ1φ1〉+ |ψ2φ2〉√

2
(5.80)

can’t be written as a product, therefore it is entangled. The states of a type as in (5.80)

are called Bell states as they are used to violate Bell’s inequalities.

The general criterion for the entanglement of bipartite pure states is based on the

Schmidt decomposition [139]. To check if such a state is entangled it is necessary to

check if the reduced states of each of the parties are mixed. In case they are, the bipartite

state is entangled, if they are pure, the joint state is a product. This procedure also

can be generalized to multipartite systems, however multipartite generalization of the

Schmidt decomposition works well only for case in which if one of the parts is traced

out, the rest is fully separable [140]. In a general case one needs to check the purity of

all possible bipartite reductions [141].

For mixed states the situation is more complex: a multicomponent system that is
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not entangled is not necessarily in a product state. Mixed states of a form

ρsep = piρ
1
i ⊗ · · · ⊗ ρni , pi > 0, pi ∈ R (5.81)

are not entangled and are called separable. A general criterion of multidimensional

entanglement of arbitrary quantum systems should be able to tell if a given state can

be written in a form (5.81). Such criterion has not been developed yet. Moreover it has

been shown that such a problem is NP hard [142]. A procedure called positive partial

transpose (PPT) criterion exists for the systems with dimensions 2⊗ 2 and 2⊗ 3 [143,

144]. If we write the density matrix of a joint state as:

ρ =
∑
ijkl

ρijkl|ψi〉〈ψj| ⊗ |φk〉〈φl| (5.82)

the partial transpose is defined as follows:

ρTB =
∑
ijkl

ρijkl|ψi〉〈ψj| ⊗ |φl〉〈φk|. (5.83)

If all of the eigenvalues of the partial transpose of the density matrix ρTB are positive,

this density matrix describes a separable state, while if at least one of the eigenvalues

is negative the state is entangled. For 2 ⊗ 2 and 2 ⊗ 3 systems this criterion gives

necessary and sufficient condition of the separability of the joint density matrix. For

higher dimensions it gives only the necessary condition.

The PPT criterion can be generalized to the case of Gaussian states. This generaliza-

tion is called Simon criterion [145]. One can notice that the partial transpose operation

in the regular PPT criterion corresponds to a mirror reflection of the corresponding

state within its Hilbert space. For a continuous variable system such an operation is

analogous to a time reversal, which in its turn changes the sign of the p quadrature of

the transposed mode. If the covariance matrix obtained after such an operation corre-

sponds to a physical state (i.e. it is positive and satisfies Heisenberg uncertainty relation

(5.72)), the considered state is separable, if not it is entangled. As in the case of two-

level systems, Simon criterion is applicable only for two modes and in several special

generalizations of this case [146, 147]. The Simon criterion is formulated in terms of the

symplectic eigenvalues of the state η+, η− as [148]:

η± :=

[
1

2

(
∆′ ±

√
∆′2 − 4 det(σ′)

)]1/2

≥ 1/2, (5.84)

where ∆′ = det(α) + det(β) + 2 det(γ′). α, β and γ are the sub-matrices of the full
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covariance matrix written in a special form:

σ =

(
α γ

γT β

)
=


a 0 γx 0

0 a 0 γp

γx 0 b 0

0 γp 0 b

 . (5.85)

σ′ and γ ′ are matrices referring to the time reversed system, which are obtained from

Eq. (5.85) by changing the sign of γp, i.e. γp → −γp. Their determinants together with

the determinant of the full covariance matrix are the invariants of the states.They are

not changed by local operations and actually characterize its entropic and correlation

properties [149]. There exist a couple of alternative criteria to characterize entanglement

in Gaussian states [150], however the Simon criterion is usually enough for any practical

situation.

For the case when the PPT criterion does not work, the only way to verify the

presence of entanglement is construction of a so called entanglement witness [151]. An

entanglement witness is an observable Ŵ whose expectation value W = Tr(Ŵρ) is

negative when the state is entangled and positive otherwise. Entanglement witness is

usually specific to a particular class of states and building it can be a difficult problem.

For a pure bipartite entangled state a measurement of the property in which the

parties are entangled on one of them completely determines the result of a measurement

on the second and for product states measurement on either of the parties are com-

pletely independent. For a mixed state separability, however does not imply absence

of correlation between the sub-parts of the whole system. The measurement of one of

the parties can influence the other in a probabilistic sense [152], moreover an interplay

between classical and quantum correlations can exist. A measure called quantum discord

allows to separate quantum correlations from the classical ones [153].

For a random process X, its informational capacity is defined by its Shannon infor-

mational entropy H:

H(X) = −
∑
n

pXn log(pXn ), pi > 0, pi ∈ R (5.86)

where pXn are the probabilities of different possible outcomes of the process. If we

consider the results of the measurements on a classical system consisting of two parts

A and B as two random processes, the mutual information Icl(A,B) is defined as the

difference between the amount of information contained in the individual subsystems
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Figure 5.3: The two ways to define mutual information. a) Definitions: entropy of the
marginals H(A), H(B), entropy of the joint system, H(A,B), conditional entropies,
H(A|B), H(B|A), and mutual information I(A,B). b) Mutual information as a sum of
entropies of the marginals minus entropy of the joint system. c) Mutual information as
the entropy of one of the marginals minus the conditional entropy (5.88)

and those contained in the whole system (see Fig. 5.3b):

Icl(A,B) = H(A) +H(B)−H(A,B) (5.87)

where H(A) and H(B) are the entropies of the individual systems and H(AB) is the

entropy of the whole system: H(AB) =
∑

n p
A
np

B
n log(pAnp

B
n ). On the other hand, we can

define this mutual information in another way, using the conditional entropy

H(A|B) =
∑
n

(pA|Bn) log(pA|Bn) (5.88)

where pA|Bn are the conditional probabilities. The amount of mutual information is

J cl(A,B) = H(A)−H(A|B) = H(B)−H(B|A). (5.89)

For any classical system the definitions given by Eq. (6.55) and (5.89) are equivalent,

i.e. Icl = J cl as a consequence of the Bayes’ rule, see Fig. 5.3. For a quantum system

these two ways to define the mutual information can lead to different results. Let’s now

define I and J for quantum systems.

For a quantum system described by a density matrix ρ the Shannon informational

entropy should be replaced by the Von-Neumann entropy [139]:

S(ρ) = −
∑
n

λn log(λn), (5.90)

where λn are the eigenvalues of the density matrix ρ. The quantum analogue of the
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Figure 5.4: Venn diagram of the correlation properties. All non-separable states are
entangled. All entangled states have non-zero discord. There are some separable states
that have non-zero discord, and, in principle, there are some non-product states with
zero discord.

quantity I from Eq. (6.55) is obtained by replacing the Shannon entropy in this equation

by the Von-Neumann one:

Iq(ρAB) = S(ρA) + S(ρB)− S(ρAB), (5.91)

where S(ρAB) is the entropy of the whole system ρAB, and S(ρA), S(ρB) are the entropies

of the reduced density matrices of the corresponding subsystems. In order to define

the quantum analogue of the quantity J form Eq. (5.89) we need to determine the

conditional entropy in the quantum case. The conditional entropy can be defined as:

S{Πj}(ρ
A|B) =

∑
j

pjS(ρA|Πj), (5.92)

where pj = Tr[ρAB(IA ⊗ ΠB
j )], ρA|Πj = TrB[ρAB(IA ⊗ ΠB

j )]/pj and {ΠB
j } is a complete

set of orthogonal projectors. The expression (5.89) for the mutual information becomes:

Jqj (ρAB) = S(ρA)− S{Πj}(ρA|B), (5.93)

and now it depends on the particular choice of the measurement operator Πj. The

quantum discord D(ρAB) is defined [152, 153] as the difference between Eq. (5.91) and

Eq. (5.93) minimized over all possible measurement operators Πj:

D(ρA|B) = S(ρB)− S(ρAB) + inf
{Πj}

S{Πj}(ρ
A|B). (5.94)

The procedure of minimization is quite challenging and therefore a closed formula for

the discord can be found just in the simplest cases. In Appendix A we provide several

examples of its calculation. The discord is limited from beneath for an entangled state,

which means that all entangled states have non-zero discord. It is limited from above for
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separable states and the states for which it is zero are considered to have no quantum

correlations and are called classical. It can be shown that they have a specific form [154]:

ρcl =
∑
i

α′iΨ
i
1 ⊗ · · · ⊗Ψi

n (5.95)

where Ψ1, . . .Ψn are complete sets of orthogonal projectors, and α′i are positive numbers

such that
∑

i α
′
i = 1 . The map of the correlation properties of the quantum states is

shown on the figure 5.4.

For two-mode Gaussian states quantum discord is defined in the same way as for

the discrete systems [152, 153]. However the general projective measurement operators

Πj in (5.94) may have complicated structure in the infinite-dimensional Hilbert space,

having infinitely many free parameters. This makes the optimization procedure used in

the definition of the discord impossible. However, in the case when the studied state

is Gaussian, the optimization may be constrained to a particular type of measurements

called Gaussian [155]. Such measurements are projections onto Gaussian states and

practically refer to modifications of the optical homodyne detection techniques [156]. In

this case is possible to derive a closed expression for the discord of a bipartite Gaussian

state depending on its covariance matrix. In order to do that we are missing just a few

ingredients: the expression for the entropy of the Gaussian states and the phase space

analogue of the Born’s rule. The entropy of a Gaussian state can be expressed as:

S(σ) =
∑
i

fent(ηi), (5.96)

where ηi are the symplectic eigenvalues of the state of σ and fent(x) = (x+ 1/2) ln(x+

1/2)+(x−1/2) ln(x−1/2) [157]. The state after a projective measurement onto another

Gaussian state is given as [156]:

α′ = α− γ(β + σM)−1γT, (5.97)

where σM is the covariance matrix of the state, corresponding to the measurement oper-

ator. Now we can derive the formula for Gaussian (referring to Gaussian measurements)

discord [158, 159]:

D(σ) = fent(
√

det(β))− fent(η
−)− fent(η

+) +

+fent

(√
det(α) + 2

√
det(α) det(β) + 2 det(γ)

1 + 2
√

det(β)

)
. (5.98)
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5.4.2 Single mode non-classicality criteria

For the case of a single quantum object the criteria of non-classicality are less straight-

forward. For the continuous variable systems one of the first attempts to introduce a

non-classicality criterion was done by Mandel [160], who introduced the q-parameter

q =
〈(∆n̂)2〉 − 〈n̂〉

〈n̂〉
= 〈n̂〉(g(2)(0)− 1), (5.99)

g(2)(0) is the degree of second-order coherence. This parameter shows how far the photon

statistics of a mode is from the Poissonian. Negative values of this parameter indicated

non-classicality, reaching a minimum of -1 for the Fock states [103].

At the same time it was early realized that negative values of the Wigner function can

be an indicator of non-classicality [161]. Indeed such obviously non-classical states as

Fock, photon added/subtracted and coherent state superpositions have negative values

of the Wigner function. However this criterion didn’t capture the squeezed states, which

are widely considered non-classical as well. An improved version of the Wigner function

negativity criterion, that treated squeezed states as non-classical was the P-function

criterion, which stated that a P-function of a classical state is a well defined probability

distribution and this function being negative or ill-defined (singular) is a criterion for

non-classicality [162]. However all these criteria suffered from the following problems:

• They didn’t quantify the non-classicality, being effectively a binary indicator,

which can partly be solved by quantifying the volume of the negative part of

the Wigner function [163].

• None of these criteria could be directly observed experimentally. Moreover, Wigner

function is usually reconstructed from the quadrature measurements via a tomo-

graphic transform [104], therefore its fine features are highly affected by measure-

ment noise and imperfections.

• Characterization of some the measures, such as trace distance of a given state from

the nearest classical one, represented a computationally hard problem [164].

The criterion that resolves these problems is the entanglement potential. It is defined

as the amount of two-mode entanglement that can be generated from the field using

linear optics, auxiliary classical states, and ideal photodetectors [165]. In most of the

cases it is just the amount of entanglement one can get splitting the studied state on

a symmetric lossless beam-splitter. As in most practical applications the aim of non-

classical state preparation is to produce entanglement, which in its turn is used to achieve
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quantum advantages in various tasks, the entanglement potential is beneficial over the

previously mentioned criteria, since it directly quantifies how useful is a given state for

such a procedure.

Finally one of the most recent advancement in the attempts to characterize non-

classicality of a generic single mode states are the coherence monotones [16, 166]. The

key idea behind this class of measures is, as already mentioned, that non-classicality is

closely related to superposition. Coherence monotones quantify how far a given state

is away from a maximal superposition available in its Hilbert space. In order to be a

coherence monotone, a map C : ρ→ R should satisfy the following properties:

• I. Positivity.

C(ρ) ≥ 0 ∀ ρ. C(ρ) = 0 for a set, I of so called incoherent states ρinc =∑
pk|k〉〈k| ⊂ I, pk > 0, pk ∈ R

• II. Monotonicity.

The most general operation, Λ that can be performed on a quantum ρ system is

the following [167]

Λ[ρ] = Trρ′ [U(ρ⊗ ρ′)U †] (5.100)

i. e. the system ρ is brought together with an auxiliary system ρ′ and their

resulting product state is transformed by some global unitary U , and after that

the ρ′ is traced out. Such operation can be represented as a sum

Λ[ρ] =
∑
k

KkρK
†
k (5.101)

where Kk are so-called Kraus operators. The incoherent Kraus operator KI is the

one that maps an incoherent state onto a set of incoherent ones KIρincK
†I ⊂ I.

In its turn, an incoherent map ΛI is the one that can be represented in a form

ΛI[ρ] =
∑
k

KI
k ρK

I†k (5.102)

Finally the monotonicity criterion implies that

C(ΛI[ρ]) ≤ C(ρ) (5.103)

• III. Strong monotonicity.

The state ςk after the action of a Kraus operator Kk on ρ is ςk = KkρK
†
k/zk,

where zk = Tr[KkρK
†
k]. There is a special class of operations when the next of the

113



operators Kk is chosen depending on the results of the previous measurements.

Such operations are called selective. The strong monotonicity implies that C does

not increase on average under selective incoherent operations∑
k

zIkC(ςIk ) ≤ C(ρ), (5.104)

where ςIk = KI
k ρK

I†
k /z

I
k and zIk = Tr[KI

k ρK
I†
k ]

• IV. Convexity.

Finally, C should not increase under classical mixing.

∑
k

pkC(ρk) ≥ C

(∑
k

pkρk

)
, pk ∈ R, pk ≥ 0. (5.105)

The most common examples of coherence monotones are the l1 norm of coher-

ence [166]

Cl1(ρ) =
∑
n 6=k

|ρnk| (5.106)

and the relative coherence entropy [166]

CRE(ρ) = S(ρdiag)− S(ρ), (5.107)

where S(ρ) is the Von-Neumann entropy (5.90) of ρ and S(ρdiag) is the entropy of the

matrix obtained by putting all non-diagonal elements of ρ to 0.

Coherence monotones for various systems are currently an area of active research,

however there are several problems regarding these measures. First of all they are basis

dependent: let’s consider, for example, the state (5.45). In {|ψ1〉, |ψ2〉} basis it is a

maximal superposition, however in the basis given by (5.47), the non-diagonal elements

of the density matrix of this state will be 0. Often the energy eigenbasis of the system

is the preferred one, however in many cases it is not clear why one should prefer one

basis over another. Also extra care should be taken when extrapolating the coherence

monotones onto the continuous variable systems [168]. As we will show in the next

chapter, they can diverge even for completely classical coherent states.
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Chapter 6

Discord potential of a coherent state

mixture

In this chapter we consider the problem of generation of quantum correlations in the

output state of a lossless beam-splitter. This problem is relevant not only as a simplified

version of the multiple scattering scenario, but also because quantum correlations of the

beam splitter output can be used as an indicator of its input state non-classicality [165].

It is well known, that when the state of one of the input modes of a beam splitter has

an ill-defined or negative P-function, its output modes will be entangled [15, 148]. Here

we consider quantum discord [152, 153], which is a type of quantum correlations weaker

than entanglement, in the beam splitter output state.

We start this chapter by an example from the theory of quantum state discrimina-

tion [12, 169], in which we show that it is possible to discriminate between two coherent

states in a mixture more efficiently by exploiting quantum features of such a state. As

this discrimination advantage is not captured by any of the previously mentioned non-

classicality criteria, we introduce a new measure, which we call discord potential (by an

analogy to the entanglement potential [165]), based on the discord of the beam splitter

output with the characterized state being one of the inputs. We calculate the discord

potential of a mixture of two coherent states and show that it is non-zero in the same

conditions (in terms of the mixture elements overlap) as when the advantage in the

discrimination is maximal. The procedure of the beam-splitter output state quantum

discord estimation using the conditional Wigner functions was developed in [170], fol-

lowed by an experimental measurement [171, 172]. However, all of these works dealt

with the Gaussian states, giving only estimates for the non-Gaussian ones. Here we

show a method of the quantum discord potential calculation for a certain class (positive

P-representation) of non-Gaussian states. Finally we compare the discord potential with
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the phase-space non-classicality measures and coherence monotones [16, 166], showing

that the former provides a better characterization of the non-classical features of the

coherent state mixture.

The material presented in this chapter is a part of a manuscript submitted to J.

Phys. A. [173]

6.1 Quantum advantage in coherent state discrimi-

nation

The problem of quantum state discrimination is fundamental for quantum communi-

cation and quantum metrology. In quantum communication, two parties agree on an

alphabet, which is encoded by some predetermined set of quantum states. The trans-

mitting party sends a state corresponding to one of the symbols of the alphabet to the

receiving party, which should decide which symbol has been sent based on the outcomes

of some measurements. The key problem is to construct the best possible measure-

ment for a given set of encoding states and a priori probabilities of their occurrence. In

metrology the situation is similar: different values of the measured parameter are as-

sociated with different states from a set, and discriminating between these states gives

the information about the parameter.

The figure of merit for the discrimination quality varies depending on the exact dis-

crimination strategy. However the most straightforward one is the average probability

to make an error in the discrimination. The measurement which minimizes this error

is considered the optimal one. When the discriminated states are orthogonal, this er-

ror can, in principle, be reduced to zero. However, when the sates are non-orthogonal,

the non-zero error probability follows from the generalized uncertainty principle [174].

Finding an optimal measurement for the state discrimination is an area of active re-

search [175–178].

Let’s consider the simplest scenario of the state discrimination. We wish to discrim-

inate between the states |ψ0〉 and |ψ1〉 with prior probabilities p0 and p1 = 1 − p0. We

can introduce an orthogonal basis {|0〉, |1〉} within the subspace spanned by |ψ0〉 and

|ψ1〉. In that subspace all possible projective measurements are parametrized just by an

angle θ

Π̂0 = (cos(θ)|0〉+ sin(θ)|1〉)(cos(θ)〈0|+ sin(θ)〈1|)

Π̂1 = (cos(θ)|0〉 − sin(θ)|1〉)(cos(θ)〈0| − sin(θ)〈1|). (6.1)
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Being projectors, both of these observables have just two outcomes: 00, 10 for Π̂0 and

01, 11 for Π̂1. Moreover, as Π̂0 and Π̂1 are orthogonal, 00, 01 and 10, 11 are mutually

exclusive. Therefore there are just two possible outcomes, let’s denote them 0 = 10 ∧ 01

and 1 = 00 ∧ 11 and associate the occurrence of 0 with the detection of the state |ψ0〉
and 1 of the state |ψ1〉. In simple terms, measurement of Π̂0 just answers the question

“is the measured state |ψ0〉 ?” (0 – yes 1 – no) and the same for Π̂1 “is the measured

state |ψ1〉 ?” (1 – yes 0 – no). As an error we can treat the event when 0 is observed

and the measured state is |ψ1〉 or 1 is observed when the measured state is |ψ0〉. Its

probability is

Perr = p0〈ψ0|Π̂1|ψ0〉+ p1〈ψ1|Π̂0|ψ1〉 =

= p0 − Tr[(p0|ψ0〉〈ψ0| − p1|ψ1〉〈ψ1|)Π̂0] = p0 − Tr[ÔpΠ̂0]. (6.2)

Perr will be minimal, when Tr[Ôpπ̂0] is maximal. This is achieved when Π̂0 is a pro-

jector onto a positive eigenstate of the operator Ôp = p0|ψ0〉〈ψ0| − p1|ψ1〉〈ψ1| with the

eigenvalue

λ+ =
1

2
(p0 − p1 +

√
1− 4p0p1|〈ψ0|ψ1〉|2), (6.3)

which leads to the expression for the minimal error

Perr =
1

2
(1−

√
1− 4p0p1|〈ψ0|ψ1〉|2), (6.4)

This expression is known as the Helstrom bound [12, 169]. It specifies the minimal possi-

ble error in discriminating between the two states depending on their overlap |〈ψ0|ψ1〉|2.

In the case of discrimination between two mixed states ρ0 and ρ1 with prior proba-

bilities p0 and p1 respectively the optimal measurement is just a projective measurement

in a subspace spanned by the eigenvectors of an operator p0ρ0−p1ρ1, which is similar to

Ôp. Finally in the most general case of discrimination between multiple mixed states ρi

with prior probabilities pi the optimal measurement is not necessarily projective [179].

The optimal measurement in that case is some POVM {πj} on a Hilbert space spanned

by the eigenvectors of ρi. The error, in analogy to (6.2) is the overlap of the probabil-

ities to observe the element of the POVM not associated with the state being actually

measured

Perr =
∑
i

pi
∑
j 6=i

Tr[ρiπ̂j]. (6.5)

The problem of finding the optimal set of operators π̂j is challenging, and allows a closed

solution only in simple situations [169].

Now let us consider the problem of distinguishing two coherent states |α0〉 and |β0〉
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that occur with probabilities 0 < a < 1 and 1 − a, respectively, i.e. the corresponding

mixed state is

ρ0 = a |α0〉〈α0|+ (1− a) |β0〉〈β0|. (6.6)

The error probability of an optimal measurement, according to (6.4) is

PHel =
1

2

[
1−

√
1− 4a(1− a)e−d

2
0

]
, (6.7)

where d0 is related to the states’ overlap d2
0 := |α0 − β0|2 = − ln |〈α0|β0〉|2. When d0

decreases, the two coherent states become identical and the system is not a mixture

anymore. The error probability in that case tends to 1/2. For large separations, the

two coherent states have less and less overlap and thus become almost orthogonal. In

that case limd0→∞ PHel = 0, see Fig 6.2 a. The optimal measurement is given by the

operators [180] (in the {|α〉, |β〉} basis)

Πα =
1

2(1− d2
e)

(
1−

√
1− d2

e −de
−de 1 +

√
1− d2

e

)
, Πβ = I− Πα, (6.8)

where de = e−d
2
0/2. Although these operators satisfy all the requirements of the observ-

able quantities, it is hard to associate them with a particular experimental procedure.

This is a common feature of any operators obtained in the optimization process: the

measurement they correspond to, can be very difficult to implement. There are several

practical methods that approach the Helstrom bound, such as Dolinar receiver [181],

Kennedy receiver [182], feed forward strategy [176], and some more [177, 178, 183],

however the search of procedures of optimal coherent state discrimination that are easy

to implement is still ongoing [184].

In order to identify the advantages given by quantum features, let’s consider a clas-

sical strategy for discriminating between |α0〉 and |β0〉. By an appropriate displacement

and phase shift the state (6.6) can be transformed into

ρ′0 = a |γ0〉〈γ0|+ (1− a) | − γ0〉〈−γ0|, (6.9)

where γ0 = (α0 − β0)/2), see Fig 6.1 a. Now a homodyne measurement along the x

quadrature can be performed on the state ρ′0, and based on whether its outcome is

greater of less than a certain threshold xt, the decision whether |α0〉 or |β0〉 occurred is
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Figure 6.1: a) A mixture of coherent states with arbitrary amplitudes, ρ0 = a |α0〉〈α0|+
(1 − a) |β0〉〈β0|, is displaced and phase shifted into a state ρ′0 = a |γ0〉〈γ0| + (1 − a) | −
γ0〉〈−γ0|. b) When a 6= 1/2 in ρ′0, the optimal discrimination threshold shifts towards
the less probable of the coherent states in the mixture.

made, see Fig 6.1 a. The error rate, similarly to (6.2), is

PHom =
1

2

(
1− aErf

(
d0/2− xt√

2

)
+ (a− 1) Erf

(
d0/2 + xt√

2

))
, (6.10)

When a = 1/2, the optimal strategy is simply to check if the measured quadrature value

is greater or less than 0, which leads to a simple expression for the error rate

PHom(1/2, d0) =
1

2

[
1− Erf(d0/

√
2)
]
, (6.11)

but when a 6= 1/2 the threshold position shifts, see Fig. 6.1b. The optimal position is

derived from the condition ∂PHom/∂xt = 0.

x̃t =
log( 1

a
− 1)

d0

(6.12)

The dependence of PHom on a and d0 is shown in Fig 6.2 b, it behaves similarly to

PHel, Fig 6.2 a, despite the difference of the forms of these expressions. As expected

PHom ≥ PHel for any a and d0, which can be clearly seen from Fig 6.2 c, d, where also the

difference, ∆P , between PHom and PHel is plotted. ∆P characterizes the “advantage” of

a quantum measurement over the classical one. As shown in the figure, this advantage

is zero for d0 → 0 and d0 →∞, and has a maximum at an intermediate separation. As

pointed out in [180] this advantage is due to the quantum interference of the measured

state with the ancillary states used in the measurement process. This fact, however,

is not captured by most of the existing non-classicality criteria, except the coherence

monotones described in Ch. 5, which, as we show further diverge at large d0.

In order to address these issues we combine two existing criteria - quantum discord,

and entanglement potential. As mentioned in Ch. 5, the entanglement potential is a
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Figure 6.2: The dependence on the parameters a and d0 of a) minimal possible error
rate PHel in binary coherent state discrimination. b) PHom– error rate of a classical
homodyne measurement; c) ∆P = PHom−PHel, the difference in error rate of a classical
and quantum measurement. d) Cross-sections of a, b and c at a = 1/2: ∆P (1/2, d0),
PHom(1/2, d0), PHel(1/2, d0).

single-mode non-classicality measure based on the amount of entanglement between the

output modes of a balanced lossless beam splitter, when the investigated state is one of

the inputs and the other input is vacuum. As we will see in the next sections, if quantum

discord between the output modes is taken instead of entanglement in this situation,

the resulting non-classicality measure is able to capture the quantum advantage in the

state discrimination, described above. However, first we need to review more in detail

the quantum-mechanical description of a beam-splitter.

6.2 Beam splitter operation

Despite its apparent simplicity a beam splitter is a key instrument in quantum optics.

This device is an essential tool in such seminal experiments as Hanbury Brown - Twiss

and Hong-Ou-Mandel effect observation [131, 185]. Overall, it is hard to imagine a

quantum optics experiment, that does not use a beam splitter of any kind. There are

several reasons for this. First of all, any discrete unitary operator in a finite-dimensional

Hilbert space can be experimentally realized by a set of generalized (the ones that allow

to tune the phase between the output beams) beam splitters [186, 187]. Secondly, a
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Figure 6.3: Schematic representation of a beam splitter.

beam splitter can be used to observe interference, not only in purely optical, but in

quantum-mechanical sense, being a complete analogy of the famous Feynman double

slit-setup [188]. Finally, from a theoretical point of view the beam splitter operation

is closely related to the abstract rotations of angular momenta on a sphere [189]. In

particular, the operation of a symmetric beam splitter is described by the displacement

operator D̂, (5.41) [190].

One more reason to consider in detail the beam splitter operation is that it is a simple

limiting case of a linear multiply scattering medium. When the size of scattering matrix

is equal to 2, which means that there are only 2 input and output modes, this expression

effectively describes the classical beam splitter operation. Therefore a medium described

by a N×N scattering matrix can be treated as a N-port beam splitter. Quantum optical

description of such devices will be considered in the next section.

There are two variants of quantum optical description of the beam splitter operation.

The first takes as an input the density matrix of a two-mode input state in the Fock

basis and treats the action of a beam splitter as a unitary operator in an appropriate

Hilbert space [189]. Despite being completely general, this approach has a disadvan-

tage of dealing with infinite-dimensional matrices. As it is common for the continuous

variable systems, phase space approach is more convenient in this situation. The beam

splitter operation within this approach is described by a linear mapping between the

input and output coherent state amplitudes applied to the variables of the input state

quasiprobability distribution [185].

Let’s consider a 2-mode beam splitter, with the input modes indexed 1 and 2, and

the output modes 3 and 4, as in Fig. 6.3. The amplitudes of the input and output modes

are related as
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(
a3

a4

)
=

(
T R
R T

)(
a1

a2

)
(6.13)

where T and R are the complex reflection and transmission coefficients of the beam

splitter. From the unitarity of the scattering matrix it follows that:

|R|2 + |T |2 = 1 and RT ∗ +R∗T = 0 (6.14)

As we discussed in the previous chapter, in order to switch to the quantum mechani-

cal description we can replace the modes’ amplitudes with corresponding annihilation

operators. This leads to the following relations between the input and output modes

â3 = Râ1 + T â2 and â4 = T â1 +Râ2 (6.15)

Now in order to find the relations between the input and output we demand that

Tr[f(â3, â4)ρout] = Tr[f(Râ1 + T â2,Râ1 + T â2)ρin] (6.16)

for any function f of the annihilation operators. Using the optical equivalence theorem

and the P-function state representations of ρin and ρout we can rewrite (6.16) in the

integral form ∫
f(α3, α4)Pout(α3, α4) d2α3 d

2α4 =∫
f(Rα1 + T α2,Rα1 + T α2)Pin(α1, α2) d2α1 d

2α2, (6.17)

where αi are complex amplitudes of the corresponding BS channels and Pin and Pout

are the P-functions of the beam splitter input and output states respectively. After a

change of variables

α1 → T α3 −Rα4 α2 → Rα3 + T α4, (6.18)

expression (6.21) is rewritten as∫
f(α3, α4)Pout(α3, α4) d2α3 d

2α4 =∫
f(α3, α4)Pin(T α3 −Rα4,Rα3 + T α4) d2α3 d

2α4, (6.19)
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as this expression should hold for any f

Pout(α3, α4) = Pin(T α3 −Rα4,Rα3 + T α4) (6.20)

By taking into account the relations between the phases ofR and T that follow from (6.14),

the expression above can be simplified to

Pout(α3, α4) = Pin(
√
|T |α3 − i

√
|R|α4,−i

√
|R|α3 +

√
|T |α4), (6.21)

Now we are ready to implement the non-classicality criterion that can characterize the

quantum advantage discussed in the previous section.

6.3 Discord potential

The advantage ∆P indicates a non-trivial quantum property in the state ρ0, (6.6) which

we want to capture with a suitable measure of non-classicality. It is clear that most of the

measures listed in Sec. 5.4 are not able to capture these non-classical features. Indeed,

the photon statistics of such a state is just a mixture of two Poissonian distributions,

and any of its quasiprobability distributions are positive and well defined, therefore

the measure able to capture these features should be more sensitive than the others.

For multimode states quantum discord is a proper candidate, since it grasps subtle non-

classical correlations beyond entanglement. However, in order to apply this criterion, we

need some technique that maps single mode non-classicality to a multimode one. Such

a technique was developed to implement the entanglement potential (See sec. 5.4.2).

Entanglement potential EP (ρ) is formally defined as

EP (ρ) = EN (ρBS) (6.22)

where EN is the logarithmic negativity [139], the most common measure of entanglement

and ρBS is a two-mode state obtained by impinging ρ on a balanced beam splitter, as

shown in Fig. 6.4. Formally, this output state can be written as

ρBS = UBS (ρ⊗ |0〉〈0|)U †BS, (6.23)

and EN can be expressed as

EN (ρBS) = log ||ρTABS||, (6.24)
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Figure 6.4: A beam splitter transforms a state ρ and the vacuum state |0〉〈0| into a
two-mode state ρBS. ρA and ρB are the reduced states of ρBS.

where || · || denotes the trace norm and ρTABS is the partially transposed state (5.83).

We note that the entanglement potential was constructed as a measure of quantum-

ness that explicitly identifies proper mixtures of coherent states as classical [165]; i.e. it

does not capture the advantage in coherent state discrimination. Here we are looking

for a measure C that characterises the non-classicality of any state, with the following

properties:

• it is positive-defined,

• it is non-zero for all states that have a non-zero entanglement potential,

• it vanishes for the coherent state mixtures ρ0 when d0 → 0 and when d0 →∞,

• and it is strictly positive for intermediate distances d0 for mixtures ρ0.

We define the discord potential CD as a measure of non-classicality of any state ρ in

analogy to (6.22)

CD(ρ) ≡ D(ρBS), (6.25)

where D(ρBS) is the quantum discord, (5.94) and ρBS is given by (6.23). In order to

verify if CD satisfies the desired properties, we now calculate it for a mixture of coherent

states (6.6).

6.4 Discord potential of a coherent state mixture

6.4.1 Beam splitter output state

The first step in the calculation of the discord potential of a state ρ0 (6.6), is to obtain

the two-mode output state ρBS (6.23). In order to do that we use the relations between
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the quasi-probability distributions of the input and output of a lossless balanced beam

splitter outlined in Sec.6.2. Specifically, for a one-mode state ρ the P-function is a

distribution over a complex amplitude given by the Eq. (5.63). Then, according to (6.21),

the P-function of a two-mode BS output state is related to the P-function of the two-

mode input state as

PρBS(ξ′, ζ ′) = Pρ0⊗|0〉〈0|

(
ξ′ − iζ ′√

2
,
ζ ′ − iξ′√

2

)
. (6.26)

For the input state ρ0 ⊗ |0〉〈0| the P-function is:

Pρ0⊗|0〉〈0| (ξ, ζ) =
[
a δ2(ξ − α0) + (1− a) δ2(ξ − β0)

]
· δ2(ζ). (6.27)

Substituting (6.27) into (6.26) gives the output P-function, from which we obtain the

density matrix of the output state:

ρBS = a |α〉〈α| ⊗ |iα〉〈iα|+ (1− a) |β〉〈β| ⊗ |iβ〉〈iβ|, (6.28)

where α = α0/
√

2, β = β0/
√

2. The reduced state ρA of the mode A is then:

ρA = a|α〉〈α|+ (1− a)|β〉〈β|, (6.29)

with ρB taking exactly the same form.

We are now ready to calculate the discord D(ρBS). The first problem we encounter

in this calculation is that coherent states, such as in (6.6), are elements of the infinite

dimensional Hilbert space spanned by the Fock basis. At first this makes the direct

calculation of the entropies in (5.94) tricky, as one would need to find the eigenvalues of

an infinite matrix. In the next section we develop a straightforward method to calculate

these entropies for a particular set of states considered here.

6.4.2 Calculating entropies of (non-Gaussian) coherent state

mixtures

While calculations in the infinite dimensional Hilbert space can be challenging and are

usually limited to Gaussian states [155, 158, 159], the entropies of the states like ρ0

can be obtained by moving to the Hilbert space spanned by the non-trivial pure state

elements of the considered mixture and establishing an orthonormal basis in this smaller
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sub-space. For a general proper mixture of coherent states

ρ =
N∑
j=1

pj |αj〉〈αj|, (6.30)

with pj > 0, this subspace can be spanned by the |αj〉 for j = 1, . . . , N , the orthonormal

basis |uj〉 can be built using the Gram-Schmidt procedure:

|u1〉 = |α1〉, (6.31)

|uj〉 =
|vj〉
||vj || , |vj〉 = |αj〉 −

N−1∑
k

〈vk|αj〉
〈vk|vk〉

. (6.32)

In such a basis the only non-zero elements of ρ will be:

ρjk = 〈uj|ρ|uk〉. (6.33)

This is a finite dimensional matrix of size N ×N , where N is the number of pure state

elements in Eq. (6.30). This finite-dimensional matrix is straightforwardly diagonalized

allowing the calculation of the eigenvalues and entropy of the state ρ.

For example, for the reduced state ρA in Eq. (6.29) an orthonormal basis in the

subspace spanned by |α〉 and |β〉 is given by:

|u1〉 = |α〉; |u2〉 =
|β〉 − k|α〉√

1− |k|2
, (6.34)

where k = 〈α|β〉. In this basis ρA can be written as:

ρA =

(
a+ (1− a)k2 k(1−a)(1−|k|2)√

1−k2
k∗(1−a)(1−|k|2)√

1−k∗2 (1− a)(1− k2)

)
. (6.35)

The eigenvalues and the entropy, S(ρA), are now readily calculated. The resulting

entropy S(ρA) is shown in Fig 6.5, as a function of the mixing parameter a and the

separation d, which measures the overlap between the coherent states |α〉 and |β〉 in the

reduced state of the output mode A, ρA (6.6). d is directly related to the separation d0

between |α0〉 and |β0〉 as d0 =
√

2d, since α0 =
√

2α and β0 =
√

2β . When d is large, the

coherent states in the mixture ρA are almost orthogonal and the mode acts effectively

as a classical system with two possible outcomes: either |α〉 or |β〉. The entropy S(ρA)

is maximal when they are equiprobable and reduces to 0 when the probability of either

of them tends to 0. However as d decreases, an additional source of uncertainty appears
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Figure 6.5: The entropy S(ρA) as a function of the mixing ratio a and separation d.

from non-orthogonality of |α〉 and |β〉, which reduces the maximal entropy of the state.

When d approaches 0, the entropy also reduces to 0 indicating that the mode A tends

more and more to a pure state.

To calculate the entropy of the two-mode state S(ρAB) in Eq. (6.28) one has to

introduce an analogous pair of basis vectors for the second mode and then diagonalize a

four-dimensional matrix to obtain the entropy. The last term in the expression for the

discord (5.94) is the entropy of a single reduced mode, but requires the optimization

over all possible measurement operators for the other mode. In the subspace spanned

by |α〉 and |β〉 the general set of projective measurement operators is:

ΠA
1 = (cos θ |u1〉+ eiφ sin θ |u2〉)(cos θ 〈u1|+ e−iφ sin θ 〈u2|) (6.36)

ΠA
2 = (sin θ |u1〉 − e−iφ cos θ |u2〉)(sin θ 〈u1| − eiφ cos θ 〈u2|) (6.37)

Using these operators it is then possible to calculate the conditional entropy, S(σB|{Π
A
j })

and minimize this entropy over all θ and φ, see Appendix A.

For the more general case that the input state is a mixture of more than two pure

state elements, i.e. N > 2, the Gram-Schmidt diagonalization can still be used to

calculate the entropies for N ⊗ N reduced states. But the optimization procedure for

obtaining the conditional entropies becomes complicated and has so far been shown to

be possible using the linear entropy approximation for 2⊗N systems [191].

127



Figure 6.6: a) Discord potential CD of ρ0, see Eq. (6.6), as a function of mixing prob-
ability a and overlap d0. b) Output state’s total entropy S(ρAB) (red line), its mutual
information I(ρAB) (blue line), classical contribution to the mutual information Icl(ρAB)
(green line) and quantum contribution to the mutual information, i.e. discord, D(ρAB)
(yellow line) as a function of d. The upper panel illustrates the overlap between the two
coherent states |α〉 and |β〉 in ρAB.

6.4.3 Dependence of the discord potential on the coherent state

separation

The discord of the two-mode output state, D(ρAB), and thus the discord potential

CD(ρ0) of the input state, shown in Fig. 6.6a, vanishes for d0 → 0, d0 →∞, a→ 0 and

a→ 1, as we required for our non-classicality measure.
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Fig. 6.6b shows the output state discord D(ρAB), its entropy S(ρAB), its mutual

information I(ρAB) = S(ρA) + S(ρB)− S(ρAB), and the “classical” contribution to the

mutual information, Icl(ρAB) = I(ρAB) − D(ρAB), as a function of d = |α − β|, with

d directly related to the separation in the input state, as d = d0/
√

2. As can be seen

from the figure, the discord reaches a maximum for d =
√

~/2. This is the distance at

which the peaks of the input state Wigner-function is equal to half of the value of the

coherent state quadrature uncertainty, which is equivalent to the Rayleigh criterion for

peak resolution [192]. Interestingly, for d <≈
√

~/8 the quantum discord contribution

to I becomes larger than the classical contribution.

6.5 Comparison with the coherence monotones

Alternative candidates that may satisfy our requirements for a measure of non-classicality

are the coherence monotones [16, 166], which quantify the coherence of a quantum state

with respect to a chosen basis. In quantum information theory quantum coherences

have been shown to be a resource for creating non-classical correlations [193, 194], for

enhancing quantum measurement precision [195] and for performing certain quantum

computational tasks [196]. Coherences can be quantified by the l1 norm of coherence

Cl1(ρ) =
∑
n6=k

|ρn,k|, (6.38)

where ρn,k are the coefficients of the state in a basis {|n〉}, and the relative entropy of

coherence

CRE(ρ) = S(ρdiag)− S(ρ), (6.39)

where ρdiag is the state obtained by removing the non-diagonal elements of ρ in the

chosen basis.

We first evaluate the large α asymptotes of the coherence monotone Cl1 for a coherent

state |α〉 in the Fock basis {|n〉} with n = 0, 1, 2, ...., and then conclude with stating the

asymptotic behaviour of a mixture of two coherent states.

Using Eq. (6.38) the l1 norm of coherence for a coherent state in the Fock basis is:

Cl1(|α〉) = e−|α|
2
∑
k 6=n

|α|n+k

√
k!n!

= e−|α|
2

[1 +
∞∑
k=1

|α|k√
k!

]2

−
∞∑
k=0

|α|2k

k!

 . (6.40)
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The resulting summation contains a square root of a factorial, and does not have a closed

form. However, its asymptotic behaviour at large A := |α| can be estimated using the

following procedure:

We introduce

f(A) =
∞∑
k=1

Ak√
k!

and g(A) =
A

f(A)

(
df

dA

)
, (6.41)

so that

Cl1(|α〉) = e−A
2

(1 + 2f(A) + f 2(A))− 1. (6.42)

Using that the ratio of two power series in x with coefficients pk and qk for large x is

asymptotically determined by the ratio of the coefficients of the largest power,

lim
x→∞

∑∞
k=1 pk x

k∑∞
k=1 qk x

k
= lim

k→∞

pk
qk
, (6.43)

the asymptote of g(A)/A2 for large A is:

lim
A→∞

g(A)

A2
= lim

A→∞

∑∞
k=0

(k+1)Ak√
(k+1)!∑∞

k=2
Ak√
(k−1)!

= lim
k→∞

(k + 1)
√

(k − 1)!√
(k + 1)!

= 1, (6.44)

and thus g(A) = A2 + o(A2). The next order of the approximation is given by

lim
A→∞

(
g(A)− A2

)
= lim

A→∞

∑∞
k=2

(k−1)Ak√
(k−1)!

−
∑∞

k=4
Ak√
(k−3)!∑∞

k=2
Ak√
(k−1)!

(6.45)

= lim
k→∞

(
(k − 1)−

√
(k − 1)(k − 2)

)
=

1

2
, (6.46)

and thus g(A) = A2 + 1
2

+ o(1).

This leads to the following differential equation for f(A):(
df

dA

)
=

(
A2 +

1

2
+ o(1)

)
f(A)

A
, (6.47)

which in the asymptotic limit of large A has the solution

f(A) ≈ e
A2

2

√
cA (6.48)
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with c a constant which can be evaluated numerically, resulting in c ≈ 5. Further terms

of the approximation will lead to multipliers of the form exp[ 1
Ak

] with k > 1 in f(A),

which quickly converge to 1 for large A. This allows one to conclude that the l1 norm

of coherence of a coherent state in the Fock basis for large α asymptotically becomes

Cl1(|α〉) = e−|α|
2

+ 2e
−|α|2

2

√
c|α|+ c|α| − 1 ≈ c|α| (6.49)

i.e. that Cl1 diverges for |α| → ∞.

We now return to a proper mixture of two coherent states, ρ = a|α〉〈α|+(1−a)|β〉〈β|
with 0 < a < 1. This state’s coefficients in the Fock basis are

ρk,n =
a e−|α|

2
αkα∗n + (1− a)e−|β|

2
βkβ∗n√

k!n!
. (6.50)

One can see that these coefficients imply that the l1 norm of coherence, Eq. (6.38),

will depend on the absolute values of α and β, not just their relative displacement, in

contrast to the discord potential which only depends on the relative displacement.

To illustrate the behaviour of the l1 norm of coherence on the separation of the

elements of the mixture we here choose β = −α and also a = 1/2. The mixed state

coefficients then simplify to

ρk,n =
αkα∗n√
k!n!

e−|α|
2

for k + n = even. (6.51)

Thus, the coefficients of the mixture of coherent states are identical to those for the

coherent state |α〉, but only when k + n is an even number. As a consequence the

coherence monotone Cl1(ρ) has almost identical asymptotic behaviour for large |α| as

the monotone for the coherent state Cl1(|α〉), with Cl1(ρ) = 1
2
Cl1(|α〉) ≈ c

2
|α|. The

diverging asymptotic behaviour of Cl1(ρ) for large α is indicated in Fig. 6.7.

6.5.1 Asymptotic behaviour of CRE for coherent states in the

Fock basis

We first evaluate the large α asymptotes of the relative entropy of coherence CRE for a

coherent state |α〉 in the Fock basis {|n〉} with n = 0, 1, 2, ...., and then conclude with

stating the asymptotic behaviour of a mixture of two coherent states.

The second term in Eq. (6.39) is 0 since the coherent state is pure, which leaves us
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with

CRE(|α〉) = −e−|α|2
∞∑
k=0

|α|2k

k!
ln

(
e−|α|

2 |α|2k

k!

)
= |α|2(1− 2 ln |α|) + e−|α|

2
∞∑
k=0

|α|2k

k!
ln k!. (6.52)

For large A := |α| the high powers are important and we use the Stirling approximation

ln k! ≈ k ln k − k + 1
2

ln(2πk) + . . . , to transform the above expression to:

CRE(|α〉) = 1
2
e−A

2∑∞
k=1

A2k

k!
ln k + A2e−A

2∑∞
k=0

A2k

k!
ln(k + 1)−

−A2 lnA2 + ln(2π)
2
. (6.53)

Now we need to establish the asymptotic behaviour for large A of the functions

h0(A) = e−A
2
∞∑
k=1

A2k

k!
ln k and h1(A) = e−A

2
∞∑
k=0

A2k

k!
ln(k + 1). (6.54)

After substituting the Laplace transform identity ln k = −k
∫∞

0
e−kt ln t dt − γ, in

Eq. (6.54), where γ is the Euler – Mascheroni constant, h0(A) becomes:

h0(A) = −e−A2 ∫∞
0

∑∞
k=1

A2ke−kt

k!
k ln t dt− γ (1− e−A2

)

= −e−A2
A2
∫∞

0
e−t+A

2e−t ln t dt− γ (1− e−A2
)

= −A2
∫ 1

0
eA

2(x−1) ln
(
ln 1

x

)
dx− γ (1− e−A2

)

where x = e−t and the integral kernel is I(A, x) = eA
2(x−1) ln

(
ln 1

x

)
.

The kernel I(A, x) diverges at the points x = 0 and x = 1, i.e. I(A, 0) → ∞ and

I(A, 1)→ −∞, and these points will give maximal contribution to the integral. Also at

x = 1/e the kernel vanishes, i.e. I(A, 1/e) = 0. Splitting the integral into two parts,∫ 1

0

I(A, x) dx =

∫ 1/e

0

I(A, x) dx+

∫ 1

1/e

I(A, x) dx , (6.55)

we bound the asymptotic behaviour of the first integral using the Cauchy–Schwarz

inequality

0 ≤
∫ 1/e

0

I(A, x) dx ≤ const.√
2A

e−A
2(1− 1

e), (6.56)

where const. is a number arising from integrating (ln(− lnx))2 and taking the square

root. This shows that the first integral decays exponentially with A→∞.
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In order to find the asymptotic behaviour of the second integral we change variables

x− 1 = −p, ∫ 1

1/e

I(A, x) dx =

∫ 1−1/e

0

e−pA
2

ln(− ln(1− p)) dp. (6.57)

Now we can expand the function ln(− ln(1− p)) around the point p = 0,∫ 1

1/e

I(A, x) dx =
∫ 1−1/e

0
e−pA

2
(

ln p+
∑∞

k=1
(−1)n+1

n

[∑∞
k=2

pk−1

k

]n )
dp

=
∫ 1−1/e

0
e−pA

2
(

ln p+ p
2

+ 5p2

24
+ 90p3

720
+ . . .

)
dp

=
∫ 1−1/e

0
e−pA

2
ln p dp+

∑
j=1 λj

∫ 1−1/e

0
e−pA

2
pj dp .

where λj are the expansion coefficient of the logarithm for powers of p. The leading

contribution to the first of these integrals is∫ 1−1/e

0

e−pA
2

ln p dp ≈ −γ + lnA2

A2
, (6.58)

plus some exponentially decaying terms in A. The second integral gives

∑
j=1

λj

∫ 1−1/e

0

e−pA
2

pj dp =
∑
j=1

λj
Γ(1 + j)− Γ(1 + j, A2(1− 1

e
))

A2(1+j)
=

= O

(
const

A4

)
, (6.59)

where Γ(k) and Γ(k,A) are the Gamma and incomplete Gamma functions, respectively.

Therefore for large A, when dropping decaying terms, one finds

h0(A) = −A2

∫ 1

0

I(A, x) dx− γ (1− e−A2

)

≈ −A2

(
−γ + lnA2

A2

)
+O

(
const

A4

)
− γ ≈ lnA2. (6.60)

Using similar arguments one finds

h1(A) ≈ lnA2 +
1

2A2
+ o

(
const

A2

)
. (6.61)

Finally, the asymptotic behavior of CRE of a coherent state for large |α| = A is

CRE(|α〉) = 1
2
h0(A) + A2 h1(A)− A2 lnA2 + ln(2π)

2

≈ lnA+ 1
2

+ ln(2π)
2

+ o (const) , (6.62)
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Figure 6.7: Discord potential CD (solid yellow) and coherence monotones for ρ0 as a
function of d0 =

√
2 d. The l1 norm of coherence Cl1 (solid blue) and relative entropy of

coherence CRE (solid red) are shown together with their asymptotic behaviour (dashed
lines) for large d0.

which diverges logarithmically as A→∞.

We return again to the mixture of two coherent states |α〉 and |−α〉, ρ = 1
2
|α〉〈α|+ 1

2
|−

α〉〈−α| which allows us to illustrate the behaviour of the relative entropy of coherence

CRE on the separation d = 2|α|. Since the diagonal coefficients of the mixed state,

ρn,n, are identical to those for the coherent state |α〉 its coherence monotone CRE(ρ) is

identical to the coherent state one CRE(|α〉) apart from the fact that the entropy S(ρ)

is now non-zero and rises to ln 2 for large |α|. Hence CRE(ρ) ≈ CRE(|α〉)− ln 2 ≈ ln |α|
for large |α| and this diverging asymptotic behaviour of CRE(ρ) is indicated in Fig. 6.7.

CRE and Cl1(ρ) are plotted in Fig 6.7 for the mixture of two coherent states ρ0 with

a = 1/2 and β0 = −α0 as a function of separation d0. One can see that both, the l1

norm of coherence and the relative entropy of coherence, increase monotonously with

d0. Notably they diverge for d0 → ∞, which contrasts with the properties we require

for our non-classicality measure. Indeed, the l1 norm of coherence has already been

shown to diverge for a certain class of states in the infinite-dimensional case [168]. Here

we have shown that actually both measures diverge for the coherent state mixtures.

Moreover, both coherence monotones depend not only on the separation between the

coherent states in the mixture d0, but they also depend on the absolute amplitude of

each coherent state |α0| and |β0|. In contrast, CD(ρ) depends only on d0, tends to

zero at both small and large values of d0, and quantifies the state’s non-classicality

at intermediate separations, as can be seen in Fig. 6.6a,b. Thus the discord potential

satisfies all our requirements. In addition, CD does not require to choose a basis, in

contrast to the coherence monotones.
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6.6 Summary and outlook

As quantum mechanics contains classical theory as a limiting case, it can be hard to

determine if a given system requires a full quantum-mechanical description or not, es-

pecially if it is infinite-dimensional. There exist a variety of non-classicality criteria,

however they are often inconsistent, indicating non-overlapping sets of states as non-

classical [197]. In particular, mixtures of coherent states are often considered classical,

but there is a quantum advantage when discriminating between overlapping coherent

states in the mixture, suggesting that a quantum-mechanical description is necessary to

fully capture the system properties. We proposed a new criterion for non-classicality,

based on the quantum discord of the output of a balanced beam splitter. This mea-

sure, which we name the discord potential, identifies as non-classical all states with

non-zero entanglement potential, but it is also positive for mixtures of coherent states

when the quantum advantage in discrimination is positive and vanishes otherwise. We

also showed that the discord potential has several advantages over another set of com-

monly used non-classicality measures: the coherence monotones. First of all, the discord

potential does not imply the existence of a preferred basis choice and secondly it stays

always finite for mixtures of coherent states, in contrast to two coherence monotones.

We have also shown a simple method to calculate the entropy of any state with posi-

tive P-function, which is an intermediate step of the discord potential calculation. We

conclude that the discord potential can be a more sensitive indicator of non-classicality

than the entanglement potential [165] or the of the P-function [162], capturing a wider

class of states that show quantum advantages. In addition, the methods developed in

the current chapter help to deal with the case of multimode scattering, considered in

the next chapter.
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Chapter 7

Quantum correlations of multiply

scattered light

In the previous chapter we considered quantum correlations of the output state of a beam

splitter and pointed out, that a linear multiply scattering medium can be considered as a

multimode generalization of this device. In this chapter we finally approach the problem

of identifying quantum features in the output state of light scattered by a disordered

medium.

This chapter is based on the material presented in our paper [198], and follows its

structure. We start by introducing the problem and pointing out why it is not possible

to simply apply the results of the previous chapter in the multimode case. Then we

apply the theory described in Ch. 5 to determine the quantum state of the output

modes of the multiply scattering medium. In its general form it depends on the photon

statistics of the input state and on the properties of the scattering medium, through the

scattering matrix. After that we study in what situation quantum correlations can be

present between an arbitrary pair of the output modes, by checking continuous variable

entanglement [145, 199] and discord [158, 159] criteria for the quantum state of this

pair. Next, we consider a number of different input state examples identifying what

correlations in the output we can expect for each of them, paying more attention to the

surprising case of the thermal state producing quantum discord in the output. Finally

we evaluate the intensity correlations function in terms of the output covariance matrix,

showing that it can’t be a reliable criterion of the output state non-classicality.
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7.1 Problem formulation and overview

The framework for the investigation of quantum features of multiply scattered light

was established in [200], where the statistics of thermal noise interacting with a disor-

dered material was studied. This approach was further developed in [201], and finally

applied to study the propagation of squeezed radiation through random media [202],

which is, to our knowledge, the first work on the interaction of non-classical light with

the disordered materials. Later in a series of works [203–208] Lodahl et al. performed

a systematic investigation of the non-classical properties of the multiply scattered light.

Starting with the theoretical treatment [204], similar to [202], predicting the existence of

a long-range quantum correlation in the reflected or transmitted light, they performed

a series of experiments, confirming the existence of such correlation [206] and further-

more demonstrating quantum interference and entanglement in this situation [207, 208].

These pioneering works stimulated further interest to the quantum aspects of multi-

ple scattering. Generation of quantum correlations in random waveguide lattices was

studied from the perspective of the Anderson localization [106, 209]. Bi-photon speckle

patterns as a manifestation of quantum correlations were investigated theoretically [210]

and experimentally [211].

Further interest to this topic was motivated by the related problem of boson sam-

pling [212], which attracted massive attention in recent years [213]. In this problem

the output of a multimode linear interferometer is considered. It is relatively easy to

predict the output state of such a device and therefore the probability to detect a pho-

ton in each of the output arms for an arbitrary input state. However, for a certain

set of (non-classical) input states sampling from this probability distribution becomes

a computationally hard task for a classical computer [214]. Despite being unable to

perform a universal set of tasks, boson sampling is considered an accessible test model

for quantum computation advantage demonstration. Normally, in the experiments on

boson sampling, the key element, a multimode interferometer, is a predesigned device

employing a waveguide [215] or photonic chip [216] architecture. Multiply scattering

medium is a natural equivalent of such structures. The only prerequisite for using it as

a multimode interferometer is the ability to control precisely the state of the incident

light and its propagation within the scattering medium. Significant progress, achieved

in recent years in this area, allowed to perform a series of experiments on the con-

trol of non-classical light propagation in the scattering media [217–220], enabling novel

application far beyond boson sampling.

Despite substantial progress in understanding the non-classical light interaction with
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Figure 7.1: The disordered medium is scattering N input modes âξ into N output modes

b̂µ. The scattering process is described by a scattering matrix S. The only non-empty
input mode is âξ′ , the others are assumed to be in a vacuum state.

disordered materials there are still points that need clarification. First of all, most of

the works listed above use particular features of the output photon statistics, such as

antibunching [204], or sub-shot-noise quantum fluctuations [206] as non-classicality cri-

teria. Being only sufficient criteria these indicators can miss certain sets of non-classical

states, as we discussed in the previous chapter. In our approach, for the first time to our

knowledge, we use rigorous quantum information criteria [145, 158, 159] to address the

problem of non-classical correlations generation during the multiple scattering process.

As a result of that we are able to capture more subtle features beyond entanglement,

which can be present even if the input state is regarded as classical. The drawback of

this approach is that in the case of an arbitrary input state the multimode output state

becomes complicated and therefore we have to limit ourselves to a set of Gaussian input

states, that allow analytical treatment.

As we pointed out earlier, the process of multiple scattering can be described by

a scattering matrix, that relates all the input modes to the output ones. In addition,

as we know from Ch. 5, the transition from the classical to the quantum description

can be done by replacing the amplitudes of the modes of the electromagnetic field by

corresponding annihilation operators.

b̂µ =
N∑
ξ

Sµ,ξ âξ, ξ, µ = 1, . . . , N. (7.1)

Here â and b̂ are the annihilation operators related to, respectively, the input and the

output modes as shown in Fig. 7.1.

If the scattering matrix is known, any observable quantity of the output state of light

can be expressed as an expected value of some function f(âξ, â
†
ξ, S) over the quantum

state of the input modes ρin. Moreover, in principle, the quasiprobability distributions
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of the output modes can be obtained using a procedure analogous to the one used in

Sec. 6.2 for a beam-splitter. In practice, however, this problem can be extremely difficult.

As we have seen in the example of boson sampling [212] it can’t be solved efficiently

using classical computation.

However, while a beam-splitter is described by a 2x2 scattering matrix (see Sec. 6.2),

for a typical disordered medium the size of the scattering matrix can be enormous [18].

As a consequence of that, the results of the previous chapter can’t be directly extrap-

olated to the situation of multimode scattering. The main reasons preventing us from

doing that are:

• The number of modes emerging in the multiple scattering process is so large, that

often, despite being completely deterministic, this process is treated as random

due to the multitude of possibilities of the initial state evolution. This leads to

additional source of randomness in the output states of light emerging from such

media, apart form quantum or classical dynamic fluctuations. The quantities

characterizing the output state for a single fixed configuration of scatterers within

the disordered medium could not be predicted, and the only practical way of

analysing this situation is to replace them by the “disorder averages” as in Ch. 3.

• One more problem, somewhat related to the first one is that due to large number of

output modes it is often impossible to keep track of all of them in the experiment.

Therefore in any realistic scenario only a limited amount of the output modes

is taken into account. However, as the scattering coefficients from a given input

mode to any of the output ones are usually non-zero [221, 222], exclusion of some

of the output modes leads to the behaviour described within the framework of open

quantum systems [167], with the excluded modes serving as a lossy “environment”.

• Finally, the argument raised in the previous point applies also to the input modes.

It is impossible (and often not desirable) to populate all of them. While in the

classical picture, it is possible just to exclude completely all the unoccupied modes

from consideration, in the quantum version one has to include the vacuum contri-

butions from all these input modes.

In order to take into account these points, in the current chapter we modify the

general model of multiple scattering outlined in Ch. 3 to account for quantum features

of the input and output light.

140



7.2 Covariance matrix of the output state

The covariance matrix together with a displacement vector provide a complete descrip-

tion of any Gaussian state within the infinite-dimensional Hilbert space, see Sec. 5.3.1.

In this section our goal is to obtain the covariance matrix of the output state of light

scattered by a disordered medium described by a scattering matrix S.

The first step is to substitute the expressions for the quadrature operators

x̂µ =
(b̂µ + b̂†µ)
√

2

p̂µ =
b̂µ − b̂†µ
i
√

2
(7.2)

into the expression for the covariance matrix (5.71). After that, we can express the

elements of the output state covariance matrix as:

σ2µ−1,2ν−1 =
1

2

(
δµ,ν + ∆b̂†µb̂ν + ∆b̂†ν b̂µ + ∆b̂µb̂ν + ∆b̂†µb̂

†
ν

)
σ2µ,2ν =

1

2

(
δµ,ν + ∆b̂†µb̂ν + ∆b̂†ν b̂µ −∆b̂µb̂ν −∆b̂†µb̂

†
ν

)
σ2µ−1,2ν =

1

2i

(
∆b̂µb̂ν −∆b̂†µb̂

†
ν + ∆b̂†µb̂ν −∆b̂†ν b̂µ

)
σ2µ,2ν−1 =

1

2i

(
∆b̂µb̂ν −∆b̂†µb̂

†
ν −∆b̂†µb̂ν + ∆b̂†ν b̂µ

)
, (7.3)

where

∆AB = 〈AB〉 − 〈A〉〈B〉

In order to express the output covariance matrix in terms of the input mode properties,

we substitute (7.1) into (7.3).

If any quantum features are present in the output when there is only one input

mode, they will certainly persist when more input modes are added [223]. Therefore,

for simplicity, we assume that all the input modes except one, ξ′, are in vacuum state, as

in Fig.7.1. Taking that into account, the general expressions for the output covariance

matrix elements are

σ2µ−1,2ν−1 =
δµ,ν
2

+Wµ,ν ∆n̂ξ′ + Yµ,ν ∆âξ′ âξ′ + Y ∗µ,ν ∆â†ξ′ â
†
ξ′ ,

σ2µ,2ν =
δµ,ν
2

+Wµ,ν ∆n̂ξ′ − Yµ,ν ∆âξ′ âξ′ − Y ∗µ,ν ∆â†ξ′ â
†
ξ′ ,

σ2µ−1,2ν = σ2µ,2ν−1 =
1

2i

[
Zµ,ν ∆n̂ξ′ + Yµ,ν ∆âξ′ âξ′ − Y ∗µ,ν ∆â†ξ′ â

†
ξ′

]
,

(7.4)
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where
Wµ,ν =

(
S∗µ,ξ′Sν,ξ′ + S∗ν,ξ′Sµ,ξ′

)
,

Zµ,ν =
(
S∗µ,ξ′Sν,ξ′ − S∗ν,ξ′Sµ,ξ′

)
,

Yµ,ν = Sµ,ξ′Sν,ξ′ ,

This expression gives the general N-mode output state of the scattered light, for the

case of one input mode. We can now select an arbitrary pair of the output modes and

characterize their correlation properties, i. e. entanglement or quantum discord, but

first we need to evaluate the state of this arbitrary pair depending on the properties of

the input mode.

Coherent state: If the input mode is in a coherent state |α〉 we have: 〈α|â|α〉 = α,

where α is the amplitude of the coherent state, also 〈α|â†|α〉 = α∗, 〈α|ââ|α〉 = αα,

〈α|â†â†|α〉 = α∗α∗, 〈α|â†â|α〉 = α∗α . Thus the expectation value of all the operators in

Eq. (7.2) is 0. Therefore the covariance matrix will be

σcoh =
1

2
I⊕2. (7.5)

This means that any two output modes will also be in a joint coherent state.

Thermal state: For a thermal state ρth we have: Tr(âρth) = Tr(â†ρth) = Tr(ââρth) =

Tr(â†â†ρth) = 0 and Tr(â†âρth) = n̄, where n̄ is the average number of photons in the

input mode. The covariance matrix of the two output modes µ and ν is

σth =


σth
a 0 σth

t1
σth
t2

0 σth
a −σth

t2
σth
t1

σth
t1
−σth

t2
σth
b 0

σth
t2

σth
t1

0 σth
b

 (7.6)

with σth
a = |Sµ,k′ |2n̄ + 1

2
, σth

b = |Sν,k′ |2n̄ + 1
2
, σth

t1
= n̄

2
(S∗µ,k′Sν,k′ + S∗ν,k′Sµ,k′) and σth

t2
=

n̄
2
(S∗µ,k′Sν,k′ − S∗ν,k′Sµ,k′), where n̄ is the average number of photons in the input mode.

Squeezed state If the input mode is in a squeezed state with the squeeze param-

eter r, and angle θ, see Sec. 5.3.1, than the relevant expectation values are: ∆âk′ =

−eiθ sinh(r) cosh(r), ∆â†k′ = −e−iθ sinh(r) cosh(r), and ∆n̂k′ = sinh2(r). We can express

the coefficients of the scattering matrix, corresponding to the transition from the input

mode k′ to the output modes µ and ν as: Sν,k′ = sµe
iϕµ and Sν,k′ = sνe

iϕν , and setting
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θ = 0 we can express the covariance matrix for the modes µ and ν as:

σsq =


σsq
a1

σsq
a3

σsq
c1

σsq
c3

σsq
a3

σsq
a2

σsq
c4

σsq
c2

σsq
c1

σsq
c4

σsq
b1

σsq
b3

σsq
c3

σsq
c2

σsq
b3

σsq
b2

 , (7.7)

where:

σsq
a1

=
1

2
− s2

ν(q cos(2ϕν)− t); σsq
a2

=
1

2
+ s2

ν(q cos(2ϕν) + t);

σsq
b1

=
1

2
− s2

µ(q cos(2ϕµ)− t); σsq
b2

=
1

2
+ s2

µ(q cos(2ϕµ) + t);

σsq
a3

= −s2
νq sin(2ϕν); σsq

b3
= −s2

µq sin(2ϕµ);

σsq
c1

= sνsµ(t cos(ϕν − ϕµ)− q cos(ϕν + ϕµ));

σsq
c2

= sνsµ(t cos(ϕν − ϕµ) + q cos(ϕν + ϕµ));

σsq
c3

= sνsµ(t sin(ϕν − ϕµ)− q sin(ϕν + ϕµ));

σsq
c4

= −sνsµ(t sin(ϕν − ϕµ) + q sin(ϕν + ϕµ));

t = sinh2(r); q = sinh(2r)/2.

We have evaluated the output states for various inputs now we can check what

correlations we get between the output modes for each of them.

7.3 Entanglement between the modes

An entanglement criterion, suitable for the continuous variable systems was introduced

in Sec. 5.4.1. In order to check which of the output states evaluated above satisfy this

criterion and to visualize the result, we first determine the region of valid states within

the parameter space of the covariance matrix elements.

The covariance matrix for a two-mode state is a 4x4 real valued symmetric matrix,

however not all 16 elements of this matrix are relevant for estimation of the correlations.

Some of these parameters can be changed by local transformations (displacements and

phase shifts) on each of the modes and therefore the global correlation properties do

not depend on them. The minimal configuration of the covariance matrix, where all the

parameters are relevant for evaluating the correlations between the two modes is given
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by (5.85)

σ =

(
α γ

γT β

)
=


a 0 γx 0

0 a 0 γp

γx 0 b 0

0 γp 0 b

 . (7.8)

The determinants of the submatrices α, β, γ and the covariance matrix σ itself are in-

variant under local transformations and therefore completely determine the correlations

of the state [124]. We also note that for Gaussian states, correlations do not depend

on the displacement vector. Therefore, overall there are 4 independent parameters that

determine the correlations properties: a and b are related to the variances of the x and

p quadratures of each of the two modes, and γx and γp are the correlation coefficients

between the quadratures.

These parameters are not completely independent. As it was mentioned in Sec. 5.4.1

a valid covariance matrix should satisfy the Heisenberg uncertainty relations 5.72, which

implies that the eigenvalues

λCM
1,2,3,4 =

1

2

(
a+ b±

√
±2
√
εxp + (a− b)2 + 2γ2

x + 2γ2
p + 1

)
, (7.9)

εxp = (a− b)2 + (γx + γp)
2
(
(γx − γp)2 + 1

)
of the matrix σ + iΩ/2 should all be positive. This puts constraints on the values of

a, b, γx and γp [124]. In (7.9) two eigenvalues with a plus sign outside the square root

are always positive. Out of the remaining two the most strict constrains are due to the

eigenvalue with a minus sign outside the square root and with a plus sign inside the

square root.
1

2

(
a+ b−

√
2
√
εxp + (a− b)2 + 2γ2

x + 2γ2
p + 1

)
≥ 0, (7.10)

which can be rewritten in a form of a set of constrains

4
(
a b− γ2

x

) (
a b− γ2

p

)
≤ a2 + b2 + 2γxγp −

1

4
, (7.11)

a, b ≥ 1/2, γx ≤ a b, γp ≤ a b.

From these inequalities it is apparent that while there is no upper bound for a and

b, γx and γp are bounded from above. In other words, (7.11) define a closed region

within the γx, γp parameter space, which contains all the values of these parameters,

corresponding to the valid 2-mode covariance matrices. The shape of this region is

shown in Fig. 7.2a,b, depending on the parameters a and b, related to the quadrature

variances of the individual modes. Any class of states, i.e. entangled, discorded and
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Figure 7.2: The shape of the regions of valid covariance matrix parameters. In each of
the panels a black solid line encloses a set of γx, γp, quadrature correlation coefficients
values, that upon substitution in (7.8) give a valid covariance matrix. The shape of this
region depends on a and b, the other two parameters in σ. a) Valid γx, γp regions for
symmetric states a = b. b) For asymmetric states, a = 1, b changes in steps of 1 from
1 to 5. c) Subregion corresponding to entangled states (green) for a = b = 1. d) for
a = b = 5.

product, will occupy some subregion of the regions illustrated in Fig. 7.2a,b.

Let’s figure out what subregion of those parameter sets fulfilling (7.11) correspond

to the entangled states. According to Simon criterion [145], see Ch. 5, if the matrix

obtained by a partial transpose of the global state violates the Heisenberg uncertainty

relations (5.72), such state is entangled. As we discussed in Sec. 5.4.1, partial transpose

in phase space corresponds to a change of sign of one of the quadratures, say the p

quadrature. The matrix obtained from (7.8) after this operation is different from the
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original only by the sign of γp parameter, i.e.

σPPT =


a 0 γx 0

0 a 0 −γp
γx 0 b 0

0 −γp 0 b

 (7.12)

The condition σPPT + iΩ/2 < 0 leads to a set of constrains similar to (7.11)

4
(
a b− γ2

x

) (
a b− γ2

p

)
> a2 + b2 − 2γxγp −

1

4
, (7.13)

a, b ≥ 1/2, γx ≤ a b, |γp| ≤ a b,

which graphically corresponds to the exterior of the region defined by (7.11), but mirror

reflected along γp. The overlap of the regions defined by (7.11) and (7.13) illustrated

in Fig. 7.2c,d, contains entangled states. The configuration of this region agrees with

a well-known fact that the p quadratures of Gaussian entangled states are strongly

anti-correlated [15, 148].

Obviously, the covariance matrix σcoh that we get for coherent state input, with

γx = γp = 0 can never lead to entanglement. The 2-mode output covariance matrix for

the thermal state input (7.6) can be rewritten as

σth
l,m =


σth
a 0 σth

γ 0

0 σth
a 0 σth

γ

σth
γ 0 σth

b 0

0 σth
γ 0 σth

b

 (7.14)

with σth
γ = n̄|Sl,k′||Sm,k′|. The values of γx and γp in this case are equal. In Fig. 7.2

all the possible output states for the thermal state input lie on the line γx = γp and

thus no entanglement is possible. In fact, in order for the modes to be entangled, γx

and γp should at least have different signs [145]. Although these states do not show

entanglement, as we show in the next section, weaker quantum correlations in the form

of quantum discord are still possible.

Finally for a squeezed state input, if we set θ = 0, for which we expect maximal

entanglement [148], the output covariance matrix (7.7) written in the Simon normal
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Figure 7.3: Position of the output states (blue dots) in the region of allowed states from
Fig. 7.2 for the case of squeezed state input. The color corresponds to the degree of
squeezing, r, which changes in steps of 0.05 from 0 (light blue) to 3 (dark blue).

form is

σsq =


σsq
a 0 σsq

γx 0

0 σsq
a 0 σsq

γp

σsq
γx 0 σsq

b 0

0 σsq
γp 0 σsq

b

 (7.15)

where σsq
a = 1

4
(2|Sl,k′ |2t+ 1)

2 − q2|Sl,k′ |4, σsq
b = 1

4
(2|Sm,k′|2t+ 1)

2 − q2|Sm,k′ |4, and σsq
γx ,

σsq
γp satisfy a set of equations

σsq
γxσ

sq
γp = − sinh(r)2|Sl,k′|2|Sm,k′ |2

σsq 2
a σsq 2

b − σsq
a σ

sq
b (σsq 2

γx + σsq 2
γp ) + σsq 2

γx σ
sq 2
γp =

=
1

16

[(
1 + 2t

(
|Sl,k′ |2 + |Sm,k′|2

))2 − 4q2
(
|Sl,k′ |2 + |Sm,k′|2

)2
]

From these expressions we can derive the entanglement criterion, which reads

sinh(r)2|Sl,k′ |2|Sm,k′ |2 > 0 (7.16)

This is always true if r and both scattering matrix elements are non-zero. This means

that we will get entanglement for any non-zero degree of squeezing r [224]. This is

illustrated in Fig. 7.3, in which position of the states with a covariance matrix σsq is

shown. These states always fall into the region corresponding to entangled states and
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Figure 7.4: Quantum discord of a generic quantum state with a covariance matrix σ (7.8)
depending on the parameters γx and γp, for symmetric states a) a = b = 1, b) a = b = 5.

the degree of entanglement increases with r. It is also remarkable that the degree of

entanglement, measured by the logarithmic negativity [139] does not depend on the

phases of transmission coefficients of the scattering matrix, but only on their moduli.

7.4 Discord between the modes

Let’s now apply the procedure described in Sec. 5.4.1 to calculate the discord of the out-

put state of a pair of modes. For that we need to substitute the covariance matrix (7.8)

into the expression for the Gaussian discord (5.98). The dependence of the discord on

the correlation coefficients between the x and p quadratures is shown in Fig. 7.4. From

this figure it is apparent that maximal discord, as expected, is achieved for entangled

states, however, what is surprising, it is non-zero for almost any other state except for

the one with γx = γp = 0. Therefore we can make a conclusion, that discord between

the output modes of the scattered light will be present for any state of the input mode

except the coherent one.

It is not surprising that squeezed light can produce non-classical correlations in the

output state of the scattered modes. It is considered non-classical by any reasonable cri-

terion, and it is well known that non-classical states can produce entanglement between

the output modes of a beam splitter, being one of the inputs [15, 148, 224]. However

it is interesting that, for example thermal input states can produce quantum discord

between two output modes.

We calculate the discord of the output covariance matrix for the case of thermal

input mode by substituting the output covariance matrix Eq. (7.6) into the formula for

the Gaussian discord in Eq. (5.98). In Fig. 7.5 we plot the dependence of the Gaussian

discord DG on the absolute values of the transmission coefficients from the mode k′ to

the modes l and m. Notice that the discord D is asymmetric against these coefficients
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Figure 7.5: The dependence of the Gaussian discord DG between modes l and m on the
absolute values of the elements of the scattering matrix |Sl,k′| and |Sm,k′|. The input
mode, k′, is in a thermal state with different average photon numbers (a) n̄ = 1, (b)
n̄ = 103. The measurement is performed on the mode l.

since the measurement is performed on only one of the modes (on mode l in Fig. 7.5).

The discord increases monotonously with |Sl,k′ |, but there can be a maximum in its

dependence on |Sm,k′|, the position of which is defined by the number of photons in the

input mode (Fig. 7.5b). At low photon numbers there is no maximum, and in that case

the discord increases monotonously (Fig. 7.5a).

To calculate the average amount of discord 〈DG〉 of a pair of output modes, we

make an ensemble average over the realizations of S. In a diffusive system the energy

distributes equally among all the N possible channels, i.e. 〈|S|2〉 = 1/N . Moreover,

within the random matrix approximation [18, 222] the elements of the scattering matrix

S follow a Rayleigh distribution

P (|S|) =
2|S|
〈|S|2〉

exp

(
− |S|

2

〈|S|2〉

)
, (7.17)

which implies 〈|S|〉 =
√
π 〈|S|2〉/2 =

√
π/4N [8, 55, 83].
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Figure 7.6: Dependence of the average Gaussian discord, 〈DG〉, on the number of output
modes, N , and the number of photons, n̄, in the thermal input state.
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Taking the average of Eq. (5.94) and using the above relation for the average value

of |S| we obtain 〈DG〉 of a pair of output modes in this configuration. As shown in

Fig. 7.6, 〈DG〉 increases monotonically with n̄, but decreases monotonically with N . As a

consequence the best conditions to observe the discord generated by multiple scattering

of a thermal state of light are obtained for an intense light signal scattering over a

system with a small number of channels. Therefore we suggest that light scattering

from systems showing Anderson localization [20, 55] will show a significant amount of

quantum discord.

7.5 Correlation function

Classical correlations of scattered light are commonly described by a correlation function

Cl,m that measures the correlations between intensity fluctuations of two different modes

l and m [19, 22, 55],

Cl,m =
〈IlIm〉
〈Il〉 〈Im〉

, (7.18)

where I = |E|2 is the light intensity and 〈·〉 represents either a time or an ensemble

average (if the system is ergodic the two are equivalent). C can be used beyond the

classical case to study certain classes of quantum correlations by substituting I with the

mode’s number operator n̂ [103, 109, 204, 225], and since classical light can never lead

to C < 1. A correlation value below 1 is considered a clear signature of quantumness

[102], capturing, for example, the non-classical behavior of single photon states [226].

The intensity correlation C contains fourth order moments of the field distribution,

and for Gaussian states these can always be written as a function of the second order

moments, contained in the covariance matrix σ [148]. Substituting the mode’s field

operators (5.33) into Eq. (7.18) and using the definition of the elements of the covariance

matrix in Eq. (7.8) we obtain:

C = 1 +
(2γ2

x + 2γ2
p)

(2α− 1)(2β − 1)
. (7.19)

From Eq. (7.19) we can see that Gaussian states always have C ≥ 1, as α, β ≥ 1/2 as a

consequence of the commutation relations in Eq. (5.72).

The dependence of the correlation function on the parameters γx and γp is shown in

Fig. 7.7. According to (7.19), C shows a parabolic dependence on these variables. The

minimal value of C is 1 at γx = γp = 0, as expected for coherent states. The value of

C = 2 is maximal that can be achieved for a classical input state. However, when the
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Figure 7.7: Dependence of the correlation function C (parabolic surface) on γx and γp for
a) a = b = 1 b) a = b = 5. In the bottom plane we plot the region of valid states from
Fig 7.2 with entangled states highlighted in green. The maximal level of C available for
non-entangled states is 2. At low number of photons in the input mode C can indicate
non-classicality as for all entangled states C ≥ 2 (the circle never reaches the highlighted
areas), however at higher number of photons there are entangled states with C < 2

(marked with red arrows).

output state is entangled, values greater than 2 are possible. For a squeezed state input,

the maximal level of C is

Csq = 2 +
|Sl,k′ |2 + |Sm,k′ |2

2n̄|Sl,k′||Sm,k′|
, (7.20)

where n̄ is the average number of photons in the input mode. When n̄ → ∞, Csq

approaches 2, which corresponds to the value expected for thermal states. The presence

of entanglement allows to reach values of C inaccessible for thermal state input, and

this is exploited in quantum imaging where it can allow faster recovery of information,

especially in the low photon number regime [73]. However, this needs to be treated with

some care. In fact, as it can be seen from Fig. 7.7b, with the increase of a and b the circle

C = 2 and the boundary of the green area (corresponding to the entangled states) cross,

and therefore it is possible to find non-entangled states with higher intensity correlations

than some entangled states.

7.6 Quantum tomography of a multimode field

Quantum tomography is a common name of a series of techniques aiming at reconstruc-

tion of the density matrix (or any equivalent representation) of a quantum state from

the experimental measurements [104, 227, 228]. For continuous variable systems the
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Figure 7.8: a) Schematic diagram of a balanced homodyne tomography setup. The dif-
ference between photocurrents in the two BS output arms is proportional to âe−iθLO +
â†eiθLO , where θLO is the local oscillator phase. By changing θLO statistics of any quadra-
ture can be measured b) Schematic diagram of the multimode array detector tomography
setup based on the off-axis holography. The laser (L) light is split by a beam splitter
(BS). The transmitted light is used as signal beam, which after passing through a mul-
tiply scatteting sample (S) becomes a multimode field with complex structure. It is
focused onto the CCD array by the lens L1, where it interferes at some angle with the
local oscillator, which is a Gaussian beam shaped by the objective (O), pinhole (P) and
lens (L2). Simultaneous readings of the mode’s quadratures can be obtained from the
Fourier spectrum of the intensity profiles registered by the camera.

measured properties are usually the field quadratures, which can be accessed using op-

tical homodyne/heterodyne detection or their derivatives [229]. These methods imply

mixing of the measured signal field with a high amplitude coherent state mode (local

oscillator) on a beam-splitter and measuring the difference of the photodiode currents in

the beam-splitter output arms. By changing the phase of the local oscillator any com-

bination of the quadratures can be obtained, see Fig. 7.8. The main difficulty of these

methods is the requirement to achieve perfect spatial overlap of the signal mode with

the local oscillator. Any mode mismatch between these two modes has the same effect

as the photodiode detector losses, leading to the distortion of the measured quadrature

distributions. The way to overcome this problem is to use the detector arrays instead

of single photodetectors [230, 231]. Standard balanced array detection allows to analyse

even multimode fields, however it does not provide mode selectivity, i.e. all the modes

in the signal field are treated as one. The usual way to estimate the quantum state of a

multimode field is a multiport generalization of the homodyne detection technique [232,

233], which can be quite challenging since it requires 2N synchronized homodyne mea-

surements (N is the number of analysed modes).

In [234, 235] a modification of the balanced detection technique was proposed, which

allows mode selectivity without extensive complication of the measurement setup. This

technique is based on the off-axis holography, which is a well-known method of measuring

the amplitude and phase of a complex multimode field. In this method the signal beam
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is overlapped at the detector array with a plane wave inclined at a non-zero angle θc

with respect to the detector surface. The resulting intensity detected by the array is

I(x, y) = |ELO|2 + |Es(x, y)|2 +
[
ELOE

∗
s (x, y)e−ikLO sin(θcx) + c.c.

]
, (7.21)

where ELO and Es are the local oscillator and the signal field amplitudes, respectively,

and kLO is the local oscillator k-vector. The first term of this expression gives a con-

stant displacement, while three others are the original signal itself and two of its copies

shifted in spatial frequency by νc = ±k sin(θc)/2π. When νc is greater than any spatial

frequency of the signal there is no overlap between the Fourier spectra of the signal and

its copies. In that case we can take a Fourier transform of I(x, y) and move either of

these copies to 0 frequency, recovering the complex value of the field (up to a constant

multiplier).

In [234–236] authors extended the method described above, taking into account the

quantum nature of light. They have shown that the Fourier spectrum of I(x, y) contains

information about the quadratures of the signal field and as it comes in the form of a

mode decomposition, the quadratures of a set of modes are measured simultaneously.

As orthogonal quadratures do not commute, there is an uncertainty, which prevents

from measuring the Wigner function of these modes directly, however reconstruction

of the Q-function is still possible. In the case of Gaussian modes the covariance ma-

trix can be obtained from the Q-function, which then can be analysed using any of the

non-classicality criteria described in Sec. 5.4.1. When the modes are non-Gaussian, the

covariance matrix does not fully describe their quantum state, therefore additional effort

should be taken to estimate non-classical correlations. In [170, 171] a method for veri-

fying quantum discord based on the joint quasiprobability distributions was proposed,

which is based on checking whether the peaks of the conditional quasiprobability dis-

tributions corresponding to two different outcomes of heterodyne measurement coincide

at the same point in the phase space. As the homodyne array detector measurements

give the full quadrature statistics for a number of modes, one can obtain the condi-

tional distribution from these measurements, and therefore directly verify the presence

of quantum discord between these modes whether they are Gaussian or not.

7.7 Summary and outlook

The main original input described in this chapter is the first application of the rigorous

quantum informational non-classicality criteria [145, 158, 159] to the quantum state of

light scattered by the disordered materials. This approach allowed to study more subtle
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quantum features, beyond entanglement. In particular, it was found that, surprisingly,

quantum discord can be present in the output state even when the input is in a classical

(thermal) state. In addition, we show that the correlation function between the modes,

often treated as indicator of non-classicality is not always a reliable criterion.

An obvious extension of the results presented in the current chapter is an experiment,

that would demonstrate the presence of quantum discord in multiple scattered light. It

is a challenging task that involves quantum tomography of a highly multimode field. A

method based on digital holography phase reconstruction [237] has been proposed for

that purpose [235].
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correlations in temporal intensity fluctuations of light. Physical Review B 56,
10942–10952 (1997).

30. Genack, A. Z., Garcia, N. & Polkosnik, W. Long-range intensity correlation in
random media. Physical Review Letters 65, 2129–2132 (1990).

31. Garcia, N., Genack, A., Pnini, R. & Shapiro, B. Intensity correlation in waveg-
uides. Physics Letters A 176, 458–461 (1993).

157



32. Sarma, R., Yamilov, A., Neupane, P., Shapiro, B. & Cao, H. Probing long-range
intensity correlations inside disordered photonic nanostructures. Physical Review
B 90, 014203 (2014).

33. Sarma, R., Yamilov, A., Neupane, P. & Cao, H. Using geometry to manipulate
long-range correlation of light inside disordered media. Physical Review B 92,
180203 (2015).

34. Ojambati, O. S., Hosmer-Quint, J. T., Gorter, K.-J., Mosk, A. P. & Vos, W. L.
Controlling the intensity of light in large areas at the interfaces of a scattering
medium. Physical Review A 94, 043834 (2016).

35. Hsu, C. W., Liew, S. F., Goetschy, A., Cao, H. & Douglas Stone, A. Correlation-
enhanced control of wave focusing in disordered media. Nature Physics 13, 497–
502 (2017).

36. Vimba: The SDK for Allied vision cameras - Allied Vision https : / / www .

alliedvision.com/en/products/software.html.

37. Frigo, M. & Johnson, S. The Design and Implementation of FFTW3. Proceed-
ings of the IEEE 93. Special issue on “Program Generation, Optimization, and
Platform Adaptation”, 216–231 (2005).

38. Vynck, K., Pierrat, R. & Carminati, R. Polarization and spatial coherence of elec-
tromagnetic waves in uncorrelated disordered media. Physical Review A - Atomic,
Molecular, and Optical Physics 89, 013842 (2014).

39. Dogariu, A. & Carminati, R. Electromagnetic field correlations in three-dimensional
speckles. Physics Reports 559, 1–29 (2015).

40. Gorodnichev, E. E., Kuzovlev, A. I. & Rogozkin, D. B. Impact of wave polarization
on long-range intensity correlations in a disordered medium. Journal of the Optical
Society of America A 33, 95 (2016).

41. Gorodnichev, E. E., Kuzovlev, A. I. & Rogozkin, D. B. Long-Range Correlations
Between Transmitted and Reected Fluxes of Electromagnetic Waves. Journal of
Physics: Conference Series 941, 012045 (2017).

42. Lax, M. Multiple Scattering of Waves. II. The Effective Field in Dense Systems.
Physical Review 85, 621–629 (1952).

43. Draine, B. T. & Flatau, P. J. Discrete-Dipole Approximation For Scattering Cal-
culations. Journal of the Optical Society of America A 11, 1491 (1994).

44. Yurkin, M. A. & Hoekstra, A. G. The discrete dipole approximation: An overview
and recent developments. Journal of Quantitative Spectroscopy and Radiative
Transfer 106, 558–589 (2007).

45. Yurkin, M. A., Maltsev, V. P. & Hoekstra, A. G. Convergence of the discrete
dipole approximation. I. Theoretical analysis. Journal of the Optical Society of
America. A, Optics, image science, and vision 23, 2578–91 (2006).

46. Saad, Y. Iterative Methods for Sparse Linear Systems (PWS Publishing Company,
1996).

158



47. Maradudin, A. A. Light Scattering and Nanoscale Surface Roughness (ed Maradudin,
A. A.) 496 (Springer US, 2007).

48. Carminati, R. Subwavelength spatial correlations in near-field speckle patterns.
Physical Review A - Atomic, Molecular, and Optical Physics 81, 1–5 (2010).

49. McGurn, A. R. & Maradudin, A. A. Computer simulation studies of the speckle
correlations of light scattered from a random array of scatterers: Scalar wave
approximation. Physical Review B - Condensed Matter and Materials Physics
64, 1–14 (2001).

50. Danila, B. & McGurn, A. R. Computer simulation studies of the speckle cor-
relations of light scattered from a random array of dielectric spheres of random
radii or dielectric constants. Physical Review B - Condensed Matter and Materials
Physics 73, 1–13 (2006).

51. Landau, L. D. The classical theory of fields (Butterworth Heinemann, 2000).

52. Nair, V. P. Quantum field theory : a modern perspective (Springer Business+Science
Media, 2005).

53. Osnabrugge, G., Leedumrongwatthanakun, S. & Vellekoop, I. M. A convergent
Born series for solving the inhomogeneous Helmholtz equation in arbitrarily large
media. Journal of Computational Physics 322, 113–124 (2016).

54. Kubo, R. Generalized Cumulant Expansion Method. Journal of the Physical So-
ciety of Japan 17, 1100–1120 (1962).

55. Akkermans, E. & Montambaux, G. Mesoscopic Physics of Electrons and Photons
(Cambridge University Press, 2007).

56. Edwards, S. F. A new method for the evaluation of electric conductivity in metals.
Philosophical Magazine 3, 1020–1031 (1958).

57. Altshuler, B. L., Khmel’nitzkii, D., Larkin, A. I. & Lee, P. A. Magnetoresistance
and Hall effect in a disordered two-dimensional electron gas. Physical Review B
22, 5142–5153 (1980).

58. Akkermans, E., Wolf, P. E. & Maynard, R. Coherent Backscattering of Light by
Disordered Media: Analysis of the Peak Line Shape. Physical Review Letters 56,
1471–1474 (1986).

59. Hikami, S. Anderson localization in a nonlinear-sigma-model representation. Phys-
ical Review B 24, 2671–2679 (1981).

60. Stephen, M. J. & Cwilich, G. Intensity correlation functions and fluctuations in
light scattered from a random medium. Physical Review Letters 59, 285 (1987).

61. Shapiro, B. Large Intensity Fluctuations for Wave Propagation in Random Media.
Physical Review Letters 57, 2168–2171 (1986).

62. Kane, C. L., Serota, R. A. & Lee, P. A. Long-range correlations in disordered
metals. Physical Review B 37, 6701–6710 (1988).

63. Shapiro, B. New Type of Intensity Correlation in Random Media. Physical Review
Letters 83, 4733–4735 (1999).

159



64. Skipetrov, S. E. & Maynard, R. Nonuniversal correlations in multiple scattering.
Physical Review B 62, 886–891 (2000).

65. Van Tiggelen, B. A. & Skipetrov, S. E. Fluctuations of local density of states and
C0 speckle correlations are equal. Physical Review E 73, 045601 (2006).

66. Moreau, P.-A., Toninelli, E., Gregory, T. & Padgett, M. J. Ghost Imaging Using
Optical Correlations. Laser & Photonics Reviews 12, 1700143 (2018).

67. Pittman, T. B., Shih, Y. H., Strekalov, D. V. & Sergienko, A. V. Optical imaging
by means of two-photon quantum entanglement. Phys. Rev. A 52, R3429–R3432
(5 1995).

68. Strekalov, D. V., Sergienko, A. V., Klyshko, D. N. & Shih, Y. H. Observation of
Two-Photon “Ghost” Interference and Diffraction. Physical Review Letters 74,
3600–3603 (1995).

69. Bennink, R. S., Bentley, S. J. & Boyd, R. W. “Two-Photon” Coincidence Imaging
with a Classical Source. Physical Review Letters 89, 113601 (2002).

70. Haner, A. B. & Isenor, N. R. Intensity Correlations from Pseudothermal Light
Sources. American Journal of Physics 38, 748–750 (1970).

71. Valencia, A., Scarcelli, G., D’Angelo, M. & Shih, Y. Two-Photon Imaging with
Thermal Light. Phys. Rev. Lett. 94, 063601 (6 2005).

72. Ferri, F. et al. High-Resolution Ghost Image and Ghost Diffraction Experiments
with Thermal Light. Physical Review Letters 94, 183602 (2005).

73. Gatti, A., Brambilla, E., Bache, M. & Lugiato, L. a. Ghost Imaging with Ther-
mal Light: Comparing Entanglement and ClassicalCorrelation. Physical Review
Letters 93, 093602 (2004).

74. Ragy, S. & Adesso, G. Nature of light correlations in ghost imaging. Scientific
Reports 2, 651 (2012).

75. Shapiro, J. H., Venkatraman, D. & Wong, F. N. C. Ghost Imaging without Dis-
cord. Scientific Reports 3, 1849 (2013).

76. Shapiro, J. H. Computational ghost imaging. Physical Review A 78, 061802
(2008).

77. Duarte, M. F. et al. Single-Pixel Imaging via Compressive Sampling. IEEE Signal
Processing Magazine 25, 83–91 (2008).

78. Radwell, N. et al. Single-pixel infrared and visible microscope. Optica 1, 285
(2014).

79. Watts, C. M. et al. Terahertz compressive imaging with metamaterial spatial light
modulators. Nature Photonics 8, 605–609 (2014).

80. Stantchev, R. I. et al. Noninvasive, near-field terahertz imaging of hidden objects
using a single-pixel detector. Science Advances 2, e1600190 (2016).

81. Greenberg, J., Krishnamurthy, K. & Brady, D. Compressive single-pixel snapshot
x-ray diffraction imaging. Optics Letters 39, 111–114 (2014).

160



82. Erkmen, B. I. & Shapiro, J. H. Signal-to-noise ratio of Gaussian-state ghost imag-
ing. Physical Review A 79, 023833 (2009).

83. Goodman, J. W. Speckle with a finite number of steps. Applied Optics 47, A111–8
(2008).

84. Ferri, F., Magatti, D., Lugiato, L. A. & Gatti, A. Differential Ghost Imaging.
Physical Review Letters 104, 253603 (2010).

85. Penrose, R. & Todd, J. A. A generalized inverse for matrices. Mathematical Pro-
ceedings of the Cambridge Philosophical Society 51, 406 (1955).

86. Donoho, D. Compressed sensing. IEEE Transactions on Information Theory 52,
1289–1306 (2006).

87. Candes, E., Romberg, J. & Tao, T. Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency information. IEEE Transactions
on Information Theory 52, 489–509 (2006).

88. Candes, E. & Wakin, M. An Introduction To Compressive Sampling. IEEE Signal
Processing Magazine 25, 21–30 (2008).
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Appendix A

In this appendix we show in details two examples of the quantum discord calculation.

In the first example we consider the Werner state [146], which can be represented as

a mixture of a two qubit maximally entangled state and a maximally mixed state. At

a certain degree of mixing the entanglement of this state vanishes, however quantum

discord changes monotonously becoming 0 only for a maximally mixed state, which

shows that this quantity is suitable for characterization of quantum correlations beyond

entanglement. In the second example we consider a simpler case of a mixed state that

does not require any entanglement for its preparation. All the steps in this process are

apparently classical, however as a result we get a state with non-zero discord.

Werner state

Werner states are a class of states with such a form:

ρW = zρBell + (1− z)ρm.mix, (A.1)

where ρBell is the density matrix of a maximally entangled state, ρm.mix is a maximally

mixed state and z is a mixing ratio. For two polarization qubits one of the variants of

such a state is

ρW =
z

2

(
|HH〉+ |V V 〉

)(
〈HH|+ 〈V V |

)
+

1− z
4

I4, (A.2)

where H and V are horizontal and vertical polarization respectively, I4 is a 4×4 identity

matrix and 0 ≤ z ≤ 1 is a mixing ratio. In the |H〉, |V 〉 basis this state is

ρW =


z+1

4
0 0 z

2

0 1−z
4

0 0

0 0 1−z
4

0
z
2

0 0 z+1
4

 . (A.3)
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It is easy to estimate its entanglement. The partial transpose (5.83) of this matrix is

ρPT
W =


z+1

4
0 0 0

0 1−z
4

z
2

0

0 z
2

1−z
4

0

0 0 0 z+1
4

 . (A.4)

The smallest eigenvalue of the state ρPT
W is (1−3z)/4, which means that ρW is entangled

for z > 1/3 and separable otherwise.

Let’s now calculate the discord, (5.94) of ρW.

D(ρW) = S(ρBW)− S(ρW) + inf
Πj

(∑
j

pjS(ρ
A|Πj
W )

)
, (A.5)

where ρAW and ρBW are the reduced states of the 1-st and the 2-nd qubit of ρW respectively,

pj = Tr[ρW(IA⊗ΠB
j )], ρ

A|Πj
W = TrB[ρW(IA2 ⊗ΠB

j )]/pj is the of the qubit A after obtaining

the ΠB
j outcome on B (which happens with the probability pj), and finally ΠB

j is a

complete set of orthogonal projectors in the ρBW subspace.

The first term in (A.5) is the entropy of the reduced state ρBW. We can notice that ρW

is symmetric and ρAW = ρBW = I2/2, therefore S(ρBW) = log 2. The second term in (A.5)

is the entropy of ρW

S(ρW) =
3(z − 1)

4
log

(
1− z

4

)
− 3z + 1

4
log

(
3z + 1

4

)
(A.6)

The third term is the conditional entropy, of the A qubit depending on the possible

outcomes of the projective measurement ΠB
j on the B qubit. A complete set of the

orthogonal projectors ΠB
j for the second qubit can be parametrised as:

ΠB
0 = |ψ0〉〈ψ0|; |ψ0〉 = cos(θ)|H〉+ eiφ sin(θ)|V 〉,

ΠB
1 = |ψ1〉〈ψ1|; |ψ1〉 = − sin(θ)e−iφ|H〉+ cos(θ)|V 〉, (A.7)

where θ, φ ∈ [0, 2π]. The probability for ΠB
0 to occur is

p0 = Tr[ρW · (IA ⊗ ΠB
0 )] = (A.8)

= Tr

[
ρW ·

(
1 0

0 1

)
⊗

(
cos2(θ) eiφ cos(θ) sin(θ)

e−iφ cos(θ) sin(θ) sin2(θ)

)]
=

1

2
.
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The state of the qubit A after ΠB
0 was observed in B is

ρ
A|Π0

W =
1

p0

TrB

[
ρW ·

(
1 0

0 1

)
⊗

(
cos2(θ) eiφ cos(θ) sin(θ)

e−iφ cos(θ) sin(θ) sin2(θ)

)]
=

=

(
1
2
(z cos(2θ) + 1) eiφz cos(θ) sin(θ)

e−iφz cos(θ) sin(θ) 1
2
(1− z cos(2θ))

)
.

The eigenvalues of ρ
A|Π0

W are
{

1−z
2
, z+1

2

}
and therefore the entropy of this state

S(ρ
A|Π0

W ) =
1

2

(
(z − 1) log

(
1− z

2

)
− (z + 1) log

(
z + 1

2

))
(A.9)

Performing the same calculation for ρ
A|Π1

W we can show that p1 = p0 = 1/2 and

ρ
A|Π1

W =

(
1
2
(1− z cos(2θ)) −e−iφz cos(θ) sin(θ)

−eiφz cos(θ) sin(θ) 1
2
(z cos(2θ) + 1)

)
, (A.10)

which has the same eigenvalues and entropy as ρ
A|Π0

W and does not depend on θ and φ.

Therefore, the last term in (A.5)

inf
Πj

(∑
j

pjS(ρ
A|Πj
W )

)
=

1

2
ρ
A|Π0

W +
1

2
ρ
A|Π1

W =

=
1

2

(
(z − 1) log

(
1− z

2

)
− (z + 1) log

(
z + 1

2

))
(A.11)

The discord is:

D(ρW) =
1

4
(−(z − 1) log(1− z)− 2(z + 1) log(z + 1) + (3z + 1) log(3z + 1)), (A.12)

this expression is plotted in Fig. A.1 together with the total mutual information (5.91)

Iq(ρW) = S(ρAW) + S(ρBW)− S(ρW), (A.13)

and the classical part of the mutual information (5.93)

Jq(ρW) = S(ρAW)−
∑
j

pjS(ρ
A|Πj
W ), (A.14)

Let’s discuss the physical meaning of the behaviour we observe. At z = 1 the state

of the qubits A and B is maximally entangled. The total correlation is equally shared
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Figure A.1: Correlations of the state ρW: blue line, total correlations (A.13); yellow
line, classical correlations (A.14); red line, quantum discord (A.12).

between the quantum and classical ones, which is a common feature of the maximally

entangled states [238]. When z → 0, ρW approaches a maximally mixed two-qubit state.

In such a state there is no correlation (neither quantum nor classical) between A and B

qubits as shown in Fig. A.1. Interestingly, there is a region of z in which the ρW becomes

separable, however quantum discord still indicates presence of non-classical correlations.

Classically prepared state with non-zero discord

The state ρW from the previous example was convenient for the theoretical analysis.

First of all the reduces states its subsystems were the same, making ρW symmetric. Also,

both elements of the mixture, i.e. the maximally entangled and the maximally mixed

state were invariant under the local transformations, which eliminated the dependence

of the conditional entropy on the measurement basis, making the minimization in (5.94)

redundant. On the other hand such a state is not easy to prepare, since it requires a non-

classical source of photons. One may argue that it is not surprising to get non-classical

correlations in that scenario even if the mixing is strong. In this section we consider

an example of a state, which does not require an apparent non-classical resources in its

preparation, however demonstrates non-zero discord.

Let’s look at how to prepare the state (A.2). The most obvious setup for that is

shown in Fig. A.2. Two independent sources produce two mode states ρA and ρB and

each of that states enters a mixing device M. This device should effectively be an optical

multiplexer, which at any moment of time connects one of its inputs to the output and

discards the other. If now we drive both of these mixers by pseudorandom signals from
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Figure A.2: Classical mixing of two mode states.

the controller C, to switch each of the mixers simultaneously but in a random way,

we get the state as in (A.2), with the parameter z being the average “duty cycle” of

the random signal. In the previous example we considered a situation when ρA was an

entangled (in polarizaton) state, and ρB was just a source of depolarized uncorrelated

photons and any correlation in the output state was from ρA.

Let’s now consider a situation when ρA = |HH〉〈HH| and ρB = |VD〉〈VD|, where

|D〉 = (|H〉 + |V 〉)/
√

2. Both of these states are completely classical. The first one is

just a source of horizontally polarized light divided into two beams, and the second one

is a source that emits vertically polarized light in on of the output modes and diagonally

polarized into another. In the |H〉, |V 〉 basis the resulting output state is

ρC =


1
2

0 0 0

0 0 0 0

0 0 1
4

1
4

0 0 1
4

1
4

 . (A.15)

We can see that the state ρC fails to follow the criterion of the discord absence, (5.95),

since the states corresponding to Ψi in that formula are |H〉, |D〉 and are not orthogonal.

Let’s calculate the discord of this state. From now on we will use base 2 in the

logarithms to have all the entropies in bits. The reduced states of the subsystems of ρC

are

ρA =

(
1
2

0

0 1
2

)
, ρB =

(
3
4

1
4

1
4

1
4

)
. (A.16)

The entropies are: S(ρA) = S(ρC) = 1 and

S(ρB) = 2−
(√

2 + 2
)

log2

(√
2 + 2

)
+
(√

2− 2
)

log2

(
2−
√

2
)

4
≈ 0.6

We now need to calculate the conditional entropy in (5.94). The probabilities to get
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ΠB
0 or ΠB

1 by analogy to (A.8) are

p0 =
1

8

(
4 sin(θ) cos(θ) cos(φ) + 2 cos2(θ) + cos(2θ) + 3

)
, (A.17)

p1 =
1

4

(
−2 sin(θ) cos(θ) cos(φ) + sin2(θ)− cos2(θ) + 2

)
. (A.18)

The post-measurement states are:

ρ
A|Π0

C =

(
2 cos2(θ)

cos(2θ)+cos(φ) sin(2θ)+2
0

0 2(sin(2θ) cos(φ)+1)
4 sin(θ) cos(θ) cos(φ)+2 cos2(θ)+cos(2θ)+3

)
(A.19)

ρ
A|Π1

C =

(
− 2 sin2(θ)

cos(2θ)+cos(φ) sin(2θ)−2
0

0 sin(2θ) cos(φ)−1

sin(2θ) cos(φ)−sin2(θ)+cos2(θ)−2

)
(A.20)

It is possible to see, that these states are different. For example for θ = φ = 0, in which

case ΠB
0 = |H〉〈H|, ΠB

1 = |V 〉〈V |, the conditional states are

ρ
A|Π0(θ=0,φ=0)
C =

(
2
3

0

0 1
3

)
(A.21)

ρ
A|Π1(θ=0,φ=0)
C =

(
0 0

0 1

)
(A.22)

This effect has the same nature as for the entangled states. The measurement performed

on one of the arms leads to a non-local change of the global state and leads to different

conditional distributions for the second system. In contrast to the entanglement sce-

nario, this change is not enough to violate the Bell’s inequalities, however it is still an

observable effect.

Interestingly, the global state after ΠB
0 = |H〉〈H|, ΠB

1 = |V 〉〈V | projective measure-

ment is

ρ′C = p0(θ = 0, φ = 0)

(
2
3

0

0 1
3

)
⊗

(
1 0

0 0

)

+ p1(θ = 0, φ = 0)

(
0 0

0 1

)
⊗

(
0 0

0 1

)
=


1
2

0 0 0

0 0 0 0

0 0 1
4

0

0 0 0 1
4

 , (A.23)

which is identical to ρC with removed off-diagonal elements.
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Figure A.3: a) Conditional entropy of the state ρC , Eq. (A.15). b) The expression for
quantum discord (A.5), without minimization. Due to the invariance of the shape of
this dependence along φ we take φ = 0 and minimize only over θ. Quantum discord is
the minimum of this curve, as indicated.

The conditional entropy is

SΠ0,1(ρ
A|B) = p0S(ρ

A|Π0

C ) + p1S(ρ
A|Π1

C ) (A.24)

We plot this quantity in Fig. A.3a, depending on θ and φ, and in Fig. A.3b we plot the

dependence of SΠ0,1(ρ
A|B
C ) − S(ρABC ) + S(ρAC) on θ, the minimization of which gives us

the discord of D ≈ 0.2 bit.

As we already discussed in Ch. 6 presence of discord in the states commonly con-

sidered classical was demonstrated experimentally [171, 172]. The most straightforward

way of showing non-classical correlations in a generic state is a full tomographic recon-

struction of its density matrix [172, 239]. This method, however is accompanied with

practical difficulties, as for a 2×2 system it requires 22 × 22 measurements and implies

a reconstruction procedure sensitive to measurement errors [104]. There are several

methods allowing to surpass these difficulties and detect or measure quantum discord

directly [240–245], however often such schemes require generalized measurements, which

are hard to implement experimentally.

The main difficulty in estimation of quantum discord is related to building a mea-

surement that maximizes the mutual information between the correlated systems. The

classical mutual information Eq. (5.93) can be extracted from simple projective measure-

ments. We can introduce a set of projectors on the A subsystem similarly to Eq. (A.7),

parameterized by the angles θ0, φ0, and construct a classical probability distribution
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from the measurement outcomes of four projectors:

p
[
ΠA

1 (θ0, φ0)ΠB
1 (θ, φ)

]
p
[
ΠA

1 (θ0, φ0)ΠB
2 (θ, φ)

]
p
[
ΠA

2 (θ0, φ0)ΠB
1 (θ, φ)

]
p
[
ΠA

2 (θ0, φ0)ΠB
2 (θ, φ)

] (A.25)

One can calculate the mutual information between A and B subsystems from this distri-

bution, using Eq. (6.55) or Eq. (5.91) (once the quantum part of the mutual information

is extracted, these two are equivalent). Measuring the total mutual information is less

straightforward. A method, allowing to estimate the total mutual information without

the tomographic reconstruction of the state relies on following identity [139]:

I(ρAB) = S(ρAB||ρA ⊗ ρB), (A.26)

where S(ρ||σ) = Tr
[
ρ log(ρ) − ρ log(σ)

]
is the relative entropy. This quantity char-

acterizes the distinguishability of ρ and σ. It can be estimated using the following

procedure [246]:

• N copies of the original state ρAB are prepared: ρABN = ⊗NρAB

• From the results of the protective measurements {E} on a tensor product state

we obtain

SN =
1

N

∑
i

pi log

(
pi
qi

)
, (A.27)

where pi = Tr[ρEi] and qi = Tr[σEi]

• Finally, taking a limit of N → ∞ and optimizing over all possible {E} we ob-

tain [247]

S(ρ||σ) = lim
N→∞

max
{E}

SN (A.28)

In the measurement procedure described above, the state σ is ρA⊗ρB. It is not directly

available experimentally, however qi can be obtained from the measurements on ρAB by

randomizing the measurement outcomes on both subsystems with respect to each other

and thus erasing the correlations between them. The main difficulty, however lies in the

optimization over all possible {E}. The optimal measurement is not necessarily of the

type ΠA ⊗ ΠB. A general set of projectors in the 2 × 2 Hilbert space is parametrized

by 16 real numbers, which makes the optimization procedure cumbersome. The same

applies to finding a measurement procedure that maximally utilizes the total mutual

information. Despite a clear role of quantum correlations in the improvement over

classical procedures [248, 249], finding a general method of how this improvement can

be implemented is still an opened question.
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Appendix B

In this appendix we calculate the integrals from the expression for 〈O2
p〉, (4.9) and

Cov
[
Op,∆R̃p

]
, (4.19), required for the Ghost Imaging SNR estimation.

1

N2
r

∫ ∞
0

[
Nr∑
i

Np∑
j 6=p

RijRipΛj

]2

P (R)dR =

=
1

N2
r

∫ ∞
0

[
Nr∑
i

Np∑
j 6=p

R2
ijR

2
ipΛ

2
j +

Nr∑
i

Np∑
j 6=l 6=p

R2
ipRijRilΛjΛl +

+
Nr∑
i 6=k

Np∑
j 6=p,l 6=p

RipRijRkpRklΛjΛj

]
P (R)dR =

=

{
R4Nr (Nw − 1) [(Nw − 1)(Nr − 1) + 2Nw] , if Λp = 1

R4NrNw [Nw(Nr + 1) + 2] , if Λp = 0.
(B.1)

2Λp

N2
r

∫ ∞
0

(
Nr∑
i

R2
ip

)(
Nr∑
k

Np∑
j 6=p

RkjRkpΛj

)
P (R)dR =

=
2Λp

N2
r

[
1

R2

∫ ∞
0

Nr∑
i

Np∑
j 6=p

R3
ipRijΛje

−(Rip+Rij)/RdRipdRij +

+
1

R3

∫ ∞
0

Nr∑
i 6=k

Np∑
j 6=p

R2
kpRijRipΛje

−(Rkp+Rij+Rip)/RdRkpdRipdRij

]
=

=


4R4 (Nw − 1)

[
1 +

2

Nr

]
, if Λp = 1

0, if Λp = 0.

(B.2)
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Λ2
p

N2
r

∫ ∞
0

[
Nr∑
i

R2
ip

]2

P (R)dR =
Λ2
p

N2
r R

∫ ∞
0

Nr∑
i

R4
ipe
−Rip/RdRip +

+
Λ2
p

N2
r R

2

∫ ∞
0

Nr∑
i

j−1∑
k

R2
ipR

2
kpe
−(Rip+Rkp)/RdRipdRkp =

= 4R4Λ2
p

(
1 +

5

Nr

)
. (B.3)

∫ ∞
0

Op R̃p P (R)dR =
1

N3
r

∫ ∞
0

Nr∑
ik

Np∑
j

RijRipRkpΛjP (R)dR =

=
1

N3
r

∫ ∞
0

[
Nr∑
ik

R3
ipΛp +

Nr∑
i 6=k

R2
ipRkpΛp +

Nr∑
i

Np∑
j 6=p

RijRkpΛj+

+
Nr∑
i 6=k

Np∑
j 6=p

RijRipRkpΛj

]
P (R)dR =

=
R3

N2
r


(Nw + 1)(Nr + 1) + 2, if Λp = 1

Nr + 1, if Λp = 0.

(B.4)
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Appendix C

In this appendix we show that the shape of the object, reconstructed using the blind

ghost imaging technique is the convolution of the original object shape with the average

reflection-transmission correlation function.

We start with the expression for the correlation function (1.4)

CRT
i (∆r) = δRi(r) ? δTi(r), (C.1)

where ? is the correlation product. In the experiment we measure

〈CRT (∆r)〉 =
1

N

∑
i

CRT
i (∆r) (C.2)

From (C.1) we can get

CRT
i (∆r) ? δTi(r) = δRi(r) ? δTi(r) ? δTi(r) = δRi(r), (C.3)

where in the last step we used the property δTi(r) ? δTi(r) = δ(r). Using the expression

above we rewrite the ghost imaging observable G (4.22) as

G =
1

N

Nr∑
i

δRiti =
1

N

Nr∑
i

CRT
i ? δTiti =

∫
〈CRT

i (∆r)δTi(r + ∆(r))ti〉dr (C.4)

Using the expression for the mean value of the product 〈AB〉 = 〈A〉〈B〉 −Cov[AB], we
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rewrite G as

G =

∫ [
〈CRT

i (∆r)〉〈δTi(r + ∆(r))ti〉 −

1

N

Nr∑
i

(δTi(r + ∆(r))ti − 〈δTi(r + ∆(r))ti〉)
(
CRT
i (∆r)− 〈CRT

i (∆r)〉
)]

dr =

Λ〈CRT 〉 − 1

N

Nr∑
i

∫ [
CRT
i (∆r)δTi(r + ∆(r))ti − δTi(r + ∆(r))ti〈CRT

i 〉+

+Λ(r + ∆(r))〈CRT 〉 − Λ(r + ∆(r))CRT
i

]
dr =

=
1

N

Nr∑
i

[
δTiti〈CRT

i 〉 − δTitiCRT
i + Λ〈CRT

i 〉
]

= 2Λ〈CRT
i 〉 −G. (C.5)

Therefore we can state that

G = Λ ? 〈CRT 〉, (C.6)

and the measured average correlation acts effectively as a point-spread function in our
imaging technique.
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