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Abstract 45 

Erectile dysfunction (ED) is a common condition affecting more than 20% of men aged over 60 46 

years, yet little is known about its genetic architecture. We performed a genome-wide association 47 

study of ED in 6,175 cases among 223,805 European men and identified one locus at 6q16.3 48 

(lead variant rs57989773, OR 1.20 per C-allele; p = 5.71×10-14), located between MCHR2 and 49 

SIM1. In-silico analysis suggests SIM1 to confer ED risk through hypothalamic dysregulation. 50 

Mendelian randomization provides evidence that genetic risk of type 2 diabetes mellitus is a cause 51 

of ED (OR 1.11 per 1-log unit higher risk of type 2 diabetes). These findings provide insights into 52 

the biological underpinnings and the causes of ED, and may help prioritize the development of 53 

future therapies for this common disease.  54 
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Erectile dysfunction (ED) is the inability to develop or maintain a penile erection adequate for 55 

sexual intercourse.1 ED has an age-dependent prevalence, with 20-40% men aged 60-69 years 56 

affected.1 The genetic architecture of ED remains poorly understood, owing in part to a paucity of 57 

well-powered genetic association studies. Discovery of such genetic associations can be valuable 58 

for elucidating the etiology of ED, and can provide genetic support for potential new therapies. 59 

 60 

We conducted a genome-wide association study (GWAS) among white European-ancestry men 61 

from the population-based UK Biobank (UKBB) and the Estonian Genome Center of the 62 

University of Tartu (EGCUT) cohorts and hospital-recruited Partners HealthCare Biobank (PHB) 63 

cohort (Supplemental Methods). 64 

 65 

The prevalence of ED (defined as self-reported or physician-reported ED using ICD10 codes 66 

N48.4 and F52.2 or use of oral ED medication (sildenafil/Viagra, tadalafil/Cialis or 67 

vardenafil/Levitra), or a history of surgical intervention for ED (using OPCS-4 codes: L97.1 and 68 

N32.6); Supplemental Methods) in the cohorts was 1.53% (3,050/199,352) in UKBB, 7.04% 69 

(1,182/16,787) in EGCUT and 25.35% (1,943/7,666) in PHB (Table S1). Demographic 70 

characteristics of the subjects in each cohort are shown in Table S2. The reasons for the different 71 

prevalence rates in the three cohorts may include a higher median cohort age for men in PHB (65 72 

years, compared to 59 years in UKBB and 42 years in EGCUT; Table S2), “healthy volunteer” 73 

selection bias in UKBB2, a lack of primary care data availability in UKBB, and intercultural 74 

differences, including “social desirability” bias3,4. Importantly, we note that the assessment of 75 

exposure-outcome relationships remains valid, despite the prevalences likely not being 76 

representative of the general population prevalences. 77 

 78 

GWAS in UKBB revealed a single genome-wide significant (p < 5×10-8) locus at 6q16.3 (lead 79 

variant rs57989773, EAFUKBB (C-allele) = 0.24; OR 1.23; p = 3.0×10-11).  Meta-analysis with 80 
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estimates from PHB (OR 1.20; p = 9.84×10-5) and EGCUT (OR 1.08; p = 0.16) yielded a pooled 81 

meta-analysis OR 1.20; p = 5.72×10-14 (heterogeneity p-value = 0.17; Figures 1A-C). Meta-82 

analysis of all variants yielded no further genome-wide loci. Meta-analysis of our results with 83 

previously suggested ED-associated variants also did not result in any further significant loci 84 

(Supplemental Methods; Table S3), nor did X-chromosome analysis in UKBB.  85 

 86 

The association of rs57989773 was consistent across clinically- and therapy-defined ED, as well 87 

as across different ED drug classes (Figure 1C; Figure S1). No further genome-wide significant 88 

loci were identified for ED when limited to clinically- or therapy-defined cases (2,032 and 4,142 89 

cases, respectively). 90 

 91 

A PheWAS of 105 predefined traits (Table S4) using the lead ED SNP rs57989773 found 92 

associations with 12 phenotypes at a p-value < 5×10-4 (surpassing the Bonferroni-corrected 93 

threshold of 0.05/105), including adiposity (9 traits), adult height and sleep-related traits. Sex-94 

stratified analyses revealed sexual dimorphism for waist-hip ratio (WHR), systolic and diastolic 95 

blood pressure (Figure 1D; Table S5).  96 

 97 

The lead variant at the 6q16.3 locus, rs57989773, lies in the intergenic region between MCHR2 98 

and SIM1, with MCHR2 being the closest gene (distances to transcription start sites of 187kb for 99 

MCHR2 and 284kb for SIM1). Conditional and joint analysis (Supplemental Methods) revealed 100 

no secondary, independent signals in the locus. Previous work has implicated the MCHR2-SIM1 101 

locus in sex-specific associations on age at voice-breaking and menarche.5 The puberty timing-102 

associated SNP in the MCHR2-SIM1 region (rs9321659; ~500kb from rs57989773) was not in 103 

LD with our lead variant (r2 = 0.003, D’ = 0.095) and was not associated with ED (p = 0.32) in our 104 

meta-analysis, suggesting that the ED locus represents an independent signal.  105 

 106 
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To identify the tissue and cell types in which the causal variant(s) for ED may function, we 107 

examined chromatin states across 127 cell types6,7 for the lead variant rs57989773 and its proxies 108 

(r2>0.8, determined using HaploReg v4.1 (Supplemental Methods)). Enhancer marks in several 109 

tissues, including embryonic stem cells, mesenchymal stem cells and endothelial cells, indicated 110 

that the ED-associated interval lies within a regulatory locus (Figure 2A, Table S6).  111 

 112 

To predict putative targets and causal transcripts, we assessed domains of long-range three-113 

dimensional chromatin interactions surrounding the ED-associated interval (Figure 2B). 114 

Chromosome conformation capture (Hi-C) in human embryonic stem cells8 showed that MCHR2 115 

and SIM1 were in the same topologically associated domain (TAD) as the ED-associated variants, 116 

with high contact probabilities (referring to the relative number of times that reads in two 40-kb 117 

bins were sequenced together) between the ED-associated interval and SIM1 (Figure 2B; Figure 118 

S2). 119 

 120 

This observation was further confirmed in endothelial precursor cells,9 where Capture Hi-C 121 

revealed strong connections between the MCHR2-SIM1 intergenic region and the SIM1 promoter 122 

(Figure 2C), pointing towards SIM1 as a likely causal gene at this locus.  123 

 124 

We next used the VISTA enhancer browser10 to examine in vivo expression data for non-coding 125 

elements within the MCHR2-SIM1 locus. A regulatory human element (hs576), located 30-kb 126 

downstream of the ED-associated interval, seems to drive in vivo enhancer activity specifically in 127 

the midbrain (mesencephalon) and cranial nerve in mouse embryos (Figure 2D). This long-range 128 

enhancer close to ED-associated variants recapitulated aspects of SIM1 expression (Figure 2D), 129 

further suggesting that the ED-associated interval belongs to the regulatory landscape of SIM1. 130 

Taken together these data suggest that the MCHR2-SIM1 intergenic region harbors a neuronal 131 

enhancer and that SIM1 is functionally connected to the ED-associated region. 132 
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 133 

Single-minded homolog 1 (SIM1) encodes a transcription factor that is highly expressed in 134 

hypothalamic neurons.11 Rare variants in SIM1 have been linked to a phenotype of severe obesity 135 

and autonomic dysfunction,12,13 including lower blood pressure. A summary of the variant-136 

phenotype associations at the 6q16 locus in human and rodent models is shown in Table S7. 137 

Post-hoc analysis of association of rs57989773 with autonomic traits showed nominal association 138 

with syncope, orthostatic hypotension and urinary incontinence (Figure S3). The effects on blood 139 

pressure and adiposity seen in patients with rare coding variants in SIM1 are recapitulated in 140 

individuals harbouring the common ED-risk variants at the 6q16.3 locus (Figure 1D), suggesting 141 

that SIM1 is the causal gene at the ED-risk locus. Sim1-expressing neurons also play an important 142 

role in the central regulation of male sexual behavior as mice that lack the melanocortin receptor 143 

4 (encoded by MC4R) specifically in Sim1-expressing neurons show impaired sexual 144 

performance on mounting, intromission, and ejaculation.14 Thus, hypothalamic dysregulation of 145 

SIM1 could present a potential mechanism for the effect of the MCHR2-SIM1 locus on ED. 146 

 147 

An alternative functional mechanism may be explained by proximity of the lead variant 148 

(rs57989773) to an arginase 2 processed pseudogene (LOC100129854), a long non-coding RNA 149 

(Figure 2A). RPISeq15 predicts that the pseudogene transcript would interact with the ARG2 150 

protein, with probabilities of 0.70-0.77. Arginine 2 is involved in nitric oxide production and has a 151 

previously established role in erectile dysfunction.16,17 GTEx expression data18 demonstrated 152 

highest mean expression in adipose tissue, with detectable levels in testis, fibroblasts and brain. 153 

Expression was relatively low in all tissues however, and there was no evidence that any SNPs 154 

associated with the top ED signal were eQTLs for the ARG2 pseudogene or ARG2 itself. 155 

 156 

As a complementary approach, we also used the Data-driven Expression Prioritized Integration 157 

for Complex Traits and GWAS Analysis of Regulatory or Functional Information Enrichment with 158 
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LD correction (DEPICT and GARFIELD respectively; Supplemental Methods)19,20 tools to identify 159 

gene-set, tissue-type and functional enrichments. In DEPICT, the top two prioritized gene-sets 160 

were ‘regulation of cellular component size’ and ‘regulation of protein polymerization’, whereas 161 

the top two associated tissue/cell types were ‘cartilage’ and ‘mesenchymal stem cells’. None of 162 

the DEPICT enrichments reached an FDR threshold of 5% (Tables S8-10). GARFIELD analyses 163 

also did not yield any statistically significant enrichments, therefore limiting the utility of these 164 

approaches in this case. 165 

 166 

ED is recognized to be observationally associated with various cardiometabolic traits and lifestyle 167 

factors21,22, including type 2 diabetes mellitus (T2D), hypertension, smoking, and others. To 168 

further evaluate these associations, we first conducted LD score regression23,24 to evaluate the 169 

genetic correlation of ED with a range of traits. LD score regression identified ED to share the 170 

greatest genetic correlation with T2D (rG = 0.40, nominal p-value = 0.0008; FDR-adjusted p-value 171 

= 0.0768; Table S11). Next we performed Mendelian randomization25 (MR) analyses to evaluate 172 

the potential causal role of 9 pre-defined cardiometabolic traits on ED risk (selected based on 173 

previous observational evidence linking such traits to ED risk21, including T2D, insulin resistance, 174 

systolic blood pressure, LDL cholesterol, smoking heaviness, alcohol consumption, body mass 175 

index, coronary heart disease and educational attainment; Tables S12-S15). MR identified 176 

genetic risk to T2D to be causally implicated in ED: each 1-log higher genetic risk of T2D, was 177 

found to increase risk of ED by 1.11 (95% CI 1.05-1.17, p = 3.5×10-4, which met our a priori 178 

Bonferroni-corrected significance threshold of 0.0056 (0.05/9)), with insulin resistance likely 179 

representing a mediating pathway26 (OR 1.36 per 1 standard deviation genetically elevated insulin 180 

resistance, 95% CI 1.01-1.84, p = 0.042). Sensitivity analyses were conducted to evaluate the 181 

robustness of the T2D-ED estimate (Figure S5, Table S13), including weighted median analyses 182 

(OR 1.12, 95% CI 1.02-1.23, p = 0.0230), leave-one-out analysis for all variants (which indicated 183 

that no single SNP in the instrument unduly influenced the overall value derived from the summary 184 
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IVW estimate27) and a funnel plot (showing a symmetrical distribution of single-SNP IV estimates 185 

around the summary IVW causal estimate). The MR-Egger regression (intercept p = 0.35) 186 

provided no evidence to support the presence of directional pleiotropy as a potential source of 187 

confounding28. 188 

 189 

A potential causal effect of systolic blood pressure (SBP) was also identified, with higher SBP 190 

being linked to higher risk of ED (MR-Egger OR 2.34, 95% CI 1.26-4.36, p = 0.007, with MR-191 

Egger intercept (p=0.007) suggesting presence of directional pleiotropy). LDL cholesterol showed 192 

minimal evidence of a causal effect (OR 1.07, 95% CI 0.98-1.17, p = 0.113), and there was no 193 

evidence to support a role for smoking heaviness or alcohol consumption. Genetic risk of coronary 194 

heart disease (CHD) showed weak effects on risk of ED, suggesting that pathways leading to 195 

CHD may be implicated in ED (OR 1.08, 95% CI 1.00-1.17, p = 0.061). Further, we identified no 196 

causal effects of BMI (using a polygenic score or a single SNP in FTO) or education on risk of 197 

ED. 198 

 199 

Genetic variants may inform drug target validation by serving as a proxy for drug target 200 

modulation29. ED is most commonly treated using phosphodiesterase 5 (PDE5)-inhibitors such 201 

as sildenafil. To identify potential phenotypic effects of PDE5 inhibition (e.g. to predict side-effects 202 

or opportunities for repurposing), we looked for variants in or around the PDE5A gene, encoding 203 

PDE5, which showed association with the ED phenotype. Of all 4,670 variants within a 1Mb 204 

window of PDE5A (chromosome 4:119,915,550 - 121,050,146 as per GRCh37/hg19), the variant 205 

with the strongest association was rs115571325, 26Kb upstream from PDE5A (ORMeta 1.25, 206 

nominal p-value = 8.46 × 10-4; Bonferroni-corrected threshold (0.05/4,670) = 1.07 × 10-5; Figure 207 

S6). We did not evaluate any further associations for this variant, given the lack of statistically 208 

significant association with the ED phenotype after correcting for the multiple testing burden.   209 

 210 
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We have gained insight into ED, a common condition with substantial morbidity, by conducting a 211 

large-scale GWAS and performing several follow-up analyses. By aggregating data from 3 212 

cohorts, including 6,175 ED cases of European ancestry, we identified a locus associated with 213 

ED, with several lines of evidence suggesting SIM1, highly expressed in the hypothalamus, to be 214 

the causal gene at this locus. Our findings provide human genetic evidence in support of the key 215 

role of the hypothalamus in regulating male sexual function.14,30–33 216 

 217 

LD score regression and Mendelian randomization implicated T2D as a causal risk factor for ED 218 

with suggestive evidence for insulin resistance and systolic blood pressure, corroborating well-219 

recognized observational associations with these cardiometabolic traits.22 Further research would 220 

be needed to explore the extent to which drugs used in the treatment of T2D might be repurposed 221 

for the treatment of ED. A non-causal effect for BMI on ED suggests that the lead SNP 222 

(rs57989773) exhibits pleiotropy, driving ED risk independent of its effect on adiposity.  223 

 224 

In conclusion, in a large-scale GWAS of more than 6,000 ED cases, the largest to date for this 225 

phenotype, we have identified novel biology and elucidated causal effects of various risk factors. 226 

Further large-scale GWAS of ED are needed in order to provide additional clarity on its genetic 227 

architecture, etiology and shed light on potential new therapies.  228 
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Figure Legends 418 

Figure 1. 6q16.3 (LEAD VARIANT rs57989773) IS AN ED-ASSOCIATED LOCUS AND EXHIBITS 419 

PLEIOTROPIC PHENOTYPIC EFFECTS. 420 

(A) Genome-wide meta-analysis revealed a single genome-wide significant locus for ED at 421 

6q16.3. 422 

(B) Six genome-wide significant variants at 6q16.3 are in high LD. 423 

(C) The association of rs57989773 with ED shows a consistent direction of effect across the 424 

three cohorts and across clinically- and therapy-defined ED in UKBB.  425 

(D) PheWAS reveals sex-specific associations of rs57989773 with waist-hip ratio and blood 426 

pressure. A PheWAS of 105 predefined traits using the lead ED SNP rs57989773 found associations 427 

with 12 phenotypes at p-value < 4.8 × 10-4 (surpassing the Bonferroni-corrected threshold of 0.05/105; 428 

Table S4). Due to the nature of the ED phenotype and previously reported sex-specific effects in the 429 

MCHR2-SIM1 locus, sex-specific analyses were performed in significant traits. Diastolic blood 430 

pressure (dbp) and systolic blood pressure (sbp) are included here (despite not meeting the 431 

Bonferroni-corrected threshold in the original analysis), due to previous reports of effects on blood-432 

pressure in patients with rare, coding variants in SIM1 Sexual heterogeneity was found to be significant 433 

(surpassing a Bonferroni-corrected threshold of 0.05/7 for the number of traits where sex-specific 434 

analyses were conducted) for diastolic blood pressure (p-valueheterogeneity = 6.52 × 10-3), systolic blood 435 

pressure (p-valueheterogeneity = 3.73 × 10-3), waist to hip ratio (whr; p-valueheterogeneity = 2.39 × 10-6) and 436 

waist to hip ratio adjusted for BMI (p-valueheterogeneity = 1.77 × 10-5). This plot only shows sex-specific 437 

estimates for traits showing significant sexual heterogeneity. Continuous traits were standardised prior 438 

to analysis to facilitate comparison.  439 
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Figure 2. FUNCTIONAL ANALYSIS OF 6q16.3 IMPLICATES SIM1 IN ED PATHOGENESIS 440 

(A) ED-associated signal overlaps regulatory annotations in embryonic stem cells. Chromatin 441 

state annotations for the ED-associated region across 127 reference epigenomes (rows) for cell and 442 

tissue types profiled by the Roadmap Epigenomics Project6,7. Grey vertical lines indicate the position 443 

of the ED-associated variant (rs57989773) and its proxies that are in LD r2>0.8 determined using 444 

HaploReg v4.134 (rs17789218, rs9496567, rs78677597, rs9496614, and rs17185536). The lead 445 

variant is in proximity to ‘RP3-344J20.1’, an arginase 2 processed pseudogene (LOC100129854). 446 

(B) The ED-associated interval is functionally connected to SIM1 in embryonic stem cells. The 447 

3D Genome Browser9 was used to visualize chromosome conformation capture (Hi‐C) interactions 448 

contact probabilities in human embryonic stem cells8, revealing high contact probability between the 449 

ED-associated region (highlighted in yellow) and SIM1 at 40‐kb resolution. The heat map values on a 450 

color scale correspond to the number of times that reads in two 40-kb bins were sequences together 451 

(blue - stronger interaction, white - little or no interaction). 452 

(C) The MCHR2-SIM1 intergenic region forms functional connections to the SIM1 promoter in 453 

endothelial progenitors. The 3D Genome Browser9 was used to visualize Capture Hi-C in endothelial 454 

precursors35. Light blue vertical line indicates position of the ED-associated interval. 455 

(D) The MCHR2-SIM1 intergenic region harbors a neuronal enhancer. Upper panel: Position of 456 

human element hs576 (blue vertical line) and the ED-associated variant rs57989773 and its 5 proxies 457 

in r2>0.8 (rs17789218, rs9496567, rs78677597, rs9496614, rs17185536). hs576 is flanked by genes 458 

MCHR2-AS1 and SIM1. This panel was generated using the UCSC genome browser36. Lower panel: 459 

Expression pattern of human element hs576 in a mouse embryo at e11.5. Expression pattern shows 460 

that hs576 drives in vivo enhancer activity specifically in mesencephalon (midbrain) and cranial nerve. 461 

Expression data were derived from the VISTA enhancer browser10.  462 
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