
An evolutionary modelling approach to predicting stress-strain behaviour 

of saturated granular soils 

Abstract 

Purpose - To develop a unified framework for modelling triaxial deviator stress - axial strain 

and volumetric strain – axial strain behaviour of granular soils with the ability to predict the 

entire stress paths, incrementally, point by point, in  deviator stress versus axial strain ( aq : ), 

and volumetric strain versus axial strain ( av  : ) spaces using an evolutionary-based technique 

based on a comprehensive set of data directly measured from triaxial tests without pre-

processing. 177 triaxial test results acquired from literature were used to develop and validate 

the models. Models aimed not only to be capable of capturing and generalising the complicated 

behaviour of soils but also to explicitly remain consistent with expert knowledge available for 

such behaviour. 

Methodology - Evolutionary polynomial regression was used to develop models to predict 

stress-axial strain and volumetric strain – axial strain behaviour of granular soils. EPR 

integrates numerical and symbolic regression to perform evolutionary polynomial regression. 

The strategy uses polynomial structures to take advantage of favourable mathematical 

properties. EPR is a two-stage technique for constructing symbolic models. It initially 

implements evolutionary search for exponents of polynomial expressions using a genetic 

algorithm (GA) engine to find the best form of function structure, secondly it performs a least 

squares regression to find adjustable parameters, for each combination of inputs (terms in the 

polynomial structure). 

Findings - EPR-based models were capable of generalizing the training to predict the 

behaviour of granular soils under conditions that have not been previously seen by EPR in the 

training stage. It was shown that the proposed EPR models outperformed ANN and provided 



closer predictions to the experimental data cases. The entire stress paths for the shearing 

behaviour of granular soils using developed model predictions were created with very good 

accuracy despite error accumulation. Parametric study results revealed the consistency of 

developed model predictions, considering roles of various contributing parameters, with 

physical and engineering understandings of the shearing behaviour of granular soils. 

Originality/value - In this paper, an evolutionary-based data-mining method was implemented 

to develop a novel unified framework to model the complicated stress-strain behaviour of 

saturated granular soils. The proposed methodology overcomes the drawbacks of artificial 

neural network-based models with black box nature by developing accurate, explicit, structured 

and user-friendly polynomial models, and enabling the expert user to obtain a clear 

understanding of the system. 

 

 

Introduction 

The shear strength of cohesionless soil such as sand and gravel under varying drainage 

conditions has been a topic of significant interest for the last four decades. Many research works 

have contributed significantly to understanding of the important factors that control the shear 

strength behaviour of sand and gravel in drained conditions, including large number of 

experiments e.g. triaxial tests conducted with results published in the literature. There has been 

a lot of interest in the research community to model the shear stress and volume change 

behaviour of cohesionless soil and because of its well defined conditions of stress and strain 

on the cylindrical specimens, many of the models developed to date are predominantly based 

on triaxial compression test data. The majority of the past research effort has been devoted to 

modelling of soil behaviour using the elasticity/plasticity based approach with some success 

(Rowe and Barden 1964). Ellis et al (1995) suggested a feed-back neural network model for 



representing shearing behaviour of sand in undrained conditions. Following Ellis et al (1995) 

work, Penumadu and Zhao (1999) also developed a neural network based models for triaxial 

compression behaviour of sand and gravel. The results presented in their paper, representing 

the deviator stress and volume change behaviour of varying types of sand and gravel for drained 

conditions, suggested some improvements compared to Ellis et all (1995) work (Penumadu and 

Zhao 1999): (i) developing a suitable strain increment value in the feed-back process; (ii) 

avoiding errors associated with over-training during the training phase; (iii) implementing a 

procedure for obtaining optimal size of the hidden layer; and (iv) modelling triaxial 

compression behaviour of both sand and gravel under drained conditions. In this research work 

the evolutionary polynomial regression (EPR) is implemented to develop structured and 

transparent models in the form of polynomial equations to represent the shear strength and 

volume change behaviour of saturated granular geomaterials. EPR models have the capability 

of capturing and representing the behaviour of materials in easily understandable form for the 

user. A clear insight into the role of different contributing parameters is also given to the users 

by the developed models helping them better understand the physics of complicated behaviour 

of materials and systems. 

A comprehensive set of data from literature was collected and used to develop and validate the 

EPR models for stress-strain and volume change behaviour of cohesionless soils.  

Data preparation, model development procedure and also the merits and advantages of the 

proposed technique will be discussed in detail in following sections in this paper. Comparisons 

are also made between EPR model predictions and the experimental data as well as results from 

artificial neural network model predictions presented by Penumadu and Zhao (1999). 

Sensitivity analysis outcomes and the relevant discussions are also presented in next coming 

parts of paper. 

 



Evolutionary Polynomial Regression 

Evolutionary polynomial regression EPR integrates numerical and symbolic regression to 

perform evolutionary polynomial regression. The strategy uses polynomial structures to take 

advantage of their favourable mathematical properties. The key idea behind the EPR is to use 

evolutionary search for exponents of polynomial expressions by means of a genetic algorithm 

(GA) engine. This allows (i) easy computational implementation of the algorithm, (ii) efficient 

search for an explicit expression, and (iii) improved control of the complexity of the expression 

generated (Giustolisi and Savic 2006). EPR is a data-driven method based on evolutionary 

computing, aimed to search for polynomial structures representing a system. A physical 

system, having an output y, dependent on a set of inputs X and parameters θ, can be 

mathematically formulated as: 

  
  (1) 

where F is a function in an m-dimensional space and m is the number of inputs. To avoid the 

problem of mathematical expressions growing rapidly in length with time, in EPR the 

evolutionary procedure is conducted in the way that it searches for the exponents of a 

polynomial function with a fixed maximum number of terms. During one execution it returns 

a number of expressions with increasing numbers of terms up to a limit set by the user, to allow 

the optimum number of terms to be selected. The general form of expression used in EPR can 

be presented as (Giustolisi and Savic 2006): 

   

 

(2) 

where y is the estimated vector of output of the process; aj is a constant; F is a function 

constructed by the process; X is the matrix of input variables; f is a function defined by the user 

(it may be natural logarithmic, exponential, tangent hyperbolic, etc.); and m is the number of 
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terms of the target expression. The first step in identification of the model structure is to transfer 

Equation 2 into the following vector form:   

 
 

(3) 

where YN×1(θ,Z) is the least squares estimate vector of the N target values; θd ×1 is the vector of 

d=m+1 parameters aj and a0 (θ
T is the transposed vector); and ZN×d is a matrix formed by I 

(unitary vector) for bias a0, and m vectors of variables Zj. For a fixed j, the variables Zj are a 

product of the independent predictor vectors of inputs, X = <X1 X2 … Xk> (where “k” is the 

number of independent predictor variables – inputs). Zj is a transformed variable which is a 

function of the independent predictor variables, inputs, X1 X2 … Xk, evaluated at the jth data 

point (Giustolisi and Savic 2006). 

In general, EPR is a two-stage technique for constructing symbolic models. Initially, using 

standard genetic algorithm (GA), it searches for the best form of the function structure, i.e. a 

combination of vectors of independent inputs, Xs=1:k (where “k” is the number of independent 

predictor variables – inputs), and secondly it performs a least squares regression to find the 

adjustable parameters, θ, for each combination of inputs. In this way a global search algorithm 

is implemented for both the best set of input combinations and related exponents 

simultaneously, according to the user-defined cost function (Giustolisi and Savic 2006). The 

adjustable parameters, aj, are evaluated by means of the linear least squares (LS) method based 

on minimization of the sum of squared errors (SSE) as the cost function. The SSE function 

which is used to guide the search process towards the best fit model is as follows: 

 

 

(4) 

where ya and yp  are the target experimental and the model prediction values respectively. The 

global search for the best form of the EPR equation is performed by means of a standard GA 
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over the values in the user defined vector of exponents. The GA operates based on Darwinian 

evolution which begins with random creation of an initial population of solutions. Each 

parameter set in the population represents the individual’s chromosomes. Each individual is 

assigned a fitness based on how well it performs in its environment. Through crossover and 

mutation operations, with the probabilities Pc and Pm respectively, the next generation is 

created. Fit individuals are selected for mating, whereas weak individuals die off. The mated 

parents create a child (offspring) with a chromosome set which is a mix of parents’ 

chromosomes. In EPR integer GA coding with single point crossover is used to determine the 

location of the candidate exponents.  

The EPR process stops when the termination criterion, which can be either the maximum 

number of generations, the maximum number of terms in the target mathematical expression 

or a particular allowable error, is satisfied. A typical flow diagram for the EPR procedure is 

illustrated in Figure 1. 

Database and the parameters involved in development of the models 

Previous experimental research has shown that the important factors that govern the behaviour 

of cohesionless soils (sand and gravel) are their mineralogy, particle shape, particle size and its 

distribution, void ratio and also the effective confining stress level (Penumadu and Zhao 1999). 

The experimental database from a large number of contributions from literature (Table 1) was 

used to develop the models in this research. The database included the effects of the above 

mentioned factors systematically in a comprehensive manner using a large number of drained 

triaxial compression tests. 

The objective was to develop EPR-based models to represent the deviator stress-axial strain, 

and volumetric strain-axial strain relationships for granular soils with varying mineralogy, 

particle shape, uniformity coefficient, coefficient of curvature, effective particle size, void 

ratio, and effective confining pressure. 



Data from a total of 177 triaxial compression tests were obtained from literature. Using the 

approach proposed by Hardin (1985), the mineralogy and grain shape were quantified in the 

database using crushing hardness, and average particle shape factor. The crushing hardness, h 

(a mineralogy factor) is approximately equal to the scratch hardness as defined by Moh's Scale. 

It takes a value of 7, 6, and 3 for quartz, feldspar, and calcite respectively. The shape factor 

(ns) defines the degree of angularity, and is equal to: 25 for angular, 20 for sub-angular, 17 for 

sub-round, and 15 for round shape (Penumadu and Zhao 1999).  

Data preparation 

From among 177 triaxial test results, 138 (80%) was used for model construction and the 

remaining 39 (20%), kept unseen to EPR during the model development procedure, was 

implemented to validate the developed models. It was checked to make sure that all parameter 

values in the testing data sets were within the range of data chosen to be used for training EPR 

and developing the models to avoid extrapolation. 

To select the most robust combination of the training and testing data, a statistical analysis was 

performed on the input and output parameter values (Table 2) of several randomly selected 

training and validation data combinations. The aim of the analysis was to ensure that the 

statistical properties of the data in each of the subsets (training or testing) were as close to the 

other as possible and thus represented the same statistical population. The mean and standard 

deviation values were calculated for every single contributing parameter and for the training 

and testing datasets for every randomly considered combination and the combination for which 

these statistical values were the closest in the training and testing data sets was chosen to be 

used in training and testing stages in the EPR model development process (Hussain M. S. 2015, 

Ahangar Asr and Javadi 2016). 

 

 



EPR Procedure 

Before starting the evolutionary procedure, a number of constraints can be implemented to 

control the structure of the models to be constructed, in terms of type of functions used, number 

of terms, range of exponents, number of generations etc. It can be seen that there is a potential 

to achieve different models for a particular problem which enables the user to gain additional 

information (Javadi and Rezania 2009). Applying the EPR procedure, the evolutionary process 

starts from a constant mean of output values. By increasing the number of evolutions it 

gradually picks up the different participating parameters in order to form equations 

representing the relationship between contributing and output parameters. Each model is 

trained using the training data and tested using the testing data. The level of accuracy at each 

stage is evaluated based on the coefficient of determination (COD) i.e. the fitness function: 
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(5) 

where 
aY  is the actual output value; 

pY  is the EPR predicted value and N is the number of data 

points on which the COD is computed. If the model fitness is not acceptable or the other 

termination criteria (in terms of maximum number of generations and maximum number of 

terms) are not satisfied, the current model should go through another evolution in order to 

obtain a new model. 

Developing the EPR models 

A typical scheme to train most of the neural network based material models for soils includes 

an input set providing the network with information relating to the current state units (e.g., 

current stresses and strains) and then a forward pass through the network yields the prediction 

of the next expected state of stress or strain relevant to an input strain or stress increment ( 

(Ghaboussi, et al. 1998); (Penumadu and Zhao 1999)). Due to the incremental nature of soil 



stress–strain modelling in practical applications, the same scheme was also used in this research 

to model the behaviour of granular materials.  

The EPR models had 11 input parameters (Table 2).  D50, Cu, Cc, h, ns, e and σ3 represented the 

initial conditions of the soil specimens, but the other three parameters, namely axial strain, 

volumetric strain, and deviator stress were updated incrementally during the training and 

testing based on the outputs from the previous increment of the axial strain. The output 

parameters were the deviator stress and the volumetric strain corresponding to the end of the 

incremental step and were calculated using the two EPR models.   

The training of the EPR resulted in development of more than one equation for deviator stress. 

From among the EPR outcome equations, 2 did not include the effect of all contributing 

parameters meaning that that the introduced parameters to EPR were not appearing in the 

resulted models. From the remaining equations with all the desired parameters involved, the 

most appropriate and efficient one based on the: (i) model performance (fitness); (ii) 

complexity; and also (iii) the sensitivity analysis results was chosen as the final model. A 

similar procedure was also followed to create and choose the best equation (model) for the 

volumetric behaviour. Equations 6 and 7 represent the EPR models for deviator stress and 

volume strain respectively. 
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Figures 2 to 4 show deviator stress-axial strain and volumetric strain-axial strain curves 

predicted by the EPR models in Equations 6 and 7 against the experimental results for data sets 

that were used to train the models. A comparison was also made between the predictions of the 

ANN models suggested by Penumadu and Zhao (1999) and EPR results for the training data 

cases. Typical results are presented in Figure 5. 

After training, the performance of the trained EPR models was verified using 39 sets of 

validation data which had not been introduced to EPR during the training phase. This was done 

to evaluate the generalisation capabilities of the developed models to unseen cases of data. 

Figures 6 to 8 show predictions made by the developed EPR models against the experimental 

data which were not previously seen by EPR and were only used to validate the models. The 

predicted data sets shown in these figures were obtained from the developed EPR models using 

all input parameters directly acquired from experimental test results which were kept unseen 

to EPR during the model development process implementing non-incremental approach. A 

comparison was also made, in these figures, with the predictions of the ANN models suggested 

by Penumadu and Zhao (1999).  

Comparison of the results and the high COD values for the EPR models (Table 3) indicate the 

excellent performance of these models in capturing the underlying relationships between the 

contributing parameters and the deviator stress and volumetric strain response of granular soils 

and also in generalizing the training to predict the shearing behaviour of these types of soils 

under unseen conditions. The results also show that EPR over performs ANN and its results 

are a closer match to the actual experimental data. 



Predicting entire stress paths using the EPR models 

The EPR models (Equations 6 and 7) were used to predict the entire stress paths, incrementally, 

point by point, in aq :
 
and av  :  spaces.  Results from four different sets of (testing) data 

were used to evaluate the ability of the incremental EPR models to predict the complete 

behaviour of granular soils during the entire stress paths. The values of average grain size, 

coefficients of uniformity and curvature, hardness, shape factor, void ratio and the confining 

pressure represented the initial conditions of the soil. Other contributing parameters including 

axial strain and the current values of deviator stress and volumetric strain were updated in each 

incremental step, considering the values from the previous increment and the EPR models 

outputs in response to an axial strain increment. Figure 9 illustrates the procedure followed for 

updating of the input parameters and building the entire stress path for the shearing stage of a 

triaxial test. 

At the start of the shearing stage in a conventional triaxial experiment, the values of all 

parameters were known. Then, for a prescribed increment of axial strain ( a ) the values of

1iq , 1, iv  were calculated from the EPR models (Equations 6 and 7) respectively). For the next 

increment, the values of ia, iq,  and iv,    were updated as: 
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The incremental procedure was continued until all the points on the curves were predicted and 

the curves were established. Figures 10 to 13 show the comparisons between the four complete 

curves predicted using the EPR models following the above incremental procedure and the 

actual experimental results for 4 data sets. The predicted data sets shown in these figures were 

obtained from the developed EPR models by using the predictions at increment (j) as input 

parameters to determine the soil response at increment (j+1). The data for the tests used to 



demonstrate the capabilities of EPR models to reproduce the entire stress paths had not been 

introduced to the EPR during the model development process.  

The results revealed that the predictions were in a very good agreement with the experimental 

results. Despite the fact that the entire curves had been predicted point by point and the errors 

of prediction of the individual points were accumulated in the process, the EPR models were 

robustly able to predict the complete stress paths. This shows that EPR framework is very 

effective in modelling the shearing behaviour of granular soils and is able to make reliable and 

highly accurate predictions. 

Sensitivity analysis 

A parametric study was carried out on random validation sets of data to evaluate the response 

of the models to changes in input parameters. This was done through a basic approach to 

sensitivity analysis by fixing all but one input variable to their mean values and varying the 

remaining one within the range of its maximum and minimum values available in data. Results 

of the sensitivity analysis are shown in Figures 14 to 16. As expected increasing the average 

particle size (which indicates that the soil grains are getting coarser) causes the shear strength 

of the soil to increase (Figure 14a).  

Considering the fact that, in case of granular soils, the best way to compact a soil sample is by 

vibration rather than compression because of the friction between the coarse grains which 

increases under compression and makes it more difficult for the soil grains to move and fill up 

the voids, Figure 14b correctly shows the negligible effect of increase in particle size on 

volumetric strain under compression in granular soils. 

Increasing the shape factor parameter shows that angularity of the soil increases resulting in 

higher friction and subsequently higher shear strength; however, as the soil grains gets more 

angular the possibility of crushing of the angular grains under stress also increases. The 

available data suggest that the breakdown stress (𝜎𝐵), beyond which the particle breakdown 



occurs, in some types of sand could be as low as 1 𝑘𝑁 𝑐𝑚2⁄  (Vesic and Clough 1968). Deviator 

stress levels at failure in most test results used in this study were well above this level exceeding 

70000 kPa in cases, which can be considered as evidence of particle breakage occurring. Figure 

15 shows that, due to the opposing effects of increase in friction and crushing of angular soil 

grains under compression, the overall effect of increasing the shape factor, on shear strength 

and volumetric strain of granular soils are also negligible. 

Increasing void ratio causes the shear strength to drop and also the volumetric strain to increase 

under shearing. These effects are also correctly predicted by the proposed models (Figure 16). 

 

Discussion and conclusions 

Pattern recognition techniques like artificial neural networks have been introduced as an 

alternative method of modelling the behaviour of complex systems in recent decades. These 

methods have the advantage that they do not require any simplifying assumptions in developing 

the models representing the behaviour of systems and can capture the behaviour materials 

straight from field measurements and/or experimental results; however, due to their black box 

nature, these methods are unable to provide the users with an easy to understand explicit model 

providing visible deep insight into the physics of the systems. In this research work the 

evolutionary polynomial regression (EPR) was introduced as an alternative technique with the 

capability of overcoming some of the issues related to other previously used artificial 

intelligence-based modelling techniques aiming at modelling the complex shearing behaviour 

of cohesionless soils.  

In the EPR approach, no pre-processing of the data is required and there is no need for 

normalization or scaling of the data. An interesting feature of EPR is in the possibility of getting 

more than one model for complex phenomena. The best model is chosen on the basis of its 

performances on a testing set which is kept unseen to EPR during the model development stage.  



As a result of this study, two models were developed based on EPR to describe the deviator 

stress - axial strain and volumetric strain - axial strain behaviour of granular soils. It was shown 

that EPR has been able to capture the underlying relationships between various involved 

parameters directly from experimental triaxial data and developed models with the ability of 

predicting the shearing behaviour of granular soils to high accuracy levels. The EPR models 

were tested using data that were not used in the training phase of the EPR model development 

process; in this way, an unbiased performance indicator was obtained on the real prediction 

capability of the models. The results revealed that the EPR-based models were capable of 

generalizing the training to predict the behaviour of granular soils under conditions that have 

not been previously seen by EPR in the training stage. Through the comparison of the results 

it was also shown that the proposed EPR models outperformed ANN and provided closer 

predictions to the experimental data cases. An incremental approach was also taken and was 

successfully implemented to develop the entire stress paths for the shearing behaviour of 

granular soils using developed models with very good accuracy despite error accumulation. . 

A parametric study was also conducted to evaluate the effect of the contributing parameters on 

the predictions of the proposed EPR models. The results revealed the consistency of the 

suggested model predictions, considering the roles of various contributing parameters, with 

physical and engineering understandings of the shearing behaviour of granular soils.  

However, another interesting feature of EPR is that as more data becomes available, EPR can 

be retrained with the latest most comprehensive set of data to create more accurate and efficient 

models. The fact that EPR is capable of learning the material behaviour directly from raw 

experimental data makes the EPR-based Constitutive Modelling (EPRCM) the shortest route 

from the experimental research to the numerical modelling. A trained EPRCM can be 

incorporated into a finite element code just like a conventional constitutive model. This 

implementation can be done by using either incremental or total stress–strain strategies. An 



EPR-based finite element method can be used for solving boundary value problems in the same 

way as a conventional finite element method. Examples of implementation of EPR models in 

finite element analysis are already completed and published by the authors ( (Javadi, Mehravar, 

et al. 2009), (Javadi, Faramarzi and Ahangar-Asr 2012)). 
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Figure 1: Flow diagram for EPR procedure 
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Figure 2:  (a) Deviator stress-axial strain and (b) volumetric strain-axial strain curves predicted by the 

EPR models compared to experimental data (𝜎3 = 2932 𝑘𝑃𝑎) – training data case (Experimental data 

from Lee and Seed (1967)) 
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Figure 3: (a) Deviator stress-axial strain and (b) volumetric strain-axial strain curves predicted by the 

EPR models compared to experimental data (𝜎3 = 11767 𝑘𝑃𝑎) – training data case (Experimental 

data from Lee and Seed (1967)) 
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Figure 4: (a) Deviator stress-axial strain and (b) volumetric strain-axial strain curves predicted by the 

EPR models compared to experimental data (𝜎3 = 1961 𝑘𝑃𝑎) – training data case (Experimental data 

from Lee and Seed (1967)) 
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Figure 5: (a) Deviator stress-axial strain and (b) volumetric strain-axial strain curves predicted by the 

EPR models compared to experimental data and ANN model predictions (𝜎3 = 275 𝑘𝑃𝑎) – training 

data case (Experimental data from Wu (1957)) 
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Figure 6:  (a) Deviator stress-axial strain and (b) volumetric strain-axial strain curves predicted by the 

EPR models compared to experimental data and ANN model predictions (𝜎3 = 11767 𝑘𝑃𝑎) – testing 

data case (Experimental data from Lee and Seed (1967)) 
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Figure 7: (a) Deviator stress-axial strain and (b) volumetric strain-axial strain curves predicted by the 

EPR models compared to experimental data and ANN model predictions (𝜎3 = 19613 𝑘𝑃𝑎) – testing 

data case (Experimental data from Miura and Yamanouchi (1975)) 
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Figure 8: (a) Deviator stress-axial strain and (b) volumetric strain-axial strain curves predicted by the 

EPR models compared to experimental data and ANN model predictions (𝜎3 = 5515 𝑘𝑃𝑎) – testing 

data case (Experimental data from Lo and Roy (1973)) 
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Figure 9: Incremental procedure for predicting the entire stress path 
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Figure 10: (a) Deviator stress-axial strain and (b) volumetric strain-axial strain curves predicted by 

the EPR models compared to experimental data (𝜎3 = 413 𝑘𝑃𝑎) – testing data case, entire stress path 

prediction (Experimental data from Leslie (1975)) 
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Figure 11: (a) Deviator stress-axial strain and (b) volumetric strain-axial strain curves predicted by 

the EPR models compared to experimental data (𝜎3 = 19613 𝑘𝑃𝑎) – testing data case, entire stress 

path prediction (Experimental data from Miura and Yamanouchi (1975)) 

 

 

 

 

 

 

 

 

 

 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 10 20 30 40 50

D
e

vi
at

o
r 

st
re

ss
 -

q
i+

1
 (

kP
a)

Axial strain (%)

Experiment

EPR

-16

-14

-12

-10

-8

-6

-4

-2

0

0 10 20 30 40 50

V
o

lu
m

e
tr

ic
 s

tr
ai

n
 (

Ev
i+

1
)

Axial strain (%)

Experiment

EPR



 

 

 
                                                                        (a) 

 

 
                                                                        (b) 

 
Figure 12: (a) Deviator stress-axial strain and (b) volumetric strain-axial strain curves predicted by 

the EPR models compared to experimental data (𝜎3 = 8276 𝑘𝑃𝑎) – testing data case, entire stress 

path prediction (Experimental data from Ramamurthy, Kanitar and Prakash (1974)) 
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Figure 13: (a) Deviator stress-axial strain and (b) volumetric strain-axial strain curves predicted by 

the EPR models compared to experimental data (𝜎3 = 2068 𝑘𝑃𝑎) – testing data case, entire stress 

path prediction (Experimental data from Leslie (1975)) 
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Figure 14: Sensitivity analysis results considering the effect of average grain size D50 on EPR model 

predictions for (a) deviator stress and (b) volumetric strain. 
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Figure 15: Sensitivity analysis results considering the effect of shape factor (ns) parameter on EPR 

model predictions for (a) deviator stress and (b) volumetric strain. 

 

 

 

 

 

 

 

 

 

 

9200

9250

9300

9350

9400

9450

9500

9550

9600

9650

9700

10 15 20 25

D
ev

ia
to

r 
st

re
ss

 -
q

i+
1

(k
P

a)

Shape factor (ns)

-5.700

-5.680

-5.660

-5.640

-5.620

-5.600

0 5 10 15 20 25 30

V
o

lu
m

e
tr

ic
 s

tr
ai

n
 (

E v
i+

1
)

Shape factor (ns)



 

 

 

 
                                                                           (a) 

 

 
                                                                           (b) 

 
Figure 16: Sensitivity analysis results considering the effect of void ratio parameter (e) on EPR 

model predictions for (a) deviator stress and (b) volumetric strain. 
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Table 1: Data sources used to create the database 

Reference  Experimental soil description 

Lee and Seed (1967) Sacramento river sand 

Lee, Seed and Dunlop (1967) Antioch sand 

Leslie (1975) Napa basalt 

New Hogan metavolcanic 

Carters Dam quartzite 

Cougar basalt 

Sonora dolomite 

Laurel sandstone 

Buchanan weathered granite 

Lo and Roy (1973) Back mine quartz sand 

St. Marc limestone sand 

Aluminum oxide sand 

Marachi et al (1969) Pyramid dam material 

Napa basalt 

Miura and Yamanouchi (1975) Toyoura sand 

Miura and O-Hara (1979) Ube decomposed granite 

Ponce and Bell (1971) Quartz sand 

Ramamurthy et al (1974) Badarpur sand 

Raymond and Davies (1978) Coteau dolomite 

Kenora granite 

Nouvelle igneous 

Sudburg slag 

Raymond and Diyaljee (1979) Grenville marble 

Kimberly float 

St. Isodore limestone 

Brandon gravel 

St. Bruno shale 

Wu (1957) Fluvioglacial sand 

Erzin (2004) Anatolian sands 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 
Table 2: Parameters involved in the developed EPR models* 

 

* D50 (mm) = average grain size, Cu = coefficient of uniformity, Cc = coefficient of curvature; h= 

hardness of the mineral; a axial strain; ns = shape factor; v volumetric strain;  

q deviator stress;  a axial strain increment; e= void ratio; σ3= effective confining pressure. 

 

 

 

 
Table 3: COD values for EPR models 

Equation  
COD values for 

training (%) 

COD values for 

testing (%) 

Deviator stress (Equation 6) 99.99 99.98 

Volumetric strain (Equation 7) 99.99 99.99 

 

 

 

Contributing parameters Model output 

D50,  Cu, Cc, h, ns, e, σ3 

a , a , qi, iv,  

1iq  

1, iv  


