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Abstract 11 

Network analysis has driven key developments in research on animal behaviour by providing 12 

quantitative methods to study the social structures of animal groups and populations. A recent 13 

formalism, known as multilayer network analysis, has advanced the study of multifaceted 14 

networked systems in many disciplines. It offers novel ways to study and quantify animal 15 

behaviour as connected ‘layers’ of interactions. In this article, we review common questions in 16 

animal behaviour that can be studied using a multilayer approach, and we link these questions to 17 

specific analyses. We outline the types of behavioural data and questions that may be suitable to 18 

study using multilayer network analysis. We detail several multilayer methods, which can 19 

provide new insights into questions about animal sociality at individual, group, population, and 20 

evolutionary levels of organisation. We give examples for how to implement multilayer methods 21 

to demonstrate how taking a multilayer approach can alter inferences about social structure and 22 

the positions of individuals within such a structure. Finally, we discuss caveats to undertaking 23 

multilayer network analysis in the study of animal social networks, and we call attention to 24 

methodological challenges for the application of these approaches. Our aim is to instigate the 25 

study of new questions about animal sociality using the new toolbox of multilayer network 26 

analysis.  27 
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1. Introduction 28 

1.1 ‘Multi-dimensionality’ of animal social behaviour 29 

Sociality is widespread in animals, and it has a pervasive impact on behavioural, evolutionary, 30 

and ecological processes, such as social learning and disease spread (Allen, Weinrich, Hoppitt, & 31 

Rendell, 2013; Aplin et al., 2014; Silk, Alberts, & Altmann, 2003; White, Forester, & Craft, 32 

2017). The structure and dynamics of animal societies emerge from interactions between and 33 

among individuals (Hinde, 1976; Krause, Croft, & James, 2007; Pinter-Wollman et al., 2014). 34 

These interactions are typically ‘multi-dimensional’, as they occur across different social 35 

contexts (e.g., affiliation, agonistic, and feeding), connect different types of individuals (e.g., 36 

male–male, female–female, or male–female interactions), and/or vary spatially and temporally. 37 

Considering such multi-dimensionality is crucial for thoroughly understanding the structure of 38 

animal social systems (Barrett, Henzi, & Lusseau, 2012).   39 

Network approaches for studying the social behaviour of animals have been instrumental 40 

in quantifying how sociality influences ecological and evolutionary processes (Krause et al., 41 

2007; Krause, James, Franks, & Croft, 2015; Kurvers et al., Krause, Croft, Wilson, & Wolf, 42 

2014; Pinter-Wollman et al., 2014; Sih, Hanser, & McHugh, 2009; Sueur, Jacobs, Amblard, 43 

Petit, & King, 2011; Webber & Vander Wal, 2018; Wey, Blumstein, Shen, & Jordán, 2008).  In 44 

animal social networks, nodes (also called ‘vertices’) typically represent individual animals; and 45 

edges (also called ‘links’ or ‘ties’) often represent pairwise interactions (i.e., behaviours, such as 46 

grooming, in which two individuals engage) or associations (e.g., spatio-temporal proximity or 47 

shared group memberships) between these individuals. Such a network representation is a 48 

simplified depiction of a much more intricate, multifaceted system. A social system can include 49 

different types of interactions, with different biological meanings (e.g., cooperative or 50 
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competitive), which standard network approaches often do not take into account, or they do so 51 

by analysing networks of different edge types separately (Gazda, Iyer, Killingback, Connor, & 52 

Brault, 2015b). Typical approaches ignore interdependencies that may exist between different 53 

types of interactions and between different subsystems (Barrett et al., 2012; Beisner, Jin, 54 

Fushing, & McCowan, 2015). Furthermore, networks are often studied as snapshots or 55 

aggregations of processes that change over time, but dynamics can play a major role in animal 56 

behaviour (Blonder, Wey, Dornhaus, James, & Sih, 2012; Farine, 2018; Wey et al., 2008; Wilson 57 

et al., 2014). As we highlighted recently (Silk, Finn, Porter, & Pinter-Wollman, 2018), advances 58 

in multilayer network analysis provide opportunities to analyse the multifaceted nature of animal 59 

behaviour, to ask questions about links between social dynamics across biological scales, and to 60 

provide new views on broad ecological and evolutionary processes. In this paper, we introduce 61 

the new mathematical formalism of multilayer network analysis to researchers in animal 62 

behavior. This formalism provides a common vocabulary to describe, compare, and contrast 63 

multilayer network methodologies.  Our goal is to review research areas and questions in animal 64 

behavior that are amenable to multilayer network analysis, and we link specific analyses to these 65 

questions (see Table 1). In the remainder of this section, we describe different types of multilayer 66 

networks and detail how they can encode animal data. In Section 2, we review several questions 67 

and hypotheses, across social scales, that multilayer network analysis can help investigate. We 68 

summarize key questions and provide a guide to available methods and software for multilayer 69 

network analysis in Table 1. Throughout Section 2, we present worked examples to illustrate our 70 

ideas. In Section 3, we consider some of the requirements and caveats of multilayer network 71 

analysis as a tool to study animal social behaviour and discuss several directions for future work.  72 

 73 
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1.2 What are multilayer networks? 74 

Multilayer networks are assemblages of distinct network ‘layers’ that are connected (and 75 

hence coupled) to each other via interlayer edges (Boccaletti et al., 2014; Kivelä et al., 2014). A 76 

multilayer network can include more than one ‘stack’ of layers, and each such facet of layering is 77 

called an ‘aspect’. For instance, one aspect of a multilayer network can encode temporal 78 

dynamics and another aspect can represent the types of social interactions (Fig. 1 and Appendix 79 

I). 80 

The recent formalism of multilayer networks has opened up new ways to study 81 

multifaceted networked systems (Boccaletti et al., 2014; Kivelä et al., 2014). The application of 82 

multilayer networks to questions in animal behaviour is still in its infancy, but multilayer 83 

network analysis has facilitated substantial advances over monolayer (i.e., single-layer) network 84 

analysis in many other fields (Aleta & Moreno (2018) and Kivelä et al. (2014)). For example, 85 

multilayer network approaches have made it possible to identify important nodes that are not 86 

considered central in a monolayer network (De Domenico, Solé-Ribalta, Omodei, Gómez, & 87 

Arenas, 2015). Multilayer approaches applied to studying information spread on Twitter (where, 88 

e.g., one can use different layers to represent ‘tweets’, ‘retweets’, and ‘mentions’) have 89 

uncovered information spreaders who have a disproportionate impact on social groups but were 90 

overlooked in prior monolayer investigations (Al-Garadi, Varathan, Ravana, Ahmed, & Chang, 91 

2016). Multilayer modelling of transportation systems has improved investigations of congestion 92 

and efficiency of transportation. For example, each layer may be a different airline (De 93 

Domenico, Solé-Ribalta, et al., 2015) or a different form of transportation in a city (Chodrow et 94 

al., 2016; Gallotti & Barthélemy, 2015; Strano, Shai, Dobson, & Barthélemy, 2015). Modelling 95 

dynamical processes on multilayer networks can result in qualitatively different outcomes 96 
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compared to modelling dynamics on aggregate representations of networks (see Appendix II for 97 

a discussion of aggregating networks) or on snapshots of networks (De Domenico, Granell, 98 

Porter, & Arenas, 2016). For instance, the dynamics of disease and information spread can be 99 

coupled in a multilayer framework to reveal how different social processes can impact the onset 100 

of epidemics (Wang, Andrews, Wu, Wang, & Bauch, 2015). Historically, the usage of 101 

‘multiplexity’ dates back many decades (Mitchell, 1969), and the new mathematical formalism 102 

(De Domenico et al., 2014; Kivelä et al., 2014; Newman, 2018c; Porter, 2018) has produced a 103 

unified framework that makes it possible to consolidate analysis and terminology. For reviews of 104 

previous multilayer network studies and applications in other fields, see (Aleta & Moreno, 2018; 105 

Boccaletti et al., 2014; D ’Agostino & Scala, 2014; Kivelä et al., 2014; Pilosof, Porter, Pascual, 106 

& Kéfi, 2017). 107 
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 108 

Figure 1: A hypothetical multilayer network. Four ants interact at different time points and in 109 

two different ways. Each diamond represents a layer. The stack of three layers on the left 110 

represents aggressive interactions, and the stack of three layers on the right represents 111 

trophalactic interactions. Each colour represents a different time point (blue is t=1, green is t=2, 112 

and yellow is t=3). Solid lines represent intralayer (i.e., within-layer) interactions, dotted blue 113 
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lines represent interlayer (i.e., across-layer) relationships in the temporal aspect, and dotted black 114 

lines represent interlayer edges in the behavioural aspect. These interlayer interactions connect 115 

replicates of the same individuals across different layers. See Appendix I for further discussion 116 

and for a presentation of the mathematical formalism. 117 

 118 

1.3 Types of multilayer networks 119 

The mathematical framework of multilayer networks was developed recently to create a unified 120 

formalism (De Domenico et al., 2014; Kivelä et al., 2014; Mucha, Richardson, Macon, Porter, & 121 

Onnela, 2010; Porter, 2018). One can use this multilayer network framework, which we follow 122 

in this paper and detail in Appendix I, to represent a variety of network types and situations. In 123 

contrast to monolayer networks, which are traditional in network analysis and which consist of 124 

only a single network ‘layer’, multilayer networks can include many different types of data that 125 

are commonly collected in studies of animal behaviour. For example, types of social interactions, 126 

spatial locations (with connections between them), and different measures of genetic relatedness 127 

can all constitute layers in a multilayer network. Node attributes can include behavioural or 128 

physical phenotypes, sex, age, personality, and more. Edge attributes, such as their weight or 129 

direction, can encode interaction frequencies, distances between locations, dominance, and so on. 130 

Commonly studied variants of multilayer networks that can accommodate such data include the 131 

following.  132 

(1) Multiplex networks (i.e., edge-coloured networks) are networks in which interlayer 133 

edges connect nodes to themselves on different layers (Fig. 1 and Appendix I). It is 134 

often assumed, for convenience, that all layers consist of the same set of nodes, but 135 

this is not necessary. 136 
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a. In multirelational networks, each layer represents a different type of 137 

interaction. For example, a network of aggressive interactions can be 138 

connected with a network of affiliative interactions through interlayer edges 139 

that link individuals to themselves if they appear in both layers (Fig. 1; 140 

horizontal dotted black lines).  141 

b. In temporal networks, each layer encodes the same type of interactions during 142 

different time points or over different time windows. In the most common 143 

multiplex representation of a temporal network, consecutive layers are 144 

connected to each other through interlayer edges that link individuals to 145 

themselves at different times (Fig. 1; vertical dotted blue lines).  146 

(2) In interconnected networks (i.e., node-coloured networks), the nodes in different 147 

layers do not necessarily represent the same entities, and interlayer edges can exist 148 

between different types of nodes. (See our discussion of the mathematical formalism 149 

and an example figure in Appendix I.)  150 

a. Networks of networks consist of subsystems, which themselves are networks 151 

that are linked to each other through interlayer edges between the subsystems’ 152 

nodes. For example, one can model intra-group interactions in a population-153 

level network of interactions between social groups, which are themselves 154 

networks. 155 

b. In inter-contextual networks, one can construe each layer as representing a 156 

different type of node. For example, interactions between males can be in one 157 

layer, interactions between females can be in a second layer, and inter-sex 158 
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interactions are interlayer edges. See Fig. 1 of Silk, Weber, et al. (2018) and 159 

Fig 1. of Silk, Finn, Porter, & Pinter-Wollman (2018). 160 

c. Spatial networks, which we define here as networks of locations, can be 161 

linked with social networks of animals that move between these locations 162 

(Pilosof et al., 2017; Silk, Finn, Porter, & Pinter-Wollman, 2018). Our use of 163 

the term “spatial networks” refers to networks that are embedded in space, 164 

rather than networks that are influenced by a latent space (Barthélemy, 2018). 165 

Throughout this paper, we use the term “multilayer networks” to refer to any of the variants 166 

above, unless we specify that a method applies to only one or a subset of specific network types. 167 

For a review of other types of multilayer networks, see (Kivelä et al., 2014). 168 

 169 

2. Novel insights into animal sociality: From individuals to populations 170 

We propose that a multilayer network approach can advance the study of animal 171 

behaviour and expand the types of questions that one can investigate. Specifically, we discuss 172 

how a multilayer framework can enhance understanding of (1) an individual’s role in a social 173 

network, (2) group-level structure and dynamics, (3) population structure, and (4) evolutionary 174 

models of the emergence of sociality.  175 

 176 

2.1 An individual’s role in society  177 

Traditionally, the use of network analysis to examine the impact of individuals on their 178 

society has focused on the social positions of particular individuals using various centrality 179 

measures (such as degree, eigenvector centrality, betweenness centrality, and others (Pinter-180 

Wollman et al., 2014; Wasserman & Faust, 1994; Wey et al., 2008; Williams & Lusseau, 2006)). 181 
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It is common to construe individuals with disproportionally large centrality values as influential 182 

or important to a network in some way (but see (Rosenthal, Twomey, Hartnett, Wu, & Couzin, 183 

2015) for a different trend). The biological meaning of ‘importance’ and corresponding centrality 184 

measures differ among types of networks and is both system-dependent and question-specific. 185 

Consequently, one has to be careful to avoid misinterpreting the results of centrality calculations. 186 

Centrality measures have been used to examine which individuals have the most influence on a 187 

group in relation to age, sex, or personality (Sih et al., 2009; Wilson, Krause, Dingemanse, & 188 

Krause, 2013) and to study the fitness consequences of holding an influential position (Pinter-189 

Wollman et al., 2014). A multilayer approach can advance understanding of roles that 190 

individuals play in a population or a social group, and it can potentially identify central 191 

individuals who may be overlooked when using monolayer approaches on “multidimensional” 192 

data.  193 

An individual’s role in a social group is not restricted to its behaviour in just one social or 194 

ecological situation. A multilayer approach creates an opportunity to consolidate analyses of a 195 

variety of social situations and simultaneously examine the importances of individuals across and 196 

within situations. Many centrality measures have been developed for multilayer networks, and 197 

different ones encompass different biological interpretations. For instance, eigenvector 198 

‘versatility’ (see Appendix I for its mathematical definition) is one way to quantify the overall 199 

importance of individuals across and within layers, because this measure takes into account 200 

multiple layers to identify individuals who increase group cohesion in multiple layers and bridge 201 

social situations (De Domenico, Solé-Ribalta, et al., 2015). In a multirelational network, an 202 

individual can have small degree (i.e., degree centrality) in each layer, which each represent a 203 

different social situation, but it may participate in many social situations, thereby potentially 204 
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producing a larger impact on social dynamics than individuals with large degrees in just one or a 205 

few social situations. One can also account for the interrelatedness of behaviours in different 206 

layers in a multilayer network when combining interlayer centralities, if appropriate for the study 207 

system (De Domenico, Solé-Ribalta, et al., 2015). For example, it is not possible for two 208 

individuals to engage in grooming interactions without also being in proximity. By accounting 209 

for interrelatedness between proximity and grooming when calculating multilayer centralities 210 

and versatilities, it may be possible to consider grooming interactions as explicitly constrained by 211 

proximity interactions and thereby incorporate potentially important nuances.  212 

The appropriateness of a versatility measure differs across biological questions, just as 213 

various centrality measures on a monolayer network have different interpretations (Wasserman 214 

& Faust, 1994; Wey et al., 2008). Versatility measures that have been developed include 215 

shortest-path betweenness versatility, hub/authority versatility, Katz versatility, and PageRank 216 

versatility  (De Domenico, Solé-Ribalta, et al., 2015). Experimental removal of versatile nodes, 217 

similar to the removal of central nodes in monolayer networks (Barrett et al., 2012; Firth et al., 218 

2017; Flack et al., 2006; Pruitt & Pinter-Wollman, 2015; Sumana & Sona, 2013), has the 219 

potential to uncover the effects of the removed nodes on group actions, group stability, and their 220 

impact on the social positions of other individuals. However, which versatility measure gives the 221 

most useful information about an individual’s importance may depend on the level of 222 

participation of an individual in the different types of behaviours that are encoded in a multilayer 223 

network. Further, if layers have drastically dissimilar densities, one layer can easily dominate a 224 

versatility measure (Braun et al. 2018); see our discussion of caveats in Section 3. In addition to 225 

calculating node versatility, one can examine versatility of edges to yield interesting insights into 226 

the importances of relationships with respect to group stability and cohesion. Such an approach 227 
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can help reveal whether interlayer interactions are more important, less important, or comparably 228 

important than intralayer interactions for group cohesion. Examining edge versatility can also 229 

illuminate which interactions between particular individuals (within or across layers) have the 230 

largest impact on group activity and/or stability; and it may be helpful for conservation efforts, 231 

such as in identifying social groups that are vulnerable to fragmentation (Snijders, Blumstein, 232 

Stanley, & Franks, 2017).  233 

A multilayer approach can help elucidate the relative importances of different individuals 234 

in various social or ecological situations. For example, a node’s ‘multidegree’ is a vector of the 235 

intralayer degrees (each calculated as on a monolayer network) of an individual in each layer. 236 

Differences in how the degrees of individuals are distributed across layers help indicate which 237 

individuals have influence over others in the different layers. For example, if each layer 238 

represents a different situation, individuals whose intralayer degree peaks in one situation may be 239 

more influential in that context than individuals whose intralayer degree is small in that situation 240 

but peaks in another one. Because multidegree does not account for interlayer connections, 241 

quantitatively comparing it with versatility or other multilayer centralities, which account 242 

explicitly for interlayer edges (Kivelä et al., 2014), can help elucidate the importance of 243 

interlayer edges and thereby highlight interdependencies between biological situations. Such 244 

behavioural interdependencies may elucidate and quantify the amount of behavioural carryover 245 

across situations (i.e., ‘behavioural syndromes’) (Sih, Bell, & Johnson, 2004) if, for example, 246 

measures that account for interlayer edges explain observed data better than measures that do not 247 

take into account such interdependencies.  248 

As a final example, one can use a multilayer approach to examine temporal changes in an 249 

individual’s role (or roles) in a group. A multilayer network in which one aspect represents time 250 
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and another aspect represents situation (Fig. 1) can reveal when individuals gain or lose central 251 

roles and whether roles are lost simultaneously in all situations or if changes in one situation 252 

precede changes in another. Comparing monolayer (e.g., time-aggregated) measures and 253 

multilayer measures has the potential to uncover the importance of temporal changes in an 254 

animal’s fitness.    255 

 256 

2.1.1 Roles of individuals in a group: Baboon versatility in a multiplex affiliation network 257 

To demonstrate the potential insights from employing multilayer network analysis to 258 

examine the roles of individuals in a social group using multiple interaction types, we analysed 259 

published affiliative interactions from a baboon Papio cynocephalus group of 26 individuals 260 

(Franz, Altmann, & Alberts, 2015b, 2015a) (Fig. 2). One can quantify affiliative relationships in 261 

primates in multiple ways, including grooming, body contact, and proximity (Barrett & Henzi, 262 

2002; Jack, 2003; Kasper & Voelkl, 2009; Pasquaretta et al., 2014). To characterize affiliative 263 

relationships, combinations of these behaviours have been investigated separately (Jack, 2003; 264 

Perry, Manson, Muniz, Gros-Louis, & Vigilant, 2008), pooled together (Kasper & Voelkl, 2009), 265 

or used interchangeably (Pasquaretta et al., 2014). These interaction types are often correlated 266 

with each other, but their networks typically do not coincide completely (Barrett & Henzi, 2002; 267 

Brent, MacLarnon, Platt, & Semple, 2013).  268 

We analyse the baboon social data in four ways: (1) as a weighted grooming network 269 

with only grooming interactions (Fig. 2A), (2) as a weighted association network with only 270 

proximity-based associations (Fig. 2B), (3) as an aggregate monolayer network that we obtained 271 

by summing the weights of grooming and association interactions of the node pairs (Fig. 2C; see 272 

Appendix II for more details on aggregating networks), and (4) as a multiplex network with two 273 
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layers (one for grooming and one for associations). We then calculated measures of centrality 274 

(for the monolayer networks in (1)–(3)) and versatility (for the multilayer network (4)) using 275 

MuxViz (De Domenico et al. 2015). We ranked individuals according to their PageRank 276 

centralities and versatilities (De Domenico, Solé-Ribalta, et al., 2015), which quantify the 277 

centrality of an individual in a network recursively based on being adjacent to central neighbours 278 

(Fig. 3). 279 

The most versatile baboon in the multilayer network (individual 3 in Fig. 3) was the 280 

fourth-most central individual in the aggregated network, the second-most central individual in 281 

the grooming network, and 16th-most central individual in the association network (Fig. 3). 282 

These differences in results using the multilayer, aggregated, and independent networks of the 283 

same data highlight the need to (1) carefully select which behaviours to represent as networks 284 

and (2) interpret the ensuing results based on the questions of interest (Carter, DeChurch, Braun, 285 

& Contractor, 2015; Krause et al., 2015). When social relationships depend on multiple 286 

interaction types, it is helpful to use a multilayer network framework to reliably capture an 287 

individual’s social roles (see Table 1 for more questions and tools), because monolayer 288 

calculations may yield different results and centrality in one layer can differ substantially from 289 

versatility in an entire multilayer network (Fig. 3). 290 

 291 
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 292 

Figure 2:  Social networks of a baboon group based on (A) grooming interactions, (B) 293 

proximity-based association relations, and (C) an aggregate of both interaction types. We created 294 

the network visualization using MuxViz (De Domenico, Porter, & Arenas, 2015). To construct a 295 

multilayer network, we joined the grooming and association monolayer networks as two layers in 296 

a multiplex network by connecting nodes that represent the same individual using interlayer 297 

edges. The sizes of the nodes are based on multilayer PageRank versatility (with larger nodes 298 

indicating larger versatilities). We colour the nodes based on monolayer PageRank centrality 299 

(with dark shades of green indicating larger values). A given individual in these two layers has 300 

the same size, but it can have different colours in the two layers. In the aggregate layer, we 301 

determine both the node sizes and their colours from PageRank centrality values in the aggregate 302 
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network. We position the nodes in the same spatial location in all three layers. The data (Franz et 303 

al., 2015a) are from (Franz et al., 2015b). 304 

 305 

  306 

Figure 3: A circular heat map illustrates variation among individuals in PageRank centralities 307 

and versatilities. Darker colours indicate larger values of PageRank centralities and versatilities. 308 

A given angular wedge in the rings indicates the values for one individual, whose ID we list 309 

outside the ring. The rings are PageRank centrality values from the monolayer grooming network 310 

(innermost ring), association network (second ring), aggregate network in which we sum the 311 

grooming and association ties (third ring), and PageRank versatility for the multiplex network 312 
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(outermost ring). Using a blue outline, we highlight individual 3, who we discuss in the main 313 

text. We indicate the PageRank centrality and versatility values of individual 3 on the rings. We 314 

created this visualization using MuxViz (De Domenico, Porter, et al., 2015). The data (Franz et 315 

al., 2015a) are from (Franz et al., 2015b). 316 

 317 

2.2 Multilayer structures in animal groups 318 

 Animal social groups are emergent structures that arise from local interactions (Sumpter, 319 

2010), making network analysis an effective approach for examining group-level behaviour.  320 

Networks provide useful representations of dominance hierarchies (Hobson et al. 2013) and 321 

allow investigations of information transmission efficiency (Pasquaretta et al., 2014), group 322 

stability (Baird & Whitehead, 2000; McCowan et al., 2011), species comparisons (Pasquaretta et 323 

al., 2014; Rubenstein, Sundaresan, Fischhoff, Tantipathananandh, & Berger-Wolf, 2015), and 324 

collective behaviour (Rosenthal et al., 2015; Westley, Berdahl, Torney, & Biro, 2018).  325 

However, given that animals interact with each other in many different—and potentially 326 

interdependent—ways, a multilayer approach may help accurately capture a group’s structure 327 

and/or dynamics. In one recent example, Smith-Aguilar et al. (2018) studied a six-layer 328 

multiplex network of spider monkeys, with layers based on types of interactions. In this section, 329 

we detail how multilayer methodologies can advance the study of group stability, group 330 

composition, and collective movement.   331 

One can analyse changes in group stability and composition using various multilayer 332 

calculations or by examining changes in relationships across network layers (Beisner & 333 

McCowan, 2015).  For instance, Barrett et al. (2012) examined changes in a baboon group 334 

following the loss of group members by calculating a measure from information theory called 335 
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‘joint entropy’ on a multiplex network—with grooming, proximity, and aggression layers—both 336 

before and after a known perturbation. A decrease in joint entropy following individual deaths 337 

corresponded to individuals interacting in a more constrained and therefore more predictable 338 

manner. Using a different approach, Beisner et al. (2015) investigated co-occurrences of directed 339 

aggression and status-signalling interactions between individuals in macaque behavioural 340 

networks. In their analysis, they employed a null model that incorporates constraints that encode 341 

interdependences between behaviour types. For example, perhaps there is an increased likelihood 342 

that animal B signals to animal A if animal A aggresses animal B. These constraints were more 343 

effective at reproducing the joint probabilities (which they inferred from observations) of 344 

interactions in empirical data in stable macaque groups than in groups that were unstable and 345 

eventually collapsed (Chan, Fushing, Beisner, & McCowan, 2013). These findings illustrate how 346 

interdependencies between aggression and status-signalling network layers may be important for 347 

maintaining social stability in captive macaque groups. A potential implication of this finding is 348 

that analysing status-signalling and aggression may be helpful for predicting social stability. 349 

Another approach that may be useful for uncovering temporal structures in multilayer networks 350 

is an extension of stochastic actor-oriented models (SAOMs) (Snijders, 2017). One can use 351 

SAOMs to examine traits and processes that influence changes in network ties over time, 352 

including in animal social networks (Fisher, Ilany, Silk, & Tregenza, 2017; Ilany, Booms, & 353 

Holekamp, 2015). SAOMs can use unweighted or weighted edges, with some restrictions in how 354 

weights are incorporated (Snijders, 2017). A multiple-network extension to an SAOM enables 355 

modelling of the co-dynamics of two sets of edges, while incorporating influences of other 356 

individual or network-based traits. Such an approach has the potential to provide interesting 357 

insights into how changes in one layer may cascade into changes in other layers. It also provides 358 
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a useful method to quantify links between group-level structural changes and temporal dynamics 359 

of individual centralities. 360 

 Multilayer analysis of animal groups can go beyond monolayer network analysis when 361 

highlighting a group’s composition and substructures. For example, one measure of 362 

interdependence, the proportion of shortest paths between node pairs that span more than one 363 

layer (Morris & Barthélemy, 2012; Nicosia, Bianconi, Latora, & Barthélemy, 2013), can help 364 

describe a group’s interaction structure. In social insect colonies, layers can represent different 365 

tasks. As time progresses and individuals switch tasks, an individual can appear in more than one 366 

layer. The amount of overlap among layers (see Section 3 of Appendix I for examples of overlap 367 

measures) can indicate the level of task specialization and whether or not there are task-368 

generalist individuals (Pinter-Wollman, Hubler, Holley, Franks, & Dornhaus, 2012). 369 

Consequently, the above interdependence measure may be useful as a new and different way to 370 

quantify division of labour (Beshers & Fewell, 2001), because having a small proportion of 371 

shortest paths that traverse multiple layers may be an indication of pronounced division of 372 

labour. Such a new measure may reveal ways in which workers are allocated to tasks that are 373 

different from those that have been inferred by using other measures of division of labour. 374 

Comparing different types of measures may uncover new insights into the mechanisms that 375 

underlie division of labour. 376 

 Animal groups are often organized into substructures called `communities’ (Fortunato & 377 

Hric, 2016; Porter, Onnela, & Mucha, 2009; Shizuka et al., 2014; Wolf, Mawdsley, Trillmich, & 378 

James, 2007), which are sets of individuals who interact with each other more frequently (or 379 

more often) than they do with other individuals. Finding communities can aid in predicting how 380 

a group may split, which can be insightful for managing captive populations when it is necessary 381 
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to remove individuals (Sueur, Jacobs, et al., 2011). Community-detection algorithms distinguish 382 

sets of connected individuals who are more connected within a community than with other 383 

communities in a network. One example of a multilayer community-detection algorithm is 384 

maximization of ‘multislice modularity’ (Mucha et al., 2010), which can account for different 385 

behaviours and/or time windows. A recent review includes a discussion of how multilayer 386 

modularity maximization can inform ecological questions, such as the ecological effects of 387 

interdependencies between herbivory and parasitism (Pilosof et al., 2017). In animal groups, 388 

individuals can be part of more than one community, depending on the types of interactions 389 

under consideration. For example, an individual may groom with one group of animals but fight 390 

with a different group. Because maximizing multislice modularity does not constrain an 391 

individual’s membership to a single community, it can yield communities of different functions 392 

with overlapping membership. It can also be used to examine changes in community structure 393 

over time. Additionally, sex, age, and kinship are known to influence patterns of subgrouping in 394 

primates (Sueur, Jacobs, et al., 2011),  so investigating group structure while considering several 395 

of these characteristics at once can reveal influences of subgrouping (such as nepotism) that may 396 

not be clear when using monolayer clustering approaches. See Aleta & Moreno (2018) for 397 

references to various methods for studying multilayer community structure.  398 

 Collective motion is another central focus in studies of animal groups (Berdahl, Biro, 399 

Westley, & Torney, 2018; Sumpter, 2010). Coordinated group movements emerge from group 400 

members following individual-based, local rules (e.g., in fish schools and bird flocks) (Couzin, 401 

Krause, James, Ruxton, & Franks, 2002; Sumpter, 2010). Recent studies of collective motion 402 

have employed network analysis to examine relationships of individuals beyond the ones with 403 

their immediate neighbours. For instance, one can incorporate connections between individuals 404 
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who are in line of sight of each other (Rosenthal et al., 2015) or with whom there is a social 405 

relationship in other contexts (Bode, Wood, & Franks, 2011; Farine et al., 2016). One can also 406 

combine multiple sensory modes into a multilayer network to analyse an individual’s movement 407 

decisions. Expanding the study of collective motion to incorporate multiple sensory modalities 408 

(e.g., sight, odour, vibrations, and so on) and social relationships (e.g., affiliative, agonistic, and 409 

so on) can benefit from a multilayer network approach, which may uncover synergies among 410 

sensory modes, social relationships, and environmental constraints.  411 

 412 

2.2.1 Multilayer groupings: Dolphin communities emerge from multirelational interactions 413 

 To demonstrate the utility of multilayer network analysis for uncovering group dynamics, 414 

we analysed the social associations of 102 bottlenose dolphins that were observed by (Gazda et 415 

al., 2015b). Gazda et al, (2015b) recorded dolphin associations during travel, socialization, and 416 

feeding. They identified different communities when analysing the interactions as three 417 

independent networks and compared the results with an aggregated network, in which they 418 

treated all types of interactions equally (regardless of whether they occurred when animals were 419 

traveling, socializing, or foraging). However, analysing these networks separately or as one 420 

aggregated network ignores interdependencies that may exist between the different behaviours 421 

(Kivelä et al., 2014). Therefore, we employed multiplex community detection, using the 422 

multilayer InfoMap method (De Domenico et al. 2015), to examine how interdependency 423 

between layers influences which communities occur when the data are encoded as a multiplex 424 

network. We use multiplex community detection to assign each replicate of an individual (there 425 

is one for each layer in which an individual appears; Appendix I) to a community. Therefore, an 426 

individual can be assigned to one or several communities, where the maximum number 427 
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corresponds to the number of layers in which the individual is present. The community 428 

assignments depend on how individuals are connected with each other in a multilayer network 429 

and on interactions between layers, which arise in this case from a parameter in the multilayer 430 

InfoMap method (see Appendix II for details). The coupling between layers thus arises both 431 

from interlayer edges and their weights (Appendix I) and from a parameter in the community-432 

detection method (Appendix II). With no coupling, the layers are distinct and communities 433 

cannot span more than one layer; for progressively larger coupling, communities span multiple 434 

layers increasingly often. For details on our parameter choices for community detection with the 435 

multilayer InfoMap method, see Appendix II. 436 

 437 

   438 
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 439 

Figure 4: Multiplex network of dolphin proximity-based associations during (1) traveling, (2) 440 

socializing, and (3) foraging. There are 102 distinct individuals, and each layer has a node for 441 

each individual. Individuals who were never seen interacting in a specific layer (behavioural 442 

context) are the smaller white nodes. Individuals who interacted in at least one layer are the 443 

larger nodes, which we colour based on their community assignment from multilayer InfoMap 444 

(De Domenico et al. 2015). We created the network visualization with MuxViz (De Domenico et 445 

al. 2015). The data (Gazda, Iyer, Killingback, Connor, & Brault, 2015a) are from (Gazda et al., 446 

2015b).  447 
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 448 

To be consistent with Gazda et al, (2015b), our multiplex network (Fig. 4) includes only 449 

individuals who were seen at least 3 times, and we weight the edges using the half-weight index 450 

(HWI) of association strength (Cairns & Schwager, 1987). Our community-detection 451 

computation yielded 12 communities. The largest community (dark blue; Fig. 4) consists of 452 

individuals from all three association layers, and several smaller communities consist of only 453 

foraging individuals, only traveling individuals, and both foraging and traveling individuals. For 454 

details on the specific implementation of the InfoMap method, see Appendix II.  455 

In their investigation, Gazda et al, (2015b) revealed contextually-dependent association 456 

patterns, as indicated by different numbers of communities in the foraging (17), travel (8), and 457 

social (4) networks. Notably, when considering the three behavioural situations as a multiplex 458 

network, we found similar trends in the numbers of communities across behavioural situations: 459 

foraging individuals are in 9 communities, traveling individuals are in 6 communities, and 460 

individuals who interact socially are in only 1 community.  Thus, our analysis strengthens the 461 

finding that dolphins forage in more numerous, smaller groups and socialize in fewer, larger 462 

groups. Different methods for community detection yield different communities of nodes 463 

(Fortunato & Hric, 2016) therefore, it is not surprizing that we detected a different number of 464 

communities in the monolayer networks than the number in Gazda et al, (2015b). We used 465 

InfoMap, which has been implemented for both monolayer and multilayer networks. By contrast, 466 

Gazda et al, (2015b) used a community-detection approach that has been implemented only for 467 

monolayer networks. Additionally, because we find one markedly larger community that spans 468 

all layers, it may also be useful to explore core–periphery structure in this network (Csermely, 469 

London, Wu, & Uzzi, 2013; Rombach, Porter, Fowler, & Mucha, 2017). 470 
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We also analysed each layer independently and an aggregate of all layers using 471 

monolayer InfoMap (Rosvall & Bergstrom, 2007), which is implemented in MuxViz. Multiplex 472 

community detection produces somewhat different community assignments from monolayer 473 

community detection (Fig. 5). With a multiplex network, one can identify and label an 474 

individual’s membership in a community that spans one or several layer(s) (Fig. 5A). However, 475 

in monolayer community detection, one examines individuals independently in different layers, 476 

thereby assigning their replicates in different layers to different communities (Fig. 5B). 477 

Therefore, which individuals are grouped into communities can vary substantially. (See Table 1 478 

for more questions and tools in multilayer community detection in animal behaviour). As this 479 

example illustrates, depending on the research aims, the form of the data, and knowledge of the 480 

study system, one or both of monolayer and multilayer investigations may provide valuable 481 

insights into the structure of a social system of interest.  482 

 483 

 484 

 485 
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Figure 5: Community structures of individuals from (A) a multilayer InfoMap community 486 

detection and (B) monolayer InfoMap community detection. Each row represents an individual 487 

dolphin, and each column represents a behavioural situation. In the multiplex community 488 

detection (A), communities can span all three columns of behaviours, and individuals who are 489 

the same colour in one or more columns belong to the same community. Community colours are 490 

the same as those that we used in Figure 4. Note that an individual who appears in all three layers 491 

can be assigned to the same community in all three situations (and therefore have the same 492 

colour in all three columns). It can also be part of three different communities, and it then has 493 

different colours in each layer. It can also be assigned twice to one community and once to 494 

another. In monolayer InfoMap (B), each behavioural situation (as well as the aggregated 495 

monolayer network in the last column) yields a separate set of communities, so we use a 496 

different colour palette in each column. Individuals in the same column and the same colour are 497 

assigned to the same community. In both panels, white represents individuals who do not exist in 498 

the associated behavioural situation. 499 

 500 

2.3 Multilayer processes at a population level 501 

 Network analysis has been fundamental in advancing understanding of social processes 502 

over a wide range of spatial scales and across multiple social groups (Silk, Croft, Tregenza, & 503 

Bearhop, 2014; Sueur, King, et al., 2011). A multilayer approach is convenient for combining 504 

spatial and social networks (e.g., in a recent study of international human migration (Danchev & 505 

Porter, 2018)), and it may contribute to improved understanding of fission–fusion dynamics, 506 

transmission processes, and dispersal. It also provides an integrative framework to merge social 507 

data from multiple species and extend understanding of the drivers that underlie social dynamics 508 
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of multi-species communities (Farine, Garroway, & Sheldon, 2012; Sridhar, Beauchamp, & 509 

Shanker, 2009).  510 

Many animals possess complicated fission–fusion social dynamics, in which groups join 511 

one another or split into smaller social units (Couzin & Laidre, 2009; Silk et al., 2014; Sueur, 512 

King, et al., 2011). It can be insightful to study such populations as networks of networks. 513 

Recent advances in quantifying temporal dynamics of networks have shed some light on fission–514 

fusion social structures (Rubenstein et al., 2015). A multilayer approach applied to association 515 

data (collected at times that make it is reasonable to assume that group membership is 516 

independent between observations) can assist in detecting events and temporal scales of social 517 

transitions in fission–fusion societies. For example, if each layer in a multiplex network 518 

represents the social associations of animals at a certain time, a multiplex community-detection 519 

algorithm can uncover temporally cohesive groups, similar to the detection of temporal patterns 520 

of correlations between various financial assets (Bazzi et al., 2016). Further development of 521 

community detection and other clustering methods for general multilayer networks (e.g., 522 

stochastic block models (Peixoto, 2014, 2015) and methods based on random walks (De 523 

Domenico, Lancichinetti, et al., 2015; Jeub, Balachandran, Porter, Mucha, & Mahoney, 2015; 524 

Jeub, Mahoney, Mucha, & Porter, 2017) may provide insights into the social and ecological 525 

processes that contribute to the temporal stability of social relationships in fission–fusion 526 

societies.  527 

Ecological environments and connections between different locations have fundamental 528 

impacts on social dynamics (Firth & Sheldon, 2016; Spiegel, Leu, Sih, & Bull, 2016). A 529 

multilayer network representation can explicitly link spatial and social processes in one 530 

framework (Pilosof et al., 2017). One approach is to use interconnected networks of social 531 
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interactions and spatial locations to combine layers that represent social networks with layers for 532 

animal movement and habitat connectivity. Data on social interactions can also have multiple 533 

layers, with different layers representing interactions in different locations or habitats. For 534 

example, in bison Bison bison, it was observed that group formation is more likely in open-535 

meadow habitats than in forests (Fortin et al., 2009). The same study also noted that larger 536 

groups are more likely than smaller groups to occur in meadow habitats. Multilayer network 537 

approaches, such as examining distributions of multilayer diagnostics, may be helpful for 538 

detecting fundamental differences in social relationships between habitats. 539 

 Important dynamical processes in animal societies, such as information and disease 540 

transmission, are intertwined with social network structures (Allen et al., 2013; Aplin et al., 541 

2014; Aplin, Farine, Morand-Ferron, & Sheldon, 2012; Hirsch, Reynolds, Gehrt, & Craft, 2016; 542 

Weber et al., 2013). Research on networks has revealed that considering multilayer network 543 

structures can produce very different spreading dynamics than those detected when collapsing 544 

(e.g., by aggregating) multiple networks into one monolayer network (De Domenico et al., 545 

2016). Multilayer approaches can uncover different impacts on transmission from different types 546 

of social interactions (Craft 2015; White et al. 2017) or link the transmission of multiple types of 547 

information or disease across the same network. Compartmental models of disease spreading, 548 

which describe transitions of individuals between infective and other states (e.g., susceptible–549 

infected [SI] models, susceptible–infected–recovered [SIR] models, and others) (Kiss, Miller, & 550 

Simon, 2017) have been used to model transmission through multilayer networks (Aleta & 551 

Moreno, 2018; De Domenico et al., 2016; Kivelä et al., 2014). For example, several studies have 552 

incorporated a multilayer network structure into an SIR model for disease spreading coupled 553 

with information spreading about the disease, with the two spreading processes occurring on 554 
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different network layers (Wang, Andrews, Wu, Wang, & Bauch, 2015).  This approach suggests 555 

that taking into account the spread of information about a disease can reduce the expected 556 

outbreak size, especially in strongly modular networks and when infection rates are low (Funk, 557 

Gilad, Watkins, & Jansen, 2009). Given the growing evidence for coupled infection and 558 

behaviour dynamics in animals (Croft, Edenbrow, et al., 2011; Lopes, Block, & König, 2016; 559 

Poirotte et al., 2017), using multilayer network analysis to help understand interactions between 560 

information and disease spread is likely to be informative in studies of animal contagions. 561 

Analogous arguments apply to the study of acquisition of social information, where learning one 562 

behaviour can influence the likelihood of social learning of other behaviours. For example, 563 

extending models of information spreading (Aleta & Moreno, 2018; De Domenico et al., 2016; 564 

Kivelä et al., 2014) to two-aspect multilayer networks that include one layering aspect to 565 

represent different types of social interactions and another aspect to represent different time 566 

periods (Fig. 1) may provide valuable insights into how social dynamics influence cultural 567 

transmissions in a population. 568 

 The study of dispersal can also benefit from utilizing a multilayer framework. Networks 569 

have been used to uncover the role of spatial (Reichert, Fletcher, Cattau, & Kitchens, 2016) and 570 

social (Blumstein, Wey, & Tang, 2009) connectivity in dispersal decisions. One can use a two-571 

aspect multilayer approach to integrate spatial layers that encode habitat connectivity or 572 

movements of individuals with social layers that encode intra-group and inter-group social 573 

relationships. For example, integrating a multilayer framework with existing multi-state models 574 

of dispersal (such as the ones in (Borg et al., 2017; Polansky, Kilian, & Wittemyer, 2015)) can 575 

make it possible to relate the likelihood of transitioning between dispersive and sedentary states 576 

to the positions of individuals in a multilayer socio-spatial network. Such integration of spatial 577 
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and social contexts may provide new insights both into the relative roles of social and ecological 578 

environments in driving dispersal decisions and into the subsequent effects of dispersal on 579 

population structure. 580 

 581 

2.3.1. Inter-specific interactions as a multilayer network  582 

Network approaches have been useful for studying the social dynamics of mixed-species 583 

assemblages (Farine et al., 2012). For example, in mixed-species groups of passerine birds, 584 

network analysis was used to show that social learning occurs both within and between species 585 

(Farine, Aplin, Sheldon, & Hoppitt, 2015b). Mixed-species assemblages have an inherent 586 

multilayer structure. Most simply, one can represent a mixed-species community as a node-587 

coloured network in which each layer represents a different species (Fig. 6). To incorporate 588 

additional useful information in a mixed-species multilayer network, one can represent the type 589 

of behavioural interaction as an additional aspect of the network. For example, one aspect can 590 

encode competitive interactions and another can encode non-competitive interactions. 591 

Considering multilayer measures, such as multidegree or versatility, may provide new 592 

insights into the role of particular species or individuals in information sharing in mixed-species 593 

groups. Further, multilayer community detection has the potential to provide new insights into 594 

the structure of fission–fusion social systems that involve multiple species. The original study 595 

(Farine et al., 2015b) that generated the networks that we used in Fig. 6 investigated information 596 

transmission in both intra-species and inter-species social networks (i.e., constituent interaction 597 

types of an interconnected network). It concluded that both networks help predict the spread of 598 

information, but that the likelihood of acquiring foraging information was higher through intra-599 

specific than through inter-specific associations, thereby providing a better understanding of 600 
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information transmission in mixed-species communities than would be possible using monolayer 601 

network analysis. This highlights the potential of taking explicitly multilayer approaches to 602 

better understand how information can spread within and between species in mixed-species 603 

groups.  604 

 605 

 606 

Figure 6: A multilayer network of mixed-species interactions between blue tits (bottom layer; 607 

blue nodes) and great tits (top layer; orange nodes) in Wytham Woods, UK (in the Cammoor–608 

Stimpsons area) using data obtained from Dryad (Farine et al., 2015b; Farine, Aplin, Sheldon, & 609 

Hoppitt, 2015a). Each node represents an individual bird. Blue and orange edges connect 610 

individuals within layers (i.e., intra-specific associations), and grey edges connect individuals 611 

across layers (i.e., inter-specific associations). To aid clarity, we only show edges with a simple 612 
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ratio index (Cairns & Schwager, 1987; Ginsberg & Young, 1992) of 0.03 or larger. Photographs 613 

by Keith Silk. 614 

 615 

2.4 Evolutionary models    616 

Understanding the evolution of sociality is a central focus in evolutionary biology (Krause 617 

& Ruxton, 2002). Research approaches include agent-based simulations, game-theoretic models, 618 

comparative studies, and others. Evolutionary models have been expanded to incorporate 619 

interactions between agents, resulting in different evolutionary processes than those in models 620 

without interactions (Nowak, Tarnita, & Antal, 2010). However, social behaviours evolve and 621 

persist in conjunction with other behaviours and with ecological changes. Therefore, 622 

incorporating multiple types of interactions—social, physiological, and with an environment—as 623 

part of a multilayer framework can provide novel insights about the pressures on fitness and 624 

evolutionary processes. For example, incorporating interactions between molecules at the 625 

cellular level, organs at the organismal level, individuals at the group level, and groups at the 626 

population level into a network of networks can facilitate multilevel analysis of social evolution. 627 

In the ensuing paragraphs, we discuss how the expansion of evolutionary modelling approaches 628 

to include multilayer network analysis may enhance the study of (1) evolution of social 629 

phenomena (such as cooperation) and (2) co-variation in behavioural structures across species.  630 

Incorporating ideas from network theory into evolutionary models has made it possible to 631 

account for long-term relationships, non-random interactions, and infrequent interactions 632 

(Lieberman, Hauert, & Nowak, 2005). These considerations can alter the outcomes of game-633 

theoretic models of social evolution and facilitate the emergence or persistence of interactions, 634 

such as cooperation by enabling assortativity of cooperative individuals (Aktipis, 2004, 2006; 635 
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Allen et al., 2017; Croft, Edenbrow, & Darden, 2015; Fletcher & Doebeli, 2009; Nowak et al., 636 

2010; Rand, Arbesman, & Christakis, 2011). Given the effects that group structure can have on 637 

the selection and stability of cooperative strategies, multilayer structures can significantly alter 638 

the dynamics (both outcomes and transient behaviour) of evolutionary games. Indeed, it has been 639 

demonstrated, using a multilayer network in which agents play games on multiple interconnected 640 

layers, that cooperation can persist under conditions in which it would not in a monolayer 641 

network (Gómez-Gardeñes, Reinares, Arenas, & Floría, 2012; Wang, Szolnoki, & Perc, 2012; Z. 642 

Wang, Wang, Szolnoki, & Perc, 2015). Furthermore, the level of interdependence, in the form of 643 

coupling payoffs between layers or by strategy transfer between layers, can influence the 644 

persistence of cooperation (Wang et al. 2013; Xia et al. 2014). Thus, in comparison to monolayer 645 

network analysis, using a multilayer network approach can improve the realism of models by 646 

better reflecting the ‘multi-dimensional’ nature of sociality and allowing a larger space of 647 

possible evolutionary strategies and outcomes. Certain behaviours that may not be evolutionarily 648 

stable when considering only one realm of social interactions may be able to evolve and/or 649 

persist when considering a multilayer structure of an agent’s possible interactions. For example, 650 

expanding game-theoretic models to include multiple types of coupled interactions may facilitate 651 

the inclusion of both competition and mutualism, as well as both intra-specific and inter-specific 652 

interactions. 653 

 Comparative approaches offer another powerful method to examine the evolution of 654 

different social systems across similar species (Thierry, 2004; West-Eberhard, 1969). In socially 655 

complex species, such comparisons can benefit greatly from a multilayer approach. For instance, 656 

the macaque genus consists of over 20 species that exhibit a variety of different social structures, 657 

each with co-varying behavioural traits, such as those related to connectivity and/or individual 658 
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behaviours (Thierry 2004; Sueur, Petit, et al. 2011; Balasubramaniam et al. 2012; 659 

Balasubramaniam et al. 2017). A multilayer network analysis of such co-varying interactions—660 

e.g., with layers as connectivity types or time periods—may offer an effective way to reveal 661 

differences in social structure. For example, using matrix-correlation methods to measure 662 

similarities between layers in a multilayer network offers a way to compare how behaviours co-663 

vary across different species using a multiple-regression quadratic assignment procedure 664 

(MRQAP) (Croft, Madden, Franks, & James, 2011). For multilayer networks, global overlap 665 

(Bianconi, 2013) and global inter-clustering coefficient (Parshani, Rozenblat, Ietri, Ducruet, & 666 

Havlin, 2010) are two measures that can quantify the overlap in edges between two layers. (See 667 

Appendix I for a brief discussion of layer-similarity measures.) One can, for instance, use global 668 

overlap between an affiliative network and a kinship network to examine the extent to which 669 

nepotism plays a role in social structure across species (Thierry, 2004). In such an analysis, it 670 

may also be useful to account for spatial dependencies. 671 

Researchers continue to develop new approaches for measuring heterogeneous structures 672 

in multilayer networks (Aleta & Moreno, 2018; Kivelä et al., 2014) that can aid in testing 673 

specific evolutionary hypotheses. For example, the ‘social-brain hypothesis’ (Dunbar, 1998) 674 

posits that the evolution of cognition is driven by sociality, because sociality is cognitively 675 

challenging. Recently, there have been several propositions for how to define sociality to test the 676 

social-brain hypothesis; all of these include the idea that relationships between animals arise 677 

from different types of interactions (Bergman & Beehner, 2015; Fischer, Farnworth, Sennhenn-678 

Reulen, & Hammerschmidt, 2017). Multilayer network analysis can aid in developing objective 679 

measures of social structures that include the nuances of the various proposed definitions. 680 

Another evolutionary hypothesis, the ‘co-variation hypothesis’ (Thierry, 2004), posits that 681 
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changes in a single trait or behaviour can lead to changes in global social organization. 682 

Simulations of agent-based models (ABMs) on multilayer networks can test this hypothesis by 683 

exploring how different behavioural parameters along with coupling between layers influence 684 

group-level structure (Hemelrijk 2002). For example, an ABM of macaque societies (called 685 

‘Groofi world’) linked grooming and fighting behaviour through a single trait (termed ‘anxiety’) 686 

(Hemelrijk & Puga-Gonzalez, 2012; Puga-Gonzalez, Hildenbrandt, & Hemelrijk, 2009). This 687 

model has an implicitly multilayer network structure, as it includes multiple interaction ‘layers’ 688 

that are coupled by a parameter. By incorporating such structure, the model illustrated that 689 

patterns of reciprocation and exchange (Hemelrijk & Puga-Gonzalez, 2012) and aggressive 690 

interventions (Puga-Gonzalez, Cooper, & Hemelrijk, 2016) can emerge from the presence of a 691 

few interconnected interaction types along with spatial positions.  692 

 693 

3. Considerations when using multilayer network analysis  694 

We have outlined many different opportunities for multilayer network approaches to be 695 

useful for the study of animal behaviour. However, the application of multilayer network 696 

analysis to animal behaviour data is in its infancy, with many exciting directions for future work. 697 

Multilayer network analysis may not always be appropriate for a given study, and there are 698 

several important considerations about both the applicability of the tools and the types of data on 699 

which to use them. Most importantly, practical implementation of these new tools will vary 700 

across study systems, and it will differ based on the questions asked. Therefore, researchers 701 

should not blindly implement these new techniques; instead, as with any other approach, they 702 

should be driven by their research questions and ensure that the tools and data are appropriate for 703 

answering those questions.   704 
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 705 

3.1. When and how to use multilayer network analysis  706 

Multilayer network analysis adds complexity to the representation, analysis, and 707 

interpretation of data. Therefore, it should be applied only when incorporating a system’s 708 

multifaceted nature can contribute to answering a research question, without adding needless 709 

complexity to data interpretation. Different types of social relationships may differ in the ‘units’ 710 

of their measurement, and it can be challenging to interpret multilayer network analysis of such 711 

integrated data. For example, if one layer represents genetic relatedness and another represents a 712 

social interaction, a multilayer similarity measure can reveal one or more relationships between 713 

these layers, but a versatility measure that uses both layers may be impractical or confusing to 714 

interpret, because they encode different types of connectivity data (i.e., relatedness and 715 

behaviour). In a similar vein, intralayer and interlayer edges can have entirely different meanings 716 

from each other, and it can sometimes be difficult to interpret the results of considering them 717 

jointly ((Kivelä et al., 2014); Appendix I).  718 

Therefore, while the strength of using a multilayer network formalism is that it includes 719 

more information about interactions than a monolayer network, it is imperative to consider 720 

carefully which interactions to include in each layer, based on the study question. It is also 721 

important to be careful about which calculations are most appropriate for the different layers in a 722 

multilayer network, based on the functions of those layers, especially when they represent 723 

different behaviours. 724 

 725 

3.2. Data requirements  726 
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Just as in monolayer network analysis (or in any study that samples a population), a key 727 

challenge is collecting sufficient and/or appropriately sampled data that provide a realistic 728 

depiction of the study system (Newman, 2018a, 2018b; Whitehead, 2008). Breaking data into 729 

multiple layers can result in sparse layers that do not provide an appropriate sample of the 730 

relationships in each layer. Further, if data sampling or sparsity varies across different layers or if 731 

the frequency of behaviours differs drastically, one layer may disproportionally dominate the 732 

outcome of a multilayer calculation. To avoid domination of one data type, one can threshold the 733 

associations, normalize edge weights, adjust interlayer edge weights (Appendix I), or aggregate 734 

layers (Appendix II) that include redundant information (De Domenico, Nicosia, Arenas, & 735 

Latora, 2015). 736 

It is important to compare computations on a multilayer network to those on suitable 737 

randomizations (Farine, 2017; Kivelä et al., 2014). Just as in monolayer network analysis 738 

(Fosdick, Larremore, Nishimura, & Ugander, 2018; Newman, 2018c), it is important to tailor the 739 

use of null models in multilayer networks in a context-specific and question-specific way. For 740 

example, some network features may arise from external factors or hold for a large set of 741 

networks (e.g., all networks with the same intralayer degree distributions), rather than arising as 742 

distinctive attributes of a focal system.  743 

 744 

3.3. Practical availability and further development of multilayer methodology  745 

In practice, there are many ways for researchers in animal behaviour to implement 746 

multilayer network analysis. Existing software packages for examining multilayer networks 747 

include MuxViz (De Domenico, Porter, et al., 2015), Pymnet (Kivelä), and the R package 748 

Multinet (Magnani & Dubik, 2018). In Table 1, we summarize available tools for implementing 749 
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various measures. Multilayer network analysis is a rapidly growing field of research in network 750 

science, and new measures and tools continue to emerge rapidly. Because this is a new, 751 

developing field of research, many monolayer network methods have not yet been generalized 752 

for multilayer networks; and many of the existing generalizations have not yet been implemented 753 

in publicly-available code. Additionally, many multilayer approaches have been published 754 

predominantly as proofs of concept in theoretically-oriented research or have been implemented 755 

only for multiplex networks, but not for other multilayer network structures (such as 756 

interconnected networks). Furthermore, multilayer networks with multiple aspects (e.g., time and 757 

behaviour type) have rarely been analysed in practice, and the potential utility of using multiple 758 

aspects to investigate questions about social behaviour may propel the development of tools to 759 

do so.  The ongoing development of user-friendly software and modules is increasing the 760 

accessibility and practical usability of multilayer network analysis. Multilayer network analysis 761 

is very promising, but there is also a lot more work to do, as detailed above. Interdisciplinary 762 

collaborations between applied mathematicians, computer scientists, social scientists, 763 

behavioural ecologists, and others will be crucial for moving this exciting new field forward.  764 

 765 

4. Conclusions 766 

 In this article, we have discussed the use of multilayer network analysis and outlined 767 

potential uses for providing insights into social behaviour in animals. Multilayer networks 768 

provide a useful framework for considering many extensions of animal social network analysis. 769 

For example, they make it possible to incorporate temporal and spatial processes alongside 770 

multiple types of behavioural interactions in an integrated way. We have highlighted examples in 771 

which multilayer methods have been used previously to study animal behaviour, illustrated them 772 
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with several case studies, proposed ideas for future work in this area, and provided practical 773 

guidance on some suitable available methodologies and software (Table 1). Using multilayer 774 

network analysis offers significant potential for uncovering eco-evolutionary dynamics of animal 775 

social behaviour. Multilayer approaches provide new tools to advance research on the evolution 776 

of sociality, group and population dynamics, and the roles of individuals in interconnected social 777 

and ecological systems. The incorporation of multilayer methods into studies of animal 778 

behaviour will facilitate an improved understanding of what links social dynamics across 779 

behaviours and contexts, and it also provides an explicit framework to link social behaviour with 780 

broader ecological and evolutionary processes (Silk, Finn, Porter & Pinter-Wollman, 2018). 781 
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Table 1: A non-exhaustive selection of multilayer network approaches for studying questions in behavioural ecology. We provide a 782 
description of each tool and point to software in which they are implemented. We note the organizational level(s) (individual (I), 783 
group (G), population (P), and evolution (E)) of the tools. We provide examples of questions that can be investigated with each 784 
approach. These questions provide general guidelines for more specific hypotheses that would be guided by the study system and 785 
biological questions of interest. 786 
 787 

Research 

aim 

Level 

(I/G/P/E) 
Examples of questions 

Multilayer 

approach 
Description 

Software 

package 

Citation 

Identify 

important or 

influential 

nodes or 

edges 

I/G 

• How will a group be affected if certain 

individuals are removed? 

• Is social influence determined by 

interactions in more than one situation?  

• Which relationships are most critical for 

group cohesion (when applying measures 

to edges)? 

• How stable is an individual’s importance 

over time? 

Eigenvector 

versatility  

 

Multilayer extension of eigenvector 

centrality, for which an individual’s 

importance depends on its 

connections within and across layers 

and on the connections of its 

neighbours.   

MuxViz 

(De 

Domenico, 

Porter, et 

al., 2015)  

(De 

Domenico, 

Solé-Ribalta, 

et al., 2015) 

• Which individuals link the most 

individuals in a group within or across 

social situations and/or over time? 

• How important is an individual for group 

cohesion?  

Betweenness 

versatility  

 

Multilayer extension of geodesic 

betweenness centrality, which 

measures how often shortest paths 

(including both intralayer and 

interlayer edges) between each pair 

of nodes traverse a given node. 

MuxViz 

(De 

Domenico, 

Solé-Ribalta, 

et al., 2015) 

• Does the role of an individual in its social 

group carry over across social situations? 
Multidegree 

A vector of the intralayer degrees of 

each individual across all layers 

Pymnet 

(Kivelä, 

n.d.) 

(Menichetti, 

Remondini, 

Panzarasa, 

Mondragón, 

& Bianconi, 

2014) 
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Quantify 

network 

properties at 

different 

scales 

 

G/P/E 

 

• What are the coherent groups in a network 

of animals? 

• Which individuals preferentially interact 

with each other in different or multiple 

contexts? 

Multislice 

modularity 

maximization, 

Multilayer 

InfoMap 

Identifies communities of 

individuals in which the same 

individuals in different layers can be 

assigned to different communities. 

MuxViz;  

GenLouvai

n:  

https://gith

ub.com/Ge

nLouvain/

GenLouvai

n 

(Mucha et al., 

2010) 

• What are the social communities, core–

periphery structures, or other large-scale 

structures in different types of social 

situations? 

Stochastic block 

models  

 

Statistical models of arbitrary block 

structures in networks. 

 

Graph-tool 

(Python) 

(Peixoto, 

2015) 

• Are there consistent, ‘typical’ types of 

interaction patterns across social 

situations? 

Motifs 

Interaction patterns between multiple 

individuals (e.g., node pairs or triples), 

within and/or across layers, that 

appear more often than in some null 

model. 

MuxViz 

(Battiston, 

Nicosia, 

Chavez, & 

Latora, 2017; 

Wernicke & 

Rasche, 

2006) 

• How similar are the interaction patterns in 

different social situations? 

• How often do interactions between 

individuals co-occur in multiple 

situations? 

Global overlap 

Number of pairs of nodes that are 

connected by edges in multiple   

layers. 

MuxViz; 

Multinet R 

package 

(Magnani 

& Dubik, 

2018) 

(Bianconi, 

2013) 

 

Model 

statistical 

properties of 

a network 

G/P/E 

• Are interaction patterns influenced by 

group size? 

Randomization 

for multilayer 

networks  

Construction of randomized 

ensembles of synthetic multilayer 

networks for comparison 

Pymnet 

(Python) 

(Kivelä et al., 

2014), 

Section 4.3 

• Are relationships or interactions in one 

social situation related to relationships or 

interactions in a different social situation? 

Exponential 

random graph 

model (ERGM)  

An extension of ERGMs to multilayer 

networks  

 

MPNET 

(Java-

based) for 

(Heaney, 

2014; P. 

Wang, 
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• Are relationships at one time point related 

to those at a different time point? 

 

 

two-layer 

multilayer 

networks 

Robins, 

Pattison, & 

Lazega, 

2013) 

• How do network relationships in one 

social situation or at one point in time 

affect subsequent relationships in other 

situations or at other times? 

Markov models 

of co-evolving 

multiplex 

networks 

 

 

Stochastic actor-

oriented models 

for multiple 

networks  

Models of the probability of an edge 

existing in a layer at one time as a 

function of an edge existing between 

the same pair of nodes in any layer in 

the previous time. 

 

 

Statistical models of what influences 

the creation and termination of edges 

between times. The version that we 

consider can model the co-evolution 

of two networks (or two layers) as a 

result of their influence on each other. 

Multiplex

MarkovCha

in: 

https://gith

ub.com/vkr

msv/Multip

lexMarkov

Chain 

 

Code 

available at   
https://ww

w.stats.ox.a

c.uk/~snijd

ers/siena/si

ena_scripts.

htm 

 

 

 

(Fisher et al., 

2017; 

Vijayaraghav

an, Noël, 

Maoz, & 

D’Souza, 

2015) 

 

https://github.com/vkrmsv/MultiplexMarkovChain
https://github.com/vkrmsv/MultiplexMarkovChain
https://github.com/vkrmsv/MultiplexMarkovChain
https://github.com/vkrmsv/MultiplexMarkovChain
https://github.com/vkrmsv/MultiplexMarkovChain
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 788 
 789 
 790 

 791 

Modeling 

disease or 

information 

transmission 

I/G/P 

• What are the roles of different types of 

social interactions or individuals in 

information or disease transmission? 

• Do different types of transmission interact 

or interfere with each other?  

o For example, can the spread of 

information mitigate the spread 

of a disease? 

o Can the spread of one infection 

enhance or reduce the spread of a 

second infection? 

• What influences disease transmission in 

multi-species communities? 

Compartmental 

models on 

networks 

 

Classic epidemiological models that 

assume that individuals exist in one of 

several states, with probabilistic 

transitions between states. For 

example, SIR models have 

susceptible, infective, and recovered 

(or removed) states; and SI and SIS 

models have only susceptible and 

infected states. These models are 

sometimes amenable to mathematical 

analysis, but stochastic simulations are 

often more accessible. 

EpiModel 

(R 

package) 

(temporal 

multiplex 

networks 

only) 

(“EpiModel

,” n.d.; 

Jenness, 

Goodreau, 

& Morris, 

2017) 

(Pastor-

Satorras et al. 

2015; Kiss et 

al. 2017; 

Porter and 

Gleeson 

2016) 
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