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Abstract 

Vaccination  of older adults is a key component of public health policy, but 

further evidence is required to understand its effectiveness in practice. 

Electronic health records (EHRs) present a potential alternative to the gold-

standard evidence of clinical trials, particularly for populations, such as older 

adults, who may be under-represented in trials due to ethical and practical 

constraints in recruitment. Importantly, EHRs also allow the real-world study of 

an intervention as it is delivered in practice, and its effect in clinically important 

sub-groups. However, EHRs are not purposed to collect informaton on 

confounders, which may bias results from the analyisis of routinely-collected 

data. This motivated my review of quasi-experimental (QE) methods as a 

means of indirectly adjusting for confounding. My published methodological 

review found that the longitudinal information available in EHRs offer many 

opportunities for mitigating against confounding bias, but many methods may be 

under-utilised. The  prior event rate ratio (PERR) and its alternative formulation, 

described under the Pairwise framework, is a recently developed method that 

utilises longitudinal information. This before-and-after approach can be applied 

to rate and survival data, allowing an easy comparison to many trial results. The 

data on vaccination in UK older adults was also the basis for further study of the 

performance and limitations of the method beyond exisiting simulation studies. 

Through comparison to weighted regression, I demonstrated how the source of 

confounding and robustness of the results could be explored. In a novel 

application of the PERR and Pairwise methods to interactions, I investigated the 

effectiveness of the pneumococcal vaccine in older patients, and found 

evidence for an increase in effectiveness with age across the years of policy 

implementation, 2003-2005. In my investigation of the influenza vaccine in 

annual cohorts from 1997 to 2011, I found consistent evidence of a moderately 

protective effect against myocardial infarction, but that this may decrease with 

age. The evidence also indicated a protective effect against influenza itself, but 

no age trend in its effectiveness was detected.  
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Chapter 1  -  Introduction 

1.1 Introduction 

It is the digital storage of routinely-collected health data that underpins this PhD 

as well as many other current, observational investigations into human health. 

Many casual observers will be aware of the rise of the “big data” phenomenon - 

an inevitable consequence of improvements in not only computer hardware, 

processor speeds and data storage, but also in the connectivity of distributed 

computing. This has greatly influenced the direction of health research, with 

benefits to the relatively new science of bioinformatics through increases in the 

capacity to store and analyse ever larger data from genetic studies and 

molecular biology. Simultaneously, the growth of “big data” has led to a greater 

investment in other observational studies, and the development of “real-world 

evidence”: Large, observational data on a population from routinely-collected 

electronic health records (EHR) may allow investigators to observe the effect of 

an intervention, away from the constraints of a clinical trial and according to how 

it might be delivered in practice, under real-world conditions. Extra information 

is likely to be available from longer follow-up times, enabling the monitoring of 

long term adverse events, or the discovery of unexpected, secondary benefits 

of a treatment. Furthermore, larger data captures more information across a 

wider mix of patients, and hence results can be compared across a variety of 

key sub-groups. EHR data tend to be more representative of the population 

from which they have been sampled, than trial data, and so results from 

analysis are more easily generalisable to that same population. In particular, 

some risk groups, such as older patients, may be under-represented in trials 

due to ethical and practical issues in recruiting to clinical randomised trials. 

However, in the absence of experimental rigor designed into clinical trials, this 

improvement in the representativeness of the sample (and thus, the 

generalisability of the results to the population of interest) may come at the 

expense of the accuracy of the results i.e: internal validity. The doubt over 

internal validity implies that results may not be reliable estimates of the true 

effect being investigated. 
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An oft cited example in relation to the problem of misusing “big data” for health 

is that of Google Flu Trends. Briefly, this approach used an unsupervised (i.e: 

theory free), algorithmic machine-learning to estimate the arrival of the annual 

influenza season based on the top 50 million search terms. The findings were 

published in Nature and the system proved to be much quicker than the usual 

surveillance through the sentinel laboratories of the Centre for Disease Control 

and Prevention. Unfortunately, the system also proved to be error-prone when 

the spread of influenza-like illness was overestimated by nearly a factor of two 

for the 2012/2013 influenza season. This was a problem of prediction modelling 

however, rather than one of inference, but the anecdote serves to illustrate the 

need for a robust model-based approach to investigating clinical questions. 

The threat to internal validity may arise through more than one mechanism, but 

all variously lead to biased estimates of the treatment or exposure under 

investigation. The focus of this PhD was to seek causal inference from 

observational data, mitigating for the bias arising from an absence of 

information about important prognostic factors related to the outcome of 

interest. Given the prognostic factors are often likely to be imbalanced between 

exposure groups, confounding the effect of treatment, the resulting bias is 

referred to as confounding bias. Confounding and how it biases causal 

inference will be given a fuller discourse in a subsequent section in this chapter. 

Methods are available for correcting for confounding bias, and many of these 

were presented in a comprehensive systematic review, which was performed as 

part of this PhD project and published in the Journal of Clinical Epidemiology. 

This is included as the second chapter of this thesis, and is supplemented with 

a subsequent chapter comprising a review of sensitivity-analysis methods, 

presenting a complementary approach to the problem of confounding. 

As will become apparent in the method review, many methods were developed 

for economic data, and many are only applicable to continuous outcomes. 

Health research is often concerned with the epidemiological study of outcomes 

presented as binary clinical events, such disease states or death. The 

complement to the study of the rate at which clinical events occur is a 

prognostic investigation of the time until such an event occurs. In health 

research, survival until an event such as a disease or death or recovery from 
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disease is of intrinsic, prognostic clinical interest, and so survival analysis is 

often the method used for evaluating the effect of intervention in many trials. 

Therefore, this PhD sought to focus on extending the application of particular 

quasi-experimental (QE) methods that can be used to adjust for bias arising 

from unmeasured confounding in survival data. These methods were the prior 

event rate ratio (PERR) method, and its alternative formulation, described as 

under the Pairwise framework. Although these particular methods were covered 

in the method review of chapter two, a literature review of the PERR and 

Pairwise methods is presented and discussed in chapter four. 

Following chapter four are two chapters, which use QE methods applied to EHR 

data, to investigate the real-world effectiveness of vaccination in older adults. 

Observational studies such as these have an important role in the study of older 

adults, and other populations that may be under-represented in clinical trials 

due to ethical and practical barriers to recruitment. The data used for the 

studies are introduced in a section below (section 1.6), and in another (1.7), 

details of the clinical question and the population are presented. Both chapters 

five and six have been written with intention of soon being submitted for 

publication in a clinical journal and will likely be submitted between the 

submission of this thesis and the viva voce. In the final chapter, the findings are 

summarised and the implications presented. The challenges in applying the 

PERR and Pairwise methods to this particular population and their performance 

are also discussed, along with any further methodological constraints and 

opportunities for development that were identified. 
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1.2 History of causal Inference 

A definition of causal inference, seemingly so fundamental to empirical scientific 

discovery, has its roots in philosophy, and a history of development that dates 

back to work by John Stuart Mill (A System of Logic, Ratiocinative and 

Inductive, 1843), David Hume (A Treatise of Human Nature, 1739) and Sir 

Francis Bacon (Novum Organum, 1620), with influences from the classical 

Greek world in figures like Aristotle 1,2. 

The concept of causal inference may at first seem intuitive to lay-people and 

scientists alike, as it asks the question: 

 

What causes an observed event? 

 

It is this experimental approach to resolving the problem of causal inference that 

is found in Jerzy Neyman’s work on experimental design in agronomy for his 

Master’s thesis 3. This was considered by many to be a landmark development 

in a statistical framework for causal inference, although many leading statistical 

figures such as Ronald Fisher, Sir Austin Bradford Hill, William Cochran, David 

Cox and others have been acknowledged as contributing to the development of 

what came to be known as the potential outcomes framework 4–6. The 

understanding of causal inference in the context of this PhD project was based 

on the potential outcomes framework, also referred to as the counterfactual 

model. However, it is accepted that this may oversimplify and reduce real-world 

mechanisms to an untestable theory 7. 

The potential outcomes model is sometimes attributed to Donald Rubin 8 as 

Rubin’s causal model 9, although Rubin, himself, modestly acknowledged that 

his efforts extended much work that had preceded his. While the model 

provided a framework for understanding the mechanism of inference from 

experimental data, this was also extended to observational data 10. Donald 

Rubin with Paul Rosenbaum would later seek a solution to the problem of bias 

in observational data arising through from the imbalance in prognostic variables 

between treatment groups – the confounders of the effect of treatment. They 



   
 

 27 

proposed that the unbiased average treatment effect could be estimated 

through either matching on, or adjusting for, a propensity score – the predicted 

membership of one of two treatment groups from a logistic model of the 

measured confounding variables 11. Robins, Hernán and Brumback also 

demonstrated the application of the propensity score to the construction of the 

marginal structured model 12. This estimated the marginal effect, the inverse 

probability treatment weight estimator, from an analysis weighted by the inverse 

of the propensity score. Stabilisation of the weights could also be achieved by 

adjustment in the numerator of the weights for the expected probability of 

treatment group membership, thereby reducing the influence of extremely large 

weights from a few subjects. However interpretation of the marginal estimate 

requires caution in the presence of consequential heterogeneity 13, where the 

estimated effect on the treated group will be different from that of the controls. 

1.3 Causal inference framework 

Central to the framework is Rubin’s condition of ignorability, using notation in 

Rosenbaum and Rubin’s work on propensity scores 11: 

(𝑌0, 𝑌1) ⊥ 𝐴 

which gives the joint independence of potential outcomes Y0 and Y1, and 

treatment assignment, A. Hernán deploys a useful and more succinct notation 

14 for expressing causal effect in the context of potential outcomes. For the 

outcome Y, and a binary exposure or treatment A, each individual provides a 

pair of counterfactual outcomes Ya: 

𝑌𝑎⨆𝐴 

This implies the property of exchangeability to be true so where the potential 

outcome a of outcome Y is independent of the actual exposure or treatment A. 

This may at first seem counterintuitive, but more simply it states that 

membership of exposure group A should have no effect on the potential 

outcomes, Ya, of each individual. Put another way, this means that for any 

individual, if A=1 is assigned, potential outcome Ya=0 will equal the observed 

outcome under A=0, and vice versa. 
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Knowledge about the potential outcome of each individual, i.e: knowledge about 

a=0 when a=1 is observed and vice versa, renders the cause identifiable. 

Simply, causation cannot be attributed if only Y=1 is observed under A, since 

the counterfactual outcome Y of A could either be 1 or 0 15. Similarly the same 

argument is true, if Y=0 is observed under A. Hence causation can be inferred 

when: 

𝑌𝑎=1 ≠ 𝑌𝑎=0 

However, the impossibility of observing both potential outcomes of each 

individual under A should be clear, so that it is impossible to estimate the 

individual causal effect, δ: 

𝑌𝑎=1 − 𝑌𝑎=0 = 𝛿 

but, if the property of ignorability can be assumed, then causation can be 

inferred from association: 

𝑌𝑎 = 𝑌|𝐴 

Under this property, the group comprising individuals under one level of the 

exposure are exchangeable with those under the other level. This enables the 

effect of exposure, say T, to be estimated from individuals that are different in 

each level of exposure. Therefore while the outcome for the exposed individual, 

Ya=1, from set of individuals from population A under exposure level T=1 is 

observed, its counterfactual can be observed as the outcome, Yb=0, under 

exposure level T=0 comprising a different set of individuals from population B. 

This property of exchangeability assumes E[Ya=0] = E[Yb=0] (and conversely, 

E[Ya=1] = E[Yb=1]) in the population of individuals. While the true average causal 

effect for individuals in group A is expressed as risk difference as 

𝐴𝐶𝐸 = 𝐸[𝑌𝑎=1|𝑇 = 1] − 𝐸[𝑌𝑎=0|𝑇 = 0], 

the observed effect is the difference between the outcomes in group A under 

T=1 and outcomes in group B under T=0, and can be expressed as 

𝐴𝐶�̂� =  𝐸[𝑌𝑎=1|𝑇 = 1] − 𝐸[𝑌𝑏=0|𝑇 = 0] 

= (𝐸[𝑌𝑎=1|𝑇 = 1] − 𝐸[𝑌𝑎=0|𝑇 = 0]) + (𝐸[𝑌𝑎=0|𝑇 = 0] − 𝐸[𝑌𝑏=0|𝑇 = 0])   
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This is expressed equivalently, and perhaps more succinctly, as the outcome 

parameters of populations A and B, using Greenland and Morgenstern’s 

notation2: 

𝜇𝐴1 − 𝜇𝐵0 = (𝜇𝐴1 − 𝜇𝐴0) + (𝜇𝐴0 − 𝜇𝐵0) 

where the true effect is μA1 – μA0 , and μA0 – μB0 is the potential bias between 

populations A and B (where  denotes the population mean for the 

counterfactual of a particular group indicated by the subscript). The true effect 

can also be expressed analogously as a ratio: 

𝜇𝐴1

𝜇𝐵0
=

𝜇𝐴1

𝜇𝐴0
∙

𝜇𝐴0

𝜇𝐵0
 

There are of course other assumptions required in the identification of causal 

pathways. The exposure or intervention has to necessarily be well-defined, and 

not subject to multiple interpretations or versions 16. There has to be 

independence between individuals with respect to the intervention, and also the 

outcome, as in robust experimental design 17, referred to in the observational 

sense as the stable-unit-treatment assumption 18. Mediation has not been 

discussed and in the discourse so far, has been assumed to be absent, yet the 

causal mechanism may not be properly identified without information on any 

mediators present 19. This consideration links causal inference of the average 

causal effect to structural equation modelling, in which the interactions and the 

heterogeneity of the average causal effect are also considered. Causal 

inference in the presence of interactions was a topic of interest for this PhD 

project, and results from this are presented in later chapters. It should be noted 

in the presence of interactions, the exposure effect, when expressed as a ratio, 

will be different for the marginal effect and the conditional effect within strata of 

the covariate2. Whether the marginal and within-stratum conditional risk or odds 

ratios are equivalent is an issue of collapsibility. This sometimes gives rise to 

marginal and conditional ratios that are in the opposite direction, known as 

Simpson’s paradox 20,  which is dependent on the measure of association. This 

is sometimes mistakenly identified as confounding, i.e: missing information on 

covariate imbalance. 



   
 

 30 

1.4 Causal inference and unmeasured confounding 

The development of causal inference for observational data with methods 

based on the property of conditional ignorability assumes the availability of 

information on confounders within the data, so that individuals in the exposed 

and unexposed groups of A are conditionally exchangeable given confounder(s) 

C: 

𝑌𝑎 ∐ 𝐴|𝐶 

Without the tool of randomisation and experimental control over endogenous 

factors in a randomised controlled trial (RCT), unbiased causal inference from 

observational data relies not only on the correct specification of confounders in 

the inferential models, but also on the confounders , C, being identified and 

recorded in the data in the first place. Reliance on the availability of information 

on all confounders is likely to be unrealistic with retrospective observational 

data. Even when data collection can be planned for prospective studies, there 

may be practical difficulties in collecting data for all primary confounders, and a 

failure to either identify or correctly model the confounders leading to persistent 

bias 21,22. 

There are different approaches offered by a raft of methods that could be best 

described collectively as quasi-experimental methods. Developed in parallel to 

those methods based on propensity scores found in medicine, QE methods 

largely have their origins in the disciplines of social sciences and econometrics 

23–25, where randomised experiments are not practicable. A more 

comprehensive review of these methods is given in the published paper 

comprising chapter two. 

The implication in the discourse on, and history of, causal inference by Cook 

and Campbell 26 is that the answer to the question regarding what has caused 

an event will depend on the philosophy that is followed in seeking the answer. 

In their own framework for causal inference, the distinction between “molar“ and 

“micromediation” is appropriate for medicine and biology, in which causality may 

be observed at the molar level (e.g: human physical activity leads to energy 

expenditure), but ultimately occurs at a micromediational level (e.g: the complex 

system of biochemical pathways involved between physical activity and energy 
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expenditure). Additionally, the comparison between open and closed systems 

helps underpin understanding of causal inference in medicine and human 

health. In observational data, the systems are decidedly “open”, easily leading 

to the “essentialist” view of cause and effect, in which all causal pathways are 

necessarily considered together. RCTs therefore attempt to emulate a closed 

system, in which stratification may control any endogenous relationships 

between known confounders and the outcome, and randomisation attempts to 

stochastically control for any remaining unmeasured confounding. The RCT 

therefore leads to a more experimentalist view of causal inference: 

 

What will happen if I change what I think is the cause? 

 

or perhaps more inferentially: 

 

Will changing what I think is the cause explain the cause of an observed 

event? 

 

While causal relationships need to be considered in designing an RCT to limit 

chance confounding relationships due to imperfect randomisation and/or non-

compliance, the open system representing observational data relies more 

heavily on understanding the causal pathways for the correct estimation of 

cause-and-effect in subsequent modelling. In this context, Pearl 27 considered 

causal inference to be a “nonparametric generalisation of the linear structural 

equation models” first developed for research in Economics 28. It was proposed 

that this could be helpfully illustrated through diagrammatic representation such 

as directed acyclic graphs (DAGs). Pearl considered an understanding of the 

underlying deterministic data-generation process to be essential for identifying 

true confounders as well as cause-and-effect 29. Paradoxically, such an 

understanding may be difficult to achieve in the open system of observational 

data 30. To that end, DAGs merely represent a hypothetical relationship, and the 
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risk oversimplifying causal pathways at the micromediational level of an open 

system. 

After nearly a century since Jerzy’s Master’s thesis, it is surprising that the 

potential outcomes approach is still challenged today 31. Questions have been 

raised over its relevance to description and surveillance within the spectrum of 

epidemiological investigation that extends to the aetiological 32. While criticism 

of the formal approach to quantitative causal inference in epidemiology has 

been shown to be misguided 33,34, another debate has highlighted the danger of 

oversimplifying or mis-specifying causal relationships, which DAGs are merely 

purposed to illustrate 30,35. Disagreements over the exact role of causal 

inference in epidemiology may in part be down to the RCT paradigm as the gold 

standard and exemplar of causal inference, which as already noted, may not sit 

well within the essentialist understanding of the open system that is human 

biology. Aalen, Roysland et al. perhaps best diagnose the role of RCTs in the 

confusion over causal inference by pointing out the limitations of RCTs in 

understanding causality: “Intervention and manipulation exhibit causality, but do 

not necessarily define it” 36. This is understood to acknowledge the inadequacy 

of the one-variable-at-a-time approach under the idealised conditions of an RCT 

for understanding complex biological networks of cause-and-effect particularly 

under homeostatic equilibrium, where observed variables may act as mediators 

and moderators of other effects. Beside their excellent treatise on the 

development of causal inference, Aalen, Roysland et al. argued a compelling 

case for explicitly including direction of effect relative to time in the causal 

inference framework, a property that is missing from much of the literature 

discussing causation, including DAGs. They argued that the time direction of a 

relationship can simply determine whether or not to condition on a variable 

rather than relying on identification of variables as possible colliders. It is in this 

context of time in causal inference, that the argument is made for inclusion of 

longitudinal information in the QE adjustment of longitudinal data in the method 

review of chapter two, which in turn supports the review of the PERR and 

Pairwise methods in chapter four and understanding of the analyses conducted 

in chapters five and six. 
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1.5 Confounding bias and quasi-experimental methods 

The problems posed by identifying potential confounders and correctly 

specifying the causal pathways of the confounders and other variables have 

contributed to the need for what is defined for the purposes of this PhD project 

as a QE approach to causal inference from observational data. Missing 

observations and missing information on key variables in the causal pathway 

are common problems with observational data. Variables that are associated 

with both the outcome and the exposure will confound any causal relationship 

between the outcome and exposure. (Paradoxically, if the confounder is 

measured without error and correctly specified in the inferential model then it is 

no longer a confounder, but just another adjustment variable. Therefore, the 

extra clarification of confounders as unmeasured or otherwise may be regarded 

as superfluous in the context of statistical modelling). In medicine, where 

interest is in the risk from exposure to a disease or in the effectiveness of a 

particular health intervention, the exposure or treatment is likely to be discrete 

and represented as a binary indicator variable. Therefore, potential confounders 

are any prognostic variable or a predictor of the outcome, which is distributed 

unequally between the exposed groups. Where the exposure or intervention is 

continuous, such as in the case of blood pressure or drug dosage, then 

prognostic variable would be distributed unevenly across the spectrum of the 

exposure to qualify as a confounder. Consequently, this creates uncertainty 

over how much of the difference in outcome between exposed groups should 

be attributed to the exposure itself or the confounding variable, which is wholly 

or partially aliased with the exposure. Age, which may commonly determine the 

prognosis of a disease in patients, may be balanced between intervention 

groups in an RCT either deterministically through stratification or stochastically 

through randomisation. Away from the controlled allocation of the intervention in 

an RCT, patients are likely to be selected for treatment on important prognostic 

variables such as age. Therefore in an observational study of any real-world 

scenario, the distribution of age may be different in each treatment group, 

leading age to potentially confound any observed effect of treatment. If the 

estimated effect of an exposure or treatment is not adjusted for confounding 

variables, then the effect of the confounding remains in the residual of any 

regression, biasing the estimates of the variables that are confounded. This 
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creates a threat to what is termed as the internal validity of the model and its 

estimates. If a variable is causally linked to only one of either the exposure or 

the outcome, then the variable is no longer an endogenous variable and a 

potential confounder, but an exogenous variable. If causally linked exclusively 

to the exposure, it can be considered an instrument of the exposure. If a causal 

determinant of the outcome only, then it is just another adjustment variable to 

be included in the regression model to reduce the error of the estimates. 

QE methods obviate the need to identify and correctly model all confounding 

relationships, although such methods often require meeting certain sets of 

assumptions. The assumptions required of analytical methods, that can be used 

in comparative effectiveness studies, are detailed in the method review of 

chapter two. Additionally, each method requires the data to either be configured 

in a certain way, such as having a longitudinal dimension for before-and-after 

designs, or exhibit certain properties, such as the availability of instrument(s) of 

the exposure in instrumental variable analysis. Collectively when data 

conveniently provide such properties that may accommodate a QE  approach, 

the data are said to provide a “natural experiment”. 

Applying QE methods to observational data to control for confounding bias 

obviously benefits the internal validity of the resulting estimates. However, there 

are also advantages to using observational data over experimental data, as will 

be explained in the following section on data and real-world evidence.  

1.6 Routinely collected data 

The aim of this PhD project was to research, apply and extend the use of 

particular QE methods to facilitate causal inference from observational data, 

primarily routinely-collected data (RCD) or administrative data. In medicine, this 

data is frequently encountered as patient information, collected and stored in 

the UK for the purpose of maintaining continuity of care. Since these data are 

routinely stored and accessed digitally, they are often referred to as “electronic 

health records” (EHRs), and henceforth will be referred to as such, although 

they may also be referred to as electronic medical records, electronic patient 

records and personal health records in the literature 37. Such data may also 

include claims against health insurance, particularly in the US. Primarily 
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recorded for actuarial and administrative purposes in the reimbursement of 

claims by the insurance industry, these can also be considered as EHRs, since 

they track healthcare usage and have been used to facilitate studies into health 

and health service utilisation, as evidenced in the systematic review of chapter 

two. 

The data for this PhD project were provided by the Clinical Practice Research 

Datalink 38, formerly the General Practice Research Database. The database 

collects primary-care data from GP surgeries using the Vision/EMIS IT systems, 

but began life as a useful record-keeping system in the management of a single 

General Practice 39.  With development by information technology specialists 

and linkage to data from other databases including the Office of National 

Statistics and Hospital Episode Statistics, this had grown into a data brokerage 

service, providing observational data for research into epidemiology, pharmaco-

economics, pharmacovigilance and risk-monitoring 40 . A review of its resources 

estimated it had records on over 11.3 million patients from 674 practices 41. 

Other sources of EHR data in the UK are Q-Research, ResearchOne, The 

Health Improvement Network and the Secure Anonymised Information Linkage 

databank. 

More recently, the boundary between RCD and trial data has become 

increasingly blurred as large-scale trials are integrated with RCD 42–45. The 

integration between trial and RCD is ideally suited for conducting pragmatic, 

open-label randomised trials. Dubbed point-of-care trials in the context of EHR 

data, the Randomised Evaluations of Accepted Choices in Treatment (REACT) 

trial recently explored the feasibility of using the CPRD system as a data 

collection service, and a real-time recruitment tool, randomising at the point of 

care 46. This was in part motivated by the paradox of “research exceptionalism”, 

which describes the contradiction between guidelines informing clinical good 

practice and regulations governing trials 47. Where there is an absence of 

sufficient evidence from comparative effectiveness studies, the choice in 

prescribing one out of set of similar drugs may entirely arbitrary and so the 

clinician may rely on his or her own judgement. However, should the clinician try 

to conduct research for determining the comparative effectiveness of the drugs, 

then paradoxically, this would be subject to rules that are far more stringent 

than those regulating clinical practice. The expansion beyond the merely 
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observational has been reflected in the changes to the services offered on the 

CPRD website, which now promises electronic Case Report Forms to facilitate 

point-of-care and phase III trials, in addition to the more commonly encountered 

use of EHR data for ecological, descriptive studies and for phase IV safety-

monitoring. In parallel, there has been a commensurate growth in 

methodological innovation to facilitate conducting trials using EHRs, particularly 

in clustering to accommodate treatment allocation at the general practice level 

48. 

The shift in the use from descriptive epidemiological and risk-monitoring studies 

to including more inferential studies and trials has been supported in the UK by 

funding calls into research based on EHRs, primarily from a consortium of 

funding bodies led by the Medical Research Council, and also by collaborations 

with the pharmaceutical and healthcare industries, such as the EU-wide Get 

Real, a three-year project initiated in 2013. In the US, the greater integration of 

EHRs into research can partly be evidenced in legislative changes such as the 

introduction of the Health Information Technology for Economic and Clinical 

Health (HITECH) Act of 2009 in the US. This mandated a process for improving 

the “privacy and security provisions” in the exchange and use of EHRs and set 

out a program for incentivising a “meaningful use of certified EHR technology”. 

In the UK too, the use of EHRs are more and more an integral part of public 

health policy 49,50. Overall, the view of stakeholders in the UK healthcare system 

would seem to vindicate the huge interest in using EHRs to improve clinical 

care, although there are some concerns about the quality of the data. From the 

report entitled Future of Health: Findings from a Survey of Stakeholders on the 

Future of Health and Healthcare in England 51, these concerns have tended to 

be over linkage to other useful data; uniformity and coherence between 

datasets; and reliability of the recorded data. 

As witnessed by the view of stakeholders, it is perhaps a commonly held view 

on EHRs that there are many issues to resolve around linkage and data quality 

52, and that next to RCTs, that the data are messy, plagued with missingness, 

noncompliance and the incorrect recording of observations. However, it was a 

view expressed by Tjeerd van Staa at the NIHR Statistics Group annual 

meeting in Sheffield 2016, that data are not necessarily error free because they 

are found on a trial’s case report form (CRF). A CRF presents a pristine view of 
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the real-world mess that is evident through EHRs, and that the underlying data 

could so easily be messy and imperfectly collected. However, internal validation 

at the CPRD aims to ensure an acceptable standard of data quality 40,53. The 

availability of up-to-standard (UTS) dates is one measure of assurance about 

the quality of the data. This is the date from which the data from a particular 

practice are determined by the CPRD to be of research quality based on the 

practice’s death recording and gaps in the data. The UTS date was used in this 

PhD project in the selection of patient cohorts to exclude any patients registered 

to GPs, whose practices were not up-to-standard at the index date of the 

cohort. Likewise, patients were also excluded if the last-collection date for data 

at their GP’s surgery fell short of the observed timespan for the cohort. 

Although overcoming confounding bias is one of the main challenges of using 

EHR data, there are advantages to using these data for causal inference, and in 

trials in partnership with bodies like the CPRD as a broker in the recruitment of 

General Practices and provider of an electronic CRF service. The advantages 

of the large, observational studies based on EHRs are often compared to those 

based on RCT data: 

1. EHRs typically provide much larger datasets than do RCTs, and the 

costs inextracting EHR data are typically lower too than the costs 

involved in running a trial. 

2. The costs may also limit the length of follow-up for a trial, whereas for 

EHRs, once the data are abstracted, the follow-up lasts as long as the 

records for each patient. 

3. Evidence from EHRs may complement existing trial evidence, especially 

where it may be unethical to randomise between treatment and control. 

Importantly, evidence from robust analysis of EHR data may also be 

used as pilot work for supporting future clinical trials. 

4. A greater amount of information is also potentially available from EHRs 

across a wider variety of clinically interesting sub-groups than may be 

possible from a clinical trial giving rise to a more heterogeneous dataset, 

from which more patient-specific outcomes may studied  

5. Besides larger sample sizes and affording greater statistical power, 

EHRs also potentially offers investigators the opportunity to observe the 

effect of an intervention as it happens in practice (so-called “real-world” 



   
 

 38 

settings) away from the idealised settings of clinical trials. Clinical trials 

are often constrained by ethics and the practical considerations of 

recruiting to trial. Furthermore, patients may behave differently under 

observation in a trial than they would in real-world conditions (the so-

called Hawthorne effect). Hence, the results from trials might not 

necessarily represent what might happen under real-world conditions. 

This may limit or even invalidate their generalisability, or external 

validity, or restrict their applicability to a much narrower section of the 

population than intended. 

 

The last three points, and last two in particular, may be described as the basis 

for “real-world effectiveness”, which is a recurrent theme of this PhD project and 

other studies that use EHRs and routinely-collected data. It must also be 

considered that the very participation in a trial, patients may behave differently, 

in some reacting to the knowledge that they are being observed, giving rise to 

what is known as the Hawthorne effect. The absence of this effect is therefore 

implied in “real-world effectiveness”.  

According to records, the controlled trial has a history extending all the way 

back to ancient history 54. Notably James Lind is commonly acknowledged as 

being one of the first to conduct a controlled trial in recent history 55, but 

perhaps it is with the first randomised controlled trial of streptomycin in 1946 

that truly marked the 20th century as the era of the RCT. RCTs, through design, 

randomisation and delivery, may reduce the impact of bias to deliver high 

quality evidence by anticipating and mitigating for information loss or imbalance 

of potential confounders. However, we should perhaps not underestimate the 

impact on medicine and clinical practice with the arrival of big data, and in 

particular RCD. Data rich sources such as CPRD may be utilised to broaden the 

scope beyond continuity of care for the individual to prevention and informing 

health policies at the population level 56,57. It may be that the 21st century will be 

seen as the era of big data in medicine as well as in other disciplines. However, 

to maintain the quality of evidence, it is essential tools are developed to address 

the problem of confounding bias commonly associated with such data. It is 

towards this objective that this PhD project was directed. 
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1.7 Vaccination in older adults 

As this PhD was in part supported by the NIHR School for Public Health 

Research Ageing Well programme, of particular interest was outcomes 

research in older adults, a population that has been identified as being under-

represented in trials 58,59. The reasons for their under-representation are multi-

faceted, unclear and sometimes without justification, but at a practical level, 

impaired mobility and cognition may play a part in exclusion. The availability of 

EHR data on the population was therefore an ideal basis for addressing clinical 

questions that either cannot be realistically resolved through an RCT, or that 

seek real-world evidence of an intervention, whose efficacy may have 

previously been reported in an RCT. Studies, for which RCTs may not be 

appropriate, can be those investigating long-term adverse events and research 

into secondary unintended outcomes. Other possible investigations included 

research into the discontinuation of treatment and medication. 

Vaccination against influenza and pneumococcal infection in older adults is a 

key public health policy intended to reduce the disease burden and associated 

public healthcare costs. An investigation of vaccine effectiveness would not only 

provide real-world evidence in this clinically important risk group, but would also 

supplement existing trial evidence for a clinically important risk group that may 

be under-represented in randomised trials due to ethical and practical barriers, 

such as gaining informed consent from older adults with dementia, or other 

cognitive impairments 58. The scope for this investigation can be found in the 

protocol (Appendix C), which I co-authored as part of the PhD project, providing 

the major contribution to the statistical design and proposed analysis, and also 

the context in terms of current research. This protocol was submitted along wth 

that from another project using the same Gold Access to the CPRD data, and 

was approved by the Independent Scientific Advisory Committee of CPRD in 

December 2014. As the “oldest old” was one of the themes of Prof. David 

Melzer’s “Ageing well” investigations, the study on immunisation programmes in 

older adults was a logical extension of this package of work. This also 

presented an opportunity to build on the group’s work on polypharmacy in the 

elderly 60,61, and to complement the parallel work that had used the same data 

extraction 62. 
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A review of the literature on the vaccinations against influenza and 

pneumococcal pneumonia is incorporated in the chapters five and six in which 

the studies are presented. Further investigation of the real-world effectiveness 

of these vaccines was prompted by the problem of persistent bias that has 

affected previous observational research into vaccine effectiveness. Analyses 

relying on conventional regression models struggle to fully adjust for 

confounding bias, which is often unmeasured, and is compounded by decline in 

the functional status and age-related frailty in this older population 63. The 

phenomenon of ageing and age-related frailty in older adults is well-

documented 64–67, although presentation and causes are complex and 

multivariable 68,69. Given the implicit vagueness of its definition, yet the 

complexity of its causes and effects, frailty could be thought of as a collection of 

complex latent variables. It is therefore uncertain whether enough of the 

variables, through which such latent effects may be manifest, could be identified 

and measured to control for confounding through an adjusted-regression 

approach to the analysis of nonrandomised data. As explained in previous 

sections, quasi-experimental methods may offer a way of adjusting, or rather 

mitigating for (given that no direct adjustment is made) unmeasured 

confounding. 

A noticeable consequence of ageing and frailty is immunosenescence 70,71 - the 

age-related decline in immune function that is thought to explain the increasing 

susceptibility to infection from respiratory diseases, the vaccines for which were 

the subject of investigation in this project. It is immunosenescence and 

susceptibility to influenza and the pneumococcal infection that has directed the 

policy of vaccinating the older population. However, while vaccination may seek 

to counteract the age-related decline in the immune system, the problem of 

immunosenescence may weaken the intended immune response 

(immunogenicity) to the vaccine itself. The question of vaccine effectiveness in 

older adults is therefore comprised of two enquiries: is the vaccine effective in 

this population, and are there any trends with age that may suggest a 

weakened immune response to vaccination? This was the clinical question that 

motivated the study into the effectiveness of the pneumococcal vaccine in 

chapter five. 
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In chapter six, the effectiveness of the influenza vaccine was studied. However, 

rather than solely investigating its effect on influenza, greater interest lay in the 

potential benefits as a prophylaxis in preventing coronary disease. As will be 

discussed in the literature review of clinical findings, previous research has 

suggested that the influenza vaccination may be beneficial in helping to reduce 

rates of myocardial infarctions in the population of older adults. In seeking 

evidence for the existence of this effect, the study did not seek to explain the 

precise nature of the complex causal pathway that may exist between 

vaccination and outcome, but rather it acknowledged crucially the open system 

of causation that is human biology, as discussed in the previous section on 

causal inference. 

1.8 Summary of objectives 

The aim of this PhD project was to use routinely collected EHR data to evaluate 

the effectiveness of the pneumococcal and influenza vaccines in older adults. 

Retrospective recruitment to each study was different, reflecting the nature of 

the particular vaccine: The pneumococcal vaccine is considered to confer long-

term immunity and the years, 2002 to 2005, over which the vaccine was 

introduced formed a natural experiment for this particular study. In contrast, 

older patients are recommend for revaccination against influenza every year, 

due to the annual changes in the virus mix and pathogen evolution, and so 

annual effectiveness was studied as far back as 1997, the year before the first 

wave in the introduction of the policy to vaccinate older adults. 

Making use of the large data, the moderating effect of age on vaccine 

effectiveness was investigated in both vaccines. However, while the 

pneumococcal pneumonia was the primary outcome in the pnuemococcal-

vaccine study, in the influenza-vaccine study, the primary outcome was 

myocardial infarctions, with influenza as a secondary outcome. In both interest 

also centred on detecting any change in effectiveness with age. However, as 

the data were observational, the studies also served as the basis for 

understanding the performance and limitations of a recently developed set of 

methods for dealing with confounding, called the prior event rate ratio (PERR) 

and Pairwise methods. This necessitated a full review of the methods, their 
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performance using simulated data, and their application in other studies. The 

method was also reviewed in the wider context of quasi-experimental methods. 

Succinctly, the aims of this PhD were summarised as: 

 Conduct a systematic methodological review of QE methods and their 

application to longitudinal data as the context for the application of the 

PERR and Pairwise methods to the longitudinal data of EHRs, to 

understand the relative performance of each method and the strengths 

and weakness of using different QE methods that could be applied to 

EHR data [chapter 2] 

 Conduct a review of sensitivity analyses, as a complementary approach 

to dealing with unmeasured confounding. The literature search for this 

was conducted in tandem with that for the methodological review 

[chapter 3]. 

 Perform a full review of the PERR and Pairwise methods, focussing on 

their relative performance from simulation studies, their assumptions and 

their application in studies since their development. Common settings 

using in subsequent chapters focussing on the methods’ clinical 

application in vaccination studies will also be reported [chapter 4]. 

 Investigate the effectiveness of the pneumococcal vaccine in older adults 

using EHRs, and study effectiveness by age [chapter 5] 

 Investigate the effectiveness of the influenza vaccine in older adults 

against myocardial infarctions and influenza. Again the effectiveness by 

age was also be investigated [chapter 6] 

 In addition to the clinical findings from the vaccination studies, the 

relative performance of the PERR and Pairwise methods was also 

studied with a view to understanding the relative strengths and limitations 

that could lead to further methodological development [chapters 5, 6 & 7] 
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2.1 Abstract 

2.1.1 Objective 

Motivated by recent calls to use electronic health records for research, we 

reviewed the application and development of methods for addressing the bias 

from unmeasured confounding in longitudinal data. 

2.1.2 Design 

Methodological review of existing literature 

2.1.3 Setting 

We searched MEDLINE and EMBASE for articles addressing the threat to 

causal inference from unmeasured confounding in nonrandomised longitudinal 

health data through quasi-experimental analysis. 

2.1.4 Results 

Among the 121 studies included for review, 84 used instrumental variable 

analysis (IVA), of which 36 used lagged or historical instruments. Difference-in-

differences (DiD) and fixed effects (FE) models were found in 29 studies. Five 

of these combined IVA with DiD or FE to try to mitigate for time-dependent 

confounding. Other less frequently used methods included prior event rate ratio 

adjustment, regression discontinuity nested within pre-post studies, propensity 

score calibration, perturbation analysis and negative control outcomes. 

2.1.5 Conclusions  

Well-established econometric methods such as DiD and IVA are commonly 

used to address unmeasured confounding in non-randomised, longitudinal 

studies, but researchers often fail to take full advantage of available longitudinal 

information. A range of promising new methods have been developed, but 

further studies are needed to understand their relative performance in different 

contexts before they can be recommended for widespread use. 
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What is new? 

What is already known 

 Unmeasured confounding is a threat to the validity of observational studies based on 
data from non-randomised longitudinal studies 

 
Key findings 

 Longitudinal information that can be used to mitigate for unmeasured confounding in 
observational data is not always fully or properly utilised in health research. 

 Instrumental variable analysis and difference-in-differences were the most commonly 
encountered methods to adjust for unmeasured confounding in a review of the health 
literature. 

 There are a range of promising new methods, some of which utilise longitudinal 
information to relax the assumption of time-invariance for unmeasured confounders, 
but these are yet to be widely adopted. 

 
What is the implication? 

 All available methods rely on strong assumptions and more research is needed to 
establish the relative performance of different methods for particular problems and 
empirical settings. 
 

 
Figure 1: “What is new?” summary of contribution to research 
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2.2 Introduction 

In the era of “big data” in medicine, the increasing availability of large, 

longitudinal patient databases is creating new opportunities for health 

researchers.  A particular focus is on electronic health records (EHR) with 

routinely collected data collated from multiple care sites, often linked to external 

databases (e.g. death certificates). Built up over time, EHRs provide a 

sequential history of each patient’s encounter with the healthcare system. 

Examples of EHRs include The Clinical Practice Research Datalink (CPRD), 

The Health Improvement Network (THIN), QResearch and ResearchOne in the 

UK, and the Kaiser Permanente Northern California Oracle Research Database 

in the US. The value of large medical data recorded for administrative purposes 

in national registries is already recognised 72,73, with the provision of funds to 

expand the adoption of EHRs in research for patient benefit in the US with the 

Health Information Technology for Economic and Clinical Health (HITECH) Act 

of 2009, and in the UK, with a consortium of funding bodies led by the Medical 

Research Council. Another important source of information for health care 

analysis is databases of insurance claims, such as Medicare in the US, and in 

this review we do not differentiate between EHRs and claims data. 

A strength of EHRs and claims data is that they make it possible to study the 

comparative effectiveness of interventions and the associated risk of side-

effects in a real-world setting. Although randomised trials provide the gold 

standard of evidence, observational studies based on observational patient 

databases offer the potential to study more patients from a wider variety of risk 

groups with a longer follow-up period at a fraction of the cost. However, in the 

absence of randomisation, selection for treatment is often knowingly based on 

specific characteristics, such as frailty, disease severity or the risk of an 

outcome. If the indication for treatment is also related to prognosis, confounding 

by indication arises leading to biased estimation of effectiveness.  There is a 

large pharmacoepidemiologic literature on this topic and current best practice is 

to use design-based approaches such as the Active Comparator, New User 

Design to help mitigate bias where possible 74.However, residual differences 

between the treatment arms other than the treatment itself may still confound 

the intervention effect under study whether or not such an approach is used. If 



   
 

 48 

the confounding variables are both known to the study investigators and 

measurable, then these could potentially be adjusted for in prospective non-

randomised studies. With retrospectively recruited subjects, however, the 

recording of such variables is outside the control of the investigator.  Analyses 

of non-randomised studies that fail to account for relevant confounders may 

have important negative consequences for health policy and patient safety. 

Methods described as the quasi-experimental (QE) approach 26, can be 

deployed to account for confounding by unobservable characteristics. These do 

not attempt to directly adjust for resulting bias, but use available information to 

achieve this indirectly under certain conditions and assumptions.  The aim of 

this systematic review is to review current practices in dealing with unmeasured 

confounding in individual-level longitudinal health data and to capture 

methodological developments in this area. While previous systematic reviews 

have been conducted to look at use of propensity score methods for measured 

confounders 75,76, we are unaware of any systematic review comparing use of 

methods for addressing unmeasured confounding in non-randomised, 

longitudinal data. We were particularly interested in how an individual’s history 

could be leveraged to evaluate the effects of unmeasured confounding and how 

the extra longitudinal information could be incorporated to improve adjustment 

for confounding bias. We intend for this review to contribute to the development 

of best practice in addressing unmeasured confounding in longitudinal data. 

The results should therefore help inform researchers intending to utilise “big 

data” from electronic health records. 

2.3 Methods 

2.3.1 Search strategy 

Our search strategy was informed by, but not limited to, known methods for 

addressing unmeasured confounding. The search strategy is recorded in 

Appendix A – methodological review search terms. The following electronic 

databases were searched: MEDLINE (via OvidSp including In-Process & Other 

Non-Indexed Citations) and EMBASE (via OvidSp 1996 to 2015 Week 21). We 

included all citation dates from database inception to May 2015. All references 

were exported into Endnote X7 (Thomson Reuters). 
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2.3.2 Inclusion and exclusion criteria  

The review included any non-randomised comparative studies that sought to 

adjust for unmeasured confounding in longitudinal data with repeated 

observations on identifiable individuals. In the interests of good practice, eligible 

papers had to explicitly identify the problem of bias arising from the selection on 

unobservable characteristics in the data, rather than routinely apply a QE 

design without this justification. For estimates of comparative effectiveness, 

eligible studies had to have independent control arms for each treatment of 

interest. Therefore, single arm studies were excluded. Studies based on case-

only designs, including the case-crossover design and the self-controlled case-

series design, in which confounding is controlled by making comparisons 

between exposed and unexposed periods for the same individual were also 

excluded.  Observational studies were not excluded based on the exposure 

under study so studies into the effects of passive exposures (medical 

conditions, environmental exposures etc) were included alongside studies of 

both the intended and adverse effects of active interventions. We note that good 

proxies for unmeasured confounding, or observed variables that sufficiently 

describe a latent variable such as frailty, would be preferable to dealing with the 

bias resulting from unmeasured confounders. If suitable proxies are identified 

and recorded, then there are in effect no unobserved confounders and the 

proxies could simply be adjusted for in the analysis, obviating the need for 

methods to adjust for the unobserved confounders. For this reason, 

adjustments for proxies of unmeasured confounders, including high-dimensional 

propensity scores, did not fall within the scope of this study. To be consistent 

with the “big data” theme of EHRs, a minimum sample size of 1000 participants 

was applied. This also set a minimum condition for the application of 

Instrumental Variable (IV) and Regression Discontinuity (RD) designs stipulated 

in the Quality of Effectiveness Estimates from Non-randomised Studies 

(QuEENS) checklist. Finally, we only accepted analyses of individual level data. 

We were aware that some studies may use analytical methods, such as 

difference-in-differences that aggregate the data at a treatment-group level. We 

therefore only included those studies, in which the same patients could be 

tracked over the time-frame of the sample. Conversely, some methods, such as 

instrumental variable analysis, make no explicit demands for longitudinal data at 
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the patient level. However, we included such studies where the sample was 

based on the availability of patient-level longitudinal information, with a history 

possibly but not necessarily preceding the time of exposure. We did not 

discriminate between data sources, as patient-level data will often arise from 

medical insurance claims in the US, as opposed to clinically-purposed 

databases in other countries. 

Only studies written in English were included. The following publication types 

were excluded from the review: 

systematic reviews of primary studies. 

randomised controlled trials 

cross-sectional data  

preclinical and biological studies 

narrative reviews, editorials, opinions 

2.3.3 Study selection 

Studies retrieved from the searches were selected for inclusion through a two-

stage process according to the inclusion/exclusion criteria specified above. 

First, abstracts and titles returned by the search strategy were screened for 

inclusion independently by two researchers. In case of doubt, the article in 

question was obtained and a subsequent judgement on relevance was based 

on the full article. Disagreements were resolved by discussion, with involvement 

of a third reviewer when necessary. Following the initial screening, full texts of 

identified studies were obtained and screened firstly by a single reviewer. In 

case of doubt, a second reviewer decided on the suitability of a paper. Where 

multiple publications of the same study were identified, data were extracted and 

reported as a single study. 

2.3.4 Evidence synthesis 

The details of each study’s design and methodology and the key characteristics 

of the data source were tabulated and discussed. We present a summary of the 

methods we found that can mitigate for confounding, or its synonyms as 

unmeasured, unobserved, hidden or residual. We note the historical frequency 
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and context of the application of those methods, to comment on progress in 

causal inference and identify directions for future research. 

2.4 Results 

2.4.1 Included studies 

Our searches returned 734 unique titles and abstracts, with 275 papers 

retrieved for detailed consideration Of the 275 studies eligible for a full-text 

review, 154 were excluded (see flow diagram: Figure 2).  

 

 

Figure 2: Flow diagram for method review 

A total of 121 studies were identified as performing a QE analysis on non-

randomised longitudinal data on human subjects, identifiable at an individual 

level, and so included for a full review of the text (Appendix B – table of studies 

included in the methodological review). 
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The QE methods identified in the review are summarised in Table 1. The most 

frequent method was instrumental variable analysis (IVA) found in 86 of the 

studies (Figure 3) – a method that uses an unconfounded proxy for the 

intervention or exposure. For successful adjustment, the proxy or instrument 

should be strongly, causally associated with the exposure or intervention, and 

the instrument should only affect the outcome through the exposure. In addition 

to IVA, three of these also applied difference-in-differences (DiD) – a method 

that typically uses pre-exposure outcomes to adjust for unmeasured 

confounding and assumes any trends unrelated to the exposure are the same in 

both groups. Seven more studies derived estimates from a combination of both 

IVA and DiD, two of which assumed an absence of higher order autocorrelation 

to use lagged observations of the treatment variable as an instrument. Beside 

the 11 studies applying DiD either in conjunction with or in addition to IVA, we 

identified a further 21 studies, in which the sole QE method was recognised as 

a DiD approach. 

We found five studies applied the prior event rate ratio method, a before-and-

after approach that can be aggregated to the treatment level for survival or rate 

outcomes and analogous to DiD. In all five cases the methods were applied to 

longitudinal, individual patient data. Similarly regression discontinuity (RD) was 

used for such data in three of the studies included for review. Another three 

focused on propensity score calibration (PSC). One study introduced 

perturbation testing and perturbation analysis, while another discussed the use 

of negative control outcomes.  

  



   
 

 53 

Method Description Obstacles to implementation 
Frequency 

of methods 

Instrumental variable 

analysis (IVA) 

Upon identification of a suitably strong instrument, the influence of bias may be reduced 

through post-hoc randomisation. The instrumental variable should be highly determinant of 

the intervention or treatment received, while satisfying the exclusion assumption of being 

independent of the outcome other than through the treatment (Wright 1928; Angrist 1991). 

In practice, finding an instrument with a sufficiently strong treatment association is a stumbling 

block in many analyses (Bound, Jaeger, and Baker 1995; Baser 2009). Association of the instrument 

with the outcome exclusively through the treatment is an untestable assumption, particularly if an 

indirect association exists through an unmeasured covariate. 

79 

Difference-in-

differences (DiD) 

A biased effect estimate between two treatment groups may be corrected by the same 

estimates from a treatment-free period prior to the exposure, which should be a measure of 

the confounding bias contributed to the treatment effect (Ashenfelter and Card 1984). 

Aggregated at the treatment group level, this is operationalised in regression as a period-

treatment interaction. At an individual level, demeaning, first-differencing or dummy 

variables for each individual may yield bias-free fixed effects, contingent on assumptions. 

The method is contingent on the availability of repeated outcomes in both periods and  invokes a 

time-invariant confounding assumption: that the confounding bias as captured by the estimated 

treatment effect in a treatment-free period prior to exposure is constant through to the study 

period. 

24 

Prior event rate ratio 

(PERR) 

Analogous to the DiD method for time-to-event or rate data, a biased estimate of the hazard 

ratio or the incidence rate ratio is adjusted through its ratio with that from a treatment-free 

prior period (Tannen et al. 2008). 

As with the assumption for DiD, repeatable outcomes and a constancy of the unmeasured 

confounding bias is required across both periods, before and after the exposure.  Prior event 

occurrence should not influence the likelihood of future treatment. 

5 

Fixed effects 

instrumental variable 

analysis (FE IVA) 

IVA may be applied to DiD estimation to mitigate for second-order endogeneity: the time-

varying part of the bias that may not have been adjusted for by DiD. 
Assumptions of IVA apply 5 

Dynamic panel model, 

or Instrumental variable 

- generalised method of 

moments (IV-GMM) 

Lagged observations of the confounded (endogenous) explanatory variable are introduced in 

a first-differences fixed effects analysis so that the differences of the lags become the 

instrumental variables in a generalised method of moments estimation. 

Assumptions of IVA apply. Here the differenced lags should not be correlated with the differences 

in the error terms. 
2 

Regression 

discontinuity (RD) 

RD is a design for analysis based on a treatment assignment determined by a cut-off applied 

to a continuous variable that is preferably measured with some random noise (as many 

clinical tests may be). The outcome can then be modelled on treatment for individuals within 

a certain interval from the cut-off of the assignment variable to ensure exchangeability 

between individuals for robust causal inference (Thistlethwaite and Campbell 1960) 

Where assignment is not sharply determined by the cut-off, an increase in the probability of 

treatment may be observed leading to a "fuzzy" version of RD. Continuity in the assignment 

variable is assumed, otherwise manipulation of assignment and reverse causality may be 

suspected. Assignment should be locally random around the cut-off and makes the weak 

assumption that no unobserved covariates are  discontinuous around the assignment cut-off. 

3 
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Propensity score 

calibration (PSC) 

PSC adjusts for residual confounding in the error-prone main dataset by importing 

information about the unmeasured confounders from a smaller, external “gold-standard” 

dataset (Stürmer et al. 2005). Analysis in the main dataset is adjusted using a single 

dimension propensity score of the measured corrected for unmeasured confounding by 

regression calibration against the gold-standard propensity score. 

Successful adjustment is wholly dependent on the availability of another dataset containing the 

exposure variable and error-free predictor,  with individuals that are relevant enough to those in 

the main dataset and under similar enough conditions to assure sufficient overlap between the 

two datasets. 

3 

Perturbation 

testing/analysis (PT/PA) 

This data mining approach aims to mitigate for unmeasured confounding by adjusting for 

many measured variables that are weakly associated with the unobserved confounding 

variables (Lee 2014). Simulation in the single reviewed example demonstrated this may 

require 100's, if not 1000's of perturbation variables (PV). 

This requires a very highly dimensional dataset, which may ultimately obviate the need for indirect 

adjustment if the most or all of the confounders are captured. Simulation demonstrated the bias 

may be exaggerated if a confounder is inadvertently identified as a PV, requiring many more true 

PVs to correct the bias. The number of PVs may exceed the available degrees of freedom 

necessitating clustering. 

1 

Negative control 

outcome / exposure 

(NCO/NCE) 

A negative controls causally related to measured and unmeasured confounders affecting the 

exposure and main outcome, but not directly causally related to exposure and outcome 

themselves. As such, the negative control may be used to detect confounding bias in the 

main study, and potentially to indirectly adjust for this (Richardson et al. 2014) 

This assumes that the effect of the unmeasured confounders on the main outcome is similar to 

that affecting the negative control. 
1 

Table 1: Summary of methods to mitigate against unmeasured confounding captured by systematic review, and the frequency of their 
use amongst the captured papers 
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Figure 3: Plot of frequency of reviewed methods for mitigating for unmeasured confounding by: difference-in-differences [black]; 
Instrumental variable analysis (IVA) [mid-grey]; Other [light grey] includes regression discontinuity, prior event rate ratio method, 
propensity score calibration, perturbation analysis, negative control outcomes, fixed effects with IVA and dynamic panel models. Note: 
the low frequencies in 2015 was attributable to the May cut-off for inclusion in that year  
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2.4.2 Studies excluded at full text 

The principal reason for exclusion in 94 of the studies, according to our eligibility 

criteria, was the absence of longitudinally observed, non-randomised outcomes on 

all individually identifiable persons, although other characteristics may also have 

justified their exclusion. No particular method was associated with the absence of 

longitudinal data on identifiable individuals with studies in this exclusion category 

comprising 59% DiD and 28% instrumental variable analyses compared, 

respectively, to 53% and 32% of all 154 of the rejected studies. Having fewer than 

1000 longitudinally observed individuals excluded 23 studies, among which those 

using instrumental variable analysis (IVA) numbered 15. Seven were excluded for 

not employing a QE method for unmeasured confounding. Five studies presented 

exploratory analyses without a focused clinical question; five were either method 

reviews or commentaries without an application of methods to data; one study 

duplicated a dataset already marked for inclusion, while another failed to specify the 

instrumental variable used. Of particular note were the 18 studies using the DiD 

approach that were excluded because no explicit justification was made for using the 

method to address unmeasured confounding, or any of its synonyms. In these 

studies, justification of the method was centred more on econometric concerns over 

time trends, and presented in terms of controlling for those trends rather than pre-

existing differences between the control and exposed group. 

2.4.3 Results of the included studies 

So far studies have been categorised according to their identified QE method. 

However, certain properties are shared across some of the methods, and can be 

classified according to how they reconcile their specific assumptions with the 

information offered by the structure of big, longitudinal data that typifies EHRs. In 

particular, we organised our results around how each method had incorporated 

longitudinal information, and the assumptions required. The stable of before-and-

after methods, that includes PERR and DiD, implicitly incorporates longitudinal 

information. Thereafter the challenge is how to relax the assumption of time-invariant 

confounding. Conversely, IVA is not uniquely applicable to longitudinal data, but we 

were able to broadly classify the types of instruments used (Table 2), some of which 
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did utilise longitudinal information. We found out of the total 121 studies, 77 

incorporated some element of longitudinal information into their analysis. 
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IV type Explanation/ Example No. of papers 
Total 

frequency 

Mendelian 
Genetic characteristics :Single 

nucleotide polymorphisms 
11 11 

Geographic 

Differential distance between 

patient's postcode and nearest 

health facility 

19 

1 

 

1 

21 

Time 
Time-based characteristic of 

treatment such as date of therapy 
6 

2 

10 

Historical 

Usually prescribing preference of 

physician or facility based on 

historical records of previously 

administered therapies 

31   34 

Lagged 
Previous therapy or outcome of 

patient 
6 6 

Randomisation Original randomisation 1 1 

Other 

Characteristics of individual 

e.g: age of patient, weight of 

offspring 

e.g: age of patient, weight of 

offspring 

8 8 

Table 2: Frequency of instruments categorised by type used in instrumental variable 
analyses 

2.4.3.1 Incorporation of external/additional data 

The propensity scores (PS), the predicted probability of exposure or treatment 

conditioned on measured confounders,were used in the seminal work on propensity 

score calibration (PSC) by Stürmer to calibrate an error-prone PS against a gold-

standard PS and hence arrive at an inference for the level of unmeasured 

confounding bias 77. The two subsequent PSC papers examined the tenability of the 
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method’s assumptions, firstly using simulated data to evaluate the conditions 

necessary to violate the surrogacy assumption 78. The second primarily used 

simulated data and applied the results to registry data to demonstrate a framework 

for determining size and direction of bias from one measured and one hidden 

confounder 79. 

2.4.3.2 High-dimensional data 

Since PSC collapses multiple, potential confounding variables down to the single 

dimension of a propensity score, the three PSC papers can also be considered a 

means of dealing with high-dimensional data. In addition to these, our review also 

included a novel data-mining approach that proposed to exploit the many factors 

(perturbations) that may be weakly associated with the unmeasured confounders 

from a high dimension dataset 80, for which longitudinal data may mitigate for 

incorrect adjustment of a collider. Perturbation analysis was successfully 

demonstrated on simulated data, although accidental inclusion of a measured 

confounder required many more perturbations to correct the resulting bias. Both the 

perturbation method and PSC were also proposed as sensitivity analyses. 

2.4.3.3 Quasi-experimental adjustment without longitudinal assumptions 

Those studies characterised as using a QE method without any longitudinal 

dimension were PSC and PT as described above. We also added to this category 11 

examples of Mendelian IVA 81–91 plus 32 other IVAs without historic or lagged 

instruments 92–123. While time-based instruments may at first seem longitudinal, 

these instruments, such as date of therapy, would need to be related to previous 

exposures or outcomes to be considered longitudinal. In some cases, survival times 

or rate data were used, but such outcomes do not intrinsically imply longitudinal 

adjustment for confounding. In spite of these “cross-sectional” approaches, all 

studies were based on some form of longitudinal data at the person level, as 

demanded by our inclusion criteria. Among the 43 non-Mendelian IVA papers in this 

non-longitudinal category, one study adjusted for non-longitudinal fixed effects within 

twins 101. In another three, discussed below, the analysis was supplemented with 

DiD 100,110, and with IVA applied to first-differences 124. 

One study examined the effect of lagged, cumulative exposure to radiation on lung 

cancer in uranium miners and nuclear workers 125. The problem of unmeasured 
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confounding was addressed using a method developed in earlier work that proposed 

negative control outcomes and exposures as a means of both detecting and 

potentially resolving confounding bias 126. Here the choice of death due to chronic 

obstructive pulmonary disorder as a negative control outcome was informed by 

clinical knowledge of there being no direct relationship with the exposure  except 

through the possible confounder, smoking. Given a plausible negative control 

outcome or exposure, the method offers at least a means of testing for confounding, 

and potentially a method of adjustment under the assumption that the association 

between the unmeasured confounder and the negative outcome is similar in 

magnitude to that between the same confounder and the outcome of interest. 

2.4.3.4 Quasi-experimental adjustment assuming time-invariant 

longitudinal information 

We found 36 IVA studies that used lagged information or history about the 

individuals’ exposure as instruments 124,127–162. One study had recourse to the 

random assignment from a previous study, and used this as an instrument 131. 

Except for that and four other different exceptions, the instruments were all based at 

least in part on the previous intervention, or history of interventions, of the clinician or 

healthcare facility. Characteristics of the clinician or facility may be chosen as 

instruments as they are more likely to affect the treatment only. This avoids direct 

associations with the individual and their outcome, and so better enforces the 

exclusion restriction – the exclusion of the instrument’s association with the outcome 

except through the treatment under study. While no assumptions are made about the 

dependence of confounding on time, the strength of the instrument clearly rests on a 

significant association between previous treatment(s) and the current treatment 

under investigation. In this regard, if the strength of an instrument varies with time, 

this may undermine its utility. 

In total, 24 studies also incorporated longitudinal information through the stable of 

methods that, in an abuse of terminology, we collectively referred to as the DiD 

approach. These included the 18 examples cited as using DiD regression 163–180 

alone, and four fixed effects (FE) 181–184. Either through fixed effects at the individual 

level or through aggregate-level regression operationalizing the DiD approach, these 

methods “ignore” the effect of confounding, which is assumed to be time-invariant. At 
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the individual level, time invariant confounding can be ignored by assigning nuisance 

dummy variables for each individual, or cancelled out through demeaning the 

observations, or through the first differences of observations on each individual. Two 

of the studies also extended DiD to allow different exposure effects and trends 

across two-level sub-groups in the higher-order contrast of difference-in-difference-

in-differences 168,173. Fourteen studies also adjusted for individual-level fixed effects 

either through direct inclusion of their covariates, or through matching or weighting 

on the propensity score of the covariates. This was perhaps a more rigorous and 

precise approach, accounting for known confounders, and yielding smaller standard 

errors for the estimated treatment effect. However, an assumption of time-invariant 

confounding was still required, with a null difference between exposure groups in the 

prior period being evidence of adjustment for time-invariant confounding only. Two of 

the 24 DiD studies also re-analysed their data using IVA 100,110, which provided an 

albeit limited opportunity to compare the relative performance of these methods. In 

the study by Schmittdiel et al.  of how statins delivered by mail order affects 

cholesterol control 110, the intervention coefficient from modelling the single main 

outcome was larger through DiD analysis and its standard error smaller than those 

from IVA, large standard errors being a feature of weak instruments. The study by 

Lei and Lin investigated the effect of exposure to a new medical scheme on 15 

health outcomes and rates of health-service utilisation 100. The effects were either 

not significantly different from the null or were significant and of similar magnitude 

with similar standard error except for two outcomes, where the effect size was 

significantly larger for IVA. 

Time-invariant confounding, also known as the parallel trends assumption, was 

relaxed by including dummy variables for the year and its interaction with the 

treatment dummy in a fixed-effects analysis, which allowed the unobserved trend to 

vary between exposure groups 183 using methods developed in economics and 

therefore not captured by this review 185,186. The results from this DiD with differential 

trend model were presented alongside those from the simple pooled DiD model and 

DiD with individual fixed-effects for the effect of financial incentives in care services. 

Tests confirmed parallel trends could be assumed in three outcomes, but out of the 

five outcomes presented, four were statistically significant and in all, the estimated 

effect size by differential trends was greater. 
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Our review also included six studies applying the prior event rate ratio method, a 

before-and-after analogue applicable to survival and rate data 187–192. The first two 

published were the seminal presentation of the method applied to registry data. Also 

included was a comprehensive evaluation by Uddin et al. of the performance of 

PERR under a wide array of simulated, theoretical settings, under which bias was 

shown to increase with a greater effect of the prior events on subsequent exposure 

or intervention.  When prior events strongly influence the likelihood of treatment, the 

exposure effect from the PERR method can be more biased than estimates from 

conventional methods121. The problem was re-examined in a recently published 

study, which provided a more general statistical framework for PERR adjustment and 

considered the potential for generalising the method to allow more flexible modelling 

192.  

2.4.3.5 Dynamic, longitudinal quasi-experimental methods and time-

varying information 

While regression discontinuity (RD) could suggest a longitudinal design, this is not 

exclusively so, and two RD studies were excluded because of this (one applied to 

spatial data while the other data was not longitudinal). Of those included all three 

could be said to accommodate time varying trends 193–195, and two of these were 

nested within a pre-post design: Zuckerman et al. were explicit in their 

methodological study in identifying the robustness to time-varying confounding, in 

which inhaler use in asthmatic patients was served as both the outcome variable in 

the post-test period as well as the assignment variable in the pre-test period 195. In 

the study of the effect school-leaving age on mortality by Albouy, different slopes 

were modelled for the assignment variable, year of birth, after the cut-off date 193. 

This acknowledged different maturation rates after assignment. However, as long as 

the assumptions of the method were met, assignment should have been as good as 

randomised, and so no further assumptions about the temporality of confounding 

was required. 

We also picked up six examples where IVA had been combined with either DiD or a 

fixed effects model, first appearing in our review with example from 2003 196. In 

Fortney’s 2005 study of treatment for depression 197, this combination method was 

justified as a control for time varying confounding, referred to as second-order 
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endogeneity. Further examples of the fixed-effects instrumental variable model were 

found 198,199. The roles of lagged treatments and outcomes as possible IVs and 

predictors were extensively considered in O’Malley’s study of whether the 

introduction of more expensive medication could have led to improved cost-

effectiveness in the long term 124. The author cautioned that the exclusion restriction 

may be difficult to satisfy when using the lagged treatment as an IV after first 

differencing. However, two studies 200,201 used differences in the lagged explanatory 

variable as the IVs to adjust for second-order endogeneity in a first-differences 

analysis following methods, not captured by our review, but developed in the realm 

of Economics 202–204. Referred to as the dynamic panel model or IV-GMM, this 

method was implemented efficiently through generalised method of moments. In 

their report on healthcare expenditure in patients with rheumatoid arthritis, Kawatkar 

et al. found the yielded estimates were further from the null with larger standard 

errors when compared to those from FE alone 200. 

 

2.4.4 Implementation of methods 

While choice of method in each study often rested on which extra information was 

available to address the issue of unmeasured confounding, method selection may 

also have been informed by the research area. The negative control method had its 

origins in epidemiology, with applications to occupational health policy. Likewise, the 

PERR method was developed exclusively on health data, with applications to drug 

safety and public health policy. Reflecting their origins in health econometrics, some 

studies were published in journals partially or entirely dedicated to the subject, with 

15 published 100,124,163–166,173,176,181–184,196,197,200 in this field out of the 32 studies using 

DiD and 29 93–95,98,103,104,109,111,112,114,116,120–122,128,131–134,140,144,147,150,205 out of the 86 

using IVA. Under the inclusion criteria, all studies had health outcomes or 

interventions. Mendelian IVA necessarily includes genetic information, and all were 

published in health-related journals. In contrast, all three studies using RD were 

published in health econometric journals. 

Before implementing one of the proposed methods, a natural first step is for the 

researcher to try to assess how much bias from unmeasured confounding is likely to 

be present.  While many of the included studies reported raw or unadjusted 
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descriptive estimates, bias estimation was limited either to considering the 

contribution from known confounders, including those summarised as a propensity 

score, or to methods, such as perturbation testing/analysis and negative controls 

methods, in which bias evaluation is an incremental step in adjustment. Under the 

assumption of time-invariant confounding, the difference-in-differences method may 

potentially offer a way of evaluating bias by modelling group differences in the pre-

exposure period. However, few studies evaluated hidden bias in this way 110,174,182. 

The regression formulation of the DiD method effectively by-passes separate 

analysis of the prior period. Instead studies often discussed the within-group 

changes over time. Similarly, the prior-period estimate from the PERR method 

implicitly offers an evaluation of confounding bias under the same assumptions, yet 

none of the studies presented information on outcomes in the prior period in this 

way. A direct evaluation of unmeasured confounding is less straight-forward in IVA, 

with further diagnostic tests only recently developed for the association between 

instrument and confounders 206,207 . 

2.5 Discussion 

This review examined the application of methods to detect and adjust for 

unmeasured confounding in observational studies, and was motivated by recent calls 

to utilise EHRs. Most of the reviewed studies used more established methods such 

as DiD and particularly IVA. We summarised how studies exploit the longitudinal 

information afforded by EHRs. 

It may be tempting to view electronic health records and medical insurance claims 

data as a problem of large observational data, and hence search for solutions 

through data mining. However, ethics governing patient data collection, plus limited 

clinician time is likely to preclude data with very large dimensions. For that reason, it 

is doubtful there would be enough dimensions for a method like Perturbation 

Analysis (PA) to be a practical solution. In addition, a greater number of variables 

would likely include enough information about the confounders to obviate the need 

for further adjustment through PA. More generally, the purpose of EHRs primarily as 

an administrative tool limits the scope for data mining of known confounders. 
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Similarly, limited availability of gold-standard datasets may have confined the use of 

external data, as in PSC, to but a few examples. 

We were surprised by the number of studies using IVA alone. While Mendelian 

randomisation has its advantages for many studies as a reasonable guarantor of the 

exclusion restriction, in general IVA typically suffers from the weak-instrument 

problem, resulting in large standard errors and wide confidence intervals. 

Longitudinal data offer an opportunity to reinforce the exclusion criteria by choosing 

historical or lagged instruments. However in doing so, the causal structure needs to 

be understood to avoid opening up “back door” paths and inducing further bias 124. 

DiD arguably offers advantages over IVA in being more intuitive and easier to 

conceptualise, and with the longitudinal data in EHRs it should be inherently easier 

to work with prior observations than to identify strong instruments. Even though 

before-and-after methods are not subject to the imprecision of weak instruments, the 

resulting estimates are only unbiased if the unobserved confounders exert a 

constant effect over the observation windows before and after exposure. Where 

multiple observations per individual exist, time may be paramaterised and different 

trends between exposure groups can be accommodated in DiD with differential 

trends, but a time invariant assumption about confounding must still be made. To 

partially or wholly relax this particular assumption, instrument variable analysis can 

be incorporated into the fixed effects model. Assuming the instrument’s exclusion 

restriction is satisfied then this doubly-robust approach affords the advantage of DiD 

over possibly weak instruments, while mitigating for some or all of the time-

dependent confounders ignored by DiD alone. Similarly, where multiple previous 

treatments or exposures are recorded, the differenced lagged treatments can be 

utilised as IVs in a fixed effects model to accommodate time-dependent confounding 

bias using the generalized method of moments system, referred to as IV-GMM or the 

dynamic panel model. 

Another potentially robust approach to unmeasured confounding would be the RD 

design, although the small number of examples in our review probably reflects the 

limited number of scenarios where this can be reasonably applied. Another concern 

over and above the usual technical challenges of applying the RD method is that in 

spite of heath records promising ample data, the sample would need to be reduced 

to an interval around the cut-off that ensures exchangeability of the two treatment 
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groups. In this case generalisability would be restricted to individuals with 

characteristics found in the interval. As with RD, PERR was another method that was 

found in relatively few studies. This may have been in large part due to its recent 

development, rather than any technically demanding aspect of its application, since it 

simply extends the before-and-after approach of DiD to survival and rate data - 

outcomes that are common enough in health research.  However, the PERR 

approach does require strong assumptions including time-invariant confounding and 

the absence of an effect of prior events on likelihood of future treatment 192.   

Methods such as IVA and DiD have their origins in the sphere of econometrics, 

where randomised experiments are rare. We found that in importing DiD, some of 

the studies failed to explicitly acknowledge the problem of confounding bias. Instead 

justification for the method was presented in terms of the common trends 

assumption. Discussion of possible confounding bias is regarded as essential by 

most QA toolkits for observational data, and it is important that health researchers 

explicitly recognise this threat to the internal validity of non-randomised studies. 

Conceptually a non-temporal analogue of DiD would be the NCO method, which 

itself was presented foremost as a method for detecting unmeasured confounding. 

Given doubts over satisfying necessary assumptions for their implementation, 

authors of this method along with propensity score calibration and perturbation 

analysis have suggested that, as sensitivity analyses, these can at least offer an 

insightful complement to QE adjustment.  

Choosing between methods to reduce unmeasured confounding bias is challenging 

and we found few studies that directly compare methods. The performance of 

different methods will depend on factors such as the nature of the underlying 

confounding, the type of exposure and outcome, and the sample size 208  The type of 

data available will also guide the choice of method.  For example, the instrumental 

variable method requires a suitable instrument and DiD / PERR require data on at 

least two periods. In practice, no one method is likely to be best suited to all 

problems, and it is essential for investigators to carefully assess the potential biases 

in each proposed study, where possible tailoring the methods or combination of 

methods to address these biases 209.  Our review has highlighted how use of 

longitudinal information is one additional and potentially important consideration in 

this process.    
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While our review focussed on the problem of adjustment using analytic methods, 

many problems associated with observational data may be pre-empted by use of an 

appropriate study design 210.  Before choosing an appropriate analytic method, it is 

recommended that investigators carefully identify and match individuals for the 

control and intervention groups in order not to exacerbate any bias 74. The 

importance of study design is often discussed with a view to minimising confounding 

bias from unmeasured sources, with the subsequent adjustment accounting for 

observed confounders only 211, usually through the matching, weighting or 

adjustment of propensity scores 212. Where the success of the design remains in 

doubt, or its criteria cannot be fully met, then investigators will inevitably need 

recourse to some of the alternative methods reviewed in this report.  

The reviewed studies did not seek to distinguish between the different mechanisms 

of bias. Confounding by indication, deemed intractable by many researchers using 

the observed data 213,  was seen to create additional sources of bias in two separate 

simulation studies applying the “longitudinal” method of PERR, when an association 

was modelled between prior events and treatment status in the study period 121,122. 

Another common form of selection bias in pharmacoepidemiologic studies is the 

healthy user bias and this works in the opposite direction to confounding by 

indication, distorting treatment-outcome associations towards the treatment looking 

beneficial3.  Further research is needed to understand how each of the methods in 

this review is affected by the different types of confounding. 

An inherent limitation of this large, wide-ranging review is that it precluded 

meaningful data synthesis due to the mix of different data and study types.  

Furthermore, we could only find a few examples where the performance of different 

methods was compared within the same study. We also stipulated in the inclusion 

criteria that unmeasured confounding, or any of its synonyms, should be given as 

justification for methods in its adjustment. This may have inadvertently excluded 

some papers, where justification was implicit, but good practice in health research 

demands acknowledgement of this source of bias where applicable. While our 

search terms were specific to the scope of our review, we accept that this may have 

inadvertently excluded relevant methods and studies. Some methods, such as 

negative control outcomes, that were identified in the original search were not 

included as explicit terms in the search strategy, and further secondary searches 
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may have uncovered additional studies using these methods. We also acknowledge 

that there may be other relevant methods for addressing unmeasured confounding 

that have been missed by the search strategy. Consequently, we made inferences 

about the relative application of methods with caution. However, we were surprised 

so many studies focussed solely on IVA as the sole means of adjustment. A similar 

conclusion was echoed by a different review on regression discontinuity designs that 

found interest was growing in RD only as recently as 2014 214. 

By choosing to focus on methods with an independent control arm for each 

treatment, our review excluded case only designs including case-crossover designs 

(CCO) and the self-controlled case-series design.  This class of methods addresses 

unmeasured confounding by making comparisons within individuals so that each 

individual acts as his or her own control.  Another case-only design, the case-time 

control design, is an extension of the CCO design that uses information from a 

historical control group in a similar way to the PERR method.  These approaches are 

reviewed by Uddin et al 208 and Nordmann et al 215. 

This review has considered a range of promising new methods for addressing 

unmeasured confounding in non-randomised studies. However, consistent with prior 

research on dissemination and uptake of statistical innovations146, the rate of 

knowledge translation has been slow and we found that most studies in our review 

used established methods such as IVA and DiD.  A recent study by Cadarette et al 

has shown how Rogers’ Diffusion of Innovations model can be used to describe the 

adoption of novel methodologies in pharmacoepidemiology147 and this provides a 

useful resource for interpreting the uptake of methods in this review.  Cadarette et al 

proposed five principles for authors of methodological innovations that may improve 

translation into practice 147: (1) clearly describing the methods using foundational 

principles; (2) comparing results to established methods; (3) providing sample data, 

code or calculation examples; (4) early communication, support and testing; and (5) 

providing methodological and reporting guidance. These recommendations offer a 

useful checklist for researchers developing methods for addressing unmeasured 

confounding in observational studies. Of particular relevance in the context of this 

review is the need for more extensive evaluation and comparison of the emerging 

methods in a range of settings.   The review also addresses the need for 

methodological guidance through highlighting the potentially important role of 
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longitudinal information in addressing confounding bias and has identified this as an 

area for further development. 

2.6 Conclusions 

Our review showed how seminal work in econometrics has influenced practice in 

dealing with unmeasured confounding in clinical and epidemiological research. 

Although the issue of unmeasured confounding is widely acknowledged, we found 

that longitudinal information in observational studies appears under-utilised. Lagged 

and historical characteristics associated with the treatment may help enforce the 

exclusion restrictions of instrumental variables under the appropriate causal 

structures, while before-and-after methods, such as DiD and PERR, afford an 

intuitive approach without the imprecision of weak instruments. Furthermore, they 

offer a direct evaluation of time-invariant confounding bias. The most robust methods 

we found applied instrumental variable analysis to the fixed effects difference-in-

differences method, where such suitable instruments or difference lagged variables 

could be assumed to satisfy the exclusion restriction.  While there are sometimes 

good technical reasons for choosing one mode of analysis over another, many 

questions remain over the most appropriate methods.  All methods rely on 

assumptions, but little guidance is available to applied researchers as to the 

empirical settings in which particular methods can be safely used.  Few studies 

directly compare different methods and more research is needed to the establish the 

relative performance of the methods in realistic settings.    
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Chapter 3  -  Sensitivity analysis for addressing 

unmeasured confounding: a methodological 

review 

3.1 Introduction 

Both SA and QE methods take an indirect approach to the problem of confounding. 

The QE methods of chapter 2 make an adjustment, or rather a mitigation for 

unmeasured confounders, by invoking assumptions and utilising other available 

information, such as longitudinal observations available on patients in EHRs. Where 

uncertainty exists over the tenability of the assumptions or the precision of the 

estimates, such methods can be presented as SAs to postulate how much of the 

observed effect could potentially be attributed to residual confounding. In this way, 

the distinction between QE methods and SAs is not entirely clear. Therefore, it was 

important to also consider QE methods in the context of SAs, and so the search 

terms for SA were also included in the search strategy for methodological review of 

chapter two (Appendix A). 

Typically, an SA is either performed over a range of plausible settings for the 

confounding effect, or empirically discovers the degree of confounding required to 

move an observed effect to the null. Information on the direction and strength of 

association between the confounder and the outcome and key explanatory variables 

may be inferred from the data, or be imported from a source other than the dataset 

under analysis. If a high degree of imbalance of the confounder(s) across the 

treatment groups, or an implausibly high association of the confounder(s) with the 

outcome, is needed to change or explain treatment effect, then the results can be 

assumed to be reasonably robust to realistic levels of unmeasured confounding. 

Cornfield et al. 216 are often cited as the authors of seminal work on this approach. In 

this respect, adjustment methods and SA are very much complementary approaches 

to the problem of unmeasured confounding. 
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3.2 Methods 

The search strategy for the SAs followed the same as that for the methodological 

review, already outlined in chapter two. The study selection process also followed 

that of the review. The search term for sensitivity analysis can be found amongst the 

terms for the methodological review in Appendix A – methodological review search 

terms.  

3.2.1 Inclusion and exclusion criteria 

The definition and implementation of SA can vary from study to study. For the review 

an SA was defined to be a method by which a conventionally adjusted estimate for 

an intervention is challenged by the introduction of a hypothetical confounding 

variable(s) for a range of associations between the outcome, exposure and 

confounder(s). This did not include covariate substitution or restriction to a range of 

covariates or sub-group analysis, approaches which were excluded from the review. 

An additional consideration in managing the size of the review results was the 

expectation that the results from the literature search would be dominated by 

observational studies routinely following good practice in applying SA to test the 

robustness of results from inferential models. For that reason, I focussed on studies 

that sought to either develop SA methods using either simulated or observed data of 

any size, or explicitly focussed on the application of SA. 

3.3 Results 

In all, 23 papers on sensitivity analysis were eligible for review, including three 

studying propensity score calibration (PSC), one on perturbation testing and one on 

negative control outcomes (Table 3).  Some studies were based on seminal work not 

captured in the literature search for this review, which were nonetheless included for 

reference and discussion. One such was Greenland’s review of SA 217, which applied 

the basic formulation for the “external† adjustment” of a single binary confounder 

affecting the odds ratio of the association between a binary exposure and outcome. 

This involves choosing a plausible range over which to vary the confounder-outcome 

association and the odds of confounder prevalence in each exposure arm, but 

                                            
† “external” denotes manipulation by the author rather than external data 
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requires simultaneous interpretation of the confounder parameters. Margolis et al 218 

deployed this method and compared it to another by Rosenbaum 219, which 

summarised the imbalance of confounder prevalence as single parameter to predict 

the observed outcome due to the exposure. Margolis et al. advocated a combination 

of both approaches to reduce the number of computations. A study by Cabral 

captured in this review 220 also followed this principle. 

In their study, Arah et al 221 provided simplified formulae for uncontrolled confounding 

bias for different effect scales (risk difference, risk ratio and odds ratio) under a 

common framework, which can also accommodate polytomous unmeasured 

confounders. Formulae for SAs were subsequently extended to interaction analysis 

by VanderWeele et al. 222, who present bias formulae for interactions on both the 

additive and multiplicative scales. 

As a complement to finding a corrected point estimate for a set of parameters 

describing the confounder relationship, MacLehose et al. 223 reviewed a method for 

deterministic nonparametric bounds for the causal effect identified by the potential 

outcomes model and implemented this through linear programming, a procedure 

more widely used in operations research and econometrics. 

The general regression-based formulation developed by D. Lin et al. 224, which could 

accommodate censored survival times as well as continuously distributed 

unmeasured confounders, was the basis for the study by N. Lin et al 225. This 

provided a general framework for characterising the contribution to bias from missing 

covariates and censoring in the Cox model. As a special case of this framework, the 

method of D. Lin et al. was found to perform less precisely as the magnitude of bias 

increases. The work by N. Lin et al. would inform later work, presenting the Pairwise 

framework 192, which also included a test for the presence of confounding. 

Our review also picked up studies that sought to address the problem of uncertainty 

over the distribution of externally adjusted confounders. Steenland and Greenland 226 

present Bayesian sensitivity analysis (BSA), and the analogous Monte Carlo 

sensitivity analysis (MCSA) as methods for acknowledging both uncertainty from 

random sampling and confounding bias in a single interval estimate. The BSA 

approach was adapted by De Vocht et al. 227 under the full Bayesian framework to 

adjust for smoking history as the residual confounder in a study of the risk of lung 
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cancer in a cohort study of workers within the European asphalt industry. With the 

advantage of extra processing power afforded by advances in computer technology, 

the authors were able to specify the confounder prevalences without approximation 

from the more realistic Dirichlet process as originally suggested by Steenland and 

Greenland. Later Carrao et al. 228 also expanded on the SA method by Steenland 

and Greenland 226 through their study of mono- and combination therapies and 

cardiovascular disease, using health records. Here the exposure-confounder 

association was evaluated using an external dataset, reflecting this random 

uncertainty through Monte Carlo sampling for three different hypothesised outcome-

confounder associations.  

The review also captured two papers developing BSA from the same authors. 

McCandless et al. 229 used both simulated data and health records in their study into 

treatment for heart failure to demonstrate the advantage of acknowledging 

uncertainty over the prior distribution of an unmeasured confounder. In a following 

paper 230, using the same illustrative example, the authors demonstrated that 

uncertainty over a single binary unmeasured confounder could be reduced using 

hierarchical prior distributions in BSA, by assuming the confounder originated from 

the same distribution as the measured confounders. Subsequently, Gustafson et al. 

231 developed a simple prior distribution for a SA, requiring only a small number of 

hyperparameters, to model both poorly measured and unmeasured confounding. 

The intention was that this simplified approach, referred to as the simplified Bayesian 

sensitivity analysis, could be more easily adopted in practice. 

A propos of poorly measured confounding, Brunelli et al. 232 studied a problem 

specific to retrospective cohort data, such as EHRs. Baseline data and patient 

histories are often gathered from information from the prior period preceding the 

index date of the study, here referred to as the “look-back window”. The authors, 

examining the sensitivity of results to the length of look-back window, found that all-

available information resulted in less bias with lower mean square error compared to 

a fixed-interval window. 

In their seminal work on PSC as a QE method, Stürmer et al 233 also presented this 

as a sensitivity analysis. Besides importing information about confounding from an 

external source, this also confers the advantage reducing the dimensionality of 
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multiple confounders to a single score for adjustment of the exposure effect. The 

PSC approach was presented in a subsequent paper by Schneeweiss 234 captured 

by our literature search, which presented PSC along with MCSA, the “rule-out” 

approach (the level of confounder imbalance and confounder-outcome association 

required to account for the observed effect) and what the author dubbed the “array 

approach”, which estimates the response surface of the outcome risk ratio after 

adjustment across a constellation of confounder parameters. Further work by Lunt et 

al. 79 presented a framework for advancing PSC as an SA method through the use of 

DAGs. Testing one of its key assumptions, surrogacy, they confirmed earlier work 78 

that PSC was unbiased conditional on the effects of the unmeasured confounders 

being in the same direction as that of the observed. 

The problem of dimensionality in representing an array of potential unmeasured 

confounders was explored in the study by Li et al. 235, which proposed the propensity 

score as the sensitivity function of unmeasured confounders, developed by Robins et 

al. 236 and Brumback et al. 237 in their SA for inverse-probability weighted estimators. 

This approach also demonstrated some robustness against the misspecification of 

the functional form of the propensity score. Again through inverse-probability 

weighting, but more pertinent to modelling repeated outcomes with time-dependent 

confounding from longitudinally observed data, Ko et al. 238 performed an SA to a 

plausible range of the selection-bias parameter in the marginal structural model, as 

developed by Robins 239 and Hernán 240. 

The concept of perturbation 80, already discussed as an adjustment method in the 

review of QE designs, intuitively seems better suited as an SA, as it tests for 

unmeasured confounding through weak associations of 100’s, if not 1000’s of 

observed variables. This data mining approach should in theory be applicable to the 

big data of EHRs, but its implementation may be impeded by the method’s 

assumptions and the need for so many observed variables, presumably just a subset 

of which would comprise enough confounders to sufficiently adjust for bias. 

In contrast to perturbation testing, which relies on the availability of non-confounding 

covariates associated with confounders, the study by the Richardson et al. 125 

applied the negative control outcome (NCO) method, which takes a more 

parsimonious approach to utilising internal information from the dataset (as opposed 
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to external adjustment or external calibration data). Their study was based on earlier 

work by Lipsitch et al. 126, not captured in the literature search, which proposes 

finding another outcome unrelated to the outcome of interest and only causally 

related to the exposure through the confounders of exposure and outcome. This 

way, confounding bias may be detected through an effect of the exposure on the 

NCO, assumed to be through the unmeasured confounder, when conditioned on the 

measured confounder. 
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Table 3: Summary of studies on sensitivity analysis, returned by the literature search. 

Authors Year Title Summary 

Margolis, D. J. 
Berlin, J. A. 
Strom, B. L. 
Berlin, J. A. 
Strom, B. L. 

1999 A comparison of 
sensitivity analyses of 
the effect of wound 
duration on wound 
healing 

Effect of dichotomised wound duration on failure to heal in 
chronic leg ulcers comparing two approaches to SA, one of 
Rosenbaum 219 & one of Greenland 217, of estimates to 
unmeasured confounders. An important methodological 
statement on a complementary approach in using 2 SA methods 
together 

Du, X. L. 
Key, C. R. 
Osborne, C. 
Mahnken, J. D. 
Goodwin, J. S. 
Key, C. R. 
Osborne, C. 
Mahnken, J. D. 
Goodwin, J. S. 

2003 Discrepancy between 
consensus 
recommendations and 
actual community use 
of adjuvant 
chemotherapy in 
women with breast 
cancer 

Study investigated whether chemotherapy varies with age in 
women, and tested sensitivity of results to unknown confounders 
using method by Greenland 217: This was expanded for eight-
level exposure groups of age, and tested sensitivity to a 
confounder dichotomised around different age cut points. 

Ko, H. 
Hogan, J. W. 
Mayer, K. H. 

2003 Estimating causal 
treatment effects from 
longitudinal HIV natural 
history studies using 
marginal structural 
models 

Investigation of effect of highly active antiretroviral therapy 
regimens on CD4 cell counts in 871 HIV-infected women 
recruited for the HIV Epidemiology Research Study, using 
Marginal Structural Models / G-estimation. It implements (in 
what is posited as the first example) of Robin's approach 239 to 
SA by estimating the bias as the difference between the 
counterfactual means, given observed confounders, but here for 
a plausible range of selection bias in prescribing. 
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Steenland, K. 
Greenland, S. 

2004 Monte Carlo sensitivity 
analysis and Bayesian 
analysis of smoking as 
an unmeasured 
confounder in a study 
of silica and lung 
cancer 

Authors discuss the advantages of Monte Carlo (MC) sensitivity 
analysis (MCSA). Ordinary sensitivity analysis only allows 
postulation of a point estimate of bias, usually when only the 
direction of bias can be ascertained with any certainty. Bayesian 
and MC approaches can generate a range of plausible adjusted 
effect estimates for a given distribution of bias. However, while 
the implementation of a Bayesian sensitivity analysis (BSA) can 
be involved, requiring complex understanding, MCSA 
approximate BSA methods under certain conditions. This was 
demonstrated on a cohort of workers' silica exposure and lung 
cancer outcomes, adjusting for bias from smoking habits, the 
distribution for which is based on 1987 survey data. 

MacLehose, R. F. 
Kaufman, S. 
Kaufman, J. S. 
Poole, C. 

2005 Bounding causal 
effects under 
uncontrolled 
confounding using 
counterfactuals 

A nonparametric approach is presented in this study as a 
complement to sensitivity analysis, through linear programming 
for determining the bounds, or absolute limits, of the true effect 
of the exposure in the presence of unmeasured confounding. 
This was done using the observed table of observed data and 
counterfactuals, under realistic assumptions about the potential 
outcomes. Method applied to exemplar of effect of beta-blockers 
on mortality. 

Stürmer, T. 
Schneeweiss, S. 
Avorn, J. 
Glynn, R. J. 

2005 Adjusting effect 
estimates for 
unmeasured 
confounding with 
validation data using 
propensity score 
calibration 

Seminal paper on propensity score calibration (PSC) used to 
adjust for unmeasured confounding in study of effect of NSAIDs 
(non-steroidal anti-inflammatory drugs) on 1-y mortality in 
elderly, through use of a calibration dataset to complete 
adjustment for unmeasured confounders in main error-prone 
dataset. Here the main data is the Medicaid register of adults 
aged >= 65y with hospitalisations 1995-97, calibrated with 
Medicare Current Beneficiary Survey. PSC was proposed as a 
SA until method limitations & validity assessed  
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Malay, D. S. 
Margolis, D. J. 
Hoffstad, O. J. 
Bellamy, S. 
Margolis, D. J. 
Hoffstad, O. J. 
Bellamy, S. 

2006 The Incidence and 
Risks of Failure to Heal 
After Lower Extremity 
Amputation for the 
Treatment of Diabetic 
Neuropathic Foot Ulcer 

The study comprised an exploratory analysis of risk factors and 
treatments in failure to heal of extremity amputation in the 
diabetic foot. The sensitivity of the results to unmeasured 
confounders was tested by Greenland's SA 217: Estimates were 
concluded to be robust to confounding 

Schneeweiss, S. 2006 Sensitivity analysis and 
external adjustment for 
unmeasured 
confounders in 
epidemiologic 
database studies of 
therapeutics 

This study presents a tutorial-like review of SA methods the 
selection of which will be dependent on the availability of 
information about the (binary) confounders (affecting binary 
outcomes): 
The array approach estimates adjusted relative risks (RR) & 
bias  across parameters for RR of the confounder-outcome 
association and  confounder prevalence in each group 
Rule-out: equation allows estimation of RR of the confounder-
disease association and confounder prevalence in groups to 
move the apparent RR to the null. 
External adjustment: This allows a more straight-forward 
estimate of RR confounder-disease association when the 
confounder prevalence is known from an external validation data 
External adjustment for multiple confounders: describes PSC. 
Simulation via MCSA 
The array approach estimates adjusted relative risks (RR) & 
bias  across parameters for RR of the confounder-outcome 
association and  confounder prevalence in each group 
Rule-out: equation allows estimation of RR 
External adjust 
External adjustment for multiple confounders: describes PSC. 
Simulation via MCSA 
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McCandless, L. C. 
Gustafson, Paul 
Adrian, Levy 

2007 Bayesian sensitivity 
analysis for 
unmeasured 
confounding in 
observational studies  

Using real and simulated data, the study looks at the 
consequences of non-identifiability of the prior distribution and 
the effect of prior misspecification on the estimated interval of 
Bayesian SA.  By acknowledging uncertainty about unmeasured 
confounding, the authors demonstrated that credible Intervals 
achieve approximately nominal coverage probability if prior 
distribution is similar to sampling distribution of the model 
parameters. According to average coverage probability, it is 
better to acknowledge uncertainty about unmeasured 
confounders, even if model for BSA is unidentifiable. 

Arah, O. A. 
Chiba, Y. 
Greenland, S. 

2008 Bias Formulas for 
External Adjustment 
and Sensitivity 
Analysis of 
Unmeasured 
Confounders 

The authors review and present a simple set of bias expressions 
for SA of effects on different scales (risk difference, risk ratio, 
odds ratio), and demonstrate how this can be extended to 
polytomous confounders, exposures and outcomes. 

Cabral, M. D. 
Luiz, R. R. 

2008 Use of sensitivity 
analysis to assess the 
effects on anti-hepatitis 
A virus antibodies of 
access to household 
water supply 

The study used two approaches to SA, citing Rosenbaum 219 
and then Greenland's 217 external adjustment to evaluate the 
plausibility of results from investigation into the effects of access 
to household water on hepatitis A prevalence, and found the 
odds ratio between confounder and outcome would need to be 
>=4 to explain the observed effect. 
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McCandless, L. C. 
Gustafson, P. 
Levy, A. R. 
Gustafson, P. 
Levy, A. R. 

2008 A sensitivity analysis 
using information 
about measured 
confounders yielded 
improved uncertainty 
assessments for 
unmeasured 
confounding 

Using external data on unmeasured confounding might not 
narrow the uncertainty over confounding. However, the authors 
proposed using existing associations between the measured 
confounders and prognosis to better inform the interval 
estimates of the treatment effect by assuming a similarity of the 
unmeasured confounders and treating the coefficients of 
measured and unmeasured confounders as random samples 
from a normal distribution. Shrinkage estimates can then take 
account of the similarities in a Bayesian treatment of hierarchical 
models. 

De Vocht, F. 
Kromhout, H. 
Ferro, G. 
Boffetta, P. 
Burstyn, I. 
Kromhout, H. 
Ferro, G. 
Boffetta, P. 
Burstyn, I. 

2009 Bayesian modelling of 
lung cancer risk and 
bitumen fume 
exposure adjusted for 
unmeasured 
confounding by 
smoking 

Authors adopted & expanded Steenland & Greenland's 226 BSA 
to assess the effect of smoking, identified as the unmeasured 
confounder in the risk of lung cancer to bitumen exposure 
The study assumed informative priors based on a Dirichlet 
distribution. The posterior distribution was generated by Gibb's 
sampling using Metropolis MCMC. The association of lung 
cancer with bitumen exposure was still supported after SA, but 
with reduced certainty.The study assumed informative priors 
based on a Dirichlet distribution. The posterior distribution was 
generated by Gibb's sampling using Metropolis MCMC. The 
association of lung cancer with bitumen exposure was still 
supported after SA, but with reduced certainty. 
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Fung, T. T. 
Van Dam, R. M. 
Hankinson, S. E. 
Stampfer, M. 
Willett, W. C. 
Hu, F. B. 
Van Dam, R. M. 
Hankinson, S. E. 
Stampfer, M. 
Willett, W. C. 
Hu, F. B. 

2010 Low-carbohydrate 
diets and all-cause and 
cause-specific 
mortality: Two cohort 
studies 

In their study on the effects of low-carbohydrate diets (LCD) on 
cause-specific mortality using two cohorts of data, the authors 
cited Lin et al 224 in their SA, and found that the confounder 
imbalance would unlikely be strong enough to entirely explain 
the apparent effect of higher mortality from animal-sourced 
LCDs and lower mortality from plant-based LCDs. 

Gustafson, P. 
McCandless, L. C. 
Levy, A. R. 
Richardson, S. 

2010 Simplified Bayesian 
Sensitivity Analysis for 
Mismeasured and 
Unobserved 
Confounders 

Simple Bayesian Sensitivity Analysis (SBSA) is developed from 
the authors' previous work, and aims to incorporate poorly 
measured confounders, as well as unmeasured confounders, 
that are realistically likely to be available in most data. Focus is 
on simplifying the specification of the prior and hyperparameters 
involved 
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Li, L. 
Shen, C. 
Wu, A. C. 
Li, X. 
Shen, C. 
Wu, A. C. 
Li, X. 

2011 Propensity score-
based sensitivity 
analysis method for 
uncontrolled 
confounding 

The authors propose a 1-dimensional function of the propensity 
score, referred to as the sensitivity function, to quantify bias due 
to hidden confounders, and as an alternative SA for IPW 
estimators by Robins et al. 236 and Brumback et al 241. The SF 
was used to correct IPW estimators. Advantage of method is it 
reduces dimensions of confounders and polynomial forms of PS 
function can be reasonably approximated by lower order 
polynomials. The method is demonstrated on study of 
medication frequency in asthmatics. 

Corrao, G. 
Nicotra, F. 
Parodi, A. 
Zambon, A. 
Soranna, D. 
Heiman, F. 
Merlino, L. 
Mancia, G. 
Nicotra, F. 
Parodi, A. 
Zambon, A. 
Soranna, D. 
Heiman, F. 
Merlino, L. 
Mancia, G. 

2012 External adjustment for 
unmeasured 
confounders improved 
drug-outcome 
association estimates 
based on health care 
utilization data 

The authors applied SA to a nested case-control study of the 
effect of different drug regimens of mono and combination 
antihypertensive therapies on cardiovascular outcomes. 
Steenland & Greenland's Monte Carlo SA 226 was also applied to 
acknowledge the uncertainty over the distribution of bias and to 
incorporate external information about the confounders from 
other data sources. The results explained the apparent different 
in risk between two drugs administered extemporaneously and 
in combination, but not between combination and mono-
therapies. 
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Lunt, M. 
Glynn, R. J. 
Rothman, K. J. 
Avorn, J. 
Sturmer, T. 

2012 Propensity score 
calibration in the 
absence of surrogacy 

Authors present a framework by way of directed acyclic graphs 
for using PS calibration to adjust for confounding through an 
external, cross-sectional validation dataset in the simple 
scenario of one measured and one unmeasured confounder. A 
formula can be utilised to predict the presence and magnitude of 
bias in PSC. Under the assumption of independence between 
the observed & unobserved confounders, only one parameter 
needs to be substituted in the bias formula. Simulated cohorts 
were analysed and the effectiveness of NSAIDs on survival 
times of older adults estimated, using influenza vaccination 
status and age as gold-standard and error-prone PS's 
respectively 

Vanderweele, T. J. 
Mukherjee, B. 
Chen, J. 

2012 Sensitivity analysis for 
interactions under 
unmeasured 
confounding 

This technique was developed for assessing the sensitivity of 
interaction analyses to unmeasured confounding, with 
presentation of the bias formulas. This was demonstrated using 
data on the interaction between passive smoking and 
glutathione S-transferase M1 (GSTM1) on the risk for 106 lung 
cancer cases among non-smokers. 

Brunelli, S. M. 
Gagne, J. J. 
Huybrechts, K. F. 
Wang, S. V. 
Patrick, A. R. 
Rothman, K. J. 
Seeger, J. D. 

2013 Estimation using all 
available covariate 
information versus a 
fixed look-back window 
for dichotomous 
covariates 

SA of the differential effects of missing information on covariates 
from medical records, which results in unmeasured confounding 
bias. Simulations compare the benefits of fixing the window of 
time for collecting the information from all subjects to collecting 
all available information as determined by the subjects' historic 
contact and registration with the medical system. The simulation 
derives estimated bias for a range of probabilities for binary 
covariates, exposures and outcomes, for which recorded 
healthcare utilisation is a probability dependent on a binary 
frailty variable. The conclusion is that less bias is introduced 
when all available information is introduced rather than over a 
common fixed window. 
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Lin, N. X. 
Logan, S. 
Henley, W. E. 

2013 Bias and sensitivity 
analysis when 
estimating treatment 
effects from the cox 
model with omitted 
covariates. 

This study extends the formula for bias due to confounding in 
the Cox model by Lin D et al 224 to a general framework for other 
potential sources of bias, applying this to randomised and 
observational studies and simulated data. It concludes that the 
results from a Cox model are biased by missing covariates, 
even if those covariates are balanced, and that censor bias is 
maximised at 50% censoring. 

Lee, W. C. 2014 Detecting and 
correcting the bias of 
unmeasured factors 
using perturbation 
analysis: a data-mining 
approach 

Presentation of proposed method to test for unmeasured 
confounding (perturbation test) and to adjust for it (perturbation 
adjustment) where very large data exist through a data mining 
approach by accounting for the weak associations with any 
unmeasured confounders of multiple perturbation variables 
(PV), possibly 100's, if not 1000's. However the large number of 
PVs may exceed the available df's, so clustering of PV levels 
may be necessary. Longitudinal data may mitigate against 
incorrect adjustment of collider. Inadvertent adjustment of a 
measured confounder, however, exacerbates the bias, which 
may be eventually attenuated with many more PVs. More work 
needed to explore continuous PVs. 
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Richardson, D. B. 
Laurier, D. 
Schubauer-Berigan, 
M. K. 
Tchetgen, E. T. 
Cole, S. R. 

2014 Assessment and 
indirect adjustment for 
confounding by 
smoking in cohort 
studies using relative 
hazards models 

This cites earlier work on negative control outcomes (NCO) 
126.The study of lung cancer risks in occupational cohort studies, 
usually with unverifiable confounding effects from unmeasured 
smoking status, is used as the exemplar in this presentation of 
the use of an NCO in the SA and adjustment for unmeasured 
confounders such as smoking status. Here the measured 
confounders and the unmeasured confounders are common 
causes of the NCO. Adjustment for NCOs are an improvement 
on ordinary SAs, which make unverifiable assumptions about 
the prevalence of smoking among exposure groups, but the 
method imposes other unverifiable assumptions including that 
the exposure does not cause the NCO. Here COPD was used 
as the NCO in the study of the occupational risk of lung cancer 
in Colorado miners and French nuclear workers. 
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3.4 Discussion 

SA often relies on assessing whether a hypothesis about the size of the confounding 

effect required to explain the observed effect of exposure is credible. However, an 

implausibly large confounding effect does not completely rule out bias, the size of 

which may still be clinically meaningful. In this way, BSA and MCSA have proved to 

be useful in acknowledging the uncertainty over the distribution of confounding bias. 

External data sources may be also useful in yielding more information about 

confounders as in the propensity score calibration methods. Many confounders are 

likely to be associated so basing hypotheses about unmeasured confounders on 

those observed will likely be informative. Propensity scores may also be useful as a 

sensitivity function, reducing the dimensions of many different confounders into a 

single summary. 

In contrast to external adjustments, the method of negative control outcomes stands 

out as one that makes use of available information within the same dataset. Another, 

source for information on unmeasured confounding may be found within the patient 

histories of the dataset. Indeed, many of the before-and-after methods reviewed in 

chapter 2 rely on the longitudinal information from patient histories, as well as the 

longitudinal adjustment for measured confounders using weighted methods (broadly 

known as G-methods). In this respect, the study by Brunelli et al is highly informative 

in determining the look-back window for patient histories.  

Where the ability to capture information about confounders is in doubt, many of the 

QE methods may be regarded as SAs themselves, as has been suggested for the 

method of propensity score calibration. As will be discussed in the next chapter, the 

prior period of the PERR method and the control arm of the Pairwise method may 

offer a window onto the direction and size of confounding. In a comparison of the two 

methods, the performance of the PERR and Pairwise methods will be greatly 

informed in chapter 4 by the work of Lin, Logan and Henley 225. 
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3.5 Conclusion 

Sensitivity analyses aim to indirectly characterise the relationship between exposure, 

outcome and unknown confounder(s). From the reviewed literature, the approach 

taken to SA will be informed by the characteristics describing assumptions about the 

unmeasured confounder: 

• Hypothesised confounders vs. information on confounders from external data 

sources vs. indirect internal information on confounders 

• Single or multiple confounders vs. single dimensional summary 

• Point estimates for SA vs. methods to integrate uncertainty over unmeasured 

confounders 

• Modelling vs explicit formulation for SA 

Hypothesising a range of confounders, or deliberating over the size of confounding 

required to move the observed effect to the null may be akin to plucking numbers out 

of the air, unless there is some reference. If knowledge about the unobserved 

confounders can be gleaned from another dataset, then these may serve as a 

reference. If the information on these is complete, then a calibration may be possible 

using PSC, although this may prove to be quite rare in practice. However, in a 

dataset sufficiently rich in information, finding an NCO would obviate the need for an 

external dataset, as might patient histories, if the degree of confounding bias may be 

gleaned from the longitudinal information. Many of the methods, such as NCO and 

PSC, may be characterised as an empirical, model-based approach. However, 

explicit formulae exist for re-calculating the odds ratio or relative risk adjusted for a 

hypothesised confounder. Here, the effect of a single confounder may be 

represented, but in reality, confounding bias is likely to be from multiple sources. 

Propensity scores and dimension reducing functions of multiple confounding effects 

may offer a means of modelling realistic scenarios. However many confounders may 

be unobserved, the resulting bias can only be unidimensional. Yet, uncertainty will 

inevitably exist over the true degree of bias. Here, this can be accommodated as a 

hypothesised distribution of the bias through Bayesian and Monte Carlo SA 

methods. The need for positing a distribution for the confounding bias may be 
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obviated, however, by the availability of indirect information about the bias within the 

same dataset.  
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Chapter 4  -  The PERR and Pairwise methods: review and 

implementation 

4.1 Development of the PERR and Pairwise methods 

Attempts to replicate trials in a 2008 study using the observational data of EHRs 

prompted the authors, Tannen, Weiner and Xie, to develop a new method to address 

unmeasured confounding 242,243. The prior event rate ratio (PERR) method was an 

intuitive before-and-after approach, analogous to differences-in-differences, that 

could be applied to both survival and rate data. Although, quasi-experimental 

methods are available for continuous and binary outcomes, there are few, if any, 

methods suitable for survival data. While rate and survival data are two possible 

measurements of the outcomes generated by the same process, the attraction of 

using survival data is that it is possible to analyse the data without modelling the 

underlying distribution of survival times by applying the popular Cox regression 

model (also known as the proportional hazards model) 244. Extensive literature exists 

on the theory and application of the Cox model. Briefly, the effect of an exposure or 

other variables of interest may be estimated from the maximum likelihood of the joint 

probability of the events as a function of the variables’ coefficients for individuals 

ordered by their survival times observed over a prescribed period. As the method 

relies only on the rank of the ordered survival times rather than the length of the 

survival times themselves, this is also known as the partial likelihood, expressed as 

the likelihood of the exponent of the linear predictor of a vector of coefficients, β, for 

x covariates, observed at the kth ordered event of i times: 

𝐿(𝜷) = ∏
𝑒𝑥𝑝(𝜷. 𝒙(𝑖))

∑ 𝑒𝑥𝑝(𝜷. 𝒙𝒍)𝑙∈ℜ(𝑡(𝑖)

𝑘

𝑖=1

 

Equation 1 

where the denominator is the set of individuals at risk at the ith ordered event as 

stated in Cox 244. The times may terminate with an event, in which case the time of 

that individual is present in both the numerator of the probability and in the 

denominator as part of the risk set of all survival times lasting up to that point in time. 
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The times that do not terminate in an event are censored and are only in the 

denominator of the joint probability function as part of the risk set for all survival 

times of individuals at risk at the time of the event in the numerator. This approach 

avoids direct estimation of the underlying baseline hazard function.  

Outside actuarial sciences and process monitoring in manufacturing, survival data 

are perhaps mostly commonly encountered in medicine. Therefore the arrival of the 

PERR method, was key to the development of more inferential studies using 

routinely collected data at a time of growing interest in using EHRs for health 

research 245.  

4.1.1  The PERR method 

The PERR method proposes that if the hazard (or rate) ratio of the exposure in a 

period of study is biased by confounding, this may be adjusted by the hazard (or 

rate) ratio between the two exposed groups from a period prior to the exposure 

(Figure 4). This, therefore, demands an exposure (treatment)-free period prior to the 

period under study, and assumes that the hazard (or rate) ratio from the exposure-

free prior period is a measure of the pre-existing confounding bias between the two 

exposure groups. While the PERR method offers a possible route for addressing 

unmeasured confounding, like all quasi-experimental methods, it is appropriate for 

certain types of data, and its reliability rests on meeting certain assumptions (see 

below). Since information on the outcome from an exposure-free prior period is key 

to the correction for confounding bias, then the outcome needs to be repeatable. 

Implicit in the assumption of the prior period offering a correction for confounding 

bias, is that the bias is constant from one period to the next. Upon meeting these 

conditions then the PERR estimate is provided by either the hazard from a survival 

model or the incidence rate from a suitable model, such as the Poisson, in the study 

period divided by the corresponding estimate from the prior period. In this way, the 

estimate from the prior period should provide an estimate of the magnitude and 

direction of confounding that may be present in the study period, if the assumptions 

are correct. 
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Figure 4: Diagram of the adjustment made across two periods in the prior event rate 
ratio (PERR) method. The hazard ratio (HR) of intervention is calculated from 
survival times (ST) from the study period and adjusted with that from the exposure 
(treatment)-free prior period. The shaded cell denotes the exposure arm in the study 
period. The PERR adjustment can also be applied to rate data. 

4.1.2 The PERR-Alt or Pairwise method 

In a follow-up to the seminal paper, an alternative formulation of the PERR method, 

the PERR-ALT method, was first presented by Yu et al 246. In contrast to adjusting 

the Cox estimate from the study period with that from the prior, the PERR-Alt method 

is based on a paired Cox analysis, in which an adjustment for a period effect is made 

within each subject. Under the large sample approximation, the difference between 

the PERR and PERR-ALT method is clear: The adjustment for confounding using 

the PERR-ALT method is made within each of two exposure groups. The hazard 

ratio of treatment effectiveness is then the ratio of the hazard ratios from each 

adjusted exposure group. Conversely, the PERR method first finds the hazard ratio 

of the exposure effect in the study and prior period and then adjusts the hazard ratio 

of exposure in the study period with that from the prior period. Results from a limited 

array of simulations in the study by Yu et al. demonstrated no bias in the PERR-ALT 

and little bias in the PERR method relative to exposure effect assuming equal 

confounding effects in both study intervals.  Further work was also discussed, but not 

presented for the effects of prior events on those in the study period. 
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Figure 5: Diagram of the adjustment made within each exposure arm between two 
periods using the PERR-ALT approach. The hazard ratio (HR) of the exposure in the 
study period relative to the prior period is calculated from the survival times (ST) for 
the exposed group and then adjusted with the analogous ratio for the unexposed 
group. The shaded cell denotes the exposure in the study period. The PERR-ALT 
adjustment can also be applied to rate data. 

Further results from simulations were presented in another method paper by Uddin 

et al.247, under a variety of scenarios, which will be discussed in more detail below. 

Simulations also examined the relative performance of the PERR and PERR-ALT 

methods together in the method paper by Lin and Henley that presented a 

generalised formula for the Pairwise likelihood method 192, of which the PERR-ALT 

method is a special case. The formula extended the Pairwise method to 

accommodate time-varying covariates as well as multiple periods, and demonstrated 

superiority in dealing with time-varying baseline hazards, although a greater 

sensitivity to confounder-treatment interactions. Furthermore, the authors 

demonstrated that the problem of bias will stubbornly afflict estimates from the 

application of the PERR method. This is due to problems of bias with the underlying 

Cox models in the presence of missing covariates as demonstrated in earlier work 

225. The problem of bias in the PERR estimates was shown to be exacerbated in the 

presence of censoring. Only when the missing covariate is a confounder does the 

bias in the Cox model reduce under the PERR method. 
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4.2 Clarification of types of confounding 

In order to examine the assumptions around the two methods, it is first necessary to 

clarify some the terminology around confounding. Two terms for confounding bias 

are frequently encountered, sometimes within the same study. These are 

“confounding by indication” and “selection bias”. It would be interesting, but, perhaps 

not especially worthwhile given the work involved, to conduct a systematic review to 

study consistency of usage of these terms. However, there can only be one effect of 

confounding: bias. The two terms simply describe the mechanism, by which 

confounding might arise, and it is important to clarify the motivation for using either 

“confounding by indication” or “selection bias” instead of “confounding bias”. As 

established in the introduction chapter, the first condition for a confounder in 

Statistics is that it must be any other variable, other than the variable(s) of interest, 

which may affect the outcome(s) of interest. In medicine and health, this is likely to 

be referred to as a prognostic variable. As variables of interest are often binary 

exposure or treatment variables, then any potential prognostic variables will 

confound the exposure variable if these are imbalanced between exposure groups. 

Patients may be selected for a particular treatment based on prognostic factors, or 

characteristics associated with these. In this way, the second condition for a 

confounder is met by association of the prognostic variable either through imbalance 

between exposure groups or through selection for treatment based on it. In the UK, 

the patients may seem to fare badly and be worse off under particular treatments, if 

these are prioritised for those most in need. In countries like the USA, access to 

healthcare largely depends on income. Better health may be seen to be enjoyed by 

those with a higher socioeconomic status, and so this confounding may lead to a 

healthy patient bias. In both cases, some form of selection bias has occurred. 

Confounding by indication is subtly different. A risk of bias still exists from what is a 

form of selection, but here “by indication” is taken to mean selection on the outcome 

or associated event, which subsequent treatment is intended address. This is an 

important distinction in the context of the PERR and Pairwise methods applied to 

longitudinal EHR data, as the definition implies that confounding-by-indication can 

only occur when an outcome is repeatable – an essential feature of data required for 

the application of the PERR and Pairwise methods. In the case of presentation of a 
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disease, “by indication” would therefore be the prescribing of a treatment intended to 

prevent future recurrence of the disease. 

4.3 Assumptions of the PERR and Pairwise methods 

The assumptions have variously been presented and tested through simulation in 

the seminal studies discussed above. For clarity, these are consolidated and 

discussed below, and each simulation study critiqued where necessary: 

1. The same net effect of confounding in the prior as in the study 

This refers to the condition of there being no difference in the underlying bias 

between the study and prior periods. This does not explicitly require the same 

confounders to be present in both periods, but rather the same effect is exerted. In 

the simulation study of Uddin et al.247, different symbols were used to represent the 

confounders (C11 for the prior and C12 for the study period) in order to simulate 

different period-specific effects of confounding. The implication from the arrow from 

C11 to C12, that confounders in one period “cause” those in the other may be 

contentious, especially where these are asserted to be equal. Such an issue could 

be treated as further evidence of problems in using DAGs to illustrate observed 

epidemiological relationships 35. Theoretically, a different set of confounders for each 

period could by chance exert the same effect with one causing the other, which may 

warrant different symbols, although in practice it is difficult to conceive a situation 

where this would happen to be the case. In practice, it would be necessary to accept 

no significant difference between the periods’ confounding effects, given some non-

significant differences may persist as a result of modelling instability and random 

variation. If the same confounders are present throughout, then their effect is 

assumed to be constant over the prior and study periods. In their presentation of the 

PERR-ALT method, Yu et al. demonstrated that the bias from the period-confounder 

interaction relative to the exposure effect was “well-controlled” at less than 5% when 

the exposure was small, and less than 10%, when the exposure effect was 

“moderate to large”246. If the confounding effect is stable then this suggests time-

invariant confounding between the two periods. The property of time-invariant 

confounding may be reasonable when: 

a. the population characteristics are stable over time. 
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The underlying latent factor that broadly encapsulates prognostic factors and 

susceptibility to disease could be described as frailty. The precise definition of frailty 

and the variables that measure it may change according to the disease, but the rate 

of change in frailty over time may differ according to the population under study. 

Among the very old, or ill patients with a poor prognosis, the rate of change in some 

“frailty” variables may be great enough to consider restriction of the observation time 

if any of these are confounders. If the change in the confounding effect is too great 

between the periods, then the prior period will be a poor adjustment for confounding 

in the study period. 

b. the prior and study periods are adjacent to each other: 

The proximity of the start of the prior period to that of the study period depends in 

part on the length of the prior period. In the case of certain annual vaccinations, such 

as those for influenza, the proximity will also be determined by any seasonality in the 

treatment and follow-up. The proximity of the periods may also depend on the 

availability of an exposure-free sample for recruitment. If in the case of the phased-in 

introduction of health policies, such as vaccination, a larger cohort may be assured 

by looking back far enough to maximise the availability of treatment-free individuals. 

However, this will need to be balanced against the stability of confounders, and that 

of frailty as discussed in (a), as over time the relationships with any confounding 

variables are likely to change. 

c. the prior and study periods are short: 

For reasons discussed in (a), the length of the study and prior periods will impact on 

their proximity as noted in (b). However, longer periods will likely allow more events 

to observed as well as a longer recruitment period, both of which would increase the 

power of a study, so a balance invariably needs to be struck between these 

considerations and the violation of time-invariant confounding. 

2. No moderating effects of confounders on exposure or treatment 

In their presentation of the Pairwise method and evaluation of the relative 

performance, Lin and Henley presented results for the PERR and Pairwise methods 

compared against the Cox model under simulation of an interaction between the 

confounders and exposure effects 192. Under parameters of unity, the PERR 
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adjustment was seen to perform better than the Cox model, while the Pairwise 

method only seemed to be less biased than the Cox model when the magnitude of 

the interaction effect was less than that of the main effect in this particular scenario. 

However, it was not clear how this might be attenuated under different parameters. 

3. Independence between outcomes 

The occurrence of events should be independent so that any event should not 

change the probability of any subsequent events. More specifically to the PERR and 

pairwise methods, events in the prior period should not directly influence those in the 

study period. This may be more of a problem when events are common enough to 

occur more than once within the same patient. However, for the scenario presented 

by Uddin et al. 247, the bias was relatively small compared to the conventional risk 

ratio. Nevertheless, this may be questionable if, say, in the case of infectious 

diseases, infection in a prior period conferred immunity in the study period.  

4. No causal effect of the prior outcome on exposure 

As explained in the section above, where the outcome in the prior period determines 

the exposure in the study period, this can be regarded as confounding by indication. 

The implication for the two-period study design analysed by the PERR method is that 

the effect on the outcomes from the imbalanced prognostic variables (i.e. 

confounders) is accompanied by a causal effect of the outcomes in the prior period 

on exposure. In this matter DAGs can seemingly both clarify and confuse 

understanding of this concept.  To understand how this might arise, it is helpful to 

first consider indication (effect of prior outcome on exposure) in the absence of 

confounding. This was presented, but not fully explained, in scenario 3 of the study 

by Uddin et al (Figure 6) 247. The scenario of a direct causal effect without any 

prognostic or confounding variables is arguably unrealistic in any observed biological 

system, yet this explains the problem of indication. In scenario 3, the exposure is 

determined by event Y1, which must therefore occur entirely at random in the prior 

period since it has no cause or confounder. Since the causal path X  Y2 is 

unconfounded, then adjustment with what is a randomly generated process Y1, 

where treatment X is wholly or partly determined by Y1 would induce bias in the 

estimate of the effect of X on Y2. Therefore the problem with confounding by 

indication in the PERR and Pairwise methods is that it comprises two effects, and an 
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adjustment is made not only for confounding, but also indication (Figure 7). In this 

way, adjusting for Y1 as an indicator in the regression of X on Y2 is akin to adjusting 

for an instrument in which X becomes the mediator rather than the cause of Y2. 

 

Figure 6: Recreation of figure 4a from scenario 3 in the study by Uddin et al., where 
the causal effect in the study period between X and Y2 is unconfounded, but X is 
indicated by prior event Y1 

 

 

Figure 7: Representation of figure 4c from scenario 3 in the study by Uddin et al., 
where the causal effect in the study period between X and Y2 is confounded by C, 
but X is indicated by prior event Y1, which is also caused by confounders C. 

 

The idealised relationship for the application of PERR is represented in Figure 8, 

which shows the prior outcome Y1 and the causal effect of X on Y2 confounded by C. 

In many clinical scenarios, one could expect the actual relationships to be 

somewhere between this idealised scenario and that with indication in Figure 7. An 

example could be where patients receive an invitation for routine vaccination based 

on age and irrespective of health status, but following an illness close to their 

appointment, some patients, who otherwise would ignore the invitation, might elect to 

be vaccinated.  This demonstrates the confusion that DAGs may cause, as they can 
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falsely represent a dichotomisation of a relationship that may exist on a continuous 

scale between Y1 acting as a proxy for confounders C and Y1 as an instrument for X. 

Certainly, the strength of Y1 as a proxy for confounders C would be stronger in some 

clinical scenarios, for instance, in a study of the side-effects of a treatment.  Uddin et 

al. showed under simulation that the logarithm of the hazard ratio moves linearly 

away from the point of no bias with an increasing effect of indication. 

  

Figure 8: PERR is applied ideally to a causal relationship between exposure, X, and 
study outcome, Ys, confounded by C. Prior outcome, YP, is also predicted by 
confounders, C, but crucially there is no indication between Yp and X. 

The simulation of Lin and Henley showed a more complicated relationship for a 

different range of settings192. Overall the PERR estimates performed better than 

those from those from the Cox model, although for a wider range of values the 

Pairwise estimates were affected the least by bias. 

5. No differential effect of dropout or censoring 

The condition for censoring and dropout in applying the PERR and Pairwise methods 

depends on which of the two methods is used. Censoring is a potential problem in 

survival analysis, if this is deemed to be informative and imbalanced between 

exposure levels. Censoring may include death if this is not an outcome, although due 

to the unrepeatable condition of death, this would not be a valid outcome under the 

PERR approach in any case. The potential sensitivity of the survival model to 

informative censoring may be evaluated by inspecting the distribution of censored 

times relative to event times and by comparing the results from reassigning the 
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censors as events with those from assigning the longest times to censored times248. 

Inverse probability of censor weighing may be possible if there are a sufficient 

number of censored times. Irrespective of informativeness, however, the problem 

posed by dropout/mortality is that this is an unrepeatable condition in the prior 

period, as patients are necessarily alive up to the point of recruitment in the study 

period. If dropout is imbalanced between treatment groups, as simulated in Uddin et 

al. and Lin and Henley, then this is likely to be commensurate with an imbalance in 

the associated confounders, creating a problem akin to the violation of assumption 1 

above: that the net effect of confounding should be equal in both periods, or at least 

similar enough to lead to no significant practical difference. In the simulation by 

Uddin et al., it was not entirely clear how imbalanced was mortality between 

exposure groups, but the results suggested a downward bias with increasing 

mortality rates. They also reported that excluding mortality in the study period 

numerator of the PERR method was more biased than the PERR that included all 

patients. Lin and Henley dubbed the difference in mortality between periods, and the 

potential resulting confounder imbalance, as the differential case fatality (DCF), in 

reference to an abstract by Gallagher 249 (there was no subsequent peer-reviewed, 

published study, so this was not included in the method review). Their simulation 

confirmed that DCF arises from imbalance in confounders, but also demonstrated 

that DCF can decrease as well as increase the bias of the PERR method. 

Interestingly, they also showed that in the extreme case of all patients at one level of 

a binary confounder dying before the study would result in no bias. Crucially, the 

results from the Pairwise method were also unbiased, since the comparisons are 

always paired within each patient. Reflecting the concern over imbalanced 

censoring, Lin and Henley’s steps for detect confounding in the prior period of the 

PERR method took account of possible bias from imbalanced censoring. They first 

proposed a test of significance between exposure groups having swapped the 

censor and event indicators, following a similar method proposed by Collett for 

testing the imbalance in censoring 248. However, censoring in the prior period is 

unlikely to be anything other than administrative censoring of patients, who have 

reached the end of the prior period without an event, and so must necessarily be 

alive for the study period, for which they were recruited. 
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4.4 PERR and Pairwise methods in the context of general 

approaches to confounding 

In chapter two a variety of methods were reviewed, which leveraged the longitudinal 

information of EHRs to adjust for unmeasured confounding. Many of these relied on 

longitudinal information from an exposure-free period prior to the period of study 

itself. While this type of before-and-after adjustment could be described as an 

“approach” or method, it also intrinsically determines the “shape” and features of the 

data and the way, in which these are analysed. Hence, study design and the method 

used are not mutually exclusive for many of the approaches. In this way, it would be 

misleading to consider the PERR and Pairwise methods in isolation of all other 

potential strategies for minimising confounding bias. 

 

Figure 9: Venn diagram of possible approaches to reduce or mitigate for confounding 
bias with examples (not exhaustive) of each. 

 

In practice, it is useful to consider how different approaches may overlap and be 

combined to minimise the risk of bias due to confounding (Figure 9). For example, 

some form of restriction to a particular sub-group or within strata of the population 

may control for confounding by aiming to reduce the difference in prognostic 

characteristics between exposure groups and may be deployed as a form of 
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sensitivity analysis of the reliability of the main unrestricted result 250. This is a 

common approach, and recently there has been a growing interest in the test-

negative case-control design particularly for monitoring annual vaccine effectiveness 

251–255. This is a form of restriction applied to the outcome, and in the case of 

influenza studies, it seeks to mitigate for health seeking behaviour by studying only 

patients, who have reported symptoms akin to influenza-like illness. A case-control 

design then analyses effectiveness based on laboratory-confirmed infections, which 

mitigates against disease misclassification 255. A poorly defined outcome may evade 

attempts to control for confounding, in the same way a poorly defined intervention 

may prove problematic for inferential consistency from the research question and 

data to a wider population 16. However, restriction necessarily reduces the external 

validity of the results. With regards to the test-negative case-control design in study 

of influenza effectiveness, the size of the study and the generalisability is restricted 

by access to laboratory-confirmed outcomes 255. As in the UK and other countries, 

the absence of widespread laboratory testing to confirm cases of influenza would 

significantly reduce the sample size. After the initial screening of outcomes, the 

method still relies on adjustment, through matching on measured confounders, and 

as a type of case-control study, cannot deal with unmeasured sources. 

Another design type is the active comparator new-user study. Because the 

comparison is between two treatments for the same disease, it can assume the 

same indicators for treatment with the only difference being the therapy. This 

ensures a similar distribution of prognostic variables between therapy groups 74. For 

that reason, this design could be the optimum design for comparative effectiveness 

studies, although it is difficult to conceive a wider application of the design beyond 

such studies. There is no adjustment using longitudinal information per se, but rather 

eligible patients are selected based on their history of medication use as determined 

through longitudinal EHRs. 

The methodological review of chapter two was scoped to include only studies with at 

least two exposure levels. In this way, participants would have been recruited 

according to exposure status. However, this excluded a set of other before-and-after, 

single-arm, case only designs that recruit according to outcome, in which cases 

serve as their own controls in a period prior to exposure. One such method is the 

case series or self-controlled case series, in which cases are selected and their 



   
 

 102 

exposure status retrospectively studied relative to the timing of their outcome 256,257. 

Conditional upon the assumption of no effect of a recurrent event altering the 

probability of subsequent exposure, this approach lends itself well to studying 

adverse events for drug and vaccine safety. The safety of the mumps, measles and 

rubella vaccine (MMR) has often been cited as an example of its application 258. The 

case series design may be extended to accommodate transient exposures, for which 

multiple exposure and control periods are possible. This constitutes a case-

crossover design 259. The use of either method depends on the historic pattern of 

medication use, but both approaches require a well-defined period of exposure and 

control 215. For example, after vaccination, there may be a limited window of time 

during which outcomes could be assumed to be adverse reactions. As the case-

crossover design may analyse multiple windows then it is also essential that the 

baseline rate of such outcomes does not change, and that there are no time trends 

in the exposure windows. Since individuals in a case only design act as their own 

controls (“crossover” is within individuals), then this mitigates for fixed confounding 

effects, but susceptibility to bias from time-varying confounders cannot be ruled out. 

Furthermore, case-only studies ask a subtly different question of the data, by 

recruiting cases only. The effect on cases only may be slightly different from the 

effect adjusted for confounding between exposed individuals and controls, and the 

results may not be as widely generalisable as those from PERR and Pairwise. 

Crucially the availability of controls and an exposure-free prior period under the 

assumption of temporally stable bias allows an investigation of the source and size 

of bias, in a direct way that is not possible with case only studies. 

The methodological review of chapter two broadly considered how longitudinal 

information could be utilised in the adjustment for unmeasured confounding and was 

motivated by the growing interest in routinely collected datasets, where such 

information is likely to be available. Longitudinal information may facilitate the use of 

“before-and-after” methods, in which longitudinal comparisons are made to 

temporally adjust for unmeasured confounding. A summary of these methods is 

listed in Table 4. The inclusion of single-arm, case only methods along with the 

PERR, Pairwise and other methods reviewed in chapter two further illustrates the 

overlap between method or study design in adjusting for unmeasured confounding 

and how design is integral to this adjustment. 
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Quasi-experimental methods typically invoke extra assumptions to adjust for 

unmeasured confounding, and before-and-after approaches demand longitudinal 

information and particular study designs (i.e: cohort) to yield that information. In this 

way, there is an unavoidable overlap between design and method. Similarly 

adjustment for unmeasured confounding does not necessarily preclude explicit 

adjustment for measured confounders (Figure 9). Moreover, since it has been shown 

that the PERR method cannot entirely remove bias from effect estimates 192, then 

inclusion of covariates and potential confounders, where available, would be 

desirable. On this basis, it would be good practice to try and adjust for common 

confounders, such as age and gender, in any given model first. This would minimise 

the degree of confounding bias, and leave the PERR method to adjust for residual 

bias. Furthermore, it would allow assessment of the sources of bias, and of how 

much is due to unmeasured confounders through comparison of the results from the 

model adjusted for measured confounders with the PERR-adjusted model. 

Alternatively, adjustment may take the form of inclusion of a propensity score, rather 

than adjustment by each variable. Propensity scores were calculated for the studies 

in this project and more details can be found below in section 4.6.3. Propensity 

scores may be implemented as an adjustment for observed confounders by more 

than one approach 212. For example, inverse probability treatment weights (IPTW) 

can be derived from propensity scores (PS) to provide estimates from a weighted 

model. This was the approach followed for explicit adjustment in this project (for 

more details about the advantage of IPTW over other PS methods, see below in 

section 4.6.3). Models that re-weight according to measured confounders are also 

known as marginal structural models 12, although throughout this project, this 

application has mostly been referred to as IPTW. Weighting may also be applied 

through a raft of methods broadly known as G-methods to adjust for time-dependent 

effects if there is information available on past covariates and treatment states 260,261. 
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Method Description How method controls for unmeasured confounding 

Prior event rate 

ratio (PERR) 

Adjustment of the study incidence or hazards rate for rate or survival data, 

by exposure group, using the equivalent estimate from an exposure-free 

prior period. 

The method relies on individual level data from both periods to control 

for unmeasured confounding, but adjustment is made at the group 

level. 

PERR-Alt / 

Pairwise 

Estimates for survival data the hazard rate for an exposure from the 

paired likelihood of the within-individual comparisons of the study period 

with an exposure-free prior period. 

Adjustment is made within each individual and offers more flexibility in 

accommodating proportional differences between the period-specific 

baseline hazards, modelled as a nuisance variable, with the potential to 

expand the Pairwise formula to more than one period, as well as to 

model time-dependent covariates. 

Difference-in-

differences 

(DiD) 

Estimates the effect on two groups from the coefficient of the interaction 

between the group and period variables from a regression of outcomes for 

each group at each time point. 

The data look back to an exposure-free period, although DiD does not 

exclusively require longitudinal data (i.e: may use repeated cross-

sectional panel data), and the adjustment is between exposure group. 

Therefore within-individual data may benefit from including variable 

specific covariates in the regression, or using the first differences or 

fixed effects approach. 

Fixed effects 

and first 

differences 

Estimates the effect on a continuous outcome from regression on a binary 

exposure having either demeaned the data across time (fixed effects) or 

by finding the differences (fixed effects method is equivalent to first-

differences for two time points). 

Requires individual-level data. By regressing the first differences or 

demeaned data, time-invariant individual-specific confounders are 

eliminated within each individual. Suitable for continuous outcomes. 

Regression 

discontinuity 

The effect of an intervention may be estimated through the pretest-

posttest design, for which a cut-off on the pretest value of a continuous 

outcome determines membership of a binary intervention group. The 

effect is estimated as the degree of discontinuity by a dummy variable for 

treatment in a regression model. For individuals close enough to the cut-

off, exchangeability and a lack of confounding bias is assumed. 

The method intrinsically requires individual level data to regress post-

test on pre-test outcomes. Unmeasured confounding is controlled by 

assuming that individuals are similar in all potential confounding 

variables for pretest values within a certain distance from the cut-off. 

This is best achieved if there is random noise in the pretest 

measurements, and there is a sharp cut-off in treatment assignment. 
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Interrupted 

time series 

(ITS) 

Studies the effect of an intervention at a point in time in a population by 

estimating any discontinuity in the response or change in time-related 

trends of the response. 

ITS may be applied to individual-level longitudinal data or population-

level data collected over time, but yields population-level estimates. 

Accuracy may depend on modelling trend, seasonality or any 

periodicity within the data, but does not require explicit adjustment for 

confounders or a control group, although the availability of a control 

group would allow confirmation of a reported effect. Suitable for 

studying policy implementations in time, which do not coincide with a 

concomitant change in any other determinants of outcome. 

Self-controlled 

case series 

(SCCS) 

Single-arm case only design that recruits on outcomes, and adjusts within 

individual. 

As a single-armed study design, individuals act as their own controls. 

An observation window should be clearly defined within which it should 

be possible to identify any possible exposures, which should not be 

exclusively distributed among cases (i.e: possible to have exposed and 

unexposed cases). Controls are any events occurring outside a well-

defined exposure risk-window. 

Case-

crossover 

Same as the SCCS, but can accommodate multiple exposure-risk 

windows for transient exposures. 

Same as SCCS, but for multiple exposure-risk windows. 

Table 4: A list of before-and-after methods for adjusting for unmeasured confounding with a brief description of each method and 
how the adjustment is made for unmeasured confounding. 
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4.5 Applications of PERR and Pairwise methods in the 

literature 

Weiner et al. began the first of two studies in 2008 introducing the PERR method by 

replicating as many aspects as possible of the Scandinavian Simvastatin Survival 

Study (dubbed the 4S RCT), except for randomisation, using data from the CPRD 

(then known as the GPRD) 242. For two of the four outcomes, that the authors were 

able to replicate, the results of all analyses of MI outcomes showed reasonable 

concordance with the RCT results. In the case of coronary revascularisation, the 

PERR-adjusted estimate was not significant and was different from the RCT result, 

which had demonstrated a beneficial effect. However the PERR-adjusted result was 

closer to the RCT estimate than the unadjusted results, which indicated a harmful 

effect. The study published immediately after by Tannen et al., in the following pages 

of the same issue of the journal replicated two RCTs (HOPE and EUROPA) 

analysing the effects of angiotensin-converting enzyme inhibitors on five outcomes 

243. Two of the outcomes, death and coronary heart failure could not be PERR 

adjusted, as such outcomes could not logically be repeated in the period prior to 

study. Of the three remaining outcomes (myocardial infarctions, strokes and 

coronary revascularisation) studied in the two trials, the PERR adjustment was 

demonstrated to be reasonably successful in bringing the estimates into close 

agreement with the RCT results, although perhaps less for that of stroke under the 

exclusion criteria used in the HOPE trial. 

Later, in 2009, Tannen et al. published the results from the application of PERR to 

the data from their previously replicated studies 245. Three of these were the 4S, 

HOPE and EUROPA replications, which had had the PERR method applied, in 

previous published work 242,243. Of the remaining, the PERR method could not be 

applied to the replication of the Syst-Eur trial 262 studying the effect of 

antihypertensive therapy because of the method of patient selection, while the PERR 

adjustment of the replication of the Womens’ Health Initiative 263,264 (both those with 

an intact uterus and the hysterectomy sub-group) was relatively inconclusive 

because of imprecision and wider confidence intervals. Furthermore, for the point 

estimates of the effect on strokes, the PERR-adjusted results were further away from 

those of the RCT and the naïve Cox estimates. 
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Following up their PERR-adjusted replications of RCTs, Tannen et al. conducted one 

more study applying the PERR method in comparative effectiveness research of 

adverse cardiac events under two different thiazolidinedione, antidiabetic drugs: 

pioglitazone (PIO) and rosiglitazone (ROS) 189. While the effect of PIO on cardiac 

outcomes did not differ significantly from published RCT estimates, there was some 

evidence of deviation from the RCTs in the adjusted HRs and PERR-adjusted HRs 

for ROS on myocardial infarction (MI). However, there was no statistical evidence of 

difference in the rate of adverse events between the two drugs, although a direct 

comparison of the exposed groups revealed a hazard of MI that was higher in the 

ROS group and borderline significant. 

Since the publication of the PERR method and its application in seminal and 

subsequent papers by its authors, other examples of its application by other authors 

have only just begun to be published, while the literature review found no examples 

citing the Pairwise method (Table 5). The first by Brophy et al., captured in the 

method review of chapter two, examined the effect of proton pump inhibitors (PPIs) 

on survival times until infections by campylobacter and salmonella 190. Using the 

prior event rate, the authors were able to determine that patients, who were 

prescribed PPIs, were prone to such infections, and not significantly improved by 

treatment. Since the methodological review of chapter two, Othman et al. have also 

published a study into PPIs, which through the application of the PERR method 

showed a reduced risk of pneumonia among the PPI patients 265. Results were also 

presented alongside those from an adjusted model, revealing the extent of 

unmeasured confounding. However, a recently published investigation by Zirk-

Sadowski et al. into the effect of PPIs on pneumonia showed an elevated risk of 

pneumonia in the second year after PPI prescription among adults aged at least 60y 

using both weighted and PERR-adjusted models 266. Similar results in the same 

study were also achieved through the first example outside the seminal study of Yu 

et al. of the application of the PERR-ALT method. 

A novel application of the PERR method was found in Dennis et al.’s study of 

adverse events following antipsychotic prescribing in older patients with dementia 

267. This was one such example of how the PERR method could be applied to 

observational, registry data to study a clinical question regarding adverse events in a 

population that would otherwise be difficult to recruit to trial. Another later study by 
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Brophy et al. reported higher rates of hospital admissions for respiratory illnesses in 

children, who were prescribed antipsychotic medication, having applied the PERR 

method to Welsh EHR data from the SAIL databank 268. 

The first example of the application of the PERR method to the estimation of vaccine 

effectiveness was published in a study by Young-Xu et al. 269. Using the PERR 

approach, a beneficial relative effectiveness of high dose vs. standard dose influenza 

vaccination was reported against influenza and pneumonia-associated outcomes 

and against all-cause outpatient visits in adults from an US database aged at least 

65y, but not against laboratory-confirmed influenza. The point estimate of the latter 

result would suggest a beneficial effect, but the effect suffered from imprecision and 

wider confidence intervals. With the availability of laboratory-confirmed results, the 

data perhaps could have been analysed using a test-negative case-control design, 

but the PERR method was nevertheless utilised, perhaps justified by the sparsity of 

laboratory outcomes. However, the authors’ use of the period of low circulating 

influenza viruses immediately before the peak season for the prior period rather than 

the previous season is questionable. The low-circulation period may be used in the 

calculation of excess deaths during the peak influenza season 270, and has 

previously been used in a case-centred model resembling a case control study 271, 

but in the application of the PERR method, the prior period should be similar in 

conditions to the study period in order for the analysis to be properly valid as stated 

above in paragraph 1 of section 4.3. Given the difference in rates and the 

seasonality of other factors as well as influenza, it is difficult to conceive that the 

effect of confounders and any interactions with the intervention would be the same 

between low and high influenza-circulation periods. It is therefore difficult to be 

assured that the low circulation period would necessarily be representative of the 

bias during high circulation. If nothing else, then the point estimate from a period with 

low levels of influenza in circulation would likely be subject to a greater degree of 

relative imprecision that could lead to an inaccurately adjusted PERR estimate, when 

a previous influenza season might have be used instead. 

Latterly, further work based on the PERR method was presented by Tannen and Yu, 

called the post-treated event rate ratio (PTERR) 272. This sought to widen the 

applicability of the PERR method to studies where mortality is an outcome. As 

already discussed in section 4.3, being a once-only event, death violates the 
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condition of repeatability in PERR. The method relies on a post-treatment unexposed 

duration being available for the exposed group, so may not suit curable conditions 

requiring single treatment. The authors proposed limiting the as-treated durations of 

the unexposed group to those of their matched exposed subjects, which could be 

adjusted using the “post-treated” period when the exposed transition to an 

unexposed state. While this method with its adjustments for analysis time may at first 

seem less intuitive than the PERR method, the extensive comparisons of results 

from database studies to RCTs and simulation results seem supportive of the 

method as an adjustment for unmeasured confounding in mortality studies. However, 

the method seems to rely on a low mortality rate and on the bias due to differential 

case fatality being close to zero or relatively negligible compared to the bias in the 

as-treated period. These assumptions and the condition of an exposure-free period 

being available for the exposed group following treatment is likely to limit the 

applicability of the method. Also, the assumption of temporally stable confounding 

still applies, and the authors’ emphasis was on the method as a sensitivity analysis 

and evaluation of unmeasured confounding, rather than as a quasi-experimental 

method for estimating treatment effects without confounding bias. 
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Title Authors Year Journal Adjustment methods 

Replication of the Scandinavian Simvastatin 

Survival Study using a primary care medical 

record database prompted exploration of a 

new method to address unmeasured 

confounding 

Weiner MG 

Xie D 

Tannen RL 

Xie D 

Tannen RL 

2008 Pharmacoepidemiology 

and Drug Safety 

PERR applied to replicated studies of 

matched patients 

Replicated studies of two randomized trials 

of angiotensin-converting enzyme inhibitors: 

further empiric validation of the “prior event 

rate ratio” to adjust for unmeasured 

confounding by indication.  

Tannen RL 

Weiner MG 

Xie D 

Weiner MG 

Xie D 

2008 Pharmacoepidemiology 

and Drug Safety 

PERR applied to replicated studies of 

matched patients 

Use of primary care electronic medical 

record database in drug efficacy research 

on cardiovascular outcomes: Comparison of 

database and randomised controlled trial 

findings. 

Tannen RL 

Weiner MG 

Xie D 

Weiner MG 

Xie D 

2009 BMJ PERR applied to replicated studies of 

matched patients 

Prior event rate ratio adjustment: numerical 

studies of a statistical method to address 

unrecognized confounding in observational 

studies. 

Yu et al. 2012 Pharmacoepidemiology 

and Drug Safety 

PERR and PERR-Alt applied to simulated 

data 

A new “Comparative Effectiveness” 

assessment strategy using the THIN 

database: Comparison of the cardiac 

complications of pioglitazone and 

rosiglitazone 

Tannen RL 

Wang X 

Yu M 

Weiner MG 

Wang X 

Yu M 

Weiner MG 

2013 Pharmacoepidemiology 

and Drug Safety 

PERR applied to replicated studies of 

matched patients compared with 

propensity-score matched analysis 
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Incidence of Campylobacter and Salmonella 

Infections Following First Prescription for 

PPI: A Cohort Study Using Routine Data 

Brophy et 

al. 

2013 The American Journal 

of Gastroenterology 

PERR applied to the unadjusted Cox 

model 

Community acquired pneumonia incidence 

before and after proton pump inhibitor 

prescription: population based study. 

Othman F 

Crooks CJ 

Card TR 

Crooks CJ 

Card TR 

2016 BMJ PERR applied to unadjusted Cox models, 

but compared to adjusted analysis and 

results from self-controlled case series 

study design 

A new method to address unmeasured 

confounding of mortality in observational 

studies 

Tannen RL 

Yu M 

Yu M 

2017 Learning Health 

Systems 

The PTERR results are compared to 

results from the unadjusted and adjusted 

Cox regression as well as those reported 

from trials 

Characteristics of Children Prescribed 

Antipsychotics: Analysis of Routinely 

Collected Data 

Brophy et 

al. 

2018 Journal of child and 

adolescent 

psychopharmacology 

PERR applied to unadjusted Cox models 

and compared to results from adjusted 

logistic models 

Proton-Pump Inhibitors and Long-Term Risk 

of Community-Acquired Pneumonia in Older 

Adults 

Zirk-

Sadowski J 

et al. 

2018 Journal of the 

American Geriatrics 

Society 

The PERR and PERR-Alt method applied 

to unadjusted Cox models and compared 

to models adjusted by weighting (inverse 

probability treatment weighted) 

Relative Vaccine Effectiveness of High-

Dose versus Standard-Dose Influenza 

Vaccines among Veterans Health 

Administration Patients. 

Young-Xu 

et al. 

2018 The Journal of 

Infectious Diseases 

PERR applied to the ratio of incidents 

calculated before and after matching, and 

compared to the same results without the 

PERR adjustment 

Table 5: List of published studies applying the PERR and Pairwise/PERR-Alt methods
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4.6 Settings and implementation of PERR and Pairwise 

methods in this project 

The research question was to investigate the effectiveness of the two vaccines that 

were the subject of a major health-policy implementation in the UK, of World Health 

Organisation recommendations at the beginning of the millennium. These were the 

pneumococcal and influenza vaccine, which are the subject of chapters five and six, 

respectively. A protocol for these studies, which was submitted to the CPRD, is 

available in Appendix C – ISAC protocol. Following on from the work of Tannen et 

al., the intention was to apply the PERR method, and the lesser known Pairwise 

method, to mitigate for unmeasured confounding in the estimation of vaccine 

effectiveness. This was compared against an adjusted analysis, using an efficient 

weighting method in preference to matching, the more commonly encountered 

method of adjustment used in the replications of RCTs from routinely collected data. 

The exposure-free prior period would also allow an evaluation of the source and 

degree of confounding bias. 

Comparing the results of the PERR and Pairwise methods is crucial to 

understanding their relative performance. Furthermore, it is only in the application of 

such methods that further areas may be identified for future methodological 

development. In this way, where the interaction of vaccination and age was found to 

be significant in the study period, the moderating effect of age was also adjusted for 

confounding bias using the PERR and Pairwise methods. In light of the existing 

literature, this may be a novel application of the PERR and Pairwise methods. 

Pneumococcal and the influenza vaccines have been recommended for adults aged 

at least 65y, and are intended to ameliorate a major healthcare burden in this age 

group. However, recent evidence for the effectiveness of the pneumococcal vaccine 

against coronary disease, and the overlap in the pathophysiology of the diseases 

that the vaccines are intended to prevent, justifies the multi-faceted approach to the 

research 273. There are of course major differences in the pathology of the diseases 

targeted by vaccination: Streptococcus pneumoniae is a bacterium, against which 

vaccination is intended to confer long-lived immunity. Influenza is caused by a mix of 

viruses, which can evolve and change every year and against which the vaccine has 
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to be matched annually. These differences have ramifications for the study design, 

and so the vaccine studies require different settings for implementation, which are 

discussed here. Further information and details in the context of the research, to 

which they each pertain, can be found in their respective chapters (five and six). 

However, the common layout of the data from CPRD and similarities in the 

population, study design and settings justify an initial discussion of these aspects 

and a description of the workflow that this entails. 

4.6.1 Study design 

In the context of the data, the PERR and Pairwise methods constitute a before-and-

after approach to the problem of unmeasured confounding using data, in which 

longitudinal information is available for the patients selected according to their 

exposure group, and other prognostic variables. As such, only a cohort study design 

is applicable. Longitudinal information is arguably available from repeated cross-

sectional studies, but in its original form, the PERR method demands that this 

information is within-patient. Nested case-control studies or test-negative case 

control studies, as well as case-only studies, also rely on longitudinal information 

within patients, but here this is from the look-back (purely retrospective) from an 

outcome as opposed to follow-up (retrospective or prospective) after an exposure. 

4.6.2 Recruitment and follow-up 

Common to both the pneumococcal and influenza vaccine studies, as set out in the 

method section for each, the minimum age of recruitment was 65y and older at the 

time of the index date for each study. The date was chosen to coincide with the start 

of the seasonal rise in vaccination rates, thereby capturing the majority of the  

vaccinations early on in the study. In this way, most of the follow-up time would take 

place before the start of the next ‘flu season. For both vaccination studies, 

recruitment lasted one year. For the influenza vaccine study, follow-up was limited to 

one year to help retain consistency between the vaccine and the circulating influenza 

strains. For the pneumococcal vaccine study, however, pathogen evolution was less 

of an issue, so follow-up was extended to two years, to capture more outcomes 

whilst still limiting the time during which the effects of confounding might change (see 

point 1 in section 4.3 on equal net effect of confounding across periods). The follow-

up in the prior period was the same as that for the study period, and immediately 
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preceded the study period. Both studies imposed a vaccine-free period preceding 

the prior period to allow for wash-out of any previous vaccinations. 

In the study of influenza, an estimate of annual vaccine effectiveness was sought 

over from 1997, which included the first wave of the phased introduction of the 

vaccine in 1998. Interpretation of the results might therefore accommodate inference 

about the annual variation in the matching between vaccine and circulating 

pathogens. In contrast, recruitment to the pneumococcal study utilised the growth in 

vaccination coverage between 2003 and 2005. Choosing this time period exploited 

the rapid increase in vaccination rates in a natural experiment to maximise the size 

of the three annual cohorts (Figure 10). The stepwise introduction of vaccination by 

age group also facilitated the study effectiveness by these sub groups. 
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Figure 10: Graph of cumulative percentage vaccinated (e.g: pneumococcal 
vaccination) over time illustrating the advantage for optimal recruitment from growth 
in vaccine recipients in a population starting with a low vaccination coverage.  

 

The start of the observation times among the vaccine recipients was their date of 

vaccination. However, no such date exists for the controls. Attributing the cohort 

index date as a survival start date for all controls would create an imbalance in the 

distribution of start dates between exposure groups with unforeseen consequences 

from any time-dependent phenomena or exogenous variables. It is quite possible 

that some form of immortal time bias could occur among the controls if they all 

started their observation time much earlier than the vaccine recipients and before 

any seasonal increase in circulating pathogens. In order to have an approximately 

equal distribution of observation start times between exposure groups, it was 
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decided that the start dates for follow-up of the vaccine-free controls should come 

from the vaccination dates of the vaccine recipients. This was done through 

matching, at first exactly on age, gender and GP practice, and then iteratively on 

ever coarser age groups and combinations of gender and GP practice. Where 

several matches were possible, vaccine dates were randomly allocated as 

observation start dates to the controls. No further matching was performed, for 

example, to balance confounders (see below in section 4.7 on the Workflow of 

computer code). 

4.6.3 Adjustment for known confounders and effect modification 

As a basic adjustment for fundamental patient characteristics, all Cox models, to 

which the PERR method was subsequently applied, were adjusted for patient age 

and gender. As such variables are likely to be confounders in their own right, as well 

as be associated with other potential confounders, this demonstrated good practice, 

as detailed in section 4.4, in reducing that part of the bias, which the PERR method 

may fail to adjust. Notwithstanding confounding, the effects of age and gender were 

of intrinsic interest as prognostic variables. Therefore, these were included in the 

Pairwise models too. 

Since the population under study in this project was older adults, whose life status 

and disease prognoses are dependent in part on age and age-related frailty, it was 

of clinical interest to analyse how the effectiveness of vaccination might be 

moderated by the age of the patients. This entailed fitting an interaction between 

vaccination and age to the models, and adjusting this using the PERR and Pairwise 

methods. This was an important and novel aspect of the research, and to my 

knowledge had not previously been explored using quasi-experimental methods 

applied to EHRs in this way. 

In addition to the quasi-experimental adjustment, it was important to gauge the 

success, or otherwise, of this through a comparison of a more complete adjustment 

for the confounders available in the data. To achieve this end, all possible 

confounders were selected in a logistic regression of vaccinaton status. The 

predicted probabilities of exposure, or propensity scores, provided a summary of the 

effect of confounders on exposure, reducing potentially many confounders down to a 

single variable for each individual. However, conditioning on propensity scores in 
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survival models can lead to biased estimates 274. Matching introduces minimal bias 

275, but relies on the choice of matching algorithm and likely requires more 

computation to implement. Inverse probability treatment weighting (IPTW) also 

introduces minimal bias and is recommended for survival models 275, but is easier to 

implement as this avoids the extra step of matching. IPTW models provide an 

estimate of the marginal effect of an exposure, which is arguably more readily 

interpretable than an effect that is conditioned on a variety of prognostic variables. 

Further details on the prognostic variables selected for the propensity score models, 

and how these were built, are given in the sections on adjusted modelling within the 

studies of chapters five and six. 

4.6.4 PERR estimation 

The PERR method can be simply applied to estimate the hazard ratio of vaccine 

effevctiveness from the ratio of the hazard ratios for vaccination from the Cox model 

in the study period over that in the prior period. In the two vaccination studies, the 

Cox regression modelled the time until event on vaccination status adjusted for age 

and gender, the hazard function is expressed as: 

ℎ(𝑡) = exp(𝛽𝑥. 𝑋 + 𝛽𝑎𝑔𝑒 . 𝑎𝑔𝑒 + 𝛽𝑔𝑒𝑛𝑑𝑒𝑟 . 𝑔𝑒𝑛𝑑𝑒𝑟) ℎ0(𝑡) 

Equation 2 

where h0(t) is the baseline function and the natural exponent is applied 

to the linear predictor of the vaccination status indicator variable, X, 

with coefficients β’s for age and gender 

The linear predictor in the exponent of the hazard function was specified in the stcox 

command of Stata v.13, and estimated by maximum likelihood.  Where interactions 

between age, gender and vaccination were of interest, these were fitted up to the 

two-way level and the optimum model selected by comparing the Chi-squared 

statistics of each Cox model in the study period. In order to apply the PERR method 

to interactions, the same model specification was applied to the prior period data. 

Bootstrapping was used to obtain confidence intervals for the PERR-adjusted 

estimates. 
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4.6.5 Pairwise estimation 

Based on the paired Cox model 276 and Yu et al.’s development of the PERR-ALT 

model 246, Lin and Henley have provided the likelihood expression for the Pairwise 

model fitted to two periods 192, which was used to fit the model for vaccination status, 

x, adjusting for age and gender: 

𝐿(𝑋, 𝑎𝑔𝑒, 𝑔𝑒𝑛𝑑𝑒𝑟, 𝛼)

= ∏ (
1

1 + 𝑃𝑖𝑒(𝛽𝑥.𝑥+𝛽𝑎𝑔𝑒.𝑎𝑔𝑒+𝛽𝑔𝑒𝑛𝑑𝑒𝑟.𝑔𝑒𝑛𝑑𝑒𝑟+𝛼)
)

∆𝑝𝑖
𝑛

𝑖

(
𝑒(𝛽𝑥.𝑥+𝛽𝑎𝑔𝑒.𝑎𝑔𝑒+𝛽𝑔𝑒𝑛𝑑𝑒𝑟.𝑔𝑒𝑛𝑑𝑒𝑟+𝛼)

𝑒(𝛽𝑥.𝑥+𝛽𝑎𝑔𝑒.𝑎𝑔𝑒+𝛽𝑔𝑒𝑛𝑑𝑒𝑟.𝑔𝑒𝑛𝑑𝑒𝑟+𝛼) + 𝑆𝑖

)

∆𝑠𝑖

 

Equation 3 

where  is a nuisance parameter modelling the period effect,  is a 

binary indicator variable denoting whether a survival time for the ith of n 

patients in prior period, p, or study period, s, ended in an event, and P 

is a switch variable denoting whether the shortest survival time was in 

the prior period, or S, the complement of P (i.e. P = 1- S), for the 

shortest time in the study period. 

It can be seen when either a survival time does not end in an event or is not the 

shortest out of the two periods, then the corresponding term of that period in the 

likelihood will be unity, and therefore contribute no information to the likelihood. This 

means in order for a patient to contribute to the likelihood, then the shortest survival 

time out of the two periods must end in an event, otherwise the information for that 

patient is null. Effectively this means that the Pairwise estimate is derived from a 

subset of patients used to find the PERR estimate. This meant less storage and 

faster computation time when this was deployed in the vaccine studies. 

The Pairwise method was applied using R software 277, and the likelihood entered as 

its logarithm, transforming the product operators into sums. The log likelihood 

function was estimated using the non-linear minimisation function (nlm) in R, with 

zero starting values and outputting the Hessian matrix. The confidence interval for 

the Pairwise estimate of vaccination were subsequently derived from the square root 

of the corresponding diagonal element of the stored Hessian matrix.  
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4.6.6 Cox analysis with time-varying covariates 

As an alternative approach to modelling time, a common index date of 1st September 

of each year was chosen, and vaccination was modelled as a time-varying covariate 

(TVC). Modelling vaccination as a TVC offered not only insight into any time-

dependent effects, but also the advantage of circumventing the need for matching to 

map the vaccination dates onto the controls for their start times. In this way, chance 

imbalances in the observation start times between vaccine recipients and controls 

were avoided, as well as the need to run a computationally intensive matching 

algorithm in Stata. Cox regression of TVC’s first of all required a re-organisation of 

the data to split the data for the exposed group into two rows of observations, as 

might be found in the counting process format for the Andersen-Gill model of ordered 

survival times 278. For the first row, the exposure indicator variable would be set to 

zero, to represent the period in an unexposed state, ending in either an event or the 

time of exposure. The second row, therefore would represent the exposed state of 

the ordered survival times, with the indicator variable now set to one. The survival 

time for this second period re-starts from the time of exposure. The controls would 

remain as they are with one row of observations per individual. If PERR were to be 

applied, then the format of the prior data would remain as is, with one row of 

observations per patient. To proceed with TVC Cox analysis in Stata, the data had to 

be stset with the exit option specified as “.” to retain patient records after failure. The 

enter option was set as the start date for each individual survival time. This was often 

zero as this corresponded to the common index date, but for post-exposure times, 

was the time from the start date to exposure (e.g: days since the index date until 

vaccination). As exposed individuals would contribute two survival times to the 

likelihood, clustering by patient was accounted for in the covariance matrix of the 

estimates to account the lack of independence in the exposed observations and to 

adjust the standard errors accordingly.  

4.6.7 Sample size calculation 

The sample size calculated for both vaccine studies and submitted to the CPRD’s 

Independent Scientific Advisory Committee was partly informed by estimates from 

the 2012 edition of the Coronary Heart Disease Statistics, from the British Heart 

Foundation. Focussing on women aged over 84y, this clinically interesting subgroup 

experienced 139 incidences of acute myocardial infarction (a primary outcome for 
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ischemic heart disease) per 100 000 person-years.  As the meta-analysis into 

studies of influenza vaccination on cardiovascular disease found the effect could 

reduce the risk by about 35%, the power to detect a hazard ratio of 0.65 from a Cox 

model is sought at a power of 0.8 and significance level of 5%. Using the Schoenfeld 

approximation, this would require a sample size of 121 710 patients. If the power to 

detect a hazard ratio of, say, 0.70 were sought, this would increase to 177 550 

patients. 

An estimate of incidence for community-acquired pneumonia among adults aged 

over 65y put the rate at 7.99 per 1000 person-years from pilot CPRD data. 

Therefore, the probability of survival times ending in such an outcome over a three-

year study period of the pneumococcal vaccine would be approximately 0.024. 

Results from a meta-analysis of studies into the pneumococcal vaccine suggested 

that the risk of pneumococcal pneumonia could be reduced by approximately 16%. 

Therefore, to detect a hazard ratio of 0.85 at a power of 0.8 and significance level of 

5% would require 49 530 eligible patients.  

 

4.7 Workflow of computer code 

The processing of raw data is an essential part of any empirical study, whether a 

clinical trial or a project using routinely collected data. This involves not only the 

application of inclusion/exclusion criteria, but manipulation into an analysable form. 

In this project, as with most studies using CPRD and other routinely collected data, 

this involved merging together data from across different datafiles, whilst applying 

the inclusion/exclusion criteria. As both studies in this PhD project investigated 

vaccine effectiveness and required survival times in a cohort study design, I wrote 

core code that could be applied to each study with adjustment of files paths, 

inclusion criteria and the study settings. For clarity, adaptability and ease-of-

troubleshooting, this was modularised across a sequence of do-files (files containing 

program code in Stata), each purposed to apply the inclusion criteria to particular 

CPRD datafiles, or merge their derivatives and calculate new variables (Figure 11). 

The modularised do-files were organised in Stata’s project manager facility, from 

which they could be run in order. It should be noted that code writing was an 
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evolutionary, learning process, so while all code should run without any detectable or 

undetectable errors, code written later may exhibit more efficiency and arguably less 

verbosity. While R was used to perform the Pairwise analysis, as it was relatively 

easy to specify a likelihood within a user-defined function in that particular software, 

Stata was used for all data preparation and the PERR analysis. This represented a 

challenge at times as the approach is different from R, plus Stata can only hold one 

dataset in memory at once, necessitating the specification of temporary datafiles in 

some instances. Temporary datafiles notwithstanding, many interim datasets were 

created and saved in between the modular do-files. Graph output was created using 

both Stata (initially version 12) and the ggplot2 package in R, depending on 

convenience. 

One particular challenge posed by the constraint of one dataset-at-a-time in Stata’s 

memory was in writing the matching routine stored in the do-file, Matchexh+dth 

(suffixed with the version number). This was used purely for mapping the vaccination 

dates of the vaccine recipients to the controls in order to assign a similar distribution 

of observation start dates. No further matching was involved in the analysis, nor as 

an adjustment for confounding. Thereafter, adjusted analyses were performed 

through weighting based on derived propensity scores. In the matching routine for 

observation start dates, the patients were grouped by ever fuzzier levels of grouping 

variables. First, these were on exact age, gender and practice id. For fuzzier 

grouping variables, age was categorised into ever coarser levels, until dropped. 

Practice id was then dropped and further fuzzier levels of grouping organised around 

just gender and age categorised into varying levels of coarseness, until just gender 

remained. The do-file routine then looped over the grouping variables, exhaustively 

matching patients by the finest degree of grouping until moving to the next level of 

fuzziness. Within the loop, Stata’s temporary files were invoked to separate those 

patients, who had been matched, and keep a tally of the patients remaining. As it is 

unusual for matching to be used in this way (i.e: just for mapping observation start 

times), it should be re-iterated that matching was not used in any of the analyes, 

rather explicit adjustment for confounding was approached through weighted 

regression. 

Stylistic differences may be noticed across the code, with different versions of the 

same code invoked, as there was an inevitable learning process throughout the 
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project, which gradually led to slightly more sophisticated use of syntax. In the case 

of the influenza study, predicting the propensity score for both periods of the 15 

cohorts required invoking Mata in the automated selection of the significant 

prognostic variables for the propensity score models (do file: autoselect_pscore_v2). 

However, the code writing for this project preceded my recent involvement in NIHR-

funded activity focussing on best practice in code writing and programming 

validation. While this was primarily intended for clinical trials units, there are obvious 

advantages in terms of traceability and reproducibility in applying the same 

standards to analysis of EHRs and RCD. Some version control was maintained and 

Stata’s project manager was utilised to run modularised code for this project, 

however, there are further potential advantages to be gained from using version 

control software, or uploading to GitHub with its own integrated version-control. 

The programming code used in this project accompanies this thesis in separate files. 
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Figure 11: Flowchart of data preparation workflow in Stata towards analysable 
dataset. Do-file names are in bold in square shapes, CPRD datafiles are indicated by 
rhombus shapes, and datafiles with inputted symptom codes in trapezoid.  
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5.1 Abstract 

5.1.1 Objective 

To determine the age-specific effectiveness of the 23-valent pneumococcal 

polysaccharide vaccine (PPV-23) in UK adults aged 65y and older. 

5.1.2 Design 

Quasi-experimental analysis of a retrospective cohort of 324,804 older primary care 

patients using the Prior Event Rate Ratio (PERR) method to adjust for measured and 

unmeasured confounding. 

5.1.3 Setting 

General practices registered to the Clinical Practice Research Datalink with linkage 

to Hospital Episode Statistics and the Office of National Statistics databases. 

5.1.4 Population 

Three annual cohorts from 2003 to 2005 coinciding with the introduction of the policy 

to recommend the vaccination against Streptococcus pneumoniae for adults aged 

65y and older. 

5.1.5 Intervention 

23-valent polysaccharide pneumococcal vaccination (PPV23) 

5.1.6 Main outcome measure 

Specific antibiotic treatment for lower respiratory tract infections or hospitalisation 

with symptoms consistent with pneumococcal Community Acquired Pneumonia 

(CAP). 

5.1.7 Results 

For all three cohorts, the rates of pneumococcal pneumonia in the year before 

vaccination were higher for patients who proceeded to be vaccinated with PPV23 

than for patients who remained unvaccinated, indicating the presence of confounding 

bias. Adjustment for this bias using the PERR method showed that PPV23 was 

moderately effective for two years after vaccination against CAP in all age sub-

groups with hazard ratios of 0.86 (95% confidence interval: 0.80 to 0.93), 0.74 (95% 
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CI: 0.65 to 0.85) and 0.65 (95% CI: 0.57 to 0.74) in patients aged 65-74, 75-79 and 

80+ respectively in the 2005 cohort.  The interaction between vaccination and age 

was statistically significant in the 2005 cohort, with predicted risk reductions of 4%, 

12% and 15% at ages 65y, 75y and 80y, respectively.  

5.1.8 Conclusions 

The UK programme for vaccinating patients aged ≥ 65y with PPV23 is effective at 

reducing CAP. The effectiveness increases with age in step with increasing 

susceptibility to CAP at older ages. Examining the risk of infection in the period prior 

to vaccination suggests that the vaccination is targeted towards those most likely to 

benefit long-term from immunity to pneumococcal infection. 

5.2 Introduction 

Pneumonia is a major cause of morbidity, hospitalization and associated mortality in 

older adults 279.  Since 2003, public health policy in the UK has recommended 

vaccination against streptococcus pneumoniae (pneumococcus) for adults aged ≥ 

65y using the 23-valent polysaccharide pneumococcal vaccine (PPV23). The 

vaccination programme began in August 2003 with the PPV23 vaccine offered to 

adults aged ≥ 80y. This was extended to adults aged ≥ 75y in April 2004 and then 

finally to all adults aged ≥ 65y in April 2005.  PPV23 is recommended as a standard 

intervention for the elderly in many other countries across Europe and elsewhere. 

However, there has been ongoing controversy about whether or not PPV23 is 

effective in preventing noninvasive pneumococcal infection: four systematic reviews 

have been published since 2016 with divergent conclusions 280–285. 

Recent evidence has come from two trials. One, a large-scale, population-based 

randomised trial (CAPITA) in the Netherlands, reported an efficacy of 46% against 

first episodes of vaccine-matched strains of community-acquired pneumonia and 

75% against invasive pneumococcal disease among 84 496 adults aged ≥ 65y 286. 

However, the study lacked the power to draw conclusions on how efficacy might vary 

with the age of the vaccine recipient. Furthermore, the intervention was protein-

conjugated polysaccharides from 13 serotypes (PCV13), a vaccine originally 

developed for young children but licensed since for use in adults primarily on the 

basis of immunogenicity studies. PPV23, the vaccine offered to adults in many 
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countries including the UK, was recently investigated in a prospective, multi-centre 

trial in Japan, in adults aged ≥ 65y 287. A significant effectiveness, of 23% and 34%, 

was reported against all-cause pneumonia and vaccine-matched strains, 

respectively. However, without randomisation, the trial relied on a test-negative 

design to mitigate against confounding, with subsequent adjustment in the analysis 

for confounding variables. The claimed increase in effectiveness in adults aged 

between 64 and 75y was small, and not supported by statistical evidence. Evidence 

from previous studies for how the effectiveness of PPV23 changes with age remains 

inconclusive, yet age is a critical cut-off in determining vaccination policy. Age-

related decline in immune function renders older adults susceptible to pneumococcal 

infection, yet the same decline may reduce the immunogenic response to 

vaccination. 

We conducted a retrospective cohort study using electronic health records (EHRs) to 

assess real-world effectiveness of the vaccine in adults aged ≥ 65y in the UK and to 

determine how effectiveness might change with age. The data were extracted from 

the Clinical Practice Research Datalink (CPRD) with linkage to Hospital Episode 

Statistics and Office of National Statistics data. Large EHR databases can afford 

larger sample sizes for the study of real-world effectiveness in small sub-groups than 

would typically be available in randomised trials, as well as facilitating the study of 

populations which, for ethical reasons, might otherwise be difficult to recruit into a 

trial. The rise in vaccination rates resulting from the vaccination programme for older 

adults provided the opportunity for a natural experiment. Furthermore the 

incremental introduction of the policy by age group from 2003 to 2005 facilitated 

estimation of the pneumococcal vaccine’s effectiveness within the key age sub-

groups. 

5.3 Methods 

5.3.1 Data source 

We used data from the UK Clinical Practice Research Datalink (CPRD) 53, a 

database of electronic medical records including information on demographics, 

consultations, diagnoses, drug prescriptions, immunisations, referrals, etc collected 

by participating general practitioners (family doctors) during their daily clinical 
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routines. Our datasets were also linked to hospital admission data  and death 

certificate data. The CPRD has been granted Multiple Research Ethics Committee 

approval (05/MRE04/87) to undertake purely observational studies, with external 

data linkages including HES and ONS mortality data. The work of CPRD is also 

covered by NIGB-ECC approval ECC 5-05 (a) 2012. Our study gained prior approval 

by the CPRD Independent Scientific Advisory Committee for MHRA database 

research (ISAC protocol 14-159). 

5.3.2 Recruitment and study population 

Three cohorts were studied, each relating to a single year of the phased introduction 

by age-group of the policy to vaccinate older adults with PPV23: adults aged ≥  80y, 

vaccinated for the first time from 1st September 2003 to 31st August 2004; adults 

aged  ≥  75y from 1st September 2004 to 31st August 2005; and adults aged ≥ 65y 

from 1st May 2005 to 30th April 2006. The dates for the start and end of recruitment 

for each cohort were chosen so as to capture the peak uptake of the vaccine during 

the relevant period. Patients had to be alive and registered at their general practice 

at the (index) date of vaccination.  All adults that remained unvaccinated for the 

duration of the study period were designated as controls and matched to vaccinees, 

to the nearest age, and where possible the same gender and practice, solely for the 

purposes of assigning an index date. The index date for each control was the 

vaccination date of the corresponding vaccinee. Each cohort was analysed 

separately. Any patients without any data in the six years preceding recruitment to 

the study were excluded from the cohort, as there was a considerable risk they had 

left the area, but failed to de-register with the practice (see flowchart in section 5.6 

Appendix A).  

5.3.3 Study design and follow-up 

Without randomisation, vaccination status in observational studies of this type may 

be influenced by unmeasured confounders, including variables related to the number 

and severity of diseases, and in this age group, latent frailty. Recent advances in 

quasi-experimental methods make it possible, under relevant assumptions, to 

address directly the unmeasured confounding bias that arises when relevant 

confounders are omitted 208,288. One such approach to enhancing the validity of 
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observational studies is the Prior Event Rate Ratio (PERR) method, proposed by 

Tannen and Weiner et al 187,242, and extended by Yu et al 246 and Lin and Henley 192. 

The PERR approach is becoming more widely adopted in clinical studies based on 

EHRs and, for example, was used recently to demonstrate that previously reported 

associations between the use of proton pump inhibitors and risk of community 

acquired pneumonia are likely to be due entirely to confounding factors 265. 

We made use of the PERR framework by considering the introduction of the 

pneumococcal vaccination policy as a natural experiment. Quasi-experimental 

analysis of vaccine effectiveness was conducted by using group differences before 

the introduction of the vaccine to adjust for unmeasured confounders. We adopted a 

two arm before-and-after design in which vaccinated and control patients were 

followed up during two periods: the study period, consisting of up to two years from 

the index date, and a prior period of up to two years starting from two years before 

the index date (Figure 12). Patients were censored upon death or being transferred 

out of their practice. The two year study follow-up period was chosen because two 

years is the time interval for which the effect of the vaccine was found to be stable in 

previous studies289 suggesting reasonable stability of unmeasured confounding 

effects over this period.  
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Figure 12: Schematic of paired design for PERR analysis of PPV23 effectiveness. 
Patients vaccinated during a 1y recruitment window are selected and matched to 
controls by age, gender and general practice. Index dates of controls are mapped 
from the vaccination dates of vaccine recipients. Event times are compared for 
vaccinated and control patients during a 2y study period and a 2y prior period. The 
start of the prior period precedes recruitment by exactly 2y. Survival times may end 
with an event or be censored before the end of either period. 

5.3.4 Vaccination 

Patients were identified as being vaccinated with PPV23 using relevant codes in the 

CPRD immunisation file, supplemented with codes from the therapy file (Appendix D 

– CPRD and HES codes). Similarly, the patients’ influenza vaccination status in each 

year was also retrieved, and included in the study. 

5.3.5 Outcomes and covariates 

As laboratory confirmation of suspected cases of pneumococcal pneumonia is not 

widely available, we utilized the clinical records to specify a composite outcome of 

either hospitalisation for suspected pneumococcal pneumonia, or the prescription of 

antibiotics of species typically used for treating pneumonia, and qualified by the 

coded symptoms consistent with those of the disease 290,291. Amoxicillin and 

doxycycline were the antibiotics selected for study as those most likely to be 
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prescribed to treat invasive pneumococcal disease and pneumonia-like LRTIs. A 

pharmacist and clinician independently identified the corresponding product codes 

(Appendix D – CPRD and HES codes) in the data. The antibiotic prescriptions were 

further qualified by the medical codes for symptoms consistent with pneumonia and 

LRTIs, which were independently selected by two clinicians (JM & AB), with input 

from a third (DM) where differences arose. Hospitalisations were coded according to 

their ICD-10 classification (Appendix D – CPRD and HES codes). Survival times for 

this endpoint were calculated for each patient in both the prior and study periods.  

Information was also collected on smoking history and comorbidities within the 

Quality Outcomes Framework (QOF), a scheme to incentivise general practitioners 

to register common morbidities of patients.  The corresponding codes were obtained, 

with reference to previous work on multimorbidity 60. 

For the purpose of building a high-dimensional propensity score predicting treatment, 

the QOF codes were supplemented with further codes for conditions identified in an 

electronic frailty index (eFI) 292. When the codes of a disease category from either 

QOF or the eFI overlapped with at least 80% of the other, then the source with the 

fewer codes was excluded to avoid unnecessary multicollinearity in specifying the 

propensity score model. 

5.3.6 Statistical analysis 

Patient characteristics and comorbidities were used to identify likely sources of 

measured confounding. Cox’s regression was used to model the effect of vaccination 

on the hazard function for the composite pneumococcal pneumonia outcome, both 

with and without adjustment for confounding variables (model fitting found in section 

5.7 Appendix B: Fitting the Cox model for pneumococcal investigation). For each of 

the three recruitment cohorts, separate Cox regression models were fitted to the 

data from the prior and study periods. For the 2003 recruitment cohort, models were 

fitted to the single age-group of over-79y olds. For 2004, the analysis was stratified 

by age-group with separate models fitted for over-79y olds and 75-to-79y old adults, 

while the 2005 cohort was analysed in three separate age-groups: 65 to 74y old 

adults, 75-to-79y old adults and over 79-y olds. The degree of confounding bias was 

assessed by the hazard ratio for the treatment effect from the Cox regression models 

fitted to the treatment-free prior period. Potential modifying effects of age and gender 
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on treatment effectiveness were considered through inclusion of age, gender and 

treatment and their interactions up to the 2-way level. The best-fit models for each 

cohort were selected through chi-square tests of the deviance between nested 

models. These models were used as the basis for quasi-experimental analysis using 

the PERR approach. Conventional adjustment for measured covariates, such as the 

QOF diagnoses, was undertaken as a sensitivity analysis (see below). 

5.3.7 Adjustment for unmeasured confounding 

We used the PERR adjustment to mitigate for hidden confounding, adjusting the 

hazard ratio (HR) of the study period with that from the prior period. Bootstrap 

resampling provided the 95% confidence intervals for the PERR estimate. Recent 

work has shown that the PERR method has a tendency to attenuate treatment 

estimates in the presence of hidden covariates and / or censoring 225, and so the 

quasi-experimental analysis was supplemented with the pairwise Cox likelihood 

approach (pairwise method) which removes this source of bias 192.  This approach is 

equivalent to the PERR-ALT method proposed by Yu et al 15. Initially, separate 

analyses were conducted for each age sub-group (65-74, 75-79, 80+) within each 

cohort. Further analyses were conducted for each cohort in which the age sub-

groups were combined and interactions between age and vaccination status were 

considered. 

5.3.8 Sensitivity analyses 

Results from methods mitigating for unmeasured confounding were compared with 

those adjusted by weighting using variables available in the data and identified as 

having confounding effect 12,293. This weighted approach as with all adjusted 

regression models, relies on potential confounders being fully observed and 

available in the data, with any bias from remaining unobserved confounders 

assumed to be negligible 12. The weights were obtained from a propensity score 

model, but first, the prognostic predictors of survival time were found through 

backwards elimination of potential confounders in a Cox regression. Eliminating 

weak prognostic variables that were poorly predictive of survival avoided potential 

inclusion of instruments of treatment in the propensity score model, which might 

otherwise inflate the error for the estimated effect 294. A high-dimensional approach 
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was taken, using up to 58 candidate variables, including key patient characteristics 

of age and gender, as well as diseases registered under the UK Quality Outcomes 

Framework 295, supplemented with variables used in the UK electronic Frailty Index 

292 (National Institute of Health Research), and the index itself. Variables in the frailty 

index were monitored over the five years preceding each patient’s study period. The 

propensity score was obtained as the predicted probability of vaccination from a 

logistic regression of vaccination status on the candidate variables, identified as 

potential confounders. Poor predictors of treatment were excluded through 

backwards elimination of the candidate prognostic variables at the 5% level of 

significance.  Subsequent adjustment of the analytic Cox model with stabilized 

inverse probability treatment weights (sIPTW) yielded an estimate of the marginal 

effect and avoided the bias arising from conditioning on the propensity score as has 

been demonstrated in simulation studies 275.  

The propensity score model used to obtain the weights in the study period was re-

estimated for the same variables using data from the prior period. The effectiveness 

in the prior period was then estimated through a weighted regression to ascertain the 

success of adjustment under the assertion of stable confounding. This was assessed 

by the proximity of the estimate to unity. However, such an assertion may not have 

been reasonable, so hazard ratio of effectiveness from the weighted regression of 

the prior period was re-estimated using weights based on propensity scores 

modelled on confounders specifically for the prior period data. The PERR analysis 

was then applied to the weighted-estimate from the study period, alternately adjusted 

with both versions of the weighted HR from the prior period. i.e.: the HR for the prior 

period weighted by  

 propensity scores specifically obtained for the prior period, but modelled on 

the same (static) confounders as already determined for the study period 

 propensity scores predicted from a model of confounders found to be 

significant in the prior period, but not necessarily the same confounders as 

those used for the study-period propensity score (dynamic). 

Further sensitivity analysis was also carried out for sub-groups of various influenza 

vaccination patterns to examine possible confounding between the effectiveness of 

this and pneumococcal vaccinations on the outcome. To address the impact of 
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concurrent or recent influenza vaccination on estimates of PPV23 effectiveness, 

patients were classified into one of four sub-groups based on whether they had been 

vaccinated against influenza in either the prior or study period alone or in both 

periods (never-FV, prior-FV, study-FV, always-FV). The potential moderating effect 

of influenza vaccination on PPV23 effectiveness by age was assessed by modelling 

an interaction between age and the PPV23 intervention effect in each flu-vaccine 

subgroup. 

5.4 Results 

Table 1 shows the trends in PPV vaccination coverage by age group, for the periods 

before and during the introduction of the national vaccination programme. There was 

good concordance between the PPV uptake achieved by the end of 2005 in the 

study data (see Table 6) and national vaccination rates reported by Public Health 

England (PHE - formerly the Health Protection Agency) for uptake by 31st March 

2006 (For age groups ≥ 65y; 75-79y; and 80y and older respectively: Extracted data 

64.8%, 70.6%, 68.4%; PHE 64.4%, 68.9%, 68.1%). A flowchart showing the 

numbers at key stages of selection from the data are shown in Figure 14 of section 

5.6 Appendix A. 

 Extracted data per 

year 

Each year by age group 

Year Number 

of 

patients 

% 

Vaccinated 

65 - 74y > 75y 75 - 79y > 80y 

patients %Vac'd patients %Vac'd patients %Vac'd patients %Vac'd 

2002 470657 25.7 234482 22.4 236175 28.9 94447 30.5 141728 27.9 

2003 504948 33.2 250851 24.0 254097 42.2 100334 33.7 153763 47.8 

2004 522963 42.5 260254 26.8 262709 58.1 102906 55.8 159803 59.5 

2005 541694 64.8 267984 60.2 273710 69.2 107089 70.6 166621 68.4 

2006 553627 69.3 272516 65.0 281111 73.4 109473 74.6 171638 72.7 

Table 6: Annual cumulative pneumococcal vaccination rates from 2002 to 2006 by 
age group (for patients alive and registered at the beginning of each year) 
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5.4.1 Cohort characteristics 

The cohort size increased with each study year as the vaccination programme was 

expanded; about half of each cohort comprised vaccinees with 47.1% in 2003, 

41.3% in 2004 and 53.2% in 2005. Nearly half the 2005 cohort were males, 

decreasing to about a third for the older 2003 cohort (Table 2). The controls were at 

least two years older on average and tended to have fewer males, and this 

imbalance appeared to be greatest in the 2004 cohort. The vaccination group was 

found to have a consistently higher prevalence of diseases registered under the 

Quality Outcomes Framework compared to the controls. The two leading registered 

comorbidities were hypertension and coronary heart disease. Hypertension 

prevalence in the vaccinees ranged from 46% in 2005 to 52% in 2004, and in the 

controls from 37% in 2005 to 41% in 2004. Similarly, coronary heart disease was 

more prevalent among the vaccinees with 18.5% compared to 15.6% for the controls 

from the 2003 cohort falling to 11.3% and 10.5%, respectively, in the 2005 cohort.  

The 2004 cohort exhibited the greatest imbalance in terms of QOF indices, age and 

gender. The proportion of identified smokers was similar between treatment groups, 

increasing slightly with each cohort. 

In all three cohorts, the majority of patients had been vaccinated against influenza at 

least once in both the prior and study periods (always-FV). Compared to those not 

vaccinated in either period (never-FV), the numbers vaccinated in both periods were 

31855 vs. 16500 in 2003, 37771 vs. 26667 in 2004, and 103293 vs. 64016 in 2005. 

The patients receiving the flu vaccine in the prior period only and in the study period 

only were relatively few in number ranging from 1911 for those in the 2003 cohort 

receiving a flu vaccine in the study period only, to 17425 in 2005 for the same flu-

vaccine subgroup. The rates of influenza vaccination were much higher in the 

pneumococcal vaccinees than in the controls: At least 80% of the pneumococcal 

vaccinees received an influenza vaccination in both periods, while for the controls 

this figure decreased from 30 to 20% with each cohort (Table 2). 
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Cohort 2003 2004 2005 

Treatment group Vaccinated Controls Vaccinated Controls Vaccinated Controls 

N  25870 29087 30028 42625 104969 92225 

% males  36.7% 28.5% 40.4% 31.8% 44.7% 40.3% 

Age 

Mean 84.5 85.9 79.3 82.3 71.6 75.1 

s.d. 4.0 4.8 4.3 5.8 5.4 8.1 

Disease 

registered 

under Quality 

Outcomes 

Framework 

AF 14.3% 11.9% 11.0% 10.6% 6.3% 6.9% 

Asthma 6.9% 5.2% 6.9% 5.5% 7.3% 5.6% 

Cancer 9.7% 8.2% 9.7% 8.8% 8.4% 8.0% 

CHD 21.9% 18.6% 19.4% 16.7% 13.3% 12.4% 

CKD 6.1% 3.1% 19.7% 12.1% 14.8% 11.8% 

COPD 5.4% 5.3% 5.9% 5.2% 4.4% 4.2% 

Dementia 6.7% 9.0% 4.7% 7.1% 1.8% 3.6% 

Depression 9.8% 9.0% 9.4% 8.7% 8.5% 7.9% 

DM 6.2% 4.2% 8.8% 6.4% 8.4% 6.9% 

Epilepsy 1.3% 1.2% 1.3% 1.2% 1.2% 1.2% 

HF 10.3% 10.7% 6.0% 7.3% 2.3% 3.9% 

Hypertension 48.5% 37.5% 52.1% 40.9% 46.2% 37.4% 

Hypothyroid 9.0% 7.9% 9.2% 8.2% 7.9% 7.2% 

Mental Health 1.0% 1.6% 1.2% 1.6% 1.1% 1.5% 

Stroke 14.1% 14.0% 10.7% 11.9% 5.8% 7.6% 

Smoking 

status 

Smoker 15.4% 16.4% 20.9% 20.6% 23.7% 25.3% 

Not smoker or 

n/a 
53.4% 61.4% 44.9% 54.1% 45.2% 49.3% 

Ex smoker 31.2% 22.2% 34.2% 25.3% 31.1% 25.4% 

Influenza 

vaccination in 

both periods 

 90.2% 29.3% 88.1% 26.6% 80.1% 20.8% 

Table 7: Characteristics of study population for each cohort by pneumococcal 
vaccination status at cohort entry into study period 
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5.4.2 CAP and mortality rates in each cohort  

The overall risk of the composite CAP outcome decreased from 10.2% in the 2003 

cohort to 6.9% in the 2005 cohort, reflecting the younger age distribution for the later 

cohorts (Table 3). Patients were more likely to experience a CAP event in the study 

period than in the prior period for both vaccinated and control patients: In 2003, the 

incidence of CAP in the prior and study periods was 8% and 11% respectively for 

vaccine patients, and 7% and 10% respectively for control patients. These 

proportions decreased with later cohorts. The proportion of hospitalisations for 

pneumococcal pneumonia among patients experiencing a prior or study end point 

tended to be greater for the controls, as high as 49% for those in the older 2003 

cohort, while 31% for the vaccinees. As before, these proportions decreased with 

later cohorts. 

Control patients had higher mortality rates than vaccinated patients with 32% of the 

controls from the older 2003 cohort being censored on death compared to less than 

half that figure (15%) among the vaccinees. This imbalance increased with each 

year of recruitment, a trend that was tempered by the inclusion of younger patients in 

later cohorts, which saw the overall reduction in mortality fall from 19% to 7% per 

cohort by 2005.  Those hospitalised for pneumonia were at the greatest risk of death, 

particularly in the older 2003 cohort (68% and 81% following hospital admissions in 

vaccinees and controls, respectively). Consistent with the high mortality rate 

following pneumonia hospitalisation, the proportion of outcomes resulting in 

hospitalisation was lower during the prior period than the study period, as patients 

needed to be alive after the prior period for subsequent selection to the study. In 

comparison to deaths, there were far fewer censored survival times due to 

deregistrations from the general practices. 
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Cohort 2003 2004 2005 

Exposure group 
Vaccine 

recipients Controls 
Vaccine 

recipients Controls 
Vaccine 

recipients Controls 

Deaths 
Patients 
censored on 
death 

 9184 
(31.6) 

 3985 
(15.4) 

 9995 
(23.4) 

 2727 
( 9.1) 

12293 
(13.3) 

 4296 
( 4.1) 

Transfers 
out of 
practice 

Patients 
censored for 
transferring 
out of practice 

 3891 
(13.4) 

 1654 
( 6.4) 

 4388 
(10.3) 

 1316 
( 4.4) 

 7719 
( 8.4) 

 4227 
( 4.0) 

Outcomes 
in study 
period 

Patients with 
CAP outcomes 

 2816 
( 9.7) 

 2811 
(10.9) 

 3579 
( 8.4) 

 2734 
( 9.1) 

 6016 
( 6.5) 

 7625 
( 7.3) 

Hospitalised 
pneumonia (% 
of CAP) 

 1371 
(48.7) 

  858 
(30.5) 

 1569 
(43.8) 

  642 
(23.5) 

 1901 
(31.6) 

 1055 
(13.8) 

Deaths during 
study among 
hospitalised 
pneumonia 
cases 

 1115 
(81.3) 

  584 
(68.1) 

 1190 
(75.8) 

  377 
(58.7) 

 1328 
(69.9) 

  528 
(50.0) 

Outcomes 
in prior 
period 

Patients with 
CAP outcomes 

 2125 
( 7.3) 

 2166 
( 8.4) 

 2836 
( 6.7) 

 2314 
( 7.7) 

 5143 
( 5.6) 

 7020 
( 6.7) 

Hospitalised 
pneumonia (% 
of CAP) 

  529 
(24.9) 

  269 
(12.4) 

  608 
(21.4) 

  233 
(10.1) 

  841 
(16.4) 

  428 
( 6.1) 

Table 8: Description, N (%), of composite CAP outcomes, death and censoring for 
each cohort from 2003 to 2005 
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5.4.3 Prior event rate ratio analysis  

For all three cohorts, and in each age sub-group, the rates of CAP in the year before 

vaccination (prior period) were higher for patients that went on to be vaccinated with 

PPV23 than for patients who remained unvaccinated, indicating the presence of 

confounding bias (Table 4). In patients aged 65-74 (2005 cohort), the rate of CAP in 

the study period was higher for patients that had been vaccinated than for patients 

that had not: HR=1.28 (95% confidence interval: 1.22 to 1.34). However, the 

imbalance between vaccinated and control patients was even greater in the prior 

period before either group had received PPV23: HR=1.37 (95% CI: 1.30 to 1.44). 

Adjustment for measured and unmeasured confounding bias using the pairwise 

PERR method gave a significant protective HR of 0.86 (95% CI: 0.80 to 0.93) (Table 

4 and Figure 2). Similar protective effects of vaccination were seen in the older age 

sub-groups within the 2005 cohort with HR of 0.74 (95% CI: 0.65 to 0.85) and 0.65 

(95% CI: 0.57 to 0.74) respectively in the 75-79 and 80+ age groups respectively.   

Results for the 2003 and 2004 cohorts were similar for each age sub-group. 

Estimates from the standard PERR method were consistent with the pairwise 

estimates but effect sizes tended to be closer to the null, as expected. 

 

Cohort 

year 
Age group 

Hazard ratios (95% CI) of Treatment term 

Prior Study PERR Pairwise 

2003 80+ 1.20 (1.13, 1.27) 1.00 (0.95, 1.06) 0.84 (0.77, 0.91) 0.68 (0.63, 0.74) 

2004 75-79 1.23 (1.14, 1.34) 1.12 (1.03, 1.20) 0.90 (0.82, 1.00) 0.82 (0.72, 0.93) 

2004 80+ 1.34 (1.23, 1.45) 1.07 (0.99, 1.15) 0.80 (0.72, 0.88) 0.61 (0.54, 0.69) 

2005 65-74 1.37 (1.30, 1.44) 1.28 (1.22, 1.34) 0.94 (0.89, 0.99) 0.86 (0.80, 0.93) 

2005 75-79 1.27 (1.16, 1.39) 1.08 (0.99, 1.17) 0.85 (0.76, 0.94) 0.74 (0.65, 0.85) 

2005 80+ 1.31 (1.20, 1.42) 1.07 (0.99, 1.15) 0.82 (0.73, 0.91) 0.65 (0.57, 0.74) 

Table 9: Hazard ratios, adjusted for age and gender, presented for sub-group 
analysis of the prior and study periods, and the PERR-adjusted estimates. Sub-
groups correspond to the age groups, which were incrementally targeted for 
pneumococcal vaccination from 2003 to 2005, namely adults aged over 79y; from 75 
to 79y; and from 65 to 74y.  
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Figure 13: Pairwise-adjusted  hazard ratios of vaccination for each annual cohort 
(2003-005) by sub-groups of age (65 to 74y – light grey circle; 75 to 79y – mid-grey 
triangles; 80+y – black squares). 

Further analysis of the 2005 cohort, modelling age as a covariate in an interaction 

with vaccination, identified an increasing protective trend with age (p-value=0.01).  

The interaction HRs for the PERR and pairwise models, respectively, were 0.99 

(95% CI: 0.99 to 1.00) and 0.98 (95% CI: 0.98 to 0.99) indicating that the estimated 

reduction in the rate of CAP in the vaccinated patients from each model improved by 

4%  and 8%, respectively, for every 5 year increase in age. 

One of the central assumptions of the PERR adjustment approach is that the 

occurrence of prior events does not influence the likelihood of future treatment. We 

note that in this study, outcomes in the prior period did not greatly differentiate 

subsequent vaccination status, with 50.5% of patients with CAP being vaccinated, 

compared to 46.8% of those without CAP in the same period. 



   
 

 141 

5.4.4 Sensitivity analysis 

5.4.4.1 Propensity score weighted regression 

The list of confounders found to be significant in the study period of each cohort is 

given in Table 10, as well as those (dynamic), which were found specifically for the 

prior period. The balancing variables found not to be significant, and therefore 

excluded as potential confounders, in models in any period for any of the cohorts 

were: cancer, mental health, stroke, aspirin count. In addition to these, there were 

inconsistent confounders, which appeared no more than once in the study period of 

any of three cohorts: QOF-registered atrial fibrillation, QOF-registered chronic kidney 

disease, epilepsy, hypothyroidism. More confounders were found in the study 

periods. In 2003, the disparity in the number of confounders was 47 in the study 

period compared to 44 in the prior of the 2003 cohort, but this grew to 49 compared 

to 30 for the same respective periods in the 2005 cohort. 

Density plots of the propensity scores (section 5.8 Appendix C: propensity score 

density graphs) revealed sufficient overlap for valid inference for the 2004 (Figure 22) 

and 2005 cohorts (Figure 23), but a slight disparity in overlap towards the higher 

scores and a concern about the positivity of controls, with many scores close to zero, 

raised caution about inference from the IPTW analysis of the 2003 cohort (Figure 

21). The success of the IPTWs to balance the confounders was judged by 

comparison of the unweighted and weighted standardised mean differences (SMD) 

of the variables used to predict the propensity score (Plotted as Figure 24, Figure 25 

and Figure 26 in section 5.9 of Appendix D: plots of standardised mean differences 

of balancing variables, for the 2003, 2004 and 2005 cohorts, respectively). Notably, 

age, then the number of historic consultations and prescriptions, were consistently 

the variables with larger imbalances, indicating these as the primary confounder 

variables. For the 2003 and 2004 cohorts, the electronic frailty index was also one 

the largest sources of confounding. Weighting achieved good balance for the 2005 

cohort, with no weighted SMDs exceeding six units (pooled weighted standard 

deviations), and the largest imbalance due to age being substantially reduced. 

Reasonable balance was achieved for all confounders in the 2004 cohort, except 

age, for which the SMD remained relatively high at 30 units, although this was half 

the unweighted SMD. For the 2003 cohort, the weighed SMD for age was also half 
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that of the unweighted SMD, but remained high at 70 units. Although the unweighted 

SMDs indicated the largest imbalances in the 2003 cohort, following weighting the 

SMDs remained high, though still reduced for many variables. 

When analysing the study period data through an IPTW regression (using weights 

based on the propensity scores predicted from the logistic regression of 

confounders), the greatest effect of vaccination occurred in the 2003 cohort among 

the 80+y age group with a HR of 0.72 (95% CI: 0.67 to 0.78). By 2004, this had 

increased to 0.84 (95% CI: 0.77 to 0.92) for the same age group, but by comparison 

to the 75-79y age group (HR 0.93; 95% CI: 0.85 to 1.17), there was an apparent 

age-related effect. By 2005, this direction of effect in the study period has 

disappeared, with the 75-79y group have the lowest HR at 0.90 (95% CI: 0.83 to 

0.98). ( 

Cohort 
Age 

group 

N 

vaccinated 

N 

controls 

HR for each period 

PERR HR 

Prior Study 

2003 80+ 25870 29087 0.89 (0.83, 0.96) 0.72 (0.67, 0.78) 0.81 (0.74, 0.89) 

2004 75-79 19409 16632 1.07 (0.98, 1.17) 0.93 (0.85, 1.01) 0.86 (0.78, 0.96) 

2004 80+ 10619 25993 1.09 (0.99, 1.19) 0.84 (0.77, 0.92) 0.77 (0.68, 0.87) 

2005 65-74 79812 49879 1.16 (1.10, 1.22) 1.03 (0.98, 1.09) 0.89 (0.84, 0.95) 

2005 75-79 15784 16403 1.07 (0.98, 1.17) 0.90 (0.83, 0.98) 0.85 (0.76, 0.94) 

2005 80+ 9373 25943 1.22 (1.11, 1.33) 0.96 (0.86, 1.08) 0.79 (0.69, 0.91) 

Table 11). 

The weighted HRs of the treatment groups in the two-year prior period were used to 

evaluate the degree of unmeasured confounding that might still remain after the 

weighted adjustment. Comparing the estimates using weights based on (dynamic) 

confounders specific to the prior (Table 11) and those based on the same (static) 

confounders found in the study period ( 

Cohort 
Age 

group 
N 

vaccinated 
N 

controls 

HR for each period 
PERR HR 

Prior Study 
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2003 80+ 25870 29087 0.87 (0.79, 0.96) 0.72 (0.67, 0.78) 0.83 (0.75, 0.94) 

2004 75-79 19409 16632 1.08 (0.99, 1.18) 0.93 (0.85, 1.01) 0.86 (0.78, 0.96) 

2004 80+ 10619 25993 1.10 (1.00, 1.21) 0.84 (0.77, 0.92) 0.76 (0.68, 0.86) 

2005 65-74 79812 49879 1.17 (1.11, 1.23) 1.03 (0.98, 1.09) 0.89 (0.83, 0.94) 

2005 75-79 15784 16403 1.09 (1.00, 1.19) 0.90 (0.83, 0.98) 0.83 (0.74, 0.93) 

2005 80+ 9373 25943 1.26 (1.15, 1.38) 0.96 (0.86, 1.08) 0.77 (0.66, 0.87) 

Table 12), the results were similar across the two different approaches to weighting 

for the prior period, indicatingreasonable stability in the modelling of confounders. 

The deviation from the null of the prior period HRs indicated that some residual 

confounding could be assumed and were greater than unity except for 2003, which 

indicated a bias towards healthy vaccine recipients. Once the PERR-adjustment had 

been applied to the weighted study-period estimates, an age effect was consistently 

observed across the cohorts: The HRs for the 80+y group ranged from 0.77 to 0.81 

based on dynamic confounders, and from 0.76 to 083 for the static confounders. The 

point estimate for the 75-79 y age group varied between 0.85 and 0.86 for both the 

2004 and 2005 cohorts modelled on dynamic confounders, and between 0.83 and 

0.86 modelled on static confounders. For the youngest age group, 65-74y, in 2005, 

the point estimates were both 0.89 (to the nearest 2 d.p.) regardless of the type of 

confounders used. 
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Disease 
2003 2004 2005 

Prior Study Prior Study Prior Study 

Asthma ✓ ✓ ✓ ✓ ✓ ✓ 

Atrial fibrillation   ✓    

Cancer       

Coronary heart disease ✓ ✓ ✓ ✓ ✓ ✓ 

Chronic kidney disease      ✓ 

Chronic obstructive pulmonary 

disorder 
✓ ✓ ✓ ✓ ✓ ✓ 

Dementia ✓ ✓ ✓ ✓ ✓ ✓ 

Depression ✓ ✓ ✓ ✓ ✓ ✓ 

Diabetes  ✓    ✓ 

Epilepsy   ✓ ✓   

Heart failure ✓ ✓ ✓ ✓  ✓ 

Hypertension    ✓  ✓ 

Mental health       

Stroke       

Hypothyroidism   ✓ ✓   

Activity limited ✓ ✓ ✓ ✓  ✓ 

Anemia ✓ ✓ ✓ ✓ ✓ ✓ 

Arthritis ✓ ✓ ✓ ✓ ✓ ✓ 

Atrial fibrillation ✓ ✓  ✓  ✓ 

Carer required ✓ ✓  ✓  ✓ 

Cerebrovascular disease ✓ ✓ ✓ ✓ ✓ ✓ 

Chronic kidney disease    ✓  ✓ 

Diabetes ✓ ✓ ✓ ✓ ✓ ✓ 

Dizziness ✓ ✓ ✓ ✓  ✓ 

Dyspnoea ✓ ✓ ✓ ✓  ✓ 

Falls ✓ ✓ ✓ ✓  ✓ 

Foot problems ✓ ✓ ✓ ✓  ✓ 

Fracture ✓ ✓ ✓ ✓  ✓ 

Hearing impaired ✓ ✓ ✓ ✓ ✓ ✓ 
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Heart failure ✓ ✓ ✓ ✓  ✓ 

Heart valve disease  ✓  ✓  ✓ 

Housebound ✓ ✓ ✓ ✓ ✓ ✓ 

Hypertension ✓ ✓ ✓ ✓ ✓ ✓ 

Ischaemic heart disease ✓ ✓ ✓ ✓  ✓ 

Mental / cognitive problems ✓ ✓ ✓ ✓ ✓ ✓ 

Mobility ✓ ✓ ✓ ✓ ✓ ✓ 

Osteoporosis ✓ ✓ ✓ ✓ ✓ ✓ 

Peptic ulcer ✓ ✓ ✓ ✓  ✓ 

Peripheral vascular disease ✓ ✓ ✓ ✓ ✓ ✓ 

Polypharmacy       

Respiratory disease ✓ ✓  ✓ ✓  

Skin ulcer ✓ ✓ ✓ ✓ ✓ ✓ 

Sleep disturbed ✓ ✓ ✓ ✓  ✓ 

Social vulnerability ✓ ✓ ✓ ✓ ✓ ✓ 

Syncope ✓ ✓ ✓ ✓ ✓ ✓ 

Thyroid disease ✓ ✓ ✓ ✓ ✓ ✓ 

Tremors ✓ ✓ ✓ ✓  ✓ 

Urinary incontinence ✓ ✓ ✓ ✓ ✓ ✓ 

Urinary system disease ✓ ✓ ✓ ✓ ✓ ✓ 

Visual impairment ✓ ✓ ✓ ✓ ✓ ✓ 

Weightloss and anorexia ✓ ✓ ✓ ✓  ✓ 

Yearly drug count ✓ ✓ ✓ ✓ ✓ ✓ 

Electronic frailty index ✓ ✓ ✓ ✓ ✓ ✓ 

Age ✓ ✓ ✓ ✓ ✓ ✓ 

Gender ✓ ✓ ✓ ✓ ✓ ✓ 

Aspirin count       

Number of consultations  ✓ ✓ ✓ ✓ ✓ 

Smoking status ✓ ✓ ✓ ✓ ✓ ✓ 

Table 10: List of balancing variables used to predict propensity scores for each 
cohort 2003-2005. The number of consultations and aspirin prescriptions were 
counted, respectively, over three and two years preceding the start of each patients 
follow-up in the study period 
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Cohort 
Age 

group 

N 

vaccinated 

N 

controls 

HR for each period 

PERR HR 

Prior Study 

2003 80+ 25870 29087 0.89 (0.83, 0.96) 0.72 (0.67, 0.78) 0.81 (0.74, 0.89) 

2004 75-79 19409 16632 1.07 (0.98, 1.17) 0.93 (0.85, 1.01) 0.86 (0.78, 0.96) 

2004 80+ 10619 25993 1.09 (0.99, 1.19) 0.84 (0.77, 0.92) 0.77 (0.68, 0.87) 

2005 65-74 79812 49879 1.16 (1.10, 1.22) 1.03 (0.98, 1.09) 0.89 (0.84, 0.95) 

2005 75-79 15784 16403 1.07 (0.98, 1.17) 0.90 (0.83, 0.98) 0.85 (0.76, 0.94) 

2005 80+ 9373 25943 1.22 (1.11, 1.33) 0.96 (0.86, 1.08) 0.79 (0.69, 0.91) 

Table 11: PERR-adjusted analysis of pneumococcal vaccine effectiveness in the 
2003-2005 cohorts, based on the inverse probability treatment weighted hazard 
ratios, with the weights estimated for each period from propensity scores predicted 
from period-specific (dynamic) confounders. 
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Cohort 
Age 

group 
N 

vaccinated 
N 

controls 

HR for each period 
PERR HR 

Prior Study 

2003 80+ 25870 29087 0.87 (0.79, 0.96) 0.72 (0.67, 0.78) 0.83 (0.75, 0.94) 

2004 75-79 19409 16632 1.08 (0.99, 1.18) 0.93 (0.85, 1.01) 0.86 (0.78, 0.96) 

2004 80+ 10619 25993 1.10 (1.00, 1.21) 0.84 (0.77, 0.92) 0.76 (0.68, 0.86) 

2005 65-74 79812 49879 1.17 (1.11, 1.23) 1.03 (0.98, 1.09) 0.89 (0.83, 0.94) 

2005 75-79 15784 16403 1.09 (1.00, 1.19) 0.90 (0.83, 0.98) 0.83 (0.74, 0.93) 

2005 80+ 9373 25943 1.26 (1.15, 1.38) 0.96 (0.86, 1.08) 0.77 (0.66, 0.87) 

Table 12: PERR-adjusted analysis of pneumococcal vaccine effectiveness in the 
2003-2005 cohorts, based on the inverse probability treatment weighted hazard 
ratios, with the weights estimated for each period from propensity scores predicted 
for each period, but based on those (static) confounders found to be significant in the 
study periods only. 

5.4.4.2 Impact of current or recent influenza vaccine 

Separate analysis of the 2005 cohort by influenza-vaccine sub-group indicated that 

PPV effectiveness was maintained at age 80 irrespective of whether patients 

received the influenza vaccine in either one or both of the prior and study periods 

(HR for the pairwise models: 0.69, 0.74, 0.61 and 0.82 for the never-FV, prior-FV, 

study-FV and always-FV sub-groups respectively in Table 13). The increasing 

protective effect of the PPV with age seen for the overall 2005 cohort was 

maintained, irrespective of the confounding-adjustment method, in all flu-vaccine 

subgroups with very similar gradients (HR for the interaction in the pairwise models 

ranged from 0.97 to 0.98 in Table 13). We noted that there were inconsistent results 

for the main effect of vaccination across the 2005 influenza-vaccine sub-groups: 

patients only receiving the influenza vaccine in the study period (post-FV) was the 

only sub-group with a protective effect of PPV23 at age 65. The main effects for the 

other three sub-groups were all above one. Analysis of the 2003 and 2004 cohorts, 

provided further support for the effectiveness of the PPV23 vaccine at the oldest 

ages across all four influenza vaccine sub-groups, although the precision of the 
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estimates was affected by the small number of PPV23 recipients in the never-FV and 

prior-FV sub-groups, and the small number of controls in the post-FV.  
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FV sub 
group 

years 
N  Hazard ratios 

vaccine 
control

s 
 Vac lcl ucl Vac*age lcl ucl 

Vac 
@65y 

lcl ucl 
Vac @ 

75y 
lcl ucl 

Vac @ 
80y 

lcl ucl 

Never 
FV 

2003 859 15641  0.73 0.49 1.09                         

2004 1484 25183  0.74 0.54 1.01                         

2005 5386 58630  1.08 0.81 1.44 0.97 0.95 1.00 1.08 0.81 1.44 0.80 0.66 0.97 0.69 0.54 0.88 

Prior 
FV 

2003 527 4164  0.48 0.30 0.76                         

2004 667 5023  0.64 0.41 0.99                         

2005 2760 9880  1.26 0.82 1.91 0.97 0.93 1.00 1.26 0.82 1.91 0.88 0.68 1.13 0.74 0.53 1.02 

Post 
FV 

2003 1141 770  0.57 0.35 0.93                         

2004 1425 1100  0.44 0.28 0.68                         

2005 12698 4547  0.70 0.51 0.96 0.99 0.96 1.02 0.70 0.51 0.96 0.64 0.51 0.80 0.61 0.45 0.82 

Always 
FV 

2003 23343 8512  0.69 0.60 0.79                         

2004 26452 11319  0.76 0.67 0.86                         

2005 84125 19168  1.17 1.00 1.35 0.98 0.97 0.99 1.17 1.00 1.35 0.92 0.84 1.01 0.82 0.74 0.92 

Table 13: Results from pairwise regression of survival times adjusted for age and gender, modelling main effects of vaccination 
(Vac) for the 2003-2004 cohorts, and their interaction (Vac*age for the 2005 cohort, by sub groups according to flu vaccination in 
the prior and study periods. For the interactions of the 2005 cohorts, the predicted hazard ratios at ages 65, 75 and 80y are 
presented, along with the bootstrapped lower (lcl) and upper (ucl) 95% confidence intervals for all hazard ratios. Number (N) of 
patients less than 1000 are highlighted in red to draw attention to the small numbers in some cases 
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5.5 Discussion 

5.5.1 Statement of principal findings 

The results from this study have shown that vaccination with PPV23 is effective in 

protecting older adults aged 65 and above against pneumococcal community-

acquired pneumonia in routine clinical practice. The conclusion was based on 

concordance between results, having taken a robust approach to confounding bias, 

applying different methods to adjust for confounding. To the best of our knowledge, 

this is the first population study to establish that vaccine effectiveness is maintained, 

and may even increase, in the oldest age groups: the reduction in risk due to PPV23 

vaccination was estimated to be about 15% in adults aged 65-74 and increased to 

35-40% in adults aged 80 or above. Aggregating the number of events and the time 

at risk over the three consecutive years for the group aged 80 or above, the average 

percentage risk over 365 years in the control group was calculated to be 7.1%. 

Treating this as the baseline risk, and assuming a relative risk of 0.65 among the 

vaccinated as estimated for 2005 cohort, this corresponded to a reduction in 

absolute risk of 2.5%. Hence, the vaccine may be expected to prevent 25 cases of 

PPV every year among every 1000 adults aged at least 80y. 

5.5.2 Strengths and weaknesses of the study 

Our study has several strengths: firstly, our data source, the Clinical Practice 

Research Datalink, with current coverage of about 11 million patients, is 

representative of the general population of patients in the UK 296. Using this 

database and adequate sample selection strengthens generalizability of our findings 

from 324,804 elderly patients. We believe that risks estimated in this study represent 

actual real-world events during the study periods.  Our selection criteria allowed for 

inference on the general population of older patients aged 65 years and over rather 

than only those who were at risk of pneumonia. The study therefore has high 

external validity.  The introduction in August 2003 of the UK policy of vaccinating 

older adults against Streptococcus pneumoniae created a natural experiment. By 

sampling patients during the early years of this programme when uptake of PPV23 



   
 

 151 

was high, we were able to select sufficiently large numbers of patients receiving 

PPV23 in order to study vaccine effectiveness by age sub-group. 

We believe this study is the first example of using Prior Event Rate Ratio 

methodology to control for unmeasured confounding in a vaccine effectiveness 

study. We have used a recent formulation of the PERR approach, the pairwise 

method (also equivalent to the PERR-ALT method) that overcomes a source of bias 

in the original PERR adjustment method, by fitting a paired Cox model to the prior 

and study periods. It has been demonstrated that applying PERR methods to 

retrospective cohorts, under certain conditions, can reproduce results from 

randomised clinical trials 187–189,242. However, PERR methodology is limited by the 

need for stronger and more complex assumptions than randomisation. Firstly, 

vaccination should not be determined by presentation of the outcome in the prior 

period. This assumption is likely to have been met given that we found little 

difference in vaccination status between patients with a suspected pneumonia event 

in the prior period and those without. The second main assumption is the lack of 

substantive time-dependent confounding. We tried to address this by limiting the 

follow-up to two years post-vaccination and by replicating results for the 74-79 and 

80+ age sub-groups across multiple recruitment cohorts. We also made comparisons 

with estimates from standard Cox regression models weighted by high-dimensional 

propensity scores, a well-established approach to dealing with measured 

confounding in observational studies. The gold standard for evidence remains a well 

powered RCT, as trials are able to remove both the influence of time-invariant 

confounders (e.g. associated with genetic variance) and time-variant confounding 

(e.g. associated with a temporary health state) from the analyses. However, RCTs 

are not always representative of the clinical populations of interest, especially the 

oldest old and frail patients that may be the target for a health intervention. 

Another concern was over the potential repeatibility of the outcomes. While repeated 

pneumonia infections may be possible, particularly among frail, older adults in this 

population, infection may provoke an immune response, that may confer some 

immunity against later infection, and so change the risk. If this were the case, then 

one could expect to see a reduced hazard of further infection relative to the prior 

period, particularly in the unvaccinated patients of the control group. This would 

represent a violation of the assumption of period-invariant confounding. In the case 
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such as this where there is a greater, pre-exisiting risk among the vaccine recipients, 

then the PERR-adjusted effects would be exaggerated. 

An important limitation of our study was the lack of information on pneumococcal 

pneumonia serotypes. The choice of a composite outcome measure based on 

antibiotic prescriptions or first hospitalization for suspected pneumococcal 

pneumonia was less specific than in some previous studies but was developed with 

clinician input to reflect the manifestations of pneumococcal disease in clinical 

practice. 

While our study addresses real-world effectiveness of pneumococcal vaccination up 

to two years post-vaccination, questions remain over the long-term immunity 

afforded by PPV23. Although stability of confounding factors may be reasonable 

over the short term, a longer follow-up of more than two years would inevitably 

capture declining health and increases in frailty. Where changes in the confounding 

relationships are time-dependent, the assumptions of many quasi-experimental 

analysis methods, including the PERR approach, would be violated.  

5.5.3 Strengths and weaknesses in relation to other studies 

Until recently, much of the evidence for the efficacy of the PPV23 vaccine has been 

based on studies in younger, healthier adults. Of two reviews in 2016/2017 focusing 

on older adults, the review by Schiffner and colleagues concluded that there was no 

evidence that PPV23 can prevent CAP in a general, community-dwelling elderly 

population284 . In contrast, the review by Falkenhorst and colleagues reported 

significant vaccine efficacy/effectiveness against both IPD and pneumococcal 

pneumonia285. The two reviews identified the same RCTs and the difference in 

findings relates to decisions over inclusion criteria and the quality of evidence 

provided by each study. This lack of consistency between systematic reviews has 

led to ongoing controversy surrounding the effectiveness of the PPV23 vaccine.  

Although the recent CAPITA trial has shown the efficacy of the 13-valent 

pneumococcal conjugate vaccine against pneumococcal pneumonia and invasive 

pneumococcal disease in adults aged 65 years or older, it did not resolve 

uncertainties surrounding effectiveness of PPV23 286. The recent multicentre, 

prospective study conducted in Japan by Suzuki and colleagues found low to 
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moderate effectiveness of PPV23 against vaccine serotype pneumococcal 

pneumonia287. Compared with conventional case-control or cohort designs, their 

test-negative study design  was less susceptible to bias caused by differences in 

health-care-seeking behaviour among cases and controls, and the use of non-

specific outcome measurements. However, it is not clear how well this approach 

controls for general sources of unmeasured confounding. The generalisability of the 

results was also restricted to those patients presenting with symptoms of CAP, for 

whom laboratory confirmation was available, and the study lacked the power to look 

at the important question of how PPV23 effectiveness varies by age group. In 

contrast, our study employed two methods to adjust for unmeasured confounding, 

and compared these with a high-dimensional adjustment for measured confounders, 

across subgroups of age. Ours is the largest study to date and made it possible to 

compare the effectiveness of PPV23 across age sub-groups. The finding that 

vaccine effectiveness may increase with age reflects the increased vulnerability to 

infection of the oldest old. In contrast, Suzuki et al found that vaccine effectiveness 

was greater in patients under 75 but this effect was not statistically significant. 

5.5.4 Unanswered questions and future research 

Although vaccination with PPV23 reduced risk of pneumococcal CAP in elderly 

patients, the absolute reduction in rate of disease and hospitalization was moderate. 

Determining an effective adult pneumococcal vaccination policy is complex because 

none of the available vaccines covers all serotypes and the proportion of vaccine-

covered serotypes has been declining since the introduction of PCVs in children 287. 

Our study was unable to look at the impact of a combined policy based on PPV23 

and PCV13. In practice, the optimal adult vaccination policy will need to be flexible 

and adaptive, requiring monitoring of the latest available data. We showed how 

effectiveness of PPV23 was maintained at the oldest ages but questions remain 

about how the effectiveness of the vaccine varies in other population sub-groups. 

5.5.5 Meaning of the study: possible explanations and implications 

for clinicians and policy makers 

We found that vaccinated patients tended to be younger and experienced higher 

rates of comorbidity than control patients, suggesting vaccine take-up was higher 
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amongst patients in closer contact with the health-care system and more likely to 

benefit from the long-term immunity to pneumococcal disease. 

The control of pneumococcal pneumonia is a public health priority in countries with 

an ageing population, such as the UK, because of the higher risk in older age groups 

and the associated health costs.  Our study demonstrated a clear reduction in 

disease burden following the introduction of the UK policy of vaccinating older adults 

with PPV23. Contrary to suggestions in the literature, we found that the vaccine 

remained effective, and may even increase in effectiveness, at older ages, 

supporting the targeting of the oldest old and most frail patients for PPV23 

vaccination in order to reduce the burden of pneumococcal disease. Other research 

would suggest vaccine efficacy declines with age in the elderly due to the age-

related fall in immune response 297,298. However, this has to be set against the 

increased susceptibility of the oldest age groups when assessing vaccination 

effectiveness in real world populations: rates of CAP increase with age in the 

absence of vaccination indicating the potential for benefit from immunisation may be 

maximised by prioritising the  oldest age groups. At least in the two years after 

vaccination, the benefits of vaccinating the oldest adults with PPV23 to reduce 

susceptibility were shown to outweigh any deleterious effect of immunosenescence. 

These findings have implications for the formulation of future pneumococcal 

vaccination policy in the UK and other countries.  

5.5.6 Conclusions 

Vaccination with PPV23 has been shown to be effective in reducing risk of 

pneumococcal disease in patients aged 65 and older in clinical practice. The burden 

of disease increases with age and, despite concerns that immunosenescence may 

weaken immune response, we found the vaccine was most effective in the oldest 

old. Our study illustrates how real-world effectiveness studies with appropriate 

control for unmeasured confounding can provide valuable insights into the population 

impact of vaccination policies. 
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5.6 Appendix A 

 

Figure 14: Flowchart of patient selection in study of pneumococcal vaccination 
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5.7 Appendix B: Fitting the Cox model for pneumococcal 

investigation 

5.7.1 Model building 

The best-fit Cox models of survival study times were found from both forwards and 

backwards selection. All models had to include the variable of interest: the treatment 

variable, trt, denoting vaccination [0,1]. The maximum level of interaction was 2-way 

for all interactions of the 3 main variables (gender, age, treatment). A forward 

selection process was used to find the best-fit model of the survival times from the 

prior period. The best fit was decided from the (chi-square) testing of deviance 

(difference in -2* log likelihood) for the additional term between two otherwise 

identical models. In all cases the best-fit model of the study survival times was found 

to apply to those from the prior period: 

2003 cohort (over 79y only). 

The main effect of treatment was not significantly different from the null, but the most 

significant model included the terms: 

 Main effects: Age; gender; vaccination status 

 Interactions: Age * gender 

2004 cohort (over 74y only). 

 Main effects: Age; gender; vaccination status 

 Interactions: Age * gender 

2005 cohort (over 65y) 

 Main effects: Age; gender; vaccination status 

 Interactions: Age * gender; Age * vaccination status  
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5.7.2 Diagnostic tests of PH 

A test of proportional hazards through a generalised linear regression of the scaled 

Schoenfeld residuals on time299, using Stata’s estat phtest, revealed some violation 

of the assumption, mostly in the models applied to the prior period for study years 

2003 and 2004. For those years there was evidence of non-proportionality in the test 

of the hazards of treatment. Given the large data size, tests were deemed significant 

at the 1% level. There was no evidence of non-proportionality for model of the 2005 

study period, although the test of the age and the age*treatment terms in the prior 

period suggested some non-proportionality. With large data it is possible to detect 

violations that are not practically significant. However, violations in the proportionality 

of the hazards for the variable of interest, that of vaccination, would be of particular 

concern.  While the test statistics for the treatment term were large enough in the 

prior periods of 2003 to 2004 and large enough for its interaction with age for 2005 to 

be flagged as statistically significant violations of the PH assumption, the regression 

coefficients, ρ, denoting the extent of non-proportionality were small. The negative 

natural logarithm of the cumulative hazard function were plotted against the natural 

logarithm of the analysis time to inspect the extent of any PH violation.  
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Study period Prior period 

 
Term ρ χ2 d.f. Prob>χ2 Term ρ χ2 d.f. Prob>χ2 

2003 
(>=80y) 

gender -0.00665 0.24 1 0.624 gender -
0.00656 

0.18 1 0.6737 

 
age -0.01172 0.74 1 0.3893 age 0.00726 0.23 1 0.6311 

 
trt 0.0254 3.64 1 0.0565 trt -

0.07586 
24.72 1 0 

 
gender*age 0.01276 0.88 1 0.3476 gender*age 0.00961 0.38 1 0.5383 

 
global test   9.81 4 0.0437 global test   28.42 4 0 

2004 
(>=75y) 

gender 0.02082 2.71 1 0.0995 gender 0.00909 0.42 1 0.5188 

 
age 0.01001 0.64 1 0.4222 age 0.03222 5.48 1 0.0193 

 
trt 0.02982 5.59 1 0.0181 trt -

0.05709 
16.97 1 0 

 
gender*age -0.01572 1.54 1 0.2143 gender*age 0.00436 0.1 1 0.7575 

 
global test   10.42 4 0.034 global test   40.47 4 0 

2005 
(>=65y) 

gender 0.01904 5.08 1 0.0242 gender 0.00489 0.3 1 0.5837 

 
age -0.00428 0.27 1 0.6049 age 0.02548 8.23 1 0.0041 

 
trt 0.01096 1.7 1 0.192 trt -

0.00075 
0.01 1 0.9324 

 
gender*age -0.00426 0.26 1 0.6124 gender*age 0.01053 1.42 1 0.233 

 
age*trt 0.00653 0.63 1 0.4283 age*trt -

0.02251 
6.69 1 0.0097 

 
global test   23.76 5 0.0002 global test   38.32 5 0 

Table 14: Table of results Stata’s estat test of proportional hazards for each of the 
best-fit models for each year 2003-2005 (trt is the variable name for vaccination 
effect) 
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5.7.3 Diagnostic plots 2003 

5.7.3.1 Study period 

  

 

Figure 15: Graphs of observed (vaccinated – red; controls – blue) vs. predicted 
(vaccinated – orange; controls – green) survival times against analysis time, and of 
the negative logged hazards (vaccinated – red; controls – blue) from the study period 
of the 2003 cohort 

While the log-log plot indicates some violation with converging lines, this would 

appear to occur for the relatively few short survival times (Figure 15). For the 

majority of the data corrresponding to the logged survival time values  greater than 

about three (corresponding to 20 days), the hazards would appear to be reasonably 

proportional. The plotted  predicted and observed survival curves appear reasonably 

close with a small descrepancy for those values corresponding to  survival times of 

less than a year. 

5.7.3.2 Prior period 
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Figure 16: Graphs of observed (vaccinated – red; controls – blue) vs. predicted 
(vaccinated – orange; controls – green) survival times against analysis time, and of 
the negative logged hazards (vaccinated – red; controls – blue) from the prior period 
of the 2003 cohort 

The predicted survival times from the Cox model appeared to be overestimated for 

the vaccines and underestimated for the controls by the second year of observation 

(Figure 16). The log-log plot indicated that the hazards were mostly proportional for 

survival  times greater than about 60 days. 

5.7.4 Diagnostic plots 2004 

5.7.4.1 Study period 

  

 

Figure 17: Graphs of observed (vaccinated – red; controls – blue) vs. predicted 
(vaccinated – orange; controls – green) survival times against analysis time, and of 
the negative logged hazards (vaccinated – red; controls – blue) from the study period 
of the 2004 cohort 



   
 

 161 

Both the survival curves plot and the log-log plot indicated little if any violation of the 

proportional hazards assumption in the study period (Figure 17). 

5.7.4.2 Prior period 

  

 

Figure 18: Graphs of observed (vaccinated – red; controls – blue) vs. predicted 
(vaccinated – orange; controls – green) survival times against analysis time, and of 
the negative logged hazards (vaccinated – red; controls – blue) from the prior period 
of the 2004 cohort 

While the survival curves appeared to be overestimated  for the vaccinees and 

underestimated for the controls, the log-log plot indicated little non-proportionality 

over the logged times (Figure 18). 

5.7.5 Diagnostic plots 2005 

5.7.5.1 Study period 
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Figure 19: Graphs of observed (vaccinated – red; controls – blue) vs. predicted 
(vaccinated – orange; controls – green) survival times against analysis time, and of 
the negative logged hazards (vaccinated – red; controls – blue) from the study period 
of the 2005 cohort 

From the plots it was difficult to distinguish between the predicted and observed 

hazards for both treatment groups , indicating little effect of treatment in the study 

period (Figure 19). The log-log survival plots would appear to be not entirely parallel, 

although small differences may be exagerrated by the plots being almost overlaid. 

5.7.5.2 Prior period 

  

 

Figure 20: Graphs of observed (vaccinated – red; controls – blue) vs. predicted 
(vaccinated – orange; controls – green) survival times against analysis time, and of 
the negative logged hazards (vaccinated – red; controls – blue) from the prior period 
of the 2005 cohort 

The predicted and observed survival times appear to closely agree and the log-log 

plots are broadly parallel (Figure 20). 
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5.7.6 Investigation of time-invariance assumption 

Without prior knowledge, it is difficult to determine the optimum functional form over 

time of any potentially time-varying covariates, but the time-dependency of the 

variables was tested through the regression of survival times on the covariates, 

allowing for time-dependency of the coefficients on the natural logarithm of time. 
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Term 

varying with 
ln(time) 

Study period Prior period 

  
Hazard 

ratio 
Standard 

error z P>|z| 
Hazard 

ratio 
Standard 

error z P>|z| 

2003 

Treatment 1.076268 0.025331 3.12 0.002 0.939274 0.027669 
-

2.13 0.033 

Age 1.00013 0.002375 0.05 0.956 1.003576 0.003148 1.14 0.255 

Gender 1.044615 0.02522 1.81 0.071 1.010374 0.030738 0.34 0.734 

2004 

Treatment 1.042504 0.025705 1.69 0.091 0.921118 0.026561 
-

2.85 0.004 

Age 0.99933 0.001996 
-

0.34 0.737 1.005543 0.002554 2.18 0.029 

Gender 1.025801 0.024707 1.06 0.29 1.0536 0.030307 1.82 0.07 

2005 

Treatment 1.072364 0.018199 4.12 0 0.958765 0.017848 
-

2.26 0.024 

Age 0.998434 0.001068 
-

1.46 0.143 1.001681 0.001244 1.35 0.176 

Gender 1.034018 0.016828 2.06 0.04 1.026603 0.018214 1.48 0.139 

Table 15: Hazard ratios of the interaction between the independent variables and the 
natural logarithm of survival times from the models allowing for time dependency. 
The hazard ratios and their standard errors indicate the extent to which the hazards 
change over the logarithm of time from their time-invariant HRs (not shown) that 
were estimated in the same model. 

According to the time-varying covariate (TVC) model, there was some evidence of 

time dependency of the treatment effect for the study period of 2003, while for the 

prior period, there was little evidence of this. This was contrary to the conclusions 

from the regression-based test of the PH assumption (above) for the same cohort, 

which indicated the greatest violation of proportionality occurring in the prior rather 

than the study period. The situation is reversed for the 2004 cohort with significant 

time-dependency occurring in the prior period. For the 2005 cohort, there appeared 

to be a highly significant time-dependent effect of treatment in the study period, 

although this was not so clearly evident in the diagnostic plots of survival times. 

While the time-invariant HRs indicated that the direction of vaccine effectiveness with 

age was maintained, the time-varying estimates indicated a small convergence over 

time between the vaccination groups in the prior period. Conversely, in study period, 



   
 

 165 

the time-varying estimates indicated a divergence over time, which could be 

interpreted as the waning effect of vaccination. 

5.7.7 Conclusions 

The test of proportional-hazards based on Schoenfeld residuals revealed some 

violations, particularly for the 2003 and 2004 cohorts, although the predicted and 

observed survival plots indicated that the resulting biases were likely to be small. 

However, the detection of such violations were powered by the size of the data. 

Furthermore, the results did not align with those from the investigation into the time 

dependency of the hazards. The PERR adjustment was applied to the time-invariant 

Cox models, noting the relatively minor violation of the proportional hazards 

assumption. 

Unlike the pairwise model, the PERR adjustment very much depends on, amongst 

other conditions, the fit of the underlying survival model. In the case of the Cox 

model, proportional hazards have to be assumed. The sensitivity of the PERR 

method to non-proportional hazards arising from time-varying hazards was illustrated 

by Lin and Henley192, which the pairwise method can avoid by specifying a time-

dependent period effect. However, it would not be clear how the PERR method could 

be applied to survival times in the prior and study periods with differing time 

dependencies. Furthermore, this would considerably complicate the reporting of 

subsequent PERR results, as the hazards would have to be estimated for an array of 

time-points from the study and prior periods. 
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5.8 Appendix C: propensity score density graphs 

 

Figure 21: Density plot of the propensity scores for the vaccine recipients and 
controls in the 2003 cohort 

 

Figure 22: Density plot of the propensity scores for the vaccine recipients and 
controls in the 2004 cohort 
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Figure 23: Density plot of the propensity scores for the vaccine recipients and 
controls in the 2005 cohort 
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5.9 Appendix D: plots of standardised mean differences of 

balancing variables 

 

Figure 24: Plots of the weighted (by propensity scores) and unweighted standardised 
mean differences for balancing variables - 2003 cohort 



   
 

 169 

 

Figure 25: Plots of weighted (by propensity scores) and unweighted standardised 
mean differences for balancing variables - 2004 cohort 
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Figure 26: Plots of weighted (by propensity scores) and unweighted standardised 
mean differences for balancing variables - 2005 cohort 
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6.1 Abstract 

6.1.1 Objective 

This study aimed to adjust for unmeasured confounding in the estimation of the real-

world effectiveness of the influenza vaccine against influenza and also myocardial 

infarction (MI) in adults aged 65y and older in the UK.  

6.1.2 Design 

Quasi-experimental (QE) cohort study of patients in the UK from general practices 

registered to the Clinical Practice Research Datalink. 

6.1.3 Setting 

Adults aged 65y and over, recruited in annual cohorts, starting in September, from 

1997 to 2012, with no record of a previous influenza vaccination. 

6.1.4 Intervention 

Influenza vaccination 

6.1.5 Outcome measures 

Hospitalisation for MI, influenza, and prescriptions for antibiotics for symptoms 

consistent with lower respiratory tract infections during a follow-up period of one 

year. 

6.1.6 Results 

After adjustment using the (prior event rate ratio) PERR method, the HRs for 

vaccination against MI from the Cox model adjusting for age and gender were 

significantly less than unity, varying between 0.40 (95% confidence interval: 0.30, 

0.55) and 0.74 (95% CI: 0.57, 0.92), except in 2001 (HR=0.89, 95% CI: 0.68, 1.17). 

The same annual trend was closely mirrored in the pairwise-adjusted results, the 

point estimates for which varied between 0.38 and 0.80.  Interaction analysis for all 

years apart from 1997, 1998 and 2005 indicated a waning effect of vaccination with 

age. The weighted estimates were greater than unity in most of the cohorts. 

However, upon applying the PERR adjustment, the weighted results were in 

accordance with those from the PERR of the adjusted Cox models. Annual 

differences in the mix and virulence of influenza may have given rise to the variability 
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between the cohorts’ esimates. However, the global estimate of vaccine 

effectiveness across all cohorts was found to reduce the risk of MIs by 39% (95% CI: 

34, 44). 

Applying the same PERR method, the data demonstrated vaccination to be 

moderately effective against influenza in all cohorts (Pairwise HRs ranging from 0.63 

in 1999 to 0.90 in 2001), although there were no significant interactions with age. 

Differences in effectiveness between the subgroups of pneumococcal vaccination 

(PPV) status were not consistent, with smaller sizes and large variability in the PPV 

group before 2003. 

6.1.7 Conclusions 

In spite of potential seasonal pathogen evolution and vaccine mismatches, the 

influenza vaccination broadly demonstrated effectiveness in older UK adults, whose 

annual pattern broadly followed that for effectiveness against MIs, suggesting the 

prevention of MIs by the vaccine may be partly mediated by influenza. 

6.2 Introduction 

The influenza vaccine is currently recommended for adults aged ≥ 65y, the age 

group with the highest risk of mortality from influenza viruses 300. While  vaccination 

is intended to protect against influenza 301, ecological data have revealed potential 

benefits against possible complications of the disease 302,303. Increased 

hospitalisation rates for myocardial infarction (MI) and related cardiovascular 

conditions have long been observed to coincide with influenza epidemics 304 with an 

elevated risk of acute MI within seven days of laboratory-confirmed influenza 

infection in adults aged ≥ 65y  305. It is thought that the influenza virus acts to 

increase the risk of MI both directly by provoking an inflammatory response in the 

heart, and indirectly by activation of inflammatory pathways and atherosclerosis, 

potentially exacerbated by an increased metabolic response to the virus 306,307. The 

most recent Cochrane review 308 of randomised controlled trials investigating the 

prevention of cardiovascular events either as primary or secondary outcomes 

included two large studies that had investigated MI outcomes, but did not detect a 

significant effect 309,310. However, the findings were based on a range of ages, and 

were not restricted to the elderly population. 
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Population-studies using electronic health records (EHR) have previously been 

utilised to demonstrate a protective effect of influenza vaccination, reducing the odds 

of MI in the year following vaccination by 20% in elderly Taiwanese patients 311. 

However, EHRs are not purposed for research, and without the observations on all 

confounders of vaccination and MI, unmeasured confounders will likely bias an 

analysis that relies on adjustment for measured confounders alone. It is therefore 

important to diagnose and accommodate unmeasured confounding when using EHR 

data for inferential investigations 288. 

This study therefore proposed to investigate the real-world effectiveness of influenza 

vaccinations against the risk of MI, as well as influenza, in the adults aged ≥ 65y 

registered to General Practices in UK Primary Care, using data extracted from the 

Clinical Practice Research Datalink. Effectiveness was examined for each annual 

cohort of new recipients of the influenza vaccine from 1997 to 2011, that would 

encompass the introduction of the policy to recommend for vaccination adults aged 

at least 75y in 1998, extended to those aged at least 65y in 2000. In this way, the 

influence of the policy itself on any trends in vaccine effectiveness could be studied. 

We also investigated issues with immunogenicity in this age group by analysing 

effectiveness with age and by sub groups of pneumococcal vaccination status.  

6.3 Methods 

6.3.1 Data source 

The data were from the UK Clinical Practice Research Datalink (CPRD) 53, a 

database of electronic medical records including information on demographics, 

consultations, diagnoses, drug prescriptions, immunisations, referrals, etc collected 

by participating general practitioners during their daily clinical routines. The data 

analysed were from English practices, which had linkage available to hospital 

admissions and death certificate data. The CPRD has been granted Multiple 

Research Ethics Committee approval (05/MRE04/87) to undertake purely 

observational studies, with external data linkages including HES and ONS mortality 

data. The work of CPRD is also covered by NIGB-ECC approval ECC 5-05 (a) 2012. 

This study gained prior approval by the CPRD Independent Scientific Advisory 

Committee for MHRA database research (ISAC protocol 14-159). 
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6.3.2 Study population 

Annual cohorts were recruited from 1997 to 2011. Recruitment began on the 1st 

September, the index date for each year. Patients had to be HES-linked, alive and at 

least 65y of age on the index date, and were excluded if not registered at their 

practice at least five years before. An absence of any clinical consultation in the five 

years before the index date was regarded as unlikely for patients in this age group 

and so such cases were excluded. The general practices also had to be up-to-

standard at least five years before the index date.   

6.3.3 Vaccination 

Patients receiving the influenza vaccine in each annual cohort were identified 

according instances of influenza vaccination found under their relevant medical 

codes in the immunisation file and their product codes in the therapy file (Appendix D 

– CPRD and HES codes). 

6.3.4 Study design and follow-up 

The study comprised individual annual cohorts of eligible patients, who had not 

received the influenza vaccine in the two years prior to the index date. In each 

cohort, patients were selected for the exposed group if they had received a 

vaccination between the index date and the following 31st January, inclusive. Any 

patients receiving a vaccination during follow-up after this date were excluded from 

the study cohort, and any remaining unvaccinated were designated as controls for 

the vaccine recipients. While vaccination date determined the start of follow-up 

among recipients of the vaccine, obviously no such date was available for the 

controls. In order for there to be an approximately equal distribution of follow-up start 

dates among the controls as the vaccine recipients, the start dates were mapped 

onto the controls from the dates of vaccine recipients, either exactly matched on age, 

gender and GP practice, or on ever broader categories for where no exact match 

could be found. Matching was used solely for this purpose and played no further role 

in the analysis. Fourteen days were added to the vaccination dates of the recipients 

to allow time for full immunogenicity, and also to the start dates of the controls so 

that they remained commensurate with those of vaccine recipients. Any patients, for 

whom an MI event occurred before the attainment of full immunity, were censored 

and assigned a zero survival time, and so effectively did not contribute to the 
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likelihood of the survival model. All patients were then followed up for a year, 

censoring on death and transferrals out of the registered practice. 

6.3.5 Outcomes 

The primary outcome was admissions to hospital for myocardial infarction, coded 

according to ICD-10 (Appendix D – CPRD and HES codes), serving as the endpoint 

in the primary survival analysis. Where MI was not the primary reason, but an event 

during a subsequent episode of the same spell, admissions were not counted as 

endpoints. Where an admission for MI spanned the start date of either period, the 

start date for follow-up was adjusted to the discharge date of their hospital spell. This 

ensured that follow-up did not begin while already under observation in hospital for 

one or multiple MI events. 

The secondary outcome was a composite of either hospitalisation or treatment for 

suspected influenza cases. Possible instances of treatment were prescriptions for 

antiviral drugs used to treat influenza, or lower respiratory tracts infections requiring 

treatment with antibiotics (Appendix D – CPRD and HES codes). Antibiotic 

prescriptions were identified in the data by their corresponding codes, and qualified 

by codes for symptoms that had previously been validated by two clinicians as being 

consistent with those for lower respiratory tract infections (Appendix D – CPRD and 

HES codes). Hospitalisations for influenza were indicated in the HES data by their 

corresponding ICD10 codes describing the reason for admission.  

6.3.6 Statistical analysis 

The effect of influenza vaccination on survival times until the first MI was analysed 

using Cox’s regression adjusting for age (centred on 65y) and gender, censoring on 

death. Any patients found to have vaccination dates occurring after their date of 

death were dropped from the cohort. Any negative survival times resulting from the 

addition of 14 days (reflecting the period for immunogenicity) to the vaccination date 

were assigned zero times, with the corresponding events coded as right-censored 

events. As a guide to possible effect sizes, results for each annual cohort were 

presented with 95% confidence intervals, and so inference was carried out at the 5% 

significance level. The same approach was used for the secondary outcome of 

influenza events. 
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As an alternative approach to modelling time and understanding the effect of 

vaccination relative to a common index date, the data were also expressed as a 

counting process for analysis of vaccination as a time-varying covariate (TVC). By 

initiating follow-up from a common index date of 1st September, this simplified the 

analysis, but also could account for the time at risk in the vaccine recipients before 

their vaccination. Patients in the intervention group, therefore, had two possible 

survival times in the study period and were coded as vaccine-free up until 

vaccination, but vaccinated thereafter. In doing so, data preparation was greatly 

simplified, and the analysis could be run without the need for matching and assigning 

controls a start date based on vaccination dates. Follow-up for those patients, who 

were still in hospital from a previous MI at the time of the index date, began from the 

date of discharge. For the vaccine recipients, follow-up re-continued from the 

vaccination date plus 14 days, with the vaccination indicator variable set to one. 

6.3.6.1 Adjustment for confounding 

An adjustment on measured confounders available in the data was attempted 

through an inverse probability treatment weighted (IPTW) analysis of each individual 

cohort. For this, the propensity score summarising the probability of vaccination for 

every patient had to be derived for each cohort from a logistic regression model of 

vaccination status on gender, age, indices of the Quality Outcomes Framework 295 

and deficits in the electronic Frailty Index (eFI) 292, as well as the eFI itself . To 

manage the size of the task, and avoid individually fitting a model for every cohort, a 

program was written in Stata to fit an optimum model for each cohort according to 

the significance of the Wald statistics of each regressor at the 5% level. 

To mitigate for confounding bias, both measured and hidden, the prior event rate 

ratio (PERR) method 242,243 was applied to the survival data. For comparison, 

confounding was also adjusted through an alternative approach to the PERR, 

applying the likelihood framework of the Pairwise method 192. 

The PERR method was applied to the data presented in the counting process 

format, modelling vaccination state as a time-varying coefficient 278. Adjustment 

comes from dividing the estimate for the vaccination effect in the study period by that 

from the vaccine-free prior period. This required following up the patients from the 

date one-year prior to their start date in the study period, until either the defined MI 
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event or the index date of the study period. The PERR method was applied to the 

Cox regression estimates for vaccine effectiveness and also to those from the TVC 

model for each annual cohort. In both applications, the format of data from the prior 

period was the same, as no vaccinations occurred in the prior period, and therefore 

each patient had only one survival time. 

The PERR method was also applied to the IPTW results. In order to derive the 

weights for the prior period, the automated logistic model selection was run for the 

prior periods to each cohort, as done for the study period. 

As well as analysing each individual cohort, the data from all cohorts were 

aggregated into a single, global dataset, and analysed using PERR-adjusted Cox 

models adjusting for age and gender. Because this approach would likely aggregate 

the data on the same patients from across several cohorts, the same patients could 

be represented across several cohorts. To account for a potential lack of 

independence between observations, these were analysed using robust standard 

errors, clustered on patient id. 

6.3.6.2 Sub-group analysis 

Further analysis tested for any moderating effect of age, by modelling the interaction 

between age and vaccination status and their main effects, to which the PERR 

adjustment was applied. In a sensitivity analysis of the effectiveness of the influenza 

vaccine was re-analysed according to polysaccharide pneumococcal vaccination 

(PPV) status. Both the PERR and pairwise analyses were repeated for subgroups of 

PPV, classified into patient, who have had a record of PPV in both study and the 

prior period (ever), and those with no record of PPV (never). 

6.4 Results 

6.4.1 Cohort characteristics 

There was an overall increase in the size of the annual cohorts from 62 644 in 1997 

to 130 460 in 2011, while the annual percentage rate of influenza vaccinations 

among the 65+ year old patients of each cohort fluctuated around 15% from 1997 to 

1999 (Table 16). However, the rate increased to 39.5% in 2000 with the introduction 

of the policy to increase vaccine coverage in the adults aged at least 65y. The 
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exclusion of patients with an influenza vaccination in the two years prior to 

recruitment likely contributed to the reduction of uptake in vaccination in the following 

cohorts to a minimum of 56370 in 2002. Thereafter the cohort size steadily 

increased, while the vaccination rate fluctuated between 12.9% in 2007 and 24.5% in 

2005. 

The mean age of each cohort remained at around 74y until 2003, decreasing very 

slightly to below 73y by 2010. While vaccine recipients were the same age or slightly 

older than the controls up until 2000, their mean age decreased with each year to 

about 70y in 2011, eventually about 3.4y younger than the controls. Patients with at 

least one QOF-registered disease comprised 68.2% of the vaccine recipients 

compared to 54.1% of the controls in the 1997 cohort, but by 2011 this disparity had 

steadily reduced to 60.6% and 58.1%, respectively. This trend in disparity may have 

been driven at least by the most commonly diagnosed condition, hypertension, the 

prevalence of which in the vaccine recipients and controls stood, respectively, at 

32.6% and 27.3% in 1997 increasing to similar levels, 36.3% and 35.3%, by 2011. 

The difference between vaccination groups in the prevalence of the next most 

frequent morbidity, coronary heart disease, also narrowed from 19.3% and 13.4%, in 

vaccine recipients and controls respectively in 1997, to similar levels, 7.3% and 

8.8%, in 2011. Similar declining trends were seen in atrial fibrillation, asthma, chronic 

obstructive pulmonary disease, depression and strokes. The remaining diseases had 

relatively low levels, except for chronic kidney disease, which increased from no 

recorded diagnoses before 2001 to 14.2% of the controls and 11.3% of vaccine 

recipients in 2011.  
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Table 16: Table of each annual cohort’s characteristics describing vaccination status, hospital admissions for myocardial infarctions, age, 
gender and proportions of diseases monitored under the Quality Outcomes Framework. 

 

  

Year N

N 

vaccinate

d

% 

vaccinated

Vaccine 

status

N MI 

admissions
Mean age

% 

males

% patients 

with QOF 

diseases

Atrial 

fibrillatio

n

Asthma Cancer CHD CKD COPD Dementia Depression Diabetes Epilepsy HF
Hyper-

tension

Hypo-

thyroid

Mental 

health
Stroke

Controls 369 74.1 41.9 54.1 4.4 5.7 4.6 13.4 0 3.9 1.4 8.7 1.2 0.9 5.3 27.3 3.9 0.8 6.7

Vaccinated 71 74.3 41.9 68.2 6.4 10.4 5.4 19.3 0 7.5 2 11.6 2.5 1.1 8 32.6 5.4 0.7 9.2

Controls 431 74 42.3 54.4 4.4 6 4.6 13.6 0 3.9 1.3 8.2 1.4 0.9 4.9 28.3 4.1 0.8 6.4

Vaccinated 55 76.1 42.3 71.6 7.5 10.3 6 21.3 0 7.3 3.2 11.7 3.6 1.3 9.3 35.8 5.2 0.7 9.8

Controls 437 73.9 42.8 54.3 4.3 5.8 4.4 12.9 0 3.6 1.2 7.9 1.7 0.9 4.4 29.4 4.2 0.8 5.9

Vaccinated 102 75.3 42.8 70.2 7.3 10.3 5.6 21.3 0 7.7 2.3 11.2 3.4 0.9 7.8 36.3 5.5 0.9 9

Controls 356 74.5 42.8 53.5 4.5 5.6 4.4 12.4 0 3.5 1.5 7.5 2 0.9 4.3 29.2 4.3 0.9 5.9

Vaccinated 250 72.9 42.8 61.7 5 7 5.1 15.3 0 4.1 1.2 8.3 2.9 1 4.2 35.4 5 0.7 6.2

Controls 337 74.6 41.6 53.1 4.3 5.6 4.3 12 0 3.5 1.4 7.2 2.4 0.9 4 29.6 4.7 0.9 5.7

Vaccinated 146 73.2 41.6 62.6 5.4 6.8 4.9 15.5 0.1 4.3 1.6 8.1 3.9 1.1 4.4 35.6 5.7 0.8 6.7

Controls 361 74.4 41.7 52.6 4.4 5.4 4.3 11.5 0.1 3.2 1.5 6.9 3 0.9 3.6 30 5 0.9 5.4

Vaccinated 95 71.9 41.7 63.2 4.7 6.7 5.8 14.1 0.1 4.1 2 8.4 5 1.2 3.8 36.8 5.9 0.8 6.1

Controls 395 74.4 42.1 53.5 4.6 5.5 4.5 11.1 0.1 3.2 1.6 6.6 3.9 0.9 3.1 31.5 5.2 0.9 5.3

Vaccinated 73 71.5 42.1 62.1 5 6.7 5 12.6 0.1 4.4 2.1 8.5 5.6 1.2 3 37 6.2 0.9 5.6

Controls 379 74.2 42.7 53.6 4.6 5.4 4.6 10.4 0.3 3.1 1.5 6.1 4.8 0.9 2.7 32.5 5.6 0.9 5

Vaccinated 90 71.3 42.7 65.4 5.2 7.5 5.6 12.9 0.3 5 2.2 7.8 7.1 1.1 3 39.6 6 1.1 6.1

Controls 406 74.4 42.8 53.9 4.9 5.4 4.7 10.1 3.2 3.3 1.6 5.6 5.6 0.9 2.5 32.7 5.9 1 5.1

Vaccinated 132 71 42.8 60.3 4.3 5.8 5.8 10.1 3.2 3.8 1.8 6.9 6.4 1.1 1.9 36.9 6.3 0.9 4.6

Controls 410 74.1 43.2 54.9 4.9 5.3 4.8 9.8 9.6 3.3 1.6 5.7 6.3 0.8 2.1 33.4 6.2 1.2 4.7

Vaccinated 68 70.6 43.2 61.3 5.1 4.9 5.6 9.8 10.4 4.4 2.6 7 6.7 1.2 2.3 36.8 6.4 1.1 5.2

Controls 460 73.8 44.1 55.1 5 5.2 5 9.2 11.6 3.3 1.6 5.4 6.4 0.8 1.8 33.7 6.3 1.2 4.4

Vaccinated 65 69.9 44.1 61.6 4.6 5.1 6 8.9 11.2 4 2.6 7.5 6.6 1 1.8 36.9 6.7 1.4 4.3

Controls 555 73.6 44.4 55.9 5 5.2 5 9 12.7 3.4 1.6 5.4 6.8 0.8 1.7 34.2 6.5 1.2 4.2

Vaccinated 90 69.7 44.4 60.7 4.5 5 6.2 7.6 11 3.7 2.2 6.9 6.3 1 1.4 36.5 7 1.3 3.5

Controls 537 73.3 44.8 56.1 5 5 4.9 8.6 12.8 3.5 1.5 5.2 7 0.8 1.5 34.6 6.5 1.1 4

Vaccinated 93 69.6 44.8 61.5 4.3 5.6 5.9 7.7 12.1 4.2 2.2 6.7 6.5 1.1 1.4 36.9 6.8 1.1 3.8

Controls 601 73.5 45 57.3 5.1 5.2 4.7 8.7 13.7 3.7 1.6 4.9 7.6 0.8 1.4 35.2 6.8 1.1 3.7

Vaccinated 66 69.7 45 61.2 4.9 5.3 6.2 7.8 11.4 4.4 2.6 6.4 7.2 1.2 1.3 36.3 7.2 1.3 3.8

Controls 696 73.4 45.2 58.1 5.2 5.5 4.3 8.8 14.2 4 1.6 4.4 8.2 0.8 1.3 35.3 7 1.1 3.4

Vaccinated 101 70 45.2 60.6 4.9 4.9 5.7 7.3 11.3 4.3 2.4 5.9 6.7 0.9 1.3 36.3 7.3 1 3.2
2011 130460 20302 15.6

2010 113666 15197 13.4

2009 103538 14839 14.3

2008 97355 16225 16.7

2007 87388 11286 12.9

2006 77136 10635 13.8

2005 81591 20027 24.5

2004 69285 11896 17.2

2003 59851 10943 18.3

2002 56370 9875 17.5

2001 58998 13753 23.3

2000 73527 29058 39.5

1999 72288 8686 12

1998 68421 5801 8.5

1997 62644 7687 12.3
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6.4.2 Effectiveness of influenza vaccination on MI 

6.4.2.1 Cox models and PERR adjustment 

The Cox model in both the study and prior periods of every cohort were adjusted for 

age and gender (diagnostic log-log plots for the fitted Cox models in Appendix E). 

The hazard ratios (HRs) for gender in every cohort were significantly greater than 

unity, varying between 1.40 and 1.87, indicating a greater risk of MI in males 

compared to the reference level of females (Table 17). A greater than unity HR for 

the age variable indicated increasing risks with age too, that were statistically 

significant. Effects in the same direction and of similar size were seen in the prior 

period too for the age and gender variables of each cohort’s Cox model. 

The HR for vaccination was greater than unity in the study period of every cohort 

apart from 2003, 2008 and 2010. These were significantly different from unity in 

years 1997, 1999, 2001, 2002 and 2004. However, the HRs for the study-period 

vaccination status in the vaccine-free prior periods were all greater than unity and 

greater than the study HRs, suggesting the presence of a pre-existing confounding 

bias (Figure 27). There was no discernible similarity in the trends of the HRs over 

time of the prior and study periods. However, there was noticeably more variability of 

the prior-period point estimates, ranging from 1.43 to 2.67, (orange circles in Figure 

27) compared to those for the study period, ranging from 0.93 to 1.57 (blue circles in 

Figure 27). With fewer events in the prior, the confidence intervals were wider too. 

After the PERR adjustment, the estimated HR of influenza vaccination varied mostly 

between 0.40 in 2010 and 0.74 in 2000 and 2002 (Table 17; Figure 28). All PERR-

adjusted estimates were all significantly different from unity, except for 2001, for 

which the HR was 0.89 (95% CI: 0.70, 1.17). Therefore, the results would indicate a 

reduction in the risk of MI by as much as 60% might be possible following an 

influenza vaccination. 
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Figure 27: Plot of hazard ratios of the effect of influenza vaccination on MIs from the 
Cox regression models adjusted for age and gender for the prior (orange) and study 
(blue) periods of each annual cohort with error bars representing the bootstrapped 
95% confidence intervals. 
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Figure 28: Plot of hazard ratios for the estimated effect of influenza vaccination on MI 
hospital admissions from the PERR-adjusted model (grey dots), the pairwise model 
(blue triangles) and the PERR-adjusted time-varying covariate model (green dots) 
with errors bars representing the bootstrapped 95% confidence intervals. 
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Recruityear Period 
No of MI 

HR gender HR age HR FV group 
Vaccinated Controls 

1997 Prior 48 174 1.61 (1.24, 2.11) 1.01 (1.00, 1.03) 1.96 (1.42, 2.70) 
1997 Study 72 386 1.55 (1.29, 1.87) 1.03 (1.02, 1.04) 1.31 (1.02, 1.68) 
1997 PERR     0.67 (0.44, 0.99) 
1998 Prior 69 342 1.82 (1.50, 2.22) 1.03 (1.02, 1.04) 2.05 (1.58, 2.66) 
1998 Study 57 461 1.75 (1.47, 2.08) 1.04 (1.03, 1.05) 1.23 (0.94, 1.63) 
1998 PERR     0.60 (0.41, 0.84) 
1999 Prior 116 319 1.51 (1.25, 1.83) 1.02 (1.01, 1.03) 2.59 (2.09, 3.20) 
1999 Study 105 452 1.87 (1.58, 2.21) 1.04 (1.03, 1.05) 1.57 (1.27, 1.94) 
1999 PERR     0.61 (0.46, 0.80) 
2000 Prior 224 244 1.87 (1.55, 2.25) 1.03 (1.02, 1.04) 1.43 (1.19, 1.72) 
2000 Study 260 382 1.84 (1.57, 2.15) 1.04 (1.03, 1.06) 1.06 (0.90, 1.24) 
2000 PERR     0.74 (0.57, 0.92) 
2001 Prior 136 296 2.02 (1.67, 2.46) 1.04 (1.03, 1.05) 1.55 (1.26, 1.90) 
2001 Study 149 365 1.84 (1.54, 2.19) 1.05 (1.04, 1.06) 1.38 (1.14, 1.67) 
2001 PERR     0.89 (0.70, 1.17) 
2002 Prior 92 263 1.61 (1.30, 1.99) 1.05 (1.04, 1.06) 1.90 (1.49, 2.41) 
2002 Study 99 382 1.70 (1.42, 2.04) 1.06 (1.05, 1.07) 1.31 (1.04, 1.64) 
2002 PERR     0.74 (0.58, 0.99) 
2003 Prior 114 292 1.45 (1.19, 1.77) 1.06 (1.04, 1.07) 2.02 (1.62, 2.52) 
2003 Study 79 421 1.73 (1.44, 2.07) 1.05 (1.04, 1.07) 0.93 (0.73, 1.19) 
2003 PERR     0.46 (0.34, 0.61) 
2004 Prior 134 347 1.63 (1.36, 1.96) 1.05 (1.04, 1.06) 2.09 (1.71, 2.56) 
2004 Study 100 417 1.67 (1.40, 1.99) 1.07 (1.06, 1.08) 1.32 (1.06, 1.64) 
2004 PERR     0.63 (0.48, 0.83) 
2005 Prior 154 334 1.48 (1.24, 1.78) 1.05 (1.04, 1.06) 1.67 (1.37, 2.03) 
2005 Study 141 456 1.53 (1.30, 1.80) 1.07 (1.06, 1.08) 1.15 (0.95, 1.40) 
2005 PERR     0.69 (0.53, 0.88) 
2006 Prior 108 367 1.56 (1.30, 1.88) 1.06 (1.05, 1.07) 2.21 (1.78, 2.74) 
2006 Study 73 449 1.73 (1.45, 2.07) 1.08 (1.07, 1.09) 1.26 (0.98, 1.62) 
2006 PERR     0.57 (0.42, 0.77) 
2007 Prior 112 353 1.64 (1.36, 1.98) 1.06 (1.05, 1.07) 2.67 (2.15, 3.32) 
2007 Study 70 516 1.70 (1.44, 2.00) 1.07 (1.06, 1.08) 1.16 (0.90, 1.50) 
2007 PERR     0.44 (0.31, 0.59) 
2008 Prior 111 401 1.52 (1.27, 1.82) 1.06 (1.05, 1.07) 1.74 (1.41, 2.16) 
2008 Study 94 606 1.48 (1.27, 1.73) 1.07 (1.06, 1.08) 0.98 (0.79, 1.23) 
2008 PERR     0.56 (0.41, 0.75) 
2009 Prior 133 476 1.42 (1.21, 1.67) 1.06 (1.05, 1.07) 2.06 (1.69, 2.50) 
2009 Study 97 597 1.40 (1.20, 1.63) 1.07 (1.06, 1.08) 1.24 (1.00, 1.54) 
2009 PERR     0.60 (0.45, 0.80) 
2010 Prior 141 500 1.42 (1.21, 1.67) 1.07 (1.06, 1.08) 2.34 (1.93, 2.83) 
2010 Study 76 678 1.62 (1.40, 1.88) 1.08 (1.07, 1.09) 0.94 (0.74, 1.19) 
2010 PERR     0.40 (0.30, 0.55) 
2011 Prior 177 570 1.72 (1.48, 1.99) 1.06 (1.05, 1.07) 2.09 (1.76, 2.48) 
2011 Study 111 773 1.82 (1.59, 2.08) 1.08 (1.07, 1.08) 1.00 (0.82, 1.22) 
2011 PERR     0.48 (0.39, 0.60) 

Table 17: Results for the number of admissions for myocardial infarction (MI); and 

the prior, study period and PERR-adjusted hazard ratios (95% CIs) of gender, age 

and influenza vaccination group for each annual cohort 
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6.4.2.2 Weighted results and PERR adjustment 

From the IPTW analysis, adjusting for measured confounders, the results were 

variously distributed around unity (Table 18). No results for any cohort’s study period 

(blue circles in Figure 29) were significantly different from the null, but the greatest 

protective effect was seen in 2003 with an HR of 0.78 (95% CI: 0.59, 1.04), 

respectively. From 2004 onwards, all HRs were above unity indicating a harmful 

effect with HRs as high as 1.28 (95% CI: 0.95, 1.74) in 2009. Once the PERR 

method had been applied, the weighted results (blue triangles in Figure 29) were 

more commensurate with those from the PERR-adjusted unweighted-Cox models 

(grew triangles in Figure 29), including the non-significant effect estimated for the 

2001 cohort. The diagnostic plots in 6.6 Appendix A of the standardised and 

unstandardised mean differences of potential confounders in the study periods 

revealed better balanced was generally achieved for the earlier cohorts, noting that 

not all the variables contributed to the propensity score. It was also apparent that 

after 2001, age became the leading variable with the greatest imbalance between 

vaccination groups. This seemed to coincide with the shift from risk-based 

vaccination prior to the policy introduction to the age-based eligibility criterion for 

vaccination. 
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Cohort 
HR for each period 

PERR HR 

Prior Study 

1997 1.63 (1.17, 2.28) 1.00 (0.65, 1.55) 0.61 (0.36, 1.03) 

1998 1.86 (1.41, 2.44) 0.88 (0.62, 1.25) 0.48 (0.31, 0.73) 

1999 2.25 (1.80, 2.81) 0.99 (0.79, 1.24) 0.44 (0.32, 0.58) 

2000 1.22 (1.02, 1.47) 0.86 (0.72, 1.01) 0.70 (0.55, 0.91) 

2001 1.36 (1.10, 1.67) 1.09 (0.88, 1.34) 0.80 (0.60, 1.07) 

2002 1.61 (1.25, 2.08) 1.04 (0.81, 1.33) 0.64 (0.47, 0.88) 

2003 1.79 (1.42, 2.27) 0.78 (0.59, 1.04) 0.44 (0.29, 0.61) 

2004 1.77 (1.42, 2.22) 1.22 (0.94, 1.59) 0.69 (0.48, 0.93) 

2005 1.66 (1.34, 2.04) 1.08 (0.86, 1.35) 0.65 (0.48, 0.90) 

2006 2.07 (1.62, 2.64) 1.17 (0.85, 1.61) 0.57 (0.39, 0.79) 

2007 2.55 (1.92, 3.38) 1.11 (0.81, 1.52) 0.44 (0.29, 0.66) 

2008 1.61 (1.24, 2.09) 1.07 (0.77, 1.50) 0.67 (0.44, 0.99) 

2009 2.05 (1.61, 2.59) 1.28 (0.95, 1.74) 0.63 (0.42, 0.89) 

2010 2.76 (2.14, 3.55) 1.24 (0.88, 1.75) 0.45 (0.29, 0.65) 

2011 2.09 (1.70, 2.58) 1.00 (0.78, 1.28) 0.48 (0.34, 0.64) 

Table 18: Inverse probability treatment weighted hazard ratios (95% CIs) for the 
study and prior periods of each cohort from 1997 to 2011. The PERR results are 
those from the adjustment of the weighted HR for the study adjusted with that of the 
prior periods, presented with 95% booststrapped confidence intervals. 
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Figure 29: Plots for the cohorts from years 1997 to 2011, comparing the inverse 
probability treatment weighted hazard ratios from the study periods (blue circles) of 
each, from the PERR adjustment for the weighted HRs (blue triangles) and from the 
PERR results of the unweighted survival analyses (grey triangles). 

6.4.2.3 PERR adjustment of aggregated results 

Having aggregated the data from across the annual cohorts, the PERR-adjusted HR 

of 0.61 (95% CI: 0.56, 0.66) for vaccination against MIs from the global model 

indicated that the average reduction in risk from 1997 to 2011 was 39% (95% CI: 

34%, 44%) (Table 19). In the global model, the confounding effect of age and gender 

was seen to be more stable in the prior and study periods, with the point estimates 

for the HR for age being around 1.05 to 1.06 and that of gender ranging only from 

1.60 in the prior to 1.67 in the study period. 

Period No. of MI HR gender HR age HR FV group 

Prior 7828 1.60 (1.52, 1.69) 1.05 (1.05, 1.05) 1.93 (1.83, 2.04) 

Study 9871 1.67 (1.59, 1.75) 1.06 (1.06, 1.07) 1.18 (1.12, 1.25) 

PERR    0.61 (0.56, 0.66) 

Table 19: Number of myocardial infarctions (MI) and hazard ratios (95% confidence 
intervals) for MI by influenza vaccination group from the global model aggregating all 
annual cohorts, allowing for clustering around patient 
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6.4.2.4 Pairwise estimates 

The HRs of vaccination effect from the pairwise model, in which age, gender and 

period were adjusted for, were all further from unity than the PERR estimates (HR of 

0.38 in 2003) (Table 20; Figure 28). This would indicate a marginally greater overall 

protective effect of vaccination against MI than that estimated through the PERR 

method, although the overlap of confidence intervals would suggest this to be non-

significant. 

Cohort PERR-TVC 
Pairwise 
cohort 

Pairwise HR 

1997 0.55 (0.30, 1.07) 656 0.51 (0.33, 0.79) 

1998 0.59 (0.33, 0.99) 888 0.56 (0.38, 0.83) 

1999 0.54 (0.34, 0.78) 960 0.55 (0.40, 0.76) 

2000 0.78 (0.58, 1.08) 1053 0.64 (0.49, 0.83) 

2001 0.80 (0.56, 1.13) 894 0.80 (0.59, 1.08) 

2002 0.64 (0.38, 1.03) 797 0.70 (0.49, 1.01) 

2003 0.48 (0.27, 0.75) 874 0.38 (0.27, 0.54) 

2004 0.62 (0.41, 1.05) 933 0.53 (0.38, 0.72) 

2005 0.67 (0.47, 0.99) 1020 0.53 (0.40, 0.71) 

2006 0.66 (0.38, 1.04) 938 0.49 (0.34, 0.70) 

2007 0.43 (0.25, 0.67) 995 0.39 (0.27, 0.56) 

2008 0.63 (0.40, 0.91) 1137 0.46 (0.33, 0.64) 

2009 0.65 (0.42, 0.98) 1241 0.53 (0.39, 0.72) 

2010 0.41 (0.26, 0.63) 1278 0.38 (0.27, 0.52) 

2011 0.48 (0.32, 0.71) 1566 0.44 (0.33, 0.58) 

Table 20: Hazard ratios (bootstrapped 95% CIs) for each annual cohort for the effect 
of influenza vaccination on MI hospital admissions from the pairwise model and the 
PERR-adjusted TVC model. As the data are analysed using the pairwise method for 
a subset of patients from each annual cohort with outcomes in either the prior or 
study period, then the size of this subset is given in the table as “Pairwise N”. The 
size of the PERR-TVC cohort remains the same as that of the standard PERR-
adjusted models. 
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6.4.2.5 Time-varying covariate models 

The estimates from the PERR-adjusted TVC model broadly followed the same trend 

as those from the PERR-adjusted Cox and the Pairwise models, and were closer to 

the null than the Pairwise results in all, but four of the years (Table 20; Figure 28). 

However, there was greater imprecision around the estimates, with confidence 

intervals that were wider than those from the PERR and Pairwise methods. 

6.4.3 Effectiveness of vaccination on influenza 

The HRs for age in the Cox model of every cohort’s study period were significantly 

and consistently greater than unity, indicating an increasing risk of hospitalisation or 

treatment for influenza with age (Table 21). Conversely, the HR for males was 

significantly greater than unity up to 2002, after which it decreased to below one, but 

not significantly so - indicating at least parity in the risks between the genders. The 

HR for vaccination status was significantly in excess of one in every cohort, ranging 

between 1.31 in 2005 and 1.82 in 2011. The HRs in the vaccine-free prior periods 

were greater than the study periods, indicating pre-existing bias, except for the 2001 

cohort, which with an HR of 1.48 was only 0.02 greater than that of the study period ( 

Cohort Period 
No. 

events 

Hospital 
admissions 

as % of 
events 

Hazard ratios 

Gender Age FV group 

1997 Prior 2747 5.8% 1.02 (0.94, 1.10) 1.02 (1.01, 1.02) 2.01 (1.84, 2.20) 

1997 Study 2548 15.0% 1.12 (1.03, 1.21) 1.03 (1.02, 1.03) 1.53 (1.38, 1.69) 

1997 PERR     0.76 (0.67, 0.86) 

1998 Prior 2692 13.2% 1.06 (0.98, 1.14) 1.02 (1.02, 1.03) 2.07 (1.87, 2.29) 

1998 Study 2627 23.9% 1.17 (1.08, 1.26) 1.04 (1.03, 1.04) 1.46 (1.30, 1.64) 

1998 PERR     0.71 (0.61, 0.82) 

1999 Prior 2748 17.0% 1.16 (1.07, 1.25) 1.03 (1.02, 1.03) 2.12 (1.94, 2.32) 

1999 Study 2780 27.4% 1.10 (1.02, 1.19) 1.04 (1.03, 1.04) 1.48 (1.34, 1.63) 

1999 PERR     0.70 (0.62, 0.79) 

2000 Prior 2741 17.7% 1.06 (0.98, 1.15) 1.03 (1.03, 1.04) 1.65 (1.53, 1.78) 

2000 Study 2621 22.8% 1.12 (1.03, 1.21) 1.04 (1.03, 1.04) 1.37 (1.27, 1.48) 

2000 PERR     0.83 (0.74, 0.93) 

2001 Prior 1831 16.5% 1.01 (0.92, 1.11) 1.03 (1.02, 1.04) 1.48 (1.34, 1.63) 

2001 Study 2000 29.2% 1.12 (1.02, 1.22) 1.04 (1.04, 1.05) 1.46 (1.33, 1.61) 

2001 PERR     0.99 (0.87, 1.12) 

2002 Prior 1722 17.8% 1.02 (0.93, 1.13) 1.03 (1.03, 1.04) 1.87 (1.68, 2.08) 

2002 Study 1759 33.1% 1.02 (0.92, 1.12) 1.04 (1.04, 1.05) 1.44 (1.28, 1.61) 

2002 PERR     0.77 (0.67, 0.90) 

2003 Prior 1856 19.7% 0.88 (0.80, 0.97) 1.03 (1.03, 1.04) 2.00 (1.81, 2.22) 
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2003 Study 1911 32.9% 0.98 (0.89, 1.07) 1.04 (1.04, 1.05) 1.46 (1.31, 1.63) 

2003 PERR     0.73 (0.64, 0.84) 

2004 Prior 2187 20.8% 0.90 (0.83, 0.98) 1.04 (1.03, 1.04) 1.97 (1.79, 2.16) 

2004 Study 2420 32.0% 1.03 (0.94, 1.12) 1.04 (1.04, 1.05) 1.53 (1.39, 1.69) 

2004 PERR     0.78 (0.70, 0.89) 

2005 Prior 2735 18.5% 0.94 (0.87, 1.01) 1.03 (1.03, 1.04) 1.70 (1.57, 1.84) 

2005 Study 2697 32.3% 1.03 (0.96, 1.12) 1.04 (1.04, 1.05) 1.31 (1.20, 1.43) 

2005 PERR     0.77 (0.69, 0.86) 

2006 Prior 2553 20.6% 0.98 (0.91, 1.07) 1.04 (1.03, 1.04) 2.13 (1.94, 2.34) 

2006 Study 2597 31.6% 0.99 (0.91, 1.07) 1.04 (1.04, 1.05) 1.58 (1.42, 1.74) 

2006 PERR     0.74 (0.66, 0.83) 

2007 Prior 2867 18.5% 0.95 (0.88, 1.02) 1.03 (1.02, 1.03) 1.76 (1.60, 1.93) 

2007 Study 2793 32.3% 1.02 (0.94, 1.10) 1.04 (1.04, 1.05) 1.47 (1.33, 1.64) 

2007 PERR     0.84 (0.73, 0.96) 

2008 Prior 3280 18.8% 0.92 (0.86, 0.99) 1.03 (1.03, 1.04) 1.80 (1.66, 1.96) 

2008 Study 3291 35.7% 0.96 (0.89, 1.03) 1.04 (1.04, 1.05) 1.35 (1.23, 1.47) 

2008 PERR     0.75 (0.66, 0.83) 

2009 Prior 3586 21.5% 0.94 (0.88, 1.01) 1.03 (1.03, 1.03) 1.92 (1.77, 2.08) 

2009 Study 3144 34.8% 0.97 (0.90, 1.04) 1.04 (1.04, 1.05) 1.47 (1.34, 1.62) 

2009 PERR     0.77 (0.69, 0.86) 

2010 Prior 3561 23.9% 0.91 (0.85, 0.97) 1.03 (1.03, 1.04) 1.92 (1.77, 2.09) 

2010 Study 3490 37.5% 0.97 (0.90, 1.03) 1.04 (1.04, 1.05) 1.80 (1.66, 1.97) 

2010 PERR     0.94 (0.85, 1.05) 

2011 Prior 4025 24.3% 0.95 (0.89, 1.02) 1.04 (1.03, 1.04) 2.24 (2.09, 2.41) 

2011 Study 4127 48.6% 0.98 (0.92, 1.04) 1.05 (1.05, 1.05) 1.82 (1.69, 1.96) 

2011 PERR         0.81 (0.73, 0.89) 

Table 21; Figure 30). The PERR-adjusted HRs ranged from 0.70 in 1999 reaching 

the maximum of 0.99 in 2001. The HRs from the pairwise method, while always 

further below the null, tracked very closely with the PERR-adjusted results, and 

ranged from 0.63 in 1999 to 0.90 in 2001 (Table 22; Figure 31). While the prevalence 

of influenza outcomes remained relatively stable varying between 3 and 4% in each 

cohort, the number of hospital admissions as a proportion of the composite influenza 

was 15% in 1997 and after a temporary fall in 2000, eventually rose to 48.6% in 

2011 (Table 21). While this increase  was quite marked, it seemed to  bear no 

relation to the trends in the effect of vaccination, either before or after PERR 

adjustment (Figure 31). 
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Figure 30: Plot of hazard ratios of the effect on the composite influenza outcome of 
influenza vaccination from the Cox regression models adjusted for age and gender 
for the prior (orange) and study (blue) periods of each annual cohort. 
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Cohort Period 
No. 

events 

Hospital 
admissions 

as % of 
events 

Hazard ratios 

Gender Age FV group 

1997 Prior 2747 5.8% 1.02 (0.94, 1.10) 1.02 (1.01, 1.02) 2.01 (1.84, 2.20) 

1997 Study 2548 15.0% 1.12 (1.03, 1.21) 1.03 (1.02, 1.03) 1.53 (1.38, 1.69) 

1997 PERR     0.76 (0.67, 0.86) 

1998 Prior 2692 13.2% 1.06 (0.98, 1.14) 1.02 (1.02, 1.03) 2.07 (1.87, 2.29) 

1998 Study 2627 23.9% 1.17 (1.08, 1.26) 1.04 (1.03, 1.04) 1.46 (1.30, 1.64) 

1998 PERR     0.71 (0.61, 0.82) 

1999 Prior 2748 17.0% 1.16 (1.07, 1.25) 1.03 (1.02, 1.03) 2.12 (1.94, 2.32) 

1999 Study 2780 27.4% 1.10 (1.02, 1.19) 1.04 (1.03, 1.04) 1.48 (1.34, 1.63) 

1999 PERR     0.70 (0.62, 0.79) 

2000 Prior 2741 17.7% 1.06 (0.98, 1.15) 1.03 (1.03, 1.04) 1.65 (1.53, 1.78) 

2000 Study 2621 22.8% 1.12 (1.03, 1.21) 1.04 (1.03, 1.04) 1.37 (1.27, 1.48) 

2000 PERR     0.83 (0.74, 0.93) 

2001 Prior 1831 16.5% 1.01 (0.92, 1.11) 1.03 (1.02, 1.04) 1.48 (1.34, 1.63) 

2001 Study 2000 29.2% 1.12 (1.02, 1.22) 1.04 (1.04, 1.05) 1.46 (1.33, 1.61) 

2001 PERR     0.99 (0.87, 1.12) 

2002 Prior 1722 17.8% 1.02 (0.93, 1.13) 1.03 (1.03, 1.04) 1.87 (1.68, 2.08) 

2002 Study 1759 33.1% 1.02 (0.92, 1.12) 1.04 (1.04, 1.05) 1.44 (1.28, 1.61) 

2002 PERR     0.77 (0.67, 0.90) 

2003 Prior 1856 19.7% 0.88 (0.80, 0.97) 1.03 (1.03, 1.04) 2.00 (1.81, 2.22) 

2003 Study 1911 32.9% 0.98 (0.89, 1.07) 1.04 (1.04, 1.05) 1.46 (1.31, 1.63) 

2003 PERR     0.73 (0.64, 0.84) 

2004 Prior 2187 20.8% 0.90 (0.83, 0.98) 1.04 (1.03, 1.04) 1.97 (1.79, 2.16) 

2004 Study 2420 32.0% 1.03 (0.94, 1.12) 1.04 (1.04, 1.05) 1.53 (1.39, 1.69) 

2004 PERR     0.78 (0.70, 0.89) 

2005 Prior 2735 18.5% 0.94 (0.87, 1.01) 1.03 (1.03, 1.04) 1.70 (1.57, 1.84) 

2005 Study 2697 32.3% 1.03 (0.96, 1.12) 1.04 (1.04, 1.05) 1.31 (1.20, 1.43) 

2005 PERR     0.77 (0.69, 0.86) 

2006 Prior 2553 20.6% 0.98 (0.91, 1.07) 1.04 (1.03, 1.04) 2.13 (1.94, 2.34) 

2006 Study 2597 31.6% 0.99 (0.91, 1.07) 1.04 (1.04, 1.05) 1.58 (1.42, 1.74) 

2006 PERR     0.74 (0.66, 0.83) 

2007 Prior 2867 18.5% 0.95 (0.88, 1.02) 1.03 (1.02, 1.03) 1.76 (1.60, 1.93) 

2007 Study 2793 32.3% 1.02 (0.94, 1.10) 1.04 (1.04, 1.05) 1.47 (1.33, 1.64) 

2007 PERR     0.84 (0.73, 0.96) 

2008 Prior 3280 18.8% 0.92 (0.86, 0.99) 1.03 (1.03, 1.04) 1.80 (1.66, 1.96) 

2008 Study 3291 35.7% 0.96 (0.89, 1.03) 1.04 (1.04, 1.05) 1.35 (1.23, 1.47) 

2008 PERR     0.75 (0.66, 0.83) 

2009 Prior 3586 21.5% 0.94 (0.88, 1.01) 1.03 (1.03, 1.03) 1.92 (1.77, 2.08) 

2009 Study 3144 34.8% 0.97 (0.90, 1.04) 1.04 (1.04, 1.05) 1.47 (1.34, 1.62) 

2009 PERR     0.77 (0.69, 0.86) 

2010 Prior 3561 23.9% 0.91 (0.85, 0.97) 1.03 (1.03, 1.04) 1.92 (1.77, 2.09) 
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2010 Study 3490 37.5% 0.97 (0.90, 1.03) 1.04 (1.04, 1.05) 1.80 (1.66, 1.97) 

2010 PERR     0.94 (0.85, 1.05) 

2011 Prior 4025 24.3% 0.95 (0.89, 1.02) 1.04 (1.03, 1.04) 2.24 (2.09, 2.41) 

2011 Study 4127 48.6% 0.98 (0.92, 1.04) 1.05 (1.05, 1.05) 1.82 (1.69, 1.96) 

2011 PERR         0.81 (0.73, 0.89) 

Table 21: Results for the number of (composite influenza) outcomes; percentage of 
outcomes that were hospital admissions for suspected influenza; and the prior, study 
period and PERR-adjusted hazard ratios (95% CIs) of gender, age and influenza 
vaccination group for each annual cohort. 
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Cohort N % vaccinated Pairwise HR vaccination 

1997 4859 19.5% 0.73 (0.63, 0.84) 

1998 4869 14.4% 0.65 (0.55, 0.77) 

1999 5096 19.5% 0.63 (0.54, 0.72) 

2000 4920 48.3% 0.76 (0.68, 0.86) 

2001 3540 29.7% 0.90 (0.78, 1.05) 

2002 3200 23.7% 0.71 (0.60, 0.84) 

2003 3455 25.2% 0.64 (0.55, 0.76) 

2004 4227 23.9% 0.72 (0.62, 0.84) 

2005 5003 29.9% 0.72 (0.63, 0.81) 

2006 4732 20.2% 0.70 (0.60, 0.81) 

2007 5216 17.2% 0.79 (0.68, 0.92) 

2008 6023 21.5% 0.69 (0.61, 0.79) 

2009 6193 19.9% 0.72 (0.63, 0.82) 

2010 6486 19.3% 0.86 (0.75, 0.98) 

2011 7537 23.8% 0.76 (0.68, 0.85) 

Table 22: Results (hazard ratios (95% CIs)) from the pairwise analysis of the effect 
of influenza vaccination on the composite influenza outcome for each cohort. Note 
that each cohort is a reduced subset of patients with an outcome in either the prior or 
study period as demanded by the pairwise likelihood. 
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Figure 31: Plot of hazard ratios for the estimated effect of influenza vaccination on 
influenza outcomes from the PERR-adjusted model (grey dots) and the Pairwise 
model (blue triangles) with errors bars representing the bootstrapped 95% 
confidence intervals. 

6.4.4 Sub-group analysis 

No significant effect on the influenza outcome was detected from the interaction 

between age and vaccination status with all the 95% CIs for all HRs including unity 

(not shown). For the MI outcome, however, there was a significant effect of 

interaction between vaccination and age in years 2004 and 2008 with HRs above 

unity and marginal significance in 2010 and 2011 (Table 23 ). All other interactions 

were above unity, but not significantly so, apart from the 1997, 1998 and 2005 

cohorts, for which the main effects of vaccination were also weakest out of all the 

cohorts. Given that all the point estimates for the vaccination main effect were below 

one, then the interpretation of the interactions for the 13 cohorts with interaction HRs 

above one is that for those years, the effectiveness of vaccination appeared to wane 

with age. For example, the hazard of an MI after vaccination in 2009 was estimated 

to be 0.55 at 65y, but according to the interaction this had increased to 0.67 at 85y. 

  

0

0.2

0.4

0.6

0.8

1

1.2
H

az
ar

d
 r

at
io

Cohort



   
 

 196 

Cohort HR vaccination HR vaccine*age 

1997 0.85 (0.23, 1.48) 0.98 (0.92, 1.04) 

1998 0.71 (0.18, 1.24) 0.99 (0.93, 1.04) 

1999 0.44 (0.20, 0.68) 1.03 (0.99, 1.08) 

2000 0.60 (0.39, 0.80) 1.02 (0.99, 1.05) 

2001 0.80 (0.46, 1.13) 1.01 (0.98, 1.04) 

2002 0.62 (0.33, 0.92) 1.02 (0.99, 1.05) 

2003 0.40 (0.22, 0.58) 1.01 (0.98, 1.05) 

2004 0.43 (0.25, 0.62) 1.04 (1.01, 1.07) 

2005 0.85 (0.51, 1.20) 0.98 (0.95, 1.01) 

2006 0.46 (0.24, 0.68) 1.02 (0.99, 1.06) 

2007 0.35 (0.19, 0.50) 1.03 (0.99, 1.06) 

2008 0.42 (0.24, 0.59) 1.04 (1.00, 1.07) 

2009 0.55 (0.35, 0.76) 1.01 (0.98, 1.04) 

2010 0.29 (0.17, 0.40) 1.03 (1.00, 1.06) 

2011 0.37 (0.24, 0.51) 1.03 (1.00, 1.05) 

Table 23: PERR-adjusted hazard ratios (95% CIs) of vaccination main effect and its 
interaction with age on myocardial infarctions for annual cohorts, from the model 
including age and gender main effects and interaction. 

 

In the analysis of influenza vaccine effectiveness by PPV subgroup, a high degree of 

uncertainty characterised the results from 1997 to 2002 with relatively wide 

confidence intervals for those years and the point estimates for the HRs for 

influenza-vaccine status were greater than unity among the PPV recipients in 1998, 

2000 and 2001 (Table 24; Figure 32). In 2001, the PERR-adjusted hazard of an 

influenza outcome following influenza vaccination was significantly greater among 

the PPV recipients, and greater than unity, indicating evidence of a harmful effect of 

influenza vaccination in the PPV subgroup. The pairwise-estimated HR for PPV 

recipients in 2001, however, while greater than the subgroup without PPV, was not 

significantly greater than unity (Table 24; Figure 33). In contrast the variability in the 

HRs for influenza vaccination among patients with no record of PPV, whilst 

fluctuating and of variable significance, were more stable and consistently below 

one, indicating a protective effect of the influenza vaccine in this sub-group. 
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In terms of the confounding-adjustment method, there were no appreciable 

differences in the results after 2001, with consistent overlap thereafter between the 

95% confidence intervals of the PERR and Pairwise estimates for vaccination effect. 

According to both methods, the Pairwise HRs were lower than the PERR-adjusted 

analogues after 2000 in both PPV subgroups. However, before 2001 the small 

sample sizes likely led to the large variability and lack of stability in the estimates 

from both methods for the PPV subgroup.  
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Cohort 
PPV 

subgroup 
N 

% 
vaccinated 

PERR-adjusted HR 
vaccination 

Pairwise-adjusted 
HR vaccination 

1997 PPV 432 32.2% 0.78 (0.28, 1.88) 0.67 (0.24, 1.91) 

1998 PPV 1065 26.2% 1.39 (0.67, 2.67) 1.44 (0.67, 3.07) 

1999 PPV 1905 37.4% 0.70 (0.43, 1.10) 0.57 (0.32, 1.01) 

2000 PPV 2208 60.3% 1.12 (0.72, 1.77) 1.09 (0.66, 1.81) 

2001 PPV 2054 58.8% 1.95 (1.20, 3.27) 1.77 (0.97, 3.26) 

2002 PPV 1234 31.2% 0.88 (0.46, 1.55) 0.79 (0.37, 1.68) 

2003 PPV 1349 31.7% 0.60 (0.31, 1.07) 0.56 (0.28, 1.14) 

2004 PPV 2633 30.0% 0.83 (0.57, 1.26) 0.92 (0.57, 1.50) 

2005 PPV 7882 44.4% 0.73 (0.55, 0.96) 0.68 (0.48, 0.95) 

2006 PPV 9265 23.6% 0.85 (0.63, 1.16) 0.81 (0.56, 1.16) 

2007 PPV 10984 19.1% 1.01 (0.74, 1.37) 0.90 (0.64, 1.27) 

2008 PPV 15653 24.4% 0.72 (0.58, 0.90) 0.62 (0.47, 0.81) 

2009 PPV 17154 20.5% 0.93 (0.74, 1.17) 0.96 (0.73, 1.26) 

2010 PPV 19832 17.1% 1.11 (0.89, 1.39) 0.98 (0.73, 1.33) 

2011 PPV 14587 21.3% 0.93 (0.72, 1.21) 0.88 (0.66, 1.18) 

1997 no PPV 60009 10.7% 0.77 (0.68, 0.90) 0.73 (0.62, 0.85) 

1998 no PPV 64466 6.9% 0.68 (0.58, 0.81) 0.63 (0.52, 0.77) 

1999 no PPV 65944 9.4% 0.69 (0.59, 0.80) 0.63 (0.53, 0.74) 

2000 no PPV 65715 35.5% 0.86 (0.76, 0.95) 0.77 (0.68, 0.88) 

2001 no PPV 53861 19.3% 0.94 (0.80, 1.10) 0.81 (0.68, 0.95) 

2002 no PPV 51031 14.8% 0.81 (0.69, 0.94) 0.74 (0.61, 0.89) 

2003 no PPV 49184 13.1% 0.80 (0.67, 0.95) 0.67 (0.55, 0.81) 

2004 no PPV 47730 7.0% 0.97 (0.79, 1.20) 0.77 (0.63, 0.94) 

2005 no PPV 55233 9.0% 1.01 (0.82, 1.22) 0.86 (0.70, 1.06) 

2006 no PPV 56996 5.6% 0.77 (0.63, 0.96) 0.70 (0.56, 0.88) 

2007 no PPV 64105 5.9% 0.76 (0.61, 0.95) 0.73 (0.58, 0.92) 

2008 no PPV 68699 8.1% 0.83 (0.69, 1.00) 0.78 (0.64, 0.95) 

2009 no PPV 72342 6.7% 0.74 (0.61, 0.87) 0.67 (0.55, 0.83) 

2010 no PPV 76005 6.8% 0.87 (0.73, 1.07) 0.86 (0.68, 1.09) 

2011 no PPV 83377 9.0% 0.80 (0.69, 0.94) 0.79 (0.67, 0.93) 

Table 24: PERR-adjusted and Pairwise-estimated hazard ratios (95% CIs) of the 
effect of influenza vaccination on influenza outcomes by sub-groups of 
pneumococcal vaccination (PPV) status for each cohort. 
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Figure 32: Plot of PERR-adjusted hazard ratios of effect of influenza vaccination on 
influenza outcomes for recipients of the pneumococcal (PPV) vaccination (blue) and 
patients without PPV (orange). 
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Figure 33: Plot of Pairwise-estimated hazard ratios of effect of influenza vaccination 
on influenza outcomes for recipients of the pneumococcal (PPV) vaccination (blue) 
and patients without PPV (orange). 
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6.5 Discussion 

By accounting for pre-existing confounding biases, the overall effectiveness of the 

influenza vaccine in reducing the probability of myocardial hospital admissions was 

estimated on average to be 39% (95% CI: 34, 44) among patients aged at least 65y 

in UK primary care for years 1997 to 2011. This was reasonably consistent with the 

estimate of 33% for the effectiveness against MI reported by the FLUCAD 

randomised study 310 captured in the most recent Cochrane review, although their 

precision was affected by having fewer patients and therefore fewer outcomes. The 

results from our study are also broadly in line with the conclusion of a protective 

effect against major adverse cardiovascular events as estimated in a recent 

systematic review 312. Other sources of evidence are available, but using different 

approaches, in which confounding bias may not have been addressed 303,311. 

Aggregating the number of events and the time at risk over all cohorts, the average 

percentage risk over 365 years in the control group was calculated to be 0.80%. 

Treating this as the baseline risk, and assuming a relative risk of 0.61 among the 

vaccinated given by the aggregated PERR results, this corresponded to a risk 

difference of 0.31% - the small difference a consequence of the low incidence of MI 

in this selected group of older adults. Although the reduction in the hazard of MI 

indicated at least moderate effectiveness of the vaccine, expressed as a difference, 

the vaccine may only be expected to prevent about 3 cases in every 1000 person-

years. Having mitigated for unmeasured confounding through the PERR method, the 

estimated annual vaccine effectiveness varied between 11% in 2001 and 60% in 

2010. The results from the Pairwise method followed a broadly similar pattern in the 

trend over time, but estimated greater effectiveness for all years ranging from 20% in 

2001 to 62% in 2003. 

The degree to which the hazard ratios from the prior periods deviated from unity was 

inferred to be an estimate of the size of pre-existing confounding bias between the 

exposure groups. If there were no confounding bias, and no missing covariates in 

the Cox model, then the hazard ratios of the prior periods would be all aligned with 

unity under the assumption of time-invariant confounding. However, these were in 

excess of unity, suggesting that vaccinated patients in this population newly 
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vaccinated patients were at a considerably higher risk of both MI and influenza in the 

prior period. 

The results from the IPTW analysis, fluctuated around unity up to 2003, but 

afterwards, were consistently above unity, indicating an elevated risk of MI as much 

as 40% and a potentially harmful effect of vaccination. In the context of a one-sided 

hypothesis, that the vaccination is unlikely to be harmful, this would indicate the 

presence of residual confounding bias, that had not been resolved through weighing. 

The presence of bias, however, was more apparent in the weighted estimates for the 

prior periods, which were all above unity, and significantly so, except for that 

pertaining to the study in 2000. While these estimates in the prior period were closer 

to the null than those from the unweighed analysis, the significant difference from the 

null would suggest considerable bias remained unadjusted by the weighted method. 

As the modelling was involved in deriving the weights, then the bias could 

concievably have been further exacerbated by misspeficiation of the propensity-

score model, from which the weights were predicted. Once the PERR was applied to 

the IPTW results, these fell below unity and into close agreement with those from the 

PERR-adjusted results of the unweighted survival analyses. 

Estimates derived through PERR method have been shown to be susceptible to bias 

from missing covariates  225, and this is in contrast to the within-patient comparison 

of the Pairwise method. Relative to the Pairwise method, the PERR-adjusted results 

were consistently closer to  the null, but with considerable overlap in their confidence 

intervals for most years. This may suggest a relatively minor impact from missing 

covariates and differences in performance, although comparison of the methods 

without information on all key covariates is complex, and the presence of confounder 

interactions and strong indication by prior events may have equally led to bias in the 

Pairwise method. 

Instability in the degree of confounding was apparent from the fluctation in the prior 

estimates over the years of the study. This was also evident in the weighted 

estimates for the prior periods, which followed a similar trend. This could have been 

due either to variation in the source of unmeasured confounding, or exogenous 

fluctuations in the outcomes, due to, say, influenza virulence. If the latter were the 

case, then this could represent a serious departure from the assumption of a time-
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invariant, stable effect of confounding between the prior and study period. A global 

estimate of vaccine effectiveness was presented as a crude average over year-to-

year variability in the confounders and also in vaccine effectiveness. This was 

derived from using the PERR method to adjust the estimate from the aggregated 

study period data with the aggregated prior periods, having adjusted simply for age 

and gender. Robust variance estimates clustered by patients were specified in the 

Cox models to accommodate a lack of independence between the observations, due 

to multiple observations from the same patients over different cohorts. 

The same between-cohort variability in the prior periods was also manifest in the 

models of the vaccine effectiveness against influenza outcomes. This, too, indicated 

instability in the degree and source of confounding bias over time. However, 

compared to the MI outcomes, the effect of gender on influenza outcomes was less. 

Effectiveness against influenza varied between 30% in 1999 and no effect in 2001 

for the PERR estimates, and between 37% and 10% for the pairwise estimates of 

the same years, respectively. However, the pattern in effectiveness against influenza 

exhibited over time broadly agreed with the effectiveness against MIs, including the 

apparent reduction in the vaccine effectiveness in 2001. If MI is a hypothesised 

consequence of influenza infection then it would be reasonable to expect to see the 

same trends in effectiveness against MI and influenza. Since the pattern of the 

trends in vaccine effectiveness against both outcomes over time were observed to 

be remarkably similar, this provides further evidence to support the hypothesis that 

the vaccine may offer a secondary protection against MIs through its mediation of 

influenza infection.  

The reduction in vaccine effectiveness against influenza and MI observed in 2001 

was the local minimum of a trend that began in 1998. This coincided with the change 

from recommending the vaccine according to risk to the introduction of the age-

based policy in 1998 and 2000 - a likely cause of the instability in the confounding 

adjustment for that period. A previous study found no evidence of an effect on 

excess mortality due to influenza in the age groups that were the subject of the 

change in policy 313. However, patient characteristics in the vaccination group would 

have changed as a result of the policy, which may explain the subsequent reduction 

of effectiveness in 2001. Certainly, changes in the differential prevalences between 

vaccine recipients and controls of major cardiovascular diseases were evident in the 
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data. The greatest differences in hyptertension and coronary heart disease rates 

were seen in the earlier cohorts, but the prevalences were nearly equalised by the 

later cohorts. Simultaneously, the differences in age between vaccine recipients and 

controls grew with each annual cohort. Additionally the diagnostic statistics of the 

balancing variables used in the weighted analyses revealed that after 2002, age 

became the most imbalanced variable. These patterns perhaps further reflected the 

change from the ad-hoc practice of recommending the vaccine based on risk group 

to the age-based policy. After the period of transition to the age-based policy, the 

hierarchy of balancing variables, ordered by mean differences, stabilised. Therefore, 

variability in confounding bias for those years were perhaps more likely determined 

by antigen evolution and the changes in the mix of influenza viruses, rather than 

changes in the strength of confounding. 

Analysis of effectiveness by PPV sub-groups revealed the influenza vaccine to be 

protective against influenza in the PPV-free sub-group to varying degrees of 

statistical significance that were not noticeably dissimilar to influenza-vaccine 

effectiveness regardless of PPV status. However, there were relatively far fewer 

patients in the sub group of PPV recipients, especially before 2005. With this in 

mind, the estimates, which indicated a harmful effect of vaccination (significant for 

the PERR-adjusted estimate in 2001), could be subject to false-positive, type 1 

errors, exacerbated by instability in the confounding adjustments for that period. 

Furthermore, if such a deleterious drug interaction between vaccines were to exist, it 

is unlikely that it would be constrained to a few select years. 

6.5.1 Limitations of this study 

The effect of vaccination may partly be determined by the degree of antigenic 

mismatch between vaccine and virus in any particular season 314. A weakness of the 

analysis is that the models did not account for this, although determining the activity 

of the circulating pathogens and the degree of mismatch between virus and vaccine 

would likely require further work 315. This would pose an even greater challenge in 

operationalising the resulting change in confounding bias, and in how this could be 

incorporated into the models. In particular, adjustment relies on the conditions for 

confounding being the same from one year to the next. Using the year before the 

study to adjust for confounding may be unreasonable, particularly if there was a 
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large enough change in the type or mix of circulating viruses between the two 

periods. In addition, determining the true effectiveness against MI may be further 

complicated 306 by mediation of receptor proteins and differential cardioprotective 

effect of vaccine strains 316. Therefore, this presents a potential limitation in applying 

the before-and-after approach of the PERR to vaccination studies of a seasonal 

disease such as influenza. 

A condition for the validity of the PERR and Pairwise methods is the repeatibility of 

the outcome. The pathology and treatment for subsequent MIs may be different from 

the initial MI, which could require a more sophisticated approach to the analysis, 

stratifying the model for each ordered event, such as in the Prentice-Williams-

Peterson model 317. However, this would not induce repeatability, but it could further 

encumber adjustment for unmeasured confounding through the PERR method, as 

the models for each stratum of the ordered events could be different, and therefore, 

necessarily different between the prior and study periods. Furthermore, although the 

data are large, there would be a greater chance of model misspecification as there 

would then be multiple events counted from periods of just one year. 

Another potential limitation is the threat to the external validitiy of the cohort from the 

exclusion criteria that were imposed to strengthen the internal validity of the results: 

The criterion of selecting only patients with no record of vaccination in the five years 

preceding the study period was chosen to provide a sufficient washout period for 

contamination from previous vaccinations, but this may have been too long and may 

consequently encumbered the generalisability of the results by excluding those 

patients who had been vaccinated more regularly. 

6.5.2 Strengths of this study 

A strength of this work was the robust approach taken to confounding and the use of  

real-world data to estimate the effectiveness of the influenza vaccine against MI. The 

use of such data is ideally suited to discovering secondary benefits to existing 

treatments and new prophylaxes. Such studies offer an opportunity to observe the 

effectiveness of an intervention in practice away from the idealised settings of a 

randomised clinical trial (RCT). Although the tool of randomisation in a properly 

designed and compliant RCT is widely accepted as the best guarantor against 

confounding bias, quasi-experimental methods and study designs offer a means of 
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adjusting for confounders that may not always be fully observed. The application of 

two QE methods avoided relying on a single set of assumptions, allowing further 

insights into the data and the nature of the confounding bias. Studying the periods 

prior to vaccination also offered an evaluation of the size of confounding bias under 

the assumption of time-invariance. The QE approach was further supplemented with 

a high-dimensional adjusted analysis, which not only offered further insight into the 

bias due to unmeasured confounding, but also allowed diagnoses of the degree of 

imbalance in the measured confounders. 

Another strength of the study was the analysis of influenza as an outcome and 

possible mediator for MI. The concomitant effect against influenza was further 

evidence of the causal pathway to MI from influenza, the primary target of the 

vaccine. Previous studies have suggested using outcomes observed in months 

outside the influenza season to control for confounding 318–320. While this may help 

identify the presence of bias, the conditions for confounding before, during and after 

the influenza season are unlikely to be the same. Furthermore, circulating pathogens 

outside the influenza season are likely to exist at such low levels as to introduce 

further variability and imprecision.  

A potentially important finding was that in all but three of the years, the results 

suggested vaccine effectiveness may wane with age against MI in this population of 

older adults. However, there was no indication of a consistent age effect on 

vaccination against influenza, which was in accordance with findings from a test-

negative study conducted in the same age group 321. It is important to note the 

distinction in this regard between this and previous work on the pneumococcal 

vaccine, in which a net benefit was apparent in older age groups. 

6.5.3 Conclusions 

In every year from 1997 to 2011, evidence was found of a protective effect against 

MIs, having accounted for the hazard of MIs in the prior period of each cohort. For 

most of those years, there was some evidence that this effectiveness may decrease 

with age. The agreement between adjusted effectiveness estimates against 

influenza and MIs in each year would suggest that prevention of MIs is at least 

mediated by prevention of influenza infection. By relying on QE adjustment using 

prior periods, annual changes in pathogen virulence may threaten the validity of the 



   
 

 207 

estimates from some years. However, in aggregate the estimated vaccine 

effectiveness of 39% was in reasonable concordance with available trial evidence. 
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6.6 Appendix A – IPTW diagnostic plots 

 
Figure 34: Plots of weighted (by propensity scores in red) and unweighted standardised (blue) mean differences for balancing 
variables – 1997 -1999 cohorts 
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Figure 35: Plots of weighted (by propensity scores in red) and unweighted standardised (blue) mean differences for balancing 
variables – 2000 - 2002 cohorts 
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Figure 36: Plots of weighted (by propensity scores in red) and unweighted standardised (blue) mean differences for balancing 
variables – 2003 -2005 cohorts 
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Figure 37: Plots of weighted (by propensity scores in red) and unweighted standardised (blue) mean differences for balancing 
variables – 2006 -2008 cohorts 
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Figure 38: Plots of weighted (by propensity scores in red) and unweighted standardised (blue) mean differences for balancing 
variables – 2009 -2011 cohorts 
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Chapter 7  -  Discussion and conclusions 

7.1 Summary of thesis 

This project was partly motivated by the need for further evidence on vaccination in 

older adults from the routinely collected data stored in electronic health records. 

Vaccination of this age group is a key component of public health policy against 

infectious diseases, although studies have raised concerns that this age group is 

under-represented in clinical trials. Evidence from EHRs may be useful in 

supplementing existing evidence from RCTs, or even in informing the design of 

future trials. Therefore, in addtion to addressing the clinical question, this PhD 

necessarily focussed on the methods for deriving this evidence in the wider context 

of the growing interest in analysing routinely-collected data, such as electronic health 

records. However, in order to elicit inferential-quality evidence, such methods need 

to address the problem of confounding in observational data. Confounding is a 

problem for inference even from the “gold standard” data of clinical trials, where 

drop-out, non-compliance, poor randomisation, and even poor design, may lead to 

bias, if treatment groups become imbalanced in any prognostic factors. The bias 

may be corrected by modelling known confounders. However, this relies on having 

information about the relevant confounders, and in the absence of randomisation, it 

may not be reasonable to expect to identify and observe all potential confounders. 

This is none more so the case than with observational data, such as EHRs, where 

adjusted regression alone might not entirely account for unmeasured confounding. A 

greater focus is required on the use of quasi-experimental methods to deal with 

unmeasured confounding to better enable EHRs as a data resource in research. 

Acknowledging this issue was a major part of this project as I conducted a 

methodological review of QE methods in the context of EHRs and other similar data 

with longitudinal information on individual patients. This study, published in the 

Journal of Clinical Epidemiology, searched for published studies that applied QE 

methods to such data, and examined how each may have utilised the available, 

patient-level, longitudinal information to adjust for, or rather mitigate for, unmeasured 

confounding 322. In this study, I aimed to draw attention to the different QE methods 

that leverage longitudinal information to adjust for confounding, some of which may 
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be underutilised due to the lag between development and widespread adoption in 

research. 

To address the problem of confounding in vaccination studies, I focussed on the 

application of the prior event rate ratio method, and the framework of the Pairwise 

model. The PERR and Pairwise models have been an essential innovation in 

enabling the use of EHR data for replicating clinical trials studying survival and rate 

data. In this project, I applied these to address the clinical questions posed in the 

vaccination studies. I also reported on the relative performance of these methods to 

provide guidance for future work. The results from the PERR and Pairwise 

approaches may be compared to those from trials as a form of sensitivity analysis of 

the degree of unmeasured confounding. Therefore, as complementary and useful 

approach to the problem of confounding, the search strategy for the methodological 

review of chapter 2 was scoped to include sensitivity analysis too, the results for 

which were presented in the following chapter. As such, QE methods, like the PERR 

and Pairwise methods, may offer an alternative approach to sensitivity analysis and 

the issues over the transportability of external data on, and assumptions about, 

unmeasured confounders, by invoking a different set of assumptions to utilise 

longitudinal information within the same dataset. 

Following the methodologial review of QE methods and sensitivity analyses as wider 

context for the PERR and Pairwise methods,  I then conducted a review of these two 

methods, and presented a summary of their assumptions aggregated from different 

methodological studies, discussing their relative performance under different types of 

confounding bias. I also presented my literature review of studies that had utilised 

the PERR and Pairwise methods since publication of the seminal studies. As such, 

chapter four may offer further guidance to utilisation of the PERR and Pairwise 

methods, and will be submitted for publication. 

Thereafter, the PhD focussed on applying the PERR and the recently developed 

Pairwise framework to the study of the real-world effectiveness of vaccination in 

older adults, an age group that may present many issues in the recruitment to trials . 

This was the first known example of the application of the Pairwise method outside 

the seminal work on this and the PERR-ALT method, and the first comparison of its 

performance relative to the PERR method in an applied setting. Moreover, the larger, 
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real-world data enabled analysis of interesting sub groups with surprising results. 

Both pneumococcal and influenza vaccines were studied, and the conditional 

estimates from the PERR and Pairwise methods were compared with the marginal 

estimates from a regression weighted by high-dimensional, propensity score based 

on observed confounders. This robust approach not only compared the success of 

adjustment, but served to gain further insight into the source and size of confounding 

bias, informing recommendations for good practice. 

The investigation of pneumococcal vaccination presented somewhat controversial 

results in showing an increase in effectiveness with age. This runs counter to the 

hypothesis that immunosenescence may reduce effectiveness. However, while the 

degree of bias may be disputed, the direction of effect with age persisted to varying 

degrees in the results from all the methods used to address confounding. Whether or 

not immunosenescence leads to weaker immune response in older adults, or a 

shorter duration of immunity, the study found older adults to be at greater risk of 

infection. On that basis, vaccination still seems to confer immunity, with the real-

world evidence suggests we should expect to see a net benefit from immunisation at 

the population level in older age groups in spite of immunosenescence. I presented 

these results at an oral session at the 33rd International Conference on 

Pharmacoepidemiology 323, and the report, which is included as chapter 5, is 

prioritised for submission to a suitable journal. 

Complementing the work on pneumococcal vaccination, the project also investigated 

the effectiveness of the influenza vaccine as a secondary prevention against 

myocardial infarctions. The results for this were presented over two oral sessions at 

the 34th International Conference on Pharmacoepidemiology 324,325. With influenza 

infection designated as a secondary outcome in this study, the study found 

consistent evidence for the effectiveness against MI with the influenza outcome as a 

possible mediator. However, gender was a much stronger prognostic variable for MI 

outcomes. Furthermore, while there was evidence that effectiveness against 

influenza waned with age, no moderating effect was found for MI. These results were 

confirmed by both the PERR and Pairwise methods, although the latter tended to be 

further from the null, estimating a greater protective effect from vaccination. In 

contrast to the QE methods, the adjusted survival models produced hazard ratios 

that were for most years greater than unity. This ran counter to expectation, and 
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would suggest that adjustment on observed confounders was incomplete. After 

application of the PERR method, the adjusted estimates closely agreed with those 

from the PERR-adjusted naïve Cox models. 

7.2 Limitations 

In the novel application of the PERR and Pairwise methods to vaccination studies, it 

was important to understand the limitations as well as the relative performance of 

each method, particularly in relation to the assumptions and conditions detailed in 

section 4.3 of chapter four. It was also important to acknowledge the limitations in 

the application to studying vaccine effectiveness to inform future work. Comparing 

the two methods together and against methods adjusting for measured confounding   

raised some wider methodological considerations and in some cases highlighted 

unresolved issues in the application of the PERR and Pairwise methods: 

1. Limit to scope of method review: The scope was restricted to methods with a 

control arm as an analogue to RCTs. Furthermore, the review did not consider 

study designs, but rather it focussed on analytical methods for longitudinal, 

observational data, which in many cases, such as cohorts for before-and-after 

comparisons, may be a necessary pre-condtion for the application of the 

method, such as PERR or difference-in-differences. The focus on comparative 

studies meant excluding single-arm, self-controlled studies, although these were 

later considered as part of the specific review of the PERR and Pairwise 

methods in chapter four. The role of sensitivity analysis in dealing with 

unmeasured confounding was also reviewed, but in order to keep the report to a 

publishable size, this was abstracted into its own chapter. 

2. Verification of stable confounding assumption: In the application of the PERR 

and Pairwise models, the stability between the prior and study periods of the net 

effect of confounding was emphasised as a necessary assumption in section 

4.3. It is likely that if the influence of individual confounders changes between the 

periods then this would lead to a violation of the constant bias assumption. 

Although it is not possible to directly ascertain a violation of this assumption by 

hidden confounding, some clues may found by inspecting the stability of 

observed confounders under the assumption that changes in these may be 
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associated with changes in the unmeasured confounders. In the vaccine studies, 

the diagnostic tools used for the IPTW analysis were employed for this purpose, 

as well as for determining the success of weighting. Here, the weighted and 

unweighted mean differences in the measured confounders between exposure 

groups in the study period were compared to those in the prior period. As with 

vaccination studies, any change in the rank of the mean differences of the 

confounders over the annual cohorts and between the study and prior periods 

may be evidence of unstable confounding. In the pneumococcal vaccination 

study, the changing set of confounders between the prior and study periods 

instilled caution in the interpretation of the results. For the influenza-vaccine 

study, where there were 15 cohorts to consider, there was a notable shift in the 

ranked mean differences, with age being the largest following the introduction of 

the policy to vaccinate the elderly against influenza. Where anomalous changes 

in the results of a series of cohorts are considered over time, as with the 

influenza study, it may also be helpful to inspect the between-cohort variation in 

the confounders over a longer time period to make inferences about the stability 

of confounding, and potentially explain any incongruity. 

3. Repeatability of outcomes: Following application of the PERR and Pairwise 

methods to investigating vaccine effectiveness, further clarification is needed 

about satisfying the basic condition for a repeatable outcome in order to apply 

these methods. Firstly, in the influenza vaccine study, there was a potential 

problem over the independence of multiple MI events in the same patient. If 

there was dependence between successive events then each MI may be 

determined by different confounding effects, or different confounders altogether. 

Stratifying survival analyses by different orders of the event was discussed as a 

way of mitigating against order dependence within each period, but this alone 

would not invoke repeatability between periods of the PERR and Pairwise 

methods as the strata in one period would necessarily be different from that in 

the other. Secondly, the independence, and therefore, repeatability of events 

may be threatened in the study of infectious diseases, where an outcome in the 

prior period of a patient provokes an immune response that carries over into the 

study period. 
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4. Prior period as estimate of confounding: Whilst the size of the group effect in the 

prior period of the pneumococcal and influenza studies was taken as an 

indication of the size of confounding bias, it was not possible to exactly estimate 

this in the presence of potential assumption violations such as missing, but 

otherwise balanced covariates in the Cox model 225. Although conformance to 

the proportional hazards assumption was broadly satisfied through inspection of 

diagnostic plots, minor deviations would have also affect the precision of the 

estimates. While important prognostic variables are unlikely to be perfectly 

balanced in real-world data and the prior period will be a reasonable indicator of 

the pre-existing bias between levels of the exposure variable, some caution may 

be required in using this as an unbiased estimate of the confounding effect. 

5. Determining successful adjustment against assumption violations: The 

vaccination studies offered an opportunity to re-examine the relative 

performance and limitations of the PERR & Pairwise methods using real data 

rather than simulated data. The models in both vaccination studies were 

adjusted for the common confounding variables of age and gender. However, 

simulation studies have demonstrated that bias can still affect the PERR method, 

if significant, yet balanced covariates are excluded from the model 225. Therefore, 

the results from the PERR and Pairwise analyses were compared to IPTW 

regression. It was noted that the IPTW results were generally closer to the null. 

However, in the influenza vaccination study, many of these exceeded unity by a 

large degree, which prompted speculation about the correct specification of the 

model and terms used in the propensity score. Previous research has warned 

about model misspecification exacerbating the imbalance in other confounders 

and the use of propensity scores in practice 22. Without full information regarding 

the unobserved confounders, it was not possible to distinguish between bias 

from model instability, model misspecification and unmeasured covariates, but 

by identifying as many measured confounders as possible, the degree of 

unmeasured confounding could be better ascertained. This exemplifies the 

challenge in using observational data. However, once the PERR method was 

applied to the IPTW results from the influenza study, these closely resembled 

the Pairwise and unweighted PERR results. From this it could be concluded that 

the PERR and Pairwise methods may have successfully corrected for residual 
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confounding error, and that any potential misspecification in the propensity score 

was either minor, or cancelled out by similarly misspecified prior periods. Best 

practice should therefore be to compare the QE results against the best 

available non-QE method that explicitly adjusts for measured confounders. The 

PERR method should then be applied to the adjusted results from the 

multivariable or weighted analysis. In this way, interpretation of the results needs 

to balance the potential problem of model misspecification against the 

assumptions of any applied QE methods. 

6. Severe confounding between vaccines: Neither vaccination study was able to 

fully disentangle the effects from one vaccination in the presence of the other. 

This could certainly be explained in part by the size of the sub-groups. The 

pneumococcal study was divided into four sub-groups of influenza vaccination, 

classified by vaccination states in the prior and study periods. However, there 

were few patients in three of the four sub groups, with the attendant wider 

confidence intervals and uncertainty over the point estimates. In the influenza 

study, interest was in pneumococcal sub groups, dividing patients into never and 

ever having received the pneumococcal vaccine. However, there were far fewer 

patients, who had had a record of pneumococcal vaccination before 2002. This 

led not only to wider confidence intervals, but also spuriously high hazard ratios 

suggesting an unexpected harmful effect of the influenza vaccine in this sub 

group. It is possible that either by chance, confounding bias is less stable 

between the prior and study periods in a small sub group, or the sub group was 

an intrinsically less stable set of patients of rapidly increasing frailty. While EHR 

may offer the opportunity to study clinically interesting sub groups, no method 

can disentangle the effects of severely confounded exposures or treatments.  

7. Season-specific outcomes: Specific to seasonal diseases, such as influenza, the 

approach in some studies has been to restrict analysis to outcomes that have 

occurred within a period defined as high pathogen circulation 270,326. This would 

increase the specificity of the disease identification and reduce the inclusion of 

false positives in inferential studies. This may have been a reasonable strategy 

to follow, although in this project, the pneumococcal study was designed to span 

multiple years to maximise the collection of outcomes and so afford more 
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statistical power. The same approach was applied to the multiple cohorts of the 

influenza study, following up patients for a year rather than during individual flu 

seasons. Other before-and-after studies were noted in chapter six as having 

suggested the low-circulation periods outside of the influenza season as an 

adjustment period 318–320, and this was the strategy used in a recently published 

study 269 into influenza effectiveness using the PERR. However, choosing to 

adjust with an outcome from a low circulation period may be ill-conceived, as it 

could risk decreasing the specificity of the outcome since without laboratory 

confirmation, some cases may have been incorrectly identified. Also fewer 

outcomes would lead to less precision and wider confidence intervals. More 

importantly, the confounders affecting a low circulation study period are not 

necessarily the same as those affecting a high circulation prior period, and 

therefore may not offer a reliable basis for adjustment.  

8. Pathogen evolution: While pneumococcus, like all bacterium, are known to 

evolve, particularly in response to treatment, vaccination and targeting by the 

immune system, constant surveillance by sentinel laboratories is required to 

respond to annual changes in the mix and type of influenza viruses, and update 

the vaccine accordingly. So, while the conclusions for the pneumococcal study 

remain reasonably robust to pathogen evolution over a short peroid of time, this 

was a potential weakness of the influenza study. Accounting for viral potency, 

antigenic drift and any subsequent mismatch between viruses and vaccine could 

improve the accuracy of the results, and potentially stabilise confounding 

between the prior and study periods. As noted in chapter six, operationalising an 

adjustment would be complex, and antigenic drift and viral activity would need to 

be quantified. In determining the effect on MI outcomes, this would also likely 

involve accounting for mediation by receptor proteins and potentially a 

differential cardioprotective effect of vaccine strains. 

9. Viable alternatives: The scope of this PhD project was limited to a review and 

application of the PERR and Pairwise methods in the context of other QE 

methods. While this precluded focussing on other possible methods, such as 

those reviewed in chapter two, these should not be entirely overlooked as viable, 

alternative analytic methods for addressing the clinical questions of chapters five 
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and six. The test negative case control design is popular in the monitoring of 

influenza vaccine effectiveness 251,252,254,327. This seeks to minimise confounding 

from health-seeking behaviour through restriction to those patients, who have 

been diagnosed as having an influenza-like illness (ILI) 255. Cases of influenza 

are then confirmed among the ILI cohort by laboratory analysis, which facilitates 

the case-control analysis. However, generalisability of the results from such an 

analysis is arguably diminished by the restriction limiting the study cohort to ILI 

cases and the availability of laboratory testing to confirm cases. Because of the 

reliance on restriction, this method did not qualify as a QE method in the method 

review, but a review of its relative performance would be informative. 

10. Survival data vs. rates: Although the focus in the project was on specific 

outcomes expressed as survival data, it is worth mentioning that the PERR could 

have been applied to events as rates as a Poisson-like process. This, however, 

would have required parametric modelling and would have lacked the flexibility 

of the Cox models. 

11. Estimation of time-varying covariates: The expression of vaccination in the Cox 

model as time-varying covariate was found to greatly facilitate the derivation of 

survival times for the cohort. Without this tool, the survival start times would start 

relative to the date of vaccination for the vaccine-recipients. However, to avoid 

disparity in the distribution of start times with the controls, who would otherwise 

commence from the same index date, it was necessary to map the vaccination 

dates onto the controls as their own start dates. To avoid unintentionally 

introducing further bias, this entailed writing a computationally intensive 

matching algorithm in the statistical software. Once the start times had been 

designated for the controls, the matching was no longer needed. Expression of 

the vaccination variable as a time-varying covariate obviated the need for 

matching, since both vaccine-recipients and controls started their follow-up from 

a common index date. With the extra pre-vaccination period for vaccine 

recipients in the study period, the point estimates seemed to be less stable over 

time and the confidence intervals were slightly inflated above those for the PERR 

and Pairwise estimates.  
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12. External validity/generalisability vs. selection criteria: Although one of the much 

cited advantages of using RCD over RCTs is the generalisability of the results to 

a wider population, some of the selection criteria used in applying the PERR 

method may have placed restrictions on the external validity of the findings. 

Some of the settings were the exclusion of patients based on previous 

vaccinations, and the exclusion of controls, whose follow-up may have included 

vaccination during the next vaccination season. 

7.3 Discussion of thesis 

At the beginning of this thesis, some time was spent setting the scene and 

describing the motivation for this project that had arisen from the growing interest in 

using routinely-collected data for clinical evidence. In spite of the challenges of 

deriving plausible evidence of causal relationships using such data, this interest has 

not diminished. Once the preserve of commercial interests and data mining in market 

research, the presence of big data in medicine is only likely to grow. A systematic 

review of methods for dealing with the problem of confounding was not only an 

obvious means of providing the necessary background required for this PhD project, 

but also served as a timely reference for other studies eliciting causal inference. For 

this purpose, the review was directed towards the application of EHRs for causal 

inference, with a specific interest in utilising the longitudinal information available for 

each patient. In this way, the PhD project would contribute to the growing interest in 

using quasi-experimental methods 322 

The methodological review of chapter two provided an essential broader context for 

the methods among which the PERR and Pairwise sit. It was also noted that many of 

the QE methods have their roots in econometrics, but that uptake of these methods 

in medical statistics might not entirely match the growing interest in EHRs. It would 

be interesting to ascertain the relative frequency of QE methods used to analyse 

EHRs against explicit adjustment methods that assume no unmeasured 

confounders, although this may involve undertaking a much larger review. However, 

it should not be assumed that conventional multivariable regression, matching or 

weighting will fully adjust for unmeasured confounding bias that has previously been 

described as “stubborn” and resistant to adjustment in EHR data 22,213, including 
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vaccination studies 318. This justified the recommendation in the conclusions of the 

method review to utilise the longitudinal information available in EHRs, where 

possible, as good practice when seeking causal inference from this data. Since 

causation exists as a temporal relationship, a longitudinal dimension is an often 

undeclared condition in the theory of causal inference that was discussed in the 

introductory chapter. Therefore, researchers using EHRs need to be thinking 

longitudinally about the threats to unbiased causal inference from unmeasured 

predictors of an outcome that may exist as part of a wider causal network, potentially 

confounded by past exposures and outcomes. For that reason, it makes sense to 

think longitudinally about adjusting for unmeasured confounders too. The method 

review of chapter two, the sensitivity analyses covered in chapter three and the 

discussion around the PERR and Pairwise methods in chapter four offer many 

strategies for dealing with unmeasured confounding and are presented as a 

collection of resources for improving causal inference from longitudinal, 

observational data. 

Faced with untestable assumptions about unmeasured confounders, it should be 

considered good practice to supplement adjustments for measured confounders with 

a sensitivity analysis, QE analysis, or QE adjustment based around a particular study 

design. A QE method may also be deployed as sensitivity analysis to test for the 

presence of no unmeasured confounders. In this respect, although each QE method 

invokes certain assumptions, QE methods generally may offer an advantage over 

traditional SA methods, which often rely on the transportability of external information 

about confounders and their applicability to the dataset under analysis. In contrast, 

the QE before-and-after methods, like the PERR and Pairwise, utilise within-dataset, 

longitudinal information. 

Where unmeasured confounding is readily acknowledged, and the primary analysis 

relies on a QE adjustment, then an analysis based on an explicit adjustment for 

observed confounders may be considered a sensitivity analysis and a check on the 

assumptions of the QE method. This robust approach was followed for vaccination 

studies with the PERR and Pairwise results firstly compared with each other. The 

underlying study and prior period  estimates of the PERR estimate may also 

diagnose the existance of bias. Covariates in the basic adjustment comprised the 

main confounders of gender and age, both of which are known to be main 
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determinants of frailty in the older population, and as such may partly account for 

other associated sources of bias. Contingent on the assumptions for the Cox model 

being met, the vaccine was expected to show no effect in the period prior to 

vaccination, so the size of deviation from the null in the hazard ratios for vaccination 

was interpreted as a measure of bias in the data due to unmeasured confounders. In 

Lin and Henley 192, a procedure was presented for testing for the presence of 

unmeasured confounding in the prior period and to differentiate this from imbalanced 

censoring. However, in the prior periods of the vaccination studies, survival times 

were administratively censored at the end of follow-up in the absence of an event. 

HRs for vaccination significantly greater than unity in the study period were 

considered inconsistent with existing evidence, and therefore implausible. Since 

selection bias in the vaccine studies was directed towards the frail, rather than 

exhibiting a healthy user bias, the degree to which the study period exceeded the 

null was also interpreted as an indicator for the presence of unmeasured 

confounding bias and its potential size. 

Finally, the results from the PERR and Pairwise methods were compared with those 

from an IPTW analysis, with weights based on propensity scores predicted from all 

observed variables determined to be confounders. The IPTW estimates offered a 

more easily interpretable marginal estimate of effectiveness unconditioned on any 

other variable, although this precluded estimation of interaction terms, instead relying 

on sub-group analysis. The direction and size of deviation of the IPTW HR from unity 

for the exposed group in the prior period could be informative about the size of 

residual confounding or at least indicate its potential presence in the study period. 

This is of course contingent on the propensity score model being correctly specified 

and on compliance with the proportional hazards assumption of the Cox model. The 

exposure HR for the prior period should then be interpreted as the bias having 

averaged over the effect of the observed confounders. 

As a further verification of the PERR and Pairwise results applied to an unadjusted 

or partially adjusted multivariable model, the PERR method could also be applied to 

the weighted estimates of the study period using weighted estimates from the prior 

period. In the pneumococcal study, some of the weighted prior-period estimates 

were greater than unity indicating the possible presence of residual confounding, 

although instability in the confounders between the periods could not be ruled out. 
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However, in the study on influenza vaccine effectiveness on MI outcomes, many of 

the weighted study period HRs exceeded unity. This suggested the potential 

presence of residual confounding due to unobserved and unadjusted confounders, 

although some proportion of the bias could still have been attributable to model 

misspecification. After applying the PERR adjustment to the weighted Cox estimates, 

the resulting point estimates were remarkably close to the PERR-adjusted estimates 

from the age and gender adjusted Cox model. This was a reassuring check on the 

performance of PERR demonstrating its ability to adjust to results that are consistent 

with each other, notwithstanding potentially misspecified, marginal and basic-

adjustment models. 

One of the challenges in applying the PERR and Pairwise to vaccination studies was 

the derivation of the survival start dates for the controls from the vaccine recipients 

through matching. Expressing vaccination as a time-varying covariate obviated the 

need for this, and the PERR was successfully applied to the influenza study with the 

vaccine effect as a time-varying covariate in the study period, although the 

confidence intervals were wider than the standard approach. Nonetheless modelling 

time-varying covariates is a highly adaptable approach to investigating comparative 

effectiveness studies, not just for accounting for time-varying effects, but also where, 

as in the vaccination studies, determining the start times for follow-up may involve 

complicated matching algorithms. 

Throughout the vaccination studies, the Pairwise estimates were consistently further 

from the null than the PERR estimates. This may have been due to missing, but 

otherwise balanced covariates, which can bias the PERR method, but not the 

Pairwise. However, other differences exist between the performance of each method 

under the same assumption, so it was difficult to determine the provenance of the 

differences. For instance, where there is an interaction between exposure and a 

hidden confounder, then the resulting bias has been shown to vary according to size 

of the confounding effect, although for most of the range in one scenario presented 

in Lin and Henley 192, this was shown to favour the PERR method. Further bias due 

to assumption violation may arise when the exposure or treatment is indicated by the 

event in the prior period. Here, the relationship between the bias and the strength of 

indication for each method differentially varies over the range or the effect of 

confounding. As discussed in paragraph 4 of 4.3 of chapter four, this is further 
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complicated by indication existing on a continuum rather than as a binary state. 

Furthermore, trying to diagnose confounding by indication may be difficult, given 

there would be nothing to differentiate between any treatment that may have been 

indicated by a prior event and those treatments that might have been administered 

coincidentally following an event (without actually being indicated by it). For instance, 

a patient could easily have had a chance pneumococcal infection in the period 

leading up to a routine appointment for vaccination against the disease, which may 

have appeared to have been indicated, but otherwise lacking any direct causal 

connection. 

This project has demonstrated the PERR and Pairwise framework to be more than 

just a QE method applied to unadjusted models to mitigate against unmeasured 

confounding. Rather, such methods could be an integral part of a best-practice 

approach to EHRs, especially when combined with the best available adjustment for 

observed confounders. Firstly, the direction and degree of unmeasured confounding 

bias may be inferred from the prior and study periods contributing to the PERR 

analysis, contingent on a correctly specified model for those periods. Where multiple, 

successive cohorts are analysed, as was done for the study of influenza 

effectiveness on MI outcomes, then inference about the stability of the confounders 

may be inferred from the year-to-year changes in the prior periods, since only 

confounders and unmeasured covariates will be solely affecting the estimates. For 

instance, relative to the exposure effect, the effects of confounding may be deemed 

unstable, if the year-to-year variation in the prior period seems excessive over time. 

Comparisons of the unweighted mean differences in confounders between exposure 

groups from each cohort, as found in the diagnostic plots for the IPTW method, may 

further shed light on the stability of the unmeasured component of confounding bias 

through potential associations with the measured confounders (the principle upon 

which perturbation analysis sits 80). Further comparison against methods attempting 

a full, explicit adjustment may help identify the proportion of bias that may be due to 

unmeasured confounding. However, caution is required as the accuracy of the 

results from the adjusted model will depend on the functional form of the adjusted 

variables and any potential interactions being correctly specified in the model. 

As was demonstrated in the study of PPV effectiveness, the PERR and Pairwise 

methods could potentially provide unbiased estimates of interactions and exposure 
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modifiers. The investigation of effect modification is often proposed as a secondary 

analysis, requiring division of the data into sub-groups of the effect modifier. 

However, this may lead to challenges of statistical multiplicity, and many statistical 

corrections are either overly conservative, producing type 2, false-negative 

conclusions, or too liberal leading to type 1, false-positive errors328. The procedure 

followed in this project was to model the interaction between exposure and potential 

modifier, as a global test of the sub-groups. The interaction, when found to be 

significant in the study period, was then adjusted using the PERR method, which as 

far as I am aware from the published literature, is the first example of deploying the 

PERR adjustment in this way. The need for further research into this particular 

application is acknowledged in section 7.4.3.1 below. The interaction could be 

interpreted directly through its PERR-adjusted effect, although interpretation for 

effectiveness at specific ages is complicated by also having to consider the PERR-

adjusted main effects and interaction simultaneously. Therefore, when the global test 

of the age and vaccination interaction was found to be significant in the 2005 cohort 

of the PPV study, the effect of age was interpreted through modelling three main 

effects for in the data, having divided it into age sub-groups. An advantage of this 

approach is that the marginal effect of vaccination could be estimated using IPTW for 

each age group for ease of interpretation. Furthermore, the PERR method was also 

applied to adjust for any residual confounding not controlled for by the propensity 

score used in the IPTW method. 

The authors of the seminal work on PERR, and subsequently PERR-ALT, applied 

the methods to replicated trials using EHRs as a means of validation, and 

comparison to the trial results. However, as reported in chapter four, the application 

of PERR varied in the subsequent studies. While few applied PERR to complete the 

adjustment for confounding, most applied the method to unadjusted models as a 

means of presumably adjusting for all confounding. Here, this particular chapter will 

be published as a review with a view to offering guidance and best practice in the 

application of the methods. A cautious approach was taken in this project, applying 

the PERR and Pairwise methods to models conditioned on the basic adjustment for 

age and gender. These were compared to models adjusted for measured 

confounders through weighting, although the two approaches offer different 

estimates of effect, one conditional on age and gender, and the other, marginal, 
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averaged across all the other effect effects and characteristics of the sample. Finally, 

the marginal models were adjusted with PERR to gauge the degree of bias due to 

unmeasured confounders. This robust approach was in contrast to many other 

studies applying the PERR method. The novelty of this work was also in the first ever 

application of the Pairwise, and PERR-ALT, model outside of the seminal studies. 

A notable difference in the approach to the application of the PERR method between 

the seminal studies of Tannen, Weiner et al and this project, was that here the 

methods were applied to the vaccine data without attempting to exactly replicate 

RCTs, and did not specifically consider an as-treated analysis. Without the tool of 

randomisation, one would reasonably expect the replication of a trial in RCD would 

produced biased results, but replication has been used primarily to help validate the 

PERR method in the seminal work. Hence, any differences between the replicated 

and original trials results could be attributed to bias rather than trial conditions with 

all other things, apart from randomisation, being equal. Trial replication was not 

repeated for the vaccine studies as the purpose was not to limit the generalisability 

and sample size by imposition of too many selection criteria. While some exclusion 

criteria may serve to hone a clinical question to a relevant population, the 

applicability of results from real-life practice relies in part on studying exposures 

away from carefully controlled trial conditions. With regards to the sample set, an as-

treated approach was unnecessary given that exposed individuals were necessarily 

compliant for the duration of the vaccination effect, unless they were censored on 

death or upon deregistering with their practice. In the case of influenza, the duration 

of vaccine effectiveness was for the year from the point of vaccination, while for 

PPV, which is not administered annually, the duration of effect was considered to be 

long enough to accommodate a follow-up of at least two years. 

Evidence for moderating effect of age on the effectiveness of the pneumococcal 

vaccination would appear to be reasonably robust given that this was observed in 

the naïve Cox model adjusting for age (a main effect of the interaction term) and 

gender; the marginal effects of the high-dimensional IPTW model by age group; and 

the PERR and Pairwise models applied to the former. The difference between the 

age groups of the IPTW model was less than that suggested by the interaction terms 

of the conditional models, but this may have been attenuation of an otherwise large 

interaction effect by residual confounding. The accuracy of the PERR and Pairwise 
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adjusted estimates still rested on the assumption of stable confounding, but these 

were arguably less exposed to changes in pathogen virulence than in the study of 

the influenza vaccine. Further simulation work may be needed to test the 

performance of the PERR and Pairwise methods in estimating interactions (see 

future work below). However the findings of the age-vaccine interaction could impact 

on the direction of future research 70, with the real-world evidence suggesting that 

the benefits of pneumococcal vaccination are not noticeably undermined by a poorer 

immune response in older ages. 

An important implication from applying the PERR and Pairwise methods to vaccine 

studies is that these methods may be more suited to studying non-infectious 

diseases, or adverse events where the outcomes are more likely to be independent 

and repeatable. However, the challenges of applying the methods to these studies 

allowed a thorough comparison of their performance using real-world data. In spite of 

these challenges, the evidence from the vaccination studies were supportive of their 

protective effect. For PPV, effectiveness increased with age, and for influenza, the 

protective effect against MI was mediated through its effectiveness against influenza. 

Furthermore, the results for the influenza vaccine aggregated over many cohorts 

suggest an effectiveness of 39% against MI, which was consistent with the evidence 

from one of the few trials conducted on this outcome. 

Lastly, while the results from this analysis of EHRs are compared to trial results, the 

evidence from real-world data should not necessarily be viewed as a challenge to 

RCT-generated evidence. Instead, real-world evidence tries to acknowledge the 

complexity of the greater causal network, in which the evidence from RCTs might sit. 

The findings from this project have not only contributed useful clinical evidence, but 

have also demonstrated the utility of routinely-collected data, as well as contributing 

to the research into methods that can analyse such data by mitigating for, or 

describing the sensitivity to unmeasured confouding. 

7.4 Future research 

Future research that may progress the work undertaken in this PhD project can be 

described as two-pronged. While interest may lie in further validating and extending 

PERR and Pairwise as viable methods in research using routinely collected data, 
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there is also a need to address some pressing clinical questions around drug-

vaccine interactions, which may be resolved by the advantages afforded by the real-

world data from EHRs. One of these questions follows on from discussions at the 

33rd International Conference on Pharmacoepidemiology prompted by my work on 

pneumococcal vaccination in this PhD project. Some pilot work has been undertaken 

to explore the viability of such a project, and more details are given in the protocol for 

this, which is presented below in section 7.4.1. In addition to the application of the 

methods in further clinical research, I identified during the course of this project, 

further ideas for developing and extending the methods. 

7.4.1 Future research: A protocol for the investigation of the 

influence of statins on influenza vaccine effectiveness 

7.4.1.1 Background 

An elevated risk of acute myocardial infarction has frequently been observed to 

coincide with high levels of influenza infection 302,304,305,329,330. It is believed this is a 

likely inflammatory response to infection and to the release of proinflammatory 

cytokines. Some studies have also found evidence of a reduction in the rates of 

myocardial infarction and heart failure following influenza vaccination 311,314,331–333. 

This, in turn, this has led to a proposed additional role for influenza vaccination in 

preventing acute cardiovascular diseases 306,316,334–336, although some of the 

observational evidence may be biased without adjustment for unmeasured 

confounding 311,314. Furthermore, estimation of the marginal effect may conceal 

differential effects between key sub-groups of patients, with some patients deriving 

great benefit from vaccination 332,337. Because statins may have anti-inflammatory as 

well as lipid-lowering effects, statins have been proposed as a possible prophylaxis 

against influenza as well as cardiovascular diseases on the basis of the 

proinflammatory stimuli, common to both diseases 338. However, recently published 

evidence has suggested that statins may impair immunogenicity, and therefore 

effectiveness, of the influenza vaccine 339–342. 

Building on previous work investigating pneumococcal vaccine effectiveness and the 

role of the influenza vaccine in protecting against myocardial infarctions in the 

elderly, this study proposes to investigate whether statins moderate vaccine 

effectiveness against influenza in the population of adults aged at least 65y. 
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Although the US data are subject to different biases and different prescribing 

patterns, to facilitate comparability, the settings for this project will largely be 

informed by the study of Izuerieta et al.342. By replicating those studies conducted on 

predominantly US populations, this project aims to uniquely contribute to the growing 

body of evidence on the immunomodulatory effect of statins using UK population 

data. Furthermore, while previous studies have adjusted for observed confounders, 

we will also investigate what role unmeasured confounding may have by using 

quasi-experimental techniques322. 

7.4.1.2 Cohort selection 

This project will use data collected on UK adults aged at least 65y available from the 

Clinical Practice Research Datalink. The study will start from 2002, avoiding the 

instability in treatment and potential confounders during the change from the risk-

based practice to an age-based vaccination policy, which completed in 2001. Annual 

cohorts will then be recruited to the latest annual cohort that can be guaranteed 

complete and up-to-standard by the CPRD. Recruitment will begin on the index date 

for each year, arbitrarily set to the 1st September as the date likely to precede 

seasonal vaccination (typically October) and the maximum number of patients 

recruited in the same period. Patients will be included if they have a record of 

vaccination against influenza between the index date and the 31st January of the 

following year. Follow-up will begin on the date of influenza vaccination, plus 14 days 

to allow for full immunogenicity, and end 30th April. 

For the purpose of applying a quasi-experimental adjustment for unmeasured 

confounding, a sub-cohort of patients will also be selected according to their 

vaccination status in the prior period, defined as the 1st September of the previous 

year to the 31st of the following January, during which follow-up will last until 30th 

April. In this way, the sub-cohort will be defined as patients, who have been 

vaccinated against influenza for two consecutive years. For example: the index date 

for the 2010 cohort would be defined as the 1st September 2010, and patients 

required to have been vaccinated between the index date and 31st January 2011. 

The study period would therefore be defined as the follow-up from the date of 

vaccination to 30th April 2011. Follow-up in the prior period would have ended on 30th 

April 2010 and begun with an influenza vaccination in the prior period between 1st 

September 2009 and 31st January 2010. 



   
 

 232 

Patients should be HES-linked, alive and at least 65y of age on the index date, and 

excluded if not registered at their practice at least two years before. The General 

Practices will also have to be up-to-standard at least two years before the index 

date. An absence of any clinical consultation in the five years before the index date 

will be regarded as unlikely for patients in this age group and so such cases will be 

excluded. Instances of influenza vaccination will be determined by their relevant 

medical codes in the immunisation file and product codes in the therapy file 

(Appendix D – CPRD and HES codes) 

7.4.1.3 Intervention 

Statins listed under the relevant British National Formulary chapter code of 0212 can 

be identified in the CPRD therapy file by their product codes (all with CPRD BNF 

code = 02120400). Synthetic statins are Atorvastatin, Rosuvastatin and Fluvastatin. 

Non-synthetics are Simvastatin, both with and without Ezetimibe, and Pravastatin 

(see Appendix F – codes for statins in CPRD data, for full list of statins and product 

codes). For any given cohort, records of statin prescribing will be retrieved for the 

period between 30th April of the year before the index date and 16th January of the 

year after the index date (e.g: for the 2010 cohort, this would be from 30th April 2009 

to 16th January 2011). The end date for a prescribed course of statins can be 

calculated from the quantity supplied and the date of prescription. Courses will be 

counted as one, where prescriptions were renewed within two days of the previous 

one finishing. Patients will be excluded from the cohort if prescribed a spurious 

quantity of statins considered to be less than 7 or greater than 84. To ensure a 

statin-free prior period for the quasi-experimental adjustment of unmeasured 

confounders, patients will then be excluded if there is evidence of a statin 

prescription in prior period up to 15 days after vaccination in the prior period, and 

since the 30th April of the year preceding the index date. For example, given an index 

date of 1st September 2010, this would define a statin-free period from 30th April 

2009 to 15 days after an influenza vaccination in the period between 1st September 

2009 and 15th January 2010. 

Statin users shall be defined as patients with a sufficient supply of statins to cover 

the period 15 days before vaccination through to 15 days after vaccination for each 

study period, with a maximum allowable gap of 2 days. Adherent statin users will be 

those who are prescribed statins in the period from 30th April preceding vaccination 
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in the study period to 15 days after vaccination with a medication possession ratio 

(MPR) of ≥ 0.8. Non-users will be defined as beneficiaries with no evidence of 

receiving statins during the period extending from 6 months before to 15 days after 

vaccination. Patients who do not meet the criteria for either group will be excluded 

7.4.1.4 Outcomes 

Given the rarity of instances of antiviral drug prescribing in the dataset, the study will 

examine the effect on two outcomes: hospitalisation for influenza and a composite of 

a prescription for an antiviral drug or hospitalisation for influenza. As a sensitivity 

analysis, eligibility of the outcomes will also be restricted to those occurring during 

periods of high level influenza circulation periods as confirmed by PHE laboratory 

surveillance. Survival times will be calculated as the time from vaccination until date 

of one of the events of the composite outcome, less the 14 day period for developing 

immunity after vaccination. Influenza diagnoses in the HES data can be identified by 

their ICD-10 codes (Appendix D – CPRD and HES codes), and the date of influenza 

given by the date of admission to hospital. Antiviral drugs are identified by their 

product codes (Appendix D – CPRD and HES codes). 

7.4.1.5 Statistical analysis 

The effect of statins on survival times until the composite outcome will be analysed 

using Cox’s regression adjusting for age and gender, censoring on death. Any 

patients found to have vaccination dates occurring after their date of death will be 

dropped from the cohort. Any negative survival times resulting from the addition of 

14 days to the vaccination date (reflecting the period for immunogenicity) will be 

assigned zero times, with any corresponding events being coded as right-censored 

events. 

7.4.1.6 Adjustment of cohorts for unmeasured confounding 

To adjust for unmeasured confounding, the resulting hazard ratio from the study 

period for the sub-cohort of patients with two years of influenza vaccination will be 

adjusted with the hazard ratio for statin-free prior period, using the prior event rate 

ratio (PERR) method. Confidence intervals for the PERR-adjusted hazard ratio can 

be obtained through bootstrapped resampling. 
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7.4.1.7 Weighted analysis of 2010 cohort 

An inverse probability treatment weighted (IPTW) survival analysis will be performed 

to estimate the marginal effect of the statins, adjusting for measured confounders for 

the study period only. Stabilised IPTWs will be based on the propensity scores 

derived from a predictive model for statin treatment. Prognostic variables considered 

for the propensity score model will be those found to be significant at the 5% level in 

a Cox regression of the defined outcomes. Candidate variables will include age, 

gender, diseases recorded for the Quality Outcomes Framework 295 and symptoms 

and diseases derived for the electronic frailty index 292, as well as the index itself. To 

gauge the extent of unmeasured confounding, the IPTW estimates from the study 

period will be obtained for the sub-cohort of patients with two years of influenza 

vaccination, and additionally the PERR adjustment shall be applied. 

7.4.2 Future research: Development of the post event rate ratio 

method 

Investigation of vaccination rates during the recruitment to the pneumococcal 

vaccine study prompted an exploration of an alternative approach to the PERR 

method. The pneumococcal vaccine had been introduced into adults aged at least 

65y by age group over three successive years between 2003 and 2005. Vaccination 

rates before 2003 according to the data were below 30%. This was consistent with 

the data from the HPA, who reported a vaccination rate of 29% in 2003 based on 

monitoring over the previous 10y. According to the CPRD data, this had increased to 

72% in 2008, compared to 69% reported by the HPA for that year. 
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Figure 39: Plot of proportion of patients ever receiving a pneumococcal vaccination 
for each year in the CPRD data from 1999 to 2010, to illustrate potential for an 
adjustment of the study period using the all-vaccinated patients in the post period. 
Vaccinated patients up to the study start are excluded. The hazard ratio of treatment 
in the study period is estimated from the vaccinated group’s survival times (found in 
area 1 below the curve in study period) relative to those of the controls (dotted 
quadrant marked 2). The hazard ratio of treatment in the post period is estimated 
from the vaccinated group’s survival times (dotted quadrant marked 3) relative to 
those of the controls receiving the vaccine (found in area 4 below the curve in the 
post period). 

With the PPV vaccination policy achieving its aim of increasing vaccination 

coverage, a large part of the UK population of older adults had rapidly transitioned 

from an unvaccinated to a vaccinated state (Figure 39). This prompted the idea to 

use the event rate from a “post” period after the study period, in which all patients in 

the study period were eventually vaccinated. The confounding adjustment would 

come from the post period, during which all patients would have been vaccinated, 

and the only observed effect should have been from confounding bias. The post 

period could then replace the prior period as an adjustment ratio for the study period 

HR (or relative risks if using rate data instead of survival). The proposed idea is as 

simple and intuitive as the original PERR method. It is proposed that this may be 

tested on the vaccine effectiveness data and compared with the results from the 

PERR and Pairwise methods (Figure 40). 
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Figure 40: Diagram illustrating PostERR method relative to the prior period. As per 
the cumulative vaccination graph in figure 1, 100% coverage of treatment is rarely 
achieved at the population level, so there is likely to be a rump of patients, who will 
never be treated. 

This PostERR method, as I have dubbed it, may at a very superficial level seem 

similar to Tannen and Yu’s post-treated event rate ratio (PTERR) method. However, 

their PTERR method was developed to deal with confounding by unrepeatable 

events, like death. Rather than using a common all-treated period as with the 

PostERR method, the PTERR method exploits differences in the as-treated and 

intention-to-treat (ITT) periods for individual patients in order to adjust for 

confounding. This, of course, implies applicability to treatments, where non-

compliance is possible in the first place, and would preclude investigations into 

vaccinations and cures. The PTERR method also relies on matching exposed to 

unexposed patients for comparison of the as-treated and ITT periods, and so might 

not quite be considered a true quasi-experimental method. 

As alternative adjustment for confounding, the PostERR method may offer some 

advantages instead of, or as a complement to the PERR method: 

1. It offers an alternative measure of confounding bias for a sub-group within the 

PERR cohort, which eventually reaches an exposed state. A different 

confounding bias may manifest in the post period compared to the prior, so 

some simulation work will be necessary to investigate this. High-dimensional 

Treatment group

Control group

Study periodPrior period Post period

• Controls eventually treated.
• HRPOST is hazard in treatment group 

relative to treated controls

Never treated

HRSTUDYHRPRIOR
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adjustment methods, such as IPTW, should be used as a check and 

verification of the bias apportioned to observed confounding, as followed in 

this PhD. With the transition of the unexposed into an exposed state, this 

approach has parallels with the active-comparator new-user design, and 

similarly could be considered a form of restriction to patients, who will all 

eventually reach an exposed state. 

2. It is clear from the (pneumococcal) vaccination rates over time, there remains 

a proportion of patients, who are never vaccinated. This would also likely be 

true for other cures or long-lasting treatments. In the older population, some of 

these may be terminally ill, or may have died during that year of data 

collection. However, the never-treated patients may in some way be different 

from the remaining cohort, depending on the cut-off for determining those, 

who would never be treated. By considering the PostERR cohort, this should 

provide another useful insight into the nature of the confounders biasing the 

study-period results. 

3. For the PostERR cohort, inference could potentially be made about not only 

the size of confounding bias, but also its trend over time by comparing the all-

exposed post period with the unexposed prior period. An assumption of the 

PERR method, applicable to the PostERR method too, is that of time-invariant 

confounding bias. However, information from the prior and post periods not 

only offer insight into changes in the bias over time, but potentially an 

adjustment for it too. 

In the first instance, the PostERR method could be demonstrated on the 

pneumococcal vaccine investigation in chapter five. However, further simulation work 

would be needed to clarify the above ideas 1-3, as well as the assumptions of 

PERR, particularly in the presence of confounding by indication. 

7.4.3 Future research: Methodological development 

7.4.3.1 Validation of PERR and Pairwise applied to interactions 

As far as could be ascertained from the published literature, the vaccination studies 

were the first to apply the PERR and Pairwise methods to moderating effects. In 

clinical trials, the focus is usually on estimating the efficacy of an intervention as a 

main effect, with clinically interesting sub-groups subordinated as secondary 
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analysis. With routinely collected data, there is little justification for being restricted 

by this paradigm. Also, testing interactions are essential for investigating moderating 

effects, and for performing global tests of significance to avoid multiplicity across 

categories of patient characteristics divided into subgroups. With the size and depth 

of information available for patient histories in EHRs, QE methods, such as the 

PERR and Pairwise methods could be utilised in identifying responders to treatment 

and adverse events contributing to the development of personalised medicine. In this 

PhD project, the pneumococcal vaccination found effectiveness increased with age, 

contrary to some counter arguments based on the observed phenomenon of 

immunosenescence. This was verified across a variety of approaches including a 

non-QE, weighted regression, all reaching the same conclusion about the 

moderating effect of age. Clearly this has potential to impact on the decisions taken 

by policy makers. However, this and future work could benefit from further validation 

of the analysis in which interaction effects were adjusted using the PERR and 

Pairwise methods in the presence of confounding. It is known from previous 

simulation work that the Pairwise method, and to a lesser extent the PERR method, 

are biased in the presence of an interaction between the exposure and any hidden 

confounder. However, little is known about the performance of the methods when 

analysing an interaction in the presence of unmeasured confounders. In Figure 41, if 

M is the moderator, with which exposure X interacts to cause observed Y, then X 

and Y may be confounded by unmeasured confounders, U, or that U may be aliased 

with the interaction effect through M, or may directly moderate the effect of X on Y as 

an unmeasured moderator. All scenarios are also possible. Hence, a simulation is 

necessary to test the performance of the methods under these conditions. This could 

be presented in the context of the vaccination studies in the older population, in 

which age is often a key effect moderator, as well as confounder.  
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Figure 41: Causal diagram showing moderating effect of M on the effect of X on 
outcome, Y. U is an unmeasured variable and potential confounder and/or mediator. 
The dashed lines show possible causal pathways to be simulated in the study of the 
performance of the PERR and Pairwise methods in analysing an interaction. 

7.4.3.2 Sensitivity to timing of prior period 

As the prior period is key to the adjustment in the PERR and Pairwise methods, then 

further work might be undertaken to explore the sensitivity of results to varying 

timings and durations of the prior period. The period immediately prior to the study 

period was chosen in the vaccination studies as this seemed to afford the best 

assurance that the confounding bias would be representative of that in the study 

period. However, the timing of the prior period could be chosen to create a gap 

between the two periods. This could provide further insight into the stability of the 

confounding bias over time as well as potentially test the sensitivity to indication bias 

(effect of prior event on exposure). For interventions like vaccination, some caution 

would be necessary about inferences into the presence, or otherwise, of indication, 

as vaccines tend to be routinely offered during a specific season in the year (usually 

U

X Y
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October to December). In this case, events occurring in the previous season may still 

indicate vaccination, which would nevertheless be administered in the following 

season, and so a lag of a whole year may be necessary to entirely separate 

indication effects. However, as discussed in paragraph four of section 4.3 in chapter 

four, indication is unlikely in theory to operate completely independently of 

confounding variables, and so simulation work may be required to determine the 

point, at which the effect of indication “overtakes” the imbalance in prognostic 

factors. For other interventions independent of season, the lag between periods 

could be varied over months rather than in years. However, to study the stability of 

confounders over time, then the lags may need to be specified in years as well as 

months to study stability of long term and seasonal unmeasured confounders, 

respectively.  

7.4.4 Future research: Best practice guidelines 

Presentation of the study on pneumococcal vaccination led to an invitation from the 

International Society of Pharmacoepidemiology (ISPE) to review the 

pharmacoepidemiological extension to the pre-existing guidelines for the reporting of 

studies conducted using observational routinely-collected health data (RECORD), 

thus creating the RECORD-PE guidelines. This has now been published on the ISPE 

website 343. The RECORD guidelines were themselves an extension of the 

Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) 

guidelines adapted for RCD such as EHRs. The RECORD guidelines presented 

timely recommendations for maintaining good practice in reporting studies based on 

RCD, justified by the growing interest in using this data in health research. While it 

was entirely logical to build upon these existing guidelines, there is an argument for 

starting afresh, and use the opportunity to review and renew existing items, rather 

than append to them. One of my primary concerns was the separation of items 4 

(study design), 9 (bias) and 12 (statistical methods). While EHRs of RCD may form 

the basis for many ecological studies (e.g: vaccination coverage; changes in 

prescribing patterns over time), there is an increasing focus on how to tackle the 

problem of confounding bias and improve the robustness of causal inference from 

evidence based on EHRs. In this way, study design and statistical methods have 

been shown (section 4.4 of chapter four) to be two integral strategies for dealing with 

confounding bias. As confounding bias is arguably the greatest threat to causal 
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inference from observational data, then this perhaps warrants greater focus in any 

guidelines for using RCD. This certainly figured prominently in the objective the PE 

extensions were intended to serve. However, the danger of separating the two 

complementary strategies in items 4 and 12 for dealing with the property of bias 

listed in 9, is that that focus becomes too diffuse. While it is helpful to break down the 

problem into numbered steps in order of reporting, there is an argument for 

reorganising the guidelines and starting again, perhaps tailoring these for inferential 

studies, given that adjustment for bias will determine both simultaneously the study 

design and analytical method used. 

An important contribution in the PE-extension to the guidelines was the expansion of 

the section on study design to focus on how this could be used to mitigate for 

confounding bias. The explanation included, as an example, the relatively recent 

development of the active-comparator new-user design, which, as already described, 

controls for confounding by restricting the study to a comparison between two drugs 

for the same disease, and therefore, to patients with the same prognosis. However, 

the examples also included interrupted time series, which it could be argued is an 

analytical method rather than design, relying as it does on longitudinally collected 

data, but not necessarily within individuals. The explanation also offered risk-

minimisation interventions as an example of study, which was perhaps better suited 

as an example of a study’s purpose rather than its design. 

It was further noted that in the explanation for the “Methods (bias)” section that this 

seemed to overlap with the following explanation for item 12 on statistical methods 

by including comments on adjustment for observed confounders through propensity 

score methods. The explanation for item 12a also exclusively focussed on case-only 

designs, which may erroneously give the impression of being the only acceptable 

design and method. Future collaboration may be needed for further iterative 

improvements on the guidelines. However, it is clear that if a contribution is to be 

made to RCD methodologies, then further work is first required to develop best 

practice in the application of the PERR and Pairwise methods, building on the work 

presented in this PhD project. Besides publication of the studies on vaccination, a 

review based on chapter 4 will also published, which will include the 

recommendations for best practice in applying the PERR and Pairwise methods, 
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along with examples where the conditions for the application of the methods may be 

met. 
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7.5 Conclusions 

Through the investigation of vaccine effectiveness in older adults using electronic 

health records, my work for this PhD project has demonstrated how evidence from 

routinely collected data can been used to complement the results from clinical trials 

to build a more complex understanding of a potential clinical effects in real-world 

settings. I demonstrated how this involved quasi-experimental methods to adjust for 

confounding bias, and in the application to the vaccination effectiveness studies, I 

developed a strategy for understanding the source and size of the bias. In these 

studies, I was able to compare the performance of two related and recently 

developed methods for adjusting for unmeasured confounding. I also reported on the 

limitations of these methods, the PERR and Pairwise, and their performance in their 

application to vaccine effectiveness studies. I also demonstrated the usefulness of 

these methods in studying populations, such as older adults, that may be under-

represented in trials. 

My contribution to research into these specific methods is that by drawing together 

existing research, I was able to report on the relative performance of the PERR and 

Pairwise methods, and offer guidance for their future application. In a wider context 

of adjusting for unmeasured confounding, I have also provided published guidance 

for using quasi-experimental methods in studies using routinely-collected data, and 

how the available longitudinal information can be leverage to adjust for unmeasured 

confounding. For future research, I have identified avenues for improving the 

applicability of the PERR approach, and potentially its robustness against time-

varying confounding. 

My research also had a clinical impact. Through the novel application of the PERR 

and Pairwise methods to estimating effect modification, I presented evidence for an 

increase in effectiveness of the pneumococcal vaccine with age in older adults, 

during the implementation of the UK vaccination programme. In my study of the 

influenza vaccine in the same population, I presented evidence for the protective 

effect of the influenza vaccine against myocardial infarction, and how this is likely to 

be mediated through its protective effect against influenza. I also highlighted the 

challenges in applying these methods to vaccination studies, but identifed another 



   
 

 244 

area for its application, studying the drug interaction between statins and the 

influenza vaccine and presented my protocol for this, based on my pilot work.  
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Appendix A – methodological review search terms 

1. ("prior event" and ratio).ti,ab. 

 

2. "paired cox model".ti,ab. 

 

3. 1 or 2 

 

4. instrumental variables.ti,ab. 

 

5. instrumental variable analysis/ 

 

6. propensity score calibration.ti,ab. 

 

7. regression discontinuity design.ti,ab. 

 

8. "difference in differences".ti,ab. 

 

9. (difference adj1 differences).ti,ab. 

 

10. "ratio of ratios".ti,ab. 

 

11. (ratio adj1 ratios).ti,ab. 

 

12. interrupted time series.ti,ab. 
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13. segmented regression.ti,ab. 

 

14. (sensitivity analysis/ or sensitivity analysis.ti,ab.) and ((unmeasured or residual or hidden) and 

(confounding or confounder*)).ti,ab. 

 

15. or/4-14 

 

16. ((unmeasured or residual or hidden or unobserved or omitted) and (confounding or confounder*)).ti,ab. 

 

17. confounding variable/ 

 

18. covariates.ti,ab. 

19. bias.ti,ab. 

 

20. selection bias/ 

 

21. 16 or 17 or 18 or 19 or 20 

 

22. observational study/ 

 

23. (observation* adj (stud* or data)).ti,ab. 

 

24. ((before adj after) and (study or studies)).ti,ab. 
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25. (nonrandomi?ed or non randomi?ed).ti,ab. 

 

26. case crossover.ti,ab. 

 

27. case control.ti,ab. 

 

28. case control study/ 

 

29. cohort study.ti,ab. 

 

30. (quasi experiment* or quasiexperiment*).ti,ab. 

 

31. quasi-experimental study/ 

 

32. cross sectional study.ti,ab. 

 

33. cross-sectional study/ 

 

34. simulation.ti,ab. 

 

35. case time control.ti,ab. 

 

36. ("before and after" and (study or studies)).ti,ab. 

 

37. or/22-36 
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38. 16 and 19 and 37 

 

39. 3 or 15 

 

40. 39 and 37 and 21 

 

41. 38 or 40 

 

42. 21 or 37 

 

43. 39 and 42 
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Appendix B – table of studies included in the methodological review 

Table 25: Table of included studies denoting QE method used and type of instrument, if applicable, where: IVA = instrumental 
variable analysis; RD = regression discontinuity; DiD = difference-in-differences; DiDiD = difference-in-difference-in-differences; 
PSC = propensity score calibration; PERR = prior event rate ratio 

Author Title Year QE method If IVA, IV type 

Bryson, W. C.; McConnell, J.; 

Krothuis, T.; McCarty, D. 

Extended-release naltrexone for alcohol 

dependence: persistence and healthcare 

costs and utilization 

2011 DiD 
 

Cheng, L.; Liu, H.; Zhang, Y.; 

Shen, K.; Zeng, Y. 

The impact of health insurance on health 

outcomes and spending of the elderly: 

Evidence from china's new cooperative 

medical scheme 

2015 DiD 
 

Gebel, M.; Vosemer, J. The impact of employment transitions on 

health in Germany. A difference-in-

differences propensity score matching 

approach 

2014 DiD 
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Goetzel, R. Z.; Roemer, E. C.; Pei, 

X.; Short, M. E.; Tabrizi, M. J.; 

Wilson, M. G.; Dejoy, D. M.; 

Craun, B. A.; Tully, K. J.; White, J. 

M.; Baase, C. M. 

Second-year results of an obesity 

prevention program at the dow chemical 

company 

2010 DiD 
 

Higgins, S.; Chawla, R.; Colombo, 

C.; Snyder, R.; Nigam, S. 

Medical homes and cost and utilization 

among high-risk patients 

2014 DiD 
 

Kausto, J.; Viikari-Juntura, E.; 

Virta, L. J.; Gould, R.; Koskinen, 

A.; Solovieva, S. 

Effectiveness of new legislation on 

partial sickness benefit on work 

participation: a quasi-experiment in 

Finland 

2014 DiD 
 

Kelly, Y.; Kelly, J.; Sacker, A. Changes in bedtime schedules and 

behavioral difficulties in 7 year old 

children 

2013 DiD 
 

Lin, W. C.; Chien, H. L.; Willis, G.; 

O'Connell, E.; Rennie, K. S.; 

Bottella, H. M.; Ferris, T. G. 

The effect of a telephone-based health 

coaching disease management program 

on medicaid members with chronic 

conditions 

2012 DiD 
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Lyon, S. M.; Wunsch, H.; Asch, D. 

A.; Carr, B. G.; Kahn, J. M.; 

Cooke, C. R. 

Use of intensive care services and 

associated hospital mortality after 

massachusetts healthcare reform 

2014 DiD 
 

Menon, J.; Paulet, M.; Thomas, Iii 

J. 

Wellness coaching and health-related 

quality of life: A case-control difference-

in-differences analysis 

2012 DiD 
 

Moran, J. R.; Short, P. F.; 

Hollenbeak, C. S. 

Long-term employment effects of 

surviving cancer 

2011 DiD 
 

Osborne, N. H.; Nicholas, L. H.; 

Ryan, A. M.; Thumma, J. R.; 

Dimick, J. B. 

Association of hospital participation in a 

quality reporting program with surgical 

outcomes and expenditures for 

medicare beneficiaries 

2015 DiD 
 

Reid, R. O.; Ashwood, J. S.; 

Friedberg, M. W.; Weber, E. S.; 

Setodji, C. M.; Mehrotra, A. 

Retail clinic visits and receipt of primary 

care 

2013 DiD 
 

Sadhu, A. R.; Ang, A. C.; Ingram-

Drake, L. A.; Martinez, D. S.; 

Hsueh, W. A.; Ettner, S. L. 

Economic benefits of intensive insulin 

therapy in critically Ill patients: The 

targeted insulin therapy to improve 

hospital outcomes (TRIUMPH) project 

2008 DiD 
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Sarkar, U.; Lyles, C. R.; Parker, M. 

M.; Allen, J.; Nguyen, R.; Moffet, 

H. H.; Schillinger, D.; Karter, A. J. 

Use of the refill function through an 

online patient portal is associated with 

improved adherence to statins in an 

integrated health system 

2014 DiD 
 

Watt, C.; Abuya, T.; Warren, C. E.; 

Obare, F.; Kanya, L.; Bellows, B. 

Can reproductive health voucher 

programs improve quality of postnatal 

care? A quasi-experimental evaluation 

of Kenya ' s Safe Motherhood voucher 

scheme 

2015 DiD 
 

De Preux, L. B. Anticipatory ex ante moral hazard and 

the effect of medicare on prevention 

2011 DiD; DiDiD 
 

Rajaram, R.; Chung, J. W.; Jones, 

A. T.; Cohen, M. E.; Dahlke, A. R.; 

Ko, C. Y.; Tarpley, J. L.; Lewis, F. 

R.; Hoyt, D. B.; Bilimoria, K. Y. 

Association of the 2011 ACGME 

resident duty hour reform with general 

surgery patient outcomes and with 

resident examination performance 

2014 DiD; DiDiD 
 

Domino, M. E.; Norton, E. C.; 

Morrissey, J. P.; Thakur, N. 

Cost shifting to jails after a change to 

managed mental health care 

2004 DiD; Fixed effects 
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Hodgkin, D.; Parks Thomas, C.; 

Simoni-Wastila, L.; Ritter, G. A.; 

Lee, S. 

The effect of a three-tier formulary on 

antidepressant utilization and 

expenditures 

2008 Fixed effects 
 

Li, J.; Hurley, J.; DeCicca, P.; 

Buckley, G. 

Physician response to pay-for-

performance: evidence from a natural 

experiment 

2014 DiD pooled OLS; DiD 

(Fixed effects); DiD + 

differential trends 

 

Yoon, J.; Bernell, S. L. The role of adverse physical health 

events on the utilization of mental health 

services 

2013 DiD & Fixed Effects 
 

Fortney, J. C.; Steffick, D. E.; 

Burgess Jr, J. F.; Maciejewski, M. 

L.; Petersen, L. A. 

Are primary care services a substitute or 

complement for specialty and inpatient 

services? 

2005 IVA applied to DiD Geographic 

Hay, J.; Jhaveri, M.; Tangirala, M.; 

Kaliner, M. 

Cost and resource utilization 

comparisons of second-generation 

antihistamines vs. montelukast for 

allergic rhinitis treatment 

2009 IVA applied to Fixed 

effects 

Historical 

Chung, S.; Domino, M. E.; 

Stearns, S. C. 

The effect of retirement on weight 2009 Fixed Effects; IVA 

applied to Fixed effects 

Lagged 
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Wagner, T. H.; Jimison, H. B. Computerized health information and the 

demand for medical care 

2003 IVA applied to Fixed 

effects 

Other 

Kawatkar, A. A.; Hay, J. W.; Stohl, 

W.; Nichol, M. B. 

Incremental expenditure of biologic 

disease modifying antirheumatic 

treatment using instrumental variables in 

panel data 

2013 Dynamic panel model 

(IV-GMM) 

Lagged 

Piernas, C.; Ng, S. W.; Mendez, M. 

A.; Gordon-Larsen, P.; Popkin, B. 

M. 

A dynamic panel model of the 

associations of sweetened beverage 

purchases with dietary quality and food-

purchasing patterns 

2015 Dynamic panel model 

(IV-GMM) 

Lagged 

Lei, X.; Lin, W. The new cooperative medical scheme in 

rural China: Does more coverage mean 

more service and better health? 

2009 Fixed effects; IVA; DiD Geographic 

Lin, M. J.; Liu, J. T. Do lower birth weight babies have lower 

grades? Twin fixed effect and 

instrumental variable method evidence 

from Taiwan 

2009 Fixed effects; IVA Geographic 

Schmittdiel, J. A.; Karter, A. J.; 

Dyer, W.; Parker, M.; Uratsu, C.; 

Chan, J.; Duru, O. K. 

The comparative effectiveness of mail 

order pharmacy use vs. local pharmacy 

use on LDL-C control in new statin users 

2011 DiD; IVA Other 
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Basu, A. Estimating Decision-Relevant 

Comparative Effects Using Instrumental 

Variables 

2011 IVA Geographic 

Beck, C. A.; Penrod, J.; Gyorkos, 

T. W.; Shapiro, S.; Pilote, L. 

Does Aggressive Care Following Acute 

Myocardial Infarction Reduce Mortality? 

Analysis with Instrumental Variables to 

Compare Effectiveness in Canadian and 

United States Patient Populations 

2003 IVA Geographic 

Chen, L. F.; Chen, H. P.; Huang, 

Y. S.; Huang, K. Y.; Chou, P.; Lee, 

C. C. 

Pneumococcal Pneumonia and the Risk 

of Stroke: A Population-Based Follow-

Up Study 

2012 IVA Geographic 

Edwards, S. T.; Prentice, J. C.; 

Simon, S. R.; Pizer, S. D. 

Home-Based Primary Care and the risk 

of ambulatory care-sensitive condition 

hospitalization among older veterans 

with diabetes mellitus 

2014 IVA Geographic 

Frances, C. D.; Shlipak, M. G.; 

Noguchi, H.; Heidenreich, P. A.; 

McClellan, M. 

Does physician specialty affect the 

survival of elderly patients with 

myocardial infarction? 

2000 IVA Geographic 

Goldman, D. P.; Bao, Y. Effective HIV treatment and the 

employment of HIV+ adults 

2004 IVA Geographic 
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Gowrisankaran, G.; Town, R. J. Estimating the quality of care in 

hospitals using instrumental variables 

1999 IVA Geographic 

Hirth, R. A.; Grabowski, D. C.; 

Feng, Z.; Rahman, M.; Mor, V. 

Effect of nursing home ownership on 

hospitalization of long-stay residents: An 

instrumental variables approach 

2014 IVA Geographic 

Kahn, J. M.; Werner, R. M.; David, 

G.; Ten Have, T. R.; Benson, N. 

M.; Asch, D. A. 

Effectiveness of long-term acute care 

hospitalization in elderly patients with 

chronic critical illness 

2013 IVA Geographic 

Linden, A.; Adams, J. L. Evaluating disease management 

programme effectiveness: An 

introduction to instrumental variables 

2006 IVA Geographic 

Norton, E. C.; Lindrooth, R. C.; 

Ennett, S. T. 

Controlling for the endogeneity of peer 

substance use on adolescent alcohol 

and tobacco use 

1998 IVA Geographic 

Pilote, L.; Beck, C. A.; Eisenberg, 

M. J.; Humphries, K.; Joseph, L.; 

Penrod, J. R.; Tu, J. V. 

Comparing invasive and noninvasive 

management strategies for acute 

myocardial infarction using 

administrative databases 

2008 IVA Geographic 
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Pracht, E. E.; Tepas, Iii J. J.; 

Celso, B. G.; Langland-Orban, B.; 

Flint, L. 

Survival advantage associated with 

treatment of injury at designated trauma 

centers: A bivariate probit model with 

instrumental variables 

2007 IVA Geographic 

Slade, E. P.; McCarthy, J. F.; 

Valenstein, M.; Visnic, S.; Dixon, L. 

B. 

Cost savings from assertive community 

treatment services in an era of declining 

psychiatric inpatient use 

2013 IVA Geographic 

Tsai, A. C.; Votruba, M.; Bridges, 

J. F. P.; Cebul, R. D. 

Overcoming bias in estimating the 

volume-outcome relationship 

2006 IVA Geographic 

Wehby, G. L.; Ullrich, F.; Xie, Y. Very low birth weight hospital volume 

and mortality: An instrumental variables 

approach 

2012 IVA Geographic 

Hadley, J.; Polsky, D.; Mandelblatt, 

J. S.; Mitchell, J. M.; Weeks, J. C.; 

Wang, Q.; Hwang, Y. T. 

An exploratory instrumental variable 

analysis of the outcomes of localized 

breast cancer treatments in a medicare 

population 

2003 IVA Geographic + 

Historical + 

Time 

O'Malley, A. J.; Frank, R. G.; 

Normand, S. L. T. 

Estimating cost-offsets of new 

medications: Use of new antipsychotics 

and mental health costs for 

schizophrenia 

2011 IVA Geographic + 

Time 
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Abrahamowicz, M.; Beauchamp, 

M. E.; Ionescu-Ittu, R.; Delaney, J. 

A. C.; Pilote, L. 

Reducing the variance of the prescribing 

preference-based instrumental variable 

estimates of the treatment effect 

2011 IVA Historical 

An, J.; Nichol, M. B.  Multiple medication adherence and its 

effect on clinical outcomes among 

patients with comorbid type 2 diabetes 

and hypertension 

2013 IVA Historical 

Bekelman, J. E.; Mitra, N.; 

Handorf, E. A.; Uzzo, R. G.; Hahn, 

S. A.; Polsky, D.; Armstrong, K. 

Effectiveness of androgen-deprivation 

therapy and radiotherapy for older men 

with locally advanced prostate cancer 

2015 IVA Historical 

Bhowmik, D.; Aparasu, R. R.; 

Rajan, S. S.; Sherer, J. T.; Ochoa-

Perez, M.; Chen, H. 

Risk of manic switch associated with 

antidepressant therapy in pediatric 

bipolar depression 

2014 IVA Historical 

Brooks, J. M.; Tang, Y.; Chapman, 

C. G.; Cook, E. A.; Chrischilles, E. 

A. 

What is the effect of area size when 

using local area practice style as an 

instrument? 

2013 IVA Historical 

Chuang, C. M.; Chou, Y. J.; Yen, 

M. S.; Chao, K. C.; Twu, N. F.; Wu, 

H. H.; Wen, K. C.; Chen, Y. J.; 

Wang, P. H.; Lai, C. R.; Chou, P. 

The role of secondary cytoreductive 

surgery in patients with recurrent 

epithelial ovarian, tubal, and peritoneal 

cancers: A comparative effectiveness 

analysis 

2012 IVA Historical 
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De Ridder, A.; De Graeve, D. Can we account for selection bias? A 

comparison between bare metal and 

drug-eluting stents 

2011 IVA Historical 

Fang, G.; Brooks, J. M.; 

Chrischilles, E. A. 

Comparison of instrumental variable 

analysis using a new instrument with risk 

adjustment methods to reduce 

confounding by indication 

2012 IVA Historical 

Figueroa, R.; Harman, J.; Engberg, 

J. 

Use of Claims Data to Examine the 

Impact of Length of Inpatient Psychiatric 

Stay on Readmission Rate 

2004 IVA Historical 

Huesch, M. D. External adjustment sensitivity analysis 

for unmeasured confounding: An 

application to coronary stent outcomes, 

Pennsylvania 2004-2008 

2013 IVA Historical 

Huybrechts, K. F.; Brookhart, M. 

A.; Rothman, K. J.; Silliman, R. A.; 

Gerhard, T.; Crystal, S.; 

Schneeweiss, S. 

Comparison of different approaches to 

confounding adjustment in a study on 

the association of antipsychotic 

medication with mortality in older nursing 

home patients 

2011 IVA Historical 
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Ionescu-Ittu, R. Treatment effect estimates varied 

depending on the definition of the 

provider prescribing preference-based 

instrumental variables 

2012 IVA Historical 

Kivimaki, M.; Vahtera, J.; Kawachi, 

I.; Ferrie, J. E.; Oksanen, T.; 

Joensuu, M.; Pentti, J.; Salo, P.; 

Elovainio, M.; Virtanen, M. 

Psychosocial work environment as a risk 

factor for absence with a psychiatric 

diagnosis: An instrumental-variables 

analysis 

2010 IVA Historical 

Kramer, A.; Jager, K. J.; Fogarty, 

D. G.; Ravani, P.; Finne, P.; Perez-

Panades, J.; Prutz, K. G.; Arias, 

M.; Heaf, J. G.; Wanner, C.; Stel, 

V. S. 

Association between pre-transplant 

dialysis modality and patient and graft 

survival after kidney transplantation 

2012 IVA Historical 

Kuo, Y. F.; Montie, J. E.; 

Shahinian, V. B. 

Reducing bias in the assessment of 

treatment effectiveness: Androgen 

deprivation therapy for prostate cancer 

2012 IVA Historical 

Lakdawalla, D. N.; Mascarenhas, 

M.; Jena, A. B.; Vanderpuye-Orgle, 

J.; Lavallee, C.; Linthicum, M. T.; 

Snider, J. T. 

Impact of oral nutrition supplements on 

hospital outcomes in pediatric patients 

2014 IVA Historical 
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MacKenzie, T. A.; Tosteson, T. D.; 

Morden, N. E.; Stukel, T. A.; 

O'Malley, A. J. 

Using instrumental variables to estimate 

a Cox's proportional hazards regression 

subject to additive confounding 

2014 IVA Historical 

Margolis, D. J.; Gupta, J.; Hoffstad, 

O.; Papdopoulos, M.; Glick, H. A.; 

Thom, S. R.; Mitra, N. 

Lack of effectiveness of hyperbaric 

oxygen therapy for the treatment of 

diabetic foot ulcer and the prevention of 

amputation a cohort study 

2013 IVA Historical 

Parmar, A. D.; Sheffield, K. M.; Han, Y.; 

Vargas, G. M.; Guturu, P.; Kuo, Y. F.; 

Goodwin, J. S.; Riall, T. S. 

Evaluating comparative effectiveness 

with observational data: Endoscopic 

ultrasound and survival in pancreatic 

cancer 

2013 IVA Historical 

Pisoni, R. L.; Arrington, C. J.; 

Albert, J. M.; Ethier, J.; Kimata, N.; 

Krishnan, M.; Rayner, H. C.; Saito, 

A.; Sands, J. J.; Saran, R.; 

Gillespie, B.; Wolfe, R. A.; Port, F. 

K. 

Facility Hemodialysis Vascular Access 

Use and Mortality in Countries 

Participating in DOPPS: An Instrumental 

Variable Analysis 

2009 IVA Historical 

Prentice, J. C.; Conlin, P. R.; 

Gellad, W. F.; Edelman, D.; Lee, T. 

A.; Pizer, S. D. 

Capitalizing on prescribing pattern 

variation to compare medications for 

type 2 diabetes 

2014 IVA Historical 
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Rassen, J. A.; Brookhart, M. A.; 

Glynn, R. J.; Mittleman, M. A.; 

Schneeweiss, S. 

Instrumental variables II: instrumental 

variable application-in 25 variations, the 

physician prescribing preference 

generally was strong and reduced 

covariate imbalance 

2009 IVA Historical 

Rosenthal, M. B.; Li, Z.; 

Robertson, A. D.; Milstein, A. 

Impact of financial incentives for 

prenatal care on birth outcomes and 

spending 

2009 IVA Historical 

Sheffield, K. M.; Riall, T. S.; Han, 

Y.; Kuo, Y. F.; Townsend, C. M., 

Jr.; Goodwin, J. S. 

Association between cholecystectomy 

with vs without intraoperative 

cholangiography and risk of common 

duct injury 

2013 IVA Historical 

Steingrub, J. S.; Lagu, T.; 

Rothberg, M. B.; Nathanson, B. H.; 

Raghunathan, K.; Lindenauer, P. 

K. 

Treatment with neuromuscular blocking 

agents and the risk of in-hospital 

mortality among mechanically ventilated 

patients with severe sepsis 

2014 IVA Historical 

Stukel, Thérèse A; Fisher, Elliott S; 

Wennberg, David E; Alter, David 

A; Gottlieb, Daniel J; Vermeulen, 

Marian J 

Analysis of observational studies in the 

presence of treatment selection bias: 

effects of invasive cardiac management 

on AMI survival using propensity score 

and instrumental variable methods. 

2007 IVA Historical 
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Tagami, T.; Matsui, H.; Horiguchi, 

H.; Fushimi, K.; Yasunaga, H. 

Antithrombin and mortality in severe 

pneumonia patients with sepsis-

associated disseminated intravascular 

coagulation: An observational 

nationwide study 

2014 IVA Historical 

VanDyke, R. D.; McPhail, G. L.; 

Huang, B.; Fenchel, M. C.; Amin, 

R. S.; Carle, A. C.; Chini, B. A.; 

Seid, M. 

Inhaled tobramycin effectively reduces 

FEV1 decline in cystic fibrosis an 

instrumental variables analysis 

2013 IVA Historical 

Wong, K.; Campitelli, M. A.; Stukel, 

T. A.; Kwong, J. C. 

Estimating influenza vaccine 

effectiveness in community-dwelling 

elderly patients using the instrumental 

variable analysis method 

2012 IVA Historical 

Chen, H.; Mehta, S.; Aparasu, R.; 

Patel, A.; Ochoa-Perez, M. 

Comparative effectiveness of 

monotherapy with mood stabilizers 

versus second generation (atypical) 

antipsychotics for the treatment of 

bipolar disorder in children and 

adolescents 

2014 IVA Historical + 

Time 
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Newman, T. B.; Vittinghoff, E.; 

McCulloch, C. E. 

Efficacy of phototherapy for newborns 

with hyperbilirubinemia: a cautionary 

example of an instrumental variable 

analysis 

2012 IVA Historical + 

Time 

Ahern, T. P.; Pedersen, L.; 

Svaerke, C.; Rothman, K. J.; 

Sorensen, H. T.; Lash, T. L. 

The association between vitamin K 

antagonist therapy and site-specific 

cancer incidence estimated by using 

heart valve replacement as an 

instrumental variable 

2011 IVA Lagged 

Cai, B.; Hennessy, S.; Flory, J. H.; 

Sha, D.;Ten Have, T. R.; Small, D. 

S. 

Simulation study of instrumental variable 

approaches with an application to a 

study of the antidiabetic effect of 

bezafibrate 

2012 IVA Lagged 

O'Malley, A. J. Instrumental variable specifications and 

assumptions for longitudinal analysis of 

mental health cost offsets 

2012 IVA Lagged 

Cawley, J.; Meyerhoefer, C. The medical care costs of obesity: An 

instrumental variables approach 

2012 IVA Other 
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Groenwold, R. H.; Hak, E.; 

Klungel, O. H.; Hoes, A. W. 

Instrumental variables in influenza 

vaccination studies: mission 

impossible?! 

2010 IVA Other 

Kim, D.; Leigh, J. P. Estimating the effects of wages on 

obesity 

2010 IVA Other 

Pirracchio, R.; Sprung, C.; Payen, 

D.; Chevret, S. 

Benefits of ICU admission in critically ill 

patients: whether instrumental variable 

methods or propensity scores should be 

used 

2011 IVA Other 

Selden, T. M.; Hudson, J. L. Access to care and utilization among 

children: Estimating the effects of public 

and private coverage 

2006 IVA Other 

Slade, E. P.; Wissow, L. S.; Davis, 

M.; Abrams, M. T.; Dixon, L. B. 

Medicaid lapses and low-income young 

adults' receipt of outpatient mental 

health care after an inpatient stay 

2014 IVA Other 

Hay, J. W.; Lawler, E.; Yucel, K.; 

Guo, A.; Balzer, T.; Gaziano, J. M.; 

Scranton, R. E. 

Cost impact of diagnostic imaging for 

lower extremity peripheral vascular 

occlusive disease 
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Appendix C – ISAC protocol 

Below is the final accepted version of protocol submitted to ISAC for approval. 

Highlighted text in blue indicates changes that have been made at the request 

of the initial ISAC review. Yellow highlights indicates text that was added since 

the previous version. 

ISAC APPLICATION FORM 
PROTOCOLS FOR RESEARCH USING THE CLINICAL PRACTICE RESEARCH DATALINK (CPRD) 

 

ISAC use only: 

Protocol Number 

Date submitted 

 

............................. 

............................. 

IMPORTANT 

If you have any queries, please contact ISAC Secretariat: 

ISAC@cprd.com 

 

1. Study Title  
Influenza and Pneumococcal Vaccination Effectiveness and an Investigation into Association with 

Cardiovascular Outcomes in the Elderly 

2. Principal Investigator (full name, job title, organisation & e-mail address for correspondence regarding this 
protocol) 

David Melzer 

Professor of Epidemiology and Public Health 

Epidemiology and Public Health Group 

University of Exeter 

Medical School 

Email: D.Melzer@exeter.ac.uk 

 

3. Affiliation (full address) 
University of Exeter 

Medical School 

Barrack Road, Exeter, EX2 5DW  

United Kingdom 

4. Protocol’s Author (if different from the principal investigator) 
PI plus Alessandro Ble, Adam Streeter and William Henley 

5. List of all investigators/collaborators (please list the names, affiliations and e-mail addresses* of all collaborators, 
other than the principal investigator) 

mailto:Annalisa.Rubino@gprd.com
mailto:D.Melzer@exeter.ac.uk
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Alessandro Ble 

Research Fellow in Epidemiology and Public Health 

Epidemiology and Public Health Group 

University of Exeter 

Medical School 

Email: A.Ble@exeter.ac.uk 

 

Kirsty Bowman  

PhD student in Epidemiology and Public Health 

Epidemiology and Public Health Group 

University of Exeter 

Medical School 

Email: khb202@exeter.ac.uk 

 

William Henley 

Professor of Medical Statistics 

Health Statistics Group 

University of Exeter 

Medical School 

Email: W.E.Henley@exeter.ac.uk 

 

Jane Masoli  

NIHR Academic Clinical Fellow & Specialist Registrar in Geriatric Medicine, 

Epidemiology and Public Health Group & Healthcare for Older People, RD&E Hospital, Exeter  

University of Exeter 

Medical School 

Email: J.Masoli@exeter.ac.uk 

 

Ruben Mujica Mota,  

mailto:A.Ble@exeter.ac.uk
mailto:W.E.Henley@exeter.ac.uk
mailto:J.Masoli@exeter.ac.uk
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Senior Lecturer in Economics 

University of Exeter 

Medical School 

Email: E.Mujica-Mota@exeter.ac.uk 

 

Suzanne Richards,  

Senior Lecturer in Primary Care,  

Primary Care Research Group 

University of Exeter 

Medical School 

Email: S.H.Richards@exeter.ac.uk 

 

Adam Streeter 

PhD student in Medical Statistics 

Health Statistics Group 

University of Exeter 

Medical School 

Email: A.J.Streeter@exeter.ac.uk 

 

Jose M. Valderas,  

Professor of Health Services and Policy Research & Academic General Practitioner  

Primary Care Research Group 

University of Exeter 

Medical School 

Email: J.M.Valderas@exeter.ac.uk  

 

Lauren Rogers 

Research fellow in Medical Statistics 

Health Statistics Group 

mailto:E.Mujica-Mota@exeter.ac.uk
mailto:A.J.Streeter@exeter.ac.uk
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University of Exeter 

Medical School 

L.R.Rodgers@exeter.ac.uk 

 

   

 

*Please note that your ISAC application form and protocol must be copied to all e-mail addresses listed above at the time of 

submission of your application to the ISAC mailbox. Failure to do so will result in delays in the processing of your application. 

 

6. Type of Institution (please tick one box below) 
 

Academia  Research Service Provider  Pharmaceutical Industry  

NHS   Government Departments  Others    

 

7. Financial Sponsor of study 
 

Pharmaceutical Industry (please specify)         Academia(please specify)        

Government / NHS (please specify)    NIHR      None    

Other (please specify)           

 

8. Data source  (please tick one box below)      
 

Sponsor has on-line access   Purchase of ad hoc dataset   

Commissioned study    

Other      (please specify)  amended use of 14-135R database 

 

9. Has this protocol been peer reviewed by another Committee? 
 

Yes*    No   Note: sub-study within NIHR School for Public Health Ageing Well 

research programme – programme proposal peer reviewed and approved  

 

* Please state in your protocol the name of the reviewing Committee(s) and provide an outline of the review process 

and outcome. 
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10. Type of Study (please tick all the relevant boxes which apply) 
 

Adverse Drug Reaction/Drug Safety  Drug Use   Disease Epidemiology  

Drug Effectiveness   Pharmacoeconomic          Other    

 

11. This study is intended for: 
 

Publication in peer reviewed journals   Presentation at scientific conference   

Presentation at company/institutional meetings  Other           
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12. Does this protocol also seek access to data held under the CPRD Data Linkage Scheme? 
 

Yes    No   

 

 

13. If you are seeking access to data held under the CPRD Data Linkage Scheme*, please select the 
source(s) of linked data being requested. 

 

 Hospital Episode Statistics                Cancer Registry Data**               

 MINAP                                              ONS Mortality Data    

 Index of Multiple Deprivation/ Townsend Score  

 Mother Baby Link                  Other: (please specify)        

 

* As part of the ISAC review of linkages, the protocol may be shared - in confidence - with a 

representative of the requested linked data set(s) and summary details may be shared - in confidence - 

with the Confidentiality Advisory Group of the Health Research Authority.   

 

**Please note that applicants seeking access to cancer registry data must provide consent for 

publication of their study title and study institution on the UK Cancer Registry website. Please contact 

the CPRD Research Team on +44 (20) 3080 6383 or email kc@cprd.com to discuss this requirement 

further. 

 

 

14. If you are seeking access to data held under the CPRD Data Linkage Scheme, have you already 
discussed your request with a member of the Research team?  

 

Yes    No*   

 

*Please contact the CPRD Research Team on +44 (20) 3080 6383 or email kc@cprd.com to discuss 

your requirements before submitting your application. 

 

Please list below the name of the person/s at the CPRD with whom you have discussed your request. 

 Kendal Chidwick  

 

mailto:kc@cprd.com
mailto:kc@cprd.com
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15. If you are seeking access to data held under the CPRD Data Linkage Scheme, please provide the 
following information: 

 

The number of linked datasets requested: 4 

 

A synopsis of the purpose(s) for which the linkages are required:  

We request the CPRD standard data (for the linked subsample), plus HES data to cover 

hospital event outcomes. We also request ONS mortality data as these seem to improve 

ascertainment of death over GP recorded date of death data, at least in the oldest old 

(from our previous work). Permission for MINAP data is also requested, if possible, as the 

study is focussed on CVD outcomes 

 

Is linkage to a local dataset with <1 million patients being requested?  

 

Yes*  No  

 

* If yes, please provide further details: 

            

            

 

16. If you have requested linked data sets, please indicate whether the Principal Investigator or any of 
the collaborators listed in response to question 5 above, have access to any of the linked datasets 
in a patient identifiable form, or associated with a patient index.  

 

Yes*    No   

 

* If yes, please provide further details: 

           

           

 

17. Does this protocol involve requesting any additional information from GPs?  
 

Yes*   No   
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 * Please indicate what will be required:  

Completion of questionnaires by the GP    Yes      No   

Provision of anonymised records (e.g.  hospital discharge summaries)  Yes      No   

Other (please describe)       

 

 Any questionnaire for completion by GPs or other health care professional must be approved by ISAC 

before circulation for completion.   

18. Does this protocol describe a purely observational study using CPRD data (this may include the 
review of anonymised free text)? 
 

Yes*   No**   

 

 * Yes: If you will be using data obtained from the CPRD Group, this study does not require separate 

ethics approval from an NHS Research Ethics Committee. 

** No: You may need to seek separate ethics approval from an NHS Research Ethics Committee for this 

study. The ISAC will provide advice on whether this may be needed. 

 

19. Does this study involve linking to patient identifiable data from other sources? 
 

Yes    No   

 

20. Does this study require contact with patients in order for them to complete a questionnaire? 
 

Yes    No   

 

N.B. Any questionnaire for completion by patients must be approved by ISAC before circulation for 

completion.   

21. Does this study require contact with patients in order to collect a sample? 
 

Yes*   No   

 

* Please state what will be collected         
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22. Experience/expertise available  
 

Please complete the following questions to indicate the experience/expertise available within the team of researchers 

actively involved in the proposed research, including  analysis of data and interpretation of results 

 Previous GPRD/CPRD Studies  Publications using GPRD/CPRD data 

 

None      

1-3       

> 3       

          Yes                              No 

Is statistical expertise available within the research team?       

                           If yes, please outline level of experience    

 

Co-I William Henley is Professor of Medical Statistics with extensive experience in methods, including accounting for 

missing values. Co-I Adam Streeter is a PhD student in Medical Statistics. PI David Melzer has got more than 15 years 

of experience in analysing data from large studies on ageing and from genomic array datasets. 

 

Is experience of handling large data sets (>1 million records)  

available within the research team?           

                           If yes, please outline level of experience    

 

PI David Melzer and Co-I William Hanley have 2-year experience in analysing a 50,000 patient extract of the CPRD 

data. CI Alessandro Ble and CI Adam Streeter have a 1-year experience in working with the CPRD database. DM has 

got more than 15-years’ experience in analysing very large genomic array datasets, including UK Biobank. 

 

 

Is UK primary care experience available within the research team?       

                           If yes, please outline level of experience    

 

Suzanne Richards is Senior Lecturer in Primary Care and Dr Jose Valderas is academic general practitioner and 

Professor of Health Services and Policy Research at the University of Exeter. They will provide extensive inputs on 

primary care issues.     
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23.  References relating to your study 
 

Please list up to 3 references (most relevant) relating to your proposed study. 

Jefferson T, Di Pietrantonj C, Al-Ansary LA, Ferroni E, Thorning S, Thomas RE. Vaccines for preventing influenza in the 

elderly. Cochrane database Syst Rev. 2010;(2):CD004876. doi:10.1002/14651858.CD004876.pub3.      

 

Moberley S, Holden J, Tatham DP, Andrews RM. Vaccines for preventing pneumococcal infection in adults. Cochrane 

database Syst Rev. 2013;1:CD000422. doi:10.1002/14651858.CD000422.pub3. 
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PROTOCOL CONTENT CHECKLIST 

In order to help ensure that protocols submitted for review contain adequate information for protocol 

evaluation, ISAC have produced instructions on the content of protocols for research using CPRD data. 

These instructions are available on the CPRD website (www.cprd.com/ISAC). All protocols using CPRD data 

which are submitted for review by ISAC must contain information on the areas detailed in the instructions.  

IF you do not feel that a specific area required by ISAC is relevant for your protocol, you will need to justify 

this decision to ISAC.  

 

Applicants must complete the checklist below to confirm that the protocol being submitted includes all the 

areas required by ISAC, or to provide justification where a required area is not considered to be relevant for 

a specific protocol.  Protocols will not be circulated to ISAC for review until the checklist has been completed 

by the applicant.  

 

Please note, your protocol will be returned to you if you do not complete this checklist, or if 

you answer ‘no’ and fail to include justification for the omission of any required area. 

 

 Included in 

protocol? 

 

Required area Yes No If no, reason for 

omission 

Lay Summary (max.200 words)         

Background         

Objective, specific aims and rationale         

Study Type 

Descriptive 

Hypothesis Generating 

Hypothesis Testing 

 

 

 

 

  

 

 

 

 

Hypothesis testing 

Hypothesis testing 

Study Design         

Sample size/power calculation  

(Please provide justification of  

sample size in the protocol) 

        

Study population  

(including estimate of expected number of  

 

 

 

 

 

      

http://www.cprd.com/ISAC
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relevant patients in the CPRD)  

Selection of comparison group(s) or controls         

Exposures, outcomes and covariates 

Exposures are clearly described  

Outcomes are clearly described 

 

 

 

 

 

 

      

      

Use of linked data  

(if applicable) 

        

Data/ Statistical Analysis Plan 

There is plan for addressing confounding  

There is a plan for addressing missing data 

 

 

 

 

 

 

      

please see  

Patient/ user group involvement †         

Limitations of the study design, data sources  

and analytic methods 

        

Plans for disseminating and communicating study 

results 

        

 

† It is expected that many studies will benefit from the involvement of patient or user groups 

in their planning and refinement, and/or in the interpretation of the results and plans for 

further work. This is particularly, but not exclusively true of studies with interests in the 

impact on quality of life.   Please indicate whether or not you intend to engage patients in any 

of the ways mentioned above. 

 

Voluntary registration of ISAC approved studies:  
Epidemiological studies are increasingly being included in registries of research around the world, including 
those primarily set up for clinical trials. To increase awareness amongst researchers of ongoing research, 
ISAC encourages voluntary registration of epidemiological research conducted using MHRA databases. This 
will not replace information on ISAC approved protocols that may be published in its summary minutes or 
annual report. It is for the applicant to determine the most appropriate registry for their study. Please 
inform the ISAC secretariat that you have registered a protocol and provide the location. 
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Lay summary 

Adults aged over 65y are presently targeted in the UK for vaccination against influenza and 

pneumococcal infection. Yet recent studies have suggested a possible additional protective 

effect against major cardiovascular events. Evidence from randomized clinical trials to 

support the policy of vaccination and the effect on cardiovascular outcomes is sparse due to 

the ethical and practical difficulties of recruiting a representative sample of elderly subjects, 

many of who have multiple co-morbidities. Observational data can offer an information-rich 

addition to trial evidence. However analysis of such data is subject to confounding bias, with 

studies into vaccine effectiveness variously failing to control for the effects of unmeasured 

confounding. Therefore evaluation of vaccine effectiveness needs to be robust against the 

effects of unmeasured confounders. Accordingly, the analysis in this study will be validated 

against other analytical methods and the results compared with estimates synthesised from 

existing evidence and current epidemiological data. Pneumococcal pneumonia is a common 

complication of influenza, and both present as respiratory disease, so the effects of both 

vaccines should be considered together.  This project is part of the NIHR School for Public 

Health Research ‘Ageing Well’ research programme and extends work on risk factors and 

prevention of cardiovascular disease in different clinically relevant groups of older patients. 

 

Objectives, Specific Aims and Rationale 

The objective of this project is to estimate the effects of vaccination against Influenza and 

Pneumococcal infection in the elderly (age 65 and over), on:  

a) rates of lower respiratory infection, measured through hospital diagnoses and primary 

care prescribing  

b) major cardiovascular events, to reappraise previous claims of major protective effects.  

 

To provide valid results we will employ and compare two statistical methods, which aim to 

deal with bias and confounding, namely propensity scoring and the prior event rate ratio 

(PERR). In addition to producing estimates of effect, we aim also to understand the nature 

and source of bias present in this observational study context.  
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The elderly population is diverse, and we therefore plan to estimate vaccination effects in 

younger and older groups separately in men and women and in those with different 

burdens of co-morbidity    

 

Background 

The overall objective of the NIHR National School for Public Health Research ‘ageing well’ 

research programme is to help improve the evidence base for prevention and health 

promotion in later life. This CPRD application is focused on General Practitioner (GP) 

delivered influenza and pneumococcal vaccination, which is claimed to have a role in 

cardiovascular prevention in older people.  

Vaccination against influenza viruses and the streptococcus pneumoniae (pneumococcus) 

bacterium is currently recommended in adults aged over 65y and is intended to tackle age-

related incidents of lower respiratory tract infection, of which the most acute form is 

pneumonia. Estimated to be the fifth leading cause of mortality in adults aged over 65y with 

prevalence highest in the very old 344,345, pneumonia is increasingly a cause for 

hospitalisation in the elderly 346. Conversely deaths from influenza are difficult to discern 

without laboratory confirmation, but while morality rates due to influenza per se are 

estimated to be low compared to those from pneumonia 345, the US Centers for Disease 

Control and Prevention recommend vaccination against influenza to reduce the risk of 

complications, such as pneumonia, in the at-risk populations. In the USA, it has been 

estimated that influenza and its complications are responsible on average for 186 000 

excess hospitalisations347 and 132.5 deaths per 100 000 person-years348. 

Reliable estimates of the benefits of vaccination are important for establishing informed 

policies regarding resource allocation and identifying the need for new vaccines and 

prevention strategies. However, there is currently a lack of robust evidence for effectiveness 

of influenza and pneumococcal vaccines in older populations: 
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a) A meta-analysis of studies evaluating the effectiveness of vaccination against 

pneumococcal infection in adults 280 found immunisation to be effective against culture-

confirmed invasive pneumococcal disease, but provided inconclusive results for the 

respiratory disease of pneumonia, by far the most common presentation of infection. The 

effect of routine vaccination to prevent all-cause pneumonia and mortality among the 

elderly, therefore, remains unresolved. 

b) Observational studies evaluating the effectiveness of the influenza vaccine have so far 

largely proved to be unsatisfactory, failing to adequately control for indication bias 349, while 

in the only major randomised controlled trial in the elderly using laboratory-confirmed 

outcomes, those above 70y of age were under-represented 350.   

c) In addition to the intended effect of vaccination, a recent meta-analysis of RCT evidence 

on influenza vaccination312 (n=6735 patients, mean age 67 years) concluded that vaccination 

was associated with a risk reduction of about 35% from major adverse cardiovascular 

events, but recommended further investigation on a larger scale. Furthermore, there is 

some evidence suggesting that pneumococcal vaccination may also be associated with a 

reduced risk of myocardial infarction351 although this has been less consistently found than 

for influenza vaccination352,353.  

Older patients included in clinical trials often tend to be selected according to criteria that 

are more narrowly representative of the general population. In this project we aim to 

estimate ‘real world’ effects of pneumococcal and influenza vaccination in the whole elderly 

population. However, the older population is very diverse, with for example disease-free 67 

year olds having little in common with 85 year olds on medication for three or more major 

conditions. We therefore seek to estimate vaccination effects in defined major sub-groups 

of the older population, based on age, gender and co-morbidity.  

 

Study type 

The study will principally be a hypothesis test of the effectiveness of the pneumococcal and 

influenza vaccines against the respiratory diseases caused by those pathogens targeted for 

immunisation and major cardiovascular outcomes. Based on experience and evidence from 

previous studies, confounding bias presents a major challenge in the analysis of 
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observational data. Therefore the analysis plan includes the comparison of the effects of 

measured confounding against adjustment made for residual confounding. 

 

Study design 

 

This study is designed as a parallel matched cohorts study.  This study involves statistical 

analysis of existing data from GP and linked hospital records for patients aged 65 and over.  

We plan to apply two statistical methods analyses to the data in order to address potential 

confounding, comparing patients who received each vaccination with similar patients who 

did not. We will apply propensity scoring, which seeks to match patients on measures that 

predict the outcomes of interest. We will also use the PERR approach (see statistics section), 

which aims to use the rates of the outcome of interest (e.g. rates for lower respiratory 

infections) before vaccination to correct for prior differences between the case group who 

got vaccinations and a control group who didn’t.  

 

Data/Statistical analysis 

The purpose of this study is to evaluate the true effect of vaccination against influenza and 

pneumococcal infection, and to verify recently reported secondary effects on cardiovascular 

disease. As the data are observational, the best method will be sought to adjust for any 

confounding bias, that is likely to be unmeasured and otherwise retained in the residual of 

any analysis. In doing so, we aim to understand the nature of this bias, and compare the 

contribution from measured and unmeasured sources. This will require comparing the 

different approaches to the analysis, as described below. 

The data will be modelled as survival times from the vaccination date (or equivalent date for 

the controls) to the outcome of interest. Vaccine effectiveness will initially be estimated 

using Cox’s regression – the fundamental model to which adjustment for confounding bias 

will be applied. 
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Propensity scoring 

An important step in the analysis will be to assess the contribution of known confounders 

where they are provided in the data. Vaccination and the outcomes will individually be 

tested for association with covariates and factors identified as potential confounders 

through multivariate modelling. Significant variables will be modelled in a best-fit model of 

vaccination status. This will be used to generate predictions, or propensity scores11. The 

literature on how to apply the propensity score methodology is extensive 212,294,354,355 and 

shall not be repeated here, but the treatment-prediction model generating the scores needs 

to be specified correctly in order to adjust for confounding. Proper adjustment for 

confounding bias is of course contingent on correct specification of all variables associated 

with both treatment and outcome. The treatment effect with adjustment for known 

confounders through the propensity score can then be estimated using Cox’s regression. 

Here we are interested in the marginal effect, rather than any conditional effects, so bias 

due to non-collapsibility of the non-linear regression model will be avoided. 

 

The prior event rate ratio  

Since routinely collected data such as that supplied by CPRD is unlikely to have collected 

information on all confounders relating to any particular study, further methods are 

required to adjust for confounding bias, which would otherwise remain in the residual of 

analysis. 

The Prior Event Rate Ratio (PERR) method does not require identification of individual 

confounders and can be applied to the hazard ratio of vaccine effectiveness from the Cox’s 

regression. This quasi-experimental analytic method requires knowledge of event rates in 

the vaccinated and control patients during a vaccination-free period prior to the period 

under study. The assumption is made that the ratio of outcome events in the vaccinated and 

control groups during the prior period will reflect the combined effect of all identified and 

unidentified confounders related to that outcome. Having estimated the hazard ratio of 

treatment between the two groups in both prior and study periods through Cox’s 

regression, the hazard ratio from the treatment-free prior period is used to adjust the 

hazard ratio of treatment in the study period. Applying PERR to time-to-event data from the 
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Clinical Practice Research Datalink in order to estimate effectiveness of treatment for 

hypertension yielded convincing results that control for confounding bias can be achieved188 

study by Yu et al 246 provided further support for the validity of the method, suggesting that 

the method is robust to deviations from key assumptions. 

The alternative formulation of the PERR method will also be applied. The PERR-ALT method 

differs slightly in that the prior period data is used to adjust the study period within each 

treatment group, before hazard ratio for the treatment is derived. The pairwise adjustment 

of PERR-ALT within each treatment arm could be viewed as analogous to that of the self-

controlled case series method. While the authors of PERR suggest that PERR-ALT is robust to 

interactions between unmeasured confounders and time intervals in the presence of 

relatively large treatment effects, the PERR method itself is computationally more stable 

when the events are rare. The purpose of applying both PERR and PERR-ALT will be to arrive 

at the best unbiased estimate, and in doing so, demonstrate the level of bias that may be 

inherent from the effects of hidden covariates in the PERR treatment of the nonlinear Cox 

model 225. 

The hazard ratio in the treatment-free prior period will be used to gauge the level of 

unmeasured confounding and the results from the PERR-adjusted and PERR-ALT models 

compared to those achieved through propensity score adjusted models (recommended by 

Yu et al) and basic models adjusted for gender and age. The interaction of both vaccine 

statuses will be tested for all outcomes. 

Results from the analysis of cardiovascular outcomes will be reported for clinically 

important sub-groups defined by age-band, gender and beyond a certain level of existing co-

morbidities (i.e: in top 30% of count) : see study population patient subgroups.  

Stata v13 and R will be used in the analysis.  

Missing data would likely comprise longitudinal measurement such as blood pressure or 

weight. Such data would be best imputed deploying the two-fold fully conditional 

specification (FCS) algorithm 356, available in Stata as the twofold, with attention paid to the 

specification in the imputed models of survival time, the outcome of subsequent 

substantive models fitted to the imputed data 357. An assumption of missing-at-random will 

be required for the covariates. The data will be explored to investigate the plausibility of 
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being missing-at-random. For key inferences, sensitivity analysis performed to test 

departures from this assumption. The results from imputed data will be compared to those 

from complete-case analysis to assess the level of bias corrected through imputation and 

whether the magnitude and direction of bias is consistent with prior expectations. 

 

Sensitivity analysis 

It can be argued that first and subsequent myocardial infarctions can differ with respect to 

underlying mechanism and associated treatments.   

We therefore plan the following sensitivity analyses:  

1. We will add terms relating to first or subsequent MI and revascularisation (receipt and 

procedure, from HES data) as a confounder in the propensity score models and the PERR 

proportional hazards models 

2. We will conduct a subgroup analyses excluding those with second and subsequent  MIs 

3. if possible in the full dataset, we will examine those with at least one prior MI  before the 

period of interst, and then model the effect of flu vaccination on subsequent MI incidence  

 

Sample size 

Vaccination effectiveness will be estimated from Cox regression models. Based on estimates 

from the 2012 edition of the Coronary Heart Disease Statistics, from the British Heart 

Foundation, women aged over 84y, a clinically interesting subgroup, experienced of 139 

incidences of acute myocardial infarction (a primary outcome for ischemic heart disease) 

per 100 000 person-years.  As the meta-analysis into studies of influenza vaccination on 

cardiovascular disease found the effect could reduce the risk by about 35%, the power to 

detect a hazard ratio of 0.65 is sought at a power of 0.8 and significance level of 5%. Using 

the Schoenfeld approximation, this would require a sample size of 121 710 patients. If the 

power to detect a hazard ratio of, say, 0.70 were sought, this would increase to 177 550 

patients. 
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The sample size required for the preliminary investigation of intended effect of the 

vaccinations on respiratory conditions is rather less demanding. An estimate of incidence for 

community-acquired pneumonia among adults aged over 65y put the rate at 7.99 per 1000 

person-years from CPRD data. Therefore the probability of survival times ending in such an 

outcome over a three-year study period of the pneumococcal vaccine would be 

approximately 0.024. Results from a meta analysis of studies into the pneumococcal vaccine 

suggested that the risk of pneumococcal pneumonia could be reduced by approximately 

16%. Therefore to detect a hazard ratio of 0.85 at a power of 0.8 and significance level of 5% 

would require 49 530 eligible patients.  

The Melzer group is arranging an institutional CPRD annual academic licence supported by 

the NIHR School for Public Health Research Ageing Well programme funding.  This will 

provide online access to the full  CPRD-Gold database of patients aged 65 and over, with 

linked HES and mortalty data, estimated at 1.6 million patients aged 65 and over. This will 

provide the most robust estimates possible, and given the above minimum sample size 

requirements the full database should afford more than an acceptable level of power.  

Sample size calculations were performed in Stata v.13. 

Data linkage 

While suspected pneumonia cases may be treated with antibiotics prescribed within 

primary care, hospitalisation is a common consequence of pneumonia in the elderly. For this 

reason access to Hospital Episode Statistics (HES) is integral to the study of vaccines against 

respiratory diseases. Analysis will be conducted using antibiotic outcomes in all available 

patients in the cohort. Additionally we will analyse hospitalisations with a pneumonia 

diagnosis, combining these with the primary care antibiotic outcomes into a composite 

outcome among the HES-linked patients only.  

Secondarily we will examine admissions with a cardiovascular disease code.  

Given the advancing age of the cohort, linkage to ONS-sourced death dates is required to 

ensure a reliable record of death. 

Study population 
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The policy of routine immunisation against influenza and pneumococcus was originally 

extended to adults aged over 65y in 2000 and 2003, respectively. Immunisation against 

influenza is recommended every year, primarily due to the evolution of the influenza 

viruses, while that against pneumococcus is officially regarded as conferring lifetime 

immunity. Monitoring by the Health Protection Agency/ Public Health England shows that 

coverage for pneumococcal vaccination has risen from a baseline of below 30% before 2003 

to the current level of 69.1% in England, while that for influenza has witnessed an increase 

from 46% in 1999 to current levels between 71% and 75%. 

We would therefore use an extracted dataset of adults who have reached the age of 65y 

since the year 1997. The timing is especially critical for analysis of the pneumococcal 

vaccine, whose effect is accepted as lifelong. Given the post-millennial increase in vaccine 

coverage, data from the period preceding the policy change is needed to deliver estimates 

from a vaccine-free period for a sufficient number of yet-to-be-vaccinated elderly 

individuals.  Analysis of this treatment-free period prior to intervention is necessary to 

evaluate the level of confounding bias between two treatment groups (see figure 1 in 

Appendix B). Integral to the PERR method, explained in the Data/Statistical Methods 

section, the treatment estimate from this prior period is used to account for unmeasured 

confounding. Adults aged at least 65y at the start of the study would subsequently be 

recruited from the extracted data to the cohort for the study period of interest. Further 

inclusion criteria for each cohort are that the subjects should be continually registered at 

their GP practice for the duration of the study and prior periods.  

In making a quasi-experimental comparison with a prior period, the principal method for 

our analysis is only applicable to recurrent events in that these should be possible in both 

the study and prior periods. Death, particularly from the diseases subjected to vaccination, 

is of interest and shall be investigated with regard to how much imbalance might be created 

between the analyses of the prior and study periods. Since individuals need to have survived 

into the study period, sampling from the extracted data should of course exclude deaths in 

the prior period. 

Another consequence of the lifelong effect of the pneumococcal vaccination is that over 

time the increasing coverage since 2003 effectively reduces the pool of non-vaccinees from 

which to recruit controls. Using the pilot data, we calculated that a study period of three 
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years would optimise the size of the recruited sample without reducing the ratio of controls 

to vaccinees to below unity. The responses in the three-year treatment-free prior period, 

preceding the study period would control for bias, subject to the assumptions required for 

the PERR method, outlined in the Statistical Analysis section. To study the effectiveness of 

the influenza vaccine, the study and prior period will be restricted to one year, covering 

each influenza season. 

The sample size calculations dictate that a cohort size of at least 50 000 adults aged over 

65y would be required for the necessary preliminary investigation into vaccine effectiveness 

against intended respiratory outcomes. However to answer the principle research question 

looking at effectiveness against cardiovascular events, we would foresee a full extraction to 

the maximum permissible size of 300K would be justified to allow annual estimates of 

specific sub-groups to be reported with sufficient power. 

 

Patient subgroups:  

 

Sub-group analysis will be restricted to a pre-specified hypothesis. Age and gender are 

commonly considered to be essential variables for sub-group analysis. Consistent with the 

School for Public Health Ageing Well programme, a fundamental comparison of two age 

groups per gender will carried out through a simple sub-group analysis of two age bands (65 

to 84y and 85+y) for each gender, the null hypothesis being that the response is the same in 

the “oldest old” as it is for less-elderly patients in either gender. 

 

Another major aim of the programme is to determine the risk from the level of pre-existing 

co-morbidities at the time of exposure. We plan to compute a simple count of diseases and 

syndromes and analyse as a sub-group those patients in the top 30% of the count in each 

gender. The results will be compared with those of all patients in the study within each 

respective gender group. At the time of writing the conditions and syndromes to be counted 

are those based on our previous work on diagnostic trends in the oldest old (Melzer et al, 

Age and Ageing 2014), which are:  
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Hypertension, atrial fibrillation, CVD, heart failure, stroke, cancer, chronic kidney disease 

(stages 3-5) asthma, COD, Dementia, Depression, major mental conditions, epilepsy, 

diabetes, hypothyroidism, anaemia, osteoarthritis and osteoporosis. Five geriatric 

syndromes were identified from Read codes for dizziness (including vertigo and syncope), 

incontinence (urinary and faecal), skin ulcers (including bed sores), falls and fractures. 

It should be stressed that consistent with Bland (1995) that only a count of these conditions 

will be used as comorbidity index, rather than individual sub-groups and so are not subject 

to the type 1 errors of multiple testing. 

NHS England has supported the development of a similar measure of frailty to be used in 

electronic clinical records (http://www.hsj.co.uk/resource-centre/supplements/primary-

care-supplement-an-index-of-frailty/5065467.article#.U-OFqvldV8E), based on 

approximately 3000 Read codes, in the TPP system. Publication of the code list and 

validation studies is expected shortly (Dr A P Clegg, Clinical Senior Lecturer & Honorary 

Consultant Geriatrician | Academic Unit of Elderly Care and Rehabilitation | Bradford 

Institute for Health Research, private communication). We also plan to apply this approach 

in a sensitivity analysis, if the validation is convincing. 

 

Selection of controls 

Observation time in the treated group will begin with the date of exposure so that immortal 

time bias, though commonly associated with cohort studies, will not be an issue for this 

study. Furthermore the vaccination date will lag by the period required to establish a full 

immune response following vaccination. Consideration will also be given to the lag between 

the date, by which symptoms are presented, and the probable time of infection. 

The start of the study period, or index date, will depend on the vaccination under study. For 

influenza vaccine, this will be from the 1st September of each year, to coincide with the start 

of the season, during which vaccination typically occurs. For the pneumococcal vaccine, 

there is one single study period beginning on 1st September 2002 for a duration that 
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encompasses the increase in vaccination coverage arising from the implementation of the 

immunisation policy. 

Patients that remain unexposed to the vaccine throughout the study period will be matched 

as controls by age, gender and GP practice to the vaccinees from the same period. 

Observation times in the controls will start from the vaccination dates of the treated 

patients, with whom they are matched, rather than begin at the start date of the study 

period. Mapping treatment dates through matched individuals will avoid further bias if the 

outcome exhibits strong periodicity, for example with seasons, within the follow-up period. 

Both controls and vaccinees shall have a treatment-free period, necessary for the quasi-

experimental adjustment for confounding bias. The duration should be equal to the period 

over which the patients were recruited for the study and conclude with the start of the 

study period. In the prior period, each patient’s observation period starts at the date 

relative to the start date of the prior period mapped from the study period relative to the 

index date. 

Exposures, outcomes and covariates 

Exposure 

Vaccination status is recorded on the date of vaccination (eventdate) and coded (medcode) 

in the Immunisation file (see Appendix). 

Outcomes 

The outcomes of interest for the effect on major cardiovascular events will be incident 

cardiovascular disease, comprising incident stroke, myocardial infarction, coronary artery 

bypass graft and percutaneous transluminal coronary angioplasty, recorded in Hospital HES 

data. Coding approaches to classifying these are set out in the Appendix and are based on 

QoF business rules.  

Acute lower respiratory disease is the most common presentation of infection by either 

pneumococcus bacteria or the influenza viruses. In the absence of routine laboratory tests 

for both conditions, investigators must rely on correct diagnosis and the subsequent 

accurate recording in the clinical database. Antibiotic prescriptions are commonly 

prescribed to treat patients presenting with LRTIs and recommended by clinical guidelines 



  

299 
 

for the more acute form, pneumococcal pneumonia. Both diseases are common 

complications of infection by the influenza viruses. Where pneumococcal pneumonia is 

strongly suspected, then cases are frequently hospitalised290. Accordingly, hospitalisations 

for pneumonia have previously been used as an outcome, but the effect on prescribing rates 

for antibiotics in primary care should also be taken into account. Therefore besides 

independent evaluations of both outcomes, a composite comprising both outcomes will be 

analysed. A composite endpoint will be the first occurrence, since the start of the survival 

time, of either an antibiotic prescription for a respiratory infection in general practice, or a 

pneumonia related hospitalisation in HES, whichever occurs first. 

We will include antibiotics identified as appropriate in the British Thoracic Society guidelines 

on community acquired respiratory infections. We will identify product codes found in the 

CPRD Therapy file corresponding to the formulations given in the British National Formulary. 

The identified cases of antibiotic prescriptions will be further qualified by symptoms for LRTI 

as described by the corresponding codes (medcodes) from the Clinical file. Two clinicians will 

independently identify these. A third clinician will arbitrate any discordance between the 

two.  

Hospitalisation as recorded in the HES files, for HES-linked patients only, will be qualified by 

the primary reason for episodes as denoted by the ICD10 code (see Annex for codes). 

Covariates 

Matching for the purpose of mapping observation start times to controls will be based on 

variables, age, gender and GP practice as recorded in the patient files. 

Covariates and factors identified a priori as potential confounders may be included as 

adjustments to the analysis following the procedure for selection, detailed in the 

Data/Statistical Analysis section below. Besides basic demographic variables of age, gender 

and socio-economic status, confounders will be identified from the 15 diseases listed under 

the Quality Outcomes Framework of 2010. Read codes for each disorder have already been 

obtained through interrogation of the CPRD and HES data using version 18 of the QOF 

Business Rules, along with a summary of existing useable codes for each disorder (Salisbury 

2013). Consensus within the Age UK Project team at the University of Exeter Medical School 
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decided which QOF disease areas were included and which were not pertinent to a definite 

diagnosis. The final disease categories were: coronary heart disease, heart failure, stroke 

and transient ischaemic attack, hypertension, diabetes, chronic obstructive pulmonary 

disorder (COPD), epilepsy, hypothyroidism, cancer, mental health (includes schizophrenia, 

bipolar affective disorder and other psychoses), asthma, dementia, depression, chronic 

kidney disease (CKD), and atrial fibrillation. Smoking history will also be elicited from the 

records and treated as a potential confounder.  

Informed by the work from the “Estimating Cardiovascular Risk in the Elderly” study within 

the same project team, further confounders will be considered for analysis of cardiovascular 

events. These will include treatments for existing cardiovascular risk factors: cholesterol-

lowering drugs, anti-hypertensive drugs, anti-diabetic drugs, anti-platelets, oral anti-

coagulants, beta blockers, calcium antagonists, diuretics, angiotensin-converting enzyme 

inhibitors, angiotensin II antagonists, nitrates. 

Where data permits body mass index, alcohol consumption and total cholesterol / 

hypercholesterolemia diagnosis including low-density and high-density lipids will also be 

considered. 

For the cardiovascular disease models, we will summarise several of the above covariates by 

computing and adjusting for a cardiovascular risk score following the approach set out by 

van Staa et al (PLoS One. 2014 Oct 1;9(10):e106455.). We intend to use the QRISK2 

approach, but if costs for the necessary commercial software make it impractical we will use 

the Framingham model.    

We will also account for first vs subsequent MI, and for surgical intervention (percutaneous 

vs CABG vs none) in models and in the sensitivity analyses.  

Direct measures of comorbidity or frailty will also be potentially included, from our recent 

work on diagnostic trends in the oldest old (Accepted Age and Ageing 2014), which 

modestly extends a previous multi-morbidity measure by Salisbury et al to be a little more 

representative of later life co-morbidity. These are based on a count of common diseases 

and conditions as well as “geriatric syndromes” such as falls and fractures, dizziness, 

incontinence and skin ulcers. The “Estimating Cardiovascular Risk in the Elderly” study will 
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also aim to elicit information about family history of cardiovascular disease, although limited 

recording of this is acknowledged. 

Patient or user group involvement 

This project is part of the NIHR School for Public health Research programme on ‘Ageing 

Well’. In this framework, advancement of the work, partial and final results will be regularly 

shared and discussed in the context of advisory boards/meetings involving general 

practitioners, leaders from the academics, policy makers, and representatives from relevant 

patient and aging-related lobbying associations.  

We anticipate widespread interest in the results, as there have been many papers and 

editorials in the journals pointing out the difficulties of prevention and treatment in various 

older groups in the absence of evidence of effectiveness.  

We plan to publish in the public health, geriatrics and primary care journals and present at 

related conferences.  

    

Limitations of the study design, data sources, and analytic methods 

A fundamental limitation is that the original source of data is a database that was not 

originally created for research purposes. This is important, as characteristics that might 

allow post-hoc adjustment for non-randomised data are likely to have been unmeasured in 

routinely collected data. Here effects that are confounded with the intervention under 

study and the outcome are likely to give rise to biased estimates. However the purpose of 

this study is to deploy methods that can adjust for confounding, regardless of whether it has 

been measured. This includes all types of confounding, such as indication bias where, say, a 

history of CV disease has prompted vaccination. The method will not mitigate against that 

bias which, sometimes misleadingly described as confounding bias, has been imparted by 

the analytical method itself e.g: non-collapsibility when estimating conditional effects in 

non-linear models.  

A second limitation is in the absence of widespread serological testing, the available 

outcomes to identify pneumococcal and influenza infections may be insensitive to other 

pathological causes, although we believe antibiotic prescriptions and, in the case of 
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pneumococcal pneumonia, hospitalisations, both qualified by symptom descriptions, offer 

the next best alternative.  

Another important limitation is that PERR is only applicable to recurrent outcomes (such as 

angina or myocardial infarction) and only in secondary prevention settings. A consequence 

of this stipulation is that patients must be alive until the study period and death may impart 

further bias if used an outcome in the study period, or may be informative if used to censor 

survival times.  Other quasi-experimental study designs, including instrumental variable 

estimation or marginal structural models, that are useful in primary prevention are 

sometimes difficult to be implemented in certain circumstances, such as in the analysis of 

survival times. In spite of the Yu’s evidence of robustness to time and confounder 

interaction, an intrinsic assumption of the method is that the confounding effect is stable 

across the periods, for which it is adjusted. It should also be acknowledged from Yu’s paper 

that current insight into the method suggests. 

 

Plans for disseminating and communicating study results 

We plan to publish the results of the effectiveness analyses for the influenza and 

pneumococcal vaccines against their primary respiratory outcomes as well as the issue of 

their effectiveness against major cardiovascular outcomes.  In addition, we plan to publish 

academic articles on the development and extension of the quasi-experimental analytical 

methods used to address confounding bias.  We believe the results will be informative for 

shaping policy on vaccination in older patients, and that the methodological work will help 

validate and make available new tools to assist researchers in strengthening causal 

inferences from electronic medical record data. 

 

Other information: 

The University of Exeter based part of the NIHR National School for Public Health Research 

programme is led by Prof Melzer, who has extensive experience of analysing observational 

data on older populations, including large databases. Professor William Henley will oversee 

the statistics: he currently leads an MRC methodology project grant on the Prior Event Rate 
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Ratio approach. Adam Streeter is an experienced statistician, who will be leading the analyses 

of the vaccination data, and will also be writing this up for a PhD.  

Dr Alessandro Ble is a qualified geriatrician with extensive (>40 papers) experience in 

epidemiology of ageing. He has a Masters degree in medicines evaluation. Dr Jane Masoli is 

an academic clinical fellow in Geriatrics and will be leading work on the anti-hypertensives. 

Kirsty Bowman (MPH, PhD student) will be undertaking the modelling of risk factors in older 

people.  Dr Mujica-Mota is a health economist with an interest in older populations, and has 

experience of analysing the GP Patient Survey with over 1m records.   

Primary Care senior input will be from Professor Valderas (who has extensive related research 

experience especially on co-morbidity, plus clinical sessions in general practice) and Senior 

lecturer Dr Sue Richards.  

Our existing CPRD analysis over the last two years has provided coding approaches to the risk 

factors, common diseases and geriatric syndromes of interest, with a paper on diagnostic 

trends in the oldest old accepted by the journal “Age and Ageing”. We have also gained 

experience on the coding of common prescriptions in older people. We have an 8 Terabyte 

server capable of supporting our planned analyses and extensive experience of large dataset 

analysis.  
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ISAC protocol - Appendix A 

Pneumococcal vaccination coding in Clinical file 

medcode: 11363, 30411, 36826 

immstype: 13, 18, 28 

status: 1 

Pneumococcal vaccination coding in Therapy file 

prodcode: 821832, 42612, 42991 

Influenza vaccination coding in Clinical file 

medcode: 6 9039 10821 12104 12336 18330 18684 21123

 32942 

35655 44555 94301 95092 97941 98047 98183 98184 98217

 98234 

98302 98303 98306 98449 

immstype: 4 

status: 1 

Influenza vaccination coding in Therapy file 

prodcode: 398 639 834 922 1329 2139 2552 2601 9710 

10030 11824 13595 16585 18612 27407 30156 30198 32391

 38421 

40760 40876 

Coding of selected commonly used antibiotics for respiratory infections ( list 

to be extended following British Thoracic society guidelines)  

Amoxicillin product codes from Therapy file: 

9 48 62 133 427 503 585 847 870 
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1637 1722 1812 2153 2281 3669 3742 4154 7737

 9243 

11613 11634 12378 14371 14386 14396 14407 15148 17711

 18786 

21799 21827 21829 21844 21845 21963 22015 22016 22017

 22415 

22438 23238 23740 23967 24150 24200 24203 25484 26157

 26262  

27714 27725 28870 28872 28875 28882 29337 29463 29697

 29858  

30498 30528 30743 30745 31014 31286 31423 31535 31661

 31801  

32622 32640 32872 33109 33110 33112 33165 33222 33343

 33570  

33689 33690 33692 33696 33699 33706 34001 34042 34232

 34384  

34435 34638 34679 34714 34760 34775 34852 34855 34857

 34885  

34912 35570 36054 37755 38684 40238 40243 41090 41818

 41835 

 

Doxycycline product codes from Therapy file: 

264 268 970 1046 2202  2884 3152 6396 8724 9267 

10454 12987 14904 15071 21038 21828 21860 21878 23405

 23432 

23819 24126 24149 26392 26747 30739 32066 32419 33671

 34175 
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34300 34423 34594 34765 40391 41560 41605 46807 

 

ICD-10 codes describing pneumonia in HES data: 

Description Code 

Sepsis due to Streptococcus pneumoniae A40.3 

Streptococcus pneumoniae as the cause of diseases classified 

to other chapters 

B95.3 

Pneumococcal meningitis G00.1 

Pneumonia due to Streptococcus pneumoniae J13 

Pneumonia, organism unspecified J18 

 

Coding of covariates: we plan to use the same coding approaches as in our approved 

project 14_135R entitled " Estimating Cardiovascular risk in the Elderly." Below are the 

Read codes for coronary heart disease, for assessing the presence of disease in GP 

records. This will be used for patient selection but outcomes will be based on hospital 

HES records only and will include major CVD events.  

Coronary heart disease (MI)  

MEDCODE READCODE CONDITION 

240 G3...00 Ischaemic heart disease 

241 G30..00 Acute myocardial infarction 

1204 G30..14 Heart attack 

1344 G340.12 Coronary artery disease 

1655 G340.11 Triple vessel disease of the heart 

1676 G3z..00 Ischaemic heart disease NOS 

1677 G30..15 MI - acute myocardial infarction 
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1678 G308.00 Inferior myocardial infarction NOS 

1792 G3...13 IHD - Ischaemic heart disease 

2491 G30..12 Coronary thrombosis 

3704 G307.00 Acute subendocardial infarction 

3999 G340000 Single coronary vessel disease 

4017 G32..00 Old myocardial infarction 

5254 G340100 Double coronary vessel disease 

5387 G301.00 Other specified anterior myocardial infarction 

5413 G340.00 Coronary atherosclerosis 

7320 G343.00 Ischaemic cardiomyopathy 

8935 G302.00 Acute inferolateral infarction 

9276 G31y000 Acute coronary insufficiency 

9413 G31y.00 Other acute and subacute ischaemic heart disease 

9507 G307000 Acute non-Q wave infarction 

9555 G33z500 Post infarct angina 

10562 G307100 

Acute non-ST segment elevation myocardial 

infarction 

11983 G311500 Acute coronary syndrome 

12139 G300.00 Acute anterolateral infarction 

12229 G30X000 Acute ST segment elevation myocardial infarction 

13566 G30..11 Attack - heart 

13571 G30..16 Thrombosis - coronary 

14658 G30z.00 Acute myocardial infarction NOS 

14897 G301z00 Anterior myocardial infarction NOS 

14898 G305.00 Lateral myocardial infarction NOS 

15661 G310.11 Dressler's syndrome 
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15754 G34z.00 Other chronic ischaemic heart disease NOS 

16408 G32..11 Healed myocardial infarction 

17464 G32..12 Personal history of myocardial infarction 

17689 G30..17 Silent myocardial infarction 

17872 G301100 Acute anteroseptal infarction 

18842 G35..00 Subsequent myocardial infarction 

18889 G34z000 Asymptomatic coronary heart disease 

21844 G31y300 Transient myocardial ischaemia 

22383 G3y..00 Other specified ischaemic heart disease 

23078 G34y100 Chronic myocardial ischaemia 

23579 G310.00 Postmyocardial infarction syndrome 

23708 G361.00 

Atrial septal defect/curr comp folow acut myocardal 

infarct 

23892 G304.00 Posterior myocardial infarction NOS 

24126 G360.00 

Haemopericardium/current comp folow acut 

myocard infarct 

24540 G34y000 Chronic coronary insufficiency 

24783 G3...11 Arteriosclerotic heart disease 

25842 G33z.00 Angina pectoris NOS 

26863 G33z600 New onset angina 

27951 G31..00 Other acute and subacute ischaemic heart disease 

27977 G31yz00 

Other acute and subacute ischaemic heart disease 

NOS 

28138 G34..00 Other chronic ischaemic heart disease 

28554 G33zz00 Angina pectoris NOS 

28736 G30y000 Acute atrial infarction 
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29421 G344.00 Silent myocardial ischaemia 

29553 G366.00 

Thrombosis atrium,auric append&vent/curr comp foll 

acute MI 

29643 G303.00 Acute inferoposterior infarction 

29758 G30X.00 

Acute transmural myocardial infarction of unspecif 

site 

29902 G330z00 Angina decubitus NOS 

30330 G309.00 Acute Q-wave infarct 

30421 G30..13 Cardiac rupture following myocardial infarction (MI) 

32272 G38..00 Postoperative myocardial infarction 

32450 G33z400 Ischaemic chest pain 

32854 G30B.00 Acute posterolateral myocardial infarction 

34328 G311300 Refractory angina 

34633 G34y.00 Other specified chronic ischaemic heart disease 

34803 G30y.00 Other acute myocardial infarction 

35713 G34yz00 Other specified chronic ischaemic heart disease NOS 

36423 G36..00 

Certain current complication follow acute myocardial 

infarct 

36523 G311.00 Preinfarction syndrome 

36609 G342.00 Atherosclerotic cardiovascular disease 

37657 G362.00 

Ventric septal defect/curr comp fol acut myocardal 

infarctn 

38609 G351.00 Subsequent myocardial infarction of inferior wall 

39449 G312.00 

Coronary thrombosis not resulting in myocardial 

infarction 

39546 Gyu3000 [X]Other forms of angina pectoris 

39655 G311.12 Impending infarction 
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39693 G31y200 Subendocardial ischaemia 

40429 G301000 Acute anteroapical infarction 

41221 G30y200 Acute septal infarction 

41835 G384.00 Postoperative subendocardial myocardial infarction 

45809 G350.00 Subsequent myocardial infarction of anterior wall 

46017 G30yz00 Other acute myocardial infarction NOS 

46112 G380.00 

Postoperative transmural myocardial infarction 

anterior wall 

46166 G35X.00 Subsequent myocardial infarction of unspecified site 

46276 G381.00 

Postoperative transmural myocardial infarction 

inferior wall 

47637 Gyu3300 [X]Other forms of chronic ischaemic heart disease 

52517 Gyu3.00 [X]Ischaemic heart diseases 

54251 G311z00 Preinfarction syndrome NOS 

54535 G33z100 Stenocardia 

55137 G311011 MI - myocardial infarction aborted 

59189 G363.00 

Ruptur cardiac wall w'out haemopericard/cur comp 

fol ac MI 

59940 G364.00 

Ruptur chordae tendinae/curr comp fol acute 

myocard infarct 

61072 G311000 Myocardial infarction aborted 

62626 G30y100 Acute papillary muscle infarction 

63467 G306.00 True posterior myocardial infarction 

66388 G33z000 Status anginosus 

68357 G31y100 Microinfarction of heart 

68401 Gyu3200 [X]Other forms of acute ischaemic heart disease 

68748 G38z.00 Postoperative myocardial infarction, unspecified 
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69474 G365.00 

Rupture papillary muscle/curr comp fol acute 

myocard infarct 

72562 G353.00 Subsequent myocardial infarction of other sites 

96838 Gyu3400 

[X]Acute transmural myocardial infarction of unspecif 

site 

99991 Gyu3600 

[X]Subsequent myocardial infarction of unspecified 

site 
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ISAC protocol - Appendix B 

 

 

Figure 1: Timeline of prior and study observation periods for the PERR method 
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Appendix D – CPRD and HES codes 

PPV codes (immstype) in immunisation file: 

13, 28 

[both codes conditioned on status = 1, i.e: vaccine “given”] 

 

PPV codes (prodcode) in therapy file: 

821, 832, 42612, 42991 

 

Influenza vaccine codes in immunisation file: 

6, 9039, 10821, 12104, 12336, 18330, 18684, 21123, 32942, 35655, 44555, 94301, 

95092, 97941, 98047, 98183, 98184, 98217, 98234, 98302, 98303, 98306, 98449 

 

Influenza vaccine codes in therapy file: 

398, 639, 834, 922, 1329, 2139, 2552, 2601, 9710, 10030, 11824, 13595, 16585, 

18612, 27407, 30156, 30198, 32391, 38421, 40760, 40876 

 

ICD10 codes for hospitalisation for suspected pneumococcal pneumonia in 

HES data: 

J13, J15.8, J15.9, J16.8, J17, J18 

ICD10 codes for myocardial infarction admissions to hospital in HES data: 

I20.0, I21.0 - I21.4, I21.9, I22.0, I22.1, I22.8, I22.9, I21 

Amoxicillin codes in therapy file: 

9, 48, 62, 133, 427, 503, 585, 847, 870,  1637, 1722, 1812, 2153, 2281, 3669, 3742, 

4154, 7737, 9243,  11613, 11634, 12378, 14371, 14386, 14396, 14407, 15148, 

17711, 18786,  21799, 21827, 21829, 21844, 21845, 21963, 22015, 22016, 22017, 
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22415,  22438, 23238, 23740, 23967, 24150, 24200, 24203, 25484, 26157, 26262,  

27714, 27725, 28870, 28872, 28875, 28882, 29337, 29463, 29697, 29858,  30498, 

30528, 30743, 30745, 31014, 31286, 31423, 31535, 31661, 31801,  32622, 32640, 

32872, 33109, 33110, 33112, 33165, 33222, 33343, 33570,  33689, 33690, 33692, 

33696, 33699, 33706, 34001, 34042, 34232, 34384,  34435, 34638, 34679, 34714, 

34760, 34775, 34852, 34855, 34857, 34885,  34912, 35570, 36054, 37755, 38684, 

40238, 40243, 41090, 41818, 41835 

 

Doxycycline codes in therapy file: 

264, 268, 970, 1046, 2202, 2884, 3152, 6396, 8724, 9267, 10454, 12987, 14904, 

15071, 21038, 21828, 21860, 21878, 23405, 23432, 23819, 24126, 24149, 26392, 

26747, 30739, 32066, 32419, 33671, 34175, 34300, 34423, 34594, 34765, 40391, 

41560, 41605, 46807 
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Product codes in therapy file for antiviral drugs: 

BNF code CPRD 

prodcode 

strength 

Amantadine 

hydrochloride 

5339 100mg 

Amantadine 

hydrochloride 

6035 50mg/5ml 

Zanamivir 6610 5mg 

Oseltamivir phosphate 10129 75mg 

Oseltamivir phosphate 10131 75mg 

Oseltamivir phosphate 10137 12mg/1ml 

Oseltamivir phosphate 18863 60mg/5ml 

Zanamivir 21169 5mg 

Amantadine 

hydrochloride 

21745 50mg/5ml 

Amantadine 

hydrochloride 

25890 100mg 

Oseltamivir phosphate 38523 30mg 

Oseltamivir phosphate 38955 30mg 

Oseltamivir Phosphate 39252 45mg 

Oseltamivir phosphate 39894 45mg 

Oseltamivir phosphate 40710 15mg/1ml 

Oseltamivir phosphate 42326 15mg/1ml 

Oseltamivir phosphate 52526 15mg/1ml 

Oseltamivir phosphate 53759 6mg/1ml 

Oseltamivir phosphate 54814 30mg/5ml 
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Medcodes from clinical file for symptom descriptions used to qualify antibiotic 

codes: 

Medcode Description 

293 Respiratory tract infection 

4899 Recurrent chest infection 

68 Chest infection 

2581 Chest infection NOS 

3358 Lower resp tract infection 

5534 Pneumococcal infection 

7074 Respiratory infection NOS 

8025 Acute respiratory infections 

14804 Sputum appears infected 

16287 Chest infection - unspecified bronchopneumonia 

17359 Chest infection - unspecified bronchitis 

19400 Chest infection - pnemonia due to unspecified organism 

21061 Chronic obstruct pulmonary dis with acute lower resp infectn 

21113 Acute respiratory infection NOS 

22795 Chest infection - other bacterial pneumonia 

23640 Other specified acute respiratory infections 

3382 Streptococcal infection 

572 Pneumonia due to unspecified organism 

886 Bronchopneumonia due to unspecified organism 

1849 Lobar (pneumococcal) pneumonia 

3683 Basal pneumonia due to unspecified organism 
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9639 Lobar pneumonia due to unspecified organism 

10086 Pneumonia and influenza 

11849 Other specified pneumonia or influenza 

12423 Pneumonia due to streptococcus 

13573 Influenza with bronchopneumonia 

22009 Streptococ pneumon/cause/disease classified/oth chapters 

23095 Bacterial pneumonia NOS 

25694 Pneumonia due to other specified organisms 

23333 Hypostatic pneumonia 

24356 Hypostatic bronchopneumonia 

1934 Laryngotracheobronchitis 

1019 Acute bronchiolitis 

17185 Acute bronchiolitis with bronchospasm 

17917 Acute bronchiolitis NOS 

29669 Acute bronchitis and bronchiolitis 

41137 Acute bronchitis or bronchiolitis NOS 

2195 Bronchiectasis 

20364 Recurrent bronchiectasis 

1234 Productive cough NOS 

7708 Productive cough-yellow sputum 

7773 Productive cough -green sputum 

18907 Cough with fever 

8760 [D]Positive culture findings in sputum 

15430 [D]Sputum abnormal - colour 
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16026 Sputum examination: abnormal 

24181 Sputum: mucopurulent 

30754 Yellow sputum 

36880 Green sputum 
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Appendix E – Diagnostic plots for Cox models in influenza 

study 

As a visual inspection of the extent to which the Cox models of MIs fitted to 

vaccination status, adjusting for age and gender, may have deviated from the 

proportional hazards assumption, the negative logarithm of the hazard function (also 

expressed as -ln(-ln(Survival probability)) in the plots) was plotted against the natural 

logarithm of analysis time in Stata – so-called log-log plots. The nature of 

transformation meant the most data points lay to the right end of the x-axis 

corresponding to the majority of survival times, which were greater than about 50 

days (ln(50)  4). Apart from the sparse points in the plots corresponding to the 

shorter survival times, the bulk of the data seemed to produce reasonably parallel 

lines for the vaccine recipients and controls. There was some concern about the 

study period of the 2009 and 1998 cohorts, and the prior period of the 1997 cohorts. 

The lines of their log-log plots were the least parallel of all the plots, and thus, 

appeared to potentially indicate deviation from the proportional hazards assumption. 

However, the estimates for these particular periods did not appear incongruous or 

remarkable, and so the condition of proportional hazards was assumed to be broadly 

satisfied. 

 

Figure 42: log-log plot for the prior and study period Cox model of MIs on vaccination 
status in the 1997 cohort adjusted for age and gender 
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Figure 43: log-log plot for the prior and study period Cox model of MIs on vaccination 
status in the 1998 cohort adjusted for age and gender 

 

Figure 44: log-log plot for the prior and study period Cox model of MIs on vaccination 
status in the 1999 cohort adjusted for age and gender 
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Figure 45: log-log plot for the prior and study period Cox model of MIs on vaccination 
status in the 2000 cohort adjusted for age and gender 

 

Figure 46: log-log plot for the prior and study period Cox model of MIs on vaccination 
status in the 2001 cohort adjusted for age and gender 
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Figure 47: log-log plot for the prior and study period Cox model of MIs on vaccination 
status in the 2002 cohort adjusted for age and gender 

 

Figure 48: log-log plot for the prior and study period Cox model of MIs on vaccination 
status in the 2003 cohort adjusted for age and gender 
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Figure 49: log-log plot for the prior and study period Cox model of MIs on vaccination 
status in the 2004 cohort adjusted for age and gender 

 

Figure 50: log-log plot for the prior and study period Cox model of MIs on vaccination 
status in the 2005 cohort adjusted for age and gender 
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Figure 51: log-log plot for the prior and study period Cox model of MIs on vaccination 
status in the 2006 cohort adjusted for age and gender 

 

Figure 52: log-log plot for the prior and study period Cox model of MIs on vaccination 
status in the 2007 cohort adjusted for age and gender 
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Figure 53: log-log plot for the prior and study period Cox model of MIs on vaccination 
status in the 2009 cohort adjusted for age and gender 

 

Figure 54: log-log plot for the prior and study period Cox model of MIs on vaccination 
status in the 2009 cohort adjusted for age and gender 
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Figure 55: log-log plot for the prior and study period Cox model of MIs on vaccination 
status in the 2010 cohort adjusted for age and gender 

 

Figure 56: log-log plot for the prior and study period Cox model of MIs on vaccination 
status in the 2011 cohort adjusted for age and gender 
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Appendix F – codes for statins in CPRD data 

Atorvastatin 

28 75 745 2955 3411 5775 7374 17683 47065 47090 

47630 47721 48518 49558 49751 5023 50272 50788 50790 

50963 51134 51200 51359 51622 51876 52097 52168 52211 

52397 52398 52459 52460 52821 53594 53772 53887 53890 

54535 55032 55034 55444 55727 56182 56248 56564 56841 

57117 57348 57834 57836 58041 58110 58394 58418 58742 

58834 58868 59272 59331 59357 59446 59776 59859 60511 

60607 60989 61149 

Rosuvastatin 

713 6213 7347 7554 9897 9930 15252 17688 53460 

57763 57999 59447 59452 60160 

Fluvastatin 

379 2137 5985 8380 9153 11627 53770 59278 

Simvastatin 

25 42 51 802 818 2718 5148 6168 

9920 13041 22579 31930 32909 33082 34312 34316  

34353 34366 34376 34381 34476 34481 34502 34535 34545 

34560 34746 34814 34879 34891 34907 34955 34969 37434 

39060 39652 39675 39870 40340 40601 41657 44528 44650 

44878 45219 45235 45245 45346 46878 46956 47774 47948 

48018 48051 48058 48078 48431 48867 49061 49062 49587 

50483 50564 50670 50703 50754 50882 51085 51166 51233 

51483 51715 52098 52257 52625 52676 52812 52953 52962 

53087 53340 53415 53676 53822 53908 53966 54240 54266 

54493 54655 54819 54947 54976 54985 55452 56481 56494 

57568 58315 58755 61155 61321 61360 61665 
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Pravastatin 

490 730 1219 1221 1223 3690  

32921 34820 36377 40382 43218 47988 48097 50925 51676 

51890 52755 54435 54607 55912 56146 56607 56735 56893 

56916 57108 57137 57296 57397 59508 60251 61134 

Simvastatin + ezetimibe 

7552 10172 10183 10206 11815 14219 16186 17059 21020  
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