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We compute sample-to-sample fluctuations in the electrical conductance G&s of mesoscopic normal-
superconducting boundaries. If the superconductor is clean and the normal conductor diffusive, the rms
deviation 56NS is approximately a factor of 2 larger than the universal value obtained for normal disor-
dered conductors. This is consistent with predictions of random matrix theories and recent numerical
simulations. If the normal material is clean, but the superconductor difFusive, the boundary conductance
fluctuation is greater than 56&s, by an amount which increases as the superconducting coherence length
decreases. For a diffusive normal material in contact with a dirty superconductor, 56» is insensitive to
weak disorder in the superconductor, but decreases in the extreme dirty limit, where quasiparticles
within the superconductor become Anderson localized.

I. INTRODUCTION

%hen a scattering region is smaller than the quasipar-
ticle phase-coherence length I&, an excitation undergoes
only elastic scattering and transport properties are
describable through the single-particle Schrodinger equa-
tion, or in the presence of superconductivity, through the
Bogoliubov —de Gennes equation. In the absence of su-

perconductivity, mesoscopic structures of this kind have
been realized experimentally for many years and the asso-
ciated transport theory has reached a high 1evel of matu-
rity. ' In the presence of superconductivity, the 6eld is
much less well developed. Recent experiments on the
electrical conductance of normal-superconducting inter-
faces and normal-superconducting loops have
demonstrated that coherent transport in the presence of
superconductivity can now be observed and a several
theoretical treatments ' have begun to incorporate su-
perconductivity into the transport theory of normal
mesoscopic systems.

One theoretical development of particular interest is
the prediction of universal fluctuations in the boundary
conductance of a normal-superconducting interface. In
normal, diffusive mesoscopic samples, it is known'
that if the microscopic impurity con6guration of a given
sample is perturbed, the change in the electrical conduc-
tance G is of the order e /h and is independent of the G.
More precisely for an ensemble of samples with a given
shape, the rms deviation 6G = Ae2/h, where the prefac-
tor A is independent of the ensemble averaged conduc-
tance ( G ) and depends only on the geometry of the sam-
ples.

Recently Takane and Ebisawa' ' and Beenakker and
co-workers' ' have demonstrated that universal conduc-
tance fluctuations at normal-superconducting interfaces

are enhanced by a factor of order 2, compared with cor-
responding normal systems. To simphfy the analysis, the
work of Refs. 13—16 was restricted to systems in which a
disordered normal (N) region is connected to a clean su-
perconductor (S) with a uniform superconducting order
parameter. In these calculations the normal scattering
region is mesoscopic and the disorder is physically
separate from the superconductor. Consequently, when
the superconducting coherence length is orders of magni-
tude greater than the Fermi wavelength, a quasiparticle
transmitted through the (X) region and impinging on the
superconductor, is Andreev reflected with probability
unity.

In this paper we extend the work of Refs. 13—16 by a1-

lowing the disorder to exist in both the normal and super-
conducting regions. By relaxing this restriction, we are
able to investigate whether or not universal conductance
fluctuations survive in the presence of more realistic in-
terfaces and to address questions concerning the depen-
dence of the size of the fluctuations on the superconduct-
ing coherence length. For a disordered normal region in
contact with a clean superconductor, our results agree
with those of Refs. 13—16. For a clean, normal region in
contact with a dirty superconductor, we demonstrate that
conductance fluctuations remain universal, in the sense
that provided the disorder is weak, the magnitude of the
fluctuation is independent of the size of the boundary
conductance, but with a value which increases as the su-
perconducting coherence length is decreased.

II. FORMUI. AS FOR THE EI.ECTRICAI. CONDUCTANCE
OF MESOSCOPIC SUPERCONDUCTORS

In this section we highlight relevant formulas needed
to calculate the electrical conductance of phase-coherent

0163-1829/94/49(6)/4010(5)/$06. 00 49 4010 1994 The American Physical Society



49 COHERENCE-LENGTH DEPENDENCE OF FLUCTUATIONS IN. . . 4011

normal and superconducting heterostructures and briefly
mention how these can be evaluated using a numerical
technique, outlined in Ref. 12 and introduced earlier to
investigate Anderson localization in disordered supercon-
ductor s

During the past decade, two exact formulas have been
derived for the conductance of a mesoscopic normal-
superconducting structures. First the Blonder-Tinkham-
Klapwijk (BTK) formula was introduced to describe
scattering at a normal-superconducting interface and
later the Lambert formula was derived for an arbitrary
superconducting region attached by normal leads to
external reservoirs. In Ref. 9 both the well-known Lan-
dauer formula and the two-probe Buttiker formula were
generalized to include Andreev scattering. During the
past two years, both the above formulas have been
rederived' and the work of Ref. 9 extended to mul-
tiprobe structures. "' With the additional assumption
that a quasiparticle entering a clean superconducting lead
is Andreev reflected with probability one, Beenakker has
also rewritten the BTK result in a form more convenient
for applying random matrix techniques. ' Since the
analysis of Refs. 13 and 14 is in broad agreement with
Refs. 15 and 16, the latter assumption would appear to be
justified, provided the superconductor is clean and the su-
perconducting coherent length is several orders of magni-
tude greater than the Fermi wavelength.

In what follows, to avoid restrictions on the nature of
the disorder, all results are obtained by evaluating the
zero-temperature Lambert formula, "" which yields
for the two-probe electrical conductance G in units of
2e /h,

2(R,R,' —T, T,' }
G=TO+T, +

R, +R,'+ T, +T,'

The coefficients Rp Tp (R, T, ) are probabilities for nor-
mal (Andreev) reflection and transmission for zero-energy
quasiparticles from one reservoir, while Rp, Tp (R,', T,')
are corresponding probabilities for quasiparticles from
the second reservoir. These satisfy To+ T, =To+ T,' and

Ro+To+Rg+Tg =Ro+To+Rg+Tg =&0

where No is the number of zero-energy quasiparticle
channels in the leads. In general the conductance G can-
not be regarded as arising from boundary scattering, ex-
cept in the limit of zero transmission, when Eq. (l)
simplifies to

the Bogoliubov-de Gennes equation,

g(r ) P(r )

(((r ) P(r )
(3)

where

—H*
0

(4)

In what follows, Ho is chosen to be a tight-binding An-
derson model on a square lattice, with diagonal disorder.
Thus (Hp);J =e~5;~ —v5, where j is a nearest neighbor

JJt

of i, with a nearest-neighbor hopping element v. The di-
agonal elements, e are random numbers uniformly distri-
buted between co+—,

'
WN and E'0+2 Wg in the normal and

superconducting materials, respectively. In Eq. (3), 5 is
a diagonal order-parameter matrix, with elements

b; =b, 5; . For a site j in the superconductor, b, =hp,
otherwise 5 =0. For sites i belonging to the external
leads, 5;=e; =0.

A similar tight-binding approach has been adopted in
Ref. 14. The key difference here is that the restriction to
clean superconductors will not be imposed. In what fol-
lows we consider the two-dimensional sample, depicted in
Fig. 1. The device is M sites wide and L =LN+Lz sites
long, with normal and superconducting regions of length
L~,Lz, respectively. In the normal limit, where all An-
dreev terms vanish, Eq. (l) reduces to the well-known
Buttiker formula, G =To. In this limit, L&=0 and in
the Ohmic regime for fixed normal disorder WN, one can
determine the elastic mean free path 1 by varying L and
using the relation (6)-(M/L)l, where the angular
brackets denote an average over all impurity
configurations. Once the mean free path is known, the
size Lz of the normal region can be chosen to render it
ballistic (LN (I) or difFusive (LN ~1).

In what follows all calculations are performed with en-

ergy E =0, a hopping strength v =1 and periodic bound-
ary conditions in the transverse direction. The rms fluc-
tuations 56=+((6 —(6 ) ) ) are evaluated from 2000
realizations of the disordered Hamiltonian Ho. It should
be noted that the number of open channels in the normal
leads is a discontinuous function of E; a feature which
leads to observable conductance steps in thin quantum
wires. For M even, such a step occurs at E=so and there-

6 '=(G~s) '+(GNs) '=(2R, ) '+(2R,') (2)

The quantities Gzz =2R, and Gzz =2R,' are simply BTK
boundary conductances and therefore in this limit, the
left and right boundary resistances with the external
leads simply add in series.

As discussed in detail elsewhere "' all coeScients in
Eqs. (1) and (2} are obtained by summing the squared
modulii of elements of submatrices of the multichannel
scattering matrix S of the system. For systems described
by a tight-binding Hamiltonian, ' ' the latter can be ob-
tained by employing a transfer-matrix technique to solve

FIG. 1. The normal-superconducting scattering region. The
geometry is quasi-one-dimensional with width M «L, where
L =LN+Lz. Uniform disorder can be present in the normal
segment 8'N and the superconductor Wz.
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fore to avoid a discontinuity, a site energy in the leads of
@0=10 was chosen.

—6

III. RESULTS

To make contact with earlier numerical work, ' we
first examine the elastic mean free path I for a purely nor-
mal conductor. For this purpose we plot (G)L/M
versus L for three different widths, M =4, 8, and 16, cor-
responding to NO=3, 7, and 15 open channels, respec-
tively. Examples of such plots, obtained with a fixed dis-
order of 8'&=1, are shown in Fig. 2. In the Ohmic re-
gime, the quantity ( 6 )L /M should be independent of L.
However, for finite width systems, such behavior persists
for only a limited range of L, because for small L the
sample is ballistic and for large L, the system exhibits lo-
calized behavior, characteristic of quasi-one-dimensional
structures. In Fig. 2 only the widest system M =16 ex-
hibits a clear Ohmic plateau. For smaller widths, we fol-
low Ref. 14 and heuristically associate I the extremal
value of ( G )L/M, to yield 1-7, 12, and 14 for M =4, 8,
and 16, respectively. Using the above technique, the
mean free path of a normal region, in the absence of su-
perconductivity, may be estimated for any system size
and disorder.

Consider now the system shown in Fig. 1, with a nor-
mal region of size L&, mean free path I, connected to a
superconducting region of size Lz. To the left of the nor-
mal region and to the right of the superconductor are a
perfect normal leads (not shown), which carry quasiparti-
cles to external reservoirs. In the limit that L, »g„
where g, is the superconducting coherence length, or
equivalently in the limit L, »1/b, o, all transmission
coefficients are negligibly small and Eq. (2) can be em-

ployed. Consequently by computing the scattering ma-
trix S of the system shown in Fig. 1, we can simultane-
ously obtain the conductance Gzz of the left interface be-
tween a dirty normal material and the superconductor
and the conductance G&z of the right, -hand interface be-
tween the superconductor and a clean normal lead.

With this NS device we first investigate the situation in
0
C3

O

0 -----
N 2
O

Cl dG„,

6 bG,

which there is no disorder in the superconductor. For a
system of width M =8, a normal region of length
Lz = 120 and various normal disorders 8'&, ranging from
0 to 1, Fig. 3 shows results for both the average left
boundary conductance Gzs (lower figure) and the fluctua-
tions 56+& (upper figure), plotted as functions of L~/1,
where I is the mean free path of the normal region. In
these calculations, Do=0. 1, L, =400, and quasiparticle
transmission is negligible. For comparison the average
conductance Gz and fluctuations 5G& in the absence of
the superconductor are also shown.

Figure 3 shows that whereas both Gz and Gzz change
significantly as the normal disorder (or equivalently 1) is
varied, the Auctuations are almost constant, reflecting
universality. Furthermore 56&z/56& is of order 2, in
qualitative agreement with Refs. 13—16. The fluctuations
do in fact vary slightly with Wz, due to the finite width
of the system. For Lz/1 =10 (i.e., W&=1) we find

56&z /56&—- 1.8, with 56&-—0.33 and for L~/1 =5 (i.e,
W&=0.6) we find 56&s/56~=2, with 56&-—0.36. The
latter result compares favorably with a value 5G& ——0.37
quoted by Lee and Stone. '

Having examined the interface between a dirty normal
region and a clean superconductor, we now consider the
situation in which the disorder 8'& within the supercon-
ductor becomes nonzero. In what follows, we fix the nor-
mal disorder at Wz =0.6, corresponding to Lz/1 = S and
show results for a system of size M =8, Lz = 120,
Ls=400, with ho=0. 1. Figure 4(a) shows the left and
right boundary conductances Gzz, Gz& and their Auctua-
tions 5G», 5G&z, as a function of the disorder 8'z in the
superconductor. Figure 4(a) shows that for moderate
values of Ws, Give and 56~& are independent of Ws. In
contrast the right-hand boundary conductance Gz& de-
creases monotonically with increasing 8'&, while the fluc-
tuations 5G&z rise to a plateau and thereafter remain
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FIG. 2. For a fixed normal disorder of 8&=1, this shows
plots of ( G )L/M as functions of the system length L for three
widths, M =4 ( ), 8 ( 0), and 16 (6).

FIG. 3. In the upper figure, the (4)'s show results for 5G~
and the (0)'s show results for 5GNz as functions of the ratio
L&/l, obtained by varying the normal disorder 8'z from 1 to 0.
The lower figure shows corresponding results for the average
conductances per channel (G~)/Xo (8,) and (G~s &/NO (I:I).
These results were obtained for a system of width M =8, a nor-
mal region of length L&=120, a clean superconducting region
of length Lz =400 and an order parameter of magnitude
~o=0 1
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FIG. 5. For a sample of the same dimensions as Fig. 4 and

with Wq =8 W& =4.8, this figure shows how 56&z (0) and 56»
(o) vary with the inverse order-parameter strength g, =1/60.
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FIG. 4. For a system of width M=8, a normal region of
length L&=120, a superconducting region of length Lz=400
and an order parameter of magnitude 50=0.1, these graphs
show results for the left and right boundary conductances and
the associated fluctuations as functions of the disorder in the su-
perconductor W&. The disorder in the normal region is fixed at
WN=0. 6. The values for Gzz are (0) and for GNq they are (0).
In (a) the disorder is varied from W& =0 to W& = 10WN. (b) Ex-
tends the results of (a) to larger values of Wz, where strong elas-
tic scattering dominates the transport.

constant over a finite range of disorder. Thus the con-
ductance fluctuations associated with the boundary be-
tween a clean normal material and a dirty superconduc-
tor exhibit universality. However, it should be noted that
the plateau value of 5GNs-—0.81 is slightly greater than
the left-hand value of 5G&z ——0.71. In addition, as shown
in Fig. 4(b), for large enough Ws, the fluctuations are
suppressed.

This behavior can be understood qualitatively, by con-
sidering the superconducting region of width M, length

g, = 1/b, o at each of the interfaces. In the absence of dis-

order, quasiparticles penetrate a distance of order g, into
the superconductor before Andreev reflecting and there-
fore one should ask whether or not a region of this extent
is diffusive. For the moderate values of W& under in Fig.
4(a) this is indeed the case and therefore universal con-
ductance fluctuations are observed. However, for the
much larger values shown in Fig. 4(b) quasiparticles be-
come Anderson localized ' ' and are normally reflected
on a length scale a «g'„where a is the inverse locali-
zation length. Thus the boundary conductances and
their fluctuations are suppressed.

The existence of a superconducting boundary layer of
width g, = 1/b, o, also allows one to understand the result
shown in Fig. 4(a) that the universal value of 56&s is
greater than 56Nz. For normal diffusive systems, it is
known that the precise value of the universal conduc-

tance fluctuations depends on the aspect ratio of a sam-
ple, varying from 56&-0.37 for quasi-one-dimensional
samples, where M/L «1, to 56&-0.43 when
M/L =1.' When considering systems that incorporate
superconductivity, the effective length of the conductor is
of order g, and for this reason, in the limit that g, )&M,
one expects the value of 5GNs to decrease to the quasi-
one-dimensional fluctuations characteristic of the left-
hand XSboundary to 56&s. In Fig. 5 we show numerical
results for the variation of 56~s and 5GNs with the
length scale g, . The system used is identical to that used
in Figs. 4, with the disorder within the superconductor
fixed at Wz=8W&. From the length dependence of the
normal conductance Gz, we estimate that the elastic
mean free path is of order unity and the localization
length is of order 50. Figure 5 shows that 56~s is almost
independent of the coherence length, whereas 56Ns de-
creases monotonically with increasing g„approaching
56~s only in the limit g, /M ~ ao.

IV. DISCUSSION

In this paper, we have presented results for the inter-
face conductance of a dirty superconductor in contact
with both clean and dirty normal materials. Except in
the limit of strong disorder, we have demonstrated that
conductance fluctuations of the latter are unaffected by
the disorder Wz within the superconductor and are in-
sensitive to the magnitude of the superconducting order
parameter. In contrast for moderate values of Wz, the
fluctuations associated with the interface between a dirty
superconductor and a clean normal conductor, exhibit
universal fluctuations, the precise value of which in-
creases as ho increases. We attribute this dependence to a
change in the efFective aspect ratio of the sample, experi-
enced by quasiparticles entering the superconductor.
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