An 1improved method for mobility prediction using
a Markov model and density estimation

Leonhard Menz*, University of Exeter; Roland Herberth*, Karlsruhe Institute of Technology;
Chunbo Luo, University of Exeter; Frank Gauterin, Karlsruhe Institute of Technology;
Ansgar Gerlicher, Stuttgart Media University; Qi Wang, University of the West of Scotland
*These authors contributed equally to this project and should be considered co-first authors.

Abstract—The prediction of an individual’s future locations
is a significant part of scientific researches. While a variety
of solutions have been investigated for the prediction of future
locations, predicting departure and arrival times at predicted
locations is a task with higher complexity and less attention.
While the challenges of combining spatial and temporal infor-
mation have been stated in various works, the proposed solutions
lack accuracy and robustness. This paper proposes a simple yet
effective way to predict not only an individual’s future location,
but also most probable departure and arrival times as well as
the most probable route from origin to destination.

Index Terms—Mobility behaviour, mobility prediction, markov
model, probability density function

I. INTRODUCTION

Knowledge about individual mobility behaviour is useful for
many applications such as urban planning or location-based
services [1]. Therefore a number of recent research projects
investigated different methods for human mobility prediction.
The availability of large quantities of mobility data that has
been collected with help of smart mobile devices, supported
research projects in this field [2] [3]. Many of the conducted
research projects focused on predicting an individual’s future
location, answering the question (Q1): “Where will the indi-
vidual be at time xx:xx of day y?”

However the question (Q2): “At what time is the indi-
vidual leaving location A to arrive location B?” often re-
mains unanswered. The complexity behind the answer for
this question can be illustrated by the results of previously
mentioned studies. It has been shown and will be confirmed
by results of this paper that the majority of individuals move
between few significant points of interest (POI). Knowing an
individual’s most significant places reduces the number of
probable answers to the first question (Q1) drastically. The
same cannot be said about departure times. Depending on
the temporal resolution, statements about departure times are
either inaccurate or not reasonable due to virtually infinite
possible answers. Burbey [4] pointed out first that it is a
different task and more complex to predict when an individual
is at a specific location than where someone will be at a
specific time. Baumann [1] showed that mobility traces are
more predictable than residence and arrival times.

A key challenge in predicting detailed mobility behaviour
is the combination of spatial and temporal data. Song et al.
presented that a significant share of information lies within the
temporal order of a visiting pattern [2]. Markov chains (MC)

of first and second order are simple and effective tools for
location predictions. Some projects based on Markov models
(MM) achieved the accuracy of >90% on location prediction.
MC of first order are characterized by that the current state is
solely dependent on the previous state. The so called “Mobility
Markov Chains” [5] are adequate to predict locations but
struggle when used to combine spatial and temporal data.
Nevertheless a number of projects [1] [6] [7] [8] combined
MC with temporal information in the form of time stamps.
Inherent in the system the efficiency of MC suffer from tem-
poral information (sparse data) and disadvantages outweigh
advantages when high temporal granularity is desired. Also
lots of historical data is needed for a system in order to be
able to make reasonable predictions in terms of departure
and arrival times. This leads to the following conclusions:
Temporal information is often only used to improve location
prediction. Combining location and time prediction is a less
investigated field of research. This results in a lack of temporal
accuracy. Presented solutions, especially MC, are generally
independent of temporal information. Recent work like [1]
[6] [7] [8] overcome this drawback by combining temporal
and spatial information into the MM. However high temporal
resolutions (e.g. 1 min) are not suitable for MM.

In this paper we propose a framework to achieve high
prediction rates with the help of a MM based transition matrix
but in combination with high granularity in terms of departure
and arrival times. By decoupling the prediction of “where”
somebody is travelling to and “when” the individual is going
to travel, we avoid the previously described drawbacks of
combining spatial and temporal data in “Mobility Markov
Models”. The proposal will introduce a function that predicts
mobility behaviour in a sequence of applications that have
been proven to be effective for their specific fields. While
future locations will be predicted by a MM inspired transition
matrix of first order, departure and arrival periods are predicted
with help of a probability density function (PDF).

The focus of this paper is on mobility that is usually
performed with some kind of transportation vehicle, mean-
ing that the covered distances are beyond average walking
distances. This excludes walks within buildings that might
sum up to significant length when combined. For instance,
a person might “travel” several kilometres per day by visiting
colleagues on different levels of a business building. In order
to demonstrate the system’s applicability, data will be used that
has been collected from real persons. It will be demonstrated



that the system is able to learn and predict trips that show
a form of regularity. Compared with previous solutions the
proposed scheme is capable of giving more precise predictions
about the departure and arrival times as well as the route that
is going to be taken. The proposed framework is simple and
easy to calculate yet effective and accurate.

The structure of this paper continues as follows: Section II
provides an overview of the state-of-the-art in mobility predic-
tions; Section III introduces the proposed framework including
the system model; Section IV analyses the performance using
exemplary profiles; Section V discusses the implementation
issues, the limitations of the model and future work; Section
VI concludes this paper.

II. RELATED WORK

Recent results of research show various notable types of
mobility prediction algorithms. Most can be categorized into
information theoretic approaches like MM [9] [10] and com-
pression algorithms (LZ family) [11] or machine learning
methods like Bayesian networks, neural networks and pattern
mining techniques [12]. Furthermore several improvements
were presented over the years for these approaches. Neverthe-
less most of them only take spatial information into account
while other information of trajectory especially temporal as-
pects are missing. MM and compression algorithms (LZ fam-
ily) are common approaches because of their proportionally
low complexity and resource needs. Markov based models
are simple yet effective tools for mobility predictions. They
have been successfully applied for predicting someone’s next
location. Depending on various factors such as randomness in
behaviour and the data collection method prediction rates of
33-91% accuracy were reached [4].

A characteristic property of MC of first order is that the
current state is only dependent on the previous state. Meaning
that in case of mobility the current location is only dependent
on the previous location. The key question of: “What is the
most useful order of a MM for mobility prediction?” has
been answered differently. The highest prediction accuracy for
location prediction was achieved with a first order MM in [4].
To limit the models overhead and due to insignificant increase
in accuracy of higher order models in other projects [13] the
model proposed in this paper is based on a MM of first order.

Predictability in general has been examined from an infor-
mation theoretic standpoint [11] [14] [15]. Therefore previous
works calculated mobility data’s entropy to determine their
predictability. Their results confirm that “a significant pro-
portion of information is encoded in the temporal order of
visitation patterns” [4].

Recent works [6] [7] combined temporal and spatial infor-
mation in a MM naming it Time-Based Markov (TBM). On
one hand the results of [6] show a small increase of prediction
accuracy from 38.2% to 39.2% when time information is
included in the prediction process. On the other hand their
time range of four hours (for which their prediction was
most accurate) is rather inaccurate for departure and arrival
time prediction. Cheng et al. improved the prediction accuracy
with the consideration of time information by 6% compared

with the original Markov algorithms [7]. In this case the
selected time period amounts to one hour, meaning every day
is divided into 24 time intervals. In fact for both TBM temporal
information is only used to improve performance for location
prediction. A lack of predicting when someone arrives still
remains. By numbers [4] achieved the highest accuracies of
77% to 91% with a time tolerance of 20 minutes. While this
can be seen as fairly accurate, it should be avoided to compare
these values directly. As previously mentioned, the prediction
performance is very much dependent on the used data sets.
Also the performance measurements vary and make a direct
comparison difficult.

III. METHODOLOGY

By decoupling temporal and location predictions we avoid
previously mentioned drawbacks. Our approach does not only
aim to forecast a user’s next location, but also to predict
departure and arrival times with high accuracy. This is done
without loss of correlation between time and location. Unlike
previous solutions temporal information will not be included
directly into the MM. Instead a Probability Density Function
(PDF) is used for temporal predictions. This means MM are
exclusively used to predict a user’s next location (where)
while the PDF will be used to estimate departure times from
the current location (when). Details of this approach will be
presented and discussed in the following section.

A. A Markov Model for mobility prediction

MM are useful for modelling stochastic processes and
can be used to specify systems with random state changes.
They are described by a finite (or infinite) set of states
S = [s1,..., 8] which defines the state space. Changeovers
between those states depend on their transition probabilities
which are defined in a set of transitions T = [t1.1,...,tnn]-
Accordingly the transition probability from state ¢; to state
ty is defined as pjo. The set of transition probabilities is
represented as a transition matrix of the dimension n X n
where n is the number of states. In terms of analysing users’
mobility behaviour, states represent (visited) POIs whereas the
transition probabilities depend on the quantity of (driven) trips
among POls.

While high prediction accuracy rates prove that MM are
applicable for mobility prediction, its characteristics stand in
conflict with some human mobility behaviour. This can be
illustrated by a simple example: An often observable behaviour
of a working person is the departure from home to work in
the morning followed by a return to home in the afternoon.
According to the logic of a simple MC, the probability for the
transition “Home — Work” and “Work — Home” increases
with every time in which the person follows this behaviour.
From a statistical point of view, the MM would answer the
question: “Where is the person next, given he or she is at
home?” most of the time correctly with “Work”. However, for
real world data there are some disadvantages in this logic. With
increasing number of transitions “Home — Work”, “Work —
Home”, this behaviour will outweigh any other transition for as
many times as this behaviour exceeds the next most probable



transition. The criticality of this feature becomes obvious when
the number of “significant” locations is >2.

Presumably in many cases the assumption that the next
place that is going to be visited is only dependent on the
current location is false. Since a basic MC does not consider
temporal information, the prediction for a Sunday would
always be the same as for a Monday or any other regular
working day. A simple but effective way to overcome this
issue is to make a distinction between different days. This
can be done by separating working days from weekends and
holidays, Mondays from Tuesdays, and so on. Differentiating
between days increases the model’s complexity as well as the
requirements on the collected data. However, the increased
requirements have been justified by observations of previous
researches and common sense which observed day-of-week-
specific repetitive behaviour in human mobility [2].

Hence in our application we make a distinction between
days of the week. We use a modified approach of [16], as
we separate time in day specific bins, meaning that for the
prediction of the mobility behaviour of a Monday, historical
data of all Mondays is taken only. The same applies for
Tuesdays and so on. The logical disadvantage of this approach
is that for a prediction that is, for instance, based on four days,
data of one month is required (cold start problem).

B. Probability Density Function for departure prediction

Predicting someone’s next location is an easier task than
making a reasonable assumption about the corresponding de-
parture time. This is because there are usually more temporal-
predictions possible than feasible location-predictions. Due
to sporadic human behaviour and unexpected external cir-
cumstances, such as traffic jams or getting a phone call, the
prediction of arrival and departure times is always subjected
to uncertainties. Even huge quantities of historical data cannot
provide 100% certainty.

To increase the mobility prediction’s quality we aim to
determine the most probable departure time of an individual.
Route and day specific departure times are therefore treated
as a random variable that underlies an unknown probability
function. More specifically we are searching the time of
the day in which the relative likelihood for departing to a
destination, that has been selected from a MM, is the highest.
We therefore employ a density estimation on day and trip
specific departure times. Based on [18] a density estimator
f(x) is defined as

Fule) = 2 3 K (=) M

where K is a kernel function, n number of samples and
b > 0 is the bandwidth. We are less interested in the
actual underlying probability function but more in a reliable
indication of a probable departure time which will be described
in the following section.

C. Model description

Other than previous proposals we separate the task of
prediction where somebody is heading to and when somebody

is leaving. While a MM based transition matrix is used to
determine an individual’s probable next destination, the corre-
sponding departure time is calculated after the most probable
destination has been determined. The major benefit of this
process is that the performance of the MM is not influenced
by the inclusion of temporal information.

D. Model implementation

As MM showed good performance in previous works, we
implement a MM of first order. Based on [17] we describe
our model with the ‘Probability Theory’. Let X be a set of
POIs that represent Origins and Y be a set of POIs that
represent Destinations. Every POI can be both an origin
and a destination. X can take any value of x; where i=1,..M,
and Y can take any value of y; where j=1,..,L, forming a
LxM matrix. Let NV be an individual’s POI sequence where
the sequences’ last item is the individual’s current location
x = x. If a specific location from a set of locations is denoted
as X = x; and similarly a specific destination from a set
of destinations is denoted as Y = y; the probability p for
the event (X = z;,Y = y;) is called joint probability and
calculated with
Nij
N @)
where n;; is the cell 4, j as fraction of all cells of matrix LxM.

For now, suppose that we are interested in finding the
probabilities for transitioning to known destinations, given that
a POI sequence is used to count the number of transitions
between X and Y. Since the origin and Current Location (cl)
is known (x = x.), the conditional probability for known
destinations is calculated with

p(Y =yl X =zq) =

(X =Y =y;) =

Nel,j 3)
where n.; ; is the number of transitions from z.; to y; and
Ny (cl) = Zle ne,;. Note that when a user is visiting a place
that has not been visited before, the conditional probability for
all destinations is 0 and no prediction can be made. However,
given that the individual is in a known location, the model
is able to provide transition probabilities to all known places
that have been reached from the current location. We grade
all possible destinations in a descending order and declare the
first entry as the most probable destination. From our database
we request all trips that lead from the current location to the
predicted destination. To cope with variations in daily habits
we select day specific departure times of the requested trips
and form a univariate density estimation to determine the most
probable departure time.

We assume a close to normal distributed probability for
departing around a typical departure time for predicted trips.
Therefore we employ a normal (Gaussian) kernel

K(z) = ®(x) @)

for a density estimation with a variable bandwidth
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that minimizes the mean squared error (Silverman’s rule [18]).

To limit computation time for later steps we make a point
prediction rather than an interval prediction and choose the
maximum likelihood that is the highest peak of the density
function to determine the most probable departure time. If
the point of time that marks the most probable departure
(time of day) is in the past of the current daytime, we
repeat the departure time request for the second most probable
destination, provided by the MM. We repeat this step for the
third most probable destination if the most probable departure
time for the second most probable destination is also in the
current day’s past. If the most probable departure time for the
third most probable destination is also in the current day’s
past, we assume that no further trip is taken at this specific
day.

Algorithm 1 Prediction
1: N = POI sequence

CDT = Current Daytime

Current Location (CL) = Last element of N

Create transition matrix T:{1,...,m}x{L,...n}

First Most Probable Destination (FMPD) = max{T[cl,n]}

Execute probability density estimation for day specific

departure times from CL to FMPD

7: Highest Peak of density estimation = Day specific Most
Probable Departure Time (MPDT)

8: if MPDT > CDT then return Destination =
Departure Time = MPDT

9: else Second Most Probable Destination (SMPD) =

A o

FMPD,

max{T[cl,n]\{FMPD}}
10: Execute probability density estimation for day specific
11: departure times from CL to SMPD

12: Highest Peak of density estimation = MPDT

13: if MPDT > CDT then return Destination = SMPD,
14: Departure Time = MPDT

15: else Third Most Probable Destination (TMPD) =

16: max{T[cl,n]\{FMPD, SMPD}}

17: Execute probability density estimation for day spe-
18: cific departure times from CL to TMPD

19: Highest Peak of density estimation = MPDT

20: if MPDT > CDT then return Destination =

21: TMPD, Departure Time = MPDT

22: else assume that there are no more trips at that spe-
23: cific day

24: end if

25: end if

26: end if

If we predicted a trip that, according to the density function,
is yet to come, we use the median trip duration of all trips
that comply with the corresponding origin destination couple
to provide a probable arrival time at the predicted destination.
Being the most probable scenario, the predicted arrival time
together with the predicted destination is the new starting point
for the next trip prediction. Doing so provides us a system
that is able to make any number of predictions with however
decreasing accuracy (probability) for long time predictions. In
this case the system acts as if the vehicle is located in the

predicted POI at the predicted arrival time and requests the
next most probable destinations.

Figure 1 illustrates specific departure events to the most
probable destination in form of a histogram. The red line
shows the kernel smoothing as function of departure times.
The area below the curve can be used to determine the
probability of departure within time specific periods. We use
the highest peak of the smoothing function for the prediction
of departure time.

Distribution of day specific departures
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Fig. 1. Density estimation with Kernel smoothing function consisting of six
departure samples showing a peak at 1055. The departure event therefore
corresponds to 17:35 pm.

E. Parametrization

Figure 2 displays the distribution of visitations per POI. The
number of relevant POIs for all observed users ranges between
3 to 6. To avoid overfitting we only consider the first three

Visitation distribution
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Fig. 2. Distribution of visitations per POI by all users. The graphs shows
that the number of top visited locations ranges between 3 to 6 for all users.

location based most probable destinations for our prediction.
We use three as threshold as it provides a reasonable trade
off between significant locations and locations that have been
visited in insignificant proportion, as displayed in Figure 2.
This observation is supported by [4] which achieved best
prediction rates when not more than three locations have been
visited in one timeslot.



IV. EXPERIMENTAL RESULTS
A. Data pre-processing

The MM as well as the density estimation requires to pre-
process trajectory data. For the proposed model it is necessary
to identify POI’s as well as repetitive driven trips and their
temporal assignment. As our raw data consists of GPS data in
conjunction with unixtime, we conduct two different steps to
pre-process the collected data.

GPS-Based Points of Interest Identification - To identify
POI’s we use both the first and the last GPS position of a trip
and define them as place points. After a new trip is finished,
it is checked if its start and end place points are within a
radius of 500 metres with a previously recorded place point
or a previously formed POI. If a previously recorded place
point is in range, the mean of new and old place points form
a now POL. If a previously formed POI is in range, the new
place point is assigned to the POI. The radius was determined
empirically as it provided the most accurate results for our test
data set. Once a POI is formed, a POI-ID is assigned.

GPS-Based Trip ID Identification - To support the appli-
cation of a density estimation for departure times we are
interested in the occurrences of similar (departure) events.
We define these events not only by departing from A to B
but also by the route that has been driven from origin to
destination. This requires to compare and identify similar trips.
This is realized by calculating the average of the straight line
distances between every GPS point and its closest segment of
the opposing route. If the average distance is equal or smaller
than 100 metres, the compared trips are considered to be equal
and a dedicated trip-ID is assigned. The distance of 100 metres
has also been determined empirically as it provided the best
results.

The assignment of POI- and trip-IDs allows to describe an
individual’s mobility behaviour as sequence of POIs and trips
which is the basis for the creation of a Markov based transition
matrix.

B. Profile regularity

Prediction accuracy strongly relies on the regularity of a
user’s profile. Previous work showed that the entropy S (in-
formation theory) can be used as an indicator to measure this
regularity. Therefore the degree of entropy sets a theoretical
limit in predictability, meaning that for individuals with a
lower mobility entropy the theoretic predictability is higher
and vice versa. Recent literature show several variations to
determine entropy. Various sources introduced and referred
a methodology based on the Lempel-Ziv data compression
algorithm [2] [13] [19]. However latest results in [19] showed
that entropy strongly depents on cluster radius (As) of POIs
and temporal resolution (At) of the trajectory data. Xu et al.
[20] showed an alternative approach called “refined composite
multiscale entropy” (RCMSE) which is an improved approach
of the multiscale entropy. Finally Qin et al. calculate their
entropy based on a day specific comparison [21]. Our available
data set allows a similar calculation of the entropy S:

N l
Zj:l ZiGI(DTtit
Ttot

)+ tog(52)

S:

(6)

where the number of time slots in one day is 7}, the number
of days is Dy, I is the set of all visited locations and [;; is
the number of times location ¢ dominates time slot j.

C. Performance analysis

We test the first implementation of the algorithm on a
real world dataset. Figure 3 illustrates recorded data for five
consecutive weeks for user A. Note that we can differentiate
between trips however for easier recognizability all trips
are coloured dark blue. Different colours show presence at
different locations. The x-axis displays Time of day, the y-
axis shows Days. Rows from the top to the bottom are in
consecutive order.
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Fig. 3. Data visualisation of the recorded profile from user A, showing
high regularity of moving between home and work location on weekdays.
Departures around 9:00 am are highly consistent.

We use eight weeks of recorded data for the prediction of
one week. Figure 4 shows the system response.
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Fig. 4. Data visualisation of the predicted profile from user A. All frequently
visited places on weekdays and weekend appear in the system’s response.

To demonstrate the algorithm’s performance we use four
different available datasets that were collected by test users.

Table I displays the predictions accuracy of four different
users and the corresponding profile entropy. The overall accu-
racy is calculated with

correct Predictions

(7

The average profile entropy is an indicator for regularity. While
an entropy of 0 would indicate that the profile is completely

A =
ceuracy all Predictions



Day of Week User A User B User C User D
Monday 8529% 75.52% 72.61% 74.08%
Tuesday 93.67% 7638% 71.94% 70.12%
Wednesday 81.47% 83.32% 61.58% 70.94%
Thursday 84.79% 7531% 64.74% 69.00%
Friday 83.81% 6530% 63.14% 67.24%
Saturday 62.23% 58.56% 80.36% 61.79%
Sunday 67.33% 68.99% 7593% 69.02%
Average 79.80% 71.91% 70.04% 68.88%
Entropy 0.68 0.76 1.12 0.97
TABLE 1

PERFORMANCE ON TEST DATA
Day of Week User A User B User C User D
Monday 22 19 17 30
Tuesday 24 32 32 22
Wednesday 18 28 13 21
Thursday 17 51 1 24
Friday 18 26 34 49
Saturday 13 - 114 -
Sunday 33 - - -
Average 21 31 35 29

TABLE II
MAE IN MINUTES ON CORRECTLY PREDICTED TRIPS

predictable, high entropy indicates little predictability. Table
II displays the mean absolute error (MAE) of departure time
prediction in minutes for correctly predicted trips.

V. DISCUSSION

A major source of error is the quality of GPS data. For
persistent data input all vehicles used for data collection
were equipped with GPS-dongles that use the vehicle’s on-
board diagnostics port for power supply. The used hardware
is more prone to connection abortion than systems that use the
vehicle’s external GPS antenna as the dongles are connected
inside of the vehicle’s passenger cabin. This led to situations
in which not the entire trip was recorded due to missing GPS
connections. Missing parts of trajectories led to situation in
which the trip start and end could not be correctly assigned
to POIs what consequently led to wrong departure and arrival
time assignments. We expect performance improvements with
better data collection hardware. The proposed framework
separates days on weekly cycles. Inherent in the system the
model does not consider patterns that lie outside of weekly
intervals. Hence behaviour that is observable every 8th day or
every other week is being neglected.

VI. CONCLUSION AND FUTURE WORK

This paper introduces a new framework that combines the
application of MM for location prediction and PDF for depar-
ture time prediction. Since spatial and temporal predictions
are different tasks, the model separates them but without
loss of correlation between POIs and time. Naturally, the
model achieves the highest prediction accuracy for mobility
behaviour with high regularity, indicated by a low entropy.

Results show good performance for weekly patterns however
there are some points which can be addressed in order to
improve the algorithm’s performance. For instance, the intro-
duction of a higher level, that separates time into weekly cycles
could cope the previously described limitations concerning
daily cycles. Also further improvements could include the
acquisition of multiple data sources in order to ensure a
maximum coverage of mobility data so that missing data
can be compensated by other sources, such as user specific
calendar entries. Integration of further sources will be part of
improvements for future versions of the proposed model.
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