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Delayed effects and critical transitions in climate models

by Courtney Quinn

There is a continuous demand for new and improved methods of understanding our climate system.

The work in this thesis focuses on the study of delayed feedback and critical transitions. There is

much room to develop upon these concepts in their application to the climate system. We explore the

two concepts independently, but also note that the two are not mutually exclusive.

The thesis begins with a review of delay differential equation (DDE) theory and the use of delay

models in climate, followed by a review of the literature on critical transitions and examples of critical

transitions in climate. We introduce various methods of deriving delay models from more complex

systems. Our main results center around the Saltzman and Maasch (1988) model for the Pleistocene

climate (‘Carbon cycle instability as a cause of the late Pleistocene ice age oscillations: modelling the

asymmetric response.’ Global biogeochemical cycles, 2(2):177-185, 1988). We observe that the model

contains a chain of first-order reactions. Feedback chains of this type limits to a discrete delay for

long chains. We can then approximate the chain by a delay, resulting in scalar DDE for ice mass.

Through bifurcation analysis under varying the delay, we discover a previously unexplored bistable

region and consider solutions in this parameter region when subjected to periodic and astronomical

forcing. The astronomical forcing is highly quasiperiodic, containing many overlapping frequencies

from variations in the Earth’s orbit. We find that under the astronomical forcing, the model exhibits

a transition in time that resembles what is seen in paleoclimate records, known as the Mid-Pleistocene

Transition. This transition is a distinct feature of the quasiperiodic forcing, as confirmed by the

change in sign of the leading finite-time Lyapunov exponent. Additional results involve a box model

of the Atlantic meridional overturning circulation under a future climate scenario and time-dependent

freshwater forcing. We find that the model exhibits multiple types of critical transitions, as well as

recovery from potential critical transitions. We conclude with an outlook on how the work presented

in this thesis can be utilised for further studies of the climate system and beyond.

http://www.exeter.ac.uk/)
http://emps.exeter.ac.uk/)
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Chapter 1

Introduction

1.1 Context and motivation

The study of climate is a complex and challenging science. The climate system is comprised of very

complex spatio-temporal variability over multiple subsystems such as the atmosphere, the hydrosphere,

the cryosphere, the biosphere, and the lithosphere (Dijkstra, 2013). In addition, there is no clear or

simple timescale separation between the multiple subsystems (see Table 1.1 for comparison).

Additionally the climate system is constantly changing in the sense that the assumption of stationarity

is violated. On short time scales this can be attributed to human impact, and on longer time scales

these would be due to, for example, changes of the Earth’s orbit or continental shifts. This type of

non-stationarity is referred to as climate variability (Salinger, 2005). Nevertheless, it is imperative

that society attempts to understand how the system works and when drastic changes can occur. The

ability to foresee and respond to these changes will determine our survival as a species on this planet.

One important but overlooked aspect of climate is delayed effects. Delays in climate can be observed

through the transport of mass or energy via propagating waves (Dijkstra, 2008) or chains of reactions

that form feedback loops (Dijkstra, 2013). Understanding the existence and extent of any delayed

Subsystem lower timescale upper timescale

Atmosphere seconds days
Hydrosphere months years x103

Cryosphere years x102 years x105

Biosphere months years x107

Lithosphere years x105 years x109

Table 1.1: Characteristic timescales of climate subsystems, compiled from Dijkstra (2013) and Goosse
et al. (2010).
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effects is useful for long-term predictions of how the climate may be influenced. In this thesis we will

analyse delayed effects in different aspects of the climate system through dynamical systems theory.

Another fairly recent research area of interest is the study of critical transitions. This is a scientific

term that describes the sudden, significant changes to the state of a system. The common scientific

assumption is that systems remain at stable equilibrium in the linear response regime, in which it

reverts back to equilibrium exponentially after small temporary disturbances and adjusts proportion-

ally to small permanent changes of inputs. For example the notion of climate sensitivity refers to the

amount of change in global temperature as a response to a doubling of atmospheric CO2, considered

a small perturbation (Roe and Baker, 2007). A tipping point is said to have been crossed when this

assumption is violated (Lenton et al., 2008). At the level of conceptual models, most observations of

this type of behaviour have been explained by three mathematical mechanisms: slow passage through

a bifurcation, exit from a basin of attraction due to noise, and failure to track a quasi-static attractor

(Ashwin et al., 2012).

There have been many studies over the past decade which focus on particular critical transitions either

observed or suspected to occur within the climate system. One influential study was conducted by

Lenton et al. (2008), in which the authors identify ‘tipping elements’ in the climate, or rather, large-

scale components of the Earth system that can potentially be switched into a qualitatively different

state by small perturbations. In this thesis we aim to address some of the tipping elements outlined in

that study, particularly the melting of the Greenland Ice Sheet (GIS) and changes in North Atlantic

Deep Water (NADW) formation. We consider possible critical transitions caused by these elements

during past and future climate scenarios. The melting of the GIS can be a trigger for the shutdown

(or severe slowing) of the Atlantic meridional overturning circulation (AMOC) (Lenton et al., 2008),

which is a primary contributor to the regulation of the earth’s climate (Cheng et al., 2013). The

AMOC is also highly connected to NADW formation. We investigate changes in NADW in relation

to the Mid-Pleistocene Transition (MPT). The MPT is a transition that occurred between 1200 and

700 kyr BP, where proxy records for global temperature show a change from a dominant 41 kyr period

to a 100 kyr period (Dijkstra, 2013). While the 41-kyr oscillations have been attributed to external

forcing (Paillard, 2001), the 100-kyr cycles have been proposed to be a result of nonlinear responses

of the climate system itself (Gildor and Tziperman, 2001, Imbrie et al., 1993, Yiou et al., 1994). We

compare the climate record and the external orbital forcing in Figure 1.1.

Our main goal is to explore the ideas of delayed effects and critical transitions within climate in parallel,

and combine these ideas where possible (i.e. delayed effects which can lead to a critical transition).

The study of either of these topics is useful on its own, however the connection between the two cannot

be overlooked. We aim to pave the way for further understanding of such phenomena in the climate

system.
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Figure 1.1: Top: Reconstruction of benthic δ18O from 57 globally distributed sediment cores, adapted
from Lisiecki and Raymo (2005) data. The green shaded area represents the time frame of the Mid-
Pleistocene Transition. Bottom: Normalised integrated July insolation at 65◦N, adapted from Huybers

and Eisenman (2006).

1.2 Objectives and outline

In this thesis, we will explore potential delay effects and critical transitions in the climate system

through considering simplified mathematical models of specific climate phenomena. The simplified

models are obtained either through conceptual inception or the reduction of higher complexity models.

This approach allows us to then use tools from dynamical systems theory, such as systematic parameter

studies, studies of basins of attractions, and finite-time Lyapunov exponents, to explore the possible

behaviours one can observe in the system. The thesis is structured as follows.

Chapter 2 reviews some literature around models with delay and critical transitions, specifically in the

context of climate science. We first introduce some general properties of delay differential equations

(DDEs). We then present examples in which DDEs have been used to model climate processes, namely

energy balance models (EBMs) and conceptual models of the El Niño Southern Oscillation (ENSO).

Following the discussion of models with delay, we introduce the idea of critical transitions. We review

the current understanding around what constitutes a critical transition, and we explain three different

types. Finally, we discuss two specific examples of a critical transition in the climate system: the MPT

and the shutdown of the AMOC.

In Chapter 3 we shift the focus to the methods of obtaining models with delay from more complex

models. The aim is to illustrate different ways of determining whether or not systems have delayed

effects which would allow for the reduction of dependent variables. We introduce three different
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methods: the linear chain approximation, the Mori-Zwanzig projection framework, and reflection of

wave equations. We first show the theoretical derivation of two different types of linear chain systems,

one with all identical timescales and one with all distinct timescales. We then derive the Mori-Zwanzig

projection for a generic system of ODEs. We illustrate the effectiveness of the projection by applying

it to two examples of a linear chain system. We conclude with two case studies of phenomena modelled

by wave equations, ENSO and the Atlantic Multidecadal Oscillation (AMO). We show the procedure

for deriving delay equations through the reflection conditions of the wave equations. We conclude

with a numerical study of the AMO model with delay, where the model is initialised with an idealised

history followed by a data-based history.

Chapter 4 starts from a conceptual paleoclimate model with delay by Ghil et al. (1987). The model

is comprised of Boolean delay equations (BDEs), in which the variables take only values of 0 and 1

and the equations use logical operations. This model uses three variables (global ice volume, global

temperature, and ocean circulation) as well as three delays (ice sheet accumulation time, ice sheet

viscoplastic expansion time, and overturning time of the ocean). We transform the BDE model into

a discrete map and then regularise it to a DDE with continuous variables. We identify two regular

attractors: an equilibrium and a large amplitude periodic orbit. We perform a systematic bifurcation

analysis which classifies the dependence of the large amplitude periodic attractor on the ratios between

the delays.

The Ghil et al. (1987) BDE model contained little in terms of physical mechanisms, only relying on

timescales and logical relations of processes. In Chapter 5 we then turn to a conceptual paleoclimate

model with a more realistic representation of underlying physical processes, the Saltzman and Maasch

(1988) model. This model included the effects of carbon uptake and transport in the ocean, deep

water formation, and the asymmetrical response of the atmospheric CO2 fluctuations, and thus shows

oscillations that match features of the palaeoclimate proxy records. It was developed to explore the

possible cause of the MPT. The model is a system of three ODEs representing global ice mass, global

atmospheric CO2, and NADW. These three variables can be related to the variables of the Ghil et al.

(1987) model discussed in Chapter 4. We analyse the Saltzman and Maasch (1988) model and find

similar feedback effects as in the Ghil et al. (1987) model. We are able to reduce the model to a scalar

DDE. We then analyse this DDE under varying delay and external forcing.

The variability of delay in the DDE model of Chapter 5 comes from the variability in the overturning

time of the ocean. This is primarily controlled by the AMOC (Hawkins et al., 2011). In Chapter 6

we consider the AMOC in more detail, particularly the possibility of its shutdown (explained in

Section 2.3.3). We analyse a box model of the global ocean developed by Rodriguez et al. (2017)

through determining the dominant dynamics of the Atmosphere Ocean General Circulation Model

FAMOUS. We show that the model can be further reduced in dimensionality without losing any

dynamical behaviour. We consider the effects of an altered background state to represent a future
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climate scenario. We also explore the model’s behaviour when subjected to a increase of fresh water

forcing at different rates.

Finally, Chapter 7 summarises our results. We draw connections between previous studies and the

work presented in this thesis. In addition, we consider follow-up studies and potential future projects

which could benefit from our results.





Chapter 2

Delays and critical transitions in the

climate system

In this chapter we review some of the literature around delay differential equations (DDEs) and

critical transitions. We take a particular focus on the connection of DDEs and critical transitions

with studies of the climate system. Section 2.1 presents some common results regarding solutions

and stability analysis of DDEs. Section 2.2 reviews the history of delays used in climate models with

specific examples. Section 2.3 discusses critical transitions, with the types of transitions outlined in

Section 2.3.1 and two specific examples of possible critical transitions in climate in Section 2.3.2 and

Section 2.3.3.

2.1 General theory regarding delay differential equations

We introduce the general form of a DDE:

dx

dt
= f(xt, p), (2.1)

where x ∈ Rn are state variables, p ∈ Rq are parameters, and f : C([−τ, 0];Rn) × Rq → Rn

(C([−τ, 0];Rn) is the space of continuous functions on [−τ, 0] 7→ Rn). We will assume f is suffi-

ciently smooth. We define for t ∈ [0, T ], C([−τ, T ];Rn) 3 x(t) 7→ xt(s) = x(t + s) ∈ C([−τ, 0];Rn)

for s ∈ [−τ, 0], where τ > 0 is finite. Note that an unbounded delay τ = ∞ would require a more

general phase space than the one chosen here. We will consider initial conditions x0 ∈ C([−τ, 0];Rn)

and define the norm as ||x0|| = max{|x(s)| : s ∈ [−τ, 0]}.

Existence of solutions for DDEs with finite discrete delay can be shown through the method of steps.

The method for a linear system is described in Hale and Verduyn-Lunel (1993). We explain the method

21
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here for a general RHS. Consider (2.1) with a single finite delay τ :

dx

dt
= f(x(t),x(t− τ), p). (2.2)

On the interval t ∈ [0, τ ], the function x(t) is the solution of the ordinary differential equation initial

value problem (ODE IVP) with forcing:

dx1

dt
= f(x1(t),x0(t− τ), p), x1(0) = x0(0), (2.3)

where x1(t) = x(t) for t ∈ [0, τ ]. Once the solution is known on the interval t ∈ [0, τ ], x(t) on the

interval t ∈ [τ, 2τ ] is the solution of

dx2

dt
= f(x2(t),x1(t), p), x2(0) = x1(τ), (2.4)

where x2(t) = x(t + τ) for t ∈ [0, τ ]. If we continue this process we end up with a system of ODE

IVPs:

dx1

dt
= f(x1(t), x̃0(t), p), x1(0) = x̃0(τ), (2.5a)

dx2

dt
= f(x2(t),x1(t), p), x2(0) = x1(τ), (2.5b)

. . . (2.5c)

dxN
dt

= f(xN (t),xN−1(t), p), xN (0) = xN−1(τ), . (2.5d)

Note that x̃0(t) = x0(t− τ) is just a time shift of the initial history. If we change the variables back to

the original solution through xi(t) = x(t+ (i−1)τ) for i = 1, 2, . . . , N , we then have a unique solution

for (2.2) on the interval [−τ,Nτ ]. If we let N → ∞, we then can recover a unique solution for (2.2)

on [−τ,∞).

To investigate the local stability of the solutions we analyse the linearisation of (2.2). In DDE systems

with a finite delay τ , the linearisation with linearised variable x̂ has the form

dx̂

dt
= J0x̂(t) + Jτ x̂(t− τ), (2.6)

where J0 ∈ Rn×n and Jτ ∈ Rn×n are the Jacobians of the right hand side of (2.2) with respect to x(t)

and x(t− τ), respectively. The linear DDE (2.6) has non-trivial solution of the form eλtc (for c ∈ C)

if and only if δ(λ) = 0, where δ(λ) : C→ C defines the characteristic function and is given as follows:

δ(λ) = det(λI − J0 − Jτe−λτ ). (2.7)
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Here, I is the n×n identity matrix. A more general form of the characteristic function for DDEs with

unbounded delays can be found in Stépán (1989).

In general, the characteristic function of a DDE has an infinite number of zeros. For finite delays,

however, we can make some statements about the behaviour of the zeros. First, we know that for a

finite delay, J0 + Jτe−λτ is finite. This then leads to Theorem 1.7 of Stépán (1989), which states that

for every M ∈ R, there are at most finitely many λ with δ(λ) = 0 and <(λ) ≥ M . We can make

statements about stability of the DDE (2.6) by studying the zeros of the characteristic function (2.7).

Stability of the linearised DDE (2.6) then provides information about the local stability of DDE (2.2).

Bifurcation theory, or the study of qualitative change in solution behaviour, of DDEs starts with the

study of the behaviour near equilibria. Suppose there exists an equilibrium of (2.2), xeq, with zeros

of δ(λ) = det(λI − J0(xeq) − Jτ (xeq)e−λτ ) denoted as λeq,k. This equilibrium is called hyperbolic if

<(λeq,k) 6= 0 for all k = 1, 2, . . . ,∞. If there exists at least one k ∈ {1, 2, . . . ,∞} such that <(λeq,k) =

0, then the equilibrium is called non-hyperbolic. We denote j the number of λeq,k which satisfy

<(λeq,k) = 0. Since j < ∞, we can construct a center manifold of dimension j in a neighbourhood

of the equilibrium xeq (Diekmann et al., 1995). This then allows in this neighbourhood for the

restriction of the infinite dimensional DDE (2.2) onto a system of ODEs of finite dimension. Through

this dimension reduction, ODE bifurcation theory can then be applied in the neighbourhood of the

equilibrium (see Section 2.3.1.1 for an introduction to ODE bifurcation theory).

The existence of periodic solutions can be shown through the construction of a Poincaré map as with

ODEs. A solution x(t) of system (2.2) is called periodic if x(t) is non-constant and there exists P > 0

such that x(t) = x(t + P ) for all t ∈ [−τ,∞) (Diekmann et al., 1995). A Poincaré map can then be

constructed, and any fixed points represent periodic orbits (Hale and Verduyn-Lunel, 1993). For every

ρ > 0 a fixed point will have finitely many eigenvalues µ with |µ| > ρ, such that one can construct

finite-dimensional center manifolds. If there exists a non-hyperbolic fixed point of the Poincaré map,

then the center manifold theory and bifurcation theory of ODEs can also be applied.

2.2 The use of delays in climate models

Delay differential equations (DDEs) have been used in many different fields of study including pop-

ulation biology, physiology, economics, neural networks, and control of mechanical systems (Smith,

2010). They are typically used to describe delayed feedback mechanisms, i.e. dynamical variables

that depend on past states of the system. The need for an initial value in C([−τ, 0];Rn), represent-

ing past history, makes systems of DDEs infinite-dimensional (Hale and Verduyn-Lunel, 1993). This

added complexity is sometimes criticised in regards to incorporating DDEs into climate models (which

are typically already in the form of PDEs, another infinite-dimensional problem). Nevertheless, they

can be useful in reducing the state space of partial differential equation (PDE) systems by modelling
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feedback loops as DDEs for only a few variables representing the direct effects and the result of the

feedbacks (Krauskopf and Sieber, 2014). Methods of reducing such systems are discussed in detail in

Chapter 3.

There are a few examples where delays have been incorporated into climate models, typically with

conceptual models. For instance, delays can be used to approximate the transport of mass or energy

across large distances (Dijkstra, 2008). An early attempt at this is proposed as an energy-balance model

(EBM), which models the radiation balance at the earth’s surface. For the incoming solar radiation,

a delayed albedo term is incorporated. This is typically attributed to the delay in ice-sheet extent

due to viscoplastic expansion (discussed in more detail in Chapter 4). The delayed EBMs produce

self-sustained oscillations in temperature that are either periodic or aperiodic, and have comparable

spectra to paleoclimate data. We show a few examples of these models in Section 2.2.1.

Another prominent example of delays incorporated into climate models involves the El Niño Southern

Oscillation (ENSO). The ENSO phenomenon occurs in the equatorial Pacific Ocean and has a period

of roughly 4 to 7 years. During this phenomenon, the sea-surface temperature (SST) in the Eastern

Tropical Pacific Ocean increases by a few degrees (El Niño) which then drives variations in the surface

winds across the tropical Pacific (the Southern Oscillation) (Dijkstra, 2008). Although the driving

forces of ENSO are confined to the equatorial Pacific, the effects have a global extent. The delays

arise from the time it takes waves to propagate in opposing directions across the equatorial basin.

These waves transport perturbations to temperature and density balances. Section 2.2.2 presents

some examples of models with delay that have been used to study ENSO, while in Chapter 3 we

explore in detail a method of deriving a model with delay for the phenomenon.

2.2.1 Energy balance model with time delay

The first climate model with delay was an energy-balance model (EBM) proposed by Ghil and Bhat-

tacharya (1979). Models of this type are used to describe changes in the earth’s average temperature,

with the simple processes of the earth receiving solar radiation and emitting radiation as a blackbody.

Ghil and Bhattacharya argued there was a time lag related to the growth and decay of ice sheets as a

response to global temperature. The extent of the ice sheets affects the global albedo (or reflection of

radiation) which in turn affects the global temperature. The authors found that the model can exhibit

self-sustained oscillations, which they suggest could have influenced glacial-interglacial cycles of the

Pleistocene (2.6 Myr - 11 kyr BP).

Another delayed EBM was suggested by Andersson and Lundberg (1988) as

C
dT

dt
= Q(1− α(T (t− τ)))− σg(T (t))T (t)4. (2.8)
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The variable T represents annually-averaged global temperature. The parameters represent globally

averaged heat capacity C, mean solar radiative input Q, and the Stefan-Boltzmann constant σ. The

functions α(T ) and g(T ) represent the influence of albedo and emissivity (emission of energy as thermal

radiation) respectively. In this model, the delayed albedo function α(T (t− τ)) incorporates increased

cloudiness due to changes in hydrological cycles at increased global temperatures as well as the changes

in ice sheets. The function α(T ) is piecewise and predominantly linear (see Andersson and Lundberg

(1988) for precise function). Model (2.8) can exhibit self-sustained oscillations along with chaotic

solutions.

Bar-Eli and Field (1998) proposed a model of similar form to (2.8),

C
dT

dt
=
S

4
(1− αcT (t− τ))(1− αsT (t− τ))− σg(T (t− τ))T (t)4. (2.9)

where S is the constant insolation of sun and S
4 ≈ Q. The main differences to (2.8) is in the albedo

and emissivity functions. Model (2.9) uses a continuous nonlinear function for the albedo effects with

a different albedo constant for clouds (αc) and surface (αs). The main difference in the emissivity

function g(T ) is that in (2.9) there is also a delayed effect. With this model Bar-Eli and Field (1998)

find square-wave oscillations and multiple paths to chaos. One critique of the model, however, is that

the delays with respect to the three processes (cloud albedo, surface albedo, and emmisivity) are likely

not to be equal. The effect of using different delay times on (2.9) has not been studied.

Other studies of EBMs with delays include Bhattacharya et al. (1982) and Hidalgo López et al.

(2014). In Chapter 4 and Chapter 5 we expand on the use of different types of models with delay for

the Pleistocene in particular.

2.2.2 Conceptual models with delay for ENSO

One of the first models with delay proposed for ENSO was introduced by Suarez and Schopf (1988).

The authors suggest a scalar model in perturbations of sea-surface temperature (SST) in the eastern

part of the equatorial ocean basin. The model is as follows,

dT

dt
= T (t)− T (t)3 − αT (t− δ), (2.10)

where first term of (2.10) represents the positive feedback related to the heat exchange of the sea surface

with the atmosphere. The second term is an unspecified nonlinear mechanism meant to limit the

growth of unstable perturbations from equilibrium. While the form of this term is suggested without

any particular justification in Suarez and Schopf (1988), it was found that this specific nonlinear term

can be derived from a projection of the equations of motion using the methods presented in Section 3.2

(Falkena et al., 2018). The final term in (2.10) is where the delayed feedback arises. This represents
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the influence of travelling waves in the ocean. An SST perturbation in the east will effect the wind

forcing in the atmosphere. This will then drive a wave in the thermocline to travel westward, reflect

at the western boundary of the basin, and travel back eastward where it interacts with the model SST

again. The full travel time of that wave is captured by delay δ, and α represents the strength of the

delayed effects compared to the local effects. The model of Suarez and Schopf (1988) showed stable

oscillations with a period of 3-4 years. This is shorter than the observed ENSO cycles, however it

shows that the delayed feedback mechanism can cause stable oscillations on the time scales of interest.

Since Suarez and Schopf (1988) there have been numerous other conceptual models with delay proposed

for the phenomenon. A model of the same form but with different parameter coefficients was derived by

Battisti and Hirst (1989). Other conceptual models have focused on the dynamics of the thermocline

rather than SST. Tziperman et al. (1994) were the first to suggest a continuous model with delay

of this kind. The authors focus on displacement of the thermocline at the eastern boundary of the

equatorial ocean basin. The model is given as

dh

dt
= aA(κ, h(t− δ1))− bA(κ, h(t− δ2)) + c cos(ωt), (2.11)

and is based on a discrete model with delay derived by Cane et al. (1990). Here h is the thermocline

displacement, δ1 and δ2 are the Kelvin (eastward) and Rossby (westward) wave travel times respec-

tively, κ is the ocean-atmosphere coupling strength, and ω is the frequency for the yearly seasonal

forcing. The nonlinear function A(κ, h) is used to model the effect of wind stress forcing on the ther-

mocline through SST and ocean stratification. Many follow-up studies on this model have been done,

including Keane et al. (2016), Zaliapin and Ghil (2010), in which chaotic behaviour can be observed.

Tziperman et al. (1998) made a modification to the original model (2.11),

dh

dt
= aA(κ(t− δ1), h(t− δ1))− bA(κ(t− δ2), h(t− δ2))− ch(t). (2.12)

In this version the seasonal variability is captured in the time-varying coupling strength κ(t), and

the final term represents dissipation effects. A full bifurcation analysis of (2.12) was performed in

Krauskopf and Sieber (2014). The authors observed phase-locking to the seasonal cycle as well as

quasi-periodic behaviour.

It should be noted that there is a common critique of these ENSO models with delay in the assumption

of wave reflection. Complete reflection (or even partial reflection) of the Rossby wave is not entirely

physical, as the realistic topography of the edge of the ocean basin is far from a rigid wall.
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2.3 Examples of critical transitions in climate

Critical transitions, in some cases known as “tipping points”, have become an increasingly relevant

area of research in the past decade. Events such as disease outbreaks, stock market crashes, and

collapses of ecosystems are all examples of a system undergoing a critical transition (Scheffer, 2009).

The concepts of tipping points and critical transitions were introduced as scientific terms. The term

“tipping point” generally refers to the phenomenon when a small perturbation of a system has large,

long-term consequences, qualitatively changing its future state (Lenton et al., 2008), whereas Scheffer

(2009) reserves the term “critical transition” for “transitions in which a positive feedback pushes a

runaway change to a contrasting state once a threshold is passed.” In this regard, it does not make

sense to attempt a mathematical definition for the terms. However, the phenomenon of tipping in

mathematical models is well-studied and is covered by some general mathematical mechanisms. The

three most common underlying mathematical mechanisms are

• slow passage through a bifurcation (bifurcation-induced),

• exit from a basin of attraction due to noise (noise-induced), and

• failure to track a quasi-static attractor (rate-induced).

In this section we explain some well-understood examples of critical transitions. First we introduce

the mathematics behind the three types of critical transitions listed above. Then we discuss two

specific examples of a critical transition in the climate system, the Mid-Pleistocene Transition and the

shutdown of the Atlantic meridional overturning circulation.

2.3.1 Mathematical mechanisms for critical transitions

We discuss three types of critical transitions introduced by Ashwin et al. (2012): bifurcation-induced

(b-tipping), noise-induced (n-tipping), and rate-induced (r-tipping).

2.3.1.1 Bifurcation-induced transitions

The classical theory of critical transitions relates to dynamical bifurcations. We first look at the sim-

plest types of local bifurcations which can be found in systems of dimension n ≥ 1: fold, transcritical,

and pitchfork. The general theory related to bifurcations can be found in Kuznetsov (1998) and Perko

(2013).

Consider a dynamical system
dx

dt
= f(x, p). (2.13)
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Here we consider an n-dimensional vector of state variables x, and a scalar parameter p. An equilibrium

x0 for parameter p0 is defined such that f(x0, p0) = 0. We notate the Jacobian matrix of (2.13) as

Jf(x, p).

We introduce a non-degeneracy condition,

∂2

∂x2
f(x0, p0) 6= 0, (2.14)

and a transversality condition,
∂

∂p
f(x0, p0) 6= 0. (2.15)

We will assume these conditions hold for the following three definitions.

Definition 2.1. Suppose there exists an equilibrium x0 for parameter p0 = pcrit such that det(Jf(x0, pcrit)) =

0, i.e. the equilibrium is non-hyperbolic, and Jf(x0, pcrit) has an eigenvalue λcrit = 0. If there exist

exactly two hyperbolic equilibria arbitrarily close to x0 for p→ p−crit (or p→ p+
crit), and there exist no

hyperbolic equilibria arbitrarily close to x0 for p → p+
crit (or p → p−crit), then the system (2.13) has a

fold bifurcation at p = pcrit.

A normal form for a bifurcation is the simplest form of a system which is locally topologically equivalent

near (x0, p0) to any system (2.13) with equilibrium x0 satisfying the same bifurcation conditions at p0

(Kuznetsov, 1998, Def. 2.16). A normal form for a fold bifurcation is given as

dx

dt
= p± x2, (2.16)

where in this case state variable x is scalar. Figure 2.1a shows the bifurcation diagram for the negative

case of (2.16) near its fold bifurcation.

Definition 2.2. Suppose there exists an equilibrium x0 for parameter p0 = pcrit such that det(Jf(x0, pcrit)) =

0, i.e. the equilibrium is non-hyperbolic, and Jf(x0, pcrit) has an eigenvalue λcrit = 0. If there exist

exactly two hyperbolic equilibria arbitrarily close to x0 for p → pcrit, then the system (2.13) has a

transcritical bifurcation at p = pcrit.

A normal form for a transcritical bifurcation (Kuznetsov, 1998) is given as

dx

dt
= px± x2. (2.17)

Figure 2.1b shows the bifurcation diagram for the negative case of (2.17) near its transcritical bifur-

cation.

Definition 2.3. Suppose there exists an equilibrium x0 for parameter p0 = pcrit such that trace(Jf(x0, pcrit)) =

0, i.e. the equilibrium is non-hyperbolic, and Jf(x0, pcrit) has an eigenvalue λcrit = 0. If there exists
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Figure 2.1: Bifurcation diagrams for the normal forms of (a) fold, (b) transcritical, and (c) pitchfork
bifurcations. The blue curves show stable equilibria, red curves show unstable equilibria, and the black

circle denotes the respective bifurcation point.

exactly one hyperbolic equilibrium arbitrarily close to x0 for p → p−crit (or p → p+
crit), and there exist

exactly three hyperbolic equilibria arbitrarily close to x0 for p→ p+
crit (or p→ p−crit), then the system

(2.13) has a pitchfork bifurcation at p = pcrit.

A normal form for a pitchfork bifurcation (Kuznetsov, 1998) is given as

dx

dt
= px± x3. (2.18)

Figure 2.1c shows the bifurcation diagram for the negative case of (2.18) near its pitchfork bifurcation.

A bifurcation that can occur for systems of dimension n ≥ 2 is the Hopf bifurcation.

Theorem 2.4. Suppose there exists an equilibrium x0 for parameter p0 = pcrit such that Jf(x0, pcrit)

has exactly two purely imaginary eigenvalues λ± = ±iω(pcrit), i.e. the equilibrium is non-hyperbolic.

If there exists exactly one hyperbolic equilibrium arbitrarily close to x0 for p → pcrit, and there also

exists a limit cycle which approaches x0 for p→ p−crit or p→ p+
crit, then the system (2.13) has a Hopf

bifurcation at p = pcrit. Note that the single equilibrium must change stability as p crosses pcrit.

We assume the following non-degeneracy and transversality conditions (respectively) hold for the above

theorem:

l1(pcrit) 6= 0,
d

dp
µ(pcrit) 6= 0, (2.19)

where l1(p) it the first Lyapunov coefficient (see precise formula for this in Kuznetsov (1998)) and

µ(pcrit) = 0 is the real part of the set of purely imaginary eigenvalues of the system for p0 = pcrit.

A normal form for a Hopf bifurcation (Kuznetsov, 1998) is given as

dx

dt
= −y + x(p± (x2 + y2)), (2.20a)

dy

dt
= x+ y(p± (x2 + y2)). (2.20b)
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Figure 2.2: (a) Bifurcation diagram for the normal form of a Hopf bifurcation. The blue curves show
stable equilibria, red curves show unstable equilibria, pink curves show maximum and minimum of a
periodic orbit, and the brown diamond denotes the Hopf bifurcation point. (b) Example trajectories
for (2.20a) when p = −1 (top) and p = 1 (bottom). Notice the oscillatory behaviour of solution after

the Hopf bifurcation.

Figure 2.2a shows the bifurcation diagram for the negative case of (2.20a) near its Hopf bifurcation.

Depending on the physical system in consideration, any of the above bifurcations can induce what

could be called a critical transition (see Figure 2.1a-2.2a). Kuehn (2011) gives precise mathematical

arguments as to under which conditions the above bifurcations are considered critical transitions. Note

that we have only discussed codimension-1 local bifurcations, the codimension being the number of

independent conditions determining the bifurcation (Kuznetsov, 1998, Def. 2.13). There exist also

global bifurcations, such as homoclinic connections, and codimension-2 bifurcations, such as cusps and

Bogdanov-Takens points. We don’t go into detail about these bifurcations here, but we will discuss

them briefly in Chapter 5 and Chapter 6.

2.3.1.2 Noise-induced transitions

Not all transitions are caused by bifurcations. Stability properties of a system can also be affected

by noise, causing a steady state to switch from stable to unstable, or vice versa (Horsthemke, 1984).

Ashwin et al. (2012) defined noise-induced transitions (or n-tipping) as when “noisy fluctuations result

in the system departing from a neighbourhood of a quasi-static attractor.” In other words, random

external input to a system can potentially knock it far enough away from a stable state where its

internal dynamics no longer allow for the return to that state.

We demonstrate the occurrence of a noise-induced transition using the Stommel box model. Stommel

(1961) introduced a simple dynamical model for the thermohaline circulation. The thermohaline

circulation is the movement of heat and salt throughout the world’s oceans and it has a major impact
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Figure 2.3: Diagram of the Stommel (1961) box model. There are two boxes, equatorial (e) and
polar (p), which allow for flow between them. In each box temperature T and salinity S are measured.
There is external freshwater forcing (F ) in the polar box, and evaporation (−F ) in the equatorial box.
The equatorial box gains heat (α) while the polar box loses heat (−α). The flow between boxes is

represented by q.

on the earth’s climate (Wunsch, 2002). Stommel attempted to understand the mechanism of circulation

through an exchange between two connected reservoirs, or ‘boxes’. A diagram of his model can be

seen in Figure 2.3.

The thermohaline circulation is driven by spatial differences in temperature and salinity. We can then

consider the equator to polar differences in these quantities as variables, namely x ∼ ∆T = Te − Tp
and y ∼ ∆S = Se − Sp. With some scaling and nondimensionalisation one can arrive at the following

system (for full derivation see Dijkstra (2013)):

dx

dt
=− α(x− 1)− q(x, y)x, (2.21a)

dy

dt
=F − q(x, y)y, (2.21b)

with transport function

q(x, y) = 1 + µ2(x− y)2. (2.22)

Since α is essentially a ratio of diffusion time to temperature relaxation time, we know α ≈ 2600

(Dijkstra, 2013). For α � 1 the approximation x = 1 + O(1/α) holds. Therefore system (2.21)

simplifies to
dy

dt
= F − y(1 + µ2(1− y)2). (2.23)
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Figure 2.4: (a) Bifurcation diagram for the reduced Stommel box model (2.23). The blue curves show
stable equilibria, red curves show unstable equilibria, and the green circles denote the fold bifurcations.
The grey dotted line is the value of F used in noise simulation. (b) Example trajectory for (2.24) when
σ = 0.15. Black lines show stable (solid) and unstable (dotted) deterministic equilibria locations. The

noise causes the solution to make a transition just after 20 kyr.

The parameter µ can be determined via known physical quantities which gives µ2 = 6.2 (Dijkstra,

2013). The parameter F is of much interest, as it represents the freshwater flux into the system. In the

physical world this can represent melting of large amounts of glacial ice or changes in the hydrological

cycle. As demonstrated in Section 2.3.1.1, we construct a bifurcation diagram for (2.23) when varying

F , shown in Figure 2.4a. The system experiences two fold bifurcations when increasing F , leading to

a region of bistability for F ∈ [0.9556, 1.2962].

We explore what happens in this bistable region when subjected to noise perturbations. We transform

(2.23) into a stochastic differential equation (SDE) by including additive white noise, represented by

σdWt, where σ is the noise strength:

dy = (F − y(1 + µ2(1− y)2))dt+ σdWt. (2.24)

We choose a value of freshwater forcing within the bistable region, F = 1.1. For an initial condition

of y0 = 1 and sufficiently small noise strength σ, we expect the solution of (2.24) to remain near the

upper equilibrium of the bifurcation diagram for some time T , before y(t) will eventually transition

to the lower equilibrium (see Figure 2.4b for an example trajectory). In this noise realisation, the

solution transitions just after 20 kyr.

The expectation of this (random) residence time T can be approximated using Kramers’ law in the limit

of σ → 0 for SDEs where the deterministic part is the gradient of a potential V(y) (f(y) = −∇V (y)).

Stable equilibria can be viewed as potential wells defined by the minima of the potential V (y). The

wells are connected through a local maximum of V (y), which occurs at the unstable equilibrium. A
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simple one-dimensional SDE has the form

dy = −V ′(y)dt+ σdWt. (2.25)

For (2.24) the potential is given as

V (y) = −Fy +
1 + µ2

2
y2 − 2µ2

3
y3 +

µ2

4
y4. (2.26)

When initialising the system in a potential well (near an equilibrium), we can analyse the average

escape time from the well through Kramers’ law. Kramers’ law defines the average escape time

from a potential well as follows (see Berglund and Gentz (2006) for further discussion). Consider

initial conditions in the potential well of stable equilibrium yseq. The average escape time τ from the

corresponding well is given as

τ =
2π√

|V ′′(yueq)|V ′′(yseq)
e

2(V (yueq)−V (yseq))

σ2 [1 +O(
σ2

2
)], (2.27)

where yueq is the unstable equilibrium and

V ′′(y) = −1 + µ2 − 4µ2y + 3µ2y2. (2.28)

We apply (2.27) to our system. For the upper stable equilibrium yseq+ = 1.07 the average escape time

is then τ+ ≈ 85 kyr, while for the lower stable equilibrium yseq− = 0.25 the average escape time is

τ− ≈ 542 kyr. We therefore conjecture that the lower equilibrium is a more attracting state than the

upper equilibrium.

2.3.1.3 Rate-induced transitions

There are also transitions not related to bifurcations or noise, but rather to the speed of nonautonomous

changes of parameters in the system. These are known as rate-induced transitions. Ashwin et al. (2012)

give the definition as when a system “fails to track a continuously changing quasi-static attractor”. A

quasi-static attractor is the stable solution for a system given the parameters are considered constant.

When a parameter is shifted in time, the stable solution will also change in time. If the shift happens

at a critical rate (system dependent), then the solution will fail to continue to track the stable solution

and will diverge to another stable solution or to infinity. A formal definition can be found in Ashwin

et al. (2017), however in this section we just show an example to illustrate a rate-induced transition.

We use an example system similar to the one used in Ashwin et al. (2012), the fold normal form with

drift λ:
dx

dt
= 1− (x− λ(r, t))2. (2.29)
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Figure 2.5: Illustration of a rate-induced transition for system (2.29). Blue curves show the stable
quasi-static equilibrium, red curves show the unstable quasi-static equilibrium, and black curve shows

solution trajectory. (a) r = 0.4, solution tracks quasi-static equilibria. (b) r = 1, solution diverges.

We will take λ(r, t) of the form

λ(rt) = 2(tanh(2rt− 6) + 1). (2.30)

This induces a shift of λ from λ− = 0 to λ+ = 4 with the steepness of the shift determined by r and

centered at time t = 3. In Figure 2.5 we show the effect of two different values of r. For smaller

values of r, the system diverges slightly from the stable quasi-static equilibrium but then recovers

(see Figure 2.5a). After a critical rate of rcrit = 0.5, the system no longer can recover back to the

stable quasi-static equilibrium and diverges. In this particular example, this can be understood by the

solution crossing the unstable quasi-static equilibrium (see Figure 2.5b).

As in Section 2.3.1.2, we see again that a solution can transition without passing through a bifurcation

(notice there are no stability changes to the quasi-static equilibria in either case of Figure 2.5). All

three types of transitions introduced should be considered when analysing an observed transition in

data. In the next sections we will explore evidence of specific transition events in the climate system.

2.3.2 The Mid-Pleistocene Transition

The Pleistocene, which began around 2.6 million years ago, is characterised by its successive glacial-

interglacial cycles whose documented periodicities have baffled scientists for years. It is generally

accepted that orbital forcing plays a large role in the onset and termination of glacial periods (Ashwin

and Ditlevsen, 2015, Ganopolski and Calov, 2011, Paillard, 1998). This however does not explain all

of the variations, as there are unexplained phenomena such as the prominent 100,000 year timescale

of glacial episodes which is only a small signal in the orbital forcing. These different phenomena will

be explored in this section, as well as the developments in the related research over the past century.
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While current climate conditions can be studied through local observations and satellite data, a differ-

ent approach must be used to understand the Earth’s past states. The paleoclimate record is comprised

of many different proxy records. A proxy is a measurable quantity found in different natural materials

and organisms that can be related in some way to a climate variable (Dijkstra, 2013). These proxies

are found everywhere from ice cores to marine sediments. One commonly used proxy is δ18O. The

quantity δ18O measures the ratio of oxygen-18 to oxygen-16 stable isotopes in a sample. Benthic

foraminifera record δ18O, which is related to the δ18O in seawater, and can be used to infer global ice

volume and ocean salinity as far back as 5.3 Myr BP (Lisiecki and Raymo, 2005). A higher ratio in

benthic foraminifera corresponds to greater volumes of ice cover on the planet. A reconstruction of

the past climate according to the Lisiecki and Raymo (2005) analysis is shown in Figure 2.6. These

δ18O isotopes can also be measured through ice cores from Greenland and Antarctica.

Another common proxy is δ13C, which measures the ratio of stable isotopes carbon-13 to carbon-12.

This proxy is also recorded by the carbonate shells of benthic foraminifera. It measures the attribution

of carbon to different carbon reservoirs on land and sea. Organic matter is more rich in carbon-12

than inorganic reservoirs of carbon due to the fact that CO2 containing carbon-12 is more easily

processed during photosynthesis. Since carbon-13 is heavier than carbon-12 it forms slightly stronger

chemical bonds, and due to the differences in molecular mass, CO2 containing carbon-13 diffuses slower

(Farquhar et al., 1989). Therefore, increased vegetation on land would imply higher δ13C levels in the

ocean. Similarly, an increase of the export of organic matter from the ocean’s surface layer to the deep

sea would lead to a decrease of ocean δ13C (Indermühle et al., 1999). The proxy is sensitive to orbital

precession, as well as overall glacial-interglacial cycles.

Some more recent studies have shown that δ15N can actually be a good paleothermometer. On shorter

timescales, such as the Younger Dryas period (12,900 - 11,700 BP), the changes in nitrogen isotopes can

be more accurate in identifying warming and cooling events than the classic δ18O records (Severinghaus

et al., 1998). δ15N measures the ratio of nitrogen-15 to nitrogen-14 stable isotopes. Severinghuas et

al. argue nitrogen isotopes better estimate the magnitude of warming or cooling events, where δ18O

has been shown to underestimate such temperature changes (Cuffey et al., 1995).

One actively researched aspect of the Pleistocene is the abrupt change in frequency of major glacia-

tions known as the Mid-Pleistocene Transition (MPT) (Ashwin and Ditlevsen, 2015, Clark et al., 2006,

Crucifix, 2012, Maasch, 1988, Maasch and Saltzman, 1990, Paillard, 1998, Pisias and Moore, 1981).

Figure 2.6 indicates the time frame for the occurrence of the MPT. Spectral analysis has been per-

formed on this time series, and it has been observed that the signal of the 100-kyr cycle began to rise

1250 kyr BP and was established as the dominant cycle by 700 kyr BP (Clark et al., 2006, Dijkstra,

2013, Lisiecki and Raymo, 2007). Many researchers have tried to determine not only the cause of this

switch, but also the driving force behind the 100 kyr cycles themselves (Ashwin and Ditlevsen, 2015,

Ganopolski and Calov, 2011, Gildor and Tziperman, 2001, Maasch and Saltzman, 1990, Paillard, 1998,
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Figure 2.6: Reconstruction of benthic δ18O from 57 globally distributed sediment cores, adapted
from Lisiecki and Raymo (2005) data. The green shaded area represents the time frame of the Mid-

Pleistocene Transition.

Paillard and Parrenin, 2004, Saltzman and Maasch, 1991). While the 41-kyr oscillations have been

attributed to external forcing (Paillard, 2001), the 100-kyr cycles have been proposed to be a result

of nonlinear responses of the climate system itself (Gildor and Tziperman, 2001, Imbrie et al., 1993,

Yiou et al., 1994).

The major glacial-interglacial cycles were originally attributed to changes in insolation due to orbital

variations (i.e. the Milankovitch cycles). Milankovitch argued that summer insolation at high northern

latitudes determined the main pacing of glaciations, as these changes control the length of seasons and

amount of solar energy being received in high latitudes where the ice resides. The most prominent

frequencies of these changes are 19 and 23 kyr due to precession and 41 kyr due to obliquity (Paillard,

2001). Precession is the orientation of the rotational axis of the earth (axial) and the rotation of

the orbital axis (apsidal), and obliquity is the angle between the rotational axis and the orbital axis.

Milankovitch (1941) argued that the main driving forces of climate fluctuations are obliquity and

precession, which agrees with the records prior to the mid-Pleistocene transition. There is a smaller

signal of orbital forcing that correlates with the 100-kyr oscillations (Imbrie et al., 1993). Eccentricity,

the amount the earth’s orbital ellipse deviates from a circle, shifts with a main period of 413 kyr, but

there are components that vary with periods between 95 kyr and 125 kyr. The amplitude of these

forcing signal bands, however, are an order of magnitude smaller than the signals of the 23- and 41-kyr

bands (Hays et al., 1976).

Since Milankovitch’s theory, there have been many other attempts to identify the cause of the MPT.

Some of the most popular examples are the Saltzman models of the late twentieth century. They were

a collection of attempts to model the transition as a bifurcation in low-order dynamical systems due to

climate feedbacks. One example of these models, the Saltzman and Maasch (1988) model, is discussed

in more detail in Chapter 5. Shortly after the Saltzman models, a non-smooth model consisting of

three distinct climate states was introduced by Paillard (1998). In his model, the climate shifts from
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interglacial (i) to mild glacial (g), g to full glacial (G), and G back to i based on prescribed insolation

and ice volume levels. Recent work has represented this model as a relaxation oscillator with smooth

transitions between states (Ashwin and Ditlevsen, 2015). It is shown from this model that the 100-kyr

cycles emerge as a response to a transcritical bifurcation along a slow manifold. Another popular

mechanism amongst climate modellers is a sea ice switch proposed by Gildor and Tziperman (2001).

Through use of a box model of intermediate complexity, sea ice is used to switch the climate system

from a growing land ice mode to a retreating land ice mode. This allows for the saw-tooth structure

of the oscillations like that seen in proxy data, as well as the 100-kyr periodicity obtained without

external forcing. An even more recent study by Ganopolski and Calov (2011) suggests the 100-kyr

cycles are related to levels of regolith (terrestrial sediments covering bedrock). The presence of regolith

enhances the velocity of ice sheet sliding and increases glaciogenic dust lowering the surface albedo

(MacAyeal, 1992). It is hypothesised in that the MPT was a result of gradual removal of regolith,

allowing more time for the glaciers to build in volume, and the terminations of glacial periods are

phase-locked with orbital forcing.

While most of these theories are good attempts at solving the “100-kyr problem”, none of them

perfectly encapsulate all of the necessary dynamics and qualities of the system. A more in-depth

review of the theories can be found in Crucifix (2012). There is still much room for progress in

researching this particular event in climate history.

2.3.3 The potential shutdown of the Atlantic meridional overturning circulation

The Atlantic meridional overturning circulation (AMOC) is responsible for a large amount of trans-

port of heat and salt from the tropics to the northern seas, where then this heat is released to the

atmosphere, cooling the water and making it more dense, leading to sinking and deep-water flow

southwards (Hawkins et al., 2011). It is also the main transfer of heat from the Southern Hemisphere

to the Northern Hemisphere across the equator (Dijkstra, 2008). Because of these processes it has a

vital role in regulating the earth’s climate (Cheng et al., 2013). Impacts due to changes in the AMOC

have been seen in present day climate studies, such as North Atlantic storm tracks (Woollings et al.,

2012) and North American and European summer climate (Sutton and Hodson, 2005), but also in

paleoclimate studies relating to Dansgaard-Oeschger events (Clement and Peterson, 2008, Ganopolski

and Rahmstorf, 2001, Shaffer et al., 2004).

These studies allude to the existence of bistability in the AMOC, namely an ‘on’ and ‘off’ state.

This was first observed in the simplest of ocean circulation models: the Stommel (1961) box model

(discussed in Section 2.3.1.2). In Stommel’s model, the bistability is caused by a salinity advection

feedback mechanism which can be disturbed by additional freshwater forcing, particularly in the North

Atlantic Ocean. This mechanism is particularly of interest in the present day, as the Greenland Ice

Sheet is already shrinking at an accelerating rate (Lenton et al., 2008). Stommel’s box model has
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since been further developed and analysed to varying levels of complexity (Lucarini and Stone, 2005,

Tziperman and Gildor, 2002), and the bistability has been observed in general circulation models

(GCMs) (Dijkstra, 2007, Hawkins et al., 2011, Marotzke and Willebrand, 1991, Rahmstorf, 1996,

Stocker and Wright, 1991, Weaver and Hughes, 1994).

Studies with GCMs have also begun to look at the widespread effects of AMOC shutdown. In addition

to the impacts listed above, a recent study has shown that the AMOC ‘off’ state affects ENSO,

shifting the spatial pattern eastward and increasing the oscillation period (Williamson et al., 2018).

Precipitation patterns have also been shown to be affected across Europe (Jackson et al., 2015, Jacob

et al., 2005), as well as in South America and Africa (Vellinga and Wood, 2002).

Because of the implications of an AMOC shutdown, it is important to be able to predict when it could

occur in order to prepare for climate changes. To identify the approach towards a ‘tipping point’,

one can turn to early warning signal theory for models with stochastic perturbations. Scheffer et al.

(2009) gives an introduction for the theory of early warning signals for tipping points, particularly

related to time series analysis. Some of the tools suggested by the authors include slower recovery

from perturbations, increased autocorrelation, increased variance, increased skewness, and increased

cross-correlation (spatial coherence). A few studies have looked into implications of these signals in

one specific AMOC model: the fully coupled atmosphere-ocean general circulation model FAMOUS

(Smith et al., 2008). Boulton et al. (2014) find increased autocorrelation and variance which is latitude

dependent. Feng et al. (2014) use an indicator related to complex network theory: kurtosis of the

degree distribution. The authors construct a Pearson Correlation Climate Network (Feng and Dijkstra,

2014) for the AMOC. In this set-up, a high degree in the network represents high spatial correlation.

An increase in kurtosis is found when increasing the freshwater input to the system. In Chapter 6

we also study tipping points of the FAMOUS model, but through a reduction of it’s dynamics to a

low-dimensional box model.

Many studies have been presented in this section which show the importance of the AMOC in past and

present climate studies. As many elements in the earth’s climate system are currently experiencing

rapid changes (Lenton et al., 2008), it is of growing interest that the dynamics and implications of an

AMOC shutdown are fully understood.
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Methods of deriving models with delay

In this chapter we discuss general methodologies behind deriving models with delay from a variety

of dynamical systems. We focus on three particular methods: the linear chain approximation, the

Mori-Zwanzig formalism, and integration along wave characteristics. The chapter is organised as

follows. In Section 3.1 we discuss the connection between coupling chains of ordinary differential

equations (ODEs) and delay differential equations (DDEs). We demonstrate the reduction of two

types of ODE systems to a scalar DDE. Section 3.2 discusses general literature on the Mori-Zwanzig

projection formalism and how this can be applied to systems of ODEs. The projection introduces a

memory term in the form of an integral over the past of the projected variable with a memory kernel,

which is in the form of a distributed delay. The particular form of the memory kernel can then in

some cases be used as an argument for approximation by a discrete delay. In Section 3.3 we focus on

hyperbolic PDEs (e.g. wave equations) in which a delay equation can be derived by integration along

wave characteristics. We consider two case studies, the El Niño Southern Oscillation (ENSO) and the

Atlantic Multidecal Oscillation (AMO). The ENSO study follows the work of Jin (1997). The AMO

study is a novel derivation of a model with delay for the phenomenon where similar methods to those

used in the ENSO study are applied.

We note here that in Section 3.2 and Section 3.3 we will be using partial differential equations (PDEs)

for some of our analysis. In general, the PDEs will be of the form

∂T (x, t)

∂t
= AT (x, t) + θ(T (x, t)), (3.1)

where A is a linear differential operator. A semigroup is defined as a family of linear operators T (t)

on a Banach space X that solve the equation

dT (t)

dt
= AT (t), (3.2)

39
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with infinitesimal generator A (Pazy, 2012). We will notate the semigroup as etA := T (t) where

etA = limN→∞(1− tA
N )−N . Semigroups have the composition property

[etAesA](·) = e(t+s)A(·), for t, s ≥ 0, (3.3)

and

[etAA](·) = [AetA](·), for t ≥ 0, (3.4)

as well as commutativity with arbitrary functions p:

[etAp](·) = [petA](·), (3.5)

(Chorin et al., 2000).

3.1 The Linear Chain Approximation

This section describes how the linear chain approximation of DDEs can link DDEs to systems of ODEs

with particular forms. The system is in the form of variables in a chain of ODEs:

dyi
dt

= ai(yi−1(t)− yi(t)), i ∈ 1, ..., N. (3.6)

This is a system of N linear equations that links yi with the previous variable yi−1. Each equation

has a scalar factor and a decay rate of order N .

Literature on the linear chain approximation derivation can be found in Smith (2010). Here we don’t

focus on this derivation; rather, we start with a system of ODEs and use the fundamental matrix

solution and a variation of constants approach to obtain a DDE in our variable of interest. We then

show how this equation can be approximated as a DDE with discrete delay. The two cases considered

are the degenerate case (all timescales in chain equal) and the non-degenerate case (all timescales in

chain distinct). The results presented here can be extended to systems with varying combinations of

equal and distinct timescales.

3.1.1 Degenerate case

We first discuss the case where all timescales of the chained variables are equal, which we refer to as

the degenerate case. In reference to (3.6), we take ai = Na for all i = 1, ..., N . We consider systems
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of the form

dy0

dt
= F (y0(t), yN (t)), (3.7a)

dyi
dt

= Na(yi−1(t)− yi(t)), i ∈ 1, ..., N, (3.7b)

where a > 0. Here we show the feedback in (3.7a) as only one component yN (t), however the theory

applies for multiple feedbacks (i.e. different components yi(t)). System (3.7b) is the linear chain part

of system (3.7), which can be expressed in matrix-vector form as

d~y

dt
= A~y(t) +~b(t), (3.8)

where A is an N ×N matrix of the form

A =



−Na 0 . . . . . . 0

Na −Na . . .
...

0 Na −Na . . .
...

...
. . .

. . .
. . . 0

0 . . . 0 Na −Na


, (3.9)

and ~y(t),~b(t) are N × 1 vectors of the form

~y(t) =


y1(t)

y2(t)
...

yN (t)

 , ~b(t) =


Nay0(t)

0
...

0

 . (3.10)

Since A is non-diagonalisable, we write the solution matrix, Φ(t), of d~y
dt = A~y(t) (~b(t) = 0) as

Φ(t) = e−Nate(A+NaI)t, (3.11)

See Perko (2013) for a detailed derivation of (3.11). Computing the last exponential term in (3.11)

gives

Φ(t) = e−Nate(A+NaI)t = e−Nat



1 0 . . . . . . 0

Nat 1
. . .

...

(Na)2t2

2! Nat 1
. . .

...
...

. . .
. . .

. . .
...

(Na)N−2tN−2

(N−2)!
(Na)N−3tN−3

(N−3)! . . . Nat 1 0
(Na)N−1tN−1

(N−1)!
(Na)N−2tN−2

(N−2)! . . . (Na)2t2

2! Nat 1


. (3.12)
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From Perko (2013) we know the fundamental solution of (3.8) can be expressed as

~y(t) = Φ(t)~y(0) +

∫ t

0
Φ(t− s)~b(s)ds. (3.13)

In our system this simplifies to

~y(t) = Φ(t)~y(0) +

∫ t

0
e−Na(t−s)y0(s)~Ψ(t− s)ds. (3.14)

where

~Ψ(t− s) =



Na

(Na)2(t− s)
(Na)3(t−s)2

2!
...

(Na)N−1(t−s)N−2

(N−2)!
(Na)N (t−s)N−1

(N−1)!


. (3.15)

We are interested in the asymptotic behaviour of (3.7). Hence we assume the system initialised

arbitrarily far in the past, which allows us to extend the lower limit of the integral in (3.14) to −∞
and neglect dependence on the initial condition. System (3.14) then becomes

~y(t) =

∫ t

−∞
e−Na(t−s)y0(s)~Ψ(t− s)ds. (3.16)

Looking at the N -th component of (3.16) and using the change of variables τ = t− s,

yN (t) =

∫ ∞
0

y0(t− τ)
(Na)NτN−1

(N − 1)!
e−Naτdτ. (3.17)

The kernel of (3.17) can be extracted as

KN (τ) =
(Na)NτN−1

(N − 1)!
e−Naτ . (3.18)

This will be useful to compare with the Mori-Zwanzig projection procedure in Section 3.2. The integral

of the kernel (3.18) equals 1, which means that KN (τ) is a density of some probability distribution

(in this case, the Gamma distribution):∫ ∞
0

(Na)NτN−1

(N − 1)!
e−Naτdτ = 1. (3.19)

As N →∞, (3.18) approaches a Dirac distribution centered at µ = 1/a (since (3.18) is in the form of

a probability distribution, we can treat τ as a random variable to calculate the mean, E[τ ] = N/Na,

and variance, Var(τ) = 1/Na2) Smith (2010). This behaviour is visualised in Figure 3.1 for a = 1 and

increasing values of N . As expected, there is a peak at τ = 1 and the variance approaches 0 as N



Chapter 3. Methods of deriving models with delay 43

0 1 2 3

τ

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3

τ

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3

τ

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 3.1: Visualisation of the kernel (3.18) for increasing length of chain N and a = 1.
Left: N = 25, Var(τ) = 0.04. Middle: N = 50, Var(τ) = 0.02. Right: N = 100, Var(τ) = 0.01.

increases. We are interested in bounded, continuous y0(t) such that histories of y0(t) are bounded as

t→ −∞. Therefore, for all y0 ∈ BC((−∞, 0];RN ),∫ ∞
0

y0(t− τ)KN (τ)dτ → y0

(
t− 1

a

)
as N →∞. (3.20)

This allows us to write (3.7a) as

dy0

dt
= F

(
y0(t), y0

(
t− 1

a

))
. (3.21)

Equation (3.21) is exact for an infinite chain, and is an approximation for finite N .

3.1.2 Non-degenerate case

The case where the coefficients of system (3.7b) are all mutually distinct we refer to as the non-

degenerate case. This can be written as

dy0

dt
= F (y0(t), yN (t)), (3.22a)

dyi
dt

= ai(yi−1(t)− yi(t)) i ∈ 1, ..., N. (3.22b)

Again extracting system (3.22b) we have

d~y

dt
= A~y(t) +~b(t), (3.23)
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where now

A =



−a1 0 . . . . . . 0

a2 −a2
. . .

...

0 a3 −a3
. . .

...
...

. . .
. . .

. . . 0

0 . . . 0 aN −aN


, ~b(t) =


a1y0(t)

0
...

0

 . (3.24)

We will assume ai 6= aj for i 6= j such that A is diagonalisable. The the solution matrix, Φ(t), of
d~y
dt = A~y(t) (~b(t) = 0) is then given by

Φ(t) = P eΛtP−1, (3.25)

where P is the matrix of eigenvectors associated with the diagonal matrix of eigenvalues Λ,

Λ =


−a1 0 . . . 0

0 −a2
. . .

...
...

. . .
. . . 0

0 . . . 0 −aN

 , (3.26)

The entries of P and P−1 have the following forms:

Pi,j =


0 for i < j∏N
k=j+1

ai−ak
ak

for j ≤ i < n

1 for i = N

, (3.27)

P−1
i,j =


0 for i < j < N∏N

k=j+1 ak∏N
k=j
k 6=i

ak−ai
for j ≤ i

1 for i, j = N

. (3.28)

Again we have the fundamental solution of (3.23) with ~b(t) 6= 0,

~y(t) = Φ(t)~y(0) +

∫ t

0
Φ(t)Φ−1(s)~b(s)ds. (3.29)

Performing the same manipulations as in the degenerate case, we arise with an equation for yN ,

yN (t) =

∫ ∞
0

a1y0(t− τ)
N∑
i=1

∏N
k=2 ak∏N

k=1
k 6=i

ak − ai
e−aiτdτ. (3.30)
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We can extract the kernel of (3.30) as

KN (τ) =

N∑
i=1

aie
−aiτ

N∏
k=1
k 6=i

ak
ak − ai

. (3.31)

Note that (3.31) has a limit for ai → ak for any i, k. This kernel has the form of the generalised Erlang

distribution. The expected value of this distribution is given as

E[τ ] =
N∑
i=1

1

ai
. (3.32)

We can then write (3.22a) as a DDE with discrete delay

dy0

dt
= F

(
y0(t), y0

(
t−

N∑
i=1

1

ai

))
. (3.33)

As in the degenerate case, (3.33) is exact for an infinite chain, and is an approximation for finite N .

3.2 The Mori-Zwanzig Projection framework

The Mori-Zwanzig procedure was developed by Mori (1965) and Zwanzig (1973) as a way to project

Hamiltonian systems into a reduced phase space while still accurately capturing the effect of the un-

resolved variables. The novelty of the procedure is that the dynamic equations of the resolved space

are only dependent upon the resolved variables. This is useful when one does not have informa-

tion about the time evolution of the unresolved variables. In this section we use the Mori-Zwanzig

formalism to obtain delay differential equations with distributed delay. Our application starts from

non-Hamiltonian dissipative systems resulting in some simplifications.

3.2.1 Derivation of the Mori-Zwanzig equation

We demonstrate the procedure for ODEs, but the method can also be used for PDEs of the form (3.1)

when discretised appropriately. Suppose we have a system

d~x

dt
= f(~x(t), ~y(t)), (3.34a)

d~y

dt
= g(~x(t), ~y(t)). (3.34b)

Let the full dimensionality of the system be N = m + n. We assume f ∈ C1(RN ,Rm) and g ∈
C1(RN ,Rn) where C1(U, V ) is the space of continuously differentiable functions from space U to
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V . We want to project this system onto functions of only ~x(t) ∈ Rm, which we will now refer

to as the resolved variables (y(t) ∈ Rn being the unresolved variables). We define a projection

P : C1(RN ,Rk)→ C1(RN ,Rk) for initially arbitrary k as follows:

[Pf ](~x, ~y) = f(~x, 0). (3.35)

Here k is the dimension of the output of the function to which the projection is applied. This projection

is known as the finite-rank projection (Chorin et al., 2002). Solutions of system (3.34) define a flow

map φt : RN → RN, where φt(~x, ~y) maps initial conditions ~x, ~y to their evolution via (3.34) at time t

(Givon et al., 2005). The flow map then satisfies the ODE system (3.34), which we write compactly

as
dφt(~u)

dt
= R(φt(~u)), φ0(~u) = ~u. (3.36)

where

R(φt(~u)) =

[
f(φtx(~u), φty(~u))

g(φtx(~u), φty(~u))

]
. (3.37)

For simplicity we have combined variables ~x and ~y into one vector, ~u = [~x, ~y]. In the above notation,

φtx(~u) and φty(~u) have the same dimensions as ~x and ~y respectively and are the time evolutions of those

variables. Applying projection (3.35) to (3.37) then leads to the following:

[PR](φt(~u)) =

[
f(φtx(~u), 0)

g(φtx(~u), 0)

]
= R([φtx(~u), 0]). (3.38)

In shorthand notation we will write [PR](φt(~u)) as simply R(φtx(~u)).

Given an arbitrary function h : RN → Rk, we define the phase distribution function ρ : R × RN 3
(t, ~u) 7→ h(φt(~u)) ∈ Rk. Then ρ satisfies

∂

∂t
ρ(~u, t) = Lρ(~u, t), ρ(~u, 0) = h(~u). (3.39)

Equation (3.39) is the linear PDE known as the Liouville equation (Morriss and Evans, 2013), and L
is the associated Liouville operator which governs the time evolution of the phase distribution ρ:

L :=
N∑
j=1

Rj(~u)
∂

∂uj
. (3.40)

The PDE (3.39) follows from an application of the chain rule to the ODE system (3.34) governing

φt(~u). To illustrate this, consider the following property of ρ:

ρ(~x(0), ~y(0), t) = ρ(φtx([~x, ~y]), φty([~x, ~y]), 0). (3.41)
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This then implies

∂

∂t
ρ(~x, ~y, t) =

∂

∂~x
ρ(~x, ~y, t)

d~x

dt
+

∂

∂~y
ρ(~x, ~y, t)

d~y

dt

=

m∑
j=1

fj(~x, ~y)
∂

∂xj
ρ(~x, ~y, t) +

n∑
j=1

gj(~x, ~y)
∂

∂yj
ρ(~x, ~y, t)

=Lρ(~u, t). (3.42)

We make the same assumption as in Morriss and Evans (2013) in that there is no explicit time

dependence in the original system (3.34). We can then denote the solution to (3.39) as

ρ(~u, t) = [etLh](~u) = h(φt(~u)), (3.43)

where etL is the semigroup generated by L. We use the composition property (3.4) to obtain

[LetLh](~u) = [etLLh](~u), ∀h ∈ C1(RN ,R). (3.44)

Equations (3.39), (3.43), and (3.44) then imply

∂

∂t
etLh(~u) = [LetLh](~u) = [etLLh](~u). (3.45)

If we consider the decomposition of the identity operator I = P + Q such that Q : C1(RN ,Rk) →
C1(RN ,Rk), the above equation can be decomposed as

∂

∂t
etLh(~u) = [etLPLh](~u) + [etLQLh](~u). (3.46)

The Dyson decomposition of propagators (Morriss and Evans, 2013) states

e(A+B)t = eAt +

∫ t

0
eAsBe(A+B)(t−s)ds. (3.47)

Applying this to the last term of the right-hand side of (3.46) with A = QL and B = PL gives

[etLQLh](~u) = [etQLQLh](~u) +

∫ t

0
[e(t−s)LPLesQLQLh](~u)ds, (3.48)

where esQL is the semigroup operator generated by the orthogonal dynamics equation (Givon et al.,

2005):
∂

∂t
ρQ(~u, t) = QLρQ(~u), ρQ(~u, 0) = h(~u). (3.49)

The full PDE (3.46) is then given as

∂

∂t
[etLh](~u) = [etLPLh](~u) +

∫ t

0
[e(t−s)LPLesQLQL]h(~u)ds+ [etQLQLh](~u). (3.50)
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We will consider the case where h(~u) = ui, i.e. the function h returns the i-th component of ~u onto

which one wishes to project. Using this definition of h and applying the semigroup commutativity

property (3.5) to the term [etLPLh](~u), equation (3.50) simplifies to

∂

∂t
φti(~u) = Ri(φ

t
x(~u)) +

∫ t

0
[e(t−s)LPLesQLQLh](~u)ds+ [etQLQLh](~u). (3.51)

Equation (3.51) is known as the Mori-Zwanzig equation for variable φti. Note that (3.51) is dependent

on the resolved variables (φtx(~u)), but only the intial values φ0(~u) = ~u of the unresolved variables are

needed.

In the next section we discuss an approximation to the orthogonal dynamics and the relation to delay

equations.

3.2.2 The orthogonal dynamics

The Mori-Zwanzig equation (3.51) has three distinct terms: the Markovian term, the memory term,

and the noise term. The first term is denoted the Markovian term, as it depends only on the system

in its present state. The integral term, known as the memory term, is dependent upon the past state

of the system. The final term is called the noise term since it only depends on the initial values of

the unresolved variables, and so the influence of these values on the system is commonly represented

as noise. Both the integral term and the final term rely on solving the orthogonal dynamics. The

projection should be chosen such that the orthogonal dynamics are stable. With this choice, we can

neglect the noise term in (3.51) by extending the upper bound of the integral term to infinity:

∂

∂t
φti(~u) = Ri(φ

t
x(~u)) +

∫ ∞
0

[e(t−s)LPLesQLQLh](~u)ds. (3.52)

Equation (3.52) still contains dependence on the past state of the system in the memory term. For the

exact form of the integrand, one needs to solve the orthogonal dynamics equation (3.49). In general,

(3.49) is not in the form of a Liouville equation of an ODE system. In order to obtain the solution,

one would need to solve a ODE in N-dimensional space which is impractical. The following section

presents an ODE system that has (3.49) as its Liouville equation for linear functions R. This system

can serve as an approximation for nonlinear R in some cases.

3.2.2.1 Approximation of the orthogonal dynamics

The orthogonal dynamics equation (3.49) can be analytically solved for linear systems, however it is

unknown for nonlinear systems. In Gouasmi et al. (2017) the authors attempt to approximate the

orthogonal dynamics. We summarise their approximation.
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We first consider just the integrand in (3.52), [e(t−s)LPLesQLQLh](~u). For h(~u) = ui, we know from

the definition of the Liouville operator (3.40) that

[QLh](~u) =

[
Q

N∑
j=1

Rj(·)
∂h

∂uj

]
(~u) = [QRi](~u). (3.53)

We can then use the definition Q = I − P to obtain

[QRi](~u) = Ri(~u)− [PRi](~u) = Ri(~u)−Ri(~ux). (3.54)

For simplicity we will define RQ(·) := R(·) − [PR](·). We here assume that (3.49) is the Liouville

equation for a corresponding system of ODEs which describe the flow map of the orthogonal dynamics,

φtQ(~u) : RN → RN. The requirement for this would be

∂

∂uj
[QLh](~u) =

∂

∂uj
[QLh](~ux) ∀j ∈ [1, ..., N ] (3.55)

For our choice of h, we know from (3.53) and (3.54) that (3.55) is equivalent to

[ ∂

∂uj
RQi

]
(~u) =

[ ∂

∂uj
RQi

]
(~ux) ∀j ∈ [1, ..., N ] (3.56)

We then denote the solution ρQ(~u, t) = [etQLh](~u) as the solution to (3.49). Using this solution form

we can rewrite (3.49) as
∂

∂t
[etQLh](~u) = [QLetQLh](~u). (3.57)

If condition (3.56) is met, etQL is granted the commutativity property with h:

[QLetQLh](~u) = .[QLh]φtQ(~u). (3.58)

Combining (3.58) with (3.57) then gives

∂

∂t
h(φtQ(~u)) = [QLh]φtQ(~u). (3.59)

Using h(~u) = ui and applying equivalences (3.53) and (3.54) we obtain an ODE for each component

of the flow map φtQi(~u):

d

dt
φtQi(~u) = Ri(φ

t
Q(~u))−Ri(φtQx(~u)), φ0

Qi(~u) = ui (3.60)

We can then construct the ODE system corresponding to (3.49) as

dφtQ(~u)

dt
= RQ(φtQ(~u)), φ0

Q(~u) = ~u. (3.61)
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This then allows us to write for h(~u) = ui,

[esQLQLh](~u) ≈ RQi(φsQ(~u)), (3.62)

where φsQ(~u) is the solution of (3.61) at time t = s. The Mori-Zwanzig equation (3.52) can now be

approximated by
∂

∂t
φti(~u) ≈ Ri(φtx(~u)) +

∫ ∞
0

[e(t−s)LPLRQi](φsQ(~u))ds, (3.63)

with error δ ≤
∣∣∣[ ∂∂~uRQi](~u)−

[
∂
∂~uRQi

]
(~ux)

∣∣∣.
3.2.2.2 Extracting the memory kernel

If we assume the approximation in Section 3.2.2 to be valid, we now have a practical way to compute

the approximate memory term of the system (3.52). We consider here just the memory term of (3.52),

Mi(~u, t) =

∫ ∞
0

[e(t−s)LPLRQi](φsQ(~u))ds. (3.64)

By definition we know

[LRQi](φsQ(~u)) =

[ N∑
j=1

Rj(~u)
∂

∂uj
RQi

]
(φsQ(~u)). (3.65)

Application of the Liouville operator to a function is equivalent to taking the directional derivative of

the function in the direction R(~u),

∇R(~u) =
N∑
j=1

Rj(~u)
∂

∂uj
. (3.66)

We then have

LRQi(φsQ(~u)) = ∇R(~u)RQi(φ
s
Q(~u)). (3.67)

The RHS can be written as a limit,

∇R(~u)RQi(φ
s
Q(~u)) = lim

ε→0

RQi(φ
s
Q(~u+ εR(~u)))−RQi(φsQ(~u))

ε
. (3.68)

Combining (3.67) and (3.68) we obtain

LRQi(φsQ(~u)) ≈ 1

ε

(
RQi

(
φsQ(~u+ εR(~u))

)
−RQi

(
φsQ(~u)

))
. (3.69)

Applying the semigroup operator e(t−s)L (which commutes due to the Liouville property), we have

[e(t−s)LPLRQi](φsQ(~u)) ≈ 1

ε
P
(
RQi

(
φsQ(φt−s(~u) + εR(φt−s(~u)))

)
−RQi

(
φsQ(φt−s(~u))

))
. (3.70)



Chapter 3. Methods of deriving models with delay 51

Applying P the above gives

e(t−s)LPLRQi(φsQ(~u)) ≈ 1

ε
RQi

(
φsQ
(
φt−sx (~u) + εR(φt−sx (~u))

))
. (3.71)

The last term of (3.69) drops because φsQ is the solution to the orthogonal dynamics, so we know by

definition of the orthogonal dynamics φsQ(φt−sx (~u)) = 0. Substituting this form of the memory term

into (3.63), we now have an ODE formulation of the Mori-Zwanzig equation,

d

dt
φti(~u) ≈ Ri(φtx(~u)) +

∫ ∞
0

1

ε
RQi

(
φsQ
(
φt−sx (~u) + εR(φt−sx (~u))

))
ds,

φ0
i (~u) = ui.

(3.72)

Equation (3.72) gives individual differential equations with distributed delay for each projected vari-

able.

3.2.3 Examples of computed approximate memory

For nonlinear systems it is not possible to know the exact equations for the orthogonal dynamics,

however the existence of solutions to the orthogonal dynamics can be proven for certain classes of

projections. Givon et al. (2005) proved that for the finite-rank projection (3.35) there always exists

solutions to the orthogonal dynamics (3.49) on a bounded time interval. In this section we will analyse

the memory term of two systems: one linear and one nonlinear. We will only consider the finite-rank

projection, and we will use the approximation for the orthogonal dynamics derived in Section 3.2.2.

3.2.3.1 Linear chain of ODEs - linear memory term

We will first investigate a linear chain of ODEs which has a linear memory term. This system has

been shown to approximate a scalar delay differential equation when the length of chain (N) increases

to infinity (see Section 3.1). Consider the system

dy1

dt
= b1y1(t)− b2y3(t), (3.73a)

dy2

dt
= a(y1(t)− y2(t)), (3.73b)

dy3

dt
= a(y2(t)− y3(t)). (3.73c)

Here the number of variables in the chain is two: y2 and y3. We define the projection P as

(Pf)(~y) = f(ŷ), (3.74)

where ~y = [y1, y2, y3]T and ŷ = [y1, 0, 0]T .
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We will consider the direct Mori-Zwanzig projection of system (3.73). We define the flow map of (3.73)

as simply φt := ~y(t) and R is the righthand side of (3.73). We then use equation (3.72) to define the

projection equation:

dy1

dt
≈ R1(ŷ(t)) +

1

ε

∫ ∞
0

RQ1

(
φsQ
(
ŷ(t− s) + εR(ŷ(t− s))

))
ds,

y1(0) = y10.

(3.75)

The first term of (3.75) simply becomes b1y1(t). For the second term (the memory term) we will need

the orthogonal dynamics system (3.61) with the right-hand side RQ(~yQ) = R(~yQ) − R(~yQx ). For this

system (3.61) has the form

dyQ1
dt

= −b2yQ3 (t), (3.76a)

dyQ2
dt

= −ayQ2 (t), (3.76b)

dyQ3
dt

= a(yQ2 (t)− yQ3 (t)). (3.76c)

For solving (3.76) the initial conditions can be taken as ŷ(s) + εR(ŷ(s)) where values of the original

solution y1(s) are known. Here, RQ is the RHS of (3.76), so RQ1

(
φsQ
(
ŷ(t − s) + εR(ŷ(t − s))

))
=

−b2yQ3 (s). The trajectory yQ(s) can be obtained by solving (3.76) up to time s with initial condition

~yQ(0) = ŷ(t− s) + εR
(
ŷ(t− s)

)
.

Taking a = 2, b1 = 0.5, and b2 = 1, we can compare the numerical approximation of the memory

term with the exact memory term. To do this we solve the full system (3.73) with initial condition

~y0 = [1, 0, 0]T up to time t = 15. We then create a modified trajectory ~yQ0 (s) = [y1(s), 0, 0] for

s ∈ [0, 15], where y1(s) is the solution of (3.73) at time s, and use this as the initial condition for

solving the approximate orthogonal dynamics (3.76) for every s ∈ [0, 15]. The memory term can then

be approximated with

M̃(t) = −
∫ t

0

1

ε
b2y

Q
3 (s)ds. (3.77)

The comparison between the exact memory term, M(t) = −b2y3(t), and the numerically computed

memory term is shown in Figure 3.2. It can be clearly seen that for this linear system the memory

term is exact.

We also can compare the memory kernels for this system. A memory kernel K(s) is defined for a given

memory term as M(t) =
∫ t

0 K(s)ui(t− s)ds where ui(t) is the resolved variable. The kernel of (3.73)

is known explicitly from Section 3.1.1 to be

K(t) = a2te−at. (3.78)
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Figure 3.2: Comparison of memory term for linear chain system (3.73). Top: Exact memory M(t) =

−b2y3(t) (dotted black) and numerical memory M̃(t) = −
∫ t
0

1
ε b2y

Q
3 (s)ds (green), where ε = 1. Bottom:

|M(t)− M̃(t)|

For the numerical kernel we take

K̃(t) = yQ3 (t). (3.79)

Figure 3.3 shows the results for t = 15. It can also be clearly seen that the memory kernels are

identical. In this case, there is a peak that will get sharper if we increase the length of the chain.

When the number of variables in the chain approaches infinity, the kernels in Figure 3.3 converge to

a delta function centered at the mean (indicated by the grey bar).

3.2.3.2 Linear chain of ODEs - nonlinear memory term

Now we will consider a linear chain of ODEs with a nonlinear memory term,

dy1

dt
= b1y1(t)2 − b2y2(t)y3(t), (3.80a)

dy2

dt
= a(y1(t)− y2(t)), (3.80b)

dy3

dt
= a(y2(t)− y3(t)). (3.80c)

We define the same projection P as in the previous example,

(Pf)(~y) = f(ŷ), (3.81)
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Figure 3.3: Comparison of memory kernels for linear chain system (3.73). Grey bar indicates location

of mean. Top: K(t) = a2te−at. Middle: K̃(t) = yQ3 (t). Bottom: |K(t)− K̃(t)|.

where ~y = [y1, y2, y3]T and ŷ = [y1, 0, 0]T . The Mori-Zwanzig projection of the system is given again

as in (3.75),

dy1

dt
≈ b1y1(t)2 +

1

ε

∫ ∞
0

RQ1

(
φsQ
(
ŷ(t− s) + εR(ŷ(t− s))

))
ds,

y1(0) = y10.

(3.82)

The orthogonal dynamics system RQ is the right-hand side of the following,

dyQ1
dt

= −b2yQ2 (t)yQ3 (t), (3.83a)

dyQ2
dt

= −ayQ2 (t), (3.83b)

dyQ3
dt

= a(yQ2 (t)− yQ3 (t)). (3.83c)

The initial conditions of (3.83) are again ŷ(s) + εR(ŷ(s)) where values of the original solution y1(s)

are given as history. We have RQ1

(
φsQ
(
ŷ(t − s) + εR(ŷ(t − s))

))
= −b2yQ2 (s)yQ3 (s). We solve (3.83)

up to time s with initial condition ~yQ(0) = ŷ(t− s) + εR
(
ŷ(t− s)

)
to obtain the trajectory yQ(s).
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Figure 3.4: Comparison of memory for linear chain system with nonlinear memory (3.80). Top: Exact

memory M(t) = −b2y2(t)y3(t) (dotted black) and numerical memory M̃(t) = −
∫ t
0

1
ε b2y

Q
2 (s)yQ3 (s)ds

(green), where ε = 1. Bottom: |M(t)− M̃(t)|

We use the same method for computing the memory term as in the previous section. The memory

term is again approximated with

M̃(t) = −
∫ t

0

1

ε
b2y

Q
2 (s)yQ3 (s)ds, (3.84)

The numerical kernel can be computed with the orthogonal dynamics trajectory,

K̃(t) = yQ2 (t)yQ3 (t). (3.85)

The exact memory term and kernel for this system are

M(t) = −b2y2(t)y3(t), K(t) = a3te−2at. (3.86)

We take the same parameter values as in the previous example: a = 2, b1 = 0.5, and b2 = 1. The

resulting memory term and kernels are compared in Figure 3.4 and Figure 3.5. In this system the kernel

is exact (which is expected as the subsystem for the unresolved variables y2, y3 is linear). However,

since the memory term of the system is nonlinear, there is some error in using (3.61) to compute

it. This example suggests that the orthogonal dynamics approximation is an appropriate method for

obtaining the memory kernel of a system where the subsystem containing the unresolved variables

is linear. Determining the shape of the kernel is a first step in understanding how a system can be

reduced to a simplified delay equation.
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Figure 3.5: Comparison of memory kernels for linear chain system with nonlinear memory (3.80).

Grey bar indicates location of mean. Top: K(t) = a3te−2at. Middle: K̃(t) = yQ2 (t)yQ3 (t). Bottom:
|K(t)− K̃(t)|.

3.3 Derivation of models with delay for wave equations

Waves are known to transport quantities such as heat, energy, material, and more. When waves

return to the source of the disturbance, they can cause a feedback effect (Dijkstra, 2008). This can

be represented mathematically by a delay. In this section we demonstrate how such a delay is derived

from hyperbolic PDE systems. We focus on two phenomena: the El Niño Southern Oscillation and

the Atlantic Multidecal Oscillation. We show how the couplings in the different systems lead to a

delay differential equation and delay difference equations respectively.

3.3.1 El Niño Southern Oscillation (ENSO)

The El Niño Southern Oscillation (ENSO) is a phenomenon that occurs in the equatorial Pacific Ocean.

Its primary effects are interannual sea surface temperature (SST) variations between warm anomalies

(El Niño) and cold anomalies (La Niña) in the central and eastern Pacific. Secondary effects include

weakening or strengthening of the trade winds, known as the Southern Oscillation (Dijkstra, 2005).

Together the effects are known as ENSO and the whole phenomenon has a periodicity on interannual

timescales, typically of 4-7 years (Dijkstra, 2008).
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Value Unit Value Unit Value Unit

L = 1.7240x107 m β0 = 2.28x10−11 m−1s−1 c0 =
√
g′H ≈ 2.9 ms−1

H = 1.50x102 m g′ = 5.61x10−2 ms−2 λ0 =
√

c0
β0
≈ 3.5664x105 m

[Scaling for ENSO PDE model]

Table 3.1: Typical scaling values for parameters in (3.88) taken from (Zebiak and Cane, 1987).

In this section we revisit the works of Dijkstra (2008) and Jin (1997) to derive a model with delay for

ENSO. We start with the Navier-Stokes equations (equations of motion of a fluid) and use appropriate

approximations to reduce the system to one equation for SST anomalies. The resulting model can

be compared against the conceptual models proposed by Suarez and Schopf (1988) and Battisti and

Hirst (1989).

3.3.1.1 The dynamic equations of ENSO

When considering the spatial scales of ENSO, the horizontal scales (O(107) m) dominate the vertical

scale (O(102) m). In this regime we may start from the shallow water beta-plane approximation to

the Navier-Stokes equations on a rotating body (Dijkstra, 2008):

Du∗
dt∗
− β0y∗v∗ + g′

∂h∗
∂x∗

= 0, (3.87a)

Dv∗
dt∗

+ β0y∗u∗ + g′
∂h∗
∂y∗

= 0, (3.87b)

∂h∗
∂t∗

+
∂(u∗h∗)

∂x∗
+
∂(v∗h∗)

∂y∗
= 0. (3.87c)

Equations (3.87a) and (3.87b) are conservation of momentum and equation (3.87c) is conservation of

mass. In the above equations, Ddt = ∂
∂t +u∗

∂
∂x +v∗

∂
∂y is the material derivative; u∗ and v∗ are velocities

in the x∗ and y∗ directions; β0 is the variation of the Coriolis force with latitude y∗; h∗ is the thickness

of the shallow layer (in the ocean this corresponds to the thermocline); g′ is the reduced acceleration

due to gravity in the shallow water layer at the equator. We will use the following scaling,

t∗ =
L

c0
t ; h∗ = Hh (3.88a)

x∗ = Lx ; u∗ = c0u (3.88b)

y∗ = λ0y ; v∗ =
λ0

L
c0v (3.88c)

The typical scaling values for these parameters in an equatorial basin are taken from (Zebiak and

Cane, 1987) and listed in Table 3.1
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Linearising (3.87) around a motionless reference state (ū∗, v̄∗, h̄∗) = (0, 0, H) and using the above

scaling to nondimensionalise gives

∂u

∂t
− yv +

∂h

∂x
= 0, (3.89a)

ζ2∂v

∂t
+ yu+

∂h

∂y
= 0, (3.89b)

∂h

∂t
+
∂u

∂x
+
∂v

∂y
= 0. (3.89c)

ζ is a ratio of the equatorial Rossby radius of deformation to the basin length (ζ = λ0/L).

3.3.1.2 Reduction of shallow water equations

We will begin with a simplification of the shallow water response to zonal wind forcing. We add a

zonal wind stress τ to (3.89a) and damping with constant ε to all three equations (3.89). We will

consider the dimensionless long-wave approximation to the shallow water equations (3.89) in which

ζ → 0 (note this also allows us to drop damping term in (3.89b) due to scaling):

∂u

∂t
− yv +

∂h

∂x
+ εu = τ, (3.90a)

yu+
∂h

∂y
= 0, (3.90b)

∂h

∂t
+
∂u

∂x
+
∂v

∂y
+ εh = 0. (3.90c)

As before, x is zonal (east-west) direction, y is meridional (north-south) direction, and h is thermocline

depth. Velocities are u and v in the x and y direction, respectively.

We will reduce (3.90) to a one-dimensional PDE for h. From (3.90b) we can see that u is a function of
∂h
∂y , therefore ∂u

∂t can be expressed a function of h as well. Through this, equation (3.90a) can be used

to express v as a function of h. With expressions for u and v as functions of h, both can be inserted

into (3.90c) to recover a scalar PDE. We will now demonstrate this process explicitly.

Differentiating (3.90a) by y and multiplying through by y gives

yuyt − yv − y2vy + yhxy + yεuy = τyy, (3.91)

where the subscripts denote partial differentiation. Subtracting (3.90a) from (3.91) yields

(yuy − u)t − y2vy + yhxy + εyuy − hx − εu = yτy − τ. (3.92)
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Next we differentiate (3.90b) by both x and y. This results in the following PDEs,

y2ux + yhxy = 0, (3.93a)

u+ yuy + hyy = 0. (3.93b)

Note that (3.93a) has also been multiplied by y. This allows for the relations of the following terms:

yhxy = −y2ux, (3.94a)

yuy = −u− hyy. (3.94b)

By substitution of the terms in (3.94a) and (3.94b) into (3.92) we have

(−2u− hyy)t − y2vy − y2ux + εyuy − hx − εu = yτy − τ. (3.95)

From (3.90b) and (3.90c) we also have the relations

u = −hy
y
, (3.96a)

ux + vy = −ht − εh. (3.96b)

Using (3.96) in (3.95) we arrive at the scalar PDE

(
y2 +

2

y

∂

∂y
− ∂2

∂y2

)(∂h
∂t

+ εh
)
− ∂h

∂x
= y

∂τ

∂y
− τ. (3.97)

We have returned to the original notation of partial derivatives for grouping purposes.

The boundary conditions must be determined for (3.97). We take x = 0, 1 as rigid boundaries, meaning

the reflected wave is inverted. The boundary conditions are given by Cane et al. (1981), and can be

summarised as no zonal velocity at the eastern boundary (x = 1) and zero integrated zonal mass flux

at the western boundary (x = 0). This can be written in terms of u as

u = 0 at x = 1, (3.98a)∫ λ0/2

−λ0/2
udy = 0 at x = 0. (3.98b)

Through (3.96a) these can be written in terms of h:

∂h

∂y
= 0 at x = 1, (3.99a)∫ λ0/2

−λ0/2

1

y

∂h

∂y
dy = 0 at x = 0. (3.99b)
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3.3.1.3 A two-strip model

We can further reduce (3.97) to just one spatial dimension through appropriate approximations.

Equatorial strip Near the equator the thermocline depth can be approximated as

h(x, y, t) = he(x, t) +
y2

2
(hn(x, t)− he(x, t)). (3.100)

where he is the depth of the thermocline at the equator and hn represents the thermocline depth at

an off-equatorial strip (note hn > he). The zonal velocity is then obtained through (3.96a):

u = he(x, t)− hn(x, t). (3.101)

The definition of h in (3.100) can be substituted into (3.97) and results in the equation

y2
(∂he
∂t

+ εhe +
y2

2

(∂hn
∂t
− ∂he

∂t
+ ε(hn − he)

))
+
∂hn
∂t
− ∂he

∂t

+ε(hn − he)−
∂he
∂x
− y2

2

(∂hn
∂x
− ∂he

∂x

)
= y

∂τ

∂y
− τ.

(3.102)

The above is an equatorial approximation to (3.97). Applying (3.102) at y = 0, we arrive at the PDE

with only one spatial dimension,( ∂
∂t

+ ε
)

(hn − he)−
∂he
∂x

= −τ|y=0. (3.103)

Off-equatorial strip On the other hand, if we consider y large (i.e. y ≥ 2), then the ∂
∂y and ∂2

∂y2

terms in (3.97) become negligible. This allows for an off-equatorial approximation to (3.97) where h

can be replaced with hn giving ( ∂
∂t

+ ε
)
hn −

1

y2
n

∂hn
∂x

=
∂

∂y

(τ
y

)
|y=yn

. (3.104)

Equation (3.103) represents the equatorial Kelvin waves including off-equatorial Rossby waves influ-

ence, while equation (3.104) represents the off-equatorial long Rossy waves. These two equations

together form the two-strip model that we will analyse for internal delay effects.

The boundary conditions for (3.103) and (3.104) are given as

hn(xE , t) = rEhe(xE , t) where xE = 1, (3.105a)

he(xW , t) = rWhn(xW , t) where xW = 0, (3.105b)
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(Jin, 1997). The coefficients rE,W are reflection parameters; rE,W = 1 signifies complete reflection

of the waves at either boundary, while rE,W < 1 represents imperfect reflection with mass exchange

through boundary layer currents. Note that rE = rW = 1 make (3.105) equivalent to (3.99).

3.3.1.4 Incorporating SST variability

Near the equator, τ is a symmetric zonal wind stress and can be expressed as a function of SST Te(x, t)

and west-east location x:

τ(x, y, t) = µA(Te(x, t), x)e−
1
2

(
yL0
La

)2
. (3.106)

Through an empirical relation between wind stress and SST (Deser and Wallace, 1990), (3.106) can

be approximated as

τ(x, y, t) = µA0TeE(t)f(x)e−
1
2

(
yL0
La

)2
, (3.107)

where the west-east profile of wind stress f(x) can be prescribed and doesn’t depend on time. Here

we assume the time dependence comes only from TeE(t), which is the SST at the eastern boundary

of the basin (x = 1). Equation (3.107) then implies that the forcing terms of (3.103) and (3.104) take

the values

−τ|y=0 = −µA0TeE(t)f(x), (3.108a)

∂

∂y

(τ
y

)
|y=yn

= −θµA0

y2
n

TeE(t)f(x), (3.108b)

where θ = [
(ynL0

La

)2
+ 1]e−

1
2

(
ynL0
La

)2
is an O(1) constant that varies between 1.00 and 1.25 depending

on yn.

In order to fully couple SST to the thermohaline, Jin and Neelin (1993) introduce an equatorial box

approximation to the thermodynamic SST equation. Jin (1997) further simplifies this approximation

through linearisation around an upwelling (vertically rising) background state to get

∂Te
∂t

= −c(x)Te(x, t) + γ(x)he(x, t). (3.109)

The function c(x) captures local damping and γ(x) is the zonal dependence on thermocline variations.

In comparing the eastern and western contributions to SST variations, the dominant effects are where

the thermocline is shallow in the Eastern Pacific. We can write (3.109) as just variations at the eastern

boundary (x = 1),
dTeE
dt

= −cETeE(t) + γEheE(t), (3.110)

where the coefficients cE and γE are now just constants. Equation (3.110) couples the SST anomaly

to the equations of motion through the thermocline height at the eastern boundary.
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As the two-strip model keeps yn fixed as a parameter, (3.108) is a function of just TeE(t) and x,

resulting in a closed system of equations for he(x, t), hn(x, t), TeE(t).

3.3.1.5 Exploring wave-like solutions of two-strip model

We now have a simplified model of one spatial dimension for the equatorial Pacific given as( ∂
∂t

+ ε
)

(hn − he)−
∂he
∂x

= −µA0TeE(t)f(x), (3.111a)( ∂
∂t

+ ε
)
hn −

1

y2
n

∂hn
∂x

= −θµA0

y2
n

TeE(t)f(x), (3.111b)

dTeE
dt

= −cETeE(t) + γEheE(t). (3.111c)

We consider the undamped (ε = 0) system (3.111a-b):

∂he
∂t

+
∂he
∂x

= µA0TeE(t)f(x) +
∂hn
∂t

, (3.112a)

∂hn
∂t
− 1

y2
n

∂hn
∂x

= −θµA0

y2
n

TeE(t)f(x). (3.112b)

Rossby Wave Rossby waves travel westward across the ocean basin just above the equator.

(3.112b) represents this wave and has the following characteristics,

dx

ds
= − 1

y2
n

x(s) = − s

y2
n

+ x0, (3.113a)

dt

ds
= 1 t(s) = s+ t0, (3.113b)

where x0 = x(0) and t0 = t(0). If we combine (3.113a) and (3.113b) then we get the characteristic

hn(x, t) = hn(x0 +
t0 − t
y2
n

, t). (3.114)

Taking x as a function of t along constant characteristics of (3.114), (3.112b) is equivalent to

dhn
dt

= −µA0θ

y2
n

TeE(t)f(x(t)). (3.115)

If we consider a wave travelling westward from x = 1 to x = 0 (where x0 = 0) and integrate (3.115)

along characteristics then we have∫ t0

t0−y2n

dhn
dt

dt = −µA0θ

y2
n

∫ t0

t0−y2n
TeE(t)f(x(t))dt. (3.116)
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We can assume the wind stress profile f(x) only acts in a region x1 < x < x2 and choose f(x) as

piecewise constant (Dijkstra, 2008):

f(x) =


1

x2−x1 for x1 < x < x2.,

0 otherwise.
(3.117)

This implies that we have the relation

hn(0, t) = hn(1, t− y2
n)− µA0θ

y2
n(x2 − x1)

∫ t−y2nx2

t−y2nx1
TeE(τ)dτ. (3.118)

Here t0 has been interchanged with the variable t.

Kelvin Wave Kelvin Waves travel eastward along the equator. Equation (3.112a) describes this

wave (along with some coupling to the off-equatorial Rossby wave). It has the characteristics

dx

ds
= 1 x(s) = s+ x0, (3.119a)

dt

ds
= 1 t(s) = s+ t0, (3.119b)

Combining (3.119a) and (3.119b) gives the characteristic

he(x, t) = he(x0 + t− t0, t). (3.120)

Again in (3.120), x can be considered as a function of t and (3.112a) becomes

dhe
dt

= µA0TeE(t)f(x(t)) +
∂hn
∂t

. (3.121)

Now we consider a wave travelling eastward from x = 0 to x = 1 (where x0 = 0) and integrate (3.121)

along characteristics to obtain∫ t0+1

t0

dhe
dt
dt =

∫ t0+1

t0

µA0TeE(t)f(x(t))dt+

∫ t0+1

t0

∂hn
∂t

dt. (3.122)

The function f(x) is again taken as (3.117) which gives

he(1, t+ 1) = he(0, t) +
µA0

(x2 − x1)

∫ t+x2

t+x1

TeE(τ)dτ +O
( 1

1 + y2
n

)
(3.123)

where t0 is again replaced by t. To further simplify (3.118) and (3.123), we use the mean-value

approximation: ∫ b

a
g(t)dt = g(c)(b− a) where g(c) = g(t), t ∈ [a, b]. (3.124)
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This assumes we know the mean value of TeE(τ) for τ ∈ [t+x1, t+x2]. Also ignoring terms of O
(

1
1+y2n

)
,

we get

he(1, t) = he(0, t− 1)− µA0TeE(t+ xp − 1), (3.125a)

hn(0, t) = hn(1, t− y2
n)− µA0θTeE(t− y2

n). (3.125b)

where xp ∈ [x1, x2] is the east-west position at which TeE(τ) achieves its mean value. Since all

the x values in (3.125) are at the boundaries, we can apply boundary conditions (3.105). Through

substitution and use of boundary conditions (3.105), we arrive at the delay-difference system

heW (t) =rW rEheW (t− 1− y2
n)

+ µA0rW (θTeE(t− y2
nxp)− rETeE(t+ xp − 1)), (3.126a)

heE(t) =rW rEheE(t− y2
n − 1)

+ µA0(TeE(t+ xp − 1)− rW θTeE(t− y2
nxp − 1)), (3.126b)

dTeE
dt

=− cETeE(t) + γEheE(t) (3.126c)

where heW (t) = he(0, t), heE(t) = he(1, t), and . The delay oscillator model is valid in the limiting

case rE = 0:

dTeE
dt

= −cETeE(t) + γEµA0(TeE(t− 1 + xp)− θrWTeE(t− 1− y2
nxp)). (3.127)

Introducing the coefficients δ1 = 1 − xp, δ2 = 1 + y2
nxp, α = cE , β = γEµA0, and b = γEµA0θrW we

can rewrite (3.127 - with T = TeE) as

dT

dt
= −αT (t) + βT (t− δ1)− bT (t− δ2). (3.128)

Considering long timescales and therefore setting δ1 = 0, δ2 = τ , and β − α = a, (3.128) becomes the

linear part of
dT

dt
= aT (t)− bT (t− τ)− cT 3(t), (3.129)

which is the Battisti and Hirst (1989) delayed oscillator model. A rescaling of a = c = 1 gives the

original model proposed by Suarez and Schopf (1988). The nonlinear part in both models is added

as an approximation of all the nonlinear effects known to limit the growth of unstable modes in

the system, including advective processes in the ocean and interaction with atmospheric convection

(Suarez and Schopf, 1988). This model has been studied extensively through bifurcation analysis and

extensions (discussed in Chapter 2, Section 2.2.2).
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3.3.2 Atlantic Multidecadal Oscillation (AMO)

Another phenomenon affecting sea-surface temperature (SST) is the Atlantic Multidecadal Oscillation

(AMO). This is an oscillation on decadal timescales which affects surface and subsurface temperatures

in the North Atlantic Ocean. Despite the relatively short climate record that exists for this variability,

the period is believed to be on the order of 50 to 70 years (Dijkstra, 2005). The full physical mechanism

is explained in Te Raa and Dijkstra (2002), but the most significant effect is westward propagation of

temperature anomalies in the northern part of the Atlantic Ocean basin.

In this section we analyse a previously proposed model of the AMO introduced by Sévellec and Huck

(2015). This model is a PDE system which describes the wave-like dynamics of surface, subsurface,

and deep ocean temperatures in the North Atlantic. Using methods similar to those introduced in the

previous section for ENSO, we recover a delay difference equation that captures the essential dynamics

of the AMO.

3.3.2.1 The model

The AMO model defined in Sévellec and Huck (2015) is as follows,

∂T1

∂t
= −a1

∂T1

∂x
− b1

∂T2

∂x
− c1

∂T3

∂x
+ κ

∂2T1

∂x2
, (3.130a)

∂T2

∂t
= −a2

∂T2

∂x
− b2

∂T2

∂x
− c2

∂T3

∂x
+ κ

∂2T2

∂x2
, (3.130b)

∂T3

∂t
= κ

∂2T3

∂x2
. (3.130c)

These equations describe temperature anomalies from a background state for three layers of the ocean.

Layers 1,2, and 3 are the surface, subsurface, and deep ocean, respectively. It is important to note for

physical purposes that the coefficients a1, b1, c1, a2, b2, c2 are negative. The constant κ is a diffusion

coefficient that is the same for all three layers.

We will consider a basin of x ∈ [0, 1] where 0 is west and 1 is east. The boundary conditions are given

as

Ti(1, t) = −Ti(0, t), (3.131a)

∂Ti
∂x

(1, t) = −∂Ti
∂x

(0, t). (3.131b)

These boundary conditions imply an instantaneous temperature adjustment across the ocean. The

physical interpretation of this is that the timescale of the eastward propagating Kelvin wave travelling

back across the basin (from 0 to 1) is much faster than the Rossby wave described by the model, so

we can consider it as an instantaneous adjustment at the boundaries. This is supported by the studies



Chapter 3. Methods of deriving models with delay 66

of Johnson and Marshall (2002) who showed the timescale of Kelvin wave adjustment is 2-3 months,

while the westward wave propagation of interest is on decadal timescales.

3.3.2.2 Free-wave solutions

First we derive explicit expressions for the free-wave solutions of (3.130), meaning we neglect the

diffusion terms (κ = 0). System (3.130) becomes

∂T1

∂t
= −a1

∂T1

∂x
− b1

∂T2

∂x
− c1

∂T3

∂x
, (3.132a)

∂T2

∂t
= −a2

∂T2

∂x
− b2

∂T2

∂x
− c2

∂T3

∂x
, (3.132b)

∂T3

∂t
= 0. (3.132c)

Equation (3.132c) shows that T3 is constant in time. Since T1, T2 are not coupled into (3.132c), we

know that as t→∞, T3 is constant in x. This simplifies (3.132) further to

∂T1

∂t
= −a1

∂T1

∂x
− b1

∂T2

∂x
, (3.133a)

∂T2

∂t
= −a2

∂T2

∂x
− b2

∂T2

∂x
. (3.133b)

This is a system of two coupled wave equations. To solve along characteristics we write the system in

matrix form,

∂ ~T

∂t
+B

∂ ~T

∂x
= ~0, (3.134)

where

~T =

[
T1

T2

]
, B =

[
a1 b1

a2 b2

]
. (3.135)

Using coordinates in R2 which diagonalise B into the form

B =

[
λ1 0

0 λ2

]
, (3.136)

where

λ1,2 =
1

2

(
a1 + b2 ±

√
(a1 + b2)2 − 4a1b2 + 4a2b1

)
. (3.137)

we create a new system of uncoupled variables T̃ that are governed by the equations

∂T̃1

∂t
+ λ1

∂T̃1

∂x
= 0, (3.138a)

∂T̃2

∂t
+ λ2

∂T̃2

∂x
= 0.. (3.138b)



Chapter 3. Methods of deriving models with delay 67

The characteristic speeds of the waves are also given by (3.137). The new variables are related back

to our original variables through

~T = PT̃ , P = [~e1, ~e2], (3.139)

where

~e1 =

[
1

λ1−a1
b1

]
, ~e2 =

[
b1

λ2−a1
1

]
. (3.140)

The general solution of (3.138) is of the form

T̃i(x, t) = T̃i(λit+ 1, t), i = 1, 2. (3.141)

This implies the following relations at the boundaries:

T̃1(t, 1) = T̃1(t− 1

λ1
, 0), (3.142a)

T̃2(t, 1) = T̃2(t− 1

λ2
, 0). (3.142b)

Through (3.131) and (3.139) the boundary conditions for the new system become

T̃1W (t) = −T̃1E(t), (3.143a)

T̃2W (t) = −T̃2E(t). (3.143b)

We use the shorthand notation T̃iE(t) = T̃i(t, 1) and T̃iW (t) = T̃i(t, 0). The general solution (3.141)

allows us to express the value of T̃i at any x in terms of T̃i at a chosen location (here we choose the

eastern boundary of the basin, x = 1). Applying (3.143) to (3.142) we obtain

T̃1E(t) =− T̃1E(t− 1

λ1
), (3.144a)

T̃2E(t) =− T̃2E(t− 1

λ2
). (3.144b)

Now we can change back to our original variables through

T̃ = P−1 ~T , P−1 =

[
λ2−a1
λ2−λ1

−b1
λ2−λ1

−(λ2−a1)(λ1−a1)
(λ2−λ1)b1

λ2−a1
λ2−λ1

]
. (3.145)



Chapter 3. Methods of deriving models with delay 68

This gives the system

T1E(t) =− λ2 − a1

λ2 − λ1
T1E

(
t− 1

λ1

)
+

b1
λ2 − λ1

T2E

(
t− 1

λ1

)
+
λ1 − a1

λ2 − λ1
T1E

(
t− 1

λ2

)
− b1
λ2 − λ1

T2E

(
t− 1

λ2

)
, (3.146a)

T2E(t) =− (λ2 − a1)(λ1 − a1)

b1(λ2 − λ1)
T1E

(
t− 1

λ1

)
+
λ1 − a1

λ2 − λ1
T2E

(
t− 1

λ1

)
+

(λ2 − a1)(λ1 − a1)

b1(λ2 − λ1)
T1E

(
t− 1

λ2

)
− λ2 − a1

λ2 − λ1
T2E

(
t− 1

λ2

)
. (3.146b)

System (3.146) is a delay-difference system. We can write the system in matrix form to analyse the

combined effect of both delays,

~TE(t) = C1
~TE(t− τ1) + C2

~TE(t− τ2), (3.147)

where

C1 =

[
−λ2−a1
λ2−λ1

b1
λ2−λ1

− (λ2−a1)(λ1−a1)
b1(λ2−λ1)

λ1−a1
λ2−a1

]
, C2 =

[
λ1−a1
λ2−λ1 − b1

λ2−λ1
(λ2−a1)(λ1−a1)

b1(λ2−λ1) −λ2−a1
λ2−λ1

]
,

and

τ1 = − 1

λ1
, τ2 = − 1

λ2
.

Note that we have made a time shift in (3.147) since λ1,2 will always be negative.

3.3.2.3 Numerical exploration of AMO model with delay

In order to explore solutions of delay-difference system, we convert (3.147) to a system of DDEs. The

method for doing this is explained in Chapter 4. Here we just present the resulting system:

ε
d~TE(t)

dt
= −~TE(t) + C1

~TE(t− τ1) + C2
~TE(t− τ2), (3.148)

where ε � 1. The choice of ε can be related to the discretisation of the original PDE system (3.133)

through ε = 1/N , where N is the number of discretisation steps using an ‘upwind’ scheme (discretising

in the direction of the wave).

We implement the system in MATLAB. Table 3.2 shows the parameter values used, taken as suggested

in Sévellec and Huck (2015). The last two columns of the table list the approximate resulting wave

speeds and delays.

To compute the history needed for the difference equation, the PDE system (3.133) is solved numeri-

cally for an initial profile of the basin using an upwind discretisation scheme for 34.14 years. We take
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a1 -0.1083 λ1,app -0.0293
a2 -0.0352 λ2,app -0.2482
b1 -0.3140 τ1,app 34.14
b2 -0.1692 τ2,app 4.03

Table 3.2: Parameters used in numerical computations of (3.148).

a Gaussian initial distribution profile (shown in Figure 3.6a). The DDE system (3.148) is then evolved

for a further 200 time-steps. Figure 3.6 show the results.

A spectral analysis is performed on the resulting trajectories to identify the most prominent oscillation

periods. A dominant signal of an 8.08 year cycle is obtained, and two smaller signals for 69.40 and

22.91 year cycles. The two most prominent signals correspond to period doublings of the two delay

values. The smaller peak corresponds to approximately 2
3τ1. The two smaller signals, corresponding

to 69.40 and 22.91 year cycles, align with the literature regarding possible cycle lengths of the AMO

(Chylek et al., 2011, Delworth and Mann, 2000).

We can compare this behaviour when we use a more realistic history to initialise DDE system (3.148).

We use the Kaplan SST V2 data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA,

from their website at https://www.esrl.noaa.gov/psd/. The historical recordings begin in 1856, so

we initialise our model at 1890. This history, along with the rest of the data until 2018, is depicted

in Figure 3.7a. Our model results from using the data history is also shown in the same figure for

comparison (note we only show the top layer, T1). At first glance it appears that the model captures

the low frequency variations well. This is further confirmed through a spectral analysis shown in

Figure 3.7b. Here we see that the dominant low frequency variation of the model and the data are

almost exact. There appear to be some additional resonances in the higher frequency variations of

the model. It is important to note, however, that with the data history the strongest signal is in fact

the low frequency variation of approximately 69 years, rather than the period doubling of the smaller

delay (≈ 8 years) seen in the previous example (see Figure 3.6d). This provides evidence that the

AMO is a self-sustained oscillation induced by delay effects.
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Figure 3.6: Numerical results for (3.148) with parameters from Table 3.2. (a) Initial distribution
profile for each T . (b) History function. (c) Trajectory for 200 years. (d) Power spectral density.
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Figure 3.7: Numerical results for (3.148) initialised with Kaplan SST V2 data provided by
NOAA/OAR/ESRL PSD (https://www.esrl.noaa.gov/psd/) . (a) Time series of Kaplan SST data

compared with model output. (b) Power spectral density of Kaplan SST data and model output.





Chapter 4

Analysing a Boolean Delay Model of

the Pleistocene

We have introduced models with delay for the climate system in Chapter 2. Here we focus on one

particular model for the Pleistocene, a period of climate characterised by a succession of glacial-

interglacial cycles (see Section 2.3.2 for full description). This model was proposed by Ghil et al.

(1987) and presents the climate system in the Boolean sense: on or off states with logical relations

between variables. The aim of the original study was to conceptually understand the oscillatory

nature of the ice ages through internal dynamics of the climate system. In Section 4.1 we describe

the model in detail, including its physical rationale. Section 4.2 details a method to embed Boolean

Delay Equations (BDEs) into difference equations, while Section 4.3 describes the regularisation of

difference equations by singularly perturbed delay differential equations (DDEs). Finally we perform

a numerical bifurcation analysis in Section 4.4 and collect its scientifically relevant conclusions.

4.1 The Boolean Delay Model

Ghil, Mullhaupt, and Pestiaux introduced Boolean delay equations (BDEs) to theoretical climate dy-

namics studies. In 1987 they developed a model to describe the interaction between ice volume, global

temperature, and the deep-ocean circulation during the Pleistocene (Ghil et al., 1987). They wanted

to investigate the effects that deep-ocean circulation changes could have on the climate fluctuations

in that time period. Previously it had been hypothesised that the ocean circulation could have been

slower in the past, causing a longer transport time of cold, dense deep water from formation sites to

the rest of the ocean (Worthington, 1968, as cited in Ghil et al. (1987)). Ghil et al. considered the

possibility of delays relating to the ocean circulation (as well as other physical processes) playing a

role in the observed oscillatory behaviour of paleoclimate records. Ghil et al.’s interest in BDEs arose

73
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from the simplicity of the equation states. The state could be described by a simple “high” or “low”

value, represented as 1 and 0 respectively. This requires only the understanding of the logical nature

of mechanisms and the delays after which effects take place. With this approach one can avoid the use

of largely unknown physical parameters, but still attain an understanding of how delays can impact

the long-term behaviour of a system (Ghil et al., 2008).

The model the authors constructed has of three state variables: northern hemisphere ice volume (V ),

global air temperature (T ), and intensity of deep-ocean circulation (C). They chose to focus solely on

northern hemisphere ice cover because of its dominating effect on deep water formation (Ghil et al.,

1987). The two main types of deep water are Antarctic Bottom Water (AABW) from the southern

hemisphere and North Atlantic Deep Water (NADW) from the northern hemisphere. These cold,

dense waters form due to the cooling of dense, warm water from the tropics as it is transported to

the poles. Brine rejection also contributes to the process, which is the expulsion of salt during sea-

ice formation, making the surrounding surface water much denser and prompting convective mixing.

The present-day locations of all deep water formation and sinking are the North Atlantic Subpolar

Sea (north of the Greenland-Iceland-Scotland ridge), the Weddell Sea, and the Ross Sea (Stommel,

1958; Weyl, 1968; Worthington, 1968; as cited in Ghil et al., 1987). The latter two are located off

the coast of Antarctica. Ghil et al. use the assumption that the present extent and volume of the

Antarctic ice sheet were reached before the Pleistocene and maintained throughout that period. This

then assumes that there are no changes in AABW production, leaving NADW the main driver of

circulation fluctuations. In the Boolean notation used here, the variables taking a value of 1 mean

“high” for V and T , and “strong” for C. A value of 0 denotes “low” for V and T , and “weak” for C.

There are also three delays that are incorporated into the system: τacc is the time it takes for one layer

of an ice sheet to accumulate, τif is the time it takes for the surface area of an ice sheet to increase

due to viscoplastic expansion, and τdw is the overturning time of the ocean.

The original Boolean model is given as

V (t) = T (t− τacc), (4.1a)

T (t) = V (t− τif) ∧ C(t− τdw), (4.1b)

C(t) = V (t− τdw) ∧ V (t) = V (t− τdw) ∨ V (t). (4.1c)

The Boolean operators are as follows: ∧ is conjuction (and), ∨ is alternative (or), and the overbar

indicates negation (not).

The physical rationale for the model is explained as follows. Equation (4.1a) is derived from the

precipitation-temperature effect. The end result is that there exists a volume increase with a tem-

perature increase having occurred τacc in the past, which sparked a more active hydrological cycle.

Equation (4.1b) results from the temperature-albedo feedback. The first term is the more obvious

relation, saying if there was more ice cover in the past, the overall surface albedo will increase after
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τif time for the ice to expand and the global temperature will decrease. Along with this effect comes

the ice volume effect on circulation, which is influenced by increased NADW formation during peri-

ods of glaciation. This increased NADW formation would strengthen the overall ocean circulation,

therefore transporting cold surface waters to the rest of the ocean which also supports decreasing

global temperature. Equation (4.1c) explains the ocean circulation’s dependence on total ice cover.

It is better understood by the first equivalence C(t) = V (t− τdw) ∧ V (t). Namely, if there is much

ice melt during time interval τdw, fresh water runoff will stabilise the North Atlantic water column,

producing less NADW (i.e. less convective overturning), and the overall circulation rate will decrease.

V (t − τdw) ∨ V (t) is the logical equivalence to this statement and used in this particular analysis for

its algebraic simplicity (discussed in the following section).

4.2 Boolean Delay Equations to Difference Equations

In order to enable a systematic study of the behaviour in dependence of the parameters, the basic

Boolean equations must first be converted to continuous maps on the interval [0,1]. The two funda-

mental Boolean operators are the identity and not functions. Since the maps will be further converted

to a continuous function, it is not necessary that the maps are strictly defined on the interval [0,1] as

long as the orbits of any real number close to 0 or 1 have the same behaviour as the closest integer.

The map to function as the identity logical operator would require that there are two stable fixed

points at 0 and 1. We use

xn+1 = x2
n(xn − 2)2. (4.2)

As can be seen in Figure 4.1, values close to either fixed point will converge to that fixed point. The

map corresponding to the not logical operator would require a stable periodic orbit of period 2, with

the periodic orbit visiting the points 0 and 1. This means that a past value of 1 will be sent to 0 and

vice versa, in agreement with the Boolean logical operator. This applies to any values close to the

periodic points. Figure 4.2 illustrates this behaviour. The map is defined as

xn+1 = (xn + 1)(xn − 1)2. (4.3)

The logical operators ∨ and ∧ can be expressed directly using algebraic operators. This is done by

using the integer values 0,1 to represent false and true (respectively). Given two logical values p and

q, the truth tables must match the final algebraic quantity. The appropriate algebraic expressions are

then (using ∗ to indicate multiplication)

p ∧ q = p ∗ q (4.4)

p ∨ q = p+ q − p ∗ q (4.5)



Chapter 4. Analysing a Boolean Delay Model of the Pleistocene 76

Figure 4.1: Orbits of initial points on the identity map (4.2) after 100 iterations. Initial values
x0 = {−0.025, 0.2, 0.9, 1.025}

(a) (b)

Figure 4.2: Orbits of initial points on the not map (4.3) after 100 iterations with initial values (a)
x0 = −0.025 and (b) x0 = 0.9.

Note the truth tables of the Boolean operations, with added columns for the algebraic expressions, in

Table 4.1. The calculations are trivial. Using the identity map, not map, and algebraic operators, the

BDE (4.1) is embedded in the following system of delay difference equations:

V (t) = T (t− τacc)
2(T (t− τacc)− 2)2, (4.6a)

T (t) = (V (t− τif) + 1)(V (t− τif)− 1)2(C(t− τdw) + 1)(C(t− τdw)− 1)2, (4.6b)

C(t) = (V (t− τdw) + 1)(V (t− τdw)− 1)2 + V (t)2(V (t)− 2)2

− (V (t− τdw) + 1)(V (t− τdw)− 1)2V (t)2(V (t)− 2)2. (4.6c)
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Table 4.1: Truth tables for ∧ and ∨ logical operators, with algebraic equivalents.

p q p ∧ q p ∨ q p ∗ q p+ q − p ∗ q
0 0 0 0 0 0
0 1 0 1 0 1
1 0 0 1 0 1
1 1 1 1 1 1

(a) (b)

Figure 4.3: Solution of (4.6) with (a) τacc = 3, τif = 2, τdw = 1 and (b) τacc = 3, τif = 1, τdw = 2.

We find that the asymptotic behaviour of the trajectory starting from V (0) = C(0) = T (0) = 0 changes

depending on the relations between the delay values. Take for instance the simplest case of the delays

being consecutive discrete values (namely 1,2,3). For τacc > τif > τdw the solution converges to an

equilibrium, while for τacc > τdw > τif the solution oscillates. These solutions are shown in Figure 4.3a

and Figure 4.3b respectively. Because this model has no additional parameters, we will investigate

how the attractors (such as equilibria and periodic orbits) change as we vary the delays of the system.

4.3 Regularisation of Difference Equations to Delay Differential Equa-

tions

It is worthwhile to analyse the model on a continuous time spectrum to determine the exact delay

relationships where periodic orbits appear. For this reason, we regularise the difference equation into

a delay differential equation. A detailed explanation is shown only for one variable, but the other two

are done identically. Consider (4.6a),

V (t) = T (t− τacc)
2(T (t− τacc)− 2)2. (4.7)
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We rewrite (4.7) as

0 = −V (t) + T (t− τacc)
2(T (t− τacc)− 2)2. (4.8)

Introducing an additional small time step ε = ∆t, we then regularise by replacing 0 with εdVdt :

ε
dV

dt
= −V (t) + T (t− τacc)

2(T (t− τacc)− 2)2. (4.9)

The DDE (4.9) is then equivalent to difference equation (4.7) in the limit ε→ 0. For all three variables,

the adopted DDE system is then

ε
dV

dt
= −V (t) + T (t− τacc)

2(T (t− τacc)− 2)2 (4.10a)

ε
dT

dt
= −T (t) + (V (t− τif) + 1)(V (t− τif)− 1)2(C(t− τdw) + 1)(C(t− τdw)− 1)2 (4.10b)

ε
dC

dt
= −C(t) + (V (t− τdw) + 1)(V (t− τdw)− 1)2 + V (t)2(V (t)− 2)2

− (V (t− τdw) + 1)(V (t− τdw)− 1)2V (t)2(V (t)− 2)2 (4.10c)

where ε is a time-scaling parameter. When ε = 0 system (4.10) is identical to system (4.6). Larger ε

values slows down transitions between 0 and 1.

4.3.1 Boundedness of solutions

We show that solutions starting with a history in [0, 1] are bounded within the interval [0, 1]. Assume

that the initial history for (4.10) satisfies (V (s), T (s), C(s)) ∈ [0, 1] for all s ∈ [−max(τacc, τif , τdw), 0].

Then (V (t), T (t), C(t)) ∈ [0, 1]3 for all t ≥ 0.

Without loss of generality, the boundedness of each individual variable will be explored for ε = 1. To

assess whether or not a variable will leave the given interval, only the boundaries of the interval need

be considered.

Boundedness of V(t) Suppose V (t) is the first variable to leave the interval [0, 1]. First we

consider the case where V (t) leaves [0, 1] crossing 1. Thus, there exists a t∗ such that V (t∗) = 1 and
dV
dt (t∗) > 0, where 0 ≤ V (t) ≤ 1 for all t ≤ t∗. From (4.10a),

dV

dt
(t∗) = −1 + T (t∗ − τacc)

2(T (t∗ − τacc)− 2)2. (4.11)

Since 0 ≤ T (t∗ − τacc) ≤ 1 by assumption,

T (t∗ − τacc)
2(T (t∗ − τacc)− 2)2 ≤ (1)2(1− 2)2 = 1. (4.12)
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Thus,
dV

dt
(t∗) ≤ −1 + 1 = 0. (4.13)

This is a contradiction. Therefore, V (t) cannot be the first variable to leave [0, 1] through 1, so

V (t) ≤ 1.

The other possible case is V (t) leaves [0, 1] through 0. In this case, there exists a t∗ such that V (t∗) = 0

and dV
dt (t∗) < 0, where 0 ≤ V (t) ≤ 1 for all t ≤ t∗. From (4.10a),

dV

dt
(t∗) = T (t∗ − τacc)

2(T (t∗ − τacc)− 2)2 (4.14)

Again, since 0 ≤ T (t∗ − τacc) ≤ 1 by assumption,

T (t∗ − τacc)
2(T (t∗ − τacc)− 2)2 ≥ 02(−2)2 = 0 (4.15)

Hence,
dV

dt
(t∗) ≥ 0. (4.16)

This is again a contradiction. Hence V (t) cannot be the first variable to leave [0, 1] through 0. Since

V (t) cannot be the first variable to cross 0 or 1, it cannot be the first to leave [0, 1] overall. The

boundedness of solutions of the other two variables are proved in a similar fashion.

Boundedness of T(t) Suppose T (t) is the first variable to leave the interval [0, 1] through 1. Thus,

there exists a t∗ such that T (t∗) = 1 and dT
dt (t∗) > 0, where 0 ≤ T (t) ≤ 1 for all t ≤ t∗. From (4.10b),

dT

dt
(t∗) = −1 + (V (t∗ − τif) + 1)(V (t∗ − τif)− 1)2(C(t∗ − τdw) + 1)(C(t∗ − τdw)− 1)2. (4.17)

Applying the assumed inequality dT
dt (t∗) > 0 and rearranging we obtain

(V (t∗ − τif) + 1)(V (t∗ − τif)− 1)2(C(t∗ − τdw) + 1)(C(t∗ − τdw)− 1)2 > 1. (4.18)

Using the difference of two squares equality, the left-hand side can be written equivalently as

(V (t∗ − τif)− 1)(V (t∗ − τif)
2 − 1)(C(t∗ − τdw)− 1)(C(t∗ − τdw)2 − 1) > 1. (4.19)

It is assumed that 0 ≤ V (t∗−τif) ≤ 1, which means that (V (t∗−τif)−1)(V (t∗−τif)
2−1) is positive and

less than (or equal to) one. The same argument is made for (C(t∗− τdw)− 1)(C(t∗− τdw)2− 1). Their

multiplication then implies the left-hand side is indeed less than or equal to one, and a contradiction

arises. Therefore, T (t) ≤ 1 for all t > 0.
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Suppose T (t) is the first variable to leave the interval [0, 1] through 0. Thus, there exists a t∗ such

that T (t∗) = 0 and dT
dt (t∗) < 0, where 0 ≤ T (t) ≤ 1 for all t ≤ t∗. From (4.10b),

dT

dt
(t∗) = (V (t∗ − τif) + 1)(V (t∗ − τif)− 1)2(C(t∗ − τdw) + 1)(C(t∗ − τdw)− 1)2. (4.20)

From the assumption that T (t) is the first variable to leave [0, 1], all terms on the right-hand side are

greater than or equal to 0, meaning dT
dt (t∗) ≥ 0. This is a direct contradiction. Thus, T (t) cannot be

the first to leave [0, 1].

Boundedness of C(t) Suppose C(t) is the first variable to leave the interval [0, 1] through 1. Thus,

there exists a t∗ such that C(t∗) = 1 and dC
dt (t∗) > 0, where 0 ≤ C(t) ≤ 1 for all t ≤ t∗. From (4.10c),

dC

dt
(t∗) =− 1 + (V (t∗ − τdw) + 1)(V (t∗ − τdw)− 1)2 + V (t∗)

2(V (t∗)− 2)2

− (V (t∗ − τdw) + 1)(V (t∗ − τdw)− 1)2V (t∗)
2(V (t∗)− 2)2.

(4.21)

Applying the assumed inequality dC
dt (t∗) > 0 and rearranging gives

(V (t∗ − τdw) + 1)(V (t∗ − τdw)− 1)2[1− V (t∗)
2(V (t∗)− 2)2] > 1− V (t∗)

2(V (t∗)− 2)2. (4.22)

Dividing the inequality by the right-hand side,

(V (t∗ − τdw) + 1)(V (t∗ − τdw)− 1)2 > 1. (4.23)

Rewriting the left-hand side in a different form,

(V (t∗ − τdw)− 1)(V (t∗ − τdw)2 − 1) > 1. (4.24)

From the assumption that C(t) is the first variable to leave [0, 1], the modulus of the two terms on

the left-hand side are both less than or equal to one, therefore their product is also less than or equal

to one. This contradiction implies C(t) ≤ 1 for all t > 0.

Suppose C(t) is the first variable to leave the interval [0, 1] through 0. Thus, there exists a t∗ such

that C(t∗) = 0 and dC
dt (t∗) < 0, where 0 ≤ C(t) ≤ 1 for all t ≤ t∗. From (4.10c),

dC

dt
(t∗) =(V (t∗ − τdw) + 1)(V (t∗ − τdw)− 1)2 + V (t∗)

2(V (t∗)− 2)2

− (V (t∗ − τdw) + 1)(V (t∗ − τdw)− 1)2V (t∗)
2(V (t∗)− 2)2.

(4.25)

Substituting into dC
dt (t∗) < 0 and rearranging, the inequality becomes

(V (t∗ − τdw) + 1)(V (t∗ − τdw)− 1)2[1− V (t∗)
2(V (t∗)− 2)2] ≤ −V (t∗)

2(V (t∗)− 2)2. (4.26)
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From the boundedness already proven for V (t), the quantity V (t∗)
2(V (t∗) − 2)2 is positive and less

than one. This implies that the above left-hand side is strictly positive, while the right-hand side is

strictly negative, which leads to a contradiction in the inequality. Hence, C(t) ≥ 0, and C(t) cannot

leave [0, 1].

In summary, it has been proven for all three variables, V , T , and C, that none can be the first to leave

the interval [0, 1]. From this it follows that the solution (V (t), C(t), T (t))T must stay in [0, 1]3 for all

times t > 0 if the initial history is in [0, 1].

4.3.2 Stability of equilibrium

Let ~x(t) = (V (t), T (t), C(t))T . One equilibrium of (4.10) is ~x0 = (0, 0, 1)T . This is the only equilibrium

with physical values that is in [0, 1]. To determine stability of the equilibrium, the Jacobian of the

right-hand side of (4.10) must be calculated. For the delayed system, the linearisation has the form

d~x

dt
≈ J0~x(t) + Jτacc~x(t− τacc) + Jτif~x(t− τif) + Jτdw~x(t− τdw), (4.27)

where the explicit Jacobian matrices are

J0 =


−1 0 0

0 −1 0

J0,31 0 −1

 , Jτacc =


0 Jτacc,12 0

0 0 0

0 0 0

 ,

Jτif =


0 0 0

Jτif ,21 0 0

0 0 0

 , Jτdw =


0 0 0

0 0 Jτdw,23

Jτdw,31 0 0

,

J0,31 = [2V0(V0 − 2)2 + 2V 2
0 (V0 − 2)][1− Vτdw + 1)(Vτdw − 1)2],

Jτacc,12 = 2Tτacc(Tτacc − 2)2 + 2T 2
τacc(Tτacc − 2),

Jτif ,31 = [(Vτif − 1)2 + 2(Vτif + 1)(Vτif − 1)](Cτdw + 1)(Cτdw − 1)2,

Jτdw,23 = [(Cτdw − 1)2 + 2(Cτdw + 1)(Cτdw − 1)](V (t− τif + 1)(V (t− τif)− 1)2,

Jτdw,31 = [(Vτdw − 1)2 + 2(Vτdw + 1)(Vτdw − 1)][1 + V 2
0 (V0 − 2)2].

For ease of notation, the variable subscripts denote the value of the delay at which the respective

variables are evaluated. For instance, Vτacc = V (t− τacc) and V0 = V (t). At ~x0 the Jacobian matrices

are evaluated for ~x0 = ~xτacc = ~xτif = ~xτdw . This gives
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J0 =


−1 0 0

0 −1 0

0 0 −1

 Jτacc =


0 0 0

0 0 0

0 0 0



Jτif =


0 0 0

0 0 0

0 0 0

 Jτdw =


0 0 0

0 0 0

−1 0 0


This implies (4.27) can be reduced to

~̇x(t) ≈ J0~x(t) + Jτdw~x(t− τdw). (4.28)

Let ~x(t) = ~ceλt, where ~c = (c1, c2, c3)T . Then ~x(t − τdw) = ~ceλ(t−τdw). The exponential stability of

equilibria is determined by the linearisation. Substituting the ansatz into (4.10), the linearisation at

(0, 0, 1)T becomes

ελ~ceλt = (J0eλt + Jτdweλ(t−τdw))~c.

Rearranging and dividing through by eλt gives

(ελI − J0 − Jτdwe−λτdw)~c = 0.

Since ~c = ~0 would be a trivial solution, the following will be considered:

det



ελ+ 1 0 0

0 ελ+ 1 0

e−λτdw 0 ελ+ 1


 = 0.

This simplifies to

(ελ+ 1)3 = 0,

which gives eigenvalues

λ1,2,3 =
−1

ε
.

Therefore, the equilibrium (0, 0, 1)T is always stable independent of the values of the delays.

4.4 Numerical Analysis of DDE System

As the above equilibrium does not pass through any bifurcations, we turn to numerical methods to

find any oscillatory behaviour. In the following analyses, ε is taken to equal 1. The aim is to identify

the precise onset of periodic orbits based on the relationships between the delays. Since the most

uncertain delay value is the overturning time of the ocean in the past, τdw is varied while τif = 3
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(a) (b)

Figure 4.4: Solution of (4.10) for (a) τacc = 10 kyr, τif = 3 kyr, τdw = 2 kyr and (b) τacc = 10
kyr, τif = 3 kyr, τdw = 6 kyr. The blue curve is V , red is T , and cyan is C. Time (kyr) is along the

horizontal axis.

and τacc = 10 are kept constant. The values chosen for the latter two were taken from Ghil et al.

(1987). We try two different values of τdw with the initial conditions (V (s), T (s), C(s)) = (1, 1, 1) for

s ∈ [−τacc, 0]. For τdw = 2 (4.10) settles to the equilibrium (0, 0, 1)T (Figure 4.4a). As τdw is increased,

however, the long term behaviour becomes oscillatory (see Figure 4.4b for τdw = 6).

The periodic orbit solution shown in Figure 4.4b can be tracked through different values of τdw using

the numerical bifurcation software DDE-BIFTOOL (Engelborghs et al., 2001, 2002, Sieber et al.,

2014). Through this a fold of periodic orbits is evident (Figure 4.5). The two-parameter bifurcation

diagrams show the fold bifurcation’s dependence on the other delays (Figure 4.6). For small values of

τif , the fold is nearly independent of this delay value. Once it approaches 5 kyr, though, there is a

transition to a nearly linear relationship between τif and τdw for larger values of τif . This is depicted

in Figure 4.6a. The opposite is seen for τacc. The fold is essentially independent of this delay for large

values, however for small values it becomes independent of τdw (see Figure 4.6b).

Because time can be rescaled using the parameter ε, larger delay values can be used without them

being unrealistic. In this case, only the relationship between τif and τdw is important to the onset

of periodic orbits. There is then two ways the bifurcation could occur. As proposed in Ghil et al.

(1987), the overturning time of the ocean could have been different in the past than present-day likely

due to a slow-down of the thermohaline circulation, which would cause a change in τdw. If a shift in

τif causes the bifurcation, then this implies there was a change in the characteristic time of ice-sheet

expansion. This is not a new idea, as a physical explanation for such a change has been previously

proposed. The effect of regolith on ice sheet sliding (i.e. basal sliding) was discussed in Ganopolski

and Calov (2011), where the authors hypothesised that basal sliding accelerated ice-sheet expansion

(lower τif), but the gradual removal of regolith could increase the time of ice-sheet expansion (higher
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Figure 4.5: Amplitude of periodic orbits as a function of τdw (kyr). The blue branch represents stable
periodic orbits, while the red branch represents unstable.

(a) (b)

Figure 4.6: Two-parameter bifurcation diagrams showing fold of periodic orbits for (a) τdw vs. τif
and (b) τdw vs. τacc. All axes are in kyr.
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τif). This could be one physical mechanism to explain a shift in that delay. It has also been suggested

through geochemical studies of deep-sea cores that the lag between temperature changes and ice sheet

extent changes is anywhere from 1 to 6 kyr (Ruddiman and McIntyre, 1981).

While this model is extremely idealistic, it is a first step towards the inclusion of delays in continuous

paleoclimate models. It provides a hypothesis of which delays might have the biggest impact on

the dynamical behaviour of a system and thus should be included in models that include similar

mechanisms but are closer to the realistic physical mechanisms. This is described in Chapter 5, where

a model with delay is derived from the Saltzman and Maasch (1988) model. The more realistic model

then allows us to include the effect of forcing on the system, and gives insight on how external forcing

(e.g. orbital forcing) could influence oscillations caused by internal feedbacks.





Chapter 5

A conceptual model with delay for the

Mid-Pleistocene Transition

In the previous chapter we discussed delay effects which contributed to the glacial and interglacial

cycles during the Pleistocene. We introduced a first attempt at developing a model with delay for

the climate system during this time. In this chapter we extend upon the ideas of the Ghil et al.

(1987) Boolean delay equation model, and apply the linear chain approximation from Chapter 3,

Section 3.1 to a previously developed ordinary differential equation (ODE) model for the Pleistocene,

the Saltzman and Maasch (1988) model (SM88). This model was originally used to study the Mid-

Pleistocene Transition (MPT, see Chapter 2, Section 2.3.2). We first show that the dynamics of

SM88 without forcing is qualitatively the same to a scalar delay differential equation (DDE). By

exploring realistic values for the delay time, we discover a bistable parameter region of the model

which was not previously explored. When subjecting this region to two types of external forcing,

periodic and quasiperiodic (astronomical), we observe a distinct transition behaviour. In particular,

the quasiperiodic forcing induces a transition similar to the MPT without any change in parameter.

We also explore the robustness of this transition when noise is included into the model.

The chapter is organised as follows. Section 5.1 introduces the original SM88 model and details the

derivation of our DDE model. Section 5.2 compares the bifurcation diagrams of both models without

forcing. Section 5.3 and Section 5.4 study the model subjected to periodic forcing and quasiperiodic

forcing, respectively. Finally, Section 5.5 considers the combined effect of quasiperiodic forcing and

noise. Sections 5.1, 5.2, 5.4, and 5.5 have been published in:

C. Quinn, J. Sieber, A. S. von der Heydt, and T. M. Lenton. The mid-pleistocene transition

induced by delayed feedback and bistability. Dynamics and Statistics of the Climate System, 3

(1):1–18, 2018b. doi: 10.1093/climsys/dzy005

87



Chapter 5. A conceptual model with delay for the MPT 88

. Section 5.3 is currently under review as the manuscript:

C. Quinn, J. Sieber, and A. S. von der Heydt. Effects of periodic forcing on a paleoclimate delay

model. preprint arXiv:1808.02310, 2018a

Any coauthor contributions will be noted where applicable. All numerical results have been obtained

by the candidate, apart from the calculation for the unstable manifold of a periodic orbit which was

performed by Jan Sieber.

5.1 Introduction of the model with delay

In this section we explain the origin of the delay differential equation model used in our study. Sec-

tion 5.1.1 recounts the study of Saltzman and Maasch (1988), where a low-dimensional ODE model for

the Mid-Pleistocene Transition was developed. Section 5.1.2 explains how a scalar delay differential

equation can be derived from that original model.

5.1.1 The Saltzman and Maasch 1988 model

We begin by considering the original model of Saltzman and Maasch (1988), which we will refer to as

SM88,

dX

dt
= −X(t)− Y (t), (5.1a)

dY

dt
= −pZ(t) + rY (t) + sZ(t)2 − Z(t)2Y (t), (5.1b)

dZ

dt
= q(−X(t)− Z(t)). (5.1c)

Here the variables are non-dimensionalised versions of global land ice mass (X), atmospheric CO2 (Y ),

and North Atlantic Deep Water (NADW, Z). More precisely, the variables represent deviations from

a background state (anomalies). The first term, −X(t) in (5.1a) combines the feedback mechanisms

affecting global ice mass: damping and negative feedback from ablation (melting, evaporation, and loss

of ice through icebergs). The second term, −Y (t) in (5.1a) is the direct effect of higher temperatures

(caused by higher CO2 levels) leading to loss of ice mass. In this equation the time scale of t is 10

kyr, which is the characteristic time scale of ablation. In equation (5.1c) the term −X(t) represents

the reduction of NADW production with increasing of ice mass - this comes from the fact that ice

will begin to form in the shallow ocean shelf near glaciers which is the primary NADW production

zone. This equation has a time constant q which is the ratio of ice sheet time constant (10 kyr)

to the response time of the deep ocean (between 1 and 6 kyr). The equation for atmospheric CO2
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(5.1b) has a negative term −pZ for the negative effect due to NADW- more NADW leads to more

ventilation of the deep ocean (stronger mixing between surface and deep waters) and an increased

downdraw of atmospheric CO2 into the deep ocean. The term rY models the positive feedbacks of

atmospheric CO2 resulting from changes in sea surface temperatures, sea ice extent, and sea level,

which outweigh negative feedbacks (such as linear damping). The nonlinearity (s − Y )Z2 represents

locally enhanced instabilities in the Southern Ocean due to increased NADW production. The NADW

meets colder, denser Antarctic Bottom Water and induces vertical mixing. This brings CO2-rich water

to the surface, reducing downdraw of atmospheric CO2 into the ocean and potentially releasing CO2

into the atmosphere depending on the current level of atmospheric CO2 (Y ). Each of these effects

(except damping of the nonlinear terms, −Y Z2) have an associated parameter which control their

relative strengths. All unit factors come from the nondimensionalisation of the system. These were

the feedbacks between global ice mass, atmospheric CO2, and NADW deemed most important by

Saltzman and Maasch (1988). Present day studies continue to stress the interaction between these

three variables as being essential for the MPT, including a study by Chalk et al. (2017) which uses

a geochemical box model to confirm that carbon cycle feedbacks related to ocean circulation are

necessary to sustain the long glacial cycles in the late Pleistocene (see Chapter 2, Section 2.3.2 for

discussion of the Pleistocene climate record).

5.1.2 Derivation of DDE

In Chapter 3 we explained in detail how a linear chain of first-order ODEs approximates a delay (see

Section 3.1). Here we adapt the derivation to our particular system.

First, we employ a change of variables to system (5.1) to clarify the presence of a linear chain. We set

V (t) = −X(t), where V is the negative of the global ice mass perturbations, replacing the two linear

equations (5.1a) for X and (5.1c) for Z by a chain of linear first-order filters

dV

dt
= Y (t)− V (t),

dZ

dt
= q[V (t)− Z(t)]. (5.2)

The 3-dimensional SM88 model (5.1), using (5.2), has a 2-dimensional linear chain and is of the

following form:

dY

dt
= F (Y (t), Z(t)), (5.3a)

dV

dt
= (Y (t)− V (t)), (5.3b)

dZ

dt
= q(V (t)− Z(t)). (5.3c)
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Extracting the linear chain system we have

d~y

dt
= A~y(t) +~b(t), (5.4)

where ~y = [V,Z]T . We have A and ~b(t) as follows:

A =

[
−1 0

q −q

]
, ~b(t) =

[
y1(t)

0

]
. (5.5)

Since A is diagonalisable, the solution matrix of (5.4) for the homogeneous system (~b = 0) is then

given by

Φ(t) = P eΛtP−1 (5.6)

where P is the matrix of eigenvectors associated with eigenmatrix Λ,

Λ =

[
−1 0

0 −q

]
, (5.7)

We have the following basis of A and it’s inverse,

P =

[
q−1
q 0

1 1

]
, P−1 =

[
q
q−1 0
−q
q−1 1

]
. (5.8)

The fundamental solution of (5.4) can be expressed as

~y(t) = Φ(t)~y(0) +

∫ t

0
Φ(t)Φ−1(s)~b(s)ds. (5.9)

Assuming the solution has existed arbitrarily far in the past we can extract an equation for Z(t),

Z(t) =

∫ t

−∞
Y (s)K(t− s)ds, (5.10)

where the kernel, K(τ) in (5.10) is

K(τ) =
q

q − 1

[
e−τ − e−qτ

]
. (5.11)

Note that this is a hypoexponential distribution with mean,

E[τ ] =

∫ ∞
0

q

q − 1

[
e−τ − e−qτ

]
τdτ =

q + 1

q
, (5.12)
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Figure 5.1: Visualisation of the kernel (5.11) for different values of q.
Left: q = 1.2, Var(τ) ≈ 1.69. Right: q = 4, Var(τ) ≈ 1.06.

and variance

Var(τ) =

∫ ∞
0

(
τ − q + 1

q

) q

q − 1

[
e−τ − e−qτ

]
dτ =

q2 + 1

q2
. (5.13)

This allows us to write (5.3a) as a DDE with a distributed delay,

dY

dt
= F (Y (t),

∫ t

−∞
Y (s)K(t− s)ds). (5.14)

Using a change of variables τ = t− s and approximating the true distributed delay kernel K in (5.10)

with a delta distribution at its expected value (5.12) we approximate (5.3) by a DDE with a discrete

delay
dY

dt
= F

(
Y (t), Y

(
t− q + 1

q

))
. (5.15)

To facilitate the comparison to paleoclimate records, we shift time and exploit that in the formulation

as a DDE, the ice mass anomaly V (t) = −X(t) corresponds to Y (t − 1) and Z(t) corresponds to

Y (t− τ). Thus, we may express the DDE model in terms of ice mass anomaly X:

dX

dt
= rX(t)− pX(t− τ)−X(t− τ)2[s+X(t)]. (5.16)

In DDE (5.16) one of the parameters r, p, s, τ is redundant and could be removed by a rescaling of

X and time. Thus, (5.16) is simpler than the original SM88 model (5.1) in the sense that it has fewer

free parameters. For the purpose of model comparison, the DDE system will be left as above.
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5.2 Analysis of the DDE model

In this section we show the qualitative similarity between the original SM88 model (5.1) and our

scalar DDE (5.16) by comparing their bifurcation diagrams. This involves comparing the locations of

equilibria and their respective stability changes. We will then focus on a region in parameter space

with bistability that was not previously explored.

5.2.1 Equilibria and Stability

The first property of the scalar DDE model that we can study analytically is the location of equilibria.

Since delays don’t affect location of equilibria, i.e. X(t) = X(t− τ), we can look at the solutions of

0 = −pXeq + rXeq − sX2
eq −X3

eq. (5.17)

Here the subscript eq signifies the equilibrium values. There is always the trivial equilibrium Xeq,1 = 0.

Dividing (5.17) by Xeq for non-zero equilibria, we get a quadratic equation for the other equilibria

which we can solve:

Xeq2,3
=
−s±

√
s2 − 4(p− r)

2
. (5.18)

These equilibria exist if

s2 > 4(p− r). (5.19)

This implies that a fold bifurcation occurs at

s2 = 4(p− r). (5.20)

In addition, as the trivial equilibrium always exists, there will be a transcritical bifurcation if

0 =
−s±

√
s2 − 4(p− r)

2
, (5.21)

or simplified,

p = r. (5.22)

While the location of equilibria does not depend on delay, their stability can. For this we analyse the

linearisation of (5.16). In DDE systems with a single delay τ , the linearisation with linearised variable

X̂ has the form
dX̂

dt
= J0X̂(t) + Jτ X̂(t− τ) (5.23)
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where J0 is the Jacobian with respect to X(t) and Jτ is the Jacobian with respect to X(t− τ). In our

system they are

J0 = r −X2
eq, (5.24a)

Jτ = −p− 2sXeq − 2X2
eq. (5.24b)

If we consider solutions of the form X(t) = X0eλt, from (5.23) we have

λX0eλt = [J0 + Jτe−λτ ]X0eλt. (5.25)

Since (5.25) should hold true for nontrivial solutions, i.e. the case where X0 6= 0, we conclude that a

nontrivial solution eλt exists if λ is a root of the characteristic equation of (5.25):

δDDE(λ) = λ− r +X2
eq + (p+ 2sXeq + 2X2

eq)e−λτ . (5.26)

Where (5.26) is equal to zero, λ is called an eigenvalue of equilibrium Xeq. These eigenvalues cannot be

found explicitly, but it can be seen that they in fact depend upon the delay τ . We can then expect the

value of τ to affect stability of equilibria. A change in stability will occur when an eigenvalue crosses

the imaginary axis under variation of τ . One case of this is a fold bifurcation, when the crossing occurs

in λ = 0. We already identified the parameters for such a bifurcation to occur through equation (5.20).

When two eigenvalues cross the imaginary axis simultaneously, a Hopf bifurcation occurs. If a fold

and Hopf bifurcation coincide, a codimension 2 bifurcation occurs known as a Bogdanov-Takens (BT)

point. At a BT point the derivative of the characteristic equation with respect to λ should also be

zero. The derivative of (5.26) is

δ′DDE(λ) = 1− τ(p+ 2sXeq + 2X2
eq)e−λτ . (5.27)

Considering solutions where the above equation is equal to zero with λ = 0 (as this is a constraint for a

fold bifurcation), we get an equation for τ depending on the other parameters of the system. Combining

this with equilibrium equation (5.17) and fold bifurcation equation (5.20) gives the following set of

equations to obtain a BT point,

0 = −pXeq + rXeq − sX2
eq −X3

eq,

τ =
1

p+ 2sXeq + 2X2
eq

,

p =
s2

4
+ r.

Here our second parameter of interest is p, but (5.20) can easily be rearranged for any of the other

parameters.
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5.2.1.1 Comparison to SM88

Let us now check how the local bifurcations of equilibria of this DDE model compare to those of the

original SM88. To claim that our model captures the same behaviour that was in the original model,

some main features need to agree. In order to have consistency in the meaning of the parameters

between the models, we will use q = 1
τ−1 .

First we consider the equilibria. The equilibria of SM88 satisfy the following:

0 = −Xeq − Yeq, (5.29a)

0 = −pZeq + rYeq + sZ2
eq − Z2

eqYeq, (5.29b)

0 =
1

τ − 1
(−Xeq − Zeq). (5.29c)

From (5.29a) and (5.29c) we get the relation

Zeq = −Xeq = Yeq. (5.30)

This allows (5.29b) to be written as

0 = −pXeq + rXeq − sX2
eq −X3

eq. (5.31)

It is clear that (5.31) is identical to (5.17), confirming that the equilibria of X are identical between

the two models.

Since the equilibria are equivalent, the fold bifurcations and transcritical bifurcations will occur at

the same parameter values. Hopf bifurcations, however, can occur in different places. As before, the

stability is determined by the characteristic equation. For SM88 this is

δODE(λ) =− λ3 +
(
r −X2

eq − 1− 1

τ − 1

)
λ2 +

((
1 +

1

τ − 1

)(
r −X2

eq

)
− 1

τ − 1

)
λ+

+
1

τ − 1

(
r −X2

eq + p+ 2sXeq + 2X2
eq

)
.

(5.32)

As (5.32) is different from (5.26), we expect that the Hopf bifurcations will occur at different parameter

values.

5.2.2 Numerical bifurcation analysis

Figure 5.2 shows the bifurcation diagrams for varying τ in DDE (5.16) and SM88 model (5.1), respec-

tively, using the system parameter values p, r, and s from SM88. Figure 5.2a was computed using

numerical continuation software DDE-BIFTOOL (Engelborghs et al., 2001, 2002, Sieber et al., 2014)
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and Figure 5.2b was computed using numerical continuation software COCO (Dankowicz and Schilder,

2013). Although the locations of bifurcations are slightly shifted, qualitatively the two figures agree

nicely. In particular, even though the space of possible initial conditions for DDE (5.16) is infinite-

dimensional (every possible history on [−τ, 0] gives a different trajectory), the long-time behaviour of

trajectories in the (X(t), X(t − τ))-plane follows a two-dimensional ODE in the range we explored;

evidence of this is seen in Figure 5.3- trajectories do not cross inside the limit cycle. The diagrams

in Figure 5.2 are partitioned into five main regions of different global behaviour separated by grey

vertical lines can be seen in both figures. From left to right the attractors in each region are:

• [ree] two stable equilibria,

• [res] one stable equilibrium and one stable small-amplitude period solution,

• [re] one stable equilibrium,

• [rel] one stable equilibrium and one stable large-amplitude periodic solution, and

• [rl] one stable large-amplitude periodic solution.

The region of interest in this study is the bistable region with large-amplitude periodic orbits [rel].

Note that [rel] can be split further into two sections: one containing unstable periodic orbits and the

other not. The effect of the unstable periodic orbits is a drastically reduced basin of attraction for the

stable equilibrium. However, since there is no change in the attractors, we will consider these as one

region. Region [rel] was not discussed in a parameter study of the original SM88 model by Maasch and

Saltzman (1990). For the remainder of this paper we will discuss only the DDE model, but similar

results can be seen for the ODE model.

5.2.3 The bistable region

We focus on the bistability seen for τ ∈ [1.295, 1.625] in the DDE system. In this region there are

two possible stable solutions (shown in Figure 5.3): a stable equilibrium and stable large amplitude

periodic orbits. The time profile of the periodic orbits has the asymmetrical shape of the ice age

cycles in the late Pleistocene (seen in climate record - Chapter 2, Figure 5.13). The asymmetry is

attributed to a slow accumulation of ice mass followed by rapid melting. In addition, the period

remains between 109 and 120 kyr throughout the bistable region (with an exception of τ very close to

the [re-rel] boundary where the period approaches infinity - see Figure 5.4). This cycle length agrees

with what is seen in the data (even more so when one adds the external forcing; see Section 2.3.2).

We show the persistence of this bistable region in a two-parameter plane in Figure 5.5.

In previous studies of SM88 model (5.1), a transition between two stable states was enforced by

a parameter shift through a Hopf bifurcation (Maasch and Saltzman, 1990, Saltzman and Maasch,

1988). We will demonstrate in Section 5.4 that the bistability in region [rel] makes transitions between
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Figure 5.2: Bifurcation diagrams of both models for delay parameter τ . Other parameters: p = 0.95,
r = 0.8, s = 0.8.

the two states possible without any change of parameter when the model is subjected to external

forcing. We focus on two types of external forcing: periodic and quasiperiodic (astronomical).

5.3 Periodic Forcing

We are interested in the behaviour of this model when a sinusoidal forcing with period 41 kyr is

included. This corresponds to the most prominent frequency found in orbital forcing - the obliquity

variations, i.e. the changes in the angle between the rotational and orbital axes. Thus, we choose

FP (t) = sin(2πt/T ). (5.33)

The forcing period is T = 4.1, corresponding to 41 kyr. Equation (5.33) is then included as a linear

forcing with amplitude u,

dX

dt
= −pX(t− τ) + rX(t)− sX(t− τ)2 −X(t− τ)2X(t)− uFP (t). (5.34)
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Figure 5.5: Two parameter bifurcation diagram of (5.16) for τ and p. Bistable region is depicted in
grey. The black dotted line shows the slice taken for the one-parameter bifurcation diagram.

DDE (5.34) is a dynamical system with the phase space U = C([−τ, 0];R), where C([−τ, 0];R) is the

space of continuous functions on the interval [−τ, 0] with the maximum norm ‖X‖0 = max{|X(t)| :

t ∈ [−τ, 0]}. At any given time t ≥ 0, the state is Xt : [−τ, 0] 3 s 7→ X(t + s) ∈ R. For sufficiently

small values of u and τ ∈ rel, there exist

• a stable small amplitude periodic orbit (with period T ), which is a perturbation of the stable

equilibrium at u = 0, and

• a stable quasiperiodic large amplitude solution, which is a perturbation from the large amplitude

periodic orbit at u = 0.

These two attractors will persist for a range of u and we will refer to them as the small-amplitude

response and the large-amplitude response, as we did in the case of astronomical forcing. Both types

of stable long-time regimes are shown in Figure 5.6a including a transient. We observed in simula-

tions that the large-amplitude response changes from quasiperiodic to chaotic as u increases. Large-

amplitude chaotic responses have been observed previously in conceptual ice age models subject to

periodic forcing in the literature. Ashwin et al. (2018) find significant regions of chaotic responses

for the van der Pol-Duffing oscillator, the Saltzman and Maasch (1991) model, and the Paillard and

Parrenin (2004) model. The chaos exists both for simple periodic forcing defined by (5.33) and more

complex quasiperiodic forcing. In contrast to our scenario, in Ashwin et al. (2018) all of the models

were considered in parameter regions where the unforced dynamics has a single large-amplitude stable

periodic orbit. Our simulations suggest that large-amplitude chaotic solutions are also present in a

periodically forced bistable regime.
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Figure 5.6: (a) Example trajectories of (5.34) for two qualitatively different long-time regimes.
Top: small-amplitude response (a small-amplitude periodic orbit), bottom: large-amplitude response
(longer time series suggest that it is chaotic). (b) Distance of solution X from X : s 7→ −0.5 (a stable
equilibrium of the unforced system) for varying forcing amplitudes u. Other parameters: τ = 1.55,

T = 4.1, p = 0.95, r = s = 0.8, φ = 0; initial condition X(t) = −0.5 for t ≤ 0.

The heat map in Figure 5.6b shows the model response over a larger range of forcing amplitudes u.

For Figure 5.6b we keep the delay constant at τ = 1.55 and increase u from 0 to 0.75. All trajectories

start from the constant initial history X0 : [−τ, 0] 3 s 7→ −0.5 ∈ R corresponding to the stable

equilibrium of the unforced system. We then compute the distance of Xt : [−τ, 0] 3 s 7→ X(t+ s) ∈ R
to X0, using the mean absolute error (MAE), MAE(Xt, X0) = 1

τ

∫ 0
−τ |Xt(s)−X0(s)|ds. Bright colours

in Figure 5.6b indicate large distances, corresponding to large amplitude responses. We notice an

obvious shift in behaviour between u = 0.08 and u = 0.09 where the model goes from exhibiting

the small-amplitude periodic orbit to following the large-amplitude solution. This lower threshold is

similar to the observations when applying non-periodic insolation forcing (compare to Figure 5.12b).

5.3.1 Bifurcation analysis

In order to examine the cause of the shift in behaviour observed in Figure 5.6b, we start a numerical

bifurcation analysis of DDE (5.34). The forcing period is kept constant at T = 4.1 (corresponding to

41 kyr). We consider forcing amplitudes u ∈ [0, 0.75] and delays τ in the bistable region τ ∈ rel ≈
[1.295, 1.625] of the unforced system (u = 0).

Figure 5.7a shows the bifurcations of the small-amplitude periodic orbit. Bifurcations only occur for

τ > 1.53 and u > 0.38. For a range of u > 0.4 there exists a cascade of period doubling bifurcations

for increasing τ , evidence of which is also visible in Figure 5.6b. Figure 5.7b shows a cross section of

the two-parameter bifurcation diagram Figure 5.7a along the horizontal line u = 0.55 displaying the

maximum and minimum of the periodic orbits on the y-axis. We observe that the small-amplitude
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Figure 5.7: Bifurcations of small-amplitude periodic orbit. Dotted vertical lines indicate values of τ
used in Section 5.3.2, Section 5.3.3, and Section 5.3.4; other parameters: T = 4.1, τ = 1.55, p = 0.95,

r = s = 0.8.

motion does not experience any bifurcation for u < 0.3. Moreover, because the bifurcations are

restricted large values of τ , they cannot be used to explain any transitions in time. Therefore periodic

forcing, even with a time-dependent modulated amplitude, is not sufficient to induce an MPT-like

transition.

The large amplitude solution also goes through some bifurcations. We do not show a detailed bifurca-

tion analysis, but evidence of the collapse of the large amplitude solution can be seen in Figure 5.6b.

These large responses are stable in a range of forcing amplitudes u ∈ [0.09, 0.15] in Figure 5.6b. For

u ∈ [0.15, 0.2] the trajectories make transient large-amplitude excursions before converging to a small-

amplitude periodic orbit, which suggests a collapse of the (then chaotic) large-amplitude attractor.

As Figure 5.7a establishes, the observed transition in Figure 5.6b from small- to large-amplitude

oscillations at u = 0.09 must have been caused by some phenomenon other than a bifurcation. Since

the unforced system is bistable for τ ∈ rel, we expect this bistability to persist for small forcing

amplitudes u. Thus, the initial condition may cross from the basin of attraction of the small-amplitude

periodic orbit to the basin of attraction of the large-amplitude response. Both example trajectories in

Figure 5.6a started from the same initial condition but were computed with slightly different forcing

amplitude (u = 0.08 and u = 0.09). Figure 5.6b suggests that the constant initial condition X0 :

s 7→ −0.5 leaves the basin of attraction of the small-amplitude periodic orbit at the lower threshold

u ≈ 0.09.
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5.3.2 Dynamics on a two-dimensional slow manifold

Since DDEs are infinite-dimensional, it is not feasible to determine the basin of attraction in all

dimensions. However, previous studies have proven results of Poincaré-Bendixson type (there exists a

plane in R2 such that trajectories cannot cross each other) for scalar DDEs with monotone feedback

(Mallet-Paret and Sell, 1996, Mallet-Paret and Smith, 1990). These are DDEs of the form

dx

dt
= f(x(t), x(t− τ)), where f(0, 0) = 0 and δy f(0, y) > 0 for all y 6= 0, δ ∈ {−1, 1}, (5.35)

(δ = 1 corresponds to positive delayed feedback, δ = −1 corresponds to negative delayed feedback).

The right-hand side f(X(t), X(t−τ)) in (5.16) does not satisfy the feedback conditions in (5.35) since,

for our right-hand side f , f(0, y) = −py − sy2 changes sign also at y = −p/s = −1.1875, which is

reached in the unforced large-amplitude periodic orbit (see Figure 5.2a). However, the phase portrait in

Figure 5.3 suggests that the unforced DDE (5.34) (with u = 0) has an attracting two-dimensional slow

manifold. We expect this manifold to persist for small forcing amplitudes u. Within this persistent

slow manifold the time-T map of the forced DDE (5.34) is a locally invertible two-dimensional map.

For two-dimensional maps the basin of attraction for a periodic orbit is often bounded by the stable

manifold of a saddle periodic orbit. We can investigate the basin of attraction directly by using an

implicit computational dimension reduction introduced by Kevrekidis et al as equation-free methods

(see reviews Kevrekidis and Samaey (2009, 2010)). In their notation one needs to define the following

operators. Recall that U = C([−τ, 0];R) is the phase space of the DDE (5.34).

lifting L : R2 3 (x1, x2) 7→ (y0, ỹ) ∈ R× L∞([−τ, 0];R), (5.36)

where y0 = x1 and ỹ(t) = x2 for t ∈ [−τ, 0],

evolution map M : [0,∞)× [0,∞)× rgL 3 (t0 + t, t0, (y0, ỹ)) = Xt0 7→ Xt+t0 ∈ rgL, (5.37)

restriction R : U 3 X 7→ (X(0), X(−τ))T ∈ R2. (5.38)

The space R × L∞([−τ, 0];R) (called U�,∗ in the terminology of Diekmann et al. (1995)) is a nat-

ural extension of the phase space U = C([−τ, 0];R) of the DDE (5.34). The trajectories of the

DDE (5.34) starting from initial values in U�,∗ admit discontinuous essentially bounded initial his-

tory segments ỹ : [−τ, 0] 7→ R and have y0 as the right-side limit for t ↘ 0. For an element

(y0, ỹ) of U�,∗, y0 is usually called the head point, while ỹ is the history segment. The notation

L∞([−τ, 0];R) refers to the space of essentially bounded functions on [−τ, 0] with essential maximum

norm ‖ỹ‖0 = inf {m ≥ 0 : Leb{t ∈ [−τ, 0] : |ỹ(t)| ≥ m} = 0} (LebA is the Lebesgue measure of a set

A ⊂ R). As explained in the textbook Diekmann et al. (1995) trajectories starting from an ele-

ment in the larger space U�,∗ return to the smaller phase space U after time τ and the dependence

U�,∗ 3 X0 7→ Xt ∈ U of the solution on its initial condition is as regular as the right-hand side of the



Chapter 5. A conceptual model with delay for the MPT 102

DDE (5.34). Thus,

U�,∗ 3 X 7→M(t, t0;X) ∈ U

is smooth for all t ≥ τ and t0 ∈ R.

In our computations we approximate elements (y0, ỹ) ∈ U�,∗ by vectors Y ∈ RN , where Yk is an

approximation of ỹ(−τ(N − k)/(N − 1)) for 1 ≤ k < N and the head point is YN = y0. We use the

discretised map M based on the Euler-Heun approximation with h = 0.01, where a single step has the

form

M(h, t, ·) : RN 3 Y 7→ (Y2, . . . , YN , YN + h(f0 + fE)/2)T ∈ RN , where

f0 =f(t, YN , Y1, u), Y 0
N = YN + hf0, fE = f(t+ h, Y 0

N , Y2, u), and

f(t, x1, x2, u) = −px2 + rx1 − sx2
2 − x2

2x1 − uFP (t)

is the right-hand side of the DDE (5.34). For larger time spans we apply the composition rule M(t+

s, r, ·) = M(t, s + r, ·) ◦M(s, r, ·) for s, t ≥ 0, such that the discretisation using N − 1 = s/h steps

converges to the continuous map M(t+ s, s, ·) uniformly for bounded t ≥ τ and bounded initial values

in U�,∗. We restrict ourselves to stroboscopic maps M(t+ s, s, ·), where t is a multiple of the period:

t = kT with k ∈ Z and T = 4.1, such that we may write

MkY = M(kT, 0, Y )

for integers k ≥ 0. The map Mk : rgL → domR (rgL is the range of L, domR is the domain of

definition of R) is autonomous and smooth, since M((k+j)T, jT, ·) = M(kT, 0, ·) for all integers k ≥ 0

and j, and periodic forcing with period T . With this notation, Mk+j equals MkM j . Compatible with

the discretisation of M , the discretisations of lifting and restriction are

L : R2 3 (x1, x2)T 7→ (x2, . . . , x2, x1)T ∈ RN ,

R : RN 3 Y 7→ (YN , Y1)T ∈ R2.

Figure 5.8a shows that the linearisation of the map M1 has a spectral gap after the first two eigen-

values such that ∂M1 is a small perturbation of a rank 2 matrix for all y in a neighbourhood of

L ([−0.75, 0.15]× [−0.75, 0.15]). This is numerical evidence for the suspected time scale separation

leading to a two-dimensional slow manifold. We do not need to construct the slow manifold explicitly,

but rather may construct an approximate two-dimensional map M` from the slow manifold back to

itself implicitly, using the coordinates in domL:

M` : domL 3 x 7→ y ∈ domL, where y is the solution of RM `+1Lx = RM `Ly. (5.39)
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(a) (b)

Figure 5.8: Spectral gap of linearisation of M1 (a) on the domain L ([−0.75, 0.15]× [−0.75, 0.15])
and (b) on the boundary for which the Jacobian of RM1L becomes singular. Colour indicates the
ratio between the third and second largest singular values of ∂M1. The green boundary in figure (b)
depicts the basin discussed in Section 5.3.3 and Section 5.3.4. Parameters: u = 0.09, T = 4.1, τ = 1.55,

p = 0.95, r = s = 0.8, φ = 0.

The integer ` is the healing time in the notation of Kevrekidis and Samaey (2009, 2010). The mapM`

approximates the true stroboscopic map generated by the DDE (5.34) on the slow manifold (Sieber

et al., 2017). The approximation improves for increasing healing time ` if lifting L and restriction

R satisfy some genericity conditions (implying that the map R is a diffeomorphism between the slow

manifold and R2, and that RM `L : R2 → R2 is a diffeomorphism). The convergence result in Sieber

et al. (2017) does not require a large separation of time scale, only a sufficiently large healing time.

In our case ` = 1 (a healing time of one period T = 4.1) is sufficient: the results only change by less

than 10−2 when increasing ` to 2 (a large ` increases the condition number of ∂[RM `L]).

Figure 5.8a justifies using a planar rectangle in domL to visualise the basins of attraction in the

slow manifold. Furthermore, since we can evaluate the stroboscopic map on the two-dimensional slow

manifold by usingM`, we can employ algorithms designed for the computation of stable manifolds of

fixed points in planar maps. In particular, we continue all three fixed points present for zero forcing

(u = 0; see Figure 5.2a) in the parameter u, using the defining equation

RM `Lxfix = RM `+1Lxfix,

which is a system of two equations for the two-dimensional variable xfix and the parameter u (results

will be shown for healing time ` = 1). One of the fixed points is of saddle type. We compute the

stable manifold of the saddle fixed point using the algorithm for maps that are not globally invertible,

proposed by England et al. (2004) and originally implemented for two-dimensional maps in DsTool.

Since the map M` is implicitly defined, the algorithm as originally implemented would require the

solution of the nonlinear system (5.39) every time the map gets evaluated. This turns out not to be



Chapter 5. A conceptual model with delay for the MPT 104

(a) τ = 1.55 (b)

Figure 5.9: (a) Basin of attraction for the small amplitude stable periodic orbit for τ = 1.55. Initial
conditions in the black regions are attracted to the small amplitude stable periodic orbit (green circle)
intersected with domL. The white cross indicates the initial condition (x1, x2) = (−0.5,−0.5) used to
create Figure 5.6b. The red circle is the unstable small amplitude periodic orbit, while the red cross
represents the saddle periodic orbit. Figure zoom in top left shows stable manifold for different values
of u close to the initial condition (x1, x2) = (−0.5,−0.5) (black cross). (b) Threshold values for u at
which a transition to the large-amplitude response is observed as a function of delay τ and phase shift
φ. Values for which no transitions were observed are shown with u = 1. Other parameters for both

figures: T = 4.1, p = 0.95, r = s = 0.8; initial condition X0 = −0.5.

necessary: with a small modification the stable manifold algorithm does not require any solution of a

nonlinear system (see Appendix A for a brief explanation). The stable manifold of the saddle fixed

point will determine the basin of attraction for the stable fixed point (the other fixed point is a source

for all u) on the slow manifold.

The large amplitude response (attracting initial conditions on the other side of the stable manifold)

is partially outside of the domain of validity of the coordinates introduced by lifting L and restriction

R. Figure 5.8b shows the curve in the domL plane along which the Jacobian of RM1L becomes

singular, which violates one of the assumptions made in the implicit definition (5.39) of M1. Outside

of this curve (where the large amplitude solution lies), our chosen plane is no longer valid. However,

the spectral gap values indicate that the dynamics may still be confined to a two-dimensional slow

manifold.

5.3.3 Basins of attraction and stable manifold in the plane

Figure Figure 5.9a shows the basins in the rectangle [−0.65, 0.05]× [−0.65, 0.05] for u = 0.09.

The constant history Lx with x1 = x2 = −0.5, corresponding to an initial head point y0 and initial

history ỹ both equal to −0.5, was used in the parameter scan for increasing forcing amplitude u,
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depicted in Figure 5.6b. This point is indicated by a white cross in Figure 5.9a. Black regions in

Figure 5.9a are initial values in domL that converge to the stable small-amplitude periodic orbit in

the center of the black region. The beige region contains initial conditions that escape to the large

amplitude response. The saddle fixed point is located near (−0.2,−0.3). Its stable manifold (in

green) is the boundary between the two basins of attraction. The inset in Figure 5.9a shows how the

stable manifold of the saddle fixed point changes as the forcing amplitude u increases. In particular,

we observe how the initial condition (−0.5,−0.5)T is crossed by the stable manifold, which shifts

downward as u increases.

5.3.4 Dependence on forcing phase

As the basin of attraction in Figure 5.9a shows, the critical forcing amplitude u = 0.09 for the transition

depends strongly on the initial condition, which we chose as X0 = −0.5 for the heat map in Figure 5.6b.

A simple alternative way to illustrate the importance of the initial condition is to vary the phase of

the periodic forcing. We adjust the forcing equation accordingly,

FP (t) = sin((2π/T ) t− φ), φ ∈ [−π, π]. (5.40)

The variable φ represents the phase shift of the forcing. Note that the bifurcation diagram Figure 5.7a

is independent of the forcing phase φ. However, Figure 5.9b shows that the phase affects the threshold

value for the forcing amplitude u at which a transition to the large-amplitude response occurs for

initial value X0 = −0.5. Figure 5.9b shows contours of the smallest value of u for which we observe a

transition to large-amplitude response in simulations for different forcing phases φ and delays τ in the

bistable region rel of Figure 5.2a. For all points in Figure 5.9b we chose the initial value X0 = −0.5.

For some parameter combinations the response is always small amplitude. In these points we set

the contour level to its maximum (u = 1). A distinct boundary can be seen between parameter

combinations that exhibit transitions at low values of u and those that do not. For a forcing phase

φ = π, a transition can always occur within the bistable region.

In Appendix B we show the effect of a phase shift on the basin of attraction for the small-amplitude

periodic orbit in the plane domL. This implies that, for some phases φ, trajectories from the ini-

tial history X0 = −0.5 will converge to the small amplitude periodic orbit, while for other phases

trajectories starting from X0 = −0.5 will converge to the large amplitude response.

5.4 Astronomical Forcing

In this section we show that when adding astronomical forcing to model (5.16), a transition typically

occurs at the same time as the MPT is seen in recorded data without further parameter tuning. In
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Figure 5.10: Normalised integrated July insolation at 65◦N adapted from Huybers and Eisenman
(2006) (left), and the corresponding spectrum (right).

Section 5.4.1 we describe the astronomical forcing considered and how we include it in the model. We

then examine the responses for different delays and different forcing strengths in Section 5.4.2 and

Section 5.4.3.

Hays et al. (1976) have provided evidence that the glacial cycles during the Pleistocene are driven

primarily by variations in the earth’s orbital cycle. This includes changes in precession (orientation

of the rotational axis), obliquity (angle between the rotational axis and orbital axis), and eccentricity

(orbital ellipse’s deviation from a circle). These modes vary approximately periodically, with cycle

lengths of 19/23 kyr, 41 kyr, and 100 kyr respectively (Berger, 1978, Huybers and Eisenman, 2006,

Milankovitch, 1941). Figure 5.10 shows a time series of average daily summer insolation at 65◦N

computed by Huybers and Eisenman (2006) based on the model introduced by Huybers (2006).

5.4.1 Extraction of integrated summer insolation forcing M(t) from data

To investigate the effect of this forcing on DDE (5.16), we include the astronomical forcing in the

same way as in Maasch and Saltzman (1990). We add forcing signal M(t) shown in Figure 5.10 with

negative amplitude u,

dX

dt
= rX(t)− pX(t− τ)−X(t− τ)2[s+X(t)]− uM(t). (5.41)

The precise procedure for extracting M(t) from the publicly available data source is explained as

follows.

We use the Integrated Summer Insolation Calculations data set provided by Huybers and Eisen-

man (2006) (found at https://www1.ncdc.noaa.gov/pub/data/paleo/climate_forcing/orbital_

variations/huybers2006insolation/j_65north.txt). The data is provided as daily average sum-

mer energy in GJ/m2 calculated from number of days the insolation was above a given threshold

(W/m2). We used the data provided for the latitude of 65◦ North. Rather than selecting a particular

https://www1.ncdc.noaa.gov/pub/data/paleo/climate_forcing/ orbital_variations/huybers2006insolation/j_65north.txt
https://www1.ncdc.noaa.gov/pub/data/paleo/climate_forcing/ orbital_variations/huybers2006insolation/j_65north.txt
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threshold, we took the average of all the thresholds. This has the effect of giving a linear weighting to

the threshold reached in a day: days that reached higher insolation levels are given a proportionally

larger weight. The precise expression is as follows,

Iagg(t) =

25∑
i=1

Ii(t). (5.42)

Here Ii(t) is the average daily summer insolation calculated by Huybers and Eisenman (2006) for the

threshold 25(i − 1) in year t (column number i + 1 in the data file). We then normalise this data

through

M(t) =
Iagg(t)−meant Iagg

stdt Iagg
, (5.43)

where meant Iagg and stdt Iagg are the mean and standard deviation of Iagg(t) over all times t. The

timeseries of (5.43) is depicted in Figure 5.10. Its spectrum is shown in Figure 5.10. The dominant

signal of 0.0242 kyr−1 (period ≈ 41 kyr) comes from the obliquity variations. The other dominant

signals of 0.0422, 0.0446, and 0.0526 kyr−1 (periods around 23 and 19 kyr) are a result of changes

in precession. The primary eccentricity variations (frequencies around 0.01 kyr−1) are negligible in

this forcing. Dueto its composition from several frequencies the forcing is called quasiperiodic in the

literature (Crucifix, 2012).

We are interested in how the bistable region responds to this external forcing in dependence of two

parameters: the delay τ and the forcing amplitude u.

For small u the system is expected to exhibit two types of responses to forcing in the bistable region.

Each of them is a perturbation of an attractor of the unforced system, namely the equilibrium and

the large-amplitude periodic orbit, which persist for small u. We will refer to these responses as the

small-amplitude and the large-amplitude response (compare red and blue time profiles in Figure 5.11c).

For increasing u we expect to observe increasingly frequent transitions between these responses. For

large forcing amplitudes u the internal dynamics of the model will be dominated by the forcing.

5.4.2 Responses for different delays in the bistable region

We choose a moderate value of the forcing amplitude u = 0.25 and investigate the response at four

values of τ , labelled in Figure 5.2a by τref , τ1, τ2, and τ3. The first value τref = 1.25 is outside of

the region of bistability and is used as a reference trajectory to which the solution trajectories for the

other delays τ1, τ2 and τ3 are compared. The results are shown in Figure 5.11 (response for τref shown

in red, for other delays in blue)

The first comparison is made close to the boundary [re]–[rel] at τ1 = 1.3. We see in Figure 5.11a that

both trajectories change in synchrony, exhibiting only the small-amplitude response. In the middle of
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(a) τ = τ1 (blue), τ = τref (red)

(b) τ = τ2 (blue), τ = τref (red)

(c) τ = τ3 (blue), τ = τref (red)

Figure 5.11: Trajectories in bistable region (blue) compared to a reference trajectory at τref = 1.25
(red) for delays (a) τ1 = 1.30, close to homoclinic connection, (b) τ2 = 1.45, middle of bistable region,
and (c) τ3 = 1.60, close to Hopf bifurcation. Values of τ are indicated on bifurcation diagram in
Figure 5.2a. Other parameters: p = 0.95, r = 0.8, s = 0.8, and u = 0.25. Initial condition X(t) = −0.5

for t ∈ [2 + τ, 2]Myr BP in all cases.

the bistable region (τ2 = 1.45, shown in Figure 5.11b), the solution shows a small-amplitude response in

most of the first half of the time window and a large-amplitude response in the second half. Close to the

Hopf bifurcation of the autonomous stable equilibrium (τ3 = 1.6, shown in Figure 5.11c) the solution

exhibits primarily a large-amplitude response. This is expected due to the weakening attraction of

the autonomous stable equilibrium and its shrinking basin of attraction. We will demonstrate in the

following section that these transitions generate dynamics with time profiles that are qualitatively

similar to the records of the MPT.

5.4.3 Variable forcing strength

For the exploration of the effect of different forcing strengths, we take the same values for τ as in

Figure 5.11, covering the range of the bistable region. For each τ we compute trajectories for different

u, ranging from u = 0 to u = 0.6, with the initial history X(t) = −0.5 for t ∈ [2 + τ, 2]Myr BP.



Chapter 5. A conceptual model with delay for the MPT 109

(a) (b) (c)

Figure 5.12: Distance from reference solution at τref = 1.25, for different forcing strengths u. Averages
taken over window length of size τ . (a) τ = 1.30, close to homoclinic connection. (b) τ = 1.45,
middle of bistable region. (c) τ = 1.60, close to Hopf bifurcation. Initial condition X(t) = −0.5 for

t ∈ [2 + τ, 2]Myr BP

in all cases.

Figure 5.12 shows the difference of these trajectories to a respective reference trajectory for τref = 1.25

and the same initial condition and forcing strength u, averaged over a window of length τ . We note

that differences to a reference trajectory at u = 0 and identical delay τ (using same initial condition)

give qualitatively similar results.

Remarkably, Figure 5.12a and Figure 5.12b show that there is a distinct period around 700-800 kyr

BP where the solutions diverge from the reference trajectory in a large range of forcing strengths u.

This suggests that some aspect of the forcing around this time kicks the trajectories into the basin of

attraction of the large-amplitude response. An additional area like this is seen in Figure 5.12b near

1600 kyr BP.

The second interesting feature in all three figures is a threshold behaviour in the forcing strength u:

below a certain value of u specific to each τ , transitions do not occur such that the solutions just track

the reference trajectory. Above this value trajectories suddenly can make this transition. For some

values of delay τ we observe an additional larger threshold value for the transition at 1600 kyr BP.

Thresholds in u were also seen when periodic forcing is added to the model instead of the insolation

time series. When creating Figure 5.12b with periodic forcing, we saw the same threshold transition

at u = 0.08 (see Figure 5.6b). We showed that this transition is due to moving basins of attraction for

the two stable solutions. The other sharp transition (in time) we see in Figure 5.12 is not possible with

periodic forcing. Either the solution would start to transition immediately, or it would not transition

at all (see Section 5.3). This leads us to believe that the quasiperiodicity is necessary for a transition

of this type.



Chapter 5. A conceptual model with delay for the MPT 110

5.5 Model sensitivity to noise: desynchronisation and increased ro-

bustness of transition

As in most physical systems, the sensitivity of our model to small perturbations should be considered.

While the astronomical forcing is the main driver of the glacial cycles, there are other processes

(typically on faster timescales) that also can influence accumulation and loss of ice mass. In this

section we will represent such processes as noise, and examine the effect on our results.

5.5.1 Finite-time Lyapunov Exponents

To analyse how trajectories depend on their history at specific instances of the forcing, we compute

finite-time Lyapunov exponents (FTLEs) using a QR decomposition method. This method was pre-

vious used in De Saedeleer et al. (2013) to illustrate the desynchronisation of nearby trajectories in

a van der Pol-type oscillator model. We will apply the ideas presented in that study to our forced

model.

Our algorithm for computing Lyapunov exponents for a delay differential equation (DDE) follows from

Farmer (1982).

Linearisation We consider a trajectory X(t) of (5.41) and linearise (5.41) along this trajectory:

ẋ(t) = J0(t)x(t) + Jτ (t)x(t− τ), (5.44)

where J0 an Jτ are the derivatives of the right-hand side of (5.41) with respect to X(t) and X(t− τ):

J0(t) = r −X(t− τ)2, (5.45)

Jτ (t) = −p− 2sX(t− τ)− 2X(t)X(t− τ). (5.46)

Discretisation We consider an approximate solution of (5.44) xi = x(ti) for ti = t0 + ih, where h

is a small step size, obtained using a second order trapezoidal numerical solver for DDEs. We then

discretise (5.44) into m = τ/h steps,

~yi+1 = Mi~yi; ~yi = [xi, ..., xi−m]T , (5.47)
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where Mi is a square (m+ 1)× (m+ 1) matrix of the form

Mi =



Mi,1 0 . . . Mi,m Mi,m+1

1 0 . . . 0 0

0
. . .

...
...

...
. . . 0

...

0 . . . 0 1 0


with entries

Mi,1 =1 +
h

2
(J0(ti+1) + J0(ti)) +

h2

2
J0(ti+1)J0(ti),

Mi,m =
h

2
Jτ (ti+1),

Mi,m+1 =
h

2
Jτ (ti) +

h2

2
J0(ti+1)Jτ (ti).

QR method We use a continuous QR algorithm for computing the Lyapunov exponents (see

Dieci et al. (1997)). The QR algorithm is based on the numerical linear algebra factorisation of a

matrix M into an orthogonal matrix Q and an upper triangular matrix R. Although DDEs have an

infinite number of Lyapunov exponents, this method allows us to compute up to m + 1 through the

discretisation. We can choose to compute only the largest l Lyapunov exponents by using a non-square

Q. We initialise an arbitrary orthogonal Q0 as an m× l matrix of form

Q0 =

[
Il

0(m−l)×l

]
.

Note that Il is the l× l identity matrix and 0(m−l)×l is an (m− l)× l zero matrix. We define iteratively

Qi and Ri by the QR decomposition of MiQi−1 (Matlab command qr(MiQi−1, 0)),

QiRi = MiQi−1, (5.48)

which produces a square l × l upper triangular matrix Ri with eigenvalues Ri,jj > 0 (j = 1, ..., l). We

store Ri for each time-step. After N time-steps we have the relation

QNRN ...R1 = MN ...M1Q0. (5.49)

The infinite Lyapunov exponents can then be approximated by

λj =
1

N

N∑
i=0

lnRi,jj . (5.50)
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Figure 5.13: Example trajectory that exhibits an MPT-like transition with τ = 1.45 and u = 0.15.

For FTLEs we truncate the above sum after W time-steps, and view how this truncation changes in

time, i.e.

λj,n =
1

hW

n∑
i=n−W

lnRi,jj . (5.51)

Here W = w/h, where w is the desired time window length. Note that n initialises at time W .

The difference between FTLEs and classical Lyapunov exponents is that FTLEs are recorded for a

family of time windows of finite length w rather than over the entire long time run. Thus, FTLEs are

time-dependent functions instead of real numbers. A positive FTLE along a given trajectory X(t) at

time t0 indicates that some nearby trajectories diverge exponentially from X(t) in the time window

[t0−w, t0]. Therefore, X(t) is sensitive to small perturbations in the time window [t0−w, t0]. While a

trajectory could be asymptotically stable, a positive FTLE at a time t0 indicates temporary amplifi-

cation of perturbations from the attracting trajectory (observed as temporary desynchronisation, see

(De Saedeleer et al., 2013)).

5.5.2 FTLE implications on MPT and timing of major deglaciations

We analyse one trajectory, showing a forcing-induced MPT (τ = 1.45, u = 0.15, shown in Figure 5.13)

. We compute the FTLE over a sliding window of our example MPT trajectory with a window length

of w = 250 kyr. This window length is chosen in order to filter out the dominant frequencies of the

forcing. Similar results are seen with any window lengths w from 150-500 kyr.

Figure 5.14 shows the time profile of the largest FTLE along the trajectory. Before the transition

around 800 kyr BP, the FTLE generally remains negative apart from a few short excursions above

zero. At 1000 kyr BP the FTLE approaches zero and remains there for some time. Just before 800

kyr BP it goes positive and then on average stays positive for the remainder of the trajectory.

The negative FTLEs leading up to the transition confirm that the trajectory forgets its initial history

and the effect of past disturbances. In particular, this implies that the infinite-dimensional nature
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Figure 5.14: Finite-time Lyapunov exponents for window length w = 250 kyr computed from model
run with τ = 1.45 and u = 0.15: X(t) (dotted blue), FTLE([t− w, t]) (gold).

of the DDE’s possible initial conditions does not play a role for the MPT. Whenever the system is

exhibiting the small-amplitude response we observed negative FTLEs.

The positive FTLEs indicate a sensitivity of the trajectory during the large-amplitude response. This

sensitivity affects the precise timing of the deglaciations, as we now demonstrate by noise-induced

desynchronisation of nearby trajectories.

To explore further the desynchronisation phenomenon outlined in De Saedeleer et al. (2013), we add

noise to our system. The stochastic delay differential equation (SDDE) is then given as

dX(t) = [−pX(t− τ) + rX(t)− sX(t− τ)2

−X(t− τ)2X(t)− uM(t)]dt+ σdW (t), (5.52)

Here, W (t) is standard white noise and σ is the noise amplitude. We will always consider σ as a

fraction of the forcing amplitude u, i.e. σ = u
30 .

We set the deterministic forcing strength u = 0.15 and the noise amplitude σ = 0.005. We ran

500 realisations of the model, all with the same initial history. The results of 10 randomly selected

realisations can be seen in Figure 5.15. Up until 1000 kyr BP all trajectories generally track the

same solution with only minor short desynchronisations. Shortly after 1000 kyr BP the trajectories

begin to diverge, making the transition to the large amplitude oscillation state at different times. The

trajectories then stay desynchronised, which corresponds to being at a different phase along the large

amplitude oscillation. We illustrate this phenomenon in Figure 5.16, where we show the distribution

of trajectories in the (X(t), X(t − τ))-plane along the unforced periodic orbit, and in Figure 5.17.

Figure 5.17 shows the transition from synchronisation to desynchronisation in a density plot. At

approximately 800 kyr BP (indicated by the grey line) the probability density makes a sharp transition

from a small-variance to a large-variance-low-maximum density. The timing of this transition agrees

with the first large positive excursion of the FTLE in the deterministic case and with the MPT.

The standard deviation shows this transition as well, but with a lag of about 50 kyr. Figure 5.16
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Figure 5.15: Trajectories of DDE model with noise (5.52): u = 0.15, σ = 0.005, τ = 1.45.
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Figure 5.16: Phase portraits at specific time instances of 500 model runs with noise: u = 0.15,
σ = 0.005, τ = 1.45. The red curve represents the unforced periodic orbit.

and Figure 5.17 also show that the distribution by desynchronisation is far from uniform. There are

still distinct deglaciation times favoured for many realisations. For this reason the desynchronisation

observed in Figure 5.16 and Figure 5.17 does not contradict studies that have argued for phase-locking

to different components of the orbital forcing. One of the original hypotheses of phase-locking in the

late Pleistocene was suggested to be related to eccentricity, specifically associated to events of low

eccentricity (Hays et al., 1976, Paillard, 2015). More recent studies have looked at the possibility of

locking to precession or obliquity. In Ridgwell et al. (1999) the authors argue locking to every 4th or

5th precession cycle, while Huybers and Wunsch (2005) argue for locking to every 2nd or 3rd obliquity

cycle. Later, Huybers (2011) attributes locking to a combination of precession and obliquity, and states

strongly that the pacing cannot be attributed solely to one of these components. Robust evidence

for locking requires testing on a range of initial conditions or noise realisations (or long time series),
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Figure 5.17: Probability density in time (top) and its standard deviation (bottom) of 500 model runs
with noise: u = 0.15, σ = 0.005, τ = 1.45. The grey line indicates 800 kyr BP

but the short data record corresponds to only one realisation of noise disturbance and one initial

condition. Thus, data available may be insufficient to distinguish the higher-order locking proposed

in the literature from the level of desynchronisation we report in Figure 5.16 and Figure 5.17.

5.5.3 Effect of noise with stronger forcing

Figure 5.18 shows that the addition of noise enhances the MPT for strong forcing. When adding noise,

we observe transitions for forcing strengths u for which there was no transition in the deterministic

case (compare Figure 5.12b and Figure 5.19). In Figure 5.12b the last persistent transition occurs at

u = 0.33. Fixing the forcing strength at u = 0.45, we compute ten realisations. Here, two realisations

exhibit transitions that persist until the end of the run. Although the transitions don’t appear as

commonly as in the weaker forcing case, with noise it is possible to observe an MPT-like transition

across a wider range of forcing amplitudes.

Figure 5.19 shows a systematic overview of the transition enhancing effect of noise. We added noise

of amplitude σ = u
30 and compute the distance diagram as in Figure 5.12b. We observe transitions

occurring above the maximal value of u for which transitions occurred in the deterministic case.
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Figure 5.18: Trajectories of DDE model with noise: u = 0.45, σ = 0.015, τ = 1.45.

Figure 5.19: Distance from reference solution at τref = 1.25, for different forcing strengths u and noise
strength σ = u/30. Averages taken over window length of size τ = 1.45. Initial condition X(t) = −0.5

for t ∈ [2 + τ, 2] Myr BP.



Chapter 6

Exploring AMOC shutdown in a global

ocean box model

In Chapter 2 we introduced the possibility of the Atlantic meridional overturning circulation (AMOC)

shutting down (see Section 2.3.3). In this chapter we explore that possibility in a simplified box model

of the global oceans. An empirical five-box model for global ocean circulation that exhibits AMOC

switching has been developed by Rodriguez et al. (2017). By examining the unperturbed flows in

the Atmosphere-Ocean Global Circulation Model (AOGCM) FAMOUS (Smith, 2012), the authors are

able to reduce the global ocean circulation to a system of five boxes. This allows direct quantitative

comparisons between states and fluxes for the AOGCM runs and the much simpler five-box model.

Jackson et al. (2017) examine timescales of collapse within the model, and these studies form the

starting point for the current chapter.

The model used is more complex than the original Stommel (1961) box model (see Chapter 2, Sec-

tion 2.3.1.2), however it still retains many of the original features including the bistability. There are

several notable differences:

• The first loss of stability of the ‘on’-state is via a subcritical Hopf bifurcation rather than a fold

bifurcation.

• There is an oscillatory relaxation to the ‘on’-state - evidence of oscillatory behaviour is seen in

the climate record of Dansgaard-Oeschger events (Clement and Peterson, 2008).

• The basin of attraction of the on state goes from infinite volume to finite volume at a homoclinic

bifurcation.

The chapter is organised as follows. Section 6.1 introduces the five-box model of Rodriguez et al.

(2017) and discusses a three-box reduction through a timescale separation. In Section 6.2 we perform

117
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a comparative bifurcation analysis of these models and find good agreement. Section 6.3 explores

the model calibrated to a potential future climate scenario, namely doubled atmospheric CO2. We

investigate the behaviour of the system under time-dependent perturbations to the hosing, in particular

identifying examples of bifurcation-induced tipping (B-tipping) and rate-induced tipping (R-tipping).

All of the sections in this chapter are included in the manuscript:

H. Alkhayuon, P. Ashwin, L. Jackson, C. Quinn, and R. Wood. Basin bifurcations, oscillatory

instability and rate-induced thresholds for amoc in a global oceanic box model. In preparation,

2018

Any coauthor contributions will be noted where applicable. The model scaling and model reduction,

all numerical bifurcation analyses, and the studies of additional freshwater forcing with instantaneous

change were carried out by the candidate. All figures were created by the candidate except where

noted otherwise.

6.1 The model

By examining the geometry and behaviour of ocean currents for the FAMOUS runs (Smith, 2012),

Rodriguez et al. (2017) propose a realistic box model with five boxes corresponding to large scale

water mass structures in the global ocean. Only the balance of salinity in the boxes are considered,

as temperature fluctuations occur on a much faster timescale and therefore can be considered fixed

(with the exception of temperature in the North Atlantic box which will be explained later). The five

boxes are as follows: North Atlantic (N), Tropical Atlantic (T ), Indo-Pacific (IP ), Southern (S), and

Bottom (B). Figure 6.1 schematically illustrates the salinity fluxes between boxes.

This five-box model is described by the following systems of equations, where the initial values of the

variables and parameters used by Rodriguez et al. (2017) are displayed in Table 6.2 and Table 6.3.

We define the overturning as

q =
λ[α(TS − T0) + β(SN − SS)]

1 + λαµ
(6.1)

For q ≥ 0,

VN
dSN
dt = q(ST − SN ) +KN (ST − SN )− FNS0,

VT
dST
dt = q[γSS + (1− γ)SIP − ST ] +KS(SS − ST ) +KN (SN − ST )− FTS0,

VS
dSS
dt = γq(SB − SS) +KIP (SIP − SS) +KS(ST − SS) + η(SB − SS)− FSS0,

VIP
dSIP
dt = (1− γ)q(SB − SIP ) +KIP (SS − SIP )− FIPS0,

VB
dSB
dt = q(SN − SB) + η(SS − SB),


(6.2)
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Figure 6.1: The flows between the five boxes in the global ocean box model of Rodriguez et al. (2017).
From left to right: Southern Ocean, Tropical Atlantic, North Atlantic, Indo-Pacific and Bottom Ocean.
The exchange of salinity is indicated by the black arrows. Freshwater surface fluxes FX and wind-
driven fluxes KX are shown with blue arrows, while the overturning strength q is driven by a balance
of salinity and temperature gradients described by (6.1). There is a mixing parameter η for the S and
B boxes. The parameter γ ∈ [0, 1] represents the proportion of the overturning q which follows a cold
water path from B to S, while the remainder follows a warm water path from B to IP . This figure

was created by co-author Peter Ashwin.

while for q < 0,

VN
dSN
dt = |q|(SB − SN ) +KN (ST − SN )− FNS0,

VT
dST
dt = |q|(SN − ST ) +KS(SS − ST ) +KN (SN − ST )− FTS0,

VS
dSS
dt = γ|q|(ST − SS) +KIP (SIP − SS) +KS(ST − SS) + η(SB − SS)− FSS0,

VIP
dSIP
dt = (1− γ)|q|(ST − SIP ) +KIP (SS − SIP )− FIPS0,

VB
dSB
dt = |q|[γSS + (1− γ)SIP − SB] + η(SS − SB).


(6.3)

If we consider the total salt content C

C = VNSN + VTST + VSSS + VIPSIP + VBSB (6.4)

then

dC/dt = −(FN + FT + FS + FIP )S0.

We want to conserve total salt content, so the total surface fresh water fluxes must satisfy

FN + FT + FS + FIP = 0, (6.5)

and C is constant on trajectories of (6.2,6.3). In order to satisfy (6.5), we consider variation of the

fresh water fluxes as follows: we prescribe a “hosing” parameter H (which may depend on time) that

affects all of the fresh water fluxes simultaneously in a way that preserves (6.5). We use the same

fluxes as in Rodriguez et al. (2017), given by Table 6.1.
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FN 0.384 + 0.070H FS 1.078− 0.257H
FT −0.723 + 0.752H FIP −0.738− 0.565H

Table 6.1: Freshwater fluxes (all in Sv) depend on a non-dimensional “hosing” variable H. The total
flux is zero for all H and corresponds to the baseline values in Table 6.2 for H = 0.

Volume (x1017 m3) Salinity (psu) Flux ( Sv)

North Atlantic VN = 0.3261 SN = 0.034912 FN = 0.384
Tropical Atlantic VT = 0.7777 ST = 0.035435 FT = −0.723
Southern Ocean VS = 0.8897 SS = 0.034427 FS = 1.078
Indo-Pacific VIP = 2.2020 SIP = 0.034668 FIP = −0.738
Bottom Ocean VB = 8.6490 SB = 0.034538

Table 6.2: The volumes and standard (baseline) values for the AMOC models, based on the
FAMOUSB runs (Smith, 2012) that are used in Rodriguez et al. (2017). The salinity values correspond
to an equilibrium of the system. Note that the fluxes are assumed to balance: FN +FT +FS+FIP = 0.

Name Default value Units Name Default value Units

α 0.12 kg m−3 ◦C−1 KN 5.456 Sv
β 790.0 kg m−3 KS 5.447 Sv
S0 0.035 KIP 96.817 Sv
TS 4.773 ◦C λ 2.79x107 m6 kg−1s−1

T0 2.650 ◦C γ 0.39
η 74.492 Sv µ 5.5 ◦C−1m−3sx10−8

Table 6.3: Baseline parameters used in the model, taken from FAMOUSB runs (Smith, 2012) in
Rodriguez et al. (2017). Note that 1 Sv = 106m3s−1.

This formulation also allows us to eliminate one of the equations in (6.2) and (6.3). We therefore

assume C is constant and solve (6.4) to give SB in terms of the other variables (note that this choice

of variable is arbitrary). Solutions are equivalent to the solutions of the original system as long as

(6.5) is satisfied.

6.1.1 Three-box reduction

We consider an empirical three-box reduction as follows. We first perform a time-dependent hosing

experiment such that the freshwater flux varies slowly in time. The variable H is defined as follows:

H =

{
0.0005t t ≤ 2000,

1− 0.0005(t− 2000) t > 2000.
(6.6)

Through (6.6) the freshwater forcing starts with a values of H(0) = 0, slowly increases to H(2000) = 1,

and then slowly decreases at the same rate to H(5000) = −0.4. Figure 6.2 shows the behaviour of

the salinity values in each box throughout the model run, from which we see that the variations of

SS and SB are much smaller and slower than those of SN and ST . We then can perform a dimension
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Figure 6.2: Transient behaviour of (6.2,6.3) when subjected to time-dependent hosing (6.6). Note
the minimal variation seen for SS and SB when compared to SN and ST .

reduction by fixing SS and SB at their equilibrium values and considering only SN , ST , and SIP as

dynamic variables. Conservation of salt (6.4) means we can solve for one of the variables (we choose

SIP ) to give

VN
dSN
dt = q(ST − SN ) +KN (ST − SN )− FNS0,

VT
dST
dt = q[γSS + (1− γ)SIP − ST ] +KS(SS − ST ) +KN (SN − ST )− FTS0,

SIP = 1
VIP

(C − VNSN − VTST − VSSS − VBSB),

 (6.7)

for q ≥ 0 and

VN
dSN
dt = |q|(SB − SN ) +KN (ST − SN )− FNS0,

VT
dST
dt = |q|(SN − ST ) +KS(SS − ST ) +KN (SN − ST )− FTS0,

SIP = 1
VIP

(C − VNSN − VTST − VSSS − VBSB).

 (6.8)

for q < 0. The parameters are the same as those given in Table 6.2 and Table 6.3.

In order to improve computational efficiency (particularly for the continuation software), we rescale

both time and state variables of the models. The time unit t of the original model is in seconds; we

will consider a time unit of years τ = tY −1 where Y = 3.15x107 seconds. In addition we will consider

the state variables as scaled perturbations from a background state, namely

S̃i = 100(Si − S0), i ∈ [N,T, S, IP,B]. (6.9)



Chapter 6. Analysis of a global ocean box model for the AMOC 122

This leads to a modified equation for q,

q =
λ[α(TS − T0) + β

100(S̃N − S̃S)]

1 + λαµ
,

and the following ODEs: For q ≥ 0 we have

VN
Y

dS̃N
dτ = q(S̃T − S̃N ) +KN (S̃T − S̃N )− 100FNS0,

VT
Y

dS̃T
dτ = q[γS̃S + (1− γ)S̃IP − S̃T ] +KS(S̃S − S̃T ) +KN (S̃N − S̃T )− 100FTS0,

S̃IP = 100
VIP

(C − VNSN+VTST+VSSS+VBSB
100 − S0(VN + VT + VIP + VS + VB)),

 (6.10)

while for q < 0 we have

VN
Y

dS̃N
dτ = |q|(S̃B − S̃N ) +KN (S̃T − S̃N )− 100FNS0,

VT
Y

dS̃T
dτ = |q|(S̃N − S̃T ) +KS(S̃S − S̃T ) +KN (S̃N − S̃T )− 100FTS0,

S̃IP = 100
VIP

(C − VNSN+VTST+VSSS+VBSB
100 − S0(VN + VT + VIP + VS + VB)).

 (6.11)

Note that the total salt content is still conserved with

C =
1

100
(VN S̃N + VT S̃T + VSS̃S + VIP S̃IP + VBS̃B) + S0(VN + VT + VS + VIP + VB). (6.12)

We have only shown the scaled version of the three-box model, but the five-box model is scaled equally.

6.2 Bifurcation analysis

As discussed in Chapter 2, the AMOC can potentially be forced into an alternative stable state than

the present one with increased freshwater fluxes, particularly in the North Atlantic. To explore the

possibility of this in our model, we consider the effects of varying the surface freshwater fluxes FX .

We perform a bifurcation analysis on both the five-box and three-box model and compare the results.

6.2.1 Five-box model

Using COCO (Dankowicz and Schilder, 2013) continuation software we are able to verify that (6.2,6.3)

exhibits a hysteresis between two branches of stable equilibria on varying H and imposing C constant

(ie. using (6.4) to specify SB), as shown in Figure 6.3. The upper and lower branches will be referred

to as the ‘on’ and ‘off’ states respectively. Although both equilibria are destroyed through a fold

bifurcation, the ‘on’ state first loses stability through a subcritical Hopf bifurcation. In addition there

is a homoclinic bifurcation that leads to a sudden collapse in the size of the basin of attraction before

the Hopf bifurcation occurs (we explain this further in Section 6.3.1).
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Figure 6.3: The bifurcation diagram of the five box model (6.2,6.3) on varying H. The stable
equilibria are shown in blue, unstable in green (saddle) and red (source). The green circles indicate
saddle node bifurcations, and the brown diamonds indicate Hopf bifurcations. The dotted pink line
shows the minimum and maximum of the unstable periodic orbit. A zoom of the upper bifurcation

region is shown for SN .

6.2.2 Three-box model

We now demonstrate that the bifurcation structures for the five-box model are contained in the

dynamics of the three-box reduction (6.7,6.8) when varying H: Figure 6.4 illustrates that all of the

bifurcations are present in the same order and roughly the same location. More precisely, Table 6.4

compares the locations of the four bifurcations for the two systems. Using Maple it is possible to

directly calculate the local fold and Hopf bifurcation points for the three box model; these parameter

values are also included on Table 6.4. The homoclinic bifurcations are approximated by determining

a large but fixed period orbit at the end of the branch of periodic orbits that emerges from the Hopf

bifurcation.

Comparing the bifurcations of the five- and three-box models on varying H, there is close agreement
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Figure 6.4: The bifurcation diagram of the three box model (6.7,6.8) on varying H. The stable
equilibria are shown in blue, unstable in green (saddle) and red (source). The green circles indicate
saddle node bifurcations, and the brown diamonds indicate Hopf bifurcations. The dotted pink line
shows the minimum and maximum of the unstable periodic orbit. A zoom of the upper bifurcation

region in shown for SN .

Five box Three box Three box
numerical numerical Maple

Lower saddle node Hlsn −0.07996 −0.05446 −0.05445
Upper homoclinic Hhom 0.2165 0.2128 NA

Upper Hopf HHopf 0.2191 0.2134 0.2133
Upper saddle node Husn 0.2214 0.2139 0.2138

Table 6.4: Comparison of the locations of bifurcations for H for the five box (6.2,6.3) and the three
box (6.7,6.8) models with standard parameters: the numerical solution by path following is using
COCO apart from the homoclinic bifurcations that are estimated using xppaut. The last column gives

numerical approximation using Maple (not available for the homoclinic bifurcation).

both qualitatively and quantitatively. The bifurcation scenario is also robust on changing the param-

eter γ (the proportion of cold-water path). If γ is increased, the structure remains. However, for

decreasing γ we find the Hopf curve meets the upper fold curve (see Figure 6.5). The two curves meet

at a Bogdanov-Takens (BT) point at (H, γ) = (0.2268, 0.1559) that can be determined (with the aid

of Maple) by simultaneous solution of an equilibrium of (6.7) with q > 0 whose Jacobian has both

determinant and trace zero. Note that the BT point represents a convergence not just of Hopf and

fold bifurcations, but also we can infer (Kuznetsov, 1998) that the homoclinic bifurcation continues

to the BT point.

This is not the first time a bifurcation structure of this nature was seen in an model for the AMOC.

A similar bifurcation structure was discovered and explored in the studies of Titz et al. (2002a,b).
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Figure 6.5: Two parameter plot showing the location of HHopf (brown) and Husn (green) for the
three box model on varying γ away from the default value 0.39. The two curves meet at a Bogdanov-
Takens point at (H, γ) = (0.2268, 0.1559) while the Hopf and upper saddle-node bifurcations move

apart for larger γ and smaller H.

6.3 Exploring a future climate scenario

With the discovery of the underlying bifurcation structure, it is of interest to consider how it might

change under an altered background climate that corresponds to a potential future climate scenario.

For this we take parameter values from the FAMOUSB model calibrated to a world with doubled

atmospheric CO2 (also explored in Rodriguez et al. (2017)). The adjusted baseline and parameter

values are listed in Table 6.5 and Table 6.6 respectively. We explore changes to the bifurcation

structure and experiment with time-dependent hosing scenarios. For the latter we use the modified

freshwater flux functions in Table 6.7.

Volume (x1017 m3) Salinity (psu) Flux ( Sv)

North Atlantic VN = 0.3683 SN = 0.034912 FN = 0.486
Tropical Atlantic VT = 0.5418 ST = 0.035435 FT = −0.997
Southern Ocean VS = 0.6097 SS = 0.034427 FS = 1.265
Indo-Pacific VIP = 1.4860 SIP = 0.034668 FIP = −0.754
Bottom Ocean VB = 9.9250 SB = 0.034538

Table 6.5: The volumes and standard (baseline) values for the AMOC models with doubled atmo-
spheric CO2, based on the FAMOUSB runs (Smith, 2012) that are used in Rodriguez et al. (2017).
The salinity values correspond to an equilibrium of the system. Note that the fluxes are assumed to

balance: FN + FT + FS + FIP = 0.

Through conducting a bifurcation analysis as in Section 6.2, we see that the main effect of doubled

atmospheric CO2 is an increased unstable region before the saddle-node bifurcation (see Figure 6.6).

From this we can infer that the system has moved further away from the Bogdanov-Takens point.

This increased region of instability has implications on how the system would act under additional
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Name Default value Units Name Default value Units

α 0.12 kg m−3 ◦C−1 KN 1.762 Sv
β 790.0 kg m−3 KS 1.872 Sv
S0 0.035 KIP 99.977 Sv
TS 7.919 ◦C λ 1.62x107 m6 kg−1s−1

T0 3.870 ◦C γ 0.36
η 33.264 Sv µ 22 ◦C−1m−3sx10−8

Table 6.6: Baseline parameters used in the model, taken from FAMOUSB runs (Smith, 2012) with
doubled atmospheric CO2 in Rodriguez et al. (2017). Note that 1 Sv = 106m3s−1.

FN 0.486 + 0.131H FS 1.265− 0.263H
FT −0.997 + 0.696H FIP −0.754− 0.564H

Table 6.7: Freshwater fluxes (all in Sv) for doubled atmospheric CO2 scenarios. The total flux is
zero for all H and corresponds to the baseline values in Table 6.5 for H = 0.
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Figure 6.6: The bifurcation diagram of the three box model (6.7,6.8) on varying H with a background
climate of doubled atmospheric CO2. The stable equilibria are shown in blue, unstable in green. The
green circles indicate saddle-node bifurcations, and the brown diamonds indicate Hopf bifurcations.
The dotted pink line shows the minimum and maximum of the unstable periodic orbit. A zoom of the

upper bifurcation region in shown for SN .

freshwater forcing. We explain the phenomenon and explore some possible scenarios in the following

sections.

6.3.1 Basin bifurcations

To understand the behaviour of the system in the bistable region for changing parameter H, we

examine the basins of attraction for our equilibria. A schematic diagram of the expected behaviour is

shown in Figure 6.7. We will outline the expected behaviour for increasing H, starting from the left
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side of the bifurcation diagram. Before reaching the lower saddle-node bifurcation (H < Hlsn), there

is only one equilibrium, hence all initial conditions converge to this point (shown in the bottom left).

After crossing the lower saddle-node (Hlsn < H < Hhom), the system is bistable between two stable

equilibria and the phase plane is divided by the stable manifold of the saddle equilibrium. Increasing

H further reaches a homoclinic bifurcation. This is where the most significant change to the basins

of attraction is seen. At this point, the unstable manifold of the saddle equilibrium connects to the

stable manifold of the saddle equilibrium. This causes the basin of attraction of the upper equilibrium

to go from infinite to finite. For Hhom < H < HHopf , the basin of attraction of the upper equilibrium

is bounded by an unstable periodic orbit, whereas the rest of the phase plane converges to the lower

stable equilibrium. The unstable periodic orbit shrinks as H increases, eventually leading to a Hopf

bifurcation. After the Hopf bifurcation (HHopf < H) only the lower stable equilibrium exists, and so

all initial conditions in the phase plane are attracted to this.

The expected behaviour is realised in our system, shown through Figure 6.8. The black line indicates

the stable manifold of the saddle equilibrium, which also acts as the boundary between the basins of

attraction for the upper and lower stable equilibria. The colour contour indicates the years it takes to

converge to the respective equilibrium (indicated by the blue circles). In the upper left panel we have

Hlsn < H < Hhom, meaning there exist two basins of attraction separated by the stable manifold of

the saddle equilibrium. The upper right panel and lower left panel also have Hlsn < H < Hhom, but

the shrinking basin of attraction is already visible. In the lower right panel we have H ≈ Hhom where

the upper basin becomes finite.

The shrinking basin of attraction for Hhom < H < HHopf has some counter-intuitive effects for

perturbations. As the basin of the upper branch shrinks to a small size, small perturbations in any

direction can take the system out of the basin of the upper branch. We demonstrate this type of

behaviour in the following section.

6.3.2 Hosing experiments

We now turn to the influence of time-dependent perturbations of (6.7), (6.8) where the freshwater

fluxes FX are varied via H(t) according to Table 6.7.

If H(t) is varied slowly enough, standard arguments of adiabatic reduction (Kuehn, 2015) can be used

to predict the behaviour of the nonautonomous perturbed system. However, it is not always clear

how slow this needs to be, and in many cases there are scientifically important questions that need

exploration of a range of perturbation speeds.

The particular protocol we consider here is inspired by the question of how quickly changes to hosing

need to be reversed to avoid tipping from the upper branch onto the lower branch (Ritchie et al.,

2017).
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Figure 6.7: Schematic of the bifurcation diagram (top left) and phase portraits on varying H through
various points on the bifurcation diagram of (6.7,6.8). The shaded region shows the basin of attraction
for the upper branch - this shrinks from being semi-infinite for H < Hhom to being quite small for
Hhom < H < HHopf . Note also that the upper branch loses stability before the saddle node. This

figure was created by co-author Peter Ashwin.

To this end, we consider the effect of piecewise linear (PWL) perturbations H(t) = Hpwl(t− t0) as in

Figure 6.9 on the system, where

Hpwl(τ) =



H0 τ < 0,

α(τ) τ ∈ [0, Trise],

Hpert τ − Trise ∈ [0, Tpert],

β(τ) τ − Trise − Tpert ∈ [0, Tfall],

H0 τ ≥ Trise + Tpert + Tfall,

(6.13)



Chapter 6. Analysis of a global ocean box model for the AMOC 129

(a) (b)

(c) (d)

Figure 6.8: The basins of attraction of the two stable equilibria for different values of H, system
(6.7) and (6.8). The colour map represents how long (in years) it takes to reach the corresponding

equilibria. These figures were created by co-author Hassan Alkhayuon.

where α(t) and β(t) are linear functions such that H is continuous and τ = t − t0. This depends on

constants Trise, Tpert, Tfall, levels H0 and Hpert. If we define the rise and fall rates

rrise =
|H0 −Hpert|

Trise
, rfall =

|H0 −Hpert|
Tfall

. (6.14)

then we can write α(τ) = H0 + rriseτ , β(τ) = Hpert − rfall(τ − Trise − Tpert).

As an example of the sort of critical transition this can lead to, Figure 6.10 shows the effect of two

very similar PWL perturbations that vary only in TRise by a relatively small amount. As can be seen

in the phase plane (a) and time series (b) these lead to quite different outcomes at the end of the

perturbation.

A special case of the PWL perturbation (6.13) is when Trise = Tfall = 0: an instantaneous change

from H0 to the perturbed Hpert and then back. This type of perturbation has been studied extensively

in ecological settings (Bolt et al., 2018, Ratajczak et al., 2017) where it is called a “press”. We explore

the behaviour of this case when varying Hpert and Tpert, fixing H0 = 0: an example is depicted in



Chapter 6. Analysis of a global ocean box model for the AMOC 130

Figure 6.9: Schematic diagram showing a piecewise linear time-dependent perturbation H(t) =
Hpwl(t − t0) where t0 = 50, Trise = 10, Tpert = 140, Tfall = 30, H0 = 0 and Hpert = 0.1. This figure

was created by co-author Peter Ashwin.
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Figure 6.10: Trajectories of (6.7,6.8) with piecewise linear time-dependent parameter H defined by
(6.13), the fixed parameter values are Tpert = 200, H0 = 0, Hpert = 0.5, Trise = 200. We use
Tfall = 100 for the black trajectory and Tfall = 200 for the dark red trajectory. The subfigure (a)
shows the phase portrait and (b) the time profile of SN . The blue dashed lines denote the stable

equilibria values for H0 = 0. These figures were created by co-author Hassan Alkhayuon.
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Figure 6.11: Trajectories of (6.7,6.8) with parameter H defined by (6.13) for Hpert = 0.45 with
Trise = Tfall = 0. The initial hosing value is fixed at H0 = 0, and Tpert (in years) is indicated by the

line colour. An initial condition is taken close to the upper branch for H = 0.

Figure 6.11. The black line shows the initial departure from the equilibrium state for H = H0. All

trajectories follow this path in the H = Hpert phase plane for the time Tpert corresponding to the

line colour. When t > Tpert + 100 trajectories then make an excursion back to one of the two stable

equilibria for H = H0. The maximal press duration which allows a return to the upper branch can be

estimated between the two diverging trajectories. Comparing Figure 6.11 and Figure 6.8 we note that

the divergence corresponds to where the black trajectory intersects with the basin boundary. This

means we can find the critical duration of the perturbation that results in switch of branches. We

illustrate this critical value for different values of Hpert in Figure 6.12.

We now consider some illustrative examples of the effect of more general perturbations of the form

(6.13) starting at H0 = 0 and the ‘on’-state.

B-tipping and avoided B-tipping In the case that H0 < HHopf < Hpert, the bifurcation diagram

Figure 6.4 shows that the lower branch is the unique attractor for H = Hpert. This means that

regardless of Trise and Tfall we expect to see tipping onto the lower branch if Tpert is large enough.

However, if some combination of Trise, Tfall and Tpert is sufficiently small we may avoid B-tipping.

Figure 6.13 illustrates these two scenarios, the black trajectory shows the avoiding tipping behaviour

while the dark red trajectory shows B-tipping. Note the overshoot behaviour of the black trajectory

when it returns to the upper branch - this is due to the oscillatory nature of the ‘on’-state which is

also observed in the AOGCM.
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Figure 6.12: Critical values of Tpert for different values of Hpert (Trise = Tfall = 0). Values below
the curve will not tip, while values above will.

R-tipping and avoided R-tipping The bifurcation diagram Figure 6.4 might seem to suggest

that a perturbation from H0 to Hpert < HHopf will not result in tipping to the lower branch for any

choice of Trise, Tfall and Tpert. Indeed, Figure 6.14 shows the effect of a perturbation that increases

and then decreases H slow enough for there to be no tipping from the upper branch. On the other

hand, for a more rapid perturbation (the dark red trajectory in Figure 6.14) we can find situations

that switch to the lower branch. Again we see the overshoot in the black trajectory on return to the

upper branch.
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Figure 6.13: Bifurcation-induced tipping system (6.7, 6.8) for two trajectories, one tips (dark red)
and the other does not (black). Subfigures (a) and (b) show the time series of SN and ST respectively.
The dashed blue lines represent the two equilibria for H0 = 0. Subfigure (c) shows the trajectories of
SN plotted over the bifurcation diagram. Subfigure (d) shows the piecewise linear forcing against time.
We use Tfall = 200 for the dark red trajectory and Tfall = 100 for the black trajectory. The other
parameter values are H0 = 0, Hpert = 0.5, T0 = 100, Tpert = 200, and Trise = 200. These figures were
primarily created by co-author Hassan Alkhayuon- bifurcation curve was created by PhD candidate.
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Figure 6.14: Rate-induced tipping for system (6.7, 6.8) for two trajectories, one tips (dark red) and
the other does not (black). Subfigures (a) and (b) show the time series of SN and ST respectively. The
dashed blue lines represent the two equilibria for H0 = 0. Subfigure (c) shows the trajectories of SN
plotted over the bifurcation diagram. Subfigure (d) shows the piecewise linear forcing against time.
Here, H0 = 0 and Hpert = 0.37, which is less than HHopf where the upper branch loses its stability.
The other parameter values are Trise = 100, T0 = 100 and Tpert = 400. We use Tfall = 320 for the
the dark red trajectory and Tfall = 310 for the black trajectory. These figures were primarily created

by co-author Hassan Alkhayuon- bifurcation curve was created by PhD candidate.



Chapter 7

Discussion

7.1 Summary

In this thesis we explored the possibility of delayed feedback and critical transitions in models of the

climate system. We do this primarily through conceptual models, but discuss the connection to more

complex models.

Methods for deriving models with delay

In Chapter 3 we introduced three different methods for obtaining models with delay from other types

of systems. First, we described the linear chain approximation, which allows for the reduction of large

ODE system comprised of linear first-order filters into a scalar delay equation. We showed two example

systems: (i) all equal and (ii) all distinct timescales of the filters. The method is not restricted to

scalar feedback- any large ODE system with subsystems of linear first-order filters can be reduced into

delay equations for the variables not in any of the subsystems.

The second method introduced was the Mori-Zwanzig Projection framework. This method also applies

to ODE systems, but those of a more general form than in the linear chain case. Given that a system

can be separated into resolved variables and unresolved variables such that the system of unresolved

variables is stable and decays exponentially, we derived equations for the resolved variables which are

comprised of a direct (Markovian) term and a memory term. The behaviour of the memory term is

defined by the orthogonal dynamics. To compute the behaviour of the memory term, we introduce a

way of approximating the orthogonal dynamics which is exact for linear systems and has a quantifiable

error for nonlinear systems. We illustrate the effectiveness of the approximation on two systems where

the exact equation for the memory term is known.

135
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The last method discussed was applicable to PDE systems, particularly those comprised of wave

equations. We showed that through the boundary conditions we can obtain an equation for the

delayed feedback that propagates with the wave. The delay is equal to the time it takes a wave to

return to a location, which is calculated through the characteristic wave speed. We showed the use

of this method in relation to ocean phenomena. Both the El Niño Southern Oscillation (ENSO) and

the Atlantic Multidecadal Oscillation (AMO) were captured through delayed feedback. We explored

solutions of the AMO model with delay, as this was an original model for the phenomenon. We found

that the model captures the low-frequency oscillations that are characteristic of the AMO. We also

found that when initialising the model with historical data, the low-frequency signal was even more

prominent.

Exploration of climate models

In the following chapters we turned our attention to studying a few different climate models in detail.

Chapter 4 began with the analysis of a previously conceived model with delay for the Pleistocene

climate. Ghil et al. (1987) developed a Boolean Delay Equation (BDE) model for global ice volume,

global temperature, and global ocean circulation on the timescale of thousands of years. They con-

sidered delays due to ice sheet accumulation, ice sheet expansion, and overturning time of the ocean.

We converted the logically-based model into a discrete mapping system using algebraic equivalent

operations to the logical operators. We analysed this new model in its discrete form and also through

a conversion to a system of continuous DDEs. We found that both models exhibited either an equi-

librium or a periodic orbit based on the relative sizes of the delays. In particular, for a large enough

ocean overturning delay time, the models exhibited self-sustained oscillations.

These findings led us to our Chapter 5 study, in which we revisited another conceptual model for the

Pleistocene climate, the Saltzman and Maasch (1988) model. This model has analogous state variables

to those in the Ghil et al. (1987) BDE model: global ice mass, atmospheric CO2, and North Atlantic

Deep Water (NADW). We discovered that the Saltzman and Maasch (1988) model can be reduced

to a scalar DDE in ice mass perturbations. The delay in this case was a combination of the three

delay effects mentioned in the Ghil et al. (1987) model, with the most variable again being ocean

overturning time. We analysed the attractors of the DDE model for different delay times and found a

bistable region between a stable equilibrium and a stable large-amplitude periodic orbit which wasn’t

studied in the original model. We considered the behaviour within this bistable region when subjected

to periodic and astronomical (quasiperiodic) forcing. We found that the astronomical forcing could

cause a transition between the two attractors without any change in the parameters. The timing

of the transition agreed with what is understood to be the timing of the Mid-Pleistocene Transition

(MPT), seen in paleoclimate records. In the DDE model, the transition is possible over a large range

of parameters in the bistable region and is more robust with added noise.
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We then shifted our focus to the ocean circulation itself and looked into the mechanisms that affect

the overturning time. Chapter 6 explores a box model for the global ocean circulation. This model

was originally developed by Rodriguez et al. (2017) through analysis of the Atmosphere Ocean Global

Circulation Model (AOGCM) FAMOUS. We were able to reduce the five-box model to a three-box

model while preserving the dynamical behaviour. We find that when modifying the amount of addi-

tional freshwater to the system, the model can exhibit multiple stable states. An interesting feature

discovered is that one of the stable states loses stability through a subcritical Hopf bifurcation rather

than a fold bifurcation, which was traditionally seen in similar ocean circulation models. This type

of bifurcation has implications on the basin of attraction of one of the stable states- there exists a

point before the bifurcation where the basin goes from being infinite to finite. We observed a signifi-

cant shrinking basin of attraction for the current state of the global ocean circulation with increased

freshwater forcing. This phenomenon was even more pronounced when the model was calibrated to a

future climate scenario of doubled atmospheric CO2 levels. We explored different examples of time-

dependent freshwater forcing and found that the model can exhibit bifurcation-induced tipping and

rate-induced tipping, but additionally it can exhibit tipping prevention.

7.2 Outlook

Overall, this thesis presents some novel studies of climate phenomena. We showed the insight that can

be gained about physical processes by analysing the contribution of any delayed feedback. Additionally,

we demonstrated that the dominant behaviour of some complex processes can be explained by delay

equations with only a few state variables. This is invaluable for getting a mechanistic understanding

of what drives the climate system.

We expanded the use of delay equation models in paleoclimate. Our DDE model for the Pleistocene

not only shone a light on the delayed feedback nature of the glacial cycles, but also introduced a new

null hypothesis for the MPT: the transition being induced by a combination of bistability and external

forcing. We conjecture that this null hypothesis could be tested for different models of the Pleistocene

that exhibit similar bistability. We also found that in the mathematical framework, the transition is

a result of interesting dynamical behaviour in the forced DDE model which appears to be attributed

to the quasiperiodic nature of the forcing. This can be explored further through follow-up studies.

The dynamical behaviour discovered in the global ocean circulation model is of great significance to

the study of the Atlantic Meridional Overturning Circulation (AMOC) shutdown. The mechanism

for loss of stability differs from the widely accepted fold bifurcation theory. This has implications for

tipping behaviour as well as recovery. As the box model was derived from an AOGCM, we expect

the mechanism found in this thesis to be present in more complex models of ocean circulation. This
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should be investigated in order to better understand the reaction of the AMOC to an ever-changing

background climate.



Appendix A

Detailed description of modified Search

Circle Algorithm

This appendix was written by co-author Jan Sieber and describes how one can modify the search circle

(SC) algorithm for stable manifolds in England et al. (2004) for maps M` given implicitly through

M` : domL 3 x 7→ y ∈ domL, where y is the solution of RM `+1Lx = RM `Ly. (A.1)

The original SC algorithm (England et al., 2004) grows the stable curve of a map iteratively. In

particular, the algorithm of England et al. (2004) does not rely on root-finding using Newton iterations,

but rather on a bisection on a suitable small circle to find intersections between the image of the small

circle and the collection of previously computed segments. In principle, the original SC algorithm

could be applied directly, if one solves the defining system (A.1), RM `+1Lx = RM `Ly, for y every

time the original algorithm applies its map (in our case M`) to a point x ∈ R2 . However, a small

modification of the SC algorithm avoids the need to solve the nonlinear equation (A.1). The paragraphs

below describe the modified version of the SC algorithm in England et al. (2004), as implemented in

the demo scripts in the supplementary material and used for the computation of the stable manifold

shown in the paper.

Evaluation of parametric curves As part of the algorithm we need to manage smooth curves

with potentially sharp turns, stored in the form of a sequence S = (x0, . . . , xk) of points in R2. In

general, in order to associate an sequence S = (x0, . . . , xk) to a continuous parametric curve one needs

an interpolation scheme. In our implementation we use optionally either a piecewise linear or cubic

interpolation. For a sequence S = (x0, . . . , xk) we denote

Im : [0, k] 3 t 7→ Ifl(t)
m (mod1(t)) ∈ R2, (A.2)
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where fl(t) is the largest integer j ≤ t, and mod1(t) = t−fl(t) is the fractional part of t. The subscript

m = 0 or 1 denotes the two types of interpolation implemented (linear and cubic Bezier curve):

Ij0 : [0, 1] 3 t 7→ (1− t)xj + txj+1 ∈ R2, Ij1 : [0, 1] 3 t 7→
3∑
`=0

(
3

`

)
t`(1− t)3−`xj,` ∈ R2

for j = 0, . . . , k − 1, where in I1 (using | · | for the Euclidean norm)

xj,0 = xj , xj,1 = xj + ν|xj+1 − xj | bj , xj,2 = xj+1 − ν|xj+1 − xj | bj+1, xj,3 = xj+1.

The vectors bj = n(n(xj+1 − xj) + n(xj − xj−1)) are the normalised bisector between xj+1 − xj and

xj − xj−1 (b0 = bk = 0), where we write and n(v) = v/|v| for the normalisation of a vector. The curve

I0 is continuous on [0, k] but has corners with non-zero angles at each integer value of t, at point xj

with j ∈ {1, . . . , k − 1}. The curve I1 is continuously differentiable as a curve since the tangent at

point xj is parallel to bj in both directions (the parametrisation is singular in the end points t = 0

and t = k and continuous but not differentiable in t at t = 1, . . . , k − 1). The form of I1 is the

composite cubic Bezier form with xj,` as guides. We choose the fraction ν = 1/3 as default in our

implementation. Smaller ν brings the piecewise cubic form closer to the piecewise linear form I0 (in a

different parametrisation in t). The particular choice of guides, using the bisector bj , ensures that each

segment Ij1 is a graph over the abscissa t 7→ xj + t(xj+1 − xj). Using the cubic interpolation I1 may

not make the results accurate to a higher interpolation order since the guides are chosen arbitrary.

However, the algorithm based on I0 is more susceptible to failure when angles between successive

points in S become too sharp. All following elements of the SC algorithm are independent of the

interpolation type m, such that we drop the subscript m from I.

Parametric curves as local graphs We transform the representation of a curve in the parametric

form (A.2) to make it easier to determine intersections between the curve and another curve (an image

of a small circle under the implicitly defined map). Consider a sequence of points S = (x0, . . . , xk)

and its interpolation I, and an arbitrary index j ∈ {0, . . . , k − 1}. We represent the curve as a graph

locally over the abscissa t 7→ xj + t(xj+1 − xj), and then define a signed distance from this graph for

root finding in the following way. Define the Householder reflection

Qj = I − 2vj(vj)T ∈ R2×2, where vj := n(xj+1 − xj − |xj+1 − xj |e1) ∈ R2,

using e` for the `th unit vector (Qj is orthogonal). With the help of Qj we define the orthogonal

projections (and translations)

τj : R2 3 x 7→ (e1)TQj [x− xj ] ∈ R, σj : R2 3 x 7→ (e2)TQj [x− xj ] ∈ R,
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such that τj(x) is the coordinate of x along the abscissa and σj(x) the coordinate along the ordinate.

We pick a small ε (ε = 0.25 by default in the implementation) and define the indices lowj and

upj ∈ {0, . . . , k − 1} such that lowj ≤ j ≤ upj ,

(e1)TQj [x
`+1 − x`] ≥ ε|x`+1 − x`| for all ` ∈ {lowj , . . . ,upj}, and

(e1)TQjb
` > ε|b`| for all ` ∈ {lowj , . . . ,upj +1}

(the latter is required only when using the cubic interpolation I1). By construction of the interpolations

I the range {lowj , . . . ,upj} contains at least j. The conditions ensure that σj(I([lowj , upj +1])) is

locally a graph over τj(I([lowj ,upj +1])) for τ between τ jlow := τj(x
lowj ) and τ jup := τj(x

upj +1). In

particular, the set of τj(x
`) is strictly increasing for ` ∈ {lowj , . . . ,upj +1}. For τ̂ ∈ [τ jlow, τ

j
up], we

first pick an index ` ∈ {lowj , . . . ,upj +1} such that τj(x) ∈ [τj(x
`), τj(x

`+1)]. Then we determine

the unique root t̂ in the interval [0, 1] of t 7→ I`(t) − τ̂ . (For interpolation order m = 0 this is an

affine equation, for m = 1 this is a cubic polynomial equation with a guaranteed unique root in [0, 1].)

Then, with σ̂ = σj(I`(t̂)), the pair (τ̂ , σ̂) are the τj and σj projections of the point I`(t̂) on the curve

I([lowj , upj +1]), thus, establishing that the curve I([lowj ,upj +1]) is a graph of the function

gj : [τ jlow, τ
j
up] 3 τ̂ 7→ σ̂ ∈ R.

We extend the function gj linearly as gj,ext to arguments in R for τ̂ /∈ [τ jlow, τ
j
up] in a way such that gj

is differentiable in τ jlow and τ jup:

gj,ext : R 3 τ̂ 7→


gj(τ̂) if τ̂ ∈ [τ jlow, τ

j
up],

gj(τ
j
low) + g′j(τ

j
low)[τ̂ − τ jlow] if τ̂ < τ jlow,

gj(τ
j
up) + g′j(τ

j
up)[τ̂ − τ jup] if τ̂ > τ jup,

∈ R

g′j(τ
j
low) =

(e2)TQj

[(
I lowj
m

)′
(0)

]
(e1)TQj

[(
I lowj
m

)′
(0)

] , g′j(τ
j
up) =

(e2)TQj

[(
Iupj
m

)′
(1)

]
(e1)TQj

[(
Iupj
m

)′
(1)

] .

With the above construction we have, for any index j ≤ k − 1 a function gj,ext : R → R such that a

point x is on the parametric curve {I`(t) : lowj ≤ ` ≤ upj , t ∈ [0, 1]}, if and only if τj(x) ∈ [τ jlow, τ
j
up]

and gj,ext(τj(x))− σj(x) = 0.

This implies that gj,ext(τj(x))− σj(x) is a signed distance from the curve for any x ∈ R2 with τj(x) ∈
[τ jlow, τ

j
up]. This is not the shortest Euclidean distance to the curve, but a distance orthogonal to the

axis t 7→ xj + t(xj+1 − xj).
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We note that the constructions of I and gj,ext also work for n-dimensional spaces with n > 2. Then σj

maps into Rn−1, such that one should replace e2 by [e2, . . . , en] ∈ Rn×(n−1) in all expressions above.

Furthermore, the function gj,ext is independent of the parameterisations of the curve segments, I`. So,

any reparameterisation of the curve I([0, k]) would give identical sets of local graph functions gj,ext.

Modified SC algorithm for implicit maps We assume the following situation after step k of

the SC algorithm. We have grown the stable curve starting from x0
L ∈ domL up to some end point

xk ∈ domL and stored the curve in the form of a sequence of points SkL = (x0
L, x

1
L, . . . , x

k
L) ⊂ domL ⊂

R2. We modify the algorithm by also storing the image of the curve SkL, SkR = (x0
R, . . . , x

k
R) ⊂ rgR

where xjR = RM `LxjL for all j = 0, . . . , k. We also have a pointer jk ∈ {1, . . . , k} after step k. This

pointer stores to which segment of SkR the point xk ∈ SkL is mapped by RM `L, up to some tolerance

tol: so there exists a tk (not stored) such that RM `+1LxkL = Ijk(tk;S
k
R). In practice the equality is

only met up to some tolerance, so |RM `+1LxkL − Ijk(tk;S
k
R)| < tol. We added the argument SkR to

Ijk to clarify from which sequence the interpolated curve is generated. We will not add the generating

sequence SkR as an argument to gj,ext, τj and σj below, since all interpolations and transformations all

refer to the generating sequence SkR.

Using the above notation and depending on the method parameters listed in Chapter A.1, we describe

the iterative Search Circle Algorithm (England et al., 2004) and its modification as follows.

parameter default value description

αmax 0.2 maximal desired angle between successive points of SkL
[α∆]max 10−2 maximal admissible product of angle between successive points of SkL and

search radius
αmin 0.05 angle admissible for increasing the next search radius ∆
αbdmax 2π/3 maximal admissible angle between successive points of SkL
[α∆]min 10−4 product of angle α and search radius ∆ admissible for increasing next

search radius
∆stop 10−6 stop if search radius ∆ drops below
∆min 10−4 permit angles larger than αmax if ∆ < ∆min

∆max 10−2 maximal search radius
tol 10−6 tolerance for root bracketing (should not be larger than ∆stop)

Table A.1: Algorithm parameters and default values

After step k we have

• a domain sequence SkL = (x0
L, x

1, . . . , xkL) ⊂ domL ⊂ R2,

• an image sequence SkR = (x0
R, x

1
R, . . . , x

k
R) ⊂ rgR ⊂ R2,

• a pointer jk ∈ {0, . . . , k},

• a current radius ∆ under consideration.
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At step k + 1 we perform a circle arc search.

1. (Check if search radius not too small.) Stop if ∆ is smaller than ∆stop.

2. Initialise an empty list of already tested new pointer candidates: J = ∅.

3. Set the new provisional pointer into SkR as j = jk,

4. (Check if stuck in a loop.) If j ∈ J , go back to step 1 with decreased radius ∆ 7→ ∆/2. Otherwise,

include j into the list J .

5. Define a circle arc φ of radius ∆ around xkL (denoting the normalised previous secant ykL =

n(xkL − x
k−1
L ), recalling that n(v) = v/|v|):

φ : (−αbd, αbd] 3 α 7→ xkL + ∆

[
ykL cosα+

[
0 −1

1 0

]
ykL sinα

]
∈ domL ⊂ R2.

6. (Construct one-dimensional zero problem) We construct gj,ext, τj , σj , τ
j
low, τ jup for SkR and pointer

j, and consider the one-dimensional root-finding problem for

γ : α 7→ gj,ext (τj (xR(α)))− σj (xR(α)) , where xR(α) = RM `+1Lφ(α)

By construction of gj,ext, a root α of γ with τj(xR(α)) ∈ [τ jlow, τ
j
up] corresponds to a point φ(α)

that maps into the curve Im([lowj , upj +1]) generated from SkR under the implicitly defined map

M`. Note the power `+ 1 in the definition of xR(α).

7. (Find root) We gradually increase αbd, starting from αmax, up to αbdmax, until γ(−αbd) and

γ(αbd) have the different signs. If this is not the case for any αbd up to αbdmax we go back to

step 1, decreasing the radius ∆ 7→ ∆/2. Otherwise, we find a root α∗ ∈ [−αbd, αbd] of γ by

bracketing, up to tolerance tol.

8. (Adjust pointer down) If τj(xR(α∗)) < τ jlow we decrease the pointer j to j − 1, and go back to

step 4.

9. (Adjust pointer up) If τj(xR(α∗)) > τ jup we increase the pointer j to j+ 1, and go back to step 4.

10. (Acceptance) If |α∗| ≤ αmax and |α∗|∆ < [α∆]max, we accept α∗ as an admissible angle for the

next point on the stable manifold.

11. (Acceptance despite sharp angle) If |α∗| ∈ (αmax, αbdmax] and α∗∆ < [α∆]max and ∆ < ∆min,

also accept α∗ as the next admissible angle.

12. (Step rejection) If α∗ is not accepted, go back to step 1, decreasing the radius ∆ 7→ ∆/2.
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13. (Include new points into sequences) xk+1
L = φ(α∗) and xk+1

R = RM `Lφ(α∗). Note that the

power of M is only ` in the definition of xk+1
R . This extends the sequences defining the manifold:

Sk+1
L = (SkL, x

k+1
L ) and Sk+1

R = (SkL, x
k+1
R ).

14. (Increase search radius) If |α∗| < αmin and |α∗|∆ < [α∆]min, increase ∆ 7→ 2∆.

15. (Update initial pointer) Set the initial pointer for the next step to jk+1 = j.

Steps 1, 3 5, 7–12, 14 and 15 are identical to the original SC algorithm by England et al. (2004). Steps

2 and 4 were included to avoid occurrences of infinite loop repetitions. The zero problem in step 6 and

the addition of the new point in step 13 have been modified to take into account the implicit nature

of the map M`: step 6 uses RM `+1Lφ(α), while step 13 uses RM `Lφ(α∗).

Furthermore, if one considers the count of evaluations of the map M as the main computational

expense, one may increase efficiency by storing the values xR(α) of all α tested on a circle arc of

radius ∆ throughout multiple loops between steps 4 and step 8 and use a super-linearly convergent

bracketing scheme in step 7. The didactic code example uses the modified Regula Falsi.



Appendix B

Periodically forced DDE model:

dependence on forcing phase

Here we consider the forced scalar DDE

Ẋ(t) = −pX(t− τ) + rX(t)− sX(t− τ)2 −X(t− τ)2X(t)− uFP (t), (B.1)

where

FP (t) = sin((2π/T ) t− φ), φ ∈ [0, 2π]. (B.2)

Figure B.1 shows the effect of a phase shift on the basin of attraction for the small-amplitude periodic

orbit in the plane L([−0.65,−0.05]× [−0.65,−0.05]). We see that the phase shift can cause the initial

conditions to cross the boundary of basins of attraction. This is the same mechanism that is seen for

keeping the phase constant and increasing the forcing strength u (see Chapter 5, Section 5.3.3).
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Figure B.1: Basins of attraction for stable solutions of (B.1) under varying φ. Black indicates attrac-
tion to small-amplitude periodic orbit and beige indicates attraction to large-amplitude quasiperiodic
or chaotic response. (a) φ = 0, (b) φ = 1π

5 , (c) φ = 2π
5 , (d) φ = 3π

5 , (e) φ = 4π
5 , (f) φ = 2π; Other

parameters: p = 0.95, r = s = 0.8, u = 0.09, T = 4.1.
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