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Abstract  

A bi-objective optimisation using a compromise programming approach is proposed for the 

capacitated p-median problem in the presence of the fixed cost of opening facility and several 

possible capacities that can be used by potential facilities. As the sum of distances between 

customers and their facilities and the total fixed cost for opening facilities are important aspects, 

the model is proposed to deal with those conflicting objectives. We develop a mathematical 

model using integer linear programming (ILP) to determine the optimal location of open 

facilities with their optimal capacity. Two approaches are designed to deal with the bi-objective 

capacitated p-median problem, namely compromise programming with an exact method and 

with a variable neighbourhood search based matheuristic. New sets of generated instances are 

used to evaluate the performance of the proposed approaches. The computational experiments 

show that the proposed approaches produce interesting results.  

Keywords: the capacitated p-median problem, bi-objective, compromise programming, VNS 

 

 

1. Introduction 

The aim of the p-median problem (PMP) is to seek the location of p facilities among m discrete 

potential sites in such a way to minimise the sum of the distances between customers and their 

associated facilities. The PMP was originally formulated by ReVelle and Swain (1970). This 

problem is also known as the minisum location problem which is categorised as NP-hard (Kariv 

and Hakimi 1979). In the capacitated version of the p-median problem (CPMP), each customer 
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has a fixed demand where each potential facility has a known capacity. Each facility must serve 

the demand of its customers without violating its capacity. This capacity constraint 

significantly multiplies the complexity of the problem. Therefore, CPMP falls into NP-hard 

problems (Garey and Johnson 1979). 

In many real case applications, when finding the best location for the facilities, the fixed 

cost for opening facilities is usually taken into account.  The fixed cost of a potential facility 

may be dependent on its location and its capacity. One possible decision that has to be made is 

to determine the optimal location of open facilities and their corresponding capacity in order 

to minimise the sum of distances between facilities and their associated customers. As there is 

always a limited budget available, the decision makers should consider the total fixed cost for 

opening facilities. In the literature these two objectives are usually combined though both 

objectives may appear conflicting. Beheshtifar and Alimoahmmadi (2015) integrated 

geographical information system analysis with a genetic algorithm to locate optimum sites of 

new clinics using multiobjective criteria. Rath et al. (2016) proposed a two-stage bi-objective 

stochastic programming models to find depot locations in disaster relief operations. In their 

works, two objectives were used, i.e., monetary and humanitarian objectives. When unlimited 

budget is available, the open facilities will use a large capacity to ensure that customers will be 

served by their nearest facilities. In this case, the problem may be considered as the 

uncapacitated p-median problem.  

In this paper, we investigate the capacitated p-median problem in the presence of two 

conflicting objectives. To the best of our knowledge, there is no paper in the literature studying 

such a problem.  

The main contributions of this paper are as follows:  

 to develop a new mathematical model for the bi-objective capacitated p-median problem 

using compromise programming method, 

 to propose an effective variable neighbourhood search (VNS) to solve the bi-objective 

CPMP.  

The paper is organised as follows.  Section 2 provides a brief review of the past efforts at 

the capacitated p-median problem. In Section 3, mathematical models for the classical CPMP 

along with the new bi-objective CPMP are presented. A description of compromise 

programming method for solving the bi-objective CPMP is given in Section 4. The proposed 
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VNS to solve the problem is described in Section 5. Section 6 presents computational results 

using generated dataset. A summary of our findings and some avenues for future research are 

also provided in the last section. 

 

2. Literature Review 

The earliest works on the CPMP were done by Mulvey and Beck (1984) who designed two 

algorithms to tackle capacitated clustering problems and Pirkul (1987) who used the 

Lagrangian relaxation technique to solve communication networks deployment problems. 

Osman and Christofides (1994) integrated simulated annealing and tabu search to deal with the 

CPMP. Maniezzo et al. (1998) studied the CPMP by proposing a bionomic algorithm and an 

effective local search.  

Baldacci et al. (2002) dealt with the CPMP using a set partitioning formulation technique. 

The proposed technique was tested on benchmark instances from the literature and also on new 

sets of instances which the authors generated by considering bounds on the cluster cardinality 

and incompatibilities between entities. Lorena and Senne (2004) applied a column-generation 

method to solve the CPMP by incorporating the Lagrangean/surrogate relaxation to determine 

new bounds and new productive columns through a modified knapsack subproblem. Ahmadi 

and Osman (2005) integrated the Greedy Random Adaptive Search Procedure and the Adaptive 

Memory Programming (AMP) to create a greedy random adaptive memory search method in 

tackling the CPMP. 

Scheuerer and Wendolsky (2006) addressed the CPMP by proposing a scatter search 

heuristic. Several new best found solutions were obtained when the proposed scatter search 

heuristic was tested on benchmark instances from the literature. Díaz and Fernàndez (2006) 

hybridised a scatter search and path relinking algorithm for solving the CPMP. Fleszar and 

Hindi (2008) designed an effective variable neighborhood search to deal with the CPMP. 

Chaves et al. (2007) suggested a new hybrid heuristic known as clustering search for the CPMP. 

Boccia et al. (2007) developed a cutting plane algorithm based on Fenchel cuts to reduce 

considerably the integrality gap in solving hard CPMP instances. 

Landa-Torres et al. (2012) put forward two new evolutionary algorithms based on genetic 

algorithms and harmony search approach. A grouping encoding procedure is introduced within 

both algorithms to guide the search and a unique local search based on swapping approach is 
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applied to improve the solutions. Their experiments show that their results outperform the 

published evolutionary techniques. Yaghini et al. (2013a) hybridised a cutting-plane 

neighbourhood structure and tabu search to solve the CPMP. In the neighbourhood structure, 

three strategies were developed to choose an open median to be closed. In the following 

research, Yaghini et al. (2013b) proposed an efficient heuristic by integrating the local 

branching and relaxation induced neighbourhood search methods to deal with the CPMP.  

Stefanello et al. (2015) developed a three stage matheuristic algorithm known as the 

Iterated Reduction Matheuristic Algorithm (IRMA) to tackle the CPMP.  El Amrani et al.  

(2016) studied the CPMP by introducing a budget constraint into the problem. Three techniques 

were proposed to solve the problem i.e., a branch and cut algorithm, greatest customer demand 

first, and large neighbourhood search.   

In the literature, there were attempts to hybridise heuristic and mathematical programming 

approaches, known as matheuristics. This technique has been successfully used to solve hard 

combinatorial problems, see for instance, the works of Büdenbender et al. (2000), Taillard and 

Voss (2002), Talbi (2002), Dumitrescu and Stützle (2003), Puchinger and Raidl (2005), 

Fernandes and Lourenҫo (2006), Jourdan et al. (2009), Fanjul-Peyro and Ruiz (2011), and 

Stefanello et al. (2015). A comprehensive review on matheuristics is provided by Maniezzo et 

al. (2010) and Salhi (2017). As this technique has been proven to be effective and efficient to 

solve NP-hard problems, in this research, we propose a matheuristic technique to solve the bi-

objective CPMP.    

 

3. Problem Formulation 

In this section we first present the mathematical model of the capacitated p-median problem 

(CPMP) followed by the proposed model for the bi-objective capacitated p- median problem 

with the presence of fixed cost and multilevel capacities (bi-objective CPMP).  

 

The capacitated p-median problem (CPMP)   

The following notations are used to describe the sets, parameters and decision variables of the 

CPMP. 
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Sets 

I set of customers )},,...,1{( InnIi   

J set of potential sites )},,...,1{( JmmJj     

Parameters 

ijd  the distance between customer Ii  and facility Jj   

iw  the demand of customer Ii   

jb  the capacity of a facility located on site Jj  

p the number of open facilities 

Decision variables 

jY   = 


 

otherwise0,

 siteat  located isfacility  a if,1 Jj
 

ijX  = 


 

otherwise0,

facility   toassigned is customer  if,1 JjIi

 

 

The CPMP can be mathematically formulated as an Integer Linear Programming (ILP) as 

follows:  

Minimise  
 



Ii Jj

ijiji Xdw  (1) 

Subject to 

 IiX

Jj

ij 


1  (2) 

 




Jj

j pY  (3) 

 JjYbXw jj

Ii

iji 


,  (4) 

 JjIiYX jij  ,,0  (5) 

 JjY j  }1,0{  (6) 

 JjIiXij  ,}1,0{  (7) 

The objective function (1) aims to minimise the sum weighted distance between open facilities 

and their associated customers which we refer to as “total distances” in this paper. Constraints 
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(2) ensure that each customer is assigned to exactly one facility. Constraint (3) imposes that 

there must be p open facilities. Constraints (4) state that the sum of the demands of the 

customers assigned to each facility does not exceed its capacity. Constraints (5) prevent the 

assignment of customers to unopened facilities. Constraints (6) and (7) state the integrality 

conditions of the decision variables. 

 

The bi-objective capacitated p-median problem (bi-objective CPMP) 

In this subsection, the mathematical model of the bi-objective CPMP is presented where the 

presence of fixed cost and multilevel capacities are taken into account. In the new model, the 

capacity of open facilities is treated as a decision variable. Each potential facility has a set of 

possible capacities and the fixed cost for opening a facility is dependent on the facility location 

and the capacity used by the facility. The notations used for sets, parameters and decision 

variables in the proposed model are similar to the ones presented in the previous model with 

some additions described as follows: 

Set 

jR  the set of capacity designs for facility Jj .  

Parameters 

jrf̂  the fixed cost of potential facility j using capacity r ( jRr , Jj ) 

jrb̂  the amount of customers’ demand that can be served by potential facility j using 

capacity r ( jRr , Jj ) 

Decision Variables 

ijX  = 




otherwise0,

facility   toassigned is customer  if,1 ji
 

jrŶ  = 




otherwise0,

;design capacity  using  siteat  located isfacility  a if,1 rj
  

 

The bi-objective CPMP is much harder to solve than the classical model as the proposed model 

optimises both facilities’ location and their corresponding capacity. The problem can be 

modelled as a bi-objective optimisation model as follows:  
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Minimise  

  
 


Ii Jj

ijijid XdwZ  (8) 

  
 



Jj Rr

jrjrc

j

YfZ ˆˆ  (9) 

Subject to 

 IiX

Jj

ij 


1  (10) 

 JjY

jRk

jr 


,1ˆ  (11) 

  
 



Jj Rr

jr pY

j

ˆ  (12) 

   JjYbwX

jRr

jrjr

Ii

iij  


,ˆˆ  (13) 

 JjIiYX

jRr

jrij  


,,0ˆ  (14) 

 jjr RrJjY  ,}1,0{ˆ  (15) 

 JjIiXij  ,}1,0{  (16) 

The proposed model considers two objectives which contradict each other. The first objective 

function (8) is the same as the previous model, whereas the second one (9) is to minimise the 

total fixed cost for opening facilities. Note that in Dumitrescu and Stützle (2003) and El Amrani 

et al. (2016) both objectives are added to make one single objective function. Here we treat the 

two objectives separately within a bi-objective methodology. Constraints (10) ensure that each 

customer must be satisfied by one facility, whereas Constraints (11) guarantee that each open 

facility uses one capacity only. Constraint (12) states that the number of open facilities is set to 

p. Constraints (13) indicate that the capacity constraints for each facility. Constraints (14) 

ensure that each customer can only be served by an open facility. Constraints (15) and (16) 

define the integrality conditions of the decision variables.  
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4. Compromise programming for the bi-objective CPMP 

Multi-objective problems can be solved by several methods including Pareto efficient set 

generation, compromise programming and goal programming. In this paper, we use 

Compromise Programming (CP) to tackle the capacitated p-median problem in the presence of 

two conflicting objectives. CP was officially introduced by Yu (1973) to solve group decision 

problems and Zeleny (1974) to tackle multiple attribute decision analysis. Romero et al. (1998) 

showed that CP works well for bi-objective problems. As indicated by Romero and Rehman 

(1989), this technique aims to choose a solution from the set of efficient solutions based on a 

reasonable assumption that any decision maker seeks a solution as close as possible to the ideal 

point. A brief explanation on how the CP works can be found in Gan et al. (1996).  

In this method, a distance function is applied to measure the closeness between a solution 

and the ideal point where a group of Lp metrics is generally used. The general formulation of a 

CP approach is stated as follows:  

pn

i

p

ii

ii
ip

ZZ

ZxZ
LMin

1

1
*

*

*)(




















 



   (17) 

where  

p  the distance measure with p in range [1,∞] , 

n  the number of objectives, 

*
iZ   the ideal solution of objective i, 

*iZ   the anti-ideal solution of objective i, 

)(xZi  the compromise solution that minimises Lp , 

i   the weight/importance of objective i relative to the other objectives. 

In this study, as the problem is bi-objective, we set the value of p to 1 and . This will allow 

the calculation of all intermediate compromise set points. When p = 1, Equation (17) takes the 

following form: 

 


 




n

i ii

ii

i
ZZ

ZxZ
MinLMin

1
*

*

*

1

)(
   (18) 
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whereas if p = , the objective function (17)  aims to minimise the maximum deviation () as 

follows: 

MinLMin    (19) 

 ni
ZZ

ZxZ
ts

ii

ii

i ,...,1,
)(

..
*

*

*





    (20) 

Figure 1 shows the main steps of the CP for solving the bi-objective CPMP which consists 

of three stages. The first stage is to find the anti-ideal solution for each objective. Here, for 

each objective, the maximising problem is used instead of minimising.  

When solving maximising total fixed cost problem (Equation 9), we may only consider 

Constraints 11, 12 and 16 as the assignment of customers to their facilities may not be required. 

It is common that a facility with a larger capacity has a larger fixed cost. When solving the 

maximising total fixed cost problem, the optimiser will select the facilities with large fixed cost 

and large capacity. This will guarantee that the customers can be served by the open facilities. 

The maximising problem is relatively easy to solve by an exact method. The second stage is to 

obtain the ideal solution by optimising each objective (total distances and total fixed cost) 

separately subject to constraints 10 to 16. In this study, this problem is solved by an exact 

method (CPLEX). 

In Stage 3, the objective is to seek the solutions that minimise 1L  and L  as the 

compromise solutions are bounded by 1L  and L . In this study, the ILPs for 1L  and L  will 

be addressed using the exact method (CPLEX) and the proposed VNS based matheuristic. We 

propose the VNS based matheuristic for solving minimising 1L  and L  problems as these 

problems are very hard to solve especially for relatively large problems. 
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Fig. 1. The procedure of CP for solving the bi-objective CPMP 

 

 

 

Stage 1 

a. Using CPLEX, solve maximising (instead of minimising) total distances problem (Equation 8) 

subject to constraints 10 to 16. Let *dZ  be the anti-ideal total distances. 

b. Using CPLEX, solve maximising (instead of minimising) total fixed cost problem (Equation 9) 

subject to constraints 11, 12 and 15. Let *cZ  be the anti-ideal total fixed cost. 

Stage 2 

a. Using CPLEX, solve minimising sum distances problem (Equation 8) subject to constraints 10 

to 16. Let 
*
dZ  be the ideal total distances. 

b. Using CPLEX, solve minimising total fixed cost problem (Equation 9) subject to constraints 10 

to 16. Let 
*
cZ  be the ideal total fixed cost. 

Stage 3 

a. Using CPLEX/VNS, solve minimising 1L  problem subject to constraints 10 to 16 where 

 

*
*

*

*
*

*

1

))ˆˆ((1))((

cc

c

Jj Rr

jrjr

dd

d

Ii Jj

ijiji

ZZ

ZYf

ZZ

ZXdw

L
j












 
  



 (21) 

and α is the weight (parameter) of the first objective (total distances).  Let 
1
dZ  denote the total 

distances obtained and 
1
cZ  the total fixed cost. 

b. Using CPLEX/VNS, solve minimising L  problem where 

L  (22) 

subject to constraints 10 to 16 with additional constraints as follow: 








  
 

*
*

* ))((

dd

d
Ii Jj

ijiji

ZZ

ZXdw

 (23) 

 








  
 

*
*

*))ˆˆ((1

cc

c

Jj Rr

jrjr

ZZ

ZYf

j
 (24) 

Let 

dZ  be the total distances obtained and 


cZ  the total fixed cost. 

c. Compromise solutions are bounded by 1L  and L . 
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Figure 2 explains compromise solutions for the bi-objective CPMP. Points A and B are 

the ideal solutions for minimising total fixed cost and minimising total distances problems 

respectively. Point E is the anti-ideal or nadir point. All compromise solutions are bounded by 

Points C and D. The decision maker will pick from within this solution set based on their 

individual preferences.  

 

Fig. 2. Compromise solutions in the bi-objective CPMP 

 

5. The VNS based matheuristic for solving 1L  and L  problems 

Brimberg and Mladenović (1996) introduced a powerful metaheuristic method called variable 

neighbourhood search (VNS) for solving continuous location-allocation problems. Hansen and 

Mladenović (1997) first formally formulated this metaheuristic to solve the p-median problem. 

VNS and its extensions have been successfully implemented to solve various optimisation 

problems, such as vehicle routing problems, batching problems, polyphonic sheet music, 

among others (Vidović et al., 2017;  Kammoun et al., 2016; Menéndez et al.,  2017; Balliauw 

et al., 2017). Hansen and Mladenović (2001) and Hansen et al. (2010) provided VNS 

implementations and variants of VNS. VNS comprises local search and neighbourhood search. 

The local search seeks local optimality while the neighbourhood search aims to escape from 

these local optima by systematically using a larger neighbourhood if no improvement is found 

and then reverts back to the smaller one otherwise. In the VNS, the smallest neighbourhood is 

the one that is closest to the current solution, whereas the largest one farthest from the current 

E 

( , ) 

( , ) 
( , ) 

( , ) 

( , ) 

A 

C 

D 

B 

Zd 

Zc 
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solution (Hansen and Mladenovic, 1997). Figure 3 presents the main steps of the procedure of 

our VNS based matheuristic.   

In the first step, the parameters required in the proposed matheuristic method are defined. 

This includes the number of iterations (T) for solving the aggregated problems, the number of 

aggregated potential facilities (μ), the maximum computational time ( maxcpu ), the maximum 

computational time for CPLEX to solve the aggregated problems (  and   ) and the parameter 

that indicates the largest neighbourhood from incumbent solutions used by the proposed VNS 

( maxk ). 

The second step is an aggregation approach where an iterative process is conducted. 

Aggregation technique is usually used for solving location problems in the present/presence of 

a large number of demand points (customers). It may be impossible and time consuming to 

solve optimally the large location problems. The main idea behind the aggregation is to reduce 

the number of customers or potential facilities to be small enough so an optimiser can be used. 

Here, the problem is partitioned into smaller problems and can be solved within a reasonable 

amount of computing time. However, this aggregation may reduce the accuracy of the model 

as this aggregation introduces error in the data used by location models and models output. The 

aggregation approach has shown to be promising when solving large p-median (Irawan et al., 

2014; Irawan and Salhi, 2015a) and p-centre problems (Irawan et al., 2016). A review on the 

aggregation method for large facility location problems is provided by Irawan and Salhi 

(2015b).  
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Fig. 3. The procedure of the proposed VNS-based matheuristic  

Procedure VNS-based  

1. Define T, μ, maxcpu ,  ,    and maxk . Set z . 

2. Do the following steps T  times: 

a. Aggregate m to μ potential facility sites using random approach and by including the 

facility locations in the incumbent solution (S).   

b. Solve the aggregated 1L  and L  problems using the exact method (CPLEX) within 

  seconds. Let z  be its objective function value with S   and U   as vectors of the 

obtained facility configuration and their corresponding capacity design respectively.  

a. If zz   then set zz  , SS   and UU  . 

3. Update zz  , SS  , and UU   

4. Set k = 1 

5. Shaking Procedure.  

Do the following step k times: 

a. Choose randomly a potential facility, say facility ĵ  )ˆ( Sj  . Pick randomly the 

capacity for facility ĵ , say capacity r̂ . 

b. Remove a facility (the nearest form facility ĵ ) from the current solution and insert 

facility ĵ  into current solution S   and update rU j
ˆˆ  .  

c. Calculate the total capacity of facilities. If it is less than the total demand then go 

back to Step 5(a). Calculate the total fixed cost for opening facilities ( cZ  ) based on 

S   and U   

d. Implement CPLEX to solve the assignment problem (GAP) within    seconds 

based on S   and U  so the total distance ( dZ  ) is obtained. Calculate z  (for 1L  or 

L  problems) based on cZ   and dZ  . 

6. Local search  

Implement the proposed local search (presented in Figure 4) with z , S  , U  , cZ   and 

dZ   as inputs and outputs.  

7. Move or Not 

If zz   then  

Update k = 1 along with zz  , dd ZZ  , cc ZZ  , SS  , and UU   

Else  

Update k = k + 1 along with zz  , dd ZZ  , cc ZZ  , SS  , and UU   

8. If computing time is greater than maxcpu  then go to Step  10 

9. If maxkk   go back to Step 5 

10. Return z, cZ , dZ , S , and U . 
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In this paper, the second step aims to generate a relatively good initial solution using 

aggregation approach. This step incorporates potential facility sites aggregation and the use of 

the exact method (CPLEX). Firstly, we select randomly μ potential sites out of m sites. When 

selecting the aggregated potential facility sites, the aggregation includes the facility sites found 

in the previous iteration (the best solution). In the first iteration, for the minimising 1L  problem 

the best solution is from the solution produced by Stage 2b of Figure 1 whereas for the 

minimising L  problem it is from the solution generated by minimising 1L  problem (using 

VSN).  The aggregated problem (minimising 1L  or L ) consisting of n customers and μ 

(instead of m) potential facility sites is then solved by CPLEX within   seconds. The sets of 

facility sites and their corresponding capacity design are denoted by S and U respectively. The 

obtained solution is then fed to the next iteration as part of the set of the aggregated potential 

sites. The process is repeated T times and the best solution from this step will be fed to the next 

step which is the VNS algorithm. 

In the proposed VNS, the shaking process (Step 5) is conducted by inserting a randomly 

selected facility, say facility ĵ  )ˆ( Sj  , and removing a facility (the nearest facility form 

facility ĵ ) from the current solution. Note that, the capacity for facility ĵ  is also randomly 

selected, say capacity r̂  )ˆ(
ĵ

Rr . The total capacity of selected facilities in the current 

solution must be greater than the total customer demand. As the capacity of each selected 

facility is known, the total fixed cost of opening facilities ( cZ ) can be calculated. To calculate 

the objective function value (z) of the new solution (for minimising 1L  or L ), the total 

distance ( dZ ) must be determined. This can be achieved by solving the generalised assignment 

problem (GAP) which can be solved by CPLEX. In this study, we limit the computational time 

for CPLEX to solve the GAP to    seconds.  The mathematical formulation of the GAP is 

expressed in Equation (25) – (28). 

  Minimise    
 



Sj Ii

iijijd wdXZ  (25) 

Subject to 

IiX

Sj

ij 


,1  (26) 

 SjbwX jr

Ii

iij 


,ˆ  (27) 
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SjIiXij  ,}1,0{  (28) 

The GAP is still relatively difficult to solve due to the binary nature of the decision variable 

)( ijX . In Constraints (27), capacity jrb̂

 

is fixed as index r is element of set U. The shaking 

procedure is repeated k times.  

In Step 6, the proposed local search is put forward to improve the quality of solution by 

finding the local optima. The description of our proposed local search is provided in next 

subsection. In Step 7 of the algorithm (Move or Not), if local search is not able to improve the 

solution, a larger neighbourhood is systematically used otherwise the smallest one will be used. 

This can be performed by updating the value of k where k = maxk  indicates the largest 

neighbourhood while 1k  represents the smallest one. In the VNS, the smallest 

neighbourhood is the one that is closest to the current solution, whereas the largest one farthest 

from the current solution (Hansen and Mladenovic, 1997). 

 

The proposed local search 

The proposed local search is designed based on the interchange heuristic using a first 

improvement strategy. The main steps of the proposed local search are presented in Figure 4. 

The algorithm aims to seek a facility location site along with its capacity to be swapped with a 

facility site used in the current solution. The swap will be done if improvement occurs. First, 

the average distance ( d̂ ) between facilities in the current solution (S) is calculated. This 

distance will be a criterion whether a facility site in current solution can be swapped with a 

potential facility site or not. If the distance between these two facility sites is greater than d̂  

then the swap process will not be conducted. This is to save the computational time where a 

facility in current solution can be only swapped with the one near to this facility. Salhi (2017) 

also pointed out that the use and design of neighbourhood reduction is found to be promising. 

In Step 2c of Figure 4, each facility of a potential facility to be inserted in the solution is 

evaluated. First, the total capacity of the facilities in the new solution must be large enough to 

serve customers demand. The total fixed cost ( cZ ) is then determined. The total distance )( dZ  

is obtained by solving the GAP using CPLEX within    seconds. The objective function value 

z  (for 1L  or L  problems) can be calculated based on cZ  and dZ . The best capacity for the 

potential facility is the one that yields the smallest objective function value. In Step 2d, the 
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swap will be performed if an improvement occurs. The local search process will be restarted 

from the beginning once an improvement is made. 

 

Fig. 4. The main steps of the proposed local search  

 

Procedure LocalSearch (z, cZ , dZ , S , and U ) 

1. Calculate the distance criteria d̂  (the average distance between facilities in current 

solution) 

2. For each potential facility SjJj  ˆ,ˆ , do the following: 

For each facility Sj  (current solution) do the following procedure: 

a. If dd jj
ˆ

ˆ,
  then continue (skip following steps under loop j) 

b. Set z , SS  , and UU   

c. For each capacity j
Rr ˆ  do the following steps: 

 Set SS   and UU  . Update rU
j
̂  

 Calculate the total capacity of facilities. If it is less than the total 

demand then continue (skip the following steps under loop r).  

 Calculate the total fixed cost ( cZ  ) based on S   and U  . 

 Solve the GAP using CPLEX within    seconds based on S   and U 

so the total distance ( dZ  ) is obtained. Calculate z   (for 1L  or L  

problems) based on cZ   and dZ  . 

 If zz   and the solution is feasible, do the followings: 

- Update zz  , dd ZZ  , cc ZZ  , SS  , and UU   

End for r 

d. If zz  do the followings: 

- Update zz  , dd ZZ  , cc ZZ  , SS  , and UU   

- Go to Step 1 

End for j 

End for ĵ  

3. Return z, cZ , dZ , S , and U . 

 



17 

 

6. Computational Study 

We carried out extensive experiments to examine the performance of the proposed solution 

method. This was coded in C++ .Net 2012 where the IBM ILOG CPLEX version 12.63 Concert 

Library was also used to solve the problems with an exact method. The computational 

experiments were conducted on a PC with an Intel Core i5 CPU @ 3.20GHz processor, 8.00 

GB of RAM. To the best of our knowledge, there is no benchmark dataset available in the 

literature for the proposed problem; hence we constructed four new datasets with 150n  to 

600 with an increment of 150. In this experiment, the potential facility locations are located in 

the customer sites i.e. nJ  . Each potential facility has three possible capacities 

),3( JjR j   where the values of jrb̂  (the amount of customers’ demand that can be served 

by potential facility j using capacity r) and jrf̂  (the fixed cost of potential facility j using 

capacity r) are randomly generated. The demand of each customer is also randomly generated 

in the range of [1, 10]. The value of p varies from 10 to 30 with an increment of 5. 

Table 1 presents the computational results in obtaining ideal and anti-ideal solutions 

(Stages 1 and 2 of Figure 1) using the exact method (CPLEX 12.63). The table shows that all 

instances can be solved optimally by CPLEX within a relatively short computational time. The 

maximising total cost problem is very easy to solve as there is no assignment task in this 

problem. On the other hand, the minimising total distance is relatively hard to solve. In general, 

when the value of n increases, the computational time needed to solve the problems also grows 

significantly.  

The compromise solutions are obtained by solving minimising 1L  and L  problems. In 

this experiment, we set the weight of the first objective (total distances) to 0.5. This means that 

the weight of the second objective (total fixed cost) is also 0.5. These problems are very hard 

to solve by the exact method. Therefore, we propose the VNS based matheuristic. To evaluate 

the performance of our proposed matheuristic, we compare the solutions of the proposed 

method with solutions of the exact method (using CPLEX). Here, we limit the computing time 

of CPLEX to 2 hours for each problem (minimising 1L  and L  problems). The upper bound 

value obtained from CPLEX for each problem is treated as an objective function value of the 

exact method. In order to assess the performance of the proposed methods, the deviations (Dev) 

between the z value obtained by our proposed matheuristic and the best z* (the best objective 
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function value that can be produced by either the exact method or the proposed matheuristic) 

are calculated using the following formula: 






z

zz
Dev

p
 (29) 

where zp refers to the objective function value of the feasible solution obtained by either the 

exact method or the proposed solution methods.  

Table 1  

Computational results in obtaining ideal and anti-ideal solutions 

n p 

Total Distance Total Cost 

Minimising Problem  Maximising Problem  Minimising Problem  Maximising Problem 

*
dZ  CPU (s)  

*dZ  CPU (s)  *
cZ  CPU (s)  

*cZ  CPU (s) 

150 

10 13,776 1.14  134,449 0.88  60,933 0.08  155,658 0.00 

15 10,472 1.09  134,450 0.97  62,793 3.10  232,702 0.02 

20 8,245 1.15  134,450 1.14  63,476 0.08  309,432 0.01 

25 6,717 0.88  134,449 0.85  65,739 8.40  385,850 0.01 

30 5,729 1.04  134,449 0.83  67,776 489.21  461,486 0.01 

300 

10 52,956 15.98  480,801 6.68  107,644 0.32  277,821 0.01 

15 41,853 11.48  480,801 6.60  108,993 0.17  415,476 0.02 

20 35,117 12.17  480,801 6.33  112,528 1,076.34  553,131 0.02 

25 30,463 9.92  480,801 6.13  114,053 3.11  690,508 0.00 

30 26,727 9.22  480,801 6.30  115,754 0.06  826,773 0.00 

450 

10 124,994 107.87  1,138,028 40.38  170,684 0.77  441,000 0.02 

15 98,484 97.02  1,138,028 40.65  172,262 0.11  660,618 0.02 

20 83,386 76.15  1,138,028 40.45  177,711 24.92  878,913 0.02 

25 72,860 73.59  1,138,028 40.80  179,928 0.13  1,097,208 0.02 

30 64,792 69.43  1,138,028 40.95  182,434 0.06  1,314,180 0.02 

600 

10 232,953 827.97  2,017,681 91.84  227,974 0.17  589,500 0.00 

15 186,715 534.98  2,017,681 92.52  230,117 0.12  883,070 0.02 

20 156,587 425.35  2,017,681 92.10  237,031 5.38  1,174,870 0.00 

25 135,376 258.96  2,017,681 92.42  239,307 0.16  1,466,670 0.00 

30 121,149 198.60  2,017,681 92.95  241,902 0.05  1,758,470 0.00 

Average  136.70   35.09   80.64   0.01 

 

In the proposed VNS based matheuristic, we set parameters T = 10, μ = min(50,4p), 

pcpu 40max  , p2 , 5.0  and 10max k . Those parameters were chosen based on our 

preliminary experiments. The values of T, μ and   affect the quality of the initial solution 

produced. The higher the values of T, μ and  , the higher is the chance of getting a better initial 

solution. However, the computing time increases with increasing values of T, μ and  .  
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Tables 2 and 3 present computational results in obtaining compromise solutions using the 

exact method and the VNS based matheuristic respectively. In the tables, the first four columns 

refer to the number of customers/potential facilities, the number of open facilities, the best 1L  

and the best L . The next two blocks of five columns each refer to the objective function value 

( 1L / L ), Deviation (Dev), the total distance ( 1
dZ / 

dZ ), the total cost ( 1
cZ / 

cZ ), and the CPU 

time in seconds. The bold face in the tables refers to the optimal solutions. According to Table 

2, within 2 hours, CPLEX was able to guarantee optimality only for one instance in the 

minimising 1L  problem and two instances in the minimising L  problem. 

Based on the average deviation in the tables, the VNS based matheuristic performs better 

than the exact method in obtaining the compromise solutions, especially for the large problems. 

For the minimising 1L  problem, the proposed method yields an average deviation of 0.1075 

whereas the exact method produces 0.2670. For the minimising L  problem, the proposed 

method and the exact method produce deviation of 0.0250 and 3.6985 respectively. In 

summary, the VNS based matheuristic is found to be the best performer for obtaining the 

compromise solutions as it produced the smallest deviation. Moreover, the VNS based 

matheuristic runs much faster than the exact method as the exact method is approximately eight 

time times longer compared to the VNS based matheuristic.  

Based on the results from Tables 2 and 3, it can be noted that the solutions obtained by 

either CP with exact method or with VNS based matheuristic for 1L  and L  are quite close to 

each other. As all the compromise solutions are bounded by 1L  and L , they are not much 

different from one another. Prior justification for choosing a solution on the compromise set 

bounded by 1L  and L  is needed. For example, if the decision maker thinks that total cost is 

more important, then the solution generated by minimising 1L  is a desirable choice. 
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Table 2  

Computational results in obtaining compromise solutions using the exact method 

n p 
The best 

1L  

The best 

L  

Exact Method 

Minimising 1L  problem   Minimising L  problem 

1L  Dev 1
dZ  

1
cZ  CPU (s)  

L  Dev 
dZ  


cZ  CPU (s) 

150 

10 0.01612 0.01187 0.01612 0.0000 17,162 61,329 425  0.01187 0.0000 16,641 63,178 2,734 

15 0.01590 0.00921 0.01590 0.0000 13,291 64,334 7,212  0.00921 0.0000 12,756 65,915 5,756 

20 0.01513 0.00880 0.01513 0.0000 11,026 65,498 7,202  0.00880 0.0000 10,445 67,803 7,232 

25 0.01085 0.00561 0.01102 0.0152 8,023 69,519 7,236  0.00561 0.0000 8,147 69,332 7,202 

30 0.01055 0.00566 0.01055 0.0000 7,461 70,784 7,220  0.00582 0.0280 7,225 72,357 7,205 

300 

10 0.02606 0.01637 0.02606 0.0000 71,793 109,020 7,200  0.01637 0.0000 66,967 112,723 7,200 

15 0.01728 0.01093 0.01728 0.0000 53,334 111,571 7,200  0.01093 0.0000 51,453 115,688 7,200 

20 0.01287 0.00757 0.01287 0.0000 43,965 115,121 7,206  0.00828 0.0946 42,501 119,648 7,200 

25 0.00769 0.00455 0.00769 0.0000 34,167 118,184 7,207  0.00485 0.0671 34,833 119,383 7,203 

30 0.00700 0.00473 0.00700 0.0000 30,847 119,256 7,206  0.00473 0.0000 31,020 122,482 7,200 

450 

10 0.02252 0.01666 0.02513 0.1157 171,638 171,823 7,201  0.01968 0.1814 164,873 177,982 7,201 

15 0.01768 0.01391 0.01768 0.0000 131,638 173,956 7,203  0.01832 0.3177 136,581 188,943 7,201 

20 0.01109 0.00842 0.01109 0.0000 103,180 180,100 7,201  0.00842 0.0000 99,953 189,516 7,201 

25 0.00880 0.00398 0.00880 0.0000 80,846 189,204 7,201  0.00467 0.1726 82,691 188,498 7,201 

30 0.00751 0.00417 0.00751 0.0000 70,208 193,718 7,201  0.00417 0.0000 73,750 191,814 7,201 

600 

10 0.02687 0.01735 0.03942 0.4672 323,577 238,119 7,201  0.20002 10.5259 946,927 371,025 7,201 

15 0.01926 0.01512 0.04697 1.4384 264,625 263,677 7,201  0.04620 2.0559 338,509 290,444 7,201 

20 0.01386 0.00790 0.01933 0.3946 206,178 248,292 7,202  0.02240 1.8336 238,084 279,044 7,201 

25 0.00764 0.00405 0.02415 2.1603 148,522 290,006 7,201  0.02526 5.2307 176,247 301,324 7,201 

30 0.00805 0.00426 0.01407 0.7479 146,317 264,453 7,201  0.23190 53.4615 1,000,744 771,965 7,202 

Average    0.2670   6,866   3.6985   6,907 
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Table 3  

Computational results in obtaining compromise solutions using the VNS based matheuristic 

n p 

The best 

known 

1L  

The best 

known 

L  

VNS based matheuristic 

Minimising 1L  problem  Minimising L  problem 

1L  Dev 1
dZ  

1
cZ  CPU (s)  

L  Dev 
dZ  


cZ  CPU (s) 

150 

10 0.01612 0.01187 0.01612 0.0000 17,162 61,329 400  0.01187 0.0000 16,641 63,178 400 

15 0.01590 0.00921 0.01590 0.0000 13,291 64,334 601  0.00944 0.0252 12,811 66,002 600 

20 0.01513 0.00880 0.01625 0.0742 11,139 65,831 804  0.00884 0.0051 10,439 67,825 801 

25 0.01085 0.00561 0.01085 0.0000 8,346 68,604 1,001  0.00565 0.0067 8,160 69,329 1,002 

30 0.01055 0.00566 0.01072 0.0158 7,414 71,059 1,201  0.00566 0.0000 7,185 72,182 1,202 

300 

10 0.02606 0.01637 0.02641 0.0137 70,884 109,503 401  0.01692 0.0331 67,432 113,354 401 

15 0.01728 0.01093 0.02042 0.1817 55,759 111,803 602  0.01154 0.0556 51,983 116,068 603 

20 0.01287 0.00757 0.01440 0.1192 43,690 116,745 810  0.00757 0.0000 41,863 119,174 808 

25 0.00769 0.00455 0.00940 0.2220 34,450 119,791 1,011  0.00455 0.0000 34,503 119,295 1,010 

30 0.00700 0.00473 0.00941 0.3437 30,372 123,421 1,211  0.00500 0.0566 31,249 122,863 1,210 

450 

10 0.02252 0.01666 0.02252 0.0000 163,045 172,707 401  0.01666 0.0000 158,749 179,679 410 

15 0.01768 0.01391 0.02490 0.4081 143,739 175,318 610  0.01391 0.0000 127,395 183,753 610 

20 0.01109 0.00842 0.01401 0.2635 104,028 183,634 810  0.01086 0.2898 106,287 192,893 811 

25 0.00880 0.00398 0.00928 0.0535 84,152 187,220 1,010  0.00398 0.0000 81,347 186,943 1,010 

30 0.00751 0.00417 0.01092 0.4546 75,835 195,510 1,211  0.00429 0.0272 73,919 192,138 1,211 

600 

10 0.02687 0.01735 0.02687 0.0000 304,040 233,000 404  0.01735 0.0000 293,850 240,522 401 

15 0.01926 0.01512 0.01926 0.0000 238,138 236,936 610  0.01512 0.0000 242,071 249,276 611 

20 0.01386 0.00790 0.01386 0.0000 191,500 245,432 810  0.00790 0.0000 186,010 251,307 810 

25 0.00764 0.00405 0.00764 0.0000 150,117 248,450 1,010  0.00405 0.0000 150,640 248,915 1,011 

30 0.00805 0.00426 0.00805 0.0000 133,826 256,181 1,211  0.00426 0.0000 137,015 254,817 1,210 

Average    0.1075   806   0.0250   807 
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7. Conclusion 

This paper investigates the bi-objective capacitated p-median problem using compromise 

programming approach. A new problem is studied by considering the fixed cost of opening 

facility and several possible capacities that can be used by potential facilities. An optimisation 

model is developed to deal with two conflicting objectives, namely the total distances and the 

total fixed cost. A mathematical model using integer linear programming (ILP) is put forward 

to find the optimal location of open facilities with their optimal capacity. As the exact method 

experiences difficulties in finding the compromise solutions, a VNS based matheuristic is 

proposed. The proposed solution method incorporates an aggregation technique, the exact 

method, and the VNS algorithm. The proposed approach was assessed using newly generated 

datasets. The solutions of the proposed VNS based matheuristic were compared with the ones 

obtained by the exact method executed within a limited computing time. Based on the 

computational results, the VNS based matheuristic performs very well as it produced small 

deviations within a short computational time.  

 The following research directions may be worthy of investigation in the future. We 

classify them into two categories, namely problem-based and approach-based issues. In the 

problem-based case, this bi-objective problem can also be applied for/to the location-routing 

problem (LRP) where the problem is to determine the location of facilities, assigning customers 

to them and determining vehicle routes. Nagy and Salhi (2007) provides an excellent review 

on the LRP. From an approach-based point of view, the solution technique could include other 

heuristic frameworks, such as hybridisation heuristic search techniques, see Salhi (2017) for 

more comprehensive classifications on heuristics/ meta-heuristics approaches.  
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