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Summary: Microbes drive most ecosystems and are modulated by viruses that impact their 
lifespan, gene flow and metabolic outputs. However, the influence of viral community diversity 55 
at the ecosystem level remains difficult to assess due to classification issues and few reference 
genomes. Here we establish a ~12-fold expanded global ocean virome dataset of 195,728 viral 
populations, now including the Arctic Ocean, and validate that these populations form discrete 
genotypic clusters. Meta-community analyses revealed just five ecological zones throughout the 
global ocean, and established local and global patterns and drivers in viral community diversity 60 
at levels of both macrodiversity (inter-population diversity) and microdiversity (intra-population 
genetic variation). These patterns sometimes, but not always, paralleled those from macro-
organisms and revealed temperate and tropical surface waters and the Arctic as biodiversity 
hotspots and mechanistic hypotheses to explain them. With this further understanding of viral 
populations and ecology in the ocean, viruses can be more broadly included in ecosystem 65 
models.    
Introduction: 

Biodiversity is essential for maintaining ecosystem functions and services (reviewed by 
Tilman et al., 2014). Marine ecosystems represent 90% of the Earth’s habitable volume and play 
an integral role in supporting human wellbeing, including food resources for more than 3 billion 70 
people (Hazen et al., 2018). Meta-analyses looking at changes in marine biodiversity show that 
biodiversity loss increasingly impairs the ocean’s capacity to produce food, maintain water 
quality, and recover from perturbations (Worm et al., 2006). To date, marine conservation efforts 
have focused on specific organismal communities, such as fisheries or coral reefs, rather than 
conserving whole ecosystem biodiversity. However, emerging studies across diverse 75 
environments show that the stability and diversity of higher trophic level organisms rely upon 
diversity throughout the food web (e.g. Soliveres et al., 2016). In the oceans, microbes represent 
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~70% of marine organismal biomass and are the foundation of the food web (Bar-On et al., 
2018). For ocean microbes and their viruses, global surveys that parallel century-old global 
terrestrial and decades-old marine macro-organismal global biodiversity surveys (Reiners et al., 80 
2017) are now emerging (e.g. de Vargas et al., 2015; Sungawa et al., 2015; Brum et al., 2015; 
Roux et al., 2016; Table S1). Key to assessing biodiversity changes across marine ecosystems is 
improving our understanding of current microbial biodiversity levels, distribution patterns, and 
their ecological drivers. 

Despite their tiny size, viruses play a large role in marine ecosystems and food webs. For 85 
example, viral mortality is credited with lysing approximately 20-40% of bacteria per day and 
releasing carbon and other nutrients that impact the food web (reviewed by Suttle, 2007). 
Beyond mortality, viruses can alter evolutionary trajectories of microbial communities by 
transferring ~1029 genes per day globally (Paul, 1999) and biogeochemical cycling by 
metabolically reprogramming host photosynthesis, as well as central carbon metabolism and 90 
nitrogen and sulfur cycling (reviewed in Hurwitz & U'Ren, 2016). Finally, as the oceans are 
estimated to capture half of human-caused carbon emissions (Le Quéré et al., 2018), it is notable 
that genes-to-ecosystems modeling has placed viruses as central players of the ocean ‘biological 
pump’ (Guidi et al., 2016). Many of these discoveries are very recent as ocean viral genome 
sequence space is explored at the level of viral macrodiversity, i.e., inter-population diversity, 95 
throughout the global oceans -- at least for the most abundant double-stranded DNA viruses 
sampled (Table S2).  

In spite of this progress in studying marine viral macrodiversity, virtually nothing is 
known about microdiversity, i.e., intra-population genetic variation. Such microdiversity, at least 
in eukaryotic organisms, is thought to drive adaptation and speciation to promote and maintain 100 
stability in ecosystems (Hughes et al., 2008; Larkin & Martiny, 2017). This is likely also true in 
viruses since even a few mutations can alter host interactions and alter ecological and 
evolutionary dynamics for the genotype (e.g. Marston et al., 2012; Petrie et al., 2018). In nature, 
viral microdiversity measurements have been limited to marker genes (e.g. genes encoding major 
capsid proteins), which do not capture community-wide variability and genome-wide evidence of 105 
selection (e.g. Achtman & Wagner 2008; Sullivan, 2015). Recently, deeper metagenomic 
sequencing and population genetic theory-grounded species delimitations (Shapiro et al., 2012; 
Cadillo-Quiroz et al., 2012) have begun to reveal such microdiversity in microbes, and this has 
elucidated unknown features of speciation, adaptation, pathogenicity and transmission (e.g. 
Snitkin et al., 2011; Schloissnig et al., 2013; Rosen et al., 2015; Lee et al., 2017; Smillie et al., 110 
2018). Although parallel species delimitations are now available for viruses (Gregory et al., 
2016; Bobay et al., 2018), no datasets are yet available to explore genome-wide microdiversity 
in viruses, particularly at the global scale. 

Here we leverage the Tara Oceans global oceanographic research expedition sampling to 
establish a deeply-sequenced, global-scale ocean virome dataset and use it to assess the validity 115 
of the current viral population definition and to establish and explore baseline macro- and micro-
diversity patterns with their associated drivers across local to global scales. These data have been 
collected and analyzed in the context of the larger Tara Oceans Consortium systematically-
sampled, global-scale, viruses-to-fish-larvae datasets (de Vargas et al., 2015; Sungawa et al., 
2015; Brum et al., 2015; Lima-Mendez et al., 2015; Pesant et al. 2015; Roux et al., 2016), and 120 
help establish foundational ecological hypotheses for the field and a roadmap for the broader life 
sciences community to better study viruses in complex communities.  
Results & Discussion:  
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The dataset. The Global Ocean Viromes 2.0 (GOV 2.0) dataset is derived from 3.95 Tb 
of sequencing across 145 samples distributed throughout the world’s oceans (Fig. 1A and Table 125 
S3; see Methods). These data build on the prior GOV dataset (Roux et al., 2016) by increased 
sequencing for mesopelagic (empirically defined as deep waters below 150m to 1,000m in our 
dataset) and Southern Ocean samples and upgrading assemblies for all 104 original GOV 
samples -- both of which drastically improved sampling of the ocean viruses in these samples 
(results below). Additionally, we added 41 new samples derived from the Tara Oceans Polar 130 
Circle (TOPC) expedition, which traveled 25,000 km around the Arctic Ocean in 2013. These 41 
Arctic Ocean viromes were generated to represent the most significantly climate-impacted region 
of the ocean, and an extreme environment. No such metagenome-based viral data exist for the 
Arctic region (Deming & Collins 2017), and more generally, for many planktonic organisms, 
systematic sampling is uneven throughout the Arctic Ocean (CAFF State of the Arctic Marine 135 
Biodiversity Report) due to geopolitical and physical challenges of sampling these regions.  

The first step to studying viral biodiversity from the assembled GOV 2.0 dataset (see 
Methods) was to identify contigs that likely derive from viruses using tools that collectively 
utilize homology to viral reference databases, probabilistic models on viral genomic features, and 
viral k-mer signatures (see Methods). These putative viral contigs were then assigned to 140 
‘populations’, which are currently defined as viral contigs ≥10 kb where ≥70% of the shared 
genes have ≥95% average nucleotide identity (ANI) across its members (Brum et al., 2015; Roux 
et al., 2016; Roux et al., 2018 in press; population definition also discussed below). This process 
identified 195,728 viral populations in the GOV 2.0 dataset, which is a ~12-fold increase over 
the 15,280 identified in the original GOV dataset and assemblies (Roux et al., 2016) and 145 
augments prior marine viromic work (Tables S2). Of these original GOV viral populations, 
12,708 were represented by single contigs and most (92%) were recovered in GOV 2.0 (Fig. 1B-
inset), though with average lengths increased 2.4-fold from 18 kbp to 44 kbp (Fig. 1B). Outside 
these GOV-known and now improved viral populations, an additional 180,448 new GOV 2.0 
viral populations were identified -- derived mostly (58%) from improved assemblies and deeper 150 
sequencing of the original GOV samples, and the rest (42%) from the 41 new Arctic Ocean 
viromes. Finally, new methods to identify shorter viral contigs (see Methods) were applied and 
these identified another 292,402 contigs as viral (5-10 kb length and/or circular), which, when 
added to the earlier data and clustered at ≥95% ANI, resulted in a total of 488,130 viral 
populations. While the annotatable fraction consisted of dsDNA viral families (Fig. 1C), most 155 
(90.2%) did not classify into any known viral family. Separately, known biases of the methods 
available at the time select against large dsDNA or any ssDNA and RNA viruses (see Methods), 
so these groups remain unexplored in the GOV 2.0 dataset.  

Validating viral ‘population’ boundaries. Defining species is controversial for 
eukaryotes and prokaryotes (Kunz 2013; Cohan 2002; Fraser et al., 2009) and arguably even 160 
more controversial for viruses (Bobay et al., 2018), probably because of the paradigm of rampant 
mosaicism stemming from the rapid evolutionary rates of ssDNA and RNA viruses [reviewed by 
(Duffy et al., 2008)]. The biological species concept, often referred to as the gold standard for 
defining species, defines species as interbreeding individuals that remain reproductively isolated 
from other such groups. To adapt this to prokaryotes and viruses, studies have explored patterns 165 
of gene flow to determine whether they might maintain discrete lineages as reproductive 
isolation does in eukaryotes. Indeed, gene flow and selection define clear boundaries between 
groups of bacteria, archaea and viruses (Shapiro et al., 2012; Cadillo-Quiroz et al., 2012; 
Gregory et al., 2016; Bobay et al., 2018). Because gene flow between groups is impossible to 
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measure for many groups, the term ‘species’ is rarely used for prokaryotes or viruses described 170 
in this way, and instead discrete lineages are described as ‘populations.’  

Separate from these population genetic theory grounded observations, evidence for gene 
flow constrained lineage cohesiveness in prokaryotes has emerged from evaluating whether 
metagenomic read-mapping reveals sequence-discrete populations or not. Indeed, this has been 
observed for over a decade in prokaryotes (Konstantinidis & Tiedje 2005) and more recently for 175 
some dsDNA viruses (viral-tagged metagenomes and 142 isolate genomes for marine 
cyanophages; Deng et al. 2014, Gregory et al. 2016; Table S4). Buoyed by these signatures of 
dsDNA viruses obeying the biological species concept (Bobay et al., 2018), viral ecologists have 
established the definition of viral populations described above (Brum et al., 2015; Roux et al., 
2016; Roux et al., 2018 in press). Because this empirically-derived ≥95% ANI cut-off requires 180 
deeply sequenced groups, so only cyano- and myco-phages have been evaluated (Gregory et al., 
2016; Bobay et al., 2018). Further, an emergent hypothesis suggests that phages evolve with very 
different modes and tempos driven by differing temperate or obligately lytic lifestyles (Mavrich 
& Hatfull, 2017). Thus there is need to evaluate how generalizable this viral population 
definition is in nature. 185 

To test this, we permissively mapped metagenomic reads against our 488,130 GOV 2.0 
viral populations by allowing ‘local’ matching as low as 18% nucleotide identity, and 
statistically identifying ‘breaks’ in the resulting read frequency histograms (see Methods). This 
revealed that, on average, the break occurred such that reads <92% nucleotide identity failed to 
map (Fig. 2A; full results Table S5), which resulted in a genome-wide signature of ≥95% ANI 190 
for nearly all (99.9% or 487,875) of the GOV 2.0 viral populations, including the smaller 5-10 kb 
viral populations (Fig. 2B). This implies that the observed viral populations in the dataset are 
predominantly and detectably sequence-discrete. This result is consistent with data from viral-
tagged metagenomes (Deng et al., 2014) and gene-sharing networks of prokaryotic virus 
genomes (Iranzo et al., 2016, Bolduc et al., 2017), which also showed that sampled viral genome 195 
sequence space is clustered at each ‘species’ and ‘genus’ levels, respectively. Thus, while 
ssDNA and RNA viruses have variable and elevated genome evolutionary rates that can erode 
species boundaries [reviewed by (Duffy et al., 2008)], it appears that metagenome-assembled 
dsDNA viral populations for the most part form discrete genotypic clusters and can be 
appropriately delineated via a ≥95% genome-wide ANI cut-off.  200 

Meta-community analysis reveals 5 ecological zones. Having organized this global 
sequence space into discrete and biologically meaningful populations, we next sought to use 
metagenome-derived abundance estimates to establish patterns and drivers of viral population 
diversity across the global ocean across multiple levels of ecological organization (Fig. 3). This 
revealed that the 145 GOV 2.0 viral communities assorted into just five meta-communities, 205 
denoted ecological zones, whether assessed using Bray-Curtis dissimilarity distances in principle 
coordinate analysis (Fig. 4A), non-metric multidimensional scaling (Fig. S1A), or hierarchical 
clustering (Fig. S1B) and after accounting for variable sample sizes (see Methods). We 
designated these 5 emergent ecological zones as the Arctic (ARC), Antarctic (ANT), 
bathypelagic (BATHY), temperate and tropical epipelagic (TT-EPI) and mesopelagic (TT-MES), 210 
and used these for further study. Depth ranges were defined as done previously (Reygondeau, et 
al. 2018), with epipelagic, mesopelagic, and bathypelagic being waters of depths 0 to 150 
meters, 150 to 1,000 meters, and deeper than 2,000 meters, respectively. 

Comparison of our virome-inferred ecological zones to those inferred for the oceans in 
other ways was telling. Our zones differed from traditional oceanographic biogeographical 215 
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biomes (e.g. Longhurst), where four biomes and ~50 provinces have been designated across 
surface ocean waters based on annual cycles of nutrient chlorophyll a (Longhurst et al. 1995, 
Longhurst 2007), and from mesopelagic ecoregions and biogeochemical provinces based on 
biogeography and environmental climatology, respectively (Sutton, et al. 2017; Reygondeau, et 
al. 2018). However, they were similar to those observed for marine bacterial communities, which 220 
clustered by mid-latitude surface, high-latitude, and deep waters (Ghiglione et al., 2012). This 
implies that the physicochemical structuring of marine microbial communities is likely the most 
important factor in structuring marine viral communities, perhaps reflecting a relative stability in 
host range of viruses in the oceans (de Jonge et al. 2018). To evaluate this physicochemical 
structuring, we examined the universal predictors and drivers of viral ecological zones, across 225 
one (Fig. 5A) and multiple ordination dimensions (Fig. 5B; see Methods). This suggested that 
temperature was the major driver structuring these ecological zones, as previously shown from 
global microbial surveys (Sunagawa et al., 2015) and our own smaller ocean virome surveys, 
where we posited previously that temperature likely directly impacts microbial community 
structure, and indirectly viral community structure (Brum et al., 2015). Moreover, temperature 230 
has been shown to play an important role in virus-host interactions, especially in the Arctic 
(Maat et al., 2017). 

Viral macro- and micro- diversity, and drivers, within and between ecological zones. 
To explore diversity patterns across ecological zones, we calculated per sample diversity using 
Shannon’s H’ for macrodiversity and a newly established method for community-wide 235 
microdiversity. This new method, because it estimated average nucleotide diversity (or π) from 
the mean of 1,000 iterations of π averaged from 100 randomly subsampled well-sequenced 
populations (see Methods), is only able to assess well-sampled, abundant populations. These 
zone-normalized (see Methods) comparisons revealed that macrodiversity was highest in TT-
EPI (p < 0.05), closely followed by the ARC, and lowest in TT-MES and ANT (Fig 4B –240 
bottom), whereas microdiversity was highest in TT-MES (p < 0.05) and lowest in ARC (Fig. 4B 
–left). At the zonal level, a negative trend between macro- and micro- diversity emerges (Fig. 
4B-right), although we note that the small number of zonal points limits our statistical 
inferences, even in this global dataset.  

Recent work suggests that higher micro-diversity can impede the maintenance of macro-245 
diversity by promoting competitive exclusion (Hart et al., 2016). Thus we posit that, if the zonal 
level negative macro/micro diversity trends are real, this may result from increased 
intrapopulation niche variation that reduces interpopulation niche variation resulting in  

competitive exclusion by the superior competitors, which may occur slowly and may be 
why it only appears at this regional scale. Because estimates of microdiversity in our dataset and 250 
even currently available single virus genomics approaches (Martínez-Hernández et al. 2017) 
remain limited to only the most abundant populations, testing such a hypothesis awaits critically-
needed advances and scalability in single-virus genomics technologies. 

At the per-sample level, however, macro- and micro- diversity were not correlated, even 
within each zone (Fig. 4B – right). Although these are the first data available for viruses, for 255 
larger organisms, macro- and micro-diversity are often correlated across habitats sharing similar 
species pools, presumably due to habitat characteristics altering immigration, drift, and selection 
(Vallend & Gerber, 2005). These ecological correlations are generally positive and significantly 
stronger in discrete habitats (e.g. islands) in contrast to more connected communities like the 
ocean [reviewed in (Vallend et al., 2014)]. Thus we posit that the lack of correlation between 260 
marine viral macro- and micro- diversity at this per-sample level is driven by differences in local 
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drivers (Fig. 4C). Consistent with this, local drivers differed as nutrients strongly (and 
negatively) correlated with viral macrodiversity, whereas photosynthetically active radiation 
(PAR; an indicator of productivity) best (and positively) correlated with viral microdiversity in 
the epipelagic waters (Fig. 4C).  265 

Mechanistically, these results suggest several possible hypotheses. At the viral 
macrodiversity level, decreased host diversity in algal blooms, which themselves rely on nutrient 
pulses (Farooq & Malfatti, 2007), could skew viral rank abundance curves towards dominance 
by increasing abundance of bloom-associated viral populations. This is supported by the negative 
correlation between our viral macrodiversity and particulate inorganic carbon (PIC; Fig. 4C), a 270 
hallmark of coccolithophore blooms (Groom & Holligan, 1987), and chlorophyll a (Fig. 5C). For 
viral microdiversity in epipelagic waters, PAR was the main driver. PAR is known to impact 
host diversity, particularly in nutrient-poor surface waters, by inhibiting photoautotrophs (Feng 
et al., 2015) and the dominant heterotroph, SAR11 (Ruiz-González et al., 2013), but stimulating 
other key microbes such as Roseobacter, Gammaproteobacteria and NOR5 (Ruiz-González et 275 
al., 2013). We hypothesize that the shorter-term impacts of high PAR in the surface waters on 
host communities may create new niches for viruses, whereby microdiversity increases to enable 
differentiation of existing viral populations. As above, advances in single-virus genomics would 
be invaluable for testing this hypothesis. 
 Viral macro- and micro- diversity, and drivers, against classical ecological gradients. 280 
Ecologists have long explored the relationship between diversity and geographic range, which in 
eukaryotes and bacteria are highly correlated and thought to be due to the accumulation of niche-
specific selective mutations across populations with large heterogeneous geographic ranges (i.e. 
the niche variation hypothesis; Van Valen 1965, Hedrick, 2006, Rosen et al., 2015). No parallel 
studies have looked at viruses. To explore this for viruses, we determined the geographic range 285 
of viral populations based on their distribution within and between ecological zones (Fig. 6A) 
and then calculated their average π (see Methods) to assess patterns in macro- and micro- 
diversity, respectively. Viral populations were designated as ‘multi-zonal’ if they were observed 
in >1 ecological zone, ‘zone-specific regional’ if they were observed in only one zone, but >2 
viral communities, or ‘zone-specific local’ if they were observed in only 1 viral community 290 
within a single zone.  

These analyses first revealed differences in the dominant viral geographic ranges across 
the different ecological zones. For example, multi-zonal viral populations dominated ANT and 
BATHY (>60% of viral populations found within zone), both across the zone (Fig. 6B) and 
within each station (Fig. S4), whereas zone-specific regional viral populations dominated TT-295 
EPI and ARC and the multi-zonal and zone specific viral populations were approximately 
equally represented in TT-MES (Fig. 6B). The high levels of zone-specific viral populations in 
TT-EPI and ARC, as well as the high levels of viral macrodiversity (Fig. 4B-bottom), are 
indicative of high endemism and suggest these regions may be biodiversity hotspots for marine 
viruses. In contrast, the ANT and BATHY are composed mostly of multi-zonal viral populations 300 
suggesting that they may be sink habitats that are more dependent on migration (sensu 
Watkinson & Sutherland, 1995). However, across all ecological zones, viral population 
microdiversity decreased with virus geographic range (Fig. 6C; p < 0.05), presumably from 
varied ecologies providing differing selective niches for the single, widely-distributed population 
that then drive differentiation through isolation-by-environment processes (sensu Shapiro et al., 305 
2012). Such findings are new for viruses, but parallel the results for eukaryotes (Hedrick, 2006) 
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and bacteria (Rosen et al., 2015) and suggest a universality to isolation-by-environment 
processes across organismal kingdoms and viruses. 

Ecologists have also long observed, across most flora and fauna, that there are latitudinal 
patterns in diversity across both terrestrial and marine environments. Briefly, the latitude 310 
diversity gradient (LDG) suggests that both macro- and micro-diversity are highest at mid-
latitudes and decrease poleward (Pianka 1966, Hillebrand 2004, Mannion et al., 2013, Miraldo et 
al., 2016). We found that both viral macro- and micro-diversity followed the LDG except in 
ARC, where both increased (Fig. 7A). This high equatorial macro- and micro-diversity was 
consistent across the Indian, Atlantic, and Pacific Oceans as expected (Fig. 7B & C). The Arctic 315 
Ocean, however, was not only unexpectedly elevated in diversity, but it also displayed a unique 
pattern. Specifically, two distinct zones – definable by climatology-derived water mass nutrient 
stoichiometry (N*; Fig. 7D; see Comparing ARC-H and ARC-L in Methods) – emerged as high 
(ARC-H) and low (ARC-L) diversity regions that were significantly differentiable at both 
macro- and micro-diversity levels (Fig. 7E). Further, ARC-H was characterized by low nutrient 320 
ratios (N*; >9X lower in ARC-H than ARC-L on average; p < 5E-04) and drove the divergence 
from the LDG (Fig. S5).  

Mechanistically, we interpret these observations as follows. Prior work in this region has 
shown (i) strong denitrification in the Bering Strait (Devol et al., 1997), which explains the low 
N* in the west, and (ii) increasing oligotrophy in the Beaufort Gyre due to increasing vertical 325 
stratification, which selects against larger algae and for smaller algae and bacteria in the ARC-H 
(Li et al., 2009). As above, we hypothesize that shorter-term increased host diversity results in 
increased viral macro- and micro-diversity in ARC-H. Though our GOV 2.0 dataset is 
confounded by seasonality of sampling, we posit that this elevated summer-time macro- and 
micro-diversity in ARC may fuel viral ecological differentiation and represent an unrecognized 330 
‘cradle’ of viral biodiversity beyond the tropics. Though this elevated diversity in the Arctic was 
surprising, together with a similar deviation seen in mollusks (Valdovinos et al., 2003) and 
recently reported in ray-finned fish (Rabosky et al., 2018), these results call into question 
whether this decades-old paradigm needs revisiting and suggests that polar regions may be 
important biodiversity hotspots for viruses, as well as larger organisms. 335 

Finally, as ocean exploration accelerates, patterns in diversity through the vertical layers 
of the ocean have become a focus. An emergent depth diversity gradient (DDG) hypothesis 
suggests that macrodiversity decreases with depth (Costello & Chaudhary, 2017), which has 
been explored across the World Register of Marine Species that includes some microbes and 
viruses (http://www.marinespecies.org/), but microdiversity has not yet been explored for any 340 
organism. Overall, our virome-inferred diversity patterns were less obviously consistent with the 
DDG, although deep water ocean data were limited (Fig. 7F). Briefly, viral macrodiversity 
largely followed the DDG with high diversity in the surface waters and decreased diversity with 
depth, whereas viral microdiversity did not as it decreased until 200 m depth, but then sharply 
increased (Fig. 7F). This deep water increase coincided with an increase in bacterial 345 
macrodiversity in the mesopelagic region (Fig. S6A & B), and in TT-MES, this bacterial 
macrodiversity correlated with viral microdiversity (Fig. S6C). 
 If more extensive deep water sampling confirms these patterns, we see several scenarios 
that could explain these data. First, we hypothesize that viral microdiversity may, in part, be 
driven by an increase in macrodiversity of zone-specific bacterial populations in TT-MES, which 350 
we interpret as an expansion of host ‘niches’ available for infection that could drive 
diversification in viruses (Elena et al., 2009). Second, we hypothesize that the decrease in viral 
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macrodiversity may be driven by increased viral microdiversity in the mesopelagic region that 
can promote competitive exclusion (sensu Hart et al., 2016) as discussed above. Alternatively, 
lower cell density in the mesopelagic layer (Sunagawa et al. 2015) may result in less encounters 355 
between the “predators” and their “preys”, reducing viral speciation (as a function of reduced 
number of viral generations), but selecting for viruses with broader host range. Again, testing 
these hypotheses will require technological advances to measure in situ host ranges and 
sensitivities of viruses and cells, respectively, at scales relevant to the diversity in nature. 

 360 
Conclusions: 

This study provides a systematic and global-scale view of patterns and drivers of marine 
viral macro- and micro- diversity that reveals three overarching advances. First, five ecological 
zones emerge for the global ocean, which contrasts known Longhurst biogeographic patterning 
in other organisms, but is consistent with observations from the largely co-sampled ocean 365 
microbiome (Sunagawa et al. 2015). Second, patterns and drivers of viral macro- and micro- 
diversity differ per-sample and correlate to geographic range. These findings offer hints at 
underlying mechanisms that impact these two levels of diversity that will guide researchers from 
discovery to hypothesis-testing as technologies, such as scalable single virus genomics and in 
situ host range assays, advance towards sampling scales relevant to those in nature. Third, 370 
epipelagic waters and the Arctic Ocean emerge from our work as biodiversity hotspots for 
viruses. While this is surprising given the LDG paradigm that the tropics rather than the poles are 
the cradles of diversity, it is in line with other observations in larger organisms (Valdovinos et 
al., 2003, Rabosky et al., 2018) and emphasizes the importance of these drastically climate-
impacted Arctic regions for global biodiversity. Together, these advances, along with the parallel 375 
global-scale ecosystem-wide measurements of Tara Oceans (e.g. de Vargas et al., 2015; 
Sungawa et al., 2015; Brum et al., 2015; Lima-Mendez et al., 2015; Roux et al., 2016) provide 
the foundation for incorporating viruses into emerging genes-to-ecosystems models (e.g. Guidi et 
al. 2016, Garza et al., 2018) that guide ocean ecosystem management decisions that are likely 
needed if humans and the Earth System are to survive the current epoch of the planet-altering 380 
Anthropocene.  
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Main Text Figure Legends: 580 
 
Fig. 1. The Global Ocean Viromes 2.0. A. Arctic projection of the global ocean highlighting 
the new sampling stations of viromes in the GOV 2.0 dataset. Datasets from non-arctic samples 
were previously published in (Brum et al., 2015; Roux et al., 2016). B. Histograms of the 
average assembled contig lengths for viral populations >10 kb shared between GOV and GOV 585 
2.0. B-inset. More than 92% of the unbinned GOV viral populations were reassembled and 
identified in GOV 2.0 >10 kb populations. C. Pie charts showing how many of the 488,130 total 
viral populations comprising GOV 2.0 can be annotated and, of those, their viral family level 
taxonomy. 

Fig. 2. GOV 2.0 viral population have discrete population boundaries. (A) Histogram 590 
showing the read distribution frequency break between spuriously mapped reads and legitimate 
reads mapping to the genome. (B) Histograms showing the average percent identity of reads 
mapped to each genome after removing spuriously mapped reads. 

Fig. 3. Ecological levels of organization. Schematic showing the different ecological levels of 
organization studied in this paper. 595 
 
Fig. 4. Viral communities partition into five ecological zones with different macro- and 
micro- diversity levels. (A) Principal coordinate analysis (PCoA) of a Bray-Curtis dissimilarity 
matrix calculated from GOV 2.0. Analyses show that viromes significantly (Permanova p = 
0.001) structure into five distinct global ecological zones: ARC, ANT, BATHY, TT-EPI, and 600 
TT-MES zones. Ellipses in the PCoA plot are drawn around the centroids of each group at 95% 
(inner) and 97.5% (outer) confidence intervals. Four outlier viromes that did not cluster with 
their ecological zones were removed (Fig. S2A) and all the sequencing reads were used (see Fig. 
S2B and Methods). (B – right) Scatterplots showing correlations between macro- (Shannon’s 
H’) and micro- (average π for viral populations with ≥ 10x median read depth coverage; see 605 
Methods) diversity values for each sample across GOV 2.0. The larger circles represent the 
average per zone. (B – left) Boxplots showing median and quartiles of average microdiversity 
per ecological zone. (B – bottom) Boxplots showing median and quartiles of macrodiversity for 
each ecological zone. Zonal samples were randomly downsampled to n = 5 to account for zone 
sampling difference. All pairwise comparisons shown were statistically significant (p<0.01) 610 
using two-tailed Mann-Whitney U-tests. (C) Pearson’s correlation results comparing macro- and 
micro-diversity with different biogeographical and biogeochemical parameters at the global scale 
(see Fig. S3, Table S3 for all abbreviations, and Methods).  

Fig. 5. Ecological drivers of global viral macrodiversity. (A) Regression analysis between the 
first coordinate of a PCoA (Fig. 4A) and temperature showed that samples were separated by 615 
their local temperatures with an r2 of 0.822. (B) Potential ecological drivers & predictors of beta-
diversity across GOV 2.0 for the first two dimensions (Goodness of fit r2 using a generalized 
additive model) and across all dimensions (Mantel test based on Spearman’s correlation). 
Temperature was uniformly reported as the best predictor of viral beta-diversity globally. (C) 
Regression analysis between viral macrodiversity at the deep chlorophyll maximum (DCM) 620 
layer and areal chlorophyll a concentration (after cube transformation) showed that viral 
macrodiversity correlation with nutrients (Fig. 4C) is mediated (at least partially) by primary 
productivity. The untransformed values are provided on the lower axis for reference. The 
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Shannon’s H outlier 32_DCM (Fig. S3) and a chlorophyll a concentration outlier (173_DCM; 
Fig. 5D) have been excluded from the regression analysis. (D) Boxplot analysis of areal 625 
chlorophyll a concentrations showing a single outlier concentration that fell above the fourth 
quantile of the data points (function geom_boxplot of ggplot).  
 

Fig. 6. Size of geographic range positively correlates with microdiversity. (A) Venn diagram 
showing the number of viral populations found only in one zone (zone-specific) and those that 630 
are shared between and among the five ecological zones (multi-zonal). (B) Stacked barplots 
showing the number of multi-zonal, regional, and local viral populations found within the 
species pool of each ecological zone. (C) Boxplots showing median and quartiles of 
microdiversity (average π for viral populations with ≥ 10x median read depth coverage) per 
populations found within each zone defined as multi-zonal, regional, or local. Statistics were the 635 
same as in Fig. 2.  
 
Fig. 7. Viral macro- and micro- diversity global biodiversity trends. (A) Loess smooth plots 
showing the latitudinal distributions of macro- and micro-diversity. (B & C) Equirectangular 
projections of the globe showing macro- and micro-diversity levels within each sample, 640 
respectively, across the global ocean. Samples collected at different depths from the same 
latitude and longitude are overlaid and the colors representing their macro- and micro- diversity 
values are merged. (D) Arctic projection of the global ocean showing the geographical division 
between ARC-H and ARC-L stations. The patterns are largely concordant with the Arctic 
division by climatology-derived N*. While we did sample across different seasons, the 645 
calculated N* values are not dependent on the season (see impact of the coast, depth, and 
seasons in Methods). (E) Boxplots showing median and quartiles of macro- (left) and micro- 
(right) diversity of the ARC-H and ARC-L regions. Statistics were the same as in Fig. 2. (F) 
Loess smooth plots showing the depth distributions of macro- and micro- population diversity. 
On all the smooth plots, the line represents the Loess best fit, while the lighter band corresponds 650 
to the 95% confidence window of the fit. Abbreviations: N*, the departure from dissolved N:P 
stoichiometry in the Redfield ratio and a geochemical tracer of Pacific and Atlantic water mass 
(see Methods).  
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Main Text Figures: 
 655 

 
Fig. 1. The Global Ocean Viromes 2.0.  
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 660 

Fig. 2. GOV 2.0 viral population have discrete population boundaries.  
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Fig. 3. Ecological levels of organization.  665 
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Fig. 4. Viral communities partition into five ecological zones with different macro- and 
micro- diversity levels.  
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Fig. 5. Ecological drivers of global viral macrodiversity.   
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Fig. 6. Size of geographic range positively correlates with microdiversity.  
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Fig. 7. Viral macro- and micro- diversity global biodiversity trends.  
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STAR Methods Text 680 
 
Key Resources Table 
 

Reagent or Resource Source Identifier(s) 

Sequencing Reagents and Kits 

NEBNext DNA 
Sample Prep Master 
Mix  

New England Biolabs, Ipswich, MA Cat n° E6040S 

NEXTflex PCR free 
barcodes  

Bioo Scientific, Austin, TX Cat n° NOVA-514110 

Kapa Hifi Hot Start 
Library Amplification 
kit  

KAPA Biosystems, Wilmington, MA Cat n° KK2611 

DNA SMART 
ChIPSeq Kit  

Takara Bio USA, Mountain View, CA Cat N° 634865 

Deposited Data 

Tara Oceans Viromes 
Raw Reads Brum et al., 2015; Roux et al., 

2016 

 

European Nucleotide 
Archive (ENA) - see Table 
S3 for details 

Tara Oceans Polar 
Circle Raw Reads 

This paper European Nucleotide 
Archive (ENA) - see Table 
S3 for details 

Malaspania Viromes 
Raw Reads 

Roux et al., 2016 Integrated Microbial 
Genomes (IMG) with Joint 
Genome Institute - see Table 
S3 for details 

16S rRNA gene Tara 
Oceans data  

Logares et al., 2014 Supplementary materials in 
Logares et al., 2014 

Biogeographical and 
Physicochemical data 

Pesant et al., 2015 PANGAEA (Data Publisher 
for Earth & Environmental 
Science) - see Table S3 for 
details 

N* Arctic Data This paper  Table S3 
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Software and Algorithms 

nucmer 
(MUMmer3.23) 

Kurtz et al., 2004 https://sourceforge.net/projec
ts/mummer/ 

bbmap 37.57 
 

https://jgi.doe.gov/data-and-
tools/bbtools/ 

https://jgi.doe.gov/data-and-
tools/bbtools/ 

metaSPAdes 3.11 Nurk et al., 2017 https://github.com/ablab/spa
des/releases 

prodigal 2.6.1 Hyatt et al., 2010 https://github.com/hyattpd/Pr
odigal 

diamond Buchfink et al., 2014 https://github.com/bbuchfink
/diamond 

VirSorter v2 Roux et al., 2015 https://github.com/simroux/
VirSorter 

VirFinder Ren et al., 2017 https://github.com/jessieren/
VirFinder 

CAT Cambuy et al., 2016 https://github.com/dutilh/CA
T 

blast 2.4.0+ ftp://ftp.ncbi.nlm.nih.gov/blast/execut
ables/blast+/ 

ftp://ftp.ncbi.nlm.nih.gov/bla
st/executables/blast+/ 

vConTACT2 Jang et al., in press 2018 https://bitbucket.org/MAVE
RICLab/vcontact2 

bowtie2 Langmead & Salzberg, 2012 https://github.com/BenLang
mead/bowtie2 

BamM https://github.com/Ecogenomics/Bam
M 

https://github.com/Ecogeno
mics/BamM 

Bedtools Quinlan & Hall, 2010 https://github.com/arq5x/bed
tools2/blob/master/docs/cont
ent/overview.rst 

Vegan (R package) Dixon, 2003 https://cran.r-
project.org/web/packages/ve
gan/index.html 

heatmap3 (R package) https://cran.r-
project.org/web/packages/heatmap3/in

https://cran.r-
project.org/web/packages/he
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dex.html atmap3/index.html 

ggplot2 (R package) https://cran.r-
project.org/web/packages/ggplot2/ind
ex.html 

https://cran.r-
project.org/web/packages/gg
plot2/index.html 

ggpubr (R package) https://cran.r-
project.org/web/packages/ggpubr/inde
x.html 

https://cran.r-
project.org/web/packages/gg
pubr/index.html 

Analyses scripts (per 
Figure) 

This paper https://bitbucket.org/MAVE
RICLab/GOV2 

 
Contact for Reagent and Resource Sharing 685 
Further information and requests for resources and reagents should be directed to and will be 
fulfilled by the corresponding contact, Matthew Sullivan (mbsulli@gmail.com). 
 
Experimental Model and Subject Details 
Not applicable. 690 
 
Methods Details 
Tara Oceans Polar Circle (TOPC) expedition sample collection, processing, and sequencing 

Between June 2013 and December 2013, 41 samples were collected at different depths 
from 20 different sites near or within the Arctic Ocean (see full list of samples in Table S3). 695 
Physicochemical measurements, sample collection, and DNA extractions were performed using 
the methods described in (Roux et al., 2016). Extracted DNA was prepared for sequencing using 
library preparation method described in (Alberti et al., 2017) for viral samples collected during 
the TOPC campaign (section 4.2) and sequenced using the HiSeq 2000 system (101 bp, paired 
end reads). Importantly, our sample collection and library preparation methods have known bias 700 
towards <0.2um dsDNA viruses (Roux et al., 2017). The TOPC samples were combined with the 
previously published viromes in (Brum et al., 2015; Roux et al., 2016). Of the previously 
published dataset, the mesopelagic samples at (Tara stations 37, 39, 56, 64, 68, 70, 76, 78, 111, 
122, 137, 138) and the Southern Ocean samples (Tara stations 82, 84, 85) were sequenced 
deeper. These combined samples comprise the GOV 2.0 dataset. The number of reads found in 705 
each sample can be found in Table S3.  

Due to different library preparation for the TOPC samples than the original GOV 
samples, the previously sequenced mesopelagic samples (Tara stations 68, 78, 111, 137) were 
prepped using the TOPC library preparation to determine if it impacted our ability to assemble 
viral populations. We found no significant difference between library preparations (Fig. S7). For 710 
two surface samples (Tara Stations 100 and 102), we also re-prepped the DNA using the DNA 
SMART ChIP-Seq kit which allows to catch ssDNA in the library preparation (Takara) and 
further sequenced these two samples using the HiSeq 2000 system.  
 
All the remaining STAR Methods we used are quantifications and statistical analyses. All the 715 
details related to these STAR Methods are therefore provided in the following section, 
Quantification and Statistical Analyses 
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Quantification and Statistical Analyses 
Viral contig assembly, identification, and dereplication 720 

All samples in the GOV 2.0 dataset (Roux et al., 2016) as well as the previously 
sequenced TOPC library-prepped mesopelagic samples and the DNA SMART ChIP-Seq kit 
surface samples were individually assembled using metaSPAdes 3.11.1 (Nurk et al., 2017). Prior 
to assembly, Malaspina samples from GOV 2.0 were further quality controlled. Briefly, adaptors 
and Phix174 reads were removed and reads were trimmed using bbduk.sh 725 
(https://jgi.doe.gov/data-and-tools/bbtools/; minlength=30 qtrim=rl maq=20 maxns=0 trimq=14 
qtrim=rl). Following assembly, contigs ≥1.5kb were piped through VirSorter (Roux et al., 2015) 
and VirFinder (Ren et al., 2017) and those that mapped to the human, cat or dog genomes were 
removed. Contigs ≥5kb or ≥1.5kb and circular that were sorted as VirSorter categories 1-6 and/or 
VirFinder score ≥0.7 and p <0.05 were pulled for further investigation. Of these contigs, those 730 
sorted as VirSorter categories 1 and 2, VirFinder score ≥0.9 and p <0.05 or were identified as 
viral by both VirSorter (categories 1-6) and VirFinder (score ≥0.7 and p <0.05) were classified as 
viral. The remaining contigs were run through CAT (Cambuy et al., 2016) and those with <40% 
(based on an average gene size of 1000) of the genome classified as bacterial, archaeal, or 
eukaryotic were considered viral. In total, 848,507 viral contigs were identified. Viral contigs 735 
were grouped into populations if they shared ≥95% nucleotide identity across ≥80% of the 
genome (sensu Brum et al., 2015) using nucmer (Kurtz et al., 2004). This resulted in 488,130 
total viral populations found in GOV 2.0 (see Table S5 for VirSorter, VirFinder, and CAT 
results), of which 195,728 were ≥10kb.  
 740 
Viral taxonomy 

For each viral population, ORFs were called using Prodigal (Hyatt et al., 2010) and the 
resulting protein sequences were used as input for vConTACT2 (Jang et al., in press 2018) and 
for blastp. Viral populations represented by contigs >10kb were clustered with Viral RefSeq 
release 85 viral genomes using vConTACT2. Those that clustered with a virus from RefSeq 745 
based on amino acid homology based on diamond (Buchfink et al., 2014) alignments were able 
to be assigned to a known viral taxonomic genus and family. For GOV 2.0 viral populations that 
could not be assigned taxonomy or were <10kb, family level taxonomy was assigned using a 
majority-rules approach, where if >50% of a genome’s proteins were assigned to the same viral 
family using a blastp bitscore ≥50 with a Viral RefSeq virus, it was considered part of that viral 750 
family.  
 
Viral population boundaries 
 To determine if our viral populations had discrete sequence boundaries, all reads across 
the GOV 2.0 dataset (excluding the Tara stations 68, 78, 111, 137 prepped using the TOPC 755 
library preparation methods and the DNA SMART ChIP-Seq kit prepped libraries) were pooled 
and mapped non-deterministically to our viral populations using the ‘very-sensitive-local’ setting 
in bowtie2 (Langmead & Salzberg, 2012). The percent nucleotide identity (% ID) of each 
mapped read and the positions in the genome where the read mapped were determined. The 
frequency of reads mapping at a specific % IDs were weighted based on the length of each read 760 
mapped across the genomes. Frequencies of reads mapping at specific % IDs were smoothed 
using Loess smooth functions (span = 1 to be more permissive of lower % ID reads) to create 
read frequency histograms (% ID vs. frequency). To determine break in the distribution of read 
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frequencies between the different % IDs, Euclidean distances calculated were calculated between 
% ID frequencies and then hierarchically clustered in R.  765 
 
Calculating viral population relative abundances, and average read depths 

To calculate the relative abundances of the different viral populations in each sample, 
reads from each GOV 2.0 virome were first non-deterministically mapped to the GOV 2.0 viral 
population genomes using bowtie2. BamM (https://github.com/ecogenomics/BamM) was used to 770 
remove reads that mapped at <95% nucleotide identity to the contigs, bedtools genomecov 
(Quinlan & Hall, 2010) was used to determine how many positions across each genome were 
covered by reads, and custom Perl scripts were used to further filter out contigs without enough 
coverage across the length of the contig. For downstream macrodiversity calculations, contigs 
≥5kb in length that had <5kb coverage or less than the total length of the contig covered for 775 
contigs <5kb were removed. For downstream microdiversity calculations, all contigs with <70% 
of the contig covered were removed. BamM was used to calculate the average read depth 
(‘tpmean’ -minus the top and bottom 10% depths) across each contig. For the macrodiversity 
calculations, the average read depth was used as a proxy for abundance and normalized by total 
read number per metagenome to allow for sample-to-sample comparison.  780 

 
Subsampling reads  

Unequal sequencing depth can have large impacts on diversity measurements, 
specifically α-diversity measurements (Lemos et al., 2011). Due to 5x more sequencing depth in 
TOPC samples and the deeply sequenced mesopelagic and Southern Ocean samples (Table S3), 785 
all viromes in the GOV 2.0 dataset were randomly subsampled without replacement to 10,000 
paired reads or 10,000 single-end reads using reformat.sh from bbtools suite 
(https://sourceforge.net/projects/bbmap/). The subsampled read libraries were assembled using 
metaSPAdes 3.11.1. Contigs ≥1.5kb that shared ≥95% nucleotide identity across ≥80% of the 
genome with the 488,130 viral populations in GOV 2.0 were pulled out and grouped into 790 
populations to be used as the subsampled GOV 2.0 viral populations. In total, there were 46,699 
viral populations. Relative abundances were calculated per sample as aforementioned for 
macrodiversity calculations, but using the subsampled GOV 2.0 viral populations and the 
subsampled reads. 

 795 
Macrodiversity calculations 
The macrodiversity α- (Shannon’s H) and β- (Bray-Curtis dissimilarity) diversity statistics were 
performed using vegan in R (Dixon, 2003). The α-diversity calculations were based on the 
relative abundances produced from the subsampled reads. Loess smooth plots with 95% 
confidence windows in ggplot2 in R were used to look at changes in Shannon’s H across latitude 800 
(Fig. 7A) and depth (Fig. 7F). For the β-diversity, both the subsampled and the total reads 
abundances were used to look at community structure (Fig. S2). Principle Coordinate analysis 
(function capscale of vegan package with no constraints applied) and NMDS analysis (function 
metaMDS; K=2 and trymax=100) were used as the ordination methods on the Bray-Curtis 
dissimilarity matrices from both the subsampled and total reads calculated from GOV 2.0 805 
(function vegdist; method “bray”) after a cube root transformation (function nth root; n=3). The 
ecological zones that emerged were verified using a permanova test (function “adonis”) and the 
confidence intervals were plotted using function “ordiellipse” at the specified confidence limits 
(95% and 97.5%) using the standard deviation method. There were no significant differences in 
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clustering between the subsampled and all reads Bray-Curtis dissimilarity PCoA plots (Fig. S2). 810 
Hierarchical clustering (function pvclust; method.dist="cor" and method.hclust="average") was 
conducted on the same Bray-Curtis dissimilarity matrices using 1000 bootstrap iterations and 
only the approximately unbiased (AU) bootstrap values were reported. The heatmaps were 
generated using the heatmap3 package with appropriate rotations of the branches in the 
dendrograms. Samples that did not cluster with their ecological zone (Tara mesopelagic stations 815 
72, 85, and 102 and Tara surface station 155) were considered outliers and removed from further 
analyses (Fig. S2A & C). 
 
Microdiversity calculations 
 Viral populations with an average read depth of ≥10x across 70% of their representative 820 
contig in at least one sample in the GOV 2.0 dataset were flagged for microdiversity analyses. 
We used 10x as the minimum coverage because population genetic statistics were found to be 
relatively consistent down to 10x based on previous downsampling coverage analyses 
(Schloissnig et al., 2013). BAM files containing reads mapping at ≥95% nucleotide identity were 
filtered for just the flagged viral populations. Samtools mpileup and bcftools were used to call 825 
single nucleotide variants (SNVs) across these populations. SNV calls with a quality call > 30 
threshold were kept. Coverage for each allele for each SNV locus was summed across all the 
metagenomes. For each SNV locus, the consensus allele was re-verified and those with 
alternative alleles that had a frequency >1% (1000 Genomes Project Consortium, 2012), the 
classical definition of a polymorphism, and supported by at least 4 reads were considered SNP 830 
loci (Schloissnig et al., 2013). Nucleotide diversity (π) per genome were calculated using 
equation from (Schloissnig et al., 2013). Due to the variable coverage across the genome, 
coverage was randomly downsampled to 10x coverage per locus in the genome. For the 
downsampling, if there was not the target 10x coverage for the locus, all of the alleles were 
sampled. Nucleotide diversity (π) was calculated for each genome with an average read depth 835 
≥10x across 70% of their contig in each sample. For each sample, π values of 100 viral 
populations were randomly selected and averaged. This was repeated 1000x and the average of 
the all 1000 subsamplings was used as the final microdiversity value for each sample. Loess 
smooth plots with 95% confidence windows in ggplot2 in R were used to look at changes in 
average π across latitude (Fig. 7A) and depth (Fig. 7F). 840 
 
Drivers of Macro- and Micro-diversity 
 Regression analysis between the first coordinate of the PCoA (Fig. 5A) and available 
temperature measurements was conducted using the lm function in R. The environmental 
variables were fitted to the first two dimensions of the PCoA using a generalized additive model 845 
(function envfit; permutations=9999 and na.rm = TRUE). Then, they were correlated with all the 
PCoA dimensions using a mantel test (function mantel; permutations=9999 and method="spear") 
after scaling (function scale) and calculating their distance matrices (function vegdist; method 
"euclid" and na.rm = TRUE). Finally, they were correlated with Shannon’s H and π using 
Pearson’s correlation (function cor; use="pairwise.complete.obs") after removing Shannon’s H 850 
outliers based on a boxplot analysis (Fig. S3). 
 
Subsampling macro- and micro- diversity  

Due to unequal sampling across each ecological zone, we chose to normalize the number 
of samples between each ecological zone by subsampling the down to lowest zone sample size 855 
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(ANT; n = 5). Shannon’s H outliers were not included in the subsampling. Five samples within 
each zone were randomly subsampled without replacement and their macro- and micro- diversity 
values averaged, respectively. We subsampled 1000x and plotted the averages and assessed for 
significant differences using Mann-Whitney U-tests in ggboxplot from the R package ggpubr 
(Fig. 4B).  860 

 
Classifying multi-zonal, regional, and local viral populations 
 To determine geographic range, viral populations were evaluated for their distributions 
across the five ecological zones and plotted using the VennDiagram package in R (Fig. 6A). If 
present in ≥1 sample in more than one ecological zone, it was considered multi-zonal (58% GOV 865 
2.0 viral populations). If present only in samples found within a single zone, it was considered 
zone-specific (48% GOV 2.0 viral populations). Zone-specific viral populations were further 
divided into regional (≥2 samples within a zone) and local (only 1 sample within a zone). The 
proportion of multi-zonal, regional, and local viral populations found across each zone (Fig. 6B) 
and across each station (Fig. S4) were calculated by dividing the number of each type by the 870 
total number of viral populations found across a zone or station, respectively. To assess the 
impact of geographic range on microdiversity per zone, stations were randomly subsampled 
without replacement as described above. Within each sample, π values of 50, 100, and 20 viral 
populations of each geographic distribution (multi-zonal, regional, and local, respectively) were 
randomly selected and averaged. All the viral populations with a geographic range were sampled 875 
and averaged in samples that lacked enough deeply-sequenced viral populations with particular 
geographic range. This was repeated 1000x and the averages plotted and assessed for significant 
differences using Mann-Whitney U-tests in ggboxplot from the R package ggpubr (Fig. 6C). 
 
Comparing ARC-H and ARC-L 880 
 The ARC-H and ARC-L regions were defined based on their biogeography; the ARC-H 
stations were located in the Pacific Arctic region, the Arctic Archipelago, and the Davis-Baffin 
Bay, in addition to one station (Station 189) in the Kara-Laptev sea, which was separated by a 
land mass from the rest of the stations in the same area (Fig. 7D). The ARC-L stations were 
located in the Kara-Laptev Sea (except Station 189), the Barents Sea, and subpolar areas 885 
(stations 155 and 210). The departure from the dissolved N:P stoichiometry in the Redfield ratio 
(N*) was calculated as in (Tremblay et al., 2015) to represent the deficit in dissolved inorganic 
nitrogen (DIN) in the ratio and as a geochemical tracer of pacific and atlantic water masses. 
Macro- and micro- diversity values for each station in ARC-H and ARC-L were plotted and 
assessed for significant differences using Mann-Whitney U-tests in ggboxplot from the R 890 
package ggpubr (Fig. 7E). 

Comparing GOV to GOV 2.0 
 Viral populations assembled in the GOV (Roux et al., 2016) were compared to the GOV 
2.0 viral populations (Fig. 1B) using blastn. Unbinned GOV viral populations with a nucleotide 
alignment to a GOV 2.0 viral populations with ≥95% nucleotide identity and an alignment length 895 
≥50% the length were considered present in the GOV 2.0. These results were plotted in a venn 
diagram using the VennDiagram package in R. The frequency of contig lengths of viral 
populations that were shared across both samples were plotted using ggplot2 (function 
“geom_histogram”; binwidth =5000). 
 900 
Calculating 16S OTU Macrodiversity 
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Previously published 16S OTU data were taken from (Logares et al., 2014). The macrodiversity 
α- (Shannon’s H) statistics were performed using vegan in R (Dixon, 2003). Loess smooth plots 
with 95% confidence windows in ggplot2 in R were used to look at changes in bacterial 
Shannon’s H down the depth gradient. Differences between surface, deep chlorophyll maximum, 905 
and mesopelagic bacterial samples were compared using Mann-Whitney U-tests and plotted in 
ggboxplot from the R package ggpubr. Finally, viral microdiversity was correlated with bacterial 
Shannon’s H using Pearson’s correlation (function cor; use="pairwise.complete.obs") and a 
linear regression (Fig. S7C). 
 910 
Impact of the coast, depth, and seasons 
 GOV 2.0 samples are largely open ocean samples. Even though the arctic samples were 
more coastal, we didn’t observe any significant coastal impact on the global macrodiversity 
(Pearson’s r = -0.25; Bonferroni-corrected p-value = 0.18) and microdiversity (Pearson’s r = 0.1; 
p-value = 0.16) levels (Fig. 4C). Although nitrate and phosphate levels generally increase with 915 
depth, we observed higher correlations and significantly lower p-values for these nutrients with 
macrodiversity levels than between depth and macrodiversity (Fig. 4C) which suggests an 
impact of nutrients on viral diversity via primary production (Fig. 5C). Additionally, since the 
sampling was largely at discrete depth layers with different densities in the TT region 
(epipelagic, mesopelagic, and bathypelagic), rather than sampling gradients, we discerned a 920 
clearer signal for the separation between these ecological zones (Fig. 4A). On the other hand, all 
the arctic epipelagic and mesopelagic samples fell within the same ecological zone due to the 
absence of a pycnocline in this area (Fig. 4A). Finally, the circumnavigation of the Arctic Ocean 
spanned multiple seasons (spring, summer, and fall). Based on our previous observation from a 
time-series data in a sub-arctic system (Hurwitz & Sullivan, 2013), our viral macrodiversity is 925 
expected to be lowest during the spring and summer and increase towards the winter season. 
However, our calculated N* values are not dependant on the season and represent the largest 
magnitude of change among all of the environmental variables that correlated with 
macrodiversity between the ARC-H and ARC-L regions. 
 930 
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Supplementary Figures 70 

 

Fig. S1. Non-metric multidimensional scaling (NMDS) and hierarchical clustering of GOV 
2.0. As observed with the Principle Coordinate analysis (Fig. 2A), NMDS analysis (A) and 
correlation-based hierarchical clustering (B) of a Bray-Curtis dissimilarity matrix calculated 
from GOV 2.0 structured the viromes into five distinct global ecological zones with an 75 
approximately unbiased (AU) bootstrap value > 77 in the hierarchical clustering. Four outlier 
viromes were removed and all the sequencing reads were used, with justification provided in 
(Fig. S5, C and D), respectively. Abbreviations: ARC, Arctic; ANT, Antarctic; BATHY, 
bathypelagic; TT-EPI, temperate and tropical epipelagic; TT-MES, temperate and tropical 
mesopelagic. 80 
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Fig. S2. Beta-diversity of the total reads and subsampled reads GOV 2.0 dataset.  PCoA of a 
Bray-Curtis dissimilarity matrix calculated from GOV 2.0 using all the sequencing reads (A) and 85 
after randomly subsampling the reads to the same sequencing depth (B). The 
dissimilarity matrices from (A) and (B) were used to conduct hierarchical clustering on the 
samples as shown in (C) and (D), respectively. The four viromes which were removed from (Fig. 
4) and (Fig. S1) are highlighted with asterisks; sample 1 (station 155_SUR) is the only surface 
sample in the North Atlantic Drift Province and could have been influenced by the warm surface 90 
currents going northward due to the Atlantic Meridional Overturning Circulation; sample 2 
(station 85_MES) is the only mesopelagic sample from the Southern Ocean and could have 
been influenced by the upwelling of ancient deep ocean water (which is also congruent with the 
similarity observed between deep water bacterial communities of polar and lower latitude 
(Ghiglione et al., 2012)); sample 3 (station72_MES) fell outside the 97.5% confidence intervals 95 
of all the ecological zones; sample 4 (station102_MES) was located in El Niño-Southern 



 
 
 
 

5 

Oscillation region and could have been influenced by the upwellings and downwellings in this 
area. Additionally, samples 1, 3, and 4 were among the Shannon’s H outliers (Fig. S3). Viral 
communities still partitioned into five ecological zones after subsampling the reads as shown by 
the PCoA (B) and hierarchical clustering (D) plots.  100 
 

  
Fig. S3. Boxplot analysis of viral macrodiversity across GOV 2.0 ecological zones. Outliers 
that fell below the first quantile or above the fourth quantile (function geom_boxplot of ggplot) 
of each ecological zone were removed before examining the predictors of viral macrodiversity 105 
(Fig. 4C). Outliers: 32_SUR, 155_SUR, 56_MES, 70_MES, 72_MES, 102_MES, MSP131, and 
MSP144. 
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Fig. S4. Stacked barplots showing the number of multi-zonal, regional, and local viral 110 
populations found within the species pool of each station. Ecological zone outliers (see Fig. S5) 
are excluded.  
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 115 

Fig. S5. ARC-H drives the divergence from the LBG. Loess smooth plots showing the 
latitudinal distributions of macro- and micro- population diversity with ARC-H and ARC-L 
regions. The line represents the loess best fit, while the lighter band corresponds to the 95% 
confidence window of the fit.  
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Fig. S6. Microbial 16S OTUs biodiversity deviate from the DBG and correlates with viral 
microdiversity in the mesopelagic. (A) Loess smooth plots showing 16S OTUs (Logares et al., 
2014) macrodiversity distributions down the depth gradient. The line represents the loess best fit, 125 
while the lighter band corresponds to the 95% confidence window of the fit. (B) Boxplots 
showing median and quartiles of surface, deep chlorophyll maximum (DCM), and mesopelagic 
16S OTU data taken from (Logares et al., 2014). All pairwise comparisons shown were 
statistically significant (p<0.05) using two-tailed Mann-Whitney U-tests. (C) Scatterplot 
showing the correlation (Pearson’s correlation r = 0.51; p-value = 0.036) and linear regression (r2 130 
= 0.26) between Tara Oceans mesopelagic samples shared between the 16S OTU samples in 
(Logares et al., 2014) and our viral samples in GOV 2.0. 
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Fig. S7. TO and TOPC library preparation comparisons. (A & B) Boxplots showing median 
and quartiles of the number of assembled viral genomes per total reads sequenced and the 
average genome lengths in TO and TOPC preparations of Tara mesopelagic stations 68, 78, 111, 140 
and 137, respectively. All pairwise comparisons shown were not statistically significant using 
two-tailed Mann-Whitney U-tests.  
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