# Online Appendices for 

# Heterogeneity in the Effect of Common Shocks on Health Care Expenditure Growth 

Katharina Hauck ${ }^{\text {a }}$ and Xiaohui Zhang* ${ }^{\text {b }}$<br>${ }^{\text {a }}$ School of Public Health, Imperial College London, UK<br>${ }^{\mathrm{b}}$ School of Management and Governance, Murdoch University, Perth, Australia<br>* corresponding author

## Appendix I Background

What if all heterogeneity in the effects of common shocks was observable?
If this was the case, then the problem could be solved -or at least alleviated- by a specification that includes interactions terms between the observable regressors and time, and that allows for time-varying slope coefficients, as for example proposed by Chernew and Newhouse (2011). However, the literature finds that a substantial proportion of differences in the spread of technology, and other common shocks, is due to factors that are either unobservable altogether, or unobserved in the country level data that are typically used by studies on HCE growth (McClellan and Kessler, 1999; Lyttkens, 2001; Packer et al., 2006; Hashimoto et al., 2006; Greenhalgh et al., 2008). If this is the case, then changes in unmeasured factors may cause the observed relationship between covariates and spending to change over time. As a result, heterogeneity in the impact of latent common factors on HCE growth in countries introduces cross-section dependence, endogeneity and correlation between year fixed effects and regressors. This may lead to inconsistent estimates and erroneous inference on the importance of observable drivers of expenditure growth, a problem that cannot be eliminated with interaction terms and time-varying slopes. The factor structure can capture any contemporaneous correlation that arises from the common response of countries to such unanticipated events, and recognize that there is cross-country dependence in HCE, caused by unobservable common factors in specific time periods.

## Appendix II Methods

## A. Multiple Imputation

MI proceeds in three steps: (1) generate $M$ imputations (completed data sets); (2) conduct desired analysis on each imputation separately; (3) combine results obtained from the second step for each completed data set into a single multiple-imputation result(Rubin, 1987, Kenward and Carpenter, 2007, Horton and Lipsitz, 2001). We use predictive mean matching using three nearest neighbours and $\mathrm{M}=50$ imputed datasets, following White et al. (2011). This method fills in multiple variables iteratively using a
sequence of univariate imputation methods with fully conditional specification of prediction equations. It accommodates arbitrary missing value patterns, and it allows us to include country and year dummies and utilise robust standard errors. Summary statistics for two imputed data sets and all imputed variables are presented in Table III in the main body of the paper. In Figure A1 we plot overlay kernel densities of original and imputed data for six robust variables with highest proportions of missing values (ranging from $49.83 \%$ to $32.89 \%$ ). Comparing the summary statistics of the imputed variables with the original ones in Table II, and the estimated kernel densities, we are reasonably confident that the imputations can be used for further analysis. Table AI presents results from the model with variables having less than $25 \%$ missing values, compared with results from our main model with variables having less than $50 \%$ missing values. The similarity between these two sets of results further demonstrates the quality of our imputed data for variables with less than $50 \%$ missing values.

For each imputed data-set, we estimate the common factor model in different specifications. Let $\hat{\boldsymbol{\beta}}_{m}^{r}$ represent the estimated parameters from common factor model with specification $M_{r}\left(r=1,2, \ldots, 2^{K}\right)$ by using the $m$-th $(m=1,2, \ldots, M)$ imputed data set. Let $\left\{\left(\hat{\boldsymbol{\beta}}_{m}^{r}, \hat{\boldsymbol{U}}_{m}^{r}\right): m=1,2, \ldots, M\right\}$ be the completed-data point estimates and variance-covariance estimates of $\boldsymbol{\beta}^{r}$ from $M$ imputed datasets. For $M_{r}$, the MI point estimation of $\boldsymbol{\beta}^{r}$ is given as

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}^{r}=\frac{1}{M} \sum_{m=1}^{M} \hat{\boldsymbol{\beta}}_{m}^{r}, \tag{A-1}
\end{equation*}
$$

and the MI variance-covariance estimate is

$$
\begin{equation*}
\operatorname{Var}\left(\hat{\boldsymbol{\beta}}^{r}\right)=M^{-1} \sum_{m=1}^{M} \hat{\mathbf{U}}_{m}^{r}+\left(1+M^{-1}\right) \sum_{m=1}^{M}\left(\hat{\boldsymbol{\beta}}_{m}^{r}-\hat{\boldsymbol{\beta}}^{r}\right)\left(\hat{\boldsymbol{\beta}}_{m}^{r}-\hat{\boldsymbol{\beta}}^{r}\right)^{\prime} /(M-1) . \tag{A-2}
\end{equation*}
$$

## B. Bayesian Model Averaging

Most studies that use Bayesian Model Averaging (BMA) to identify determinants of economic growth at country level are based on cross-sectional models. ${ }^{1}$ Let $\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$ represent a generic regression model of health care expenditure growth ( $\boldsymbol{y}$ ) on a set of growth determinants $(\boldsymbol{X})$. Given the large number of potential growth determinants, there potentially exist an enormous amount of empirical models when the empirical researcher seeks to explore different combination of determinants. Suppose we have $K$ potential determinants, we then would have a maximum of $2^{K}$ possible combinations of regressors, i.e. $2^{K}$ different models to estimate. Let $M_{r}\left(r=1,2, \ldots, 2^{K}\right)$ denote the $r$ th model under consideration, then $M_{r}$ depends on
a set of growth determinants, $\boldsymbol{X}^{r}$, and their corresponding coefficients $\boldsymbol{\beta}^{r}$. By Bayes' rule in densities, the posterior density for $\beta^{r}$ under model $M_{r}$ is written as

$$
\begin{equation*}
p\left(\boldsymbol{\beta}^{r} \mid \boldsymbol{y}, M_{r}\right)=\frac{f\left(\boldsymbol{y} \mid \boldsymbol{\beta}^{r}, M_{r}\right) p\left(\boldsymbol{\beta}^{r} \mid M_{r}\right)}{f\left(\boldsymbol{y} \mid M_{r}\right)} \tag{A-3}
\end{equation*}
$$

where $p\left(\boldsymbol{\beta}^{r} \mid M_{r}\right)$ is the prior density of $\boldsymbol{\beta}^{r} ; f\left(\boldsymbol{y} \mid \boldsymbol{\beta}^{r}, M_{r}\right)$ denotes likelihood of $\boldsymbol{y}$ given $\boldsymbol{\beta}^{r}$ under model $M_{r} ;$ and $f\left(\boldsymbol{y} \mid M_{r}\right)$ is the prior density of $\boldsymbol{y}$.

Using Bayes' rule, the posterior probability, $p\left(M_{r} \mid \boldsymbol{y}\right)$ for $r=1,2, \ldots, 2^{K}$, can be obtained as

$$
\begin{equation*}
p\left(M_{r} \mid \boldsymbol{y}\right)=\frac{f\left(\boldsymbol{y} \mid M_{r}\right) p\left(M_{r}\right)}{f(\boldsymbol{y})} \tag{A-4}
\end{equation*}
$$

which can be used to assess the degree of support for $M_{r}$. The prior density of $M_{r}$, i.e. $p\left(M_{r}\right)$, measures how likely we believe $M_{r}$ to be the correct model concerning the relative likelihood of all possible models before considering the data. $f\left(\boldsymbol{y} \mid M_{r}\right)$ is the marginal likelihood and is calculated by integrating both sides of Equation (A-1) with respect to $\boldsymbol{\beta}^{r}$. Use the fact that $\int p\left(\boldsymbol{\beta}^{r} \mid \boldsymbol{y}, M_{r}\right) d \boldsymbol{\beta}^{r}=1$, we get

$$
\begin{equation*}
f\left(\boldsymbol{y} \mid M_{r}\right)=\int f\left(\boldsymbol{y} \mid \boldsymbol{\beta}^{r}, M_{r}\right) p\left(\boldsymbol{\beta}^{r} \mid M_{r}\right) d \boldsymbol{\beta}^{r} \tag{A-5}
\end{equation*}
$$

Let $\boldsymbol{\beta}$ be a vector of parameters that has a common interpretation in all models, i.e. $\boldsymbol{\beta}$ is function of $\beta^{r}$ for each $r=1,2, \ldots, 2^{K}$. According to the rules of probabilities, we can calculate the posterior density of the parameters for all the models under consideration as

$$
\begin{equation*}
p(\boldsymbol{\beta} \mid \boldsymbol{y})=\sum_{r=1}^{2^{K}} p\left(M_{r} \mid \boldsymbol{y}\right) p\left(\boldsymbol{\beta} \mid \boldsymbol{y}, M_{r}\right) . \tag{A-6}
\end{equation*}
$$

Follow Raftery (1995) and Sala-i-Martin et al. (2004), the posterior probability of model $M_{r}$ is

$$
\begin{equation*}
p\left(M_{r} \mid \boldsymbol{y}\right)=\frac{p\left(M_{r}\right)(N T)^{-k^{r} / 2} S S E_{r}^{-N T / 2}}{\sum_{j=1}^{2^{K}} p\left(M_{j}\right)(N T)^{-k^{j} / 2} S S E_{j}^{-N T / 2}}, \tag{A-7}
\end{equation*}
$$

where $N T$ is the number of observations, $k^{r}$ is the number of regressors included in model $M_{r}$, and $\operatorname{SSE} E_{r}$ is the sum of squared residuals from the $r$ th regression model of $M_{r}$.

Regarding the specification of prior probabilities attached to different models, $p\left(M_{r}\right)$, a common practice is to assign equal prior probability to each model. This however has troubling implications when the number of models under consideration is large. In particular it implies a very strong prior belief that the number of regressors included in the true model is very large, with expected model size equal to $K / 2$. Instead of choosing prior probabilities for different models, we specify a prior mean model size, $\bar{k}$. Each variable has the same prior probability, i.e. $\bar{k} / K$, of being included, and the probability is independent of the inclusion of any other variables. In our empirical analysis, we choose $\bar{k}=7$ but also compare results to $\bar{k}=5,9,11$, and 16. Results are presented in Table AII. We find that different prior assumptions about the model size have no practical impact on the results.

# Table AI Results Comparison between Model with Variables Less than 25\% Missing Values and Model with Variables Less than 50\% Missing Values 

|  | 25\% data set |  |  |  |  | 50\% data set |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Posterior Mean | Posterior Standard Deviation | Sign Certainty Probability | Fraction of Regressions with \|tstat|>2 |  | Posterior Mean | Posterior Standard Deviation | Sign Certainty Probability | Fraction of Regressions with $\mid$ tstat $\mid>2$ |
| lngdp | 0.2328 | 0.0538 | 0.9999 | 0.9997 | psss | -0.8086 | 0.1746 | 1.0000 | 1.0000 |
| ppuhe | -0.2387 | 0.0591 | 0.9998 | 0.9999 | Inins | 0.2220 | 0.0556 | 1.0000 | 1.0000 |
| ppop6 | 2.8224 | 0.9707 | 0.9974 | 0.9885 | punem | -0.7289 | 0.1779 | 0.9998 | 0.9995 |
| hespe | 2.3498 | 1.0479 | 0.9878 | 0.9633 | Inpha | 0.1537 | 0.0408 | 0.9997 | 0.9987 |
| capit | 2.3523 | 1.1956 | 0.9870 | 0.9586 | ppins | -1.3837 | 0.6674 | 0.9982 | 0.9987 |
| pcanm | 0.0395 | 0.0198 | 0.9749 | 0.7406 | Ingdp | 0.2329 | 0.0814 | 0.9955 | 0.9710 |
| lnacc | 0.0328 | 0.0176 | 0.9599 | 0.8348 | Inta | 0.0196 | 0.0071 | 0.9953 | 0.9884 |
| lnmt | 0.0556 | 0.0340 | 0.9430 | 0.5418 | ppop6 | 3.0026 | 1.1341 | 0.9932 | 0.9413 |
| pcove | 0.1593 | 0.1003 | 0.9381 | 0.3510 | lninp | 0.1324 | 0.0566 | 0.9891 | 0.9202 |
| Inalc | 0.0297 | 0.0198 | 0.9222 | 0.6880 | pedx | 0.7309 | 0.3136 | 0.9883 | 0.8765 |
| free | 1.6467 | 1.3316 | 0.8896 | 0.8553 | hespe | 2.2973 | 1.0279 | 0.9815 | 0.8957 |
| Inle | -0.0898 | 0.0878 | 0.8499 | 0.4086 | ptexm | -0.1617 | 0.0802 | 0.9719 | 0.7905 |
| ffsa | 0.8481 | 1.3688 | 0.7464 | 0.7219 | capit | 1.9228 | 1.0495 | 0.9700 | 0.8720 |
| mixgp | -1.0128 | 1.4891 | 0.7439 | 0.7596 | Inbsi | 0.0954 | 0.0507 | 0.9659 | 0.5511 |
| pgp1 | 0.0374 | 0.0932 | 0.6831 | 0.0817 | pgsh | 0.1626 | 0.0916 | 0.9658 | 0.5331 |
| ppop8 | 0.8437 | 1.7712 | 0.6784 | 0.1911 | Intob | 0.0408 | 0.0225 | 0.9619 | 0.4578 |
| pbirt | 0.1575 | 0.4200 | 0.6527 | 0.0158 | free | 2.0821 | 1.2034 | 0.9466 | 0.8462 |
| copay | 0.3029 | 0.9839 | 0.6354 | 0.7285 | pcove | 0.1381 | 0.0924 | 0.9352 | 0.3823 |
| mic | -0.4010 | 1.1472 | 0.6222 | 0.6614 | Inacc | 0.0279 | 0.0182 | 0.9302 | 0.6741 |
| lndp | -0.0816 | 0.3803 | 0.5864 | 0.5725 | Inger | 0.0464 | 0.0311 | 0.9272 | 0.3998 |
| caseh | -0.0685 | 0.7267 | 0.5460 | 0.6362 | lnalc | 0.0405 | 0.0276 | 0.9259 | 0.6197 |
| globu | -0.0490 | 0.7244 | 0.5095 | 0.5468 | Inlos | 0.0414 | 0.0369 | 0.8665 | 0.0092 |
| gatek | -0.0290 | 1.1909 | 0.5066 | 0.6947 | pcanm | 0.0302 | 0.0280 | 0.8565 | 0.2844 |
| ws | 0.1718 | 1.5871 | 0.5029 | 0.7213 | lngp | -3.4639 | 3.3829 | 0.8447 | 0.0225 |
|  |  |  |  |  | ppuhe | -0.1654 | 0.1943 | 0.8305 | 0.9144 |
|  |  |  |  |  | pbirt | 0.3712 | 0.4201 | 0.8160 | 0.1461 |
|  |  |  |  |  | lnmt | 0.0354 | 0.0467 | 0.7785 | 0.2288 |
|  |  |  |  |  | ffsa | 0.7351 | 1.0853 | 0.7647 | 0.4335 |
|  |  |  |  |  | gatek | 0.6901 | 1.0820 | 0.7477 | 0.5585 |
|  |  |  |  |  | ppop8 | 1.2950 | 2.0916 | 0.7329 | 0.3116 |
|  |  |  |  |  | copay | 0.4658 | 0.8625 | 0.7227 | 0.4604 |
|  |  |  |  |  | Inle | -0.0506 | 0.0971 | 0.6999 | 0.0948 |
|  |  |  |  |  | mic | 0.4111 | 1.0973 | 0.6677 | 0.4513 |
|  |  |  |  |  | phemp | 0.1066 | 0.3747 | 0.6107 | 0.0000 |
|  |  |  |  |  | ws | -0.1969 | 1.2775 | 0.6002 | 0.3670 |
|  |  |  |  |  | pgp1 | 0.0169 | 0.1001 | 0.5955 | 0.0243 |
|  |  |  |  |  | pfpr | 0.0002 | 0.0023 | 0.5776 | 0.2825 |
|  |  |  |  |  | Indp | -0.0779 | 0.3980 | 0.5729 | 0.1916 |
|  |  |  |  |  | globu | 0.0429 | 0.6771 | 0.5430 | 0.2363 |
|  |  |  |  |  | Indoc | 0.0011 | 0.0188 | 0.5226 | 0.0002 |
|  |  |  |  |  | mixgp | -0.1451 | 1.3140 | 0.5214 | 0.3657 |
|  |  |  |  |  | caseh | 0.0243 | 0.7701 | 0.5142 | 0.3368 |
|  |  |  |  |  | Inhospe | -0.0004 | 0.0268 | 0.5004 | 0.0000 |

Table AII Results Comparison across Models with Different Prior Mean Model Size

|  | $\bar{k}=5$ |  | $\bar{k}=7$ |  | $\bar{k}=9$ |  | $\bar{k}=11$ |  | $\bar{k}=16$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Posterior Mean | Sign Certainty Probability | Posterior <br> Mean | Sign <br> Certainty Probability |
| psss | -0.7861 | 1.0000 | -0.8086 | 1.0000 | -0.8291 | 1.0000 | -0.8288 | 1.0000 | -0.8288 | 1.0000 |
| lnins | 0.2136 | 1.0000 | 0.2220 | 1.0000 | 0.2295 | 1.0000 | 0.2293 | 1.0000 | 0.2295 | 1.0000 |
| punem | -0.7654 | 1.0000 | -0.7289 | 0.9998 | -0.6904 | 0.9992 | -0.6898 | 0.9992 | -0.6902 | 0.9992 |
| lnpha | 0.1592 | 0.9999 | 0.1537 | 0.9997 | 0.1496 | 0.9992 | 0.1494 | 0.9992 | 0.1495 | 0.9992 |
| ppins | -1.2681 | 0.9985 | -1.3837 | 0.9982 | -1.4929 | 0.9977 | -1.4901 | 0.9977 | -1.4946 | 0.9978 |
| lngdp | 0.2659 | 0.9992 | 0.2329 | 0.9955 | 0.2013 | 0.9843 | 0.2008 | 0.9843 | 0.2011 | 0.9844 |
| lnta | 0.0203 | 0.9970 | 0.0196 | 0.9953 | 0.0189 | 0.9924 | 0.0190 | 0.9924 | 0.0189 | 0.9924 |
| ppop6 | 3.2836 | 0.9974 | 3.0026 | 0.9932 | 2.8363 | 0.9856 | 2.8347 | 0.9856 | 2.8315 | 0.9853 |
| $\ln$ inp | 0.1377 | 0.9932 | 0.1324 | 0.9891 | 0.1286 | 0.9839 | 0.1284 | 0.9838 | 0.1285 | 0.9840 |
| pedx | 0.7218 | 0.9906 | 0.7309 | 0.9883 | 0.7347 | 0.9854 | 0.7352 | 0.9854 | 0.7346 | 0.9853 |
| hcspe | 2.4034 | 0.9895 | 2.2973 | 0.9815 | 2.2720 | 0.9722 | 2.2753 | 0.9723 | 2.2688 | 0.9723 |
| ptexm | -0.1641 | 0.9796 | -0.1617 | 0.9719 | -0.1585 | 0.9627 | -0.1584 | 0.9625 | -0.1583 | 0.9622 |
| capit | 1.9589 | 0.9844 | 1.9228 | 0.9700 | 1.8817 | 0.9490 | 1.8865 | 0.9493 | 1.8812 | 0.9486 |
| lnbsi | 0.0965 | 0.9740 | 0.0954 | 0.9659 | 0.0926 | 0.9537 | 0.0926 | 0.9535 | 0.0925 | 0.9536 |
| pgsh | 0.1493 | 0.9599 | 0.1626 | 0.9658 | 0.1735 | 0.9691 | 0.1735 | 0.9692 | 0.1732 | 0.9690 |
| Intob | 0.0422 | 0.9714 | 0.0408 | 0.9619 | 0.0390 | 0.9492 | 0.0390 | 0.9491 | 0.0390 | 0.9492 |
| free | 2.3624 | 0.9801 | 2.0821 | 0.9466 | 1.8032 | 0.8995 | 1.8065 | 0.9000 | 1.8022 | 0.8995 |
| pcove | 0.1398 | 0.9517 | 0.1381 | 0.9352 | 0.1384 | 0.9189 | 0.1386 | 0.9189 | 0.1386 | 0.9191 |
| Inacc | 0.0291 | 0.9525 | 0.0279 | 0.9302 | 0.0271 | 0.9091 | 0.0272 | 0.9097 | 0.0273 | 0.9106 |
| lnger | 0.0527 | 0.9547 | 0.0464 | 0.9272 | 0.0419 | 0.9000 | 0.0420 | 0.9002 | 0.0420 | 0.9002 |
| lnalc | 0.0452 | 0.9652 | 0.0405 | 0.9259 | 0.0357 | 0.8754 | 0.0358 | 0.8764 | 0.0356 | 0.8745 |
| lnlos | 0.0409 | 0.8742 | 0.0414 | 0.8665 | 0.0414 | 0.8559 | 0.0414 | 0.8561 | 0.0414 | 0.8558 |
| pcanm | 0.0289 | 0.8723 | 0.0302 | 0.8565 | 0.0309 | 0.8392 | 0.0310 | 0.8395 | 0.0310 | 0.8401 |
| $\operatorname{lng} \mathrm{p}$ | -3.6329 | 0.8691 | -3.4639 | 0.8447 | -3.3554 | 0.8242 | -3.3502 | 0.8244 | -3.3571 | 0.8244 |
| ppuhe | -0.1768 | 0.8761 | -0.1654 | 0.8305 | -0.1555 | 0.7865 | -0.1573 | 0.7906 | -0.1571 | 0.7890 |
| pbirt | 0.3802 | 0.8544 | 0.3712 | 0.8160 | 0.3561 | 0.7801 | 0.3551 | 0.7793 | 0.3560 | 0.7801 |
| lnmt | 0.0322 | 0.7693 | 0.0354 | 0.7785 | 0.0347 | 0.7560 | 0.0349 | 0.7577 | 0.0348 | 0.7573 |
| ffsa | 0.7326 | 0.8048 | 0.7351 | 0.7647 | 0.7452 | 0.7376 | 0.7430 | 0.7364 | 0.7503 | 0.7389 |
| gatek | 0.9037 | 0.8166 | 0.6901 | 0.7477 | 0.5349 | 0.6898 | 0.5352 | 0.6901 | 0.5399 | 0.6917 |
| ppop8 | 1.9168 | 0.8181 | 1.2950 | 0.7329 | 0.8622 | 0.6605 | 0.8630 | 0.6606 | 0.8622 | 0.6605 |
| copay | 0.6712 | 0.8107 | 0.4658 | 0.7227 | 0.3047 | 0.6492 | 0.3008 | 0.6472 | 0.3003 | 0.6479 |
| lnle | -0.0214 | 0.5985 | -0.0506 | 0.6999 | -0.0728 | 0.7542 | -0.0730 | 0.7557 | -0.0719 | 0.7525 |
| mic | 0.8145 | 0.7846 | 0.4111 | 0.6677 | 0.1090 | 0.5653 | 0.1018 | 0.5618 | 0.1071 | 0.5638 |
| phemp | 0.0961 | 0.6026 | 0.1066 | 0.6107 | 0.1157 | 0.6166 | 0.1162 | 0.6170 | 0.1155 | 0.6164 |
| ws | -0.2852 | 0.6483 | -0.1969 | 0.6002 | -0.0468 | 0.5489 | -0.0459 | 0.5482 | -0.0510 | 0.5493 |
| pgp1 | 0.0278 | 0.6506 | 0.0169 | 0.5955 | 0.0088 | 0.5583 | 0.0088 | 0.5587 | 0.0091 | 0.5596 |
| pfpr | 0.0010 | 0.7118 | 0.0002 | 0.5776 | -0.0004 | 0.5331 | -0.0004 | 0.5319 | -0.0004 | 0.5342 |
| lndp | -0.0024 | 0.5025 | -0.0779 | 0.5729 | -0.1425 | 0.6200 | -0.1419 | 0.6196 | -0.1429 | 0.6204 |
| globu | 0.1122 | 0.5852 | 0.0429 | 0.5430 | -0.0378 | 0.5004 | -0.0424 | 0.5028 | -0.0412 | 0.5019 |
| Indoc | 0.0029 | 0.5635 | 0.0011 | 0.5226 | -0.0002 | 0.5058 | -0.0002 | 0.5053 | -0.0002 | 0.5056 |
| mixgp | 0.1907 | 0.5884 | -0.1451 | 0.5214 | -0.4208 | 0.5954 | -0.4243 | 0.5947 | -0.4284 | 0.5978 |
| caseh | 0.1815 | 0.6026 | 0.0243 | 0.5142 | -0.0595 | 0.5303 | -0.0618 | 0.5317 | -0.0618 | 0.5320 |
| lnhospc | 0.0024 | 0.5415 | -0.0004 | 0.5004 | -0.0045 | 0.5547 | -0.0043 | 0.5531 | -0.0044 | 0.5547 |



Figure A1 Estimated Kernel Densities of Observed Data and Imputed data for Six Robust Variables with Highest Proportions of Missing Values

## References

CHERNEW, M. E. \& NEWHOUSE, J. P. 2011. Chapter One - Health Care Spending Growth. In: MARK V. PAULY, T. G. M. \& PEDRO, P. B. (eds.) Handbook of Health Economics. Elsevier.
GREENHALGH, T., ROBERT, G., BATE, P., MACFARLANE, F. \& KYRIAKIDOU, O. 2008. Diffusion of innovations in health service organisations: a systematic literature review, Blackwell Publishing.
HASHIMOTO, H., NOGUCHI, H., HEIDENREICH, P., SAYNINA, O., MORELAND, A., MIYAZAKI, S., IKEDA, S., KANEKO, Y. \& IKEGAMI, N. 2006. The diffusion of medical technology, local conditions, and technology re-invention: A comparative case study on coronary stenting. Health Policy, 79, 221-230.
HORTON, N. J. \& LIPSITZ, S. R. 2001. Multiple Imputation in Practice. The American Statistician, 55, 244-254.
KENWARD, M. G. \& CARPENTER, J. 2007. Multiple imputation: current perspectives. Statistical Methods in Medical Research, 16, 199-218.
LYTTKENS, C. H. 2001. Technological change around the world: evidence from heart attack care. Health Affairs, 20, 25-42.
MCCLELLAN, M. \& KESSLER, D. 1999. A Global Analysis Of Technological Change In Health Care: The Case Of Heart Attacks. Health Affairs, 18, 250-255.
MORAL-BENITO, E. 2012. Determinants of economic growth: a Bayesian panel data approach. Review of Economics and Statistics, 94, 566-579.
PACKER, C., SIMPSON, S. \& STEVENS, A. 2006. International diffusion of new health technologies: A ten-country analysis of six health technologies. International Journal of Technology Assessment in Health Care, 22, 419-428.
RAFTERY, A. E. 1995. Bayesian model selection in social research. Sociological methodology, 25, 111-164.
RUBIN, D. B. 1987. Multiple Imputation for Nonresponse in Surveys (Wiley Series in Probability and Statistics).
SALA-I-MARTIN, X., DOPPELHOFER, G. \& MILLER, R. I. 2004. Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach. American Economic Review, 94, 813-835.
WHITE, I. R., ROYSTON, P. \& WOOD, A. M. 2011. Multiple imputation using chained equations: issues and guidance for practice. Statistics in Medicine, 30, 377-399.

