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Appendix I Background 

What if all heterogeneity in the effects of common shocks was observable? 

If this was the case, then the problem could be solved -or at least alleviated- by a specification that includes 

interactions terms between the observable regressors and time, and that allows for time-varying slope 

coefficients, as for example proposed by Chernew and Newhouse (2011). However, the literature finds that a 

substantial proportion of differences in the spread of technology, and other common shocks, is due to factors 

that are either unobservable altogether, or unobserved in the country level data that are typically used by 

studies on HCE growth (McClellan and Kessler, 1999; Lyttkens, 2001; Packer et al., 2006; Hashimoto et al., 

2006; Greenhalgh et al., 2008). If this is the case, then changes in unmeasured factors may cause the 

observed relationship between covariates and spending to change over time. As a result, heterogeneity in the 

impact of latent common factors on HCE growth in countries introduces cross-section dependence, 

endogeneity and correlation between year fixed effects and regressors. This may lead to inconsistent 

estimates and erroneous inference on the importance of observable drivers of expenditure growth, a problem 

that cannot be eliminated with interaction terms and time-varying slopes. The factor structure can capture 

any contemporaneous correlation that arises from the common response of countries to such unanticipated 

events, and recognize that there is cross-country dependence in HCE, caused by unobservable common 

factors in specific time periods.   

Appendix II Methods 

A. Multiple Imputation 

MI proceeds in three steps: (1) generate M imputations (completed data sets); (2) conduct desired 

analysis on each imputation separately; (3) combine results obtained from the second step for each 

completed data set into a single multiple-imputation result(Rubin, 1987, Kenward and Carpenter, 2007, 

Horton and Lipsitz, 2001).  We use predictive mean matching using three nearest neighbours and M=50 

imputed datasets, following White et al. (2011). This method fills in multiple variables iteratively using a 
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sequence of univariate imputation methods with fully conditional specification of prediction equations. It 

accommodates arbitrary missing value patterns, and it allows us to include country and year dummies and 

utilise robust standard errors. Summary statistics for two imputed data sets and all imputed variables are 

presented in Table III in the main body of the paper. In Figure A1 we plot overlay kernel densities of 

original and imputed data for six robust variables with highest proportions of missing values (ranging from 

49.83% to 32.89%). Comparing the summary statistics of the imputed variables with the original ones in 

Table II, and the estimated kernel densities, we are reasonably confident that the imputations can be used for 

further analysis. Table AI presents results from the model with variables having less than 25% missing 

values, compared with results from our main model with variables having less than 50% missing values. The 

similarity between these two sets of results further demonstrates the quality of our imputed data for variables 

with less than 50% missing values. 

For each imputed data-set, we estimate the common factor model in different specifications. Let  

represent the estimated parameters from common factor model with specification  ( ) by 

using the m-th (  ) imputed data set. Let  be the completed-data point 

estimates and variance-covariance estimates of  from M imputed datasets. For , the MI point 

estimation of is given as 

,                                                   (A-1) 

and the MI variance-covariance estimate is  

.               (A-2) 

B. Bayesian Model Averaging 

Most studies that use Bayesian Model Averaging (BMA) to identify determinants of economic 

growth at country level are based on cross-sectional models.
1
 Let  y X   represent a generic regression 

model of health care expenditure growth ( y ) on a set of growth determinants ( X ). Given the large number 

of potential growth determinants, there potentially exist an enormous amount of empirical models when the 

empirical researcher seeks to explore different combination of determinants.  Suppose we have K potential 

determinants, we then would have a maximum of 2K
 possible combinations of regressors, i.e. 2K  different 

models to estimate. Let rM  ( 1,2,...,2Kr  ) denote the rth model under consideration, then rM  depends on 

                                                           
1 To the best knowledge of authors, the only one exception is Moral-Benito (2012). 
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a set of growth determinants, r
X , and their corresponding coefficients 

r . By Bayes’ rule in densities, the 

posterior density for 
r  under model rM  is written as  

( | , ) ( | )
( | , ) ,

( | )

r r
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p M
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                             (A-3) 

where ( | )r

rp M  is the prior density of 
r ; ( | , )r

rf My   denotes likelihood of y  given 
r  under model 

rM ; and ( | )rf My  is the prior density of y . 

Using Bayes’ rule, the posterior probability, ( | )rp M y  for 1,2,...,2Kr  , can be obtained as  

( | ) ( )
( | ) ,
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r r
r

f M p M
p M
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y
y

y
                            (A-4) 

which can be used to assess the degree of support for rM . The prior density of rM , i.e. ( )rp M , measures 

how likely we believe rM  to be the correct model concerning the relative likelihood of all possible models 

before considering the data. ( | )rf My
 
is the marginal likelihood and is calculated by integrating both sides 

of Equation (A-1) with respect to 
r . Use the fact that ( | , ) 1r r

rp M d  y  , we get  

( | ) ( | , ) ( | ) .r r r

r r rf M f M p M d y y                                (A-5) 

 Let  be a vector of parameters that has a common interpretation in all models, i.e.  is function of 

r  for each 1,2,...,2Kr  . According to the rules of probabilities, we can calculate the posterior density of 

the parameters for all the models under consideration as  

2
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Follow Raftery (1995) and Sala-i-Martin et al. (2004), the posterior probability of model rM  is  
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where NT is the number of observations, 
rk  is the number of regressors included in model rM , and rSSE  is 

the sum of squared residuals from the rth regression model of rM .  
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 Regarding the specification of prior probabilities attached to different models, , a common 

practice is to assign equal prior probability to each model. This however has troubling implications when the 

number of models under consideration is large. In particular it implies a very strong prior belief that the 

number of regressors included in the true model is very large, with expected model size equal to . 

Instead of choosing prior probabilities for different models, we specify a prior mean model size, .  Each 

variable has the same prior probability, i.e. , of being included, and the probability is independent of 

the inclusion of any other variables. In our empirical analysis, we choose but also compare results to 

5,9,11, and  16  k  . Results are presented in Table AII. We find that different prior assumptions about the 

model size have no practical impact on the results. 

( )rp M

2K

k

k K

7k 
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Table AI Results Comparison between Model with Variables Less than 25% Missing Values and 

Model with Variables Less than 50% Missing Values 

 

25% data set 

 

50% data set 

Posterior 

Mean 

Posterior 

Standard 

Deviation 

Sign 

Certainty 

Probability 

Fraction of  

Regressions 

with |tstat|>2 

 

Posterior 

Mean 

Posterior 

Standard 

Deviation 

Sign 

Certainty 

Probability 

Fraction of  

Regressions 

with |tstat|>2 

lngdp 0.2328 0.0538 0.9999 0.9997 psss -0.8086 0.1746 1.0000 1.0000 

ppuhe -0.2387 0.0591 0.9998 0.9999 lnins 0.2220 0.0556 1.0000 1.0000 

ppop6 2.8224 0.9707 0.9974 0.9885 punem -0.7289 0.1779 0.9998 0.9995 

hcspc 2.3498 1.0479 0.9878 0.9633 lnpha 0.1537 0.0408 0.9997 0.9987 

capit 2.3523 1.1956 0.9870 0.9586 ppins -1.3837 0.6674 0.9982 0.9987 

pcanm 0.0395 0.0198 0.9749 0.7406 lngdp 0.2329 0.0814 0.9955 0.9710 

lnacc 0.0328 0.0176 0.9599 0.8348 lnta 0.0196 0.0071 0.9953 0.9884 

lnmt 0.0556 0.0340 0.9430 0.5418 ppop6 3.0026 1.1341 0.9932 0.9413 

pcove 0.1593 0.1003 0.9381 0.3510 lninp 0.1324 0.0566 0.9891 0.9202 

lnalc 0.0297 0.0198 0.9222 0.6880 pedx 0.7309 0.3136 0.9883 0.8765 

free 1.6467 1.3316 0.8896 0.8553 hcspc 2.2973 1.0279 0.9815 0.8957 

lnle -0.0898 0.0878 0.8499 0.4086 ptexm -0.1617 0.0802 0.9719 0.7905 

ffsa 0.8481 1.3688 0.7464 0.7219 capit 1.9228 1.0495 0.9700 0.8720 

mixgp -1.0128 1.4891 0.7439 0.7596 lnbsi 0.0954 0.0507 0.9659 0.5511 

pgp1 0.0374 0.0932 0.6831 0.0817 pgsh 0.1626 0.0916 0.9658 0.5331 

ppop8 0.8437 1.7712 0.6784 0.1911 lntob 0.0408 0.0225 0.9619 0.4578 

pbirt 0.1575 0.4200 0.6527 0.0158 free 2.0821 1.2034 0.9466 0.8462 

copay 0.3029 0.9839 0.6354 0.7285 pcove 0.1381 0.0924 0.9352 0.3823 

mic -0.4010 1.1472 0.6222 0.6614 lnacc 0.0279 0.0182 0.9302 0.6741 

lndp -0.0816 0.3803 0.5864 0.5725 lnger 0.0464 0.0311 0.9272 0.3998 

caseh -0.0685 0.7267 0.5460 0.6362 lnalc 0.0405 0.0276 0.9259 0.6197 

globu -0.0490 0.7244 0.5095 0.5468 lnlos 0.0414 0.0369 0.8665 0.0092 

gatek -0.0290 1.1909 0.5066 0.6947 pcanm 0.0302 0.0280 0.8565 0.2844 

ws 0.1718 1.5871 0.5029 0.7213 lngp -3.4639 3.3829 0.8447 0.0225 

     

ppuhe -0.1654 0.1943 0.8305 0.9144 

     

pbirt 0.3712 0.4201 0.8160 0.1461 

     

lnmt 0.0354 0.0467 0.7785 0.2288 

     

ffsa 0.7351 1.0853 0.7647 0.4335 

     

gatek 0.6901 1.0820 0.7477 0.5585 

     

ppop8 1.2950 2.0916 0.7329 0.3116 

     

copay 0.4658 0.8625 0.7227 0.4604 

     

lnle -0.0506 0.0971 0.6999 0.0948 

     

mic 0.4111 1.0973 0.6677 0.4513 

     

phemp 0.1066 0.3747 0.6107 0.0000 

     

ws -0.1969 1.2775 0.6002 0.3670 

     

pgp1 0.0169 0.1001 0.5955 0.0243 

     

pfpr 0.0002 0.0023 0.5776 0.2825 

     

lndp -0.0779 0.3980 0.5729 0.1916 

     

globu 0.0429 0.6771 0.5430 0.2363 

     

lndoc 0.0011 0.0188 0.5226 0.0002 

     

mixgp -0.1451 1.3140 0.5214 0.3657 

     

caseh 0.0243 0.7701 0.5142 0.3368 

     

lnhospc -0.0004 0.0268 0.5004 0.0000 
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Table AII Results Comparison across Models with Different Prior Mean Model Size 

 

5k   7k   9k   11k   16k   

 

Posterior 

Mean 

Sign 

Certainty 

Probability 

Posterior 

Mean 

Sign 

Certainty 

Probability 

Posterior 

Mean 

Sign 

Certainty 

Probability 

Posterior 

Mean 

Sign 

Certainty 

Probability 

Posterior 

Mean 

Sign 

Certainty 

Probability 

psss -0.7861 1.0000 -0.8086 1.0000 -0.8291 1.0000 -0.8288 1.0000 -0.8288 1.0000 

lnins 0.2136 1.0000 0.2220 1.0000 0.2295 1.0000 0.2293 1.0000 0.2295 1.0000 

punem -0.7654 1.0000 -0.7289 0.9998 -0.6904 0.9992 -0.6898 0.9992 -0.6902 0.9992 

lnpha 0.1592 0.9999 0.1537 0.9997 0.1496 0.9992 0.1494 0.9992 0.1495 0.9992 

ppins -1.2681 0.9985 -1.3837 0.9982 -1.4929 0.9977 -1.4901 0.9977 -1.4946 0.9978 

lngdp 0.2659 0.9992 0.2329 0.9955 0.2013 0.9843 0.2008 0.9843 0.2011 0.9844 

lnta 0.0203 0.9970 0.0196 0.9953 0.0189 0.9924 0.0190 0.9924 0.0189 0.9924 

ppop6 3.2836 0.9974 3.0026 0.9932 2.8363 0.9856 2.8347 0.9856 2.8315 0.9853 

lninp 0.1377 0.9932 0.1324 0.9891 0.1286 0.9839 0.1284 0.9838 0.1285 0.9840 

pedx 0.7218 0.9906 0.7309 0.9883 0.7347 0.9854 0.7352 0.9854 0.7346 0.9853 

hcspc 2.4034 0.9895 2.2973 0.9815 2.2720 0.9722 2.2753 0.9723 2.2688 0.9723 

ptexm -0.1641 0.9796 -0.1617 0.9719 -0.1585 0.9627 -0.1584 0.9625 -0.1583 0.9622 

capit 1.9589 0.9844 1.9228 0.9700 1.8817 0.9490 1.8865 0.9493 1.8812 0.9486 

lnbsi 0.0965 0.9740 0.0954 0.9659 0.0926 0.9537 0.0926 0.9535 0.0925 0.9536 

pgsh 0.1493 0.9599 0.1626 0.9658 0.1735 0.9691 0.1735 0.9692 0.1732 0.9690 

lntob 0.0422 0.9714 0.0408 0.9619 0.0390 0.9492 0.0390 0.9491 0.0390 0.9492 

free 2.3624 0.9801 2.0821 0.9466 1.8032 0.8995 1.8065 0.9000 1.8022 0.8995 

pcove 0.1398 0.9517 0.1381 0.9352 0.1384 0.9189 0.1386 0.9189 0.1386 0.9191 

lnacc 0.0291 0.9525 0.0279 0.9302 0.0271 0.9091 0.0272 0.9097 0.0273 0.9106 

lnger 0.0527 0.9547 0.0464 0.9272 0.0419 0.9000 0.0420 0.9002 0.0420 0.9002 

lnalc 0.0452 0.9652 0.0405 0.9259 0.0357 0.8754 0.0358 0.8764 0.0356 0.8745 

lnlos 0.0409 0.8742 0.0414 0.8665 0.0414 0.8559 0.0414 0.8561 0.0414 0.8558 

pcanm 0.0289 0.8723 0.0302 0.8565 0.0309 0.8392 0.0310 0.8395 0.0310 0.8401 

lngp -3.6329 0.8691 -3.4639 0.8447 -3.3554 0.8242 -3.3502 0.8244 -3.3571 0.8244 

ppuhe -0.1768 0.8761 -0.1654 0.8305 -0.1555 0.7865 -0.1573 0.7906 -0.1571 0.7890 

pbirt 0.3802 0.8544 0.3712 0.8160 0.3561 0.7801 0.3551 0.7793 0.3560 0.7801 

lnmt 0.0322 0.7693 0.0354 0.7785 0.0347 0.7560 0.0349 0.7577 0.0348 0.7573 

ffsa 0.7326 0.8048 0.7351 0.7647 0.7452 0.7376 0.7430 0.7364 0.7503 0.7389 

gatek 0.9037 0.8166 0.6901 0.7477 0.5349 0.6898 0.5352 0.6901 0.5399 0.6917 

ppop8 1.9168 0.8181 1.2950 0.7329 0.8622 0.6605 0.8630 0.6606 0.8622 0.6605 

copay 0.6712 0.8107 0.4658 0.7227 0.3047 0.6492 0.3008 0.6472 0.3003 0.6479 

lnle -0.0214 0.5985 -0.0506 0.6999 -0.0728 0.7542 -0.0730 0.7557 -0.0719 0.7525 

mic 0.8145 0.7846 0.4111 0.6677 0.1090 0.5653 0.1018 0.5618 0.1071 0.5638 

phemp 0.0961 0.6026 0.1066 0.6107 0.1157 0.6166 0.1162 0.6170 0.1155 0.6164 

ws -0.2852 0.6483 -0.1969 0.6002 -0.0468 0.5489 -0.0459 0.5482 -0.0510 0.5493 

pgp1 0.0278 0.6506 0.0169 0.5955 0.0088 0.5583 0.0088 0.5587 0.0091 0.5596 

pfpr 0.0010 0.7118 0.0002 0.5776 -0.0004 0.5331 -0.0004 0.5319 -0.0004 0.5342 

lndp -0.0024 0.5025 -0.0779 0.5729 -0.1425 0.6200 -0.1419 0.6196 -0.1429 0.6204 

globu 0.1122 0.5852 0.0429 0.5430 -0.0378 0.5004 -0.0424 0.5028 -0.0412 0.5019 

lndoc 0.0029 0.5635 0.0011 0.5226 -0.0002 0.5058 -0.0002 0.5053 -0.0002 0.5056 

mixgp 0.1907 0.5884 -0.1451 0.5214 -0.4208 0.5954 -0.4243 0.5947 -0.4284 0.5978 

caseh 0.1815 0.6026 0.0243 0.5142 -0.0595 0.5303 -0.0618 0.5317 -0.0618 0.5320 

lnhospc 0.0024 0.5415 -0.0004 0.5004 -0.0045 0.5547 -0.0043 0.5531 -0.0044 0.5547 
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Figure A1 Estimated Kernel Densities of Observed Data and Imputed data for Six Robust Variables 

with Highest Proportions of Missing Values  
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