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Abstract. Many works on surrogate-assisted evolutionary multiobjec-
tive optimization have been devoted to problems where function evalua-
tions are time-consuming (e.g., based on simulations). In many real-life
optimization problems, mathematical or simulation models are not al-
ways available and, instead, we only have data from experiments, mea-
surements or sensors. In such cases, optimization is to be performed on
surrogate models built on the data available. The main challenge there
is to fit an accurate surrogate model and to obtain meaningful solutions.
We apply Kriging as a surrogate model and utilize corresponding un-
certainty information in different ways during the optimization process.
We discuss experimental results obtained on benchmark multiobjective
optimization problems with different sampling techniques and numbers
of objectives. The results show the effect of different ways of utilizing
uncertainty information on the quality of solutions.

Keywords: Machine learning · Gaussian process · Pareto optimality ·
Metamodelling · Surrogate

1 Introduction

Sometimes in real applications, multiple conflicting objectives should be opti-
mized, but there is no mathematical or simulation model of the objectives in-
volved. Instead, there is data, e.g., obtained via physical experiments. In such
cases, surrogate models can be built using the given data and optimization is
then performed with the surrogate models. In the literature, surrogate models
such as Kriging [8], neural networks [18] and support vector regression [16] have
been typically used for solving computationally expensive optimization problems
[6,10]. If we may conduct new (expensive) function evaluations when needed, this
process is called online data-driven optimization [20]. When we do not have ac-
cess to additional data during the optimization, we call it offline data-driven
optimization [11].
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In using surrogate models, the main challenge is to manage the models for
improving convergence and diversity without too much sacrifice in the accuracy
of models. In online data-driven optimization problems, an infill criterion [6] is
maximized or minimized for updating the models iteratively during the optimiza-
tion process. However, this is not applicable for offline data-driven optimization
when no further data is available during the optimization process.So far, little
research has been conducted on solving optimization problems, where no new
data is available for managing the surrogates [4,11,20]. In such case, the quality
of the solutions obtained after using the surrogate models is entirely dependent
on the accuracy of the models and optimizer used.

When solving an offline data-driven problem with multiple conflicting objec-
tives, one can fit models using all the data available for each objective function.
Then an evolutionary multiobjective optimization (EMO) algorithm can be used
on these models to find a set of approximated nondominated solutions. Essen-
tially, in that case, an offline data-driven multiobjective optimization problem
(MOP) can be divided into two major parts: model building and using an EMO
algorithm.

Some surrogate models, like Kriging, provide uncertainty information (or
standard deviation) about the predicted values. A low standard deviation implies
that the actual objective function value has a higher chance of being close to
the predicted value (though the actual function may remain unknown and the
only information is the data available). Therefore, one possible way to improve
the accuracy of the model is to utilize uncertainty in the fitted model as an
additional objective to be optimized.

In this article, we study different ways to deal with the uncertainty infor-
mation provided by the Kriging models in offline data-driven multiobjective
optimization. Moreover, we consider the effect of using different initial sampling
techniques on some benchmark test problems. In this study, we simulate offline
problems by generating data for problems with known optimal solutions to be
able to analyze the results. The results show the effect of utilizing uncertainty
information in the quality of solutions.

The rest of this article is organized as follows. We summarize the basic con-
cepts of data-driven optimization and Kriging model in Section 2. In Section 3,
we present different approaches of incorporating uncertainty information in the
optimization problem and present and analyze the results in Section 4. Finally,
we draw conclusions in Section 5.

2 Background

2.1 Generic Offline Data-Driven EMO

We consider MOPs of the following form :

minimize {f1(x), . . . , fk(x)},
subject to x ∈ S,

(1)
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with k (≥ 2) objective functions and the feasible set S is a subset of the decision
space Rn. For any feasible decision vector x we have a corresponding objective
vector f(x) = (f1(x), . . . , fk(x)).

MOPs that are offline in nature can generally be solved by the approach given
in Fig. 1. In what follows, we refer to it as a generic approach. As described in
[11,21], the solution process can be split into three major components: (1) data
collection, (2) model building and management, and (3) EMO method utilized.
The collection of data may also incorporate data pre-processing, if it is required.
Once the data has been obtained, the objectives and constraints of the MOP are
formulated. The next stage is to build surrogate models (also known as meta-
models) e.g. for each objective function using the available data. Finally, an
EMO method is used to find nondominated solutions utilizing the surrogates as
objective functions. As objectives to be optimized in (1) we have for i = 1, . . . , k

the predicted means f̂i of the surrogate of objective fi and our objective vector
is denoted by:

f̂ = (f̂1(x), . . . , f̂k(x)). (2)
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Fig. 1. Flowchart of a generic offline data-driven evolutionary multiobjective optimiza-
tion approach.

Selecting proper surrogate models is a challenging task in model management.
In online data-driven EMO, the quality of the surrogate models can be accessed
and updated as new data becomes available during the optimization process.
However, for offline data-driven EMO this is not possible. It becomes even more
challenging with the data being noisy [22], skewed [23], time-varying [2] or het-
erogeneous [3]. Thus, it is crucial to build, before optimization, surrogates that
are as good approximations as possible of the “true” objective functions. One
way to improve the accuracy of the surrogates is to enhance the quality of the
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data. In this research, our consideration is on a general level and we do not go
into the characteristics of the data.

In offline data-driven EMO, the possible ways to improve the accuracy of
the surrogate models are to have an effective data pre-processing for noise re-
moval [4], creating synthetic data [23], transferring knowledge [15] or applying
advanced machine leaning techniques [19,20]. However, it is quite possible that
the surrogate models are not good representations of the true objectives. It may
even happen that the solutions obtained are actually worse than the data used
for fitting the models.

2.2 Kriging

Kriging or Gaussian process regression has been widely used as a surrogate model
for solving expensive optimization problems [6]. The main advantage of using
Kriging is its ability to provide uncertainty information of the predicted values.
Given a Kriging model, the approximated mean value y∗ and its variance s2 for
a sample (or decision variable value) x∗ are as follows:

y∗ = k(x∗,X)K(X,X)−1y, (3)

s2 = k(x∗,x∗)−K(x∗,X)K(X,X)−1K(X,x∗), (4)

where X ∈ RNI×n is the matrix of the given data with NI items with n decision
variables, y ∈ RNI is the vector of given objective values corresponding to some
decision vector, K(X,X) is the covariance matrix of X and k(x∗,X) is a vector
of covariances between x∗ and X. For more details about Kriging, see [17].

3 Approaches to Incorporate Uncertainty

As new data cannot be obtained in offline data-driven optimization, it is difficult
to update the surrogates and enhance their accuracy. One approach is to build a
very accurate surrogate model before the optimization process. Another possible
approach is to provide a suitable metric in addition to final solutions after the
optimization process, which can be used to measure the accuracy of solutions
obtained. This approach can be beneficial when the surrogate models cannot
provide a very exact representation of the true objective functions. One such
instance can be when the data consists of optimal solutions. In such a case, the
surrogate might not be a good representation of the actual objectives, which
might lead to degraded final solutions. Providing a set of solutions together with
the uncertainty information of predicted final solutions can be helpful in the
decision making process.

As previously discussed, the two major components in offline data-driven op-
timization are building a surrogate model and using an EMO algorithm. In this
research we have limited ourselves by focusing on a few variations of the opti-
mization problem which try to minimize the uncertainty in the final solutions.
As shown in Figure 2, the uncertainties in the predicted value of the Kriging
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models are utilized as additional objective functions. By considering uncertain-
ties in this way, the EMO method tries to minimize the predicted mean values
from the fitted Kriging models by subsequently minimizing the standard devia-
tions in the prediction. Thus, the final set of nondominated solutions will consist
of solutions with different levels of uncertainty.
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Fig. 2. Flowchart of offline data-driven optimization with uncertainty.

We have tested three different approaches for utilizing uncertainties in the
optimization. Approach 1 uses all the standard deviations given by each surro-
gate model as additional objectives. The resulting objective vector in Approach
1 is:

f̂ = (f̂1(x), . . . , f̂k(x), s1(x), . . . , sk(x)), (5)

where f̂i(x) and si(x) and are the predicted mean and the standard deviation
values for the ith objective. Final solutions are obtained by performing a non-
dominated sort on the archive of predicted solutions (predicted mean values
and standard deviations) stored while optimization. It might be possible that
the solutions have different uncertainties for different objectives. We double the
number of objectives which may increase the complexity of solving the resulting
optimization problem.

Approach 2 utilizes the average of the standard deviations given by each
of the surrogate models as an additional objective and the resulting objective
vector is:

f̂ = (f̂1(x), . . . , f̂k(x), s̄(x)), (6)

where s̄(x) is the average of the standard deviations from Kriging models built
for each objective function. This method has fewer objectives when compared to
Approach 1, however, either of the approaches provide solutions with a range of
uncertainty values. Both Approaches 1 and 2 can provide an option for filtering
solutions based on the uncertainty information.
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Algorithm 1 Uncertainties as additional objective functions
Input: k Kriging models, one for each objective function and an empty archive
Output: Final nondominated approximated solutions from the archive

1: Generate parent population
2: while Stopping criteria are not reached do
3: Generate offspring with crossover and mutation
4: Evaluate offspring using Kriging models and get the objective function values

of either Eqs. (4), (5) or (6)
5: Combine offspring population with parent population
6: Select parents for the next generation
7: Store parents in the archive
8: Perform nondominated sorting of solutions in the archive

Approach 3 utilizes the expected improvement (EI) [12] for every surrogate
model as objectives to be optimized by the EMO algorithm, see, e.g. [9]. Ex-
pected improvement can be expressed as EI(x) = (fmin− f̂(x))Φ

(
fmin−f̂(x)

s(x)

)
+

s(x)φ
(
fmin−f̂(x)

s(x)

)
, where φ(·) and Φ(·) are the standard normal density and dis-

tribution function respectively, and fmin is a k-dimensional vector, where the ith
component represents the best values of the ith objective function in the given
data. The objective vector in this case is:

f̂ = (EI1(x), . . . ,EIk(x)) , (7)

where EIi(x) is the expected improvement value for the ith objective. The EI
criterion takes the predicted mean value and the standard deviation into account.

Now we have introduced three approaches for incorporating uncertainty in-
formation. Algorithm 1 shows the process of applying any of them in the offline
optimization process, where k is the number of objectives and we can use the
maximum number of evaluations using surrogate models as a stopping criterion.

4 Experimental Results

We compare the three different approaches to each other and also to a generic
approach (as (2) in Subsection 2.1), using test problems DTLZ2, DTLZ4–DTLZ7
with 2, 3 and 5 objectives. As said, we generate data for these problems and fit
Kriging models there. The dimension of the decision variable space n is fixed to
10.

The size of the data set used is 109 (corresponds to the 11n − 1 [5,13,24]).
The sampling techniques for creating the data sets were Latin hypercube sam-
pling (LHS), uniform random sampling and a special case of sampling which we
call optimal-random sampling. In the latter, 50% of the data are nondominated
solutions and the remaining 50% are uniform random samples. This kind of hy-
pothetical sampling might resemble a special case where most of the samples in
the given data set are close to optimal, and thus the optimization process could
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no longer improve the solutions further. However, in such a scenario the offline
optimization technique should not compute final solutions which are worse than
the provided samples. A total of 31 independent runs from each sampling were
performed for each case.

We used indicator based evolutionary algorithm (IBEA) [25] as the EMO
method as it has been demonstrated to perform well in [1] even for problems
with a higher number of objectives. The selection criterion was Iε+ (Step 6 in
Algorithm 1) with κ parameter values 0.51, 0.87 and 0.48 for k = 2, 3 and 5,
respectively, and κ value of 0.5 for any other number of objectives. The popula-
tion size was 100 and the maximum number of function evaluations was 40 000
according to [1]. We used Matlab implementation of Kriging models with first
order polynomial functions and a Gaussian kernel function.

For measuring the performance of different approaches, we first performed a
nondominated sort on the archive (also including the additional objective(s)).
These nondominated solutions were then evaluated with the real objective func-
tion. After obtaining their true objective function values, dominated solutions
were removed producing the final nondominated set. For comparing the quality
of solutions for all the approaches, inverted generational distance (IGD) metric
was utilized with 5000 points in the reference set for all problems.

Table 1 shows the comparison between the mean and standard deviation
values of the IGD for all the three approaches and the generic approach. It was
observed that Approaches 1 and 2 performed better than the generic approach
for LHS and uniform random sampling for all the problems with various numbers
of objectives with the exception of DTLZ6 and DTLZ7. However, while using
optimal-random sampling, Approaches 1 and 2 performed better than the generic
approach for DTLZ2, DTLZ4-5 and better for DTLZ6 and DTLZ7 for few of the
objectives. Approach 3 did not produce good results for any of the problems,
objectives or sampling technique.

Adding uncertainties as additional objectives pose a major problem in ex-
plaining the effect of optimization as the fitness landscape of the uncertainties
is mostly unknown. A possible explanation that no noticeable performance im-
provement is observed in DTLZ6 when using Approaches 1 and 2 is because
the problem consists has a non-uniform (or biased) [7] degenerated Pareto front.
Adding additional uncertainty objectives makes the problem even harder to solve
and fewer nondominated solutions are obtained. For DTLZ7, a possible expla-
nation for the worse performance of Approaches 1 and 2 is that the objective
functions are completely separable [14]. Thus, the additional objectives added
by Approaches 1 and 2 only make the problem more difficult than the generic
approach.

For optimal-random sampling the advantage of Approaches 1 and 2 was
clearly visible. Despite the initial sampling including also nondominated solu-
tions, the generic approach failed to provide good solutions. This is because the
surrogate models do not provide a perfect representation of the true objectives.
While utilizing EIs as objectives in Approach 3, the solutions were actually worse
(comparing mean IGD values) for most of the cases. This is because EI tries to
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balance between convergence and diversity. Therefore, it can select a solution
with a high uncertainty for achieving its goal.

Figure 3 shows the root mean square error (RMSE) of the final solutions
obtained by different approaches with LHS sampling on problems with two ob-
jectives. It can be observed that the solutions obtained by Approaches 1 and 2
are more accurate in most of the cases. This means that using uncertainty as
additional objective(s) helps to find solutions with a low approximation error.
Therefore, using uncertainty in the optimization process can be considered as an
advantage in solving an offline data-driven EMO problem where there is no pos-
sibility for updating the surrogate models. An illustration of solutions obtained
after evaluating them with real objectives for the DTLZ2 problem with LHS and
optimal-random sampling is shown in Figure 4. Due to space limitations, fur-
ther analysis is available at http://www.mit.jyu.fi/optgroup/extramaterial.html
as additional material. The performance of the proposed approaches on other
test problems (i.e., DTLZ1, DTLZ3, WFG1-WFG3, WFG5 and WFG9) can also
be found at the above-mentioned website.
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Fig. 3. RMSE of the final solutions for bi-objective problems. Here f1 and f2 are the
objectives and "Gen","Appr1","Appr2" and "Appr3" are the generic and Approaches
1, 2 and 3, respectively. Opt.Rand is optimal-random sampling.

http://www.mit.jyu.fi/optgroup/extramaterial.html
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Table 1. Means and standard deviations of IGD values of the final archive, evaluated
on the true objective functions, obtained by each approach, for various problems and
sampling techniques. (Best values are in bold)

Sampling Problems k
Generic Approach 1 Approach 2 Approach 3

Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

LHS

DTLZ2
2 0.0989 0.1260 0.0722 0.0431 0.0770 0.0651 0.3377 0.0477
3 0.2027 0.0910 0.1787 0.0530 0.1665 0.0539 0.3471 0.0365
5 0.2708 0.0873 0.2689 0.0343 0.2574 0.0396 0.3993 0.0395

DTLZ4
2 0.6311 0.1619 0.3951 0.1935 0.4919 0.1852 0.6467 0.2098
3 0.7306 0.2021 0.5309 0.1413 0.5867 0.1467 0.7166 0.1162
5 0.6929 0.0766 0.5640 0.0653 0.6062 0.0545 0.7173 0.0514

DTLZ5
2 0.1030 0.1326 0.1032 0.0905 0.0814 0.0570 0.3716 0.0580
3 0.1191 0.0982 0.0684 0.0315 0.0701 0.0452 0.2676 0.0388
5 0.0934 0.0606 0.0655 0.0277 0.0805 0.0453 0.1486 0.0387

DTLZ6
2 0.1570 0.1078 1.6188 0.7635 2.4518 0.5797 3.5210 1.1369
3 0.9871 0.2737 1.7564 0.7308 1.5561 0.7159 3.2847 1.1907
5 0.8207 0.2158 2.3859 0.4822 1.3725 0.3734 2.8157 1.0211

DTLZ7
2 0.0023 0.0049 0.0292 0.0095 0.0095 0.0086 0.6157 0.1767
3 0.0549 0.0120 0.1791 0.1721 0.0956 0.1449 0.6529 0.1016
5 0.2800 0.0541 0.5254 0.2175 0.3675 0.1234 0.7169 0.0888

Random

DTLZ2
2 0.0947 0.0893 0.0879 0.0468 0.0828 0.0493 0.3673 0.0395
3 0.2315 0.0712 0.1907 0.0534 0.1692 0.0316 0.3591 0.0433
5 0.2843 0.0790 0.2593 0.0268 0.2514 0.0335 0.4188 0.0289

DTLZ4
2 0.5986 0.1857 0.4461 0.1850 0.4665 0.1735 0.4935 0.2243
3 0.7885 0.1465 0.5354 0.1474 0.5682 0.1320 0.7680 0.1544
5 0.7064 0.1731 0.5487 0.1021 0.6034 0.1127 0.7391 0.0697

DTLZ5
2 0.1144 0.1211 0.0949 0.0495 0.0889 0.0506 0.3590 0.0481
3 0.1114 0.0367 0.0610 0.0291 0.0615 0.0283 0.2823 0.0350
5 0.0644 0.0447 0.0498 0.0169 0.0542 0.0254 0.1521 0.0319

DTLZ6
2 0.2826 0.3739 1.8949 1.0420 2.6166 0.7696 4.6779 1.2463
3 1.2833 0.2710 2.9273 0.4893 1.2966 0.4552 3.0290 0.9259
5 0.7897 0.2869 2.5206 0.6990 1.6732 0.6577 2.9527 1.1470

DTLZ7
2 0.0081 0.0113 0.0444 0.0254 0.0260 0.0382 0.5942 0.1295
3 0.0500 0.0261 0.1635 0.1030 0.0853 0.0443 0.6159 0.0980
5 0.2821 0.0235 0.5763 0.2356 0.4916 0.3096 0.7254 0.0781

Optimal-
Random

DTLZ2
2 0.4220 0.2079 0.0053 0.0020 0.0090 0.0029 0.1244 0.1827
3 0.3152 0.2285 0.0517 0.0101 0.0554 0.0120 0.2088 0.1247
5 0.1619 0.0604 0.1582 0.0143 0.1404 0.0253 0.2758 0.0078

DTLZ4
2 0.8335 0.8480 0.0194 0.0160 0.0526 0.0351 0.5851 0.4683
3 0.7853 0.1831 0.2662 0.0738 0.2966 0.0857 0.5575 0.1704
5 0.5789 0.1020 0.4319 0.1062 0.4730 0.0904 0.6047 0.0801

DTLZ5
2 0.7489 0.4255 0.0086 0.0024 0.0094 0.0032 0.2086 0.2516
3 0.3323 0.3085 0.0064 0.0018 0.0076 0.0017 0.1010 0.0845
5 0.1890 0.2090 0.0049 0.0019 0.0055 0.0021 0.0251 0.0232

DTLZ6
2 0.0064 0.0031 0.0077 0.0013 0.0081 0.0019 0.0147 0.0019
3 0.0556 0.0868 0.0075 0.0021 0.0085 0.0029 0.0198 0.0104
5 0.0396 0.0986 0.0069 0.0014 0.0085 0.0012 0.0171 0.0078

DTLZ7
2 0.0005 0.0004 0.0013 0.0003 0.0020 0.0007 0.0177 0.0033
3 0.0397 0.0093 0.0365 0.0043 0.0388 0.0058 0.1012 0.0124
5 0.1910 0.0179 0.1855 0.0141 0.1825 0.0220 0.3404 0.0367
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LHS Sampling

Optimal-Random Sampling

Fig. 4. Final solutions obtained of the run with the median IGD value using different
approaches for LHS sampling (top three rows) and optimal-random sampling (bottom
three rows) for the DTLZ2 problem.
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5 Conclusions

We have considered offline data-driven optimization with evolutionary multi-
objective optimization. We used Kriging to fit surrogate models to data and
proposed and tested three approaches to utilize uncertainty information from
Kriging models in the optimization. A comparison was done with several bench-
mark problems, sampling techniques and varying the number of objectives in
solving offline data-driven multiobjective optimization problems. Adding uncer-
tainty as one or more objectives showed improvements in the final solutions
for certain problems in our benchmark testing. However, utilizing expected im-
provements as objectives (in Approach 3) did not seem to be effective in solving
this kind of problems. The analysis also revealed that the solutions obtained in
Approaches 1 and 2 are more accurate compared to the ones obtained using a
generic approach (without uncertainty information).

Future work will include comparing the performance of the proposed ap-
proaches with bigger initial sample sizes, higher number of decision variables
and higher number of objectives. Aiding the decision making process by giving
a decision maker an option to select a final solution using the uncertainty in-
formation is another direction to work on. Moreover, filtering techniques can be
applied to remove solutions with higher uncertainties. Testing on real-world data
sets and exploring different ways to deal with uncertainties using other surrogate
models will also be future research topics.
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