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Abstract

We present a new equation of state (EOS) for dense hydrogen/helium mixtures that covers a range of densities
from 10−8 to -10 g cm6 3, pressures from 10−9 to 1013 GPa, and temperatures from 102 to 108 K. The calculations
combine the EOS of Saumon, Chabrier & van Horn in the low-density, low-temperature molecular/atomic domain,
the EOS of Chabrier & Potekhin in the high-density, high-temperature fully ionized domain, the limits of which
differ for H and He, and ab initio quantum molecular dynamics calculations in the regime of intermediate density
and temperature, characteristic of pressure dissociation and ionization. The EOS for the H/He mixture is based on
the so-called additive volume law and thus does not take into account the interactions between the two species. A
major improvement of the present calculations over existing ones is that we calculate the entropy over the entire
density–temperature domain, a necessary quantity for calculations of stellar or planetary evolution. The EOS
results are compared with existing experimental data, namely Hugoniot shock experiments for pure H and He, and
with first-principles numerical simulations for both the single elements and the mixture. This new EOS covers a
wide range of physical and astrophysical conditions, from Jovian planets to solar-type stars, and recovers the
existing relativistic EOS at very high densities, in the domains of white dwarfs and neutron stars. All the tables are
made publicly available.

Key words: brown dwarfs – dense matter – equation of state – planets and satellites: general – plasmas – stars: low-
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1. Introduction

Understanding the thermodynamic properties of hydrogen
(H) and helium (He) at high density, characterized by their
equation of state (EOS), is at the heart of numerous physical
and astrophysical problems. From the point of view of
fundamental physics, understanding the metalization of hydro-
gen has remained a major challenge since the pioneering work
of Wigner & Huntington (1935), more than 80 years ago. The
quest for its observational evidence remains so far unachieved
but is in reach with both static and dynamic high-pressure
experiments, the latter resulting from the achievement of
modern techniques such as Z-pinch magnetically driven shock
experiments (Knudson 2004), spherically converging shock
wave experiments (Belov et al. 2002; Boriskov et al. 2003),
and intense laser-driven planar shock wave experiments
(Collins et al. 1998; Hicks et al. 2009; Sano et al. 2011;
Loubeyre et al. 2012; Brygoo et al. 2015). These experiments
have revealed the principal Hugoniot of dense deuterium up to
200 GPa. Knowledge of the hydrogen and helium EOS is also
central for inertial confinement fusion and of course for the
characterization of the interior or outer mechanical and thermal
structures of dense astrophysical bodies. These latter include
low-mass stars (generically stars smaller than the Sun, for
which the perfect gas EOS or the Debye–Hückel expansion is
no longer valid), brown dwarfs (objects not massive enough to
sustain or even ignite hydrogen fusion in their core, whose
mass distribution extends from about 0.07 M down to a few
Jupiter masses), giant (solar and extrasolar) planets, but also the
envelope of white dwarfs and the outer envelope and
atmosphere of neutron stars.

In the meantime, abinitio numerical calculations of the
properties of dense H and He, based either on quantum molecular
dynamics (QMD), which combines molecular dynamics (MD) for
the heavy classical particles and density functional theory (DFT) to
treat the quantum electrons, or path integral Monte Carlo (PIMC)
or molecular dynamics (PIMD), can now be performed in the
density–temperature domain of interest (e.g., Militzer & Ceperley
2000; Lorenzen et al. 2009, 2011; Militzer 2009, 2013; Morales
et al. 2010a, 2010b; Militzer et al. 2001; Becker et al. 2014;
Mazzola et al. 2018; Schöttler & Redmer 2018), thanks to the
enormous improvement in computer capacities. The widely used
semi-analytical H/He model of Saumon & Chabrier (Chabrier
1990; Saumon & Chabrier 1991, 1992; Saumon et al. 1995
(SCvH)) can thus now be replaced by these calculations in the
crucial domain of pressure ionization. Such an approach,
combining abinitio calculations with the SCvH EOS in the low
(mainly atomic/molecular) and high (fully ionized) domains, has
been used by various authors (Caillabet et al. 2011; Militzer &
Hubbard 2013; Becker et al. 2014; Miguel et al. 2016). These
calculations, however, remain so far limited in two aspects. Either
they cover only a limited density–temperature range, precluding
the use of an EOS over a significant physical or astrophysical
domain, or they do not provide the entropy. Indeed, while the
pressure and internal energy are directly accessible to QMD or
PIMC/PIMD calculations, the entropy is a much more cumber-
some task, requiring a so-called thermodynamic integration over a
large number of temperature and density points. Knowledge of the
entropy, however, is central in stellar evolution calculations
(because the cooling history of a star derives directly from the first
principle of thermodynamics, =Q dS dt) and even to determine
the thermal structure of dense astrophysical bodies, since their
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interior is quasi-isentropic, due to the onset of convection to carry
their internal heat flux.7 The thermal profile and the contraction
rate, and thus the evolution of low-mass stars, brown dwarfs,
and giant planets, are indeed entirely determined by their
entropy profile (Chabrier & Baraffe 2000).

In the present paper, we follow the same method as mentioned
above, by combining QMD calculations for pure hydrogen and
helium with the EOSs of SCvH and Chabrier & Potekhin (1998).
As just mentioned, a striking advantage of the present calculations
is that they provide the entropy over a wide temperature–
pressure–density range, namely 10−8 to -10 g cm6 3, 10−9 to
1013 GPa and 102 to 108 K, covering essentially the domain of all
dense astrophysical bodies. The paper is organized as follows.
Sections 2 and 3 describe the H and He EOSs, respectively, and
make comparison with available experimental data or abinitio
calculations. The calculations for the H/He mixture are described
in Section 4, examples of the tables are presented in Section 5,
while Section 6 is devoted to the conclusion.

2. The Hydrogen EOS

2.1. Construction of the EOS Model

Following the same procedure as Becker et al. (2014),
our hydrogen EOS combines different calculations. For

T�1.1×105 K and/or r > -10 g cm 3, hydrogen becomes
fully ionized and we use the EOS model of Chabrier &
Potekhin (1998, CP98), based on the linear response theory to
treat ion–electron interactions. The CP98 EOS extends to very
high temperatures or densities, when electrons become
relativistic, and it recovers the model EOS of Potekhin
& Chabrier (2000), which handles the solid phase. The
relativistic domain concerns essentially neutron stars or
white dwarfs. For T<1.1×105 K, the EOS is divided into
three density regimes, where we use three different EOS
calculations:

1. r -0.05 g cm 3: SCvH EOS
2. r< -0.3 5.0 g cm 3: EOS of Caillabet et al. (2011)
3. r > -10.0 g cm 3: CP98 EOS

Between these limits, a bicubic spline interpolation is
performed, which ensures continuity of the functions and their
two first derivatives.
Whereas, as mentioned in Section 1, the calculations are

performed over a vast density–temperature domain, namely
 r- -10 10 g cm8 6 3 and  T10 102 8 K, several limits

are identified.

(1) For T103 K, hydrogen becomes solid over some
pressure/density range. The melting line for H2 has been
determined experimentally up to T;1000 K, P;
100 GPa (Datchi et al. 2000; Deemyad & Silvera 2008;

Figure 1. Temperature–density domain of the present EOS for hydrogen. The dotted lines illustrate the T–ρ domains corresponding to the different models or
calculations combined to produce the final EOS (see text). Between these domains, bicubic spline interpolations have been used on the various thermodynamic
quantities. The melting lines for H2 (Equation (1)) and H+ (Equation (2)) are delimited by the thick and thin solid lines, respectively, in the lower right corner (note
that the line for H+ is extrapolated beyond the validity of the OCP model for illustrative purposes only). The short-dashed line fWK=0.7 corresponds to the limit of
validity of the present calculations, due to ion quantum effects (Equation (3)). The two insets focus on the liquid to solid and ion classical to quantum locations of the
phase diagram. The EOS must not be used beyond these limits. Interior profiles for the Sun (1 M ) and 1 and 10 MJup planets at 5 Gyr (from Baraffe et al. 2003, 2015)
are displayed in the figure to illustrate the domain of astrophysical applications.

7 It must be kept in mind that only for a reversible adiabatic process, such as
convection, is an adiabat (dQ=0) equivalent to an isentrope ( =dS 0).
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Eremets & Trojan 2009) and has been extrapolated up to
about 300 GPa by using the following functional form
(Kechin 1995), based on QMD simulations (Bonev et al.
2004; Morales et al. 2010a; Caillabet et al. 2011):8

= + -( ) ( ) ( )T T P a cP1 exp , 1m
b

0

with T0=4.853 K, a=0.023 GPa, b=0.748, and
c=0.0098 GPa−1 for H2. Note, however, that the
turning point at P100 Mbar predicted by this form has
not yet been confirmed unambiguously by experiments.
The experimentally determined H2 melting curve is
identified in Figure 1 by the thick solid line and is
continued by the dotted line at higher density/pressure
according to the above functional form. At higher
temperatures and pressures, hydrogen becomes fully
dissociated and ionized, reaching the limit of the one-
component plasma (OCP) model whose melting line
corresponds to Γm=175 (Potekhin & Chabrier 2000),
where rG = = ´( ) ( ) ( )( )Ze ak T Z A T2.25 10B

2 5 2 1 3

is the usual plasma coupling parameter. This yields the
following melting line:

r» + + - ( )T Z Alog 3.1
1

3
log 2 log

1

3
log , 2m

as identified in Figure 1. Interestingly enough, extra-
polating this line to lower temperatures and densities

(long dashes) nicely joins the H2 melting line. Note,
however, that this line is just indicated for illustrative
purposes and cannot be considered as a rigorously
determined melting line at high pressure. Indeed, at very
high densities/pressures, quantum diffraction effects
between protons become significant and the classical
OCP model becomes invalid (see below).

(2) At low temperature and high density, quantum (diffraction)
effects between ions become important. In the CP98
model, these effects are treated within the 2 Wigner–
Kirkwood expansion to second order. This yields the free-
energy quantum correction h= =f F Nk T 24BWK WK

2 ,
where h r= W » ´ - -k T T ZA7.71 10p B

3 1 2 1 5 3 and
pW = ( ( ) )Ze n M4p i i

2 1 2 denotes the ion plasma fre-
quency. For fWK0.7, the CP98 model has been found
to become of dubious validity and then the present EOS
cannot be used beyond this limit. This limit corresponds to

r» + + - ( )T Z Alog 3.3
1

2
log log

5

3
log , 3

indicated by the short-dashed line in Figure 1. Beyond this
limit, the treatment of quantum effects requires fully
quantum numerical calculations such as PIMC or PIMD.
Such a quantum domain for hydrogen, however, does not
concern any astrophysical body (see, e.g., Chabrier 1993).

The hydrogen QMD calculations in the regime of inter-
mediate density (see above) are based on Caillabet et al. (2011),
and gather QMD simulations by Holst et al. (2008), coupled

Figure 2. Shock pressure vs. density along the deuterium Hugoniot curve. Solid triangles: results by Knudson & Desjarlais (2017) for initial temperature and density
T0=20 K and r = -0.167 g cm0

3. Empty circles: reanalyzed shock data obtained from various experiments (see text) rescaled to the same initial density (data from
Knudson & Desjarlais 2017). Solid squares: PIMC calculations of Militzer & Ceperley (2000). Solid line: present calculations; dotted line: SCvH EOS.

8 Note the typo in Equation (41) of Caillabet et al. (2011), corrected in
Equation (1) here.
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electron–ion Monte Carlo (CEIMC) calculations by Morales
et al. (2010a), and PIMC calculations by Militzer & Ceperley
(2000). These calculations have been supplemented by further
QMD calculations for our present purpose. The excess free
energy, Fex, was fitted by a functional form similar to the one
proposed in Chabrier & Potekhin (1998), which accurately
recovers all appropriate limits. The accuracy of this analytical
parameterization was verified by the fact that its temperature
derivative properly recovers the excess internal energy, Uex,
obtained in the simulations. In the present calculations,
however, we found out that, whereas the fit for Fex used in
Caillabet et al. (2011) correctly recovers the H2 melting curve,
it becomes less accurate away from these conditions. Therefore,
in the present calculations, we have modified the d(ρ)
parameter of the fit given in Equation (24) of Caillabet et al.
(2011) in various density domains in order to recover the
abinitio calculations of Morales et al. (2010a). The results will
be illustrated in Section 2.3 below for H and in Section 4 for
the H/He mixture.

As mentioned above, the EOS is calculated initially in a T–ρ
domain, appropriate to QMD or PIMC calculations, and then
transformed into a T–P one by bicubic interpolation proce-
dures. In Section 2.3, we will make extensive comparisons
between our results and available numerical results from
ab initio simulations for several thermodynamic quantities in
order to verify the validity of these EOS calculations.

2.2. Comparison with Experimental Results

The validity of the EOS of hydrogen, or its isotope
deuterium, can be first assessed by comparison with high-
pressure Hugoniot experiments. As mentioned in the Introduc-
tion, these latter include different techniques. The original
discrepancies between these various data sets have been
significantly reduced when using a revised EOS of quartz for
the impedance-matching in the case of laser-compression
experiments (Knudson & Desjarlais 2009), and all results
now agree reasonably well to provide a robust compression
Hugoniot curve up to about 200 GPa. The precision of these
measurements has been improved recently with magnetically
accelerated flyer plate experiments on deuterium, reaching a
precision of ∼1.5%–1.9% in density along the Hugoniot, and
carrying out reshock measurements from these Hugoniot states
that provide off-Hugoniot data in the ∼100–200 GPa and
∼5000–15,000 K regime (Knudson & Desjarlais 2017).
Furthermore, experiments combining static and dynamic
methods, generating laser-driven planar shock waves in
precompressed samples of different initial densities, have
allowed the exploration of a larger domain off the principal
Hugoniot, probing the EOS of hydrogen isotopes over an even
larger pressure–temperature domain, directly probing the
conditions in giant planet interiors (Loubeyre et al. 2012;
Brygoo et al. 2015).

Figure 3. Hydrogen (empty circles) and deuterium (solid triangles) shock pressure vs. density along the Hugoniot for T0=297 K and various precompressed initial
conditions, namely 0.1, 0.3, 0.7, 1.5, and 6.0 GPa, as labeled in the figure. Data: Brygoo et al. (2015); solid line: present calculations; dotted line: SCvH EOS. A
Jupiter internal isentropic profile (for xHe ; 0.08) is portrayed by the long-dashed line.
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In order to compare our EOS calculations with experiments,
we have calculated Hugoniot pressure–density and pressure–
temperature curves for D2 and H2. Postshock conditions are
calculated from mass, momentum, and energy conservation
across the shock by finding solutions from the tabulated EOS
that satisfy the Hugoniot relation (Zel’dovich & Raizer 2002)
for given initial conditions (r ˜P E, ,0 0 0), where these quantities
denote respectively the mass density, pressure, and specific
internal energy9:

r r- + + ´ - =- -  ( ) ( ) ( )E E P P
1

2
0. 40 0

1
0

1

Figure 2 compares the Hugoniot compression curve for
deuterium obtained with our EOS with the most recent data of
Knudson & Desjarlais (2017), which include also some of the
aforementioned experimental results for an initial state
r = -( )D 0.167 g cm0 2

3 at T0=20 K (the results originally
obtained for a slightly larger initial density have been rescaled
accordingly (see Knudson & Desjarlais 2017 for details)). To
calculate the deuterium Hugoniot curve, we have rescaled the
hydrogen EOS by a factor 2 in density, but proper quantum
corrections on the energy are taken into account. Since D2 and
H2 have similar molar volumes at these conditions, the
Hugoniot curves are nearly identical for these two isotopes.
Our EOS is in excellent agreement with the data, as already
noted in Caillabet et al. (2011), including with the most recent
experiments. The maximum discrepancy occurs at P=50 GPa
and amounts to ∼3% in the density. In contrast, the SCvH EOS

is less compressible in the low-pressure domain and more
compressible at higher pressures. Since the compression peak
corresponds to the domain of molecular dissociation (energy
goes into the breaking of internal levels and molecular bonds,
yielding an increase of ρ/ρ0), this behavior reflects a well
known shortcoming of this EOS, which underestimates H2

pressure dissociation. This stems essentially from the too stiff
H–H and H2–H potentials used in the Saumon–Chabrier theory,
which do not include the softening due to N-body interactions,
in contrast to the case of the H2–H2 potential (see Saumon &
Chabrier 1991). Indeed, high-pressure experiments at this time
were not reaching high enough pressures to explore the
dissociated regime, and thus could not provide experimental
guidance to derive softened potentials for interacting atomic
species. The inset in Figure 2 displays the comparison between
the present calculations and the PIMC simulations by Militzer
& Ceperley (2000) at higher pressures.
Figure 3 compares our theoretical Hugoniots for H2 and D2

with the ones obtained for various precompressed initial states
(Loubeyre et al. 2012; Brygoo et al. 2015). Initial states have
pressures P0=0.16 GPa, 0.3 GPa, 0.7 GPa, and 1.5 GPa at
297 K. Again, the agreement between the data and the present
EOS is excellent for all series of experiments. Also shown for
comparison is a predictive Hugoniot calculated for an initial
pressure P0=6.0 GPa, as planned with future high-pressure
experiments, as well as a typical Jupiter internal isentrope for a
helium number fraction xHe;0.08 (mass fraction Y;0.25
(see Section 4)). As seen in the figure, conditions along this
Hugoniot are very close to or intercept Jupiterʼs internal density
and temperature profiles (assuming an isentropic thermal

Figure 4. Hydrogen (empty circles) and deuterium (solid triangles) shock temperature vs. pressure along the Hugoniot for the same precompressed initial conditions as
in Figure 3, namely 0.1, 0.3, 0.7, 1.5, and 6.0 GPa from top to bottom. Same labeling as in Figure 3.

9 Note that for the shock velocities under consideration, US≈10–50 km s−1,
radiative effects in the energy balance are negligible.

5

The Astrophysical Journal, 872:51 (27pp), 2019 February 10 Chabrier, Mazevet, & Soubiran



structure), respectively, notably in the crucial ∼Mbar pressure
ionization region, and thus directly probe Jupiterʼs deep
interior. The same aforementioned general behavior of the
SCvH EOS, i.e., underestimated pressure dissociation of
molecular hydrogen, is observed for all Hugoniots and is
particularly striking along the 6.0 GPa one.

Figure 4 portrays the temperature–pressure curves along the
Hugoniots for the same sets of experiments. Interestingly
enough, the difference between the present EOS, which
includes abinitio simulations, and the semi-analytic SCvH
EOS is much smaller than for the P–ρ compression curves. We
note, however, that molecular dissociation in the SCvH EOS
not only occurs at too high pressures, as mentioned above, but
takes place very abruptly, as shown by the kinks in the dotted
curves, yielding lower temperatures at given pressure as energy
goes into molecular dissociation instead of raising k TB .
Experiments (Loubeyre et al. 2012), in contrast, have revealed
that reflectivity, then electrical conduction, increases gradually
along the Hugoniot above about 5000 K, before reaching a
plateau, reflecting the dissociation and ionization of molecular
hydrogen H2 and suggesting that this process, under the
conditions probed by present Hugoniot experiments, occurs
continuously. This is in agreement with abinitio calculations,
which show an increasing conductivity along the Hugoniot, but
predict a discontinuous molecular–ionic transition around P;
100 GPa at lower temperatures, in the range T;2000–6000 K
(Morales et al. 2010b; Mazzola et al. 2018).

Another important experimental constraint on the EOS
comes from quasi-isentropic ramp compression of hydrogen
or deuterium. Those experiments have direct astrophysical
applications since, as will be discussed later, the interiors of
low-mass objects are entirely convective such that their
internal temperature profile follows an isentrope. Dynamic
quasi-isentropic shock wave experiments using high explo-
sives on deuterium have been carried out up to about
1500 GPa (15 Mbar) and densities of about 4.5 -g cm 3,
directly probing the deep interior of Jovian planets. While
the density ρ and the pressure P(ρ) were measured
simultaneously in some cases (Boriskov et al. 2011), in other
experiments only the densities were measured, while the
pressure was determined afterwards from a hydrocode with a
model EOS (Fortov et al. 2007). An extension of these latter
experiments was carried out by Mochalov et al. (2010) up
r r= ´ = -108 4.3 g cm0

3, reaching an unprecedented
experimental pressure for D2 of 1800 GPa (18Mbar). In all
cases, the temperatures were determined from a model EOS.
As noted by Becker et al. (2013), however, the experimental
points of Fortov et al. and Mochalov et al. were found not to
lie on the same isentrope, questioning the validity of the
results, at least of the model-dependent pressure determina-
tion from the measured density. Following Becker et al.
(2013), we have calculated the isentropic compression path
obtained with our EOS and that of SCvH, respectively,
starting from the model-independent initial condition for D2,
r = -0.04g cm0

3, and T0=283 K. According to the present

Figure 5. Isentropic compression of deuterium, for initial temperature and density T0=283 K and r = -0.104 g cm0
3, as in Fortov et al. (2007). Squares: Fortov

et al. (2007); triangles: Boriskov et al. (2011); circles: Mochalov et al. (2010). Empty symbols: pressures determined in the experiments with their model EOS; solid
symbols: pressures obtained by Becker et al. (2013). Solid curve: present EOS; dashed curve: SCvH EOS.
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and SCvH EOSs, this corresponds to an entropy =S
k9.9 B/atom. The result is displayed in Figure 5. The empty

symbols are the quoted experimental ρ–P determinations
while the solid symbols correspond to the values obtained by
Becker et al. (2013, Table 1) with their EOS for the above
initial conditions. As seen in the figure, our isentrope agrees
very well with the values obtained by Becker et al., with all
the experimental results then lying on the same isentrope. We
see in particular that the pressure rises continuously with the
density along the isentrope, with no sign of discontinuity due
to a first-order phase transition in this regime, as suggested by
Fortov et al. (2007). Interestingly enough, we see that the
SCvH EOS predicts larger pressures for a given density (by
about ∼10% at 2 -g cm 3), i.e., a significantly (>20%) warmer
isentrope.

2.3. Comparison with abinitio Calculations

Figure 6 compares the specific internal energy, Ũ , as a function
of density for the present calculations with available simulations
using PIMC (Militzer & Ceperley 2001 (MC01); Hu et al. 2011)
and QMD (Soubiran & Militzer 2015, SM) over the available
temperature–density ranges. We also make comparisons with
the QMD simulations of Becker et al. (2014) over a larger
density domain. Note that some of these simulations encompass
the domain of hydrogen dissociation and ionization, i.e., ρ∼
0.5– -5 g cm 3, T∼3000–50,000K. All results are rescaled to
the zero of energy of the present EOS, which is the same as in
SCvH, namely the ground state of the H2 molecule. In all the

domain explored by MC01 PIMC simulations, we note the good
agreement between all different calculations, including SCvH and
these simulations. Clearly, these simulations do not probe a
density regime where differences between the various EOSs due
to the treatment of hydrogen dissociation and ionization arise. The
PIMC simulations of Hu et al. (2011) and those of Soubiran &
Militzer (2015), in contrast, reach higher densities and enter the
crucial dissociation/ionization regime. The agreement between
the present calculations and these simulations is excellent. We
notice, however, the surprising behavior of the calculations of Hu
et al. (2011) at high density for the 15 kK, 30 kK, and 62 kK
isotherms. We need to stress here that, for these (T, ρ) conditions,
the temperature is of the order of the electron Fermi temperature
(q = T T 1F ). Under such conditions, Monte Carlo samplings
are known to be extremely inefficient and can lead to unreliable
results. We also notice an energy shift (i) between the energy of
PIMC and Becker et al. (2014) on the one hand and that of the
present work and SCvH on the other hand for the 30,000 K
isotherm for r -0.1 g cm 3, and (ii) between Becker et al. and
the present or SCvH calculations for the coolest isotherms even at
very low densities. The shift at T=30,000K most likely stems
from the underestimated H2 dissociation in the SCvH EOS and
thus in the present one below ~ -0.3 g cm 3, due to the
interpolation procedure (see Section 2.1). Recall that our QMD
calculations only extend down to 0.2 -g cm 3. The maximum
discrepancy, however, is about 15% around ~ -0.05 g cm 3 and
becomes negligible below ~ -0.01 g cm 3. For this temperature,
the PIMC simulations predict 57%/43% H+/H ionization

Figure 6. Specific internal energy vs. density for several isotherms for hydrogen, labeled as follows: (a) 500 kK, (b) 250 kK, (c) 125 kK, (d) 100 kK, (e) 62 kK,
(f) 50 kK, (g) 30 kK, (h) 15 kK, (i) 10 kK, (j) 8 kK, (k) 6 kK, (l) 5 kK, (m) 2 kK, (n) 1.5 kK, (o) 1 kK, (p) 500 K, (q) 100 K. Empty circles: Militzer & Ceperley
(2001, MC01); solid triangles: Hu et al. (2011); solid square: Soubiran & Militzer (2015, SM15). Solid lines (red): present calculations; short-dashed lines (blue):
SCvH; long-dashed lines (green): Becker et al. (2014).
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fractions, with =x 0H2 at r = ´ - -2.7 10 g cm3 3 (see Table 1
of MC01) whereas SCvH predict 54%/46% H+/H, with

=x 0H2 , quite a good agreement. The shift for the coolest
isotherms, notably at very low density, between Becker et al.
(2014) and the SCvH and present calculations is more surprising
because at these densities thermal dissociation and ionization,
when they take place, are well described by the Saha equation, a
limit correctly recovered by SCvH. For T�2000 K, for which
H2 rotational levels are excited, but not vibrational ones,
the SCvH correctly recovers the perfect gas limit, = ´˜ ( )U 5 2

m = ´ ´-k T T1.03 10B
2 MJ kg−1, where m = ´A mH H2 ,

with mH = 1.660 × 10−27 kg the atomic unit mass, which does
not seem to be the case for the EOS of Becker et al. Note in
passing that the spin dependence of the H2 molecule (ortho- and
para-hydrogen) is correctly accounted for in the Saumon–Chabrier
theory (see Saumon & Chabrier 1991).

All curves exhibit a sharp rise above ∼0.1–5 -g cm 3,
depending on the temperature. This corresponds to the
increasing (repulsive) interactions between hydrogen molecules
and/or atoms and then to pressure ionization and the onset of
the electron degeneracy contribution. Not surprisingly, then,
the most noticeable differences between the EOSs of the
present work, SCvH, and Becker et al. (2014) occur in this
domain, a regime covered by QMD simulations in both the
present EOS and that of Becker et al. but described by a semi-
analytical model in SCvH. Generally speaking, the SCvH EOS
overestimates the internal energy compared with the simula-
tions in this domain, except for the lowest temperatures where
it first underestimates and then overestimates it. This reflects

the now well identified shortcoming of the Saumon–Chabrier
(SC) theory that overestimates the density domain of stability
of molecular hydrogen, and then predicts a too abrupt
ionization, globally underestimating the domain of hydrogen
dissociation/ionization. This behavior was already noted in the
Hugoniot experiments (Section 2.2), and arises essentially from
the too stiff interatomic potential compared to the intermole-
cular one in the SC theory, as mentioned previously, and also
from the fact that atomic and molecular ionization, i.e., the
Stark effect, are underestimated in the theory (see Saumon &
Chabrier 1991, 1992).
Figure 7 displays similar comparisons for the energy per

atom (as in MC01) as a function of temperature between PIMC
(Militzer & Ceperley 2000, 2001) and the present and SCvH
EOSs along the available isochores. As mentioned above,
within this density range, all types of calculations are in good
agreement. We note a slight departure between SCvH and the
simulations for the highest density in the temperature range
∼30,000–80,000 K, as already noted by Militzer & Ceperley
(2001). This again reflects the imperfect treatment of ionization
in the SC model. The deviations, however, remain modest,
within at most ∼6%. In contrast, the present calculations agree
very well with the MC01 PIMC results.
Figure 8 portrays similar comparisons with another set of

first-principles simulations, namely the CEIMC calculations
of Morales et al. (2010a), probing the actual pressure–
dissociation/ionization regime, between ρ=0.7 -g cm 3 and
2.4 -g cm 3. Remember that in this regime, both the present
EOS calculations and those of Becker et al. (2014) rely on

Figure 7. Hydrogen internal energy per atom vs. temperature for several isochores (as labeled from top to bottom in the figure). Empty circles: Militzer & Ceperley
(2000, 2001, MC). Solid lines: present calculations; short-dashed lines (blue): SCvH. The zero of energy is the same as MC but the curves have been shifted arbitrarily
for the sake of clarity.
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QMD simulations. We first note the excellent agreement
between QMD-based and CEIMC results in the probed
temperature–density range, which gives confidence that both
types of methods can handle this crucial density regime. We
also note the strong departure between the SCvH EOS and
these results, by as much as 25%, for the same reasons as
mentioned previously.

Figures 9 and 10 compare the pressure, more precisely P/ρ,
to highlight non-ideal contributions, as a function of density of
the present EOS with the same set of simulations. As seen in
Figure 9, we first note that, as for the internal energy, all EOS
calculations agree very well with the simulations below about
0.1 -g cm 3. Above this value, the SCvH EOS significantly
overestimates the pressure for T 15 kK and underestimates it
at higher temperatures, by as much as 25% around 1 -g cm 3,
highlighting again the approximate treatment of pressure
dissociation and ionization in the SC theory. In contrast, the
present EOS is in excellent agreement with the simulations of
Soubiran & Militzer (2015), for the available isotherms, and
with those of Hu et al. (2011) for T>60,000 K. For these
latter, we note the same spurious behavior for T=15,000 K
and 30,000 K as for the energy, which confirms the dubious
validity of these results in the partially degenerate domain
(T/TF∼1). Figure 10 confirms the excellent agreement
between the present EOS and that of Becker et al. (2014), as
well as with the CEIMC simulations (Hu et al. 2011) at higher
density, and the previously identified shortcomings of the
SCvH EOS in this regime. For sake of completeness, we have
carried out similar comparisons for the pressure with the

calculations of Militzer & Ceperley (2001) for the various
isochores given in these simulations. This is portrayed in
Figure 11. As seen in Figure 10, we note some small wiggles in
both the present EOS and that of Becker et al. for the
T=1000 K and 2000 K isotherms (bottom curves), which
stem from the imperfect interpolation procedures in their
construction.
As mentioned in the Introduction, a major improvement of

the present EOS over previous calculations is that it provides
the entropy. Indeed, Caillabet et al. (2011) derived a
parameterization of the free energy F, yielding the entropy as
= -( )S F U T . However, as mentioned previously, the

analytical fit of Caillabet et al. is valid over a rather limited
temperature–density range, close to the hydrogen melting
curve. In order to extend the validity of the free energy and
entropy over a larger range, we have corrected the fit in various
T–ρ places to recover the results of Morales et al. (2010a) for H
and Militzer & Hubbard (2013) for the H/He mixture (see
Section 4). The comparisons between the present calculations
and the fitting parameterization derived by Morales et al.
(2010a) from their simulations for the free energy and for the
entropy are illustrated in Figures 12 and 13, respectively. Data
points from QMD simulations by Soubiran & Militzer (2015)
for the entropy are also shown in Figure 13. The agreement
between the present EOS and the results of Morales et al. for F
is excellent, in contrast to the SCvH results. For the entropy,
although not perfect, the agreement between the present
calculations and the results fitted from the simulations is also
much better than for the SCvH EOS, in particular for the

Figure 8. Specific internal energy vs. density for hydrogen for several isotherms: comparison with the CEIMC simulations of Morales et al. (2010a). Solid lines:
present calculations; short-dashed lines (blue): SCvH; long-dashed lines (green): Becker et al. (2014). For the sake of clarity all curves have been shifted upward by an
arbitrary constant.
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coolest isotherms. The sudden rise of entropy above
 -0.3 g cm 3 reflects the pressure dissociation and ionization,
leading notably to an increase in the number of particles. The
most noticeable differences appear for the T=6000 K
isotherm between the present (or SCvH) results and those of
Soubiran & Militzer (2015) in the range ∼0.3–0.6 -g cm 3. The
discrepancy, however, remains modest, at less than 5%. For
the coolest isotherms, T�3000 K, the difference between the
present calculations and the MC01 or SM ones rather stems
from the onset of ion quantum effects (see Figure 1), which are
included throughout the 2 Wigner–Kirkwood correction in the
present calculations but are not taken into account in the
simulations.

Besides the specific internal energy Ũ and entropy S̃ , the
present EOS delivers all the necessary thermodynamic
quantities. These include the specific heats at constant volume
and pressure, C̃V , C̃P, from the relations
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Figure 14 compares these quantities for the present calculations
and the SCvH ones for T=15,000, 20,000, and 30,000 K. In
the low-density limit, we recover the value for molecular

hydrogen with two rotational and two vibrational degrees of
freedom (the rotation and vibration temperatures of H2 are θrot=
85K and θvib=6120K, respectively), i.e., = ´ ´C 8.25V

7

2
-10 3 MJ kg−1 K−1=0.029 MJ kg−1 K−1, and = ´˜ ˜C CP V

9

7
=

0.038 MJ kg−1 K−1. As molecular dissociation or ionization takes
place, the increase in the number of particles and the release of
dissociation or ionization energy yield an increase in the specific
heats, with maxima corresponding to the partial dissociation or
ionization zones. Eventually, at high density, the specific heats
decrease to reach the limit of a monatomic (ionized) gas, i.e.,

= ´ ´ -C̃ 8.25 10V
3

2
3 MJ kg−1 K−1 = 0.012 MJ kg−1 K−1,

=˜ ˜C CP V
5

3
for an ideal gas, potentially corrected by non-ideal

contributions. As seen in the figure, these isotherms bracket the
domain of hydrogen pressure dissociation and ionization, which
occurs between about ∼0.1 and 3.0 -g cm 3. The inset clearly
highlights the lack of H2 ionization at high density in the SCvH
model.
Figure 15 displays the isothermal compressibility factor

k
k

r
m

c= r
- ( )k T

P
, 6T

T

B
0

1

where k r= ( )m k TT B
0

H is the isothermal compressibility of a
perfect monatomic hydrogen gas and m = AmH is the atomic
weight, with = ´ -m 1.660 10H

27 kg the atomic unit mass, for
the present and SCvH calculations over the temperature and
density domain characteristic of hydrogen pressure and thermal

Figure 9. Comparison of pressure vs. density for some of the same isotherms as in Figure 6: (a) 250 kK, (b) 125 kK, (c) 100 kK, (d) 62 kK, (e) 50 kK, (f) 30 kK,
(g) 15 kK, (h) 10 kK, (i) 7.8 kK, (j) 6 kK, (k) 5 kK, (l) 2 kK, (m) 1.5 kK, (n) 1 kK, (o) 500 K. Same labeling as in Figure 6. To avoid confusion with the nearest
isotherms, the MC01 data points for T=7812 K and the SM15 ones for T=1.5 kK are displayed with empty squares.
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Figure 10. Same as Figure 8 for the pressure. As in Figure 8, all curves have been shifted by a constant for clarity.

Figure 11. Same as Figure 7 for the pressure.
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Figure 12. Specific free energy as a function of density for hydrogen for several isotherms (labeled in kK along the curves). Red long-dashed line: fit of Morales et al.
(2010a); black solid line: present calculations; blue short-dashed line: SCvH.

Figure 13. Same as Figure 12 for the specific entropy. Solid squares: Soubiran & Militzer (2015, SM15).
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dissociation and ionization. The figure highlights the too large
compressibility of the SCvH EOS in this domain, as noticed in
Section 2.2 over the Hugoniot compression curves, due to the
lack of H2 dissociation/ionization.

3. The Helium EOS

3.1. Construction of the EOS Model

The procedure for the helium EOS is exactly the same as for
the hydrogen one, with the combination of different calcula-
tions. For T�1.0×106 K, the plasma becomes fully ionized
and we use the EOS model of Chabrier & Potekhin (1998). For
T<1.0×106 K, the EOS is divided again into three density
regimes. In the low-density (atomic) one, we use the SCvH
EOS for pure He. In the intermediate T–ρ regime, the ab initio
calculations are based on original QMD simulations and will be
described in detail in a dedicated paper (F. Soubiran et al. 2019,
in preparation). In the high-density, fully ionized domain, we
use the EOS of Chabrier & Potekhin (1998).

1. r -0.1 g cm 3: SCvH EOS
2. r< -1.0 100.0 g cm 3: EOS of F. Soubiran et al.

(2019, in preparation), based on QMD calculations
3. r > -100.0 g cm 3: CP98 EOS

As for hydrogen, bicubic spline procedures are used to
interpolate the thermodynamic quantities in the intermediate
regime. The fact that we merge the QMD and CP98
calculations at 100 -g cm 3 is justified by the fact that QMD
calculations (Soubiran et al. 2012), reanalyzing reflectivity

measurements of dense fluid helium (Celliers et al. 2010) by
including the effects of temperature on the helium gap, suggest
that this latter closes at a density of about 10 -g cm 3, in good
agreement with previous semi-analytical models, implying that
helium should be fully ionized above this density. The zero of
energy for the helium EOS is the same as in SCvH, namely the
zero of the isolated He atom.
As for hydrogen, although the tables are calculated for

practical purposes over square T–ρ and T–P domains, part of
these latter are meaningless, because they correspond to regions
where either helium becomes solid (Loubeyre et al. 1993) or
quantum diffraction effects for ions become dominant. The
melting line for helium, determined by diamond anvil cell
experiments, is well described by a simple Simon law (Datchi
et al. 2000), even when extrapolated to megabar pressures,
where this expression is in good agreement with abinitio
calculations (Lorenzen et al. 2009):

= ( )T P61.0 K, 7m
0.639

where the pressure P is in kbar (= 0.1 GPa). This is indicated
by the thick solid line in Figure 16, while the OCP melting line
(Equation (2)) is shown by the long-dashed line. Interestingly
enough, as for hydrogen, we see that this curve, when extended
to low temperatures and densities, nicely merges with the
experimental one. As for the onset of quantum diffraction
effects, the characteristic parameter is the same as for
hydrogen, fWK0.7, and the condition given by
Equation (3) is indicated by the short-dashed line.

Figure 14. Specific heats at constant pressure and constant volume as a function of density for a few isotherms for hydrogen. The inset highlights the pressure
dissociation/ionization domain for T=20,000 K. Solid red: present; blue long-dashed: SCvH.
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3.2. Comparison with abinitio Calculations

Extensive comparisons between this pure He EOS and PIMC
or existing QMD simulations will be presented in detail in a
forthcoming paper (F. Soubiran et al., 2019, in preparation).
Meanwhile, Figures 17 and 18 compare the Hugoniot
compression curves obtained with our He EOS with the recent
data of Brygoo et al. (2015), for different precompressed initial
conditions. The agreement between the present calculations and
the data is very good, except for the two data points at lowest
pressure of the P0=0.3 and 0.5 GPa precompressed experi-
ments, which seem to be surprisingly stiff. As for hydrogen, we
note that the SCvH model predicts a too abrupt ionization
compared with both the experiments and the present calcula-
tions, which rather suggest a smoothly ongoing process. This
may again point to a limitation of the so-called chemical semi-
analytical model, based on the concept of pair potentials for the
various species (at present He, He+, and He++), to describe
N-body interactions, as the same abrupt ionization is found in
the more sophisticated model of Winisdoerffer & Chabrier
(2005) for helium.

4. The EOS for the Hydrogen/Helium Mixture

4.1. Calculation of the H/He EOS

The calculations of the EOS for the H/He mixture are carried
out within the so-called “additive volume law” (AVL), as in
SCvH. The AVL is based on the additivity of the extensive
variables (volume, energy, entropy, K) at constant intensive
variables (P, T). Although this method is formally exact for

non-interacting, ideal mixtures, and excellent in the limit of fully
ionized systems (Chabrier & Ashcroft 1990), it is no longer valid
for interacting systems, i.e., between hydrogen and helium
species in the present context, or in the domain of partial
ionization. Nevertheless, we expect the correction to remain
modest, of the order of a few per cent. Clearly, this is a limitation
of the present EOS. Calculations for the interacting H/He
mixture have been carried out recently with QMD simulations
but have focused on a limited density–temperature domain
characteristic of the Jupiter internal adiabat (Lorenzen et al.
2009, 2011; Morales et al. 2010b; Militzer 2013; Mazzola et al.
2018; Schöttler & Redmer 2018), and only one of these
calculations has calculated the entropy of the interacting mixture
(Militzer & Hubbard 2013). Note also that all these simulations
have been carried out with a rather small number of particles, of
the order of 10 for the helium atoms. Indeed, for large numbers
of particles, demixing can occur in the simulation box,
preventing the calculation of the thermodynamic properties of
the mixture (Lorenzen et al. 2009; Soubiran et al. 2013).
Therefore, even though various schemes exist to correct for the
finite-size errors, it seems fair to say that the quantities derived
from existing simulations still retain some degree of uncertainty.
As mentioned above, within the AVL, an extensive variable

W at given ( )T P, for the mixture reads (see, e.g., SCvH):

å=( ) ( ) ( )W T P X W T P, , , 8
i

i i

where = å( )X M Mi i i i denotes the mass fraction of comp-
onent i (H or He in the present context). The density for the

Figure 15. Isothermal compression factor as a function of density for hydrogen for a few isotherms (as labeled in kK) for the present (solid) and SCvH (dashed)
calculations. The compressibilities are normalized to that of a perfect monatomic H gas.
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H/He mixture (which is an inverse specific volume) reads

r r r
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-
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H He

where = +( )Y M M MHe H He denotes the helium mass frac-
tion. For the specific entropy of the mixture, the ideal mixing
entropy must be added to Equation (8) in order to correctly
recover the ideal gas limit, yielding

å= +˜( ) ˜ ( ) ˜ ( ) ( )S T P X S T P S T P, , , . 10
i

i i mix
id

For a mixture of = åN Ni i components i of number fraction
=x N Ni i and atomic mass A mi H, with mH the atomic mass

unit, the ideal mixing entropy reads
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where á ñ = åA x Ai i i and kB denotes the Boltzmann constant. It
should be noted that in the above equation, we have neglected
the contribution from the free electron entropy. Indeed, in
contrast to semi-analytical so-called “chemical models” such as
SCvH, based on well defined chemical entities such as

molecules, atoms, and electrons, such an identification does
not exist in QMD simulations, preventing the precise
characterization of a free electron density. Our approximation,
however, is justified both in the regime of neutral hydrogen and
helium, where there are no free electrons, and in the regime of
full ionization, where the electrons become degenerate and thus
have a negligible entropy. The approximation, however, fails in
between these two regimes, i.e., in the regime of partial
ionization.
As mentioned above, Militzer (2013) and Militzer &

Hubbard (2013) have carried out QMD simulations for an
H/He mixture over a significant temperature–density domain
and have calculated the free energy F by thermodynamic
integration, which yields also the entropy = -( )S U F T .
These authors provide a fitting formula for F over the range of
their simulations, namely ∼0.2–9.0 -g cm 3 and 1000–80,000 K,
covering the domain of H and He pressure and temperature
dissociation and ionization. The simulations were carried out for
a helium number fraction = =x 18 238 0.076He , corresp-
onding to a helium mass fraction Y=0.246. Figures 19 and 20
display the comparison of the internal energy E and the excess
pressure P/ρ as a function of density for several isotherms
calculated by MH13 with the present and SCvH results.
As noted in MH13, the SCvH EOS generally slightly
overestimates the internal energy compared with the simulations
over the probed density range. This is improved with the new

Figure 16. Temperature–density domain of the present EOS for helium. The dotted line gives the T–ρ domains corresponding to the different models or calculations
combined to produce the final EOS (see text). The melting lines for He (Equation (7)) and He2+ (Equation (2)) are delimited by the solid and long-dashed lines,
respectively, in the lower right corner (note that the line for He2+ is extrapolated beyond the validity of the OCP model for illustrative purposes only). The short-
dashed line fWK=0.7 corresponds to the limit of validity of the present calculations, due to ion quantum effects. The inset focuses on the liquid to solid and ion
classical to quantum locations of the phase diagram in T–P. The EOS must not be used beyond these limits. Interior profiles for the Sun (1 M ) and 1 and 10 MJup

planets at 5 Gyr (from Baraffe et al. 2003, 2015) are displayed in the figure to illustrate the domain of astrophysical applications.
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EOS, although this latter predicts a lower internal energy than
MH13 for the highest isotherms, most likely due to the
temperature and density interpolation procedures between the
QMD and CP98 calculations in this domain. We also have to
recall that non-ideal H/He mixing effects are not included in the
present calculations, based on the AVL. Indeed, it has been
shown that in the ionized regime, this latter yields a lower
energy than for the non-ideal mixture (Chabrier & Ashcroft
1990). The sharp increase in the energy in the density regime
∼0.5–1.0 -g cm 3 in the displayed temperature regime stems
from the onset of ionization, yielding a strong increase in the
free electron energy contribution due to the Pauli principle (see,
e.g., Saumon & Chabrier 1992; Militzer & Hubbard 2013).

Figures 21 and 22 portray similar comparisons as a function
of temperature for several isochores calculated by MH13. In
Figure 21, we notice the abrupt increase in the SCvH energy
with respect to both MH13 and the present calculations around
T∼30,000 K and r -0.2 g cm 3, i.e., in the regime of
pressure dissociation/ionization, while the reverse is true for
the pressure, with a crossover of the SCvH isochores with the
present and MH13 ones in the regime ∼0.2–3.0 -g cm 3 around
T∼30,000 K (log T=4.5) (see Figure 22). This again
illustrates the approximate treatment of this process in the
semi-analytical SC model, as mentioned in the previous
sections and as already noted by Militzer & Ceperley (2001)
for pure hydrogen and by Militzer & Hubbard (2013) for the
mixture, highlighting the already mentioned lack of dissocia-
tion and too abrupt ionization in SCvH with increasing density.
The underestimated degree of molecular dissociation and/or

ionization in the SC model is also reflected by the increasing
offset between SCvH and both MH13 and the present
calculations for T104 K for both U and P/ρ in the density
regime ∼0.75–3.6 -g cm 3. As pointed out by MH13, this
discrepancy in the pressure as a function of temperature can
have a significant impact on the internal structures of giant
planets. In contrast, the agreement between the present EOS
and MH13 in this crucial domain can be considered as
satisfactory. At higher densities, when the system becomes
dominantly ionized, all calculations agree. Generally speaking,
the present EOS agrees well with the MH13 simulations,
except possibly in the domain  T4.5 log 5.0 for
ρ;2.0–6.0 -g cm 3, as seen in the figures, with a maximum
discrepancy of ∼8%. Since this is within the domain of
interpolation between the QMD-based simulations and the
CP98 model in the present EOS calculations (see Section 2.1),
the discrepancy is likely to be blamed upon this procedure.
As already mentioned, besides the pressure and the internal

energy, knowledge of the entropy is necessary to determine the
thermal profile and the cooling rate of objects below about
0.6 M . This domain encompasses low-mass stars, brown
dwarfs, and gaseous planets. Indeed, these objects are too cool
for heat to be transported efficiently by radiation and not dense
enough for electron conduction to be significant. Heat is thus
transported by convection, yielding a nearly adiabatic internal
profile. Deriving the entropy over a large enough temperature–
density range to cover the evolution of these bodies is thus of
prime importance for astrophysical applications as well as for
isentropic high-pressure experiments aimed at characterizing

Figure 17. Helium shock pressure vs. density along the Hugoniot for various precompressed initial conditions, namely 0.12, 0.3, 0.5, and 1.1 GPa, as labeled in the
figure. Data: Brygoo et al. (2015); solid line: present calculations; dotted line: SCvH EOS.

16

The Astrophysical Journal, 872:51 (27pp), 2019 February 10 Chabrier, Mazevet, & Soubiran



Figure 18. Helium shock temperature as a function of shock pressure along the Hugoniot for the same precompressed initial conditions as in Figure 17, namely 0.1,
0.3, 0.7, and 1.5 GPa from left to right. Same labeling as in Figure 17.

Figure 19. Internal energy per atom vs. density for several isotherm calculations by Militzer & Hubbard (2013, MH13) (as labeled in the figure), compared with the
present and SCvH results. For all curves the zero of energy is the same as in MH13. For sake of clarity, however, curves have been arbitrarily moved upward or
downward by constant shifts.
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hydrogen and helium pressure ionization. So far, no such EOS
has been derived.

Militzer (2013) and Militzer & Hubbard (2013) calculated
the Helmholtz free energy from their QMD simulation data by
performing a so-called thermodynamic integration technique
(TDI). The advantage of this technique, where integration is
performed over trajectories that are derived from a hybrid
potential energy function between that of a classical system and
that obtained with a Kohn–Sham functional, is that it does not
require a prohibitively large number of (T, ρ) simulation points.
The other advantage of the TDI method is that it allows directly
the determination of the ionic contributions to the entropy.
Whereas in most cases this contribution represents essentially a
measure of the total entropy of the system, this is no longer true
when electronic excitations become important, i.e., once
ionization takes place. In that case the electron contribution
to the entropy must be taken into account in the TDI integration
(see Militzer 2013 and references therein). It must also be kept
in mind that the procedure becomes less straightforward in the
molecular regime, where a rigorous classical reference system
is more difficult to define, because of exchange reactions,
leading to dissociation and recombination. Last but not least, in
some domain of (low) temperature and (high) density,
corrections due to quantum effects in the motion of nuclei
must also be taken into account in the DFT-MD results.
Finally, finite-size effects due to the limited number of particles
must be treated with extreme care to ensure they do not
substantially affect the results. Computational calculation of the
entropy of a system is thus a highly delicate task and is not free
from uncertainties.

Figures 23 and 24 portray a comparison of the free energy F
per atom as a function of temperature and density, respectively,
between the present calculations, the SCvH EOS, and the
MH13 simulations in the density–temperature range probed by
the latter, using either their numerical data points or their
polynomial fit within its domain of validity. As already noticed
by MH13, the agreement for this quantity is much better than
for the pressure and the internal energy, which are respectively
the density and temperature derivatives of F. We note,
however, the better agreement of the present calculations with
the simulations compared with SCvH in the T–ρ domain where
ionization sets in.
Figures 25 and 26 show the same comparisons for the

entropy. For the coolest isotherms (T<5000 K) and low
densities ( r -0.3 g cm 3), i.e., in the molecular/atomic
domain, all calculations agree quite well, showing that the
SC model adequately handles this regime, even when
interactions between H2 molecules or He atoms become
significant. For higher temperatures and densities, the SC
model starts to depart from both the MH13 and present
results, first underestimating the entropy in the domain

 r -0.2 2 g cm 3 and 5000T10,000 K and then
showing an abrupt increase in the entropy in this density
regime at higher temperatures. This corresponds exactly to the
domain of pressure ionization and reflects the already
mentioned inaccurate (and too abrupt) treatment of this process
in the SC theory. In contrast, the agreement between the present
calculations and the MH13 results can be considered as very
satisfactory over the entire temperature–density range explored
by the simulations. The sudden decrease in entropy for
T=5000 K and r -2 g cm 3 in the fit derived from the

Figure 20. Same as Figure 19 for the non-ideal pressure P/ρ.
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MH13 simulations compared with both the present and SCvH
results, as seen in both Figures 25 and 26, is rather surprising
and might point to either the increasing contribution to the
interactions between H and He species or an issue with the TDI
procedure or the inferred fitting formula. Note, however, that
quantum effects between ions become significant in this regime
(see Figure 1) and that either the present calculations treat them
as a perturbation, with the Wigner–Kirkwood expansion
(SCvH and present) or they are ignored (MH13). As seen in
the figures, however, this region concerns a domain of high
density and low entropy ( < /S k6 B e−) where there are no
astrophysical objects.

As mentioned above, interiors of astrophysical bodies below
~ M0.6 are essentially convective and thus nearly adiabatic.
Their internal profile is thus characterized by an isentrope for a
given mass at a given age and their thermal evolution
corresponds to a series of decreasing isentropes. Figure 27
portrays the temperature and pressure profiles of such
isentropic structures for the present, SCvH, and MH13
calculations for entropy values between 4 and 16 kB/e

−, i.e.,
2.9×10−2 to 1.15×10−1 MJ kg−1 K−1 for the present H/He
mixture ( =Y 0.246, i.e., =x 0.076He ). For adiabats above
 /S k10 B e−, we note that the SCvH adiabats underestimate

both the temperature and the pressure in the density domain
∼0.1–2.0 -g cm 3, i.e., the domain of ionization, compared with
the two other types of calculations, both based on QMD
calculations in this regime, which predict higher temperatures

and pressures in this domain. Again, this reflects the inaccurate
treatment of the ionization process (Stark effect and electronic
excitations) in the SC model.
Interestingly enough, the behavior reverses for cooler

isentropes, with SCvH predicting higher temperatures and
pressures than the two other models. In this regime, molecular
hydrogen H2 is still present and the disagreement arises from
the lack of a proper treatment of H2 pressure dissociation in the
SCvH model. As seen in the figure, the present EOS agrees
fairly well with the calculations of MH13, notably for the
pressure. For the temperature, the present calculations start
departing from MH13 for  /S k10 B e−, predicting slightly
warmer structures than these latter calculations in the pressure
ionization regime. This reflects the increasing contribution of
the H/He interactions, and thus of the non-ideal mixing
entropy, in the mixture, not treated in the present calculations,
for the cooler and denser domains, yielding eventually an
H/He phase separation for the coolest isentropes (Lorenzen
et al. 2009; Morales et al. 2010b; Militzer 2013; Mazzola et al.
2018; Schöttler & Redmer 2018).
Since we do not have the results from MH13 for the exact

Jupiter isentrope (T=166 K, P=1 bar) for the cosmogonic
helium mass fraction (Y=0.275), we cannot make a
comparison for the correct Jupiter adiabat. The = /S k7 B e−

one, however, is close enough to Jupiterʼs value to estimate the
discrepancy between the various calculations under Jupiter-like
conditions. As can be inferred from Figures 25 and 26, we

Figure 21. Internal energy per atom vs. temperature for several isochore calculations by Militzer & Hubbard (2013, MH13) (as labeled in the figure), compared with
the present and SCvH results. For all densities, the MH13 values are the ones given by their fit except for r = -8.96 g cm 3, which is outside the range of validity of
the fit and for which the empty circles are their simulation data points. Solid lines: present calculations; green long-dashed lines and empty circles: MH13; blue short-
dashed lines: SCvH. For all curves the zero of energy is the same as in MH13. For the sake of clarity, however, curves have been moved arbitrarily upward or
downward by constant shifts.

19

The Astrophysical Journal, 872:51 (27pp), 2019 February 10 Chabrier, Mazevet, & Soubiran



found that, for this entropy value, the maximum discrepancy
occurs at P=100 GPa, with MH13 giving a temperature of
T=4867 K, the present EOS T=5382 K, i.e., a 10%
difference, and SCvH T=5623 K, i.e., 15.5% difference.
Conversely, for the corresponding density r - 0.75 g cm 3,
MH13 predicts a pressure P=94 GPa against 93 GPa for the
present calculations (= 1% discrepancy) and 132 GPa for
SCvH (= 37% discrepancy). This is the domain of pressure
ionization, so these differences are not surprising and they
illustrate the better treatment of this process in the present
calculations, based on QMD simulations in this domain, than in
SCvH. The remaining discrepancy with MH13 can thus have
two origins. The first one is errors in the parameterization of the
free energy in the present calculations. The second is of course
the missing treatment of H/He interactions in the present EOS
calculations and thus the lack of non-ideal mixing entropy.
Indeed, MH13 numerical simulations reveal an H/He phase
separation in this regime (see Figure 2 of Militzer 2013), even
though other simulations reach a different conclusion for
similar T–P values (Schöttler & Redmer 2018), suggesting that
H and He are still miscible under Jupiter internal adiabat
conditions. Looking at Figures 25–27, we can infer the impact
of the aforementioned discrepancies in T and P between the
present, SCvH, and MH13 calculations in the pressure
ionization domain under Jupiter-like conditions. We found
that for T=5000 K and r = -0.75 g cm 3 (and Y=0.246), we
get S=6.9 and 6.63 kB/e

− for the present and SCvH EOSs,
respectively, against 7.07 kB/e

− for MH13, i.e., ∼2% and 6%
differences, respectively. A precise quantification of these
differences upon Jupiterʼs internal properties requires deeper

explorations, with exact models of Jupiter, to be conducted in
forthcoming calculations.
Note that, in the above comparisons, we have not included

the EOS recently derived by Miguel et al. (2016+erratum).
Indeed, the entropy values given by their tables for various T
and ρ conditions differ significantly from all the calculations
displayed in this section. This points to a severe issue in these
tables (see also Debras & Chabrier 2019).

4.2. Thermodynamic Quantities

As mentioned earlier, the present EOS delivers all the
necessary thermodynamic quantities besides temperature T,
pressure P, specific internal energy Ũ , and specific entropy S̃ .
These include the specific heats at constant volume and
pressure, C̃V , C̃P (see Equation (5)), and the adiabatic gradient,
ad, from the relation
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Note that since, in our calculations, the ideal mixing entropy,
Smix, does not depend on T or P (see Equation (11)), the
adiabatic gradient (as well as the other first derivative
quantities) at given (P T, ) for the mixture can easily be

Figure 22. Same as Figure 21 for the non-ideal pressure P/ρ. For the sake of clarity, curves have been shifted upward arbitrarily by constant shifts.
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calculated from the linear interpolation
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which may happen to be less numerically noisy than
calculating the second derivative of a spline. Other quantities
include the thermal expansion coefficient α, the adiabatic
sound speed CS, the isothermal and isentropic compressibilities
κT, κS, and the Grüneisen parameter γ, all easily derived from
these relations:
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denotes the value for a

perfect gas of atomic mass μ.
Figure 28 portrays the specific heats for an H/He mixture

with solar helium abundance (Y=0.275). We recover the
same features as in Figure 14 with the obvious domains of H2

temperature and pressure dissociation and ionization.
The adiabatic temperature gradient is a quantity of prime

importance in astrophysics because it is the quantity used in the
Schwarzschild criterion to determine whether transport of
energy occurs by convection or by microscopic diffusion
processes (conduction or radiation). This quantity is displayed
in Figure 29 for the same cosmogonic H/He abundance
(Y=0.275). The figure spans a ρ–T range characteristic of
pressure dissociation and ionization from 103 to 106 K and 0.05
to 6.0 -g cm 3. Some typical physical features can be identified
in the figure. At low density, the low-temperature limit
corresponds to the domain of molecular hydrogen with excited
rotational levels ( q q<Trot vib),  = 0.3ad , while the high-
temperature domain corresponds to the perfect monatomic gas,
 = 0.4ad , potentially modified by non-ideal contributions. The
two dips reflect the excitation of vibrational levels and the
regions of hydrogen dissociation and H or He ionization,
respectively. As density increases and dissociation/ionization
take place, the two dips vanish and eventually the whole

Figure 23. Free energy per atom vs. temperature for several isochore calculations by Militzer & Hubbard (2013) (as labeled in the figure), compared with the present
and SCvH results. Empty circles: MH13 computation data; green long-dashed lines: MH13 fit; solid lines: present calculations; blue short-dashed lines: SCvH. For all
curves the zero of energy is the same as in MH13.
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mixture becomes fully ionized for r -6 g cm 3. The spikes
around log T≈3.4 for ρ=0.108 and 0.25 -g cm 3 reflect the
onset of hydrogen crystallization. Being a combination of
several second derivatives, the adiabatic gradient is very
sensitive to the interpolation procedures in the calculations of
the EOS table. This is reflected by the wiggles in the domain

 T4.7 log 5.0, which is the domain of interpolation
between the QMD and CP98 calculations. This is the
unfortunate consequence of the necessity to combine different
calculations in order to construct large enough r( )T P, , tables
for astrophysical use.

5. Form of the EOS Tables

As mentioned in the Introduction, QMD calculations for the
EOS have been performed in the canonical ensemble, i.e., with
(T, ρ) as independent variables. The AVL procedure to
calculate the thermodynamic quantities of the H/He mixture,
however, requires the independent variables to be (T, P), which
imposes transformations of the various quantities from the
(T, ρ) ensemble into the (T, P) ensemble by spline interpolation
procedures. Eventually, the (T, P) table for the H/He mixture
was transformed back into a (T, ρ) one, because many
astrophysical calculations use these latter quantities as input
variables. Although the online H/He table corresponds to a
solar (cosmogonic) helium abundance, Y=0.275, other
mixtures can be easily obtained from the pure H and He tables
with use of Equations (8)–(11).

For reasons of practical interpolation, all tables have
rectangular forms with the following limits:

 
 
 r

- +
- + ( )

T
P

2.0 log 8.0,
9.0 log 13.0,
8.0 log 6.0, 19

with grid spacings Δlog T=0.05, Δlog P=0.05, Δlog
ρ=0.05, i.e., 121 isotherms, each with 441 values of P, or 281
values of ρ, and T in K, P in GPa, ρ in -g cm 3. As mentioned,
some parts of these tables are unphysical because they
correspond to regions in the diagrams that are not handled by
the present calculations. These regions concern essentially the
domains of solid hydrogen and helium and regions where
quantum diffraction effects on the nuclei can no longer be
treated by a Wigner–Kirkwood expansion. They are identified
in Figures 1 and 16. Because of the rectangular format of the
tables, values at very low density in the ( T Plog , log ) table and
at very low pressure in the r( )Tlog , log tables also become
unphysical and should not be considered.
Table 1 gives an example of the various quantities provided

by the tables. All quantities are specific quantities, i.e., are
given by unit mass, with =A 1.00794H , =A 4.00262He and
the atomic mass unit = ´ -m 1.66 10H

27 kg. The main second
derivatives are also provided. All necessary thermodynamic
quantities can be derived from these derivatives, from
Equations (5) and (13)–(18). Users, however, might prefer to
use only values corresponding to the first derivatives of the

Figure 24. Free energy per atom vs. density for several isotherm calculations by Militzer & Hubbard (2013, MH13) (as labeled in the figure), compared with the
present and SCvH results. For sake of clarity, however, curves have been shifted upward for the 1000, 2000, and 5000 K isotherms. Same labeling as Figure 23.
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Helmholtz free energy, namely U, P, S, and to carry out their
own interpolation procedures to calculate second derivatives.

We also stress that the entropy of the spin of the nuclei
= +( )S sln 2 1nuc

id kB/proton, where s is the spin of the nucleus,
is not included in the calculations.

6. Conclusion

In this paper, we have presented new equations of state for
pure fluid hydrogen and helium as well as for hydrogen/helium
mixtures within the so-called AVL approximation, i.e., simply
taking into account the ideal mixing entropy contribution
between the two species (H and He) to the thermodynamic
quantities of the mixture. The calculations combine first-
principles calculations, based on QMD (MD-DFT) simulations,
in the regime of pressure ionization, with semi-analytical
calculations in the regimes of low density (molecular/atomic)
and high density or temperature (fully ionized), and provide not
only the pressure, internal energy, and density but also the
entropy and all necessary thermodynamic derivatives. The
initial calculations are performed in the canonical ensemble,
implying (T, ρ) as independent variables, and are transformed
into (T, P) tables to be able to make use of the AVL for the
mixture. Therefore, we provide tables in both sets of
independent variables. The EOS tables cover a wide temper-
ature–pressure–density domain, which permits calculations of
the mechanical and thermal (cooling) structures of a large
variety of astrophysical bodies, from solar-type stars to low-
mass stars, brown dwarfs, and (solar and extrasolar) gaseous

planets down to Saturn-like masses. These calculations should
supersede the previously widely used Saumon–Chabrier–van
Horn EOS in this domain. At higher densities and/or
temperatures, the EOSs merge with those of Chabrier &
Potekhin (1998) and Potekhin & Chabrier (2000), devoted to
the physics of compact, relativistic bodies such as white dwarfs
and neutron stars.
These calculations are by no means without flaws and

limitations. Flaws include unphysical numerical oscillations,
notably in the calculations of second-derivative thermodynamic
quantities, due to spline interpolations. For this reason,
verifications of the Maxwell relations between thermodynamic
derivatives would be meaningless, because they would
undoubtedly be affected by the numerical interpolation
procedures and thus have no real physical foundations (see,
e.g., Section 8 and Figures 18 and 19 of SCvH). Possible future
improvements in these numerical treatments will be indicated in
future versions of the online EOS tables. Note also that QMD
simulations retain as well some degree of uncertainty, inherent
to the exchange–correlation functional used in the calculations.
Indeed, it has been shown that for liquid hydrogen, pressures
obtained with the Perdew–Burke–Ernzerhof functional (Perdew
et al. 1996) and the van der Waals functional (Lee et al. 2010)
can differ by as much as ∼10%–20% for a given density in the
present domain of interest (Morales et al. 2013; see also
Pierleoni et al. 2016; Knudson & Desjarlais 2017; Mazzola
et al. 2018).
The most challenging limitation of the present calculations is

the use of the AVL in the treatment of the H/He mixture,

Figure 25. Entropy vs. density for several isotherm calculations by Militzer & Hubbard (2013) (as labeled in the figure), compared with the present and SCvH results.
Same labeling as in the previous figures.
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which omits interactions between hydrogen and helium
species. While relatively inconsequential for bodies with
internal entropies larger than about 10 -/k eB (~ /k11 atomB ),
i.e., about 7×10−2 MJ kg−1 K−1, as seen from the compar-
isons with Militzer & Hubbard (2013) (see Figure 27), this

contribution becomes important for cooler entropy values,
which encompasses essentially all objects in the brown dwarf
and planetary domain older than a few gigayears. Incorporating
these non-ideal H/He contributions into the present calcula-
tions will be explored in the near future.

Figure 26. Entropy vs. temperature for several isochore calculations by Militzer & Hubbard (2013) (as labeled in the figure), compared with the present and SCvH
results. Same labeling as in the previous figures. Careful: for sake of clarity, each curve from r = -3.59 g cm 3 to r = -0.108 g cm 3 has been shifted upward by 1
/kB atom with respect to the immediately higher-density one.
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Figure 27. Temperature and pressure profiles for a series of adiabats as labeled in the figure in -/k eB (=( )/ /k atom 1.076B for the present Y value) for the MH13 mass
fraction of helium (Y=0.245). Solid lines: present calculations; green long-dashed lines: MH13; blue short-dashed lines: SCvH.

Figure 28. Specific heats at constant pressure and constant volume as a function of density for three isotherms (as labeled in the figure) for a cosmogonic helium
abundance (Y=0.275). The inset highlights the pressure dissociation/ionization domain for T=20,000 K. Solid red: present; blue long-dashed: SCvH.
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The H, He, and H/He EOS tables for a solar mixture
(Y=0.275) are available on the website:http://perso.ens-
lyon.fr/gilles.chabrier/DirEOS.

The authors are deeply indebted to Andreas Becker and
Ronald Redmer for providing tables of their EOS calculations

and to Burkhard Militzer for making available his own
calculations, which enabled us to perform detailed comparisons
between the different EOSs. We also thank Stéphanie Brygoo,
Paul Loubeyre, and Markus Knudson for sending us their data.
This work has been partly supported by the Programme
National de Planétologie (PNP).

Figure 29. Adiabatic gradient as a function of temperature for various isochores for a cosmogonic helium abundance (Y=0.275). Density (marked in g cm–3)
increases from top to bottom and left to right. Notice the change of scale on the temperature axis (x-axis) in the right panel.

Table 1
Example of the EOS Table

log T log P log ρ Ũlog S̃log
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log P
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⎞
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S

P

log

log T ad

0.200E+01 −0.900E+01 −0.909E+01 −0.628E-01 −0.100E+01 −0.114E+01 0.983E+01 0.242E+02 −0.355E+00 0.300E+00
0.200E+01 −0.895E+01 −0.870E+01 −0.628E-01 −0.102E+01 −0.591E+01 0.572E+01 0.190E+02 −0.297E+00 0.300E+00

L L L L L L L L L L
L L L L L L L L L L

0.200E+01 0.129E+02 0.542E+01 0.781E+01 0.547E+01 0.454E+00 0.500E+01 −0.152E+01 0.506E+00 0.330E+00
0.200E+01 0.130E+02 0.544E+01 0.784E+01 0.550E+01 0.455E+00 0.498E+01 −0.152E+01 0.506E+00 0.330E+00
0.205E+01 −0.900E+01 −0.978E+01 −0.174E-01 −0.402E+00 −0.160E+02 0.161E+02 −0.260E+01 −0.315E+01 0.300E+00
0.205E+01 −0.895E+01 −0.911E+01 −0.174E-01 −0.548E+00 −0.105E+02 0.104E+02 −0.168E+01 −0.267E+01 0.300E+00

L L L L L L L L L L
L L L L L L L L L L

0.205E+01 0.130E+02 0.547E+01 0.781E+01 0.542E+01 0.451E+00 0.498E+00 −0.152E+01 0.507E+00 0.331E+00
0.210E+01 L L

L L L L L L L L L L
L L L L L L L L L L

Note.Units are T in K, P in GPa, ρ in g cm–3, Ũ in MJ kg−1, S̃ in MJ kg−1 K−1. Each ( T Plog , log ) or ( rTlog , log ) table includes =N 121T isotherms, each with
NP=441 pressure values, or Nρ = 281 density values, with step values 0.05 for Δlog T, Δlog ρ and Δlog P. Note: the number of digits after the point has been
truncated in this example to fit the journal format. In the online table, all quantities are given with six digits after the point.
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