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Abstract 

Regulators often employ cardinal indicators to justify measures to protect the health of 

farmland bees from pesticides used in crop protection.  Previously, in evaluating the likely 

hazard of a compound, they have made extensive use of its LD50 (‘lethal dose to 50% of 

exposed subjects’), and NOEC (‘no observable effect concentration’).  Here, I argue that 

regulators should also use a third indicator, namely the Haber exponent.  The Haber 

exponent qualifies the meaning of the LD50 by revealing the relative hazard of 

environmentally relevant exposures longer than that used to determine the LD50 originally.  

Additionally, I show how the experimental protocol used to determine the Haber exponent 

will also produce a well-founded, parametric value of the NOEC. Taken together, these three 

numbers establish a strong foundation on which to evaluate the potential impact of an 

agrochemical on bees. 

 

 

 

 

  



Introduction 

Regulators need scientific evidence to justify measures to protect the health of farmland 

bees from pesticides used in crop protection.  The best evidence is provided by experiments 

that closely simulate realistic scenarios, such as field trials that reveal the degree of harm 

that a pesticide causes to bees when used in farming practice.  However, regulators also 

can make use of cardinal indicators, by which I mean certain numbers whose values carry 

information about either the comparative toxicity or absolute hazard of an active substance.  

Two of the cardinal values are the LD50 (‘lethal dose to 50% of exposed subjects’), and the 

NOEC (‘no observable effect concentration’).  Here, I propose a third: the Haber exponent.  

Below, I argue that establishing these three numbers for an agrochemical makes a strong 

foundation on which to evaluate the potential impact of a compound on bees.   

First cardinal number: LD50 

The LD50 is not useful to regulators as a ‘protection threshold’, or a maximum permissible 

level of exposure because it safeguards only half of the population, which is not normally 

sufficient.  Useful protection thresholds can, however, be derived from the LD50.  For 

example, regulators may consider imposing a threshold of LD50/10, which has the following 

theoretical justification.  The LD50 is a percentile on the cumulative distribution of the 

frequency distribution of dose tolerances in the exposed population.  If the frequency 

distribution of tolerances (minimum lethal doses of toxicant) in the population is normally 

distributed, then the cumulative distribution is sigmoidal and the LD50 coincides with the 

mode (and mean) of the frequency distribution (Fig. 1).  If the population varies little in 

tolerance, the sigmoidal cumulative distribution rises steeply, otherwise it is shallow.  If we 

require that the frequency distribution of tolerances is unimodal, then a theoretical asymptote 

arises when the frequency distribution of tolerances is flat (Fig. 1, asymptotic case).  

Arguably, this is a ‘worst case scenario’ because some members of the population have no 

tolerance to the exposure and others have virtually none.  In this hypothetical worst case, the 

cumulative distribution is a straight line (Fig. 1) and it is possible to be very precise about the 

death rate at an exposure of LD50/10; specifically, it is (50/10)% = 5%.  Since this is a worst 

case, we can say that a protection threshold of LD50/10 will result in the death of no more 

than 5% of the population – and less if the distribution of tolerances is unimodal and normal, 

which is more likely in realistic scenarios.  Note that LD50/10 becomes more effective as a 

protection threshold as populations vary less in tolerance. 



 

Fig. 1. Relationships between the dose-response curve (upper panels) and the frequency 

distribution of dose tolerances (lower panels) in each of three populations (the upper and 

lower panels are paired within the three columns: similar, variable and asymptotic case).  

The within-population variability among individuals in dose tolerance increases progressively 

left-to-right across the three columns.  Vertical dashed lines indicate the modes of the 

frequency distributions and the horizontal dashed lines indicate the LD50 (i.e. the response 

endpoint is fatality).  

The second use of the LD50 is as a comparative indicator.  Over time, toxicologists have 

determined the LD50 of many compounds so that by comparing the LD50 of a new compound 

to the known impacts of compounds in past use, regulators can quickly form an opinion 

about the likely relative hazard of the new one. 

 

 

Fig. 2. Relationship between (x-axis) and typical agricultural application rate (y-axis) for a 

collection of neurotoxic insecticides.   denotes DDT;  = carbamate,  = pyrethroids,  = 

neonicotinoids,  = organophosphates. The diagonal dashed curve indicates a decrease in 



application rate that is proportional to increasing LD50.  I.e. many of the more potent 

compounds are applied at higher rates than DDT, relative to their toxicity.  Redrawn from 

Cresswell (2016). 

For regulatory purposes, the limitation of the LD50 is that it is highly specific to the laboratory 

conditions that were used to determine it, which may not be environmentally realistic.  For 

example, the conventional laboratory tests in honey bees use only healthy, newly emerged 

individuals whereas realistic in-hive populations comprise bees of mixed age and varied 

health status.  Also, the LD50 is normally established in short-term, ‘acute’ exposures – 

typically a 48 hour exposure - which does not reveal whether toxicity could be amplified as 

the duration of the exposure increases.  In actuality, the LD50 can become lower as the 

duration of the exposure increases (see below). 

Overall, of course, the LD50 justifies its place among the cardinal indicators because it can 

be used both in setting protection thresholds and as a comparator.  However, its limitations 

indicate that it should not be the sole cardinal number. 

Second cardinal number: the NOEC 

The unit of concentration specified by the NOEC (no observable effect concentration) may 

refer to the concentration of the toxicant in either the subject’s environment or diet.  

Regulators can use the NOEC directly as a protection threshold, because it safeguards the 

focal species from obvious toxic effects.  Where the test endpoint is fatality, the NOEC 

restricts permissible exposures to levels that do not increase the death rate above normal 

background levels.  The NOEC does not preclude harm when used as a protection 

threshold, because the impact may be subtle (i.e. not observable under the examination 

used); only the NEC (no effect concentration) provides complete protection. 

In relation to the NOEC, the term ‘observable’ can be taken to mean ‘detectable by a 

specified experimental method’.  Where the experimental method used to determine the 

NOEC is factorial (i.e. a particular number of treatments of various dosing levels are 

implemented), then detectability in practice means ‘statistically different from the control’.  

Specifically, when this factorial design is used, the NOEC is taken to be the lowest of the 

tested doses in which the measured response of the exposed subjects is not statistically 

different from the response of undosed controls.  Statistical tests between factor levels 

conventionally are based on the standard errors of the treatment means (e.g. ANOVA or t-

tests), which depend on sample size because SE = SD/n.  Consequently, an undesirable 

situation arises where the NOEC is designated to be the smallest dose that causes a 

response different to the control given the size of the experiment; specifically, the value of 



the NOEC has no biological basis, but instead changes with the power of the experimental 

design.  The NOEC has been criticised for this failing (Laskowski, 1995).  What remedy is 

there?  Instead of a factorial experiment, it is better in principal to characterise the dose-

response relationship by curve-fitting (i.e. a regression approach) and then to estimate the 

NOEC from the best fit.  The question then becomes: where is the NOEC on the best-fit 

dose-response curve? 

Insect physiologists have faced an analogous problem in estimating ‘basal temperature’, 

which is the lowest temperature at which metabolic activity begins.  Their solution 

(Wigglesworth, 1965) has been to extrapolate from the linear section of the sigmoidal 

temperature-vs.-metabolic-rate relationship and to solve for an intersection with the x-axis, 

which is a point where metabolic rate (y-axis) is zero.  It is straightforward to apply the same 

technique to the problem of the NOEC (Fig. 3).  Here, I denote this x-intercept by NOEC* (to 

distinguish it from the conventional NOEC).  The advantage of this approach is that 

experiments based on differently sized experiments will all estimate the same theorised 

value (the x –intercept, NOEC*) and the size of the experiment (the number of experimental 

subjects) affects only the confidence intervals around the estimate.  In estimating NOEC*, 

therefore, statistical power affects only the precision of the outcome and does not bias the 

value of the estimator itself, unlike with the factorial/ANOVA approach described above.  In 

an important sense, therefore, NOEC* is precisely defined and ‘parametric’ – it is the x -

intercept of the extrapolation from the central inflection point of a sigmoidal dose-response 

curve.   

 

Fig. 3. A hypothetical sigmoidal dose-response relationship with a straight-line extrapolation 

(dashed line) to the x-axis from the inflection of the sigmoidal curve, which can been used to 

estimate the NOEC*.    

A additional theoretical parameter, NEC (no effect concentration), is located where the dose-

response curve leaves the abscissa (x-axis), and NOEC* is a sensible proxy for NEC under 

the proviso that concentrations below NOEC have an acceptably ‘negligible’ effect.   It is an 



undesirable outcome that the magnitude of the so-called negligible effect is related to the 

gradient of the central linear section of the dose-response curve.  Specifically, the 

extrapolation from the linear section of the dose-response curve will require slightly greater 

responses to be designated as ‘negligible’ in populations that vary more in tolerance (i.e. 

shallower dose-response curve; see Fig. 1).  This is not entirely satisfactory and therefore 

we will look elsewhere for a more consistent estimator of the NOEC (see below). 

Third cardinal number: Haber exponent, b. 

The Haber exponent qualifies the meaning of the LD50 as both a comparator and a 

protection threshold.  Its use has been recommended to toxicologists generally (Rozman, 

2000) and for those interested in bee-pesticide interactions (Tennekes & Sanchez-Bayo, 

2011).  To discover its value, consider the impact on a regulator’s decision of using the 

Haber exponent in conjunction with the LD50 to compare the hazard of two hypothetical 

compounds, A and B.  The two compounds are intended for application as pesticides to a 

mass-flowering crop that blooms for several weeks.  A and B have 48-hour LD50 values of 4 

ng honey bee-1 and 2 ng bee-1, respectively.  The regulator who makes a decision based on 

the conventional comparison between the LD50 values alone concludes that A and B pose a 

similar hazard to bees.  The conventional regulator therefore approves both A and B for use 

provided that the application guidelines of the compounds meet satisfactory standards.  

Suppose, however, that the Haber exponents of compounds A and B are bA = 1 and bB = 2, 

respectively.  The better-informed regulator who compares the LD50 values and takes into 

account the Haber values concludes (correctly) that B is much more hazardous to bees than 

A because the environmentally realistic exposure (several weeks) is longer than 48 hours.  

The better-informed regulator safeguards farmland bees by permitting only compound A to 

proceed to market.  What is the basis of this crucial distinction between b = 1 and b = 2?    

To interpret the value of a Haber exponent, it is necessary to introduce the concept of ‘toxic 

load’.  Assume that an exposed bee is slightly injured at a constant rate by each molecule of 

toxicant that is inside its body.  Each small injury is permanent and the bee dies when the 

total accumulation of injuries exceeds its individual tolerance threshold, which varies among 

bees (Fig 1).  The toxic load is defined as the total injury accumulated by an individual bee 

after any particular exposure time.   

The Haber exponent refers to the rate of increase of toxic load over time during an exposure; 

specifically, a sustained exposure to compound A (bA = 1) produces a straight-line increase 

in toxic load over time (Fig. 4, trajectory A) and sustained exposure compound B (bB = 2) 

produces a quasi-exponential increase (Fig. 4, trajectory B).  (Appendix 1 presents a 

toxicodynamic model that relates the trajectory of toxic load to the Haber exponent.)  Fig. 4 



reveals an important generalisation about the relative hazard of exposure to compounds like 

A (b = 1) vs. B (b = 2) that have similar LD50 values; compounds whose Haber exponent 

approximates a value of b = 2  are more hazardous than compounds whose Haber exponent 

approximates a value of b = 1 (all else equal) provided that the case involves exposures 

longer than that used to determine the LD50 originally.  In such cases, the Haber exponent is 

an important discriminator among toxicants.   

 

 

Fig. 4. Increase in toxic load (y-axis) over time (x-axis) in sustained exposures to two 

hypothetical compounds, A and B, that differ in the value of their Haber exponents (A: bA = 

1, which indicates a straight-line increase in toxic load; and B: bB = 2, which indicates a 

quasi-exponential rate of increase).   

Consequently, a regulator better safeguards bees by using the LD50 in conjunction with the 

corresponding Haber exponent.     

If, as I have argued, the Haber exponent is an important qualifier of LD50, how is it 

measured?  Simply, it requires an analysis of the results of a series of ‘time-to-effect’ 

experiments, each of which is conducted at a different dose (Baas et al. 2010).  A time-to-

effect experiment measures the duration of exposure that is required to cause a specified 

effect, such as 50% mortality among exposed subjects.  Typically, varied exposure levels 

are used in the laboratory to yield a series of ‘dose-duration’ combinations that cause the 

specific effect.  For example, 20 cages each of 10 honey bees might be each exposed to 

one of four dietary concentrations of toxicant X (i.e. five replicates per concentration) and the 

investigator records the time at which the median fatality occurs in each cage.  The results of 

the experimental series are four combinations of dose (expressed as toxicant concentration 

(C) and duration of exposure (t) that produce a specified effect, such as 50% mortality [ i.e. 



(C1, t1); (C2, t2); (C3, t3); and (C4, t4)].  Normally, the duration of the required exposure, t, 

increases as the concentration of the toxicant, C, declines.  The Haber exponent of X is 

evaluated by estimating the slope of the concentration-vs.-duration relationship (C-vs.-t) on a 

log-log plot (Appendix 1 provides a justifying explanation). 

Alert readers have noticed that the preceding description makes no mention of a control 

treatment, which should comprise unexposed test subjects.  And, in actuality, none is 

required in the calculation of the Haber exponent.  However, a valid exponent must be 

estimated only from subjects under toxic exposures, because the Haber exponent is a 

measure of dose-dependence; dose-independent variation confounds the analysis.  In order 

to evaluate dose-dependence, our analysis must include only C-vs.-t data recorded on 

subjects that the dose has detrimentally affected.  In practice, it is impossible to distinguish 

fatality due to the toxicant and fatality due to senescence, which can occur in individuals that 

tolerate the low-level doses.  To exclude individuals that have not suffered fatality due to the 

toxicant, it is necessary to establish a statistical confidence interval on the performance of 

control subjects.  Once this is achieved (Fig. 5), the Haber exponent can be established by 

regression. 

 

Fig. 5. An idealized C-vs.-t relationship on log-log scales for a hypothetical toxicant that 

causes the criterion effect (kills 50% of exposed bees in a cage) in one day when the 

exposure is at a concentration of 125 parts per billion (ppb).  Four less concentrated 

exposures were tested (results also denoted by ) and the least-squares regression has a 

slope of b = -2 (the dashed diagonal shows b = 1 for reference).  In unexposed cages, 50% 

of bees died by senescence in  = 40 days and the standard deviation among cages was 5.1 

days.  A 95% confidence interval on the criterion in unexposed bees yields a lower boundary 

of 30 days (depicted by the grey-filled area).  The NOEC** based on the intercept between 



the C-vs.-t relationship and the confidence interval is C = 0.14 ppb, which compares to the 

reference NOEC (b =1) of C = 4.2, which is thirty times higher. 

Extrapolation of the C-vs.-t relationship on log-log scales (Fig. 5) enables another estimate to 

be made of NOEC, which I denote NOEC** (to distinguish it from the conventional NOEC 

and the x-intercept estimate, NOEC*).  Specifically, the intercept between the log(C)-vs.- 

log(t) regression and the lower confidence interval on the responses of the control population 

(Fig 5) is, in theory, the lowest toxic dose.  It is a parametric datum whose true value is 

independent of sample size because the confidence interval is determined using the 

standard deviation (average distance of individuals from the population average), which is a 

population attribute (unlike the standard error, which is an attribute of the sampling 

procedure).       

Conclusions 

The Haber exponent can serve as an important qualifier of the widely used LD50. The 

protocol used to measure the Haber exponent also enables the NOEC to be estimated.  In a 

hypothetical but realistic example (Fig. 5), the NOEC varies by a factor of 30 depending on 

the magnitude of the Haber exponent, which indicates its value in evaluating the hazard a 

pesticide poses to bees.  In future, statistical investigation will be required to establish the 

efficient sizes for quantifying Haber exponents.   
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Appendix 1: A toxicodynamic basis for the value of the Haber exponent 

Assume that the bee is slightly injured by each molecule of toxicant that is inside its body at 

a constant rate.  Each small injury is permanent and the bee dies when the accumulation of 

injuries exceeds its individual tolerance threshold, denoted T, which varies among bees (Fig 

1).  The toxic load, denoted Lt, is defined as the total accumulated injury after any exposure 

time, t, and the bee dies when Lt > T.  Now consider two possible scenarios.   

Scenario A: the internal concentration of toxicant at its target site, C, is constant over time.  

Therefore, the rate of injury is constant, Lt is proportional to the duration of the exposure, t, 

and we can write: 

Lt  Ct                                                                                         Eq. 1 

This scenario pertains when the internal concentration of a toxicant equilibrates rapidly and 

the biological half-life (i.e. in-body residence) of the toxicant is short relative to the total 

duration of the exposure, which arises if the toxicant is metabolically degraded or otherwise 

eliminated with rapidity. 

Scenario B: the internal concentration of the toxicant at its target site increases over time as 

exposure continues because its biological half-life is short relative to the duration of the 

exposure (i.e. the toxicant bioaccumulates in the bee’s body).  The internal concentration is 

therefore a variable, denoted t, whose value depends on the current duration of the 

exposure.  Therefore, the rate of injury increases over time.  If the toxicant accumulates in 

the bee’s body at a constant rate, k1, then t is given by: 

t = k1t                                                                                         Eq. 2 

 

Under these circumstances, we can write an expression for the bee’s toxic load at time t by 

replacing the constant C in Eq 1 by the mean value of t over the time span t, which is 0.5k1t 

(because at the start of the exposure t = 0 and at the end of the exposure it is k1t).  Hence, 

we can write: 

Lt   t2                                                                                         Eq. 3 

In summary, toxic load increases at different rates under the two scenarios.  Specifically, we 

have: 

Lt  t  (scenario A) vs.  Lt   t2 (scenario B) 



In theory, therefore, the exponent takes the value b =1 if the toxicant reaches steady-state 

and b = 2 if the toxicant bioaccumulates.  

Haber’s constant product law dictates: 

𝐶𝑡𝑏 = 𝑘                                                                            Eq. 4  

It is straightforward to evaluate b using data from a series of ‘time-to-effect’ experiments 

(Fig. 5) that quantify the exposure durations required to produce a specified level of injury in 

experimental subjects under various doses.  The procedure  involves fitting the C-vs.-t 

relationship and determining its slope on logarithmic axes (Bliss 1941), which estimates 

parameter b because the log-log version of Eq 4 is given by: 

log(𝐶) = −𝑏[log(𝑡)] + log⁡(𝑘)                                              Eq. 5 

 


