
Program Trace Optimization with Constructive
Heuristics for Combinatorial Problems

James McDermott1 and Alberto Moraglio2

1 National University of Ireland, Galway james.mcdermott@nuigalway.ie
2 University of Exeter, UK A.Moraglio@exeter.ac.uk

Abstract. Program Trace Optimisation (PTO), a highly general opti-
misation framework, is applied to a range of combinatorial optimisation
(COP) problems. It effectively combines “smart” problem-specific con-
structive heuristics and problem-agnostic metaheuristic search, automat-
ically and implicitly designing problem-appropriate search operators. A
weakness is identified in PTO’s operators when applied in conjunction
with smart heuristics on COP problems, and an improved method is in-
troduced to address this. To facilitate the comparison of this new method
with the original, across problems, a common format for PTO heuristics
(known as generators) is demonstrated, mimicking GRASP. This also
facilitates comparison of the degree of greediness (the GRASP α param-
eter) in the heuristics. Experiments across problems show that the novel
operators consistently outperform the original without any loss of gener-
ality or cost in CPU time; hill-climbing is a sufficient metaheuristic; and
intermediate levels of greediness are usually best.

Keywords: Constructive heuristics, GRASP, search operators

1 Introduction

Many heuristic and metaheuristic methods have been applied in the field of
combinatorial optimisation (COP). Often they achieve good results on problems
where exact methods become infeasible. Research in this area is somewhat dis-
unified in that many methods have been individually specialised to many prob-
lems: in each case, a combination of domain expertise and algorithmic expertise
is required to design suitable representations and operators.

However, many of these methods do share common concepts, such as (in
constructive heuristics) sampling of solution elements biased by their cost, and
(in metaheuristics) perturbation of existing solutions. It is a natural goal to
unify these methods in a single, general approach. It is also desirable to achieve
a degree of automation in the application of these methods to problems, rather
than requiring algorithmic expertise to be re-applied to each new problem.

Program trace optimisation (PTO) [1] is a recent optimisation framework
which is highly general and unifying, and which does (in a sense to be clarified
later) automate the work of adapting an algorithm to a problem; and so it
responds to these research challenges.

2 James McDermott and Alberto Moraglio

In fact, PTO is not just highly general but in a sense maximally general,
because it uses a representation which by the Church-Turing thesis is the most
general possible – the program trace, that is a data structure representing a
history of execution of a program. The program in question is a non-deterministic
solution generator, which plays the role of a genotype-phenotype map, seeing the
program trace as a genotype and a candidate solution as a phenotype. To be
specific, the generator is a program or function which randomly samples one
element from the solution space, with or without bias, for example in a bitstring
space it returns a single bitstring chosen randomly. With bias, it becomes a
constructive or generative heuristic. PTO thus gives a unifying view.

Heuristic and metaheuristic approaches are commonly hybridised, for exam-
ple in GRASP [2]. In PTO, both the heuristic and metaheuristic aspects are
pluggable, and it is natural in PTO to compare a given heuristic across sev-
eral metaheuristics. In this paper, we borrow well-known constructive heuristics
for several problems as PTO generators. This re-use of known-good ideas is a
central goal of PTO. We write all of them in a GRASP-like format, and this
gives the ability to understand and compare PTO program traces and search
behaviour across problems. It allows for a systematic experiment also on the
well-understood “greediness” parameter of GRASP.

In most metaheuristics, the ability to make small perturbations is essential
to success: the perturbation operator should give a new solution which retains or
re-uses almost all of the information of the previous solution. But on some COP
problems, with typical constructive heuristics as generators, it turns out that the
PTO operators do not succeed in re-using as much of this information as they
could. The problem is due to the repair mechanism which runs after each genetic
variation operator. Therefore, in this paper an improved repair mechanism is
designed, which succeeds in re-using as much information as possible.

Reader’s guide In the next section, Section 2, we describe PTO itself and
previous related work, with an expanded explanation of PTO mechanisms. We
then describe in detail our fixed format for generators for COP problems in
Section 3. The novel repair mechanism is described in Section 4. Experiments
and results are in Section 5, and we conclude with Section 6.

2 PTO and related work

PTO uses a user-supplied non-deterministic generator function as an implicit
definition of the representation. PTO sees the sequence of random decisions
made during execution of this program as a genotype.

PTO’s modular design is shown in Figure 1. The user supplies a problem-
specific generator and fitness function. The core of PTO executes the generator
once per individual. Each execution gives both a trace (genotype) and a solution
(phenotype). Any metaheuristic can be plugged-in as the solver, carrying out its
genetic operations on the trace.

Program Trace Optimization with Constructive Heuristics 3

Fig. 1:
PTO
archi-
tecture

Knapsack (generator, fitness)

Ordering (generator, fitness)

TSP (generator, fitness)

JSSP (generator, fitness)
PTO Core (tracer)

Genetic algorithm

Random search

Hill-climber

The idea of using such a sequence of decisions as a genotype was introduced
in the Program Optimisation with Dependency Injection (PODI) system [3]. The
generators used varied from uniform sampling of the space for symbolic regres-
sion problems, to initialisation operators from previous metaheuristic research
in communications network design, re-purposed as generators, to idiosyncratic
hand-written code originally intended only as a tool for random generation of
3D structures. PTO goes beyond PODI by using a more sophisticated trace
representation, allowing improved re-use of genetic material.

The idea of hybridising contructive heuristics with metaheuristic search is
well-established in the COP literature. GRASP combines a greedy heuristic with
path relinking and local search [2]. As a generalisation, biased randomisation and
simulated annealing have been combined [4, 5]. PTO with GRASP-like genera-
tors differs from GRASP itself by allowing any metaheuristic to be plugged-in. In
some hybrid approaches, the greedy constructive procedure is used as a “smart”
initialisation, after which the algorithm uses metaheuristic search alone [6]. PTO
uses the heuristic throughout the metaheuristic search process.

In the evolutionary computation literature, the genotype-phenotype mapping
is a common research topic. “Smart” mappings seek to build problem-awareness
(e.g. constraint handling) directly into the algorithm, e.g. [7]. PTO differs from
such approaches by using a program trace as the genotype and aims more for
universality and modularity – the algorithm is unchanged for new problems.

2.1 The program trace: a universal solution representation

As already explained, in PTO the program trace is the sequence of outcomes of
(random) decisions made by the generator in producing a particular solution.
The trace can be manipulated: it can be “played back” in the generator to
redo the same sequence of decisions and produce the same solution; it can be
edited and played back to produce a variant solution; two parent traces can
be combined and the result played back to produce a child solution. That is,
the trace is a genotype, the solution is the corresponding phenotype, and the
playback mechanism in the generator is a developmental mapping; editing and
recombination of traces are search operators.

The trace is a “universal representation” that applies to any problem because
it is implicit in the problem definition (in the generator) and can be extracted
automatically by tracing. No other representation can be more general or more
powerful, since the generator can use Turing-complete code. Metaheuristics de-
fined on such a representation can be applied unchanged to any problem, thus
becoming universal optimisers.

4 James McDermott and Alberto Moraglio

The trace representation is a dictionary. Each entry is a key-value pair cor-
responding to one random decision made by a random function call during exe-
cution of the generator. The value is simply the output of the random function
call, for example an integer or float. The key gives the structural position of that
decision in the execution trace, rather like a stack address: it includes the list of
functions, their line numbers, and their loop indices, that precede the random
call in the call stack. This scheme follows the approach of Wingate et al. [8].
Examples in the context of well-known COP problems are given in Section 3.

2.2 Solvers and search operators

The search operators required by metaheuristics such as hill-climbers and evo-
lutionary algorithms are defined on the trace representation. They are defined
in a principled way based on the geometric framework [9].

Initialisation runs the generator and traces its execution. The resulting
trace becomes the newly-initialised genotype, and the output of the generator
becomes its phenotype. Point mutation picks a random entry of the trace and
replaces its value with a value drawn from the same random call. Uniform
crossover aligns parent traces on their names (i.e. dictionary keys). For names
that appear in both parents, the offspring inherits the corresponding entries
from either parent at random, i.e. using a random mask to select. For names
that appear in only one parent, the offspring inherits all of them.

Repair is applied after each alteration of the trace, i.e., after the application
of any variation operator. The repair takes place when running the modified
trace in the generator in playback mode to generate the corresponding solution.
If there is a mis-match, i.e. the current value comes from a random call other
than the one identified by the name, then a new random value is drawn from
the correct random call. If the trace is used up before the generator finishes, the
trace is extended with new random entries as needed. Excess entries in the trace,
not used by the generator, are deleted. Repair is discussed further in Section 4.

Given these operators, metaheuristic solvers such as random search, hill-
climbing, and a GA can be defined. The trace becomes the genotype, and the
generator becomes the genotype-phenotype map.

2.3 The role of the generator

The PTO generator can be seen as a genotype-phenotype mapping, where the
genotype is the program trace and the phenotype is a candidate solution. PTO
search operators work directly on the genotype, but we can also see them as
implicitly working on the phenotype. What is their behaviour at that level?

In the framework of Jones [10], a search problem begins with an object space
– in which the possible solutions are contained. The user is required to provide
a representation space, that is a space in which points can be manipulated by
search operators, and points can be mapped “forward” to the object space.
E.g. in the TSP, the object space is the space of tours, and the representation
space is the space of permutations. The distinction captures the extra meaning

Program Trace Optimization with Constructive Heuristics 5

and structure associated with the object space. Objects in the object space
are human-readable; those in the representation space, machine-manipulable.
In PTO, the generator implicitly defines the object space. The job of the PTO
user is to supply a generator which samples from the object space, rather than
to design a representation space and operators on it. This workflow may suit
domain experts better (but may be less familiar to metaheuristics researchers).
One feature of PTO which is interesting for constrained COP problems such as
JSSP is that it searches the space of feasible solutions. For many such problems
it is not difficult to write a generator giving only feasible solutions, but it is
difficult to design mutation and crossover operators that given feasible parents
are guaranteed to return feasible offspring. PTO’s search operators preserve
feasibility automatically.

The operators applied by PTO on the trace representation correspond, when
viewed at the level of the solution, to operators well-designed for the problem,
in the sense that they take advantage of the meaning and structure of the object
space. For example, if the solution space is of bitstrings, then a natural generator
gives operators equivalent to well-known GA bitstring operators. If a generator
uses nested loops, the implicit representation is a matrix; if one uses recursion
the implied representation is a tree. Thus the same operators on traces result in
meaningful operators for vectors, matrices and trees. This has been demonstrated
in previous work [1], giving confidence that the PTO implicit adaptation works
well. The case of permutations is different and is treated in Section 4. For a
further example, when a greedy, randomised constructive heuristic is used as
the generator, PTO can be expected to behave similarly to mutate-and-repair
methods already well-known in the COP literature [5, 4]. Although the end result
may replicate a known-good method, the benefit for researchers and practitioners
is in the automation: good problem-appropriate operators are derived, requiring
domain knowledge but not algorithmic knowledge on the part of the user.

However, some caveats apply. The operators designed by PTO will be well-
designed for the meaning and structure of the object space only to the extent that
this meaning and structure is present in the user-supplied generator. Two gen-
erators which are semantically identical but syntactically different may induce
different operators. As an example, given a list L from which the generator must
sample an element, i = random.choice(range(len(L))); x = L[i] is seman-
tically equivalent to x = random.choice(L), but the latter expresses problem
structure more directly. It is an assumption of PTO that the user will use direct
formulations such as this. Also, in its implicit design of operators, PTO uses only
the generator, not the objective function. For example, both the n-queens prob-
lem and the TSP can be represented as permutation problems, so a generator
which uniformly samples permutations could be used equally for both. It would
give no advantage on either problem relative to a standard permutation repre-
sentation. A domain expert might see that for the TSP, a more suitable generator
might iteratively build a solution heuristically guided by inter-city distance. This
is a method of building problem knowledge into the representation.

6 James McDermott and Alberto Moraglio

2.4 Open questions

Several important research questions remain open. (1) As described, PTO au-
tomatically designs operators for each problem. We wish to explore how well
PTO performs across COP problems with the minimum input of expertise. (2)
A beneficial side-effect of the PTO unifying view is the ability to compare across
problems. To further this comparison, in the current paper we make use of a
fixed format, borrowed from the core idea of GRASP, for the solution generators
for several different problems. These generators are parameterised by a single
parameter α which controls greediness. Furthermore, in PTO any metaheuristic
can be used in combination with any generator, including combinations which
may be rare in the COP literature. We wish to compare performance and the
obtained traces and solutions, across problems, searchers and α values. (3) PTO
relies for its success on the ability to manipulate the trace data structure. As
we will see, in some COP problems the natural generator leads to a trace in
which, after manipulation, many elements of the trace cannot be re-used, and
so learning is lost. We introduce to PTO a novel mechanism to prevent this and
allow strong re-use of trace elements, and we investigate its effect. We do not
aim in this paper to compare PTO performance with other approaches.

3 GRASP in PTO

To apply PTO to solve COP problems, we need to provide a problem-specific
solution generator. In this paper we use a fixed GRASP-like generator scheme
for all problems, as shown in Algorithm 1. It assumes that problem solutions
are characterised as aggregations of features: for example, in TSP the cities are
features and a solution is a list of cities. At each step, it finds a list of allowed
features (a subset of those not yet chosen); calculates their per-feature cost in
the presence of the in-progress solution; filters them for low cost, forming the
restricted candidate list (RCL); and chooses randomly.

Algorithm 1 GRASP’s greedy randomised construction scheme

1: procedure greedy-randomised-construction()
2: solution ← empty-solution()
3: while not complete(solution) do
4: features ← allowed-features(solution)
5: for f in features do
6: costs[f] ← cost-feature(solution, f)
7: end for
8: RCL ← { f | costs[f] ≤ min(costs) + α(max(costs) - min(costs))}
9: solution ← add-feature(solution, random.choice(RCL)) . Randomness

10: end while
11: return solution
12: end procedure

Program Trace Optimization with Constructive Heuristics 7

Algorithm 2 Procedures for the Ordering problem on n items

1: procedure empty-solution()
2: return empty list
3: end procedure
4: procedure allowed-features(solution)
5: return {i | 1 ≤ i ≤ n ∧ i 6∈ solution }
6: end procedure
7: procedure cost-feature(solution, f)
8: if solution is empty then
9: last-item ← 0

10: else
11: last-item ← last element of solution
12: end if
13: return |f−last-item+1| . equal to 0 for consecutive integers
14: end procedure
15: procedure complete(solution)
16: return solution has length n? . True or False
17: end procedure
18: procedure add-feature(solution, f)
19: return append f to solution
20: end procedure

Algorithm 3 New procedures for TSP on n cities with distance matrix D

1: procedure cost-feature(solution, f)
2: if solution is empty then
3: return 0 . all cities have zero cost as start city
4: else
5: last-item ← last element of solution
6: end if
7: return D[last-item, f] . travel cost from current to next city
8: end procedure

Algorithm 4 Procedures for a Knapsack problem with items 1 . . . n, weights w,
profits p, and weight limit W

1: procedure allowed-features(solution)
2: remaining ← {i | 1 ≤ i ≤ n ∧ i 6∈ solution}
3: current ←

∑
{w[i] | i ∈ solution}

4: return {i | i ∈ remaining ∧ current + w[i] ≤W}
5: end procedure
6: procedure cost-feature(solution, f)
7: return −p[f] . negative: p is a profit but we must return a cost
8: end procedure
9: procedure complete(solution)

10: current ←
∑
{w[i] | i ∈ solution}

11: min-weight-left ← min{w[i] | i 6∈ solution}
12: return solution has length n? or current + min-weight-left > W
13: end procedure

8 James McDermott and Alberto Moraglio

Algorithm 1 is generic, suitable for several COP problems. It remains to
fill in its sub-procedures empty-solution(), complete(), allowed-features(),
cost-feature(), and add-feature() in a problem-specific way. These proce-
dures are shown for several problems in Algorithms 2–4. For TSP, only the
cost-feature procedure is shown as the others are the same as for Ordering.
JSSP procedures are omitted due to lack of space but are specified in our source
code available online.

The only source of randomness in our generators is add-feature() (line 9 of
Algorithm 1). This is the only part of the generator affecting the trace represen-
tation, hence we will have a uniform, sequential trace structure for all problems.
The parameter α controls the level of greediness in the heuristic (α = 0 is fully
greedy, α = 1 is fully random), and has the same interpretation across problems
(and in previous GRASP literature). As we will see, this fixed generator format
also leads to a fixed trace format, aiding our understanding of the algorithm.

3.1 Examples of genotype-phenotype correspondence

In the following, we give two examples to illustrate the information contained in
the trace representation (genotype), and how the same genotype corresponds to
different types of solutions (phenotypes) for different problems.

Let us consider TSP with 10 cities and with α = 0.5. The phenotype [0, 9,

2, 1, 6, 3, 4, 7, 5, 8] (tour of cities) corresponds to the following trace:

Address Type Value
0 random.choice([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 0
1 random.choice([2, 4, 8, 9]) 9
2 random.choice([1, 2, 3, 4, 5]) 2
3 random.choice([1, 3, 4, 5]) 1
4 random.choice([5, 6, 7]) 6
5 random.choice([3, 4, 5]) 3
6 random.choice([4, 5]) 4
7 random.choice([7, 8]) 7
8 random.choice([5]) 5
9 random.choice([8]) 8

The trace has three parts: (i) a runtime address (or name) of each entry in
the trace; (ii) an entry type which consists of the elementary random genera-
tor and the values passed to it as argument; (iii) the value generated by the
random generator. In all examples in this paper, the sequential nature of the
GRASP generator means that the runtime address simplifies to an incrementing
integer. The elementary random generator here is always random.choice as it is
the only source of randomness in the GRASP generator. The argument passed
to it is the RCL available at the moment of the call of the elementary random
generator. This argument at different point in the execution is naturally differ-
ent depending on the features still available at that point (e.g. cities not yet
used in the construction of the solution) as well as features that have passed

Program Trace Optimization with Constructive Heuristics 9

the selection based on the specific heuristic used in the construction (e.g. cities
nearer to the last city of the tour under construction). The last column contains
the actual values sampled by the elementary random generator with the specific
argument. So, e.g., in the second line the value 9 was sampled from the call to
random.choice([2, 4, 8, 9]).

As a second example, let us consider KNAPSACK with 10 items and with
α = 1.0 (fully random generator). This removes the effect of the heuristic, leaving
only the constraining effects of previously selected items and backpack capacity.

The phenotype (knapsack items) [9, 3, 1, 0, 2] gives the following trace:

Address Type Value
0 random.choice([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 9
1 random.choice([0, 1, 2, 3, 4, 5, 6, 7, 8]) 3
2 random.choice([0, 1, 2, 4, 5]) 1
3 random.choice([0, 2]) 0
4 random.choice([2]) 2

The interpretation of the trace is analogous to the TSP case. The TSP and
Knapsack are different problems, but have the same trace representation as they
use the same generator format, and in particular the same source of randomness
in the same program execution context. The same is true of the other problems
considered in this paper.

4 New repair method in PTO

In the following, we explain the current trace repair method in PTO, and why
this needs refining, especially in conjunction with smart generators.

The trace in PTO is annotated with names and types on each entry. The
name of an entry provides its ‘execution address’. The type of an entry is the
elementary generator and the arguments passed to it, which was used to generate
the value in the trace at that entry.

Variation operators acting on the trace are typed, i.e., they change the values
of the trace in conformity to their entry types, e.g., point mutation replaces the
value at an entry in the trace with a new value obtained by re-sampling the asso-
ciated elementary random generator to that entry (with the input arguments).
However, this may still result in invalid traces, which present inconsistencies
when expressed into phenotypes, because of the (implicit) ‘runtime’ dependen-
cies between entries of the trace. For this reason, PTO has a repairing method
that is applied to each trace when modified.

The current repairing method is as follows. When generating the correspond-
ing phenotype of a trace (by playing back the trace in the generator), if we get a
mismatch between the required type from the generator (i.e., the current elemen-
tary random function called in the generator) and the type of the corresponding
entry in the trace (identified by its ‘execution address’), then the entry of the
trace is repaired by replacing its type with the required type, and discarding the

10 James McDermott and Alberto Moraglio

value at that entry, which is then regenerated by sampling it from the new type
(i.e., new random function and its argument) of the entry.

This repairing method correctly amends traces to produce valid phenotypes,
but it may also be quite disruptive as it may require substantial change to a trace
to produce a valid trace (see example below). This effectively would correspond
to a form of macro-mutation (applied in addition to the intended modification
done by variation operator) that may be detrimental for search performance.
Ideally, we would like a repair method that produces a valid phenotype while
making a minimal change to the trace. This is the aim of the new repair method.

Analogously to the old method, the new method repairs the type of an entry
when a mismatch is encountered, however the value at that entry is kept (not
re-sampled) if that value could have been obtained by running the elementary
random function linked with the new entry type. For example, if the type and
value of an entry in the trace is random.choice([1,2,3]) : 2 and the required
type from that generator is random.choice([2,3,4]), the value 2 at that entry
can be “recycled” as it could have been obtained from random.choice([2,3,4]),
and only the type of the entry is amended, giving random.choice([2,3,4]) : 2.

The new repair method is much less disruptive in generators in which ele-
mentary random functions are called with arguments that depend on random
outcomes in the generator at earlier stages. This is the situation that arises when
using GRASP-in-PTO generators (but also in many other cases) in which the
list of items available to be sampled at a point in time (the argument of the
random.choice function) to be added to a solution under construction are those
that have not been selected previously (as random outcomes at previous stages
in the generator).

Using the old repair method, a single change in a value of the trace (point
mutation) triggers a ‘snowball’ effect of type-mismatch in all the subsequent
entries of the trace as the arguments of these types depend on the value that
was changed. So, the overall effect of point mutation together with the old repair
is effectively a macro-mutation, which is clearly an unintended effect of point
mutation.

Using the new repair method, a single change in a value of the trace (point
mutation) has only a limited effect on the subsequent entries of the trace, as the
arguments of these types even if different are still compatible with the values
down the line in the trace. So, in this case the overall effect of the point mutation
together with the new repair is a much less disruptive form of mutation.

The exact effects of the old and new repair methods are dependent on the
specific generator, but in general the new method is guaranteed to be less dis-
ruptive than the old.

In Table 1, we compare the disruption of the old and new repair methods
on an illustrative example, that of iteratively sampling from a list to produce a
permutation. Here, ? indicates that a resampling event is required, while * indi-
cates “recycling” as described above. As we can see, the new repair mechanism
triggers fewer resampling events.

Program Trace Optimization with Constructive Heuristics 11

Table 1: Point mutation (top) and 1-point crossover (bottom).

Trace Mutated trace Old repair New repair

1 [1,2,3,4,5,6,7] : 1 [1,2,3,4,5,6,7] : 1 [1,2,3,4,5,6,7] : 1 [1,2,3,4,5,6,7] : 1
2 [2,3,4,5,6,7] : 2 [2,3,4,5,6,7] : 7 [2,3,4,5,6,7] : 7 [2,3,4,5,6,7] : 7
3 [3,4,5,6,7] : 3 [3,4,5,6,7] : 3 [2,3,4,5,6] : ? [2,3,4,5,6] : 3*
4 [4,5,6,7] : 4 [4,5,6,7] : 4 [2,3,4,5,6] : ? [2,4,5,6] : 4*
5 [5,6,7] : 5 [5,6,7] : 5 [2,3,4,5,6] : ? [2,5,6] : 5*
6 [6,7] : 6 [6,7] : 6 [2,3,4,5,6] : ? [2,6] : 6*
7 [7] : 7 [7] : 7 [2,3,4,5,6] : ? [2] : ?

Phenotype Phenotype Phenotype

(1 2 3 4 5 6 7) (1 7 ? ? ? ? ?) (1 7 3 4 5 6 ?)

Parent trace 1 Parent trace 2 Recombined trace Old repair New repair

1 [1,2,3,4,5,6,7] : 1 [1,2,3,4,5,6,7] : 7 [1,2,3,4,5,6,7] : 1 [1,2,3,4,5,6,7] : 1 [1,2,3,4,5,6,7] : 1
2 [2,3,4,5,6,7] : 2 [1,2,3,4,5,6] : 6 [2,3,4,5,6,7] : 2 [2,3,4,5,6,7] : 2 [2,3,4,5,6,7] : 2
3 [3,4,5,6,7] : 3 [1,2,3,4,5] : 5 [1,2,3,4,5] : 5 [3,4,5,6,7] : ? [3,4,5,6,7] : 5*
4 [4,5,6,7] : 4 [1,2,3,4] : 4 [1,2,3,4] : 4 [3,4,5,6,7] : ? [3,4,6,7] : 4*
5 [5,6,7] : 5 [1,2,3] : 3 [1,2,3] : 3 [3,4,5,6,7] : ? [3,6,7] : 3*
6 [6,7] : 6 [1,2] : 2 [1,2] : 2 [3,4,5,6,7] : ? [6,7] : ?
7 [7] : 7 [1] : 1 [1] : 1 [3,4,5,6,7] : ? [6,7] : ?

Phenotype Phenotype Phenotype Phenotype

(1 2 3 4 5 6 7) (7 6 5 4 3 2 1) (1 2 ? ? ? ? ?) (1 2 5 4 3 ? ?)

5 Experiments and results

The goal of our experiments is to explore the performance of PTO with GRASP-
like generators on a range of COP problems, the effect of the novel trace repair
mechanism, and the effect of the α parameter. Our goal is not to achieve state-
of-the-art results, and in fact we can expect the results to be similar to those
achieved by GRASP itself with the same parameters.

Our code is available in Github3 and a dedicated script for the following
experiments is available. The PTO implementation is written in Python, and has
been adapted for execution in PyPy4 for an approximate 8× speed-up relative
to pure Python (our bottleneck is algorithmic rather than numerical, so PyPy
is more effective than the numerical library Numpy).

5.1 Problems and instances

We have chosen a mix of dataset-based COP problems for realism and synthetic
problem instances (of sizes comparable to real-world datasets) for controlled in-
vestigation of scalability. The TSP, JSSP and Knapsack problem are well-known.

3 https://github.com/program-trace-optimisation/PTO
4 https://pypy.org

12 James McDermott and Alberto Moraglio

We use the simplest, most canonical version in each case, and in particular we use
the 1-dimensional Knapsack. In the Ordering problem of size n, a “toy problem”,
the solution is a permutation of size n and the goal is simply to assemble the
permutation (12 . . . n). The objective function penalises each entry xi in the per-
mutation by |xi−1−xi+1|. Since PTO is phrased as a maximising algorithm, we
define Ordering fitness as the negative of that summed penalty. Similarly, TSP
fitness is defined as negative cost, and JSSP as negative makespan.

For Ordering, we use the instances of sizes 10, 20, 40, 80, 160, 320. For
Knapsack, we generate random instances of the same sizes. For TSP, we have
taken 6 instances from TSPLIB5, named att48, berlin52, eil101, u159, a280,
and rat575 (where the integer gives the size). For JSSP, we have taken the
instances azb5-azb9 [11] and yn4 [12] from the OR Library6 file jobshop1.txt,
with sizes 10 × 10, 10 × 10, 20 × 15, 20 × 15, 20 × 15, 20 × 20. Although these
instances are not large, they are commonly used in modern JSSP research [13].

5.2 Experimental design

We use three solvers plugged-in to PTO: Random Search (RS), Hill-Climbing
(HC), and an Evolutionary Algorithm (EA). In HC a move is accepted if better
than or equal to the current point. In the EA, we use 0.5-truncation selection, a
crossover rate of 1 and a mutation rate of 1 per individual. The budget is set to
20,000 evaluations for all experiments, as in previous work [1]. For the EA, PTO
internally sets the number of generations = population size =

√
20000 = 141.

This is in keeping with the PTO philosophy of minimising the amount of user
configuration required.

The novel trace repair mechanism introduced in Section 4 is compared against
the original PTO trace repair mechanism. We will refer to these as Strong reuse
and Weak reuse respectively. We compare 5 α values, {0.0, 0.1, 0.5, 0.9, 1.0}.

We have a total of (4 problems) × (6 instances per problem) × (3 solvers) ×
(2 re-use approaches) × (5 α values) × (20 repetitions) = 14400 runs.

5.3 Results

Results are shown in Fig. 2. By inspection, we have four main results. (1) Strong
reuse is better than Weak reuse. The original trace repair mechanism, giving
Weak reuse, was too disruptive for the type of generator (constructive heuristic)
used on these problems. (2) Table 2 shows also the mean time taken per run.
As expected, the time taken increases with problem size. There is no important
difference in time taken between the Weak and Strong re-use methods. A further
result is not shown: increasing α tends to increase the time taken, since it gives
a larger RCL. (3) the HC solver is better than either RS or EA. The use of
HC over RS amounts to the difference between using a combined constructive
heuristic/search metaheuristic (as in GRASP and PTO) and using a constructive

5 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
6 http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html

Program Trace Optimization with Constructive Heuristics 13

RS HC EA

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
1e3 ordering-80

alpha
0.0
0.1
0.5
0.9
1.0

0.0 0.1 0.5 0.9 1.0
1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00
1e3 HC : ordering-80

strong_reuse
False
True

RS HC EA

1.6

1.5

1.4

1.3

1.2

1.1

1.0

1e3 yn1

0.0 0.1 0.5 0.9 1.0

1.6

1.5

1.4

1.3

1.2

1.1

1.0

1e3 HC : yn1

RS HC EA

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1e3 knapsack-rnd-160

0.0 0.1 0.5 0.9 1.0

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1e3 HC : knapsack-rnd-160

RS HC EA

3.0

2.5

2.0

1.5

1.0

0.5

1e4 a280

0.0 0.1 0.5 0.9 1.0

3.0

2.5

2.0

1.5

1.0

0.5

1e4 HC : a280

Fig. 2: Results for one instance of each problem type. Top to bottom: Ordering, JSSP,
Knapsack, TSP. Left: strong re-use only; analysis by solver and α. Right: HC only;
analysis by α and strong versus weak re-use. For all problems, higher values are better
(closer to zero, for negative values). Horizontal axes (fitness) scaled by 103 or 104 as
shown.

14 James McDermott and Alberto Moraglio

heuristic alone (with equivalent effort). The advantage is clear-cut. However, an
EA does not improve performance further. (4) The other main result is that on
the Knapsack and JSSP problems, an intermediate level of greediness (α = 0.5)
tends to outperform highly greedy construction (small α) or highly randomised
construction (large α). For the Ordering problem, a purely greedy approach
(α = 0.0) solves the problem perfectly. This is the expected result since Ordering
is unimodal. It is more surprising that a greedy approach does well on TSP.

Results 1-3 are clear-cut and quite consistent across problems and instances.
Result 4 is more problem-dependent, as expected. Perhaps the best setup for
difficult problems is the HC solver with α = 0.5. For this setup, we give results
across all problems in Table 2.

Table 2: Problem (instance), mean objective value and standard deviation, and elapsed
time (in seconds), for weak and strong re-use methods. Results are shown for the HC
metaheuristic and α = 0.5 only. For all problems, a higher objective value is better
(closer to zero, for negative values), and a lower time.

Weak reuse Strong reuse
Inst. Obj. sd T(s) Obj. sd T(s)

Ordering

10 0 0 5 0 0 4
20 -5 6 10 0 0 8
40 -175 26 22 -18 8 19
80 -1018 110 63 -238 36 53
160 -5138 405 190 -1722 178 203
320 -24088 1444 719 -9020 670 736

JSSP

abz5 -1277 21 77 -1270 19 81
abz6 -1008 19 78 -1000 19 77
abz7 -774 12 322 -783 15 325
abz8 -795 19 324 -793 18 328
abz9 -817 13 323 -817 11 317
yn1 -1046 20 487 -1043 20 469

Weak reuse Strong reuse
Inst. Obj. sd T(s) Obj. sd T(s)

Knapsack

10 331 0 3 331 0 3
20 460 0 3 460 0 4
40 677 4 6 680 0 6
80 839 45 9 894 0 11
160 1096 81 15 1317 0 23
320 1385 146 30 2015 7 59

TSP

att48 -64720 3891 28 -46665 2380 24
berlin52 -15564 790 32 -11063 477 27
eil101 -1861 56 88 -1263 79 78
u159 -206070 4381 186 -136750 7680 167
a280 -16806 464 546 -12612 610 506
rat575 -61021 1070 2571 -49457 1187 2448

5.4 Discussion

We have seen that performance of hill-climbing is better than the evolutionary
algorithm, overall. Two main hypotheses can be suggested to explain this result.

(1) Perhaps our crossover operator is disruptive, i.e. despite the improved
repair mechanism, it fails to retain enough good information from the parents
and recombine it in a way that it remains “good”. The PTO crossover operator
is a uniform crossover on the dictionary of trace entries. This choice was made
because a one-point crossover on trace entries is difficult to define for the general
case. However, there are some possibilities to do so, or to do so for the special
case of GRASP-like generators. These will be considered in future work.

Program Trace Optimization with Constructive Heuristics 15

(2) When hill-climbing does well, it suggests that the landscape is somewhat
unimodal. Thus, we may ask: what is the effect on the fitness landscape of us-
ing “smart” constructive heuristics as PTO generators? Our speculative answer
involves seeing constructive heuristics as epigenetic, developmental processes. In
epigenetics, the development of an individual from genotype to phenotype is seen
as a process, not an instantaneous step, and it has its own type of optimisation
behaviour. The metaphor of rolling downhill – already familiar in the fitness
landscape – applies also during development of a single individual. Waddington
argued [14] that multiple starting points (genomes) can lead, in some epigenetic
landscapes, to a similar end-point (phenotype). This occurs if there are “valleys”
or “basins of attraction” in the epigenetic landscape. It is given the name canali-
sation. It gives a form of robustness – a good phenotype can be achieved despite
noise in the genotype and environment. We can see constructive heuristics as
developmental processes with a canalisation effect. Suppose we have a genotype
which gives the optimum phenotype to a TSP, and some noise is added to the
genotype, altering one of the edges which is constructed early in the develop-
ment process. The constructive heuristic will make subsequent choices which are
heuristically-guided good ones, and may replicate the effects of those made in
the previous individual, leading eventually to a phenotype which shares many of
the original phenotype’s properties. The improved repair mechanism introduced
in this paper accentuates this effect. This smooths the fitness landscape, tending
to help hill-climbing to perform well. This allows hill-climbing to perform well.
In this context, the highly exploitative hill-climbing approach may outperform
the exploration-exploitation trade-off chosen by the evolutionary algorithm.

6 Conclusions and future work

In this paper we have explored the use of “smart”, GRASP-like, constructive
heuristics as generators in the PTO framework, to solve combinatorial optimi-
sation problems. They are a natural fit, and can be seen as a generalisation of
previous work, or in a sense as a replication but with automation. We have intro-
duced an improved PTO trace repair mechanism which runs after each genetic
operation, and which gives stronger re-use of genetic material relative to the
original. After extensive experimentation, we then have four main results:

1. The novel strong re-use method beats weak re-use;
2. Strong re-use does not incur a penalty in computation time;
3. HC beats RS and EA;
4. Medium levels of greediness in the heuristic are often best for real problems.

There are then many lines of research open for the future. Although for
convenience in this paper we have introduced a GRASP-like common format for
PTO generators for COP problems, generators going beyond this format are also
possible. In fact, the freedom of the user to write or supply a generator in any
format is a claimed strength of PTO, and in future work novel generators which
do not emulate GRASP in this way will be introduced.

16 James McDermott and Alberto Moraglio

If we see the GRASP restricted candidates list as a stepped-uniform dis-
tribution on the remaining items ordered by their costs, then we can consider
generalising by plugging in a different distribution, such as the triangular dis-
tribution suggested by Juan et al. [4]. There is also the possibility of using α to
give a threshold on rank of cost as opposed to a threshold on cost.

The current PTO crossover is a uniform crossover, but a one-point crossover
can also be defined, either for the special case of GRASP or for the general case.

Acknowledgements

Thanks to Carlos Fonseca for discussion and to anonymous reviewers. This work
was carried out while JMcD was at University College Dublin.

References

1. Moraglio, A., McDermott, J.: Program trace optimization. In: International Con-
ference on Parallel Problem Solving from Nature. pp. 334–346. Springer (2018)

2. Feo, T.A., Resende, M.G.: Greedy randomized adaptive search procedures. Journal
of Global Optimization 6(2), 109–133 (1995)

3. McDermott, J., Carroll, P.: Program optimisation with dependency injection. In:
Krawiec, K., et al. (eds.) EuroGP. pp. 133–144. Springer (2013)

4. Juan, A.A., Faulin, J., Ferrer, A., Lourenço, H.R., Barrios, B.: MIRHA: multi-
start biased randomization of heuristics with adaptive local search for solving non-
smooth routing problems. TOP 21(1), 109–132 (2013)

5. de Armas, J., Keenan, P., Juan, A.A., McGarraghy, S.: Solving large-scale time ca-
pacitated arc routing problems: from real-time heuristics to metaheuristics. Annals
of Operations Research pp. 1–28 (2018)

6. Ahuja, R.K., Orlin, J.B., Tiwari, A.: A greedy genetic algorithm for the quadratic
assignment problem. Computers & Operations Research 27(10), 917–934 (2000)

7. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization.
ORSA journal on computing 6(2), 154–160 (1994)

8. Wingate, D., Stuhlmueller, A., Goodman, N.: Lightweight implementations of
probabilistic programming languages via transformational compilation. In: Gor-
don, G., et al. (eds.) AISTATS. PMLR, vol. 15, pp. 770–778 (11–13 Apr 2011)

9. Moraglio, A.: Towards a geometric unification of evolutionary algorithms. Ph.D.
thesis, University of Essex (2008)

10. Jones, T.: Evolutionary Algorithms, Fitness Landscapes and Search. Ph.D. thesis,
University of New Mexico, Albuquerque (1995)

11. J. Adams, E.B., Zawack, D.: The shifting bottleneck procedure for job shop
scheduling. Management Science 34(391-401) (1988)

12. Yamada, T., Nakano, R.: A genetic algorithm applicable to large-scale job-shop in-
stances. In: Manner, R., Manderick, B. (eds.) Parallel problem solving from nature
2. pp. 281–290. North-Holland, Amsterdam (1992)

13. Bierwirth, C., Kuhpfahl, J.: Extended GRASP for the job shop scheduling problem
with total weighted tardiness objective. European Journal of Operational Research
261(3), 835–848 (2017)

14. Waddington, C.H.: Canalization of development and the inheritance of acquired
characters. Nature 150(3811), 563 (1942)

