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Abstract—We present a rigorous solution of the scattering of
plane waves by a truncated planar array of dipoles which is
infinite and periodic in one direction and semi-infinite in the
orthogonal direction, thus presenting an edge truncation. By
applying the Wiener-Hopf technique to the Z-transformed system
of equations derived from the electric field integral equation, the
contributions to the current on the dipoles due to the scattering
by the edge of the array and the excitation of surface waves are
obtained rigorously.

I. INTRODUCTION

The scattering by finite arrays has been subject of great
interest to the engineering community since such geometry
includes the coupling between free space radiation and surface
waves due to the edge diffraction. This coupling cannot be
studied using the usual local periodicity assumption, widely
applied in the design of adiabatically-modified periodic ar-
rangements. The presence of these surface waves has been
shown to have great importance near the onset of diffraction
orders, affecting elements far from the edge truncation and
leading to standing-wave like patterns over the array [1].
Although the analysis of finite arrays has been approached via
a truncated Floquet-wave version of the Method of Moments
[2], the rigorous study of a single truncation in the present
paper provides us with further insight in the excitation of those
surface waves.
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Fig. 1. (a) Top view of the semi-infinite array of flat dipoles, each of length l
and width w, placed in a rectangular lattice with spacings dx and dy along the
x and y directions respectively. (b) Perspective view of the array truncation
with the incident plane wave. The array is infinitely long along y.

II. INTEGRAL EQUATION FORMULATION

Let us consider the problem of an arbitrary polarized wave
impinging on the semi-infinite planar array of dipoles whose

geometry is shown in Fig. 1. The incident electric field on
the plane of the array is written as Ei = Ei

0e
−j(kx0x+ky0y)

where kx0 = k0 sin θ cosφ and ky0 = k0 sin θ sinφ following
the notation in [3]. The dipoles are assumed to be perfectly
conducting and flat with negligible thickness. In this case, the
tangential electric field on their surface must vanish, i.e.,

ẑ×
(
Ei(r) +Esc(r)

)
= 0. (1)

The integral equation is obtained by representing the tan-
gential component of the electric field scattered by the array
in terms of the dyadic Green’s function as

Esc
t (x, y) =

∫ ∞
−∞

∫ ∞
−∞

GJ(x−x′, y−y′)·jsc(x′, y′)dx′dy′ (2)

By using the periodicity of the array along the direction
of the truncation (i.e.,y) the problem is reduced to the study
of a semi-infinite chain by introducing the periodic Green’s
function of a linear array of dipoles. Then, by expanding the
unknown current flow on the surface on the dipoles in terms of
singular basis functions [4] (b(r) such that jsc(r) ≈ inb(r−
rcn) at the n-th unit cell with its center at rcn ) one can derive
a linear system of equations for the unknown current weights
given by

∞∑
n=0

kn−min = vm (3)

where m,n = 0, 1, ...,∞ represent the dipole on the m-th and
n-th unit cell of the linear array respectively and where

kn−m =

∫
ηm

∫
ηn

b∗m(r)Gper
J (r− r′) · bn(r′) dr dr′ (4)

with ηm representing the surface of the dipole on the m-th
unit cell along the linear array off dipoles and where

vm = −
∫
ηm

b∗m(r) ·Ei dr = V e−jkx0md (5)

As shown in [5], this system of an infinite number of
equations can be solved without truncating it through the use
of the Z-transform of the convolution shown in (3), which is
given by



K(z)I+(z) = V
O−(z)

O−(zγ)

z

z − zγ
(6)

where K(z) is obtained by using the conformal mapping z =
e−jk

′
xdx and the Poisson formula

∑∞
n=−∞ e−j(kx−k

′
x)ndx =

2π
dx

∑∞
p=−∞ δ(kx − k′x −

2πp
dx ), in terms of the Fourier trans-

forms of the basis functions B(kx, ky), as

K(z) = − ζ

2dxk0

∞∑
p=−∞

∞∑
q=−∞

B

(
k′x +

2πp

d
, kyq

)
(7)

B∗
(
k′∗x +

2πp

d
, kyq

)
·

k20 − k2yq√
k20 −

(
k′x +

2πp
d

)2 − k2yq
∣∣∣∣
k′x=

j
dx

lnz
.

If one is able to factorize K(z) = K+(z)K−(z) such that
K+(z) (K−(z)) is analytic for |z| > 1 (|z| ≤ 1), then by
Liouville’s theorem, the unknown Z-transform of the discrete
current magnitudes is evaluated as

I+(z) = I(z) =
V

K+(z)K−(zγ)

z

z − zγ
. (8)

The value of in is then obtained through the inverse Z-
transform as

in =
V

2πj

1

K−(zγ)

∮
C

1

K+(z)

zn

z − zγ
dz, (9)

where C corresponds to an integration path along the unit
circle. From Figure 2 and equation (9), one can see that
the current on each dipole is represented as the sum of the
three contributions arising from the different poles and branch
cuts found inside the unit circle. The additional branch cuts
with respect to the case shown in [5] are found close to the
origin for frequencies below the first diffraction onset and their
contribution is negligible. We also find an additional pole zsw
due to the zero of (7), which can be readily located using an
iterative complex-zero search algorithm.
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Fig. 2. Diagram of the position of the poles and branch cuts inside the
integration path of (9).

III. RESULTS

The different contributions arising from the branch cut and
pole introduced inside the unit circle by the presence of
1/K+(z) in addition to the pole introduced by the impressed
field (depicted in Fig. 2) have been integrated numerically for

the case of a TE-polarized plane wave with unit electric field
amplitude with θ = 20o, φ = 0, dx = 0.4λ, dy = 0.5λ,
l = 0.4λ and w = 0.01λ leading to the results in Fig. 3.
In contrast to the case shown in [5], the presence of the
surface wave excited by the truncation introduces long-range
effects on the behavior of the array which do not decrease
with the distance from the array truncation, when losses can
be neglected.
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Fig. 3. Amplitude of the different contributions to the total current in arising
from the contour integrals shown in Fig.2 comprising the edge-diffracted
field (idn), excited surface wave (iswn ) and the solution for the non-truncated
(i.e., infinitely extended in both directions) array (i∞n ), which the various
components are normalized to

IV. CONCLUSION

A rigorous solution of the scattering by a two-dimensional
periodic semi-infinite array of dipoles has been presented,
using the Wiener-Hopf approach applied to the Z-transformed
array currents and voltages pertaining to the infinite system
of equations. This lead to the exact decomposition of the
induced currents on the array in terms of (i) currents of
the infinitely extended planar array plus (ii) edge diffracted
currents, decaying algebraically away from the edge, and (iii)
edge-excited surface waves, if supported by the array.
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