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Summary 

Peroxisomes are multifunctional, dynamic, membrane-bound organelles with important 

functions in cellular lipid metabolism, rendering them essential for human health and 

development. Important roles for peroxisomes in signalling and the fine-tuning of cellular 

processes are emerging, which integrate them in a complex network of interacting cellular 

compartments. Like many other organelles, peroxisomes communicate through membrane 

contact sites. For example, peroxisomal growth, positioning and lipid metabolism involves 

contacts with the endoplasmic reticulum (ER). Here we discuss the most recent findings on 

peroxisome-organelle interactions including peroxisome-ER interplay at membrane contacts 

sites, and functional interplay with mitochondria, lysosomes and lipid droplets in mammalian 

cells. We address tether proteins, metabolic cooperation and the impact of peroxisome 

interactions on human health and disease.  
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Synopsis 

Peroxisome-organelle interplay in health and disease 
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Introduction 

The presence of membrane-bound organelles is a hallmark of eukaryotic cells. Those distinct 

compartments create optimised micro-environments to promote a myriad of metabolic 

reactions required to sustain life. For the entire cell to function as a unit, a coordinated 

interplay between specialized organelles must occur. Studies in the last decade have revealed 

that this is often mediated through inter-organellar membrane contacts, whereby two (or 

more) organelles come into close apposition (Prinz 2014; Simmen and Tagaya 2017) allowing 

the exchange of metabolites, lipids and proteins. Studies in mammalian and yeast cells have 

shown that membrane contacts are much more frequent than previously assumed and not 

limited to the endoplasmic reticulum (ER) (Valm et al 2017; Shai et al 2018), which changes 

the historical view of organelle contacts and communication. Inter-organellar connections 

depend on interacting proteins which act as tethers to bridge the respective organelle 

membranes. Although closely opposed and tethered, membranes at contact sites are not fused, 

and usually spaced at 10 to 30 nm, so that ribosomes are excluded from the ER surface at ER 

contact sites (Prinz 2014; Eisenberg-Bord et al 2016). Recent studies in the rapidly growing 

field of membrane contacts and organelle interaction have identified molecules associated 

with several membrane contact sites (MCSs) and revealed their functions, including lipid and 

ion transport between organelles, as well as organelle positioning and division (reviewed in 

Schrader et al 2015a; Shai, Schuldiner and Zalckvar 2016; Schuldiner and Bohnert 2017; 

Elbaz-Alon 2017; Saheki and De Camilli 2017; Wu, Carvalho and Voeltz 2018; Cohen et al 

2018). It is becoming evident that MCSs are central to normal cell physiology. Moreover, 

several MCS proteins have been linked to various diseases (Wu, Carvalho and Voeltz 2018; 

Ferdinandusse et al 2017; Taylor et al 2016; Chang et al 2019). 

Peroxisomes are dynamic, multifunctional organelles with an oxidative type of metabolism. 

They represent key metabolic organelles with important cooperative roles in the metabolism 

of cellular lipids and reactive oxygen species (ROS), which renders them essential for human 

health and development (Wanders 2013). Due to their central metabolic role, peroxisomes 

have to interact and to cooperate with many organelles involved in cellular lipid metabolism 

such as the ER, mitochondria, lipid droplets, lysosomes and phagosomes (Schrader et al 

2015a; Wanders et al 2018; Di Cara et al 2017) (Figs. 1, 2). There is also functional interplay 

between peroxisomes and the nucleus (Schrader et al 2013, Schrader et al 2016) which may 

also involve signalling via H2O2 (Mullineaux et al 2018). Mammalian peroxisomes contribute 

to the breakdown and detoxification of fatty acids (via fatty acid α- and β-oxidation), the 

synthesis of ether-phospholipids (e.g. myelin sheath lipids), bile acids and docosahexaenoic 
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acid, glyoxylate metabolism, amino acid catabolism, polyamine oxidation, and ROS/RNS 

metabolism. Effective degradation of fatty acids by peroxisomal β-oxidation, for example, 

requires a highly interconnected metabolic network involving mitochondria and the ER as 

discussed in detail in section 1.3 (Wanders et al 2018). Effective bile acid synthesis requires 

metabolic cooperation between the cytosol, mitochondria, ER and peroxisomes (Wanders et al 

2018), whereas effective ether-phospholipid synthesis or the synthesis of docosahexaenoic 

acid depends on the metabolic interplay of peroxisomes and the ER (Wanders et al 2018) (see 

section 1.4). In addition to their metabolic functions, peroxisomes represent important 

intracellular signalling platforms modulating physiological and pathological processes such as 

innate immunity, inflammation, and cell fate decision (Wang et al 2014; Di Cara et al 2017; 

Asare et al 2017).  

For decades, it has been observed in electron microscopy studies that peroxisomes are often 

found juxtaposed to other organelles, in particular the ER, mitochondria and lipid droplets 

(Fig. 1). These observations provided the first indication that peroxisomes may form MCSs 

with neighbouring organelles. In recent years, several peroxisome-organelle contact sites have 

been reported in yeast and mammals (reviewed in Schrader et al 2015a; Shai, Schuldiner and 

Zalckvar 2016; Castro et al 2018; Islinger et al 2018) (Fig. 2). In this review we will discuss 

recent exciting findings on molecules involved in peroxisome-organelle contact sites, their 

functions, impact on cell physiology, and – as far as revealed – their link to disease. We 

particularly focus on peroxisome-organelle interactions in mammalian/human cells, but where 

appropriate also refer to recent discoveries in yeast. 

 

1. Peroxisome – ER contacts and functional interplay 

Amongst the peroxisome-organelle interactions, the most remarkable one is the intricate 

interplay between peroxisomes and the ER in mammalian cells. In ultrastructural studies, 

peroxisomes have often been observed in close proximity to the ER, frequently even tightly 

wrapped in ER cisternae (Novikoff and Shin 1964) (Fig. 1). Short electron dense cross-

bridges between isolated peroxisomes and associated ER-segments were also reported (Zaar 

et al 1987). These connections remain intact even after subcellular fractionation and gradient 

centrifugation suggesting an intimate, physical interaction. Despite the decades that have 

passed since peroxisome-ER associations were first observed, the identification of the 

molecular machinery involved and its physiological function has only recently begun (Fig. 2).  

A machine learning prediction approach combined with mutational analyses led to the 

discovery of new tail-anchored adaptor proteins at peroxisomal membranes (and other 
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subcellular organelles) (Costello et al 2017a; Costello et al 2017c). These findings then 

revealed the molecular machinery of the first peroxisome–ER MCSs in mammalian cells: 

Acyl-coenzyme A (CoA)-binding domain protein 5 (ACBD5), a tail-anchored peroxisomal 

membrane protein (Wiese et al 2007; Islinger et al 2007; Nazarko et al 2014), which mediates 

peroxisome-ER MCSs by binding through its FFAT-like motif [two phenylalanines (FF) in an 

acidic tract] to VAP proteins [vesicle-associated membrane protein (VAMP) – associated 

proteins] (VAPA, VAPB) at the ER (Costello et al 2017b; Hua et al 2017) (Figs. 2, 3). ACBD 

proteins comprise a large multigene family of intracellular lipid-binding proteins, which are 

found in all eukaryotes and are ubiquitously expressed in mammalian tissues. ACBDs are 

involved in cellular signalling and lipid metabolic pathways, thus controlling energy 

regulation (Neess et al 2015). VAPs are highly conserved tail-anchored ER membrane 

proteins (VAPA and VAPB in animals, Scs2 and Scs22 in yeast). They function as ER-

adaptor proteins involved in inter-organellar lipid exchange, MCS formation, and membrane 

trafficking (Lev et al 2008). VAPs contain a major sperm protein (MSP) domain that interacts 

with the FFAT motif of protein partners such as ACBD5 located on the opposing membrane 

(Loewen et al 2003) (Fig. 3). VAPs are involved in ER-MCS formation with multiple 

organelles; for example, VAP-PTPIP51 interactions bridge contacts between ER and 

mitochondria (Stoica et al 2014). 

Quantitative electron microscopy revealed that co-expression of ACBD5 and VAPB increased 

the number and surface of peroxisome-ER MCSs, supporting a function of this interaction in 

peroxisome-ER tethering (Costello et al 2017b). An ACBD5 mutant with an altered FFAT 

motif was, however, unable to increase peroxisome-ER MCSs when co-expressed with 

VAPB. In line with this, depletion of either ACBD5 or VAPA/VAPB reduced peroxisome-ER 

MCSs (Costello et al 2017b; Hua et al 2017). Overall, ACBD5-VAPB mediated peroxisome-

ER contacts fulfil the following properties, which have been defined to aid in the 

identification of bona fide MCSs (Prinz 2014; Eisenberg-Bord et al 2016): (1) the tethered 

organelle membranes must be in close apposition, typically within 30 nm, (2) the membranes 

do not fuse, (3) specific proteins (and/or lipids) must be enriched at the MCS. With respect to 

(4), ―MCS formation must affect the function or composition of at least one of the tethered 

organelles‖, several functional alterations have been revealed, which will be addressed in the 

following (see sections 1.1-1.4). 

 

1.1 Peroxisome-ER MCSs and their role in peroxisomal membrane expansion and 

phospholipid transfer 
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1.1.1 The lipid composition of peroxisomes 

While there is a variety of publications aimed at defining the peroxisomal matrix and 

membrane proteome (Schrader et al 2012), there is an evident scarcity of studies examining 

the lipid composition of peroxisomal membranes. Two older studies determined the 

phospholipid composition of peroxisome membranes from S. cerevisiae and rat liver (Zinser 

et al 1991; Hardeman et al 1990). Both membranes exhibit similar phospholipid compositions 

of approximately 50% phosphatidylcholine (PC), 25% phosphatidylethanolamine (PE), 5% 

phosphatidylserine (PS), with an exception for phosphatidylinositides (PI), which appear to be 

significantly higher in the yeast (16% compared to 5%). In this regard peroxisome membranes 

have a typical phospholipid composition of intracellular membranes (see Table 1), while 

plasma membranes are richer in PS (25%) but less abundant in PE (16%) and PC (36%) 

(values for HEK cells) (Dawaliby et al 2016). Plasma membranes are also highly enriched in 

cholesterol comprising up to 65%-80% of the total cellular content, while minute amounts of 

0.5%-1% are found in the ER membrane (Liscum and Munn 1999) and an intermediate 

proportion of 5% has been estimated for peroxisomes (Chu et al 2015). PIs represent a 

heterogeneous group of important cellular signalling molecules which are distinguished by the 

phosphorylation state of their inositol head group and show a compartment-specific 

distribution. The phosphorylation state determines their function, modulates their interaction 

partners and thus the signalling pathways they participate in. Peroxisomes have been found 

mainly enriched in phosphatidylinositol 4-phosphate (PI(4)P), PI(4,5)P2 and PI(3,5)P2 bearing 

only low amounts of PI(3)P (Jeynov et al 2006). With regard to the differences in lipid 

membrane composition between individual organelles and the plasma membrane it is 

tempting to speculate on corresponding differences in membrane physiology. Generally the 

overt low cholesterol and sphingolipid concentrations in most intracellular membranes render 

those less densely packed and rigid than the plasma membrane, which may reflect their 

reduced need to resist mechanical stress (van Meer et al. 2008). PE is considered to be 

required for membrane bending and curvature (Marsh 2007). Thus, the relatively high 

concentrations in the membranes of peroxisomes and mitochondria may mirror a highly 

dynamic nature of the membranes required for rapid fission or in case of mitochondria as well 

fusion events. However, as intramolecular composition in fatty acids (grade of saturation, 

chain length), asymmetrical lipid distribution between outer and inner leaflets and influence 

of membrane proteins are further important determinants of biomembrane properties (van 
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Meer et al. 2008), the current lack of detailed information on the peroxisomal membrane 

composition precludes any reliable predictions on architecture and function.  

 

1.1.2 Peroxisomal growth and division 

Peroxisomes are dynamic organelles which can multiply by growth and division of pre-

existing organelles in a multistep process involving membrane elongation, constriction and 

final membrane scission (reviewed in Islinger et al 2012a; Islinger et al 2012b, Schrader et al 

2016). The peroxisomal membrane protein PEX11β is a key factor in the regulation of 

peroxisome number in mammals, as it is associated with all steps of peroxisomal growth and 

division (Schrader et al 1998; Koch et al 2003; Delille et al 2010; Williams et al 2015). 

PEX11β mediates membrane growth by remodelling, deforming and elongating the 

peroxisomal membrane prior to fission. This involves PEX11β oligomerisation and 

interaction with membrane lipids through its N-terminal amphipathic helixes (Opaliński et al 

2011; Yoshida et al 2015; Su et al 2018). Besides acting as a membrane-shaping protein, 

PEX11β is also involved in the assembly of the division machinery by interacting with the C-

tail-anchored membrane adaptors FIS1 (fission protein 1) and MFF (mitochondrial fission 

factor), which recruit the dynamin-related fission GTPase DRP1 (DNM1L) to the 

peroxisomal membrane (reviewed in Schrader et al 2016). Finally, PEX11β functions as a 

GTPase-activating protein (GAP) for DRP1 during peroxisomal fission (Williams et al 2015). 

An important discovery in the field was that peroxisomes share several proteins of their 

division machinery (e.g. FIS1, MFF, DRP1) with mitochondria (see section 2.). Recently, 

dynamin-based ring motive-force organizer 1 (DYNAMO1), a 17-kDa nucleoside 

diphosphate kinase-like protein, was identified as a component of the division machinery of 

peroxisomes and mitochondria using the unicellular red alga C. merolae (Imoto et al 2018). 

DYNAMO1 converts ATP to GTP, and is suggested to fuel membrane fission by local GTP 

generation. DRP1 or MFF deficiency in patients results in highly elongated peroxisomes (and 

mitochondria), which are unable to divide (Waterham et al 2007; Shamseldin et al 2012; Koch 

et al 2016).  

Elongation and growth of the peroxisomal membrane requires lipids, which have to be 

provided by the ER as peroxisomes lack an appropriate enzyme inventory for autonomous 

synthesis (Bishop and Bell 1988; Zinser et al 1991). Indeed, a direct, non-vesicular 

phospholipid transfer between the ER and peroxisomes has been verified using an in vitro 

system based on S. cerevisiae mutants (Raychaudhuri and Prinz 2008). The authors showed 

that purified peroxisomes receive PS from purified microsomes without requiring ATP or the 
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addition of cytosol. Unlike mitochondria, peroxisomes do not fuse (Motley and Hettema, 

2007; Bonekamp et al 2012). Therefore, the massive elongation of peroxisomes after loss of 

DRP1 or MFF implies a constant transfer of phospholipids from the ER to peroxisomes. In 

line with this, depletion of ACBD5 or VAPs to disrupt peroxisome-ER MCSs in patient 

fibroblasts deficient in MFF reduced membrane expansion, resulting in the formation of 

shorter peroxisomal membrane tubules and spherical organelles (Costello et al 2017b). 

Similar results were obtained in DRP1-depleted HeLa cells after silencing of ACBD5 or 

VAPs (Hua et al 2017). The elongated mitochondrial morphology was unaltered, 

demonstrating that this effect was specific for peroxisomes. Interestingly, expression of an 

artificial peroxisome–ER tether restored membrane expansion after ACBD5 depletion in 

MFF-deficient fibroblasts. This implies that ACBD5 is likely not actively involved in the 

transfer of membrane lipids between both organelles (Costello et al 2017b). However, these 

findings strongly support a role of ER-peroxisome MCSs in phospholipid transfer for 

peroxisome membrane expansion and biogenesis.  

 

1.1.3 Lipid transport systems 

How lipids are transferred between the ER and peroxisomes is an exciting and challenging 

open question which needs to be addressed in future studies. As outlined above, a dominant 

role for ER-derived pre-peroxisomal vesicles in lipid transport to peroxisomes may be 

unlikely, in particular as approx. 70–80% of peroxisomes in mammalian cells associate with 

the ER allowing direct lipid transfer. For other MCSs, several families of lipid transfer 

proteins have been identified, which are known to facilitate glycerophospholipid, sphingolipid 

or sterol transport between membranes – the oxysterol binding proteins (OSBP) and OSBP-

related proteins (OSRP), the synaptotagmin-like mitochondrial-lipid-binding domain proteins 

(SMP), the phosphoinositol transfer proteins (PTIP) and the START domain-related proteins 

(STARD) (Cockcroft and Raghu 2018; Chiapparino et al 2016). Mechanistically, these 

proteins can facilitate lipid transfer via two different modes; either anchored proteins bridge 

donor and acceptor membranes and possess a flexible lipid binding domain for the transfer, or 

soluble proteins act as shuttle between both membranes. Proteins of the former type can be 

directly inserted into an organelle membrane by hydrophobic transmembrane helices or 

specifically interact with integral membrane proteins or lipid species at the organelle surface. 

One example is the OSBP protein, which is anchored to the ER membrane via interaction 

with VAPA and to the trans-Golgi network (TGN) through interaction with ADP-ribosylation 

factor 1 (ARF1) and PI(4)P (Mesmin et al 2013); another example are the extended-
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synaptotagmins (E-Syt 1-3), which possess a membrane –spanning domain to anchor at the 

ER and a C-terminal C2 domain capable of binding PIPs at the plasma membrane (Hanada 

2018). Proteins of the latter type are the phosphatidylinositol transfer proteins PITPα and β, 

which possess a lipid binding pocket to shield the hydrophobic cargo PI or PC while possibly 

shuttling from the donor to the acceptor membranes through the cytosol (Cockcroft and 

Garner 2011). No peroxisome-specific lipid transfer proteins of either type have been 

identified yet. However, it is likely that distinct members of these protein families reside on 

peroxisomes awaiting identification. 

 

1.2 Peroxisome-ER MCSs and their role in peroxisome mobility and distribution 

Interestingly, the ACBD5-VAP tether also controls peroxisome movement and positioning. 

Automated detection and live tracking of peroxisomes in human skin fibroblasts after 

depletion of ACBD5 using a customized in-house algorithm revealed an increase in the 

number of moving peroxisomes as well as in peroxisome displacements (Costello et al 2017b; 

Metz et al 2017). A significant increase in both peroxisome mobility and diffusion coefficient 

was also observed in COS7 cells after depletion of both VAPs or ACBD5 alone (Hua et al 

2017). These findings indicate that MCSs can modulate organelle mobility, positioning and 

distribution and thus the spatio-temporal organisation of the cell. Although we do not know 

much about how peroxisomal function depends on the spatial distribution of peroxisomes, a 

link between peroxisome positioning and cell fate decisions in skin epithelia has recently been 

revealed (Asare et al 2017). It is therefore possible that MCSs can affect cellular homeostasis 

by controlling organelle positioning. 

In cultured mammalian cells, peroxisomes are often uniformly distributed, and only about 

10% of the peroxisome population is moving in a microtubule-dependent manner at any one 

time (Schrader et al 2003; Lin et al 2016). Ultrastructural analyses of cultured mammalian 

cells to quantify peroxisome–ER associations using unbiased spatial stereology revealed that 

70-80% of the peroxisomes tightly associate with the ER under standard conditions (Costello 

et al 2017b). A prominent peroxisome-ER interaction likely restricts peroxisome mobility and 

would explain why only a small population of peroxisomes has been observed to move in 

mammalian cells.  

Recently, a role for the mitochondrial Rho GTPase MIRO1 in the recruitment of microtubule-

dependent motor proteins to peroxisomes was revealed (Castro et al 2018a; Castro et al 

2018b; Okumoto et al 2018). MIRO1, a tail-anchored membrane protein initially described as 

a mitochondrial membrane adaptor for kinesin, also targets peroxisomes and contributes to 
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peroxisome distribution and microtubule-dependent motility (Costello et al 2017a; Costello et 

al 2017b; Costello et al 2017c). We recently generated a MIRO1 protein which is exclusively 

targeted to peroxisomes (MIRO1-Pex). As MIRO1-Pex recruits the motor protein kinesin to 

peroxisomes, it can be used as a tool to exert (kinesin-driven, microtubule plus end directed) 

pulling forces at peroxisomes (Castro et al 2018a; Castro et al 2018b). When expressed in 

COS7 cells, peroxisomes re-distribute to the cell periphery (where microtubule plus ends are 

located). Surprisingly, MIRO1-Pex expression in human skin fibroblasts did not result in a re-

distribution of peroxisomes, but MIRO1-Pex mediated recruitment of kinesin and subsequent 

motor pulling forces rather promoted the division and proliferation/multiplication of 

peroxisomes (Castro et al 2018a; Castro et al 2018b). Dividing and separating peroxisomes by 

motor forces/pulling in these cell models is only possible when the organelles are tethered 

(e.g. to other organelles or the cytoskeleton) as otherwise they would simply move to the cell 

periphery as observed in COS7 cells. These findings indicate that peroxisome tethering is cell 

type specific, and that the degree of tethering (in close interplay with the motor 

machinery/motile forces) modulates peroxisome distribution and proliferation. Interestingly, 

live cell imaging revealed that peroxisome motility is higher in COS7 cells than in human 

skin fibroblasts (Castro et al 2018a; Costello et al 2017b). In line with this, ultrastructural 

studies indicate a lower degree of peroxisome-ER association in COS7 cells.  

We also investigated the effect of MIRO1-mediated motor/pulling forces in cellular models of 

peroxisome disease (Castro et al 2018a; Castro et al 2018b). Loss of the peroxisomal matrix 

protein import receptor PEX5 is associated with Zellweger Syndrome, a severe peroxisome 

biogenesis disorder with several developmental and neurological abnormalities (Waterham et 

al 2016). On the cellular level, PEX5-deficient peroxisomes are import-incompetent for 

matrix proteins, with a loss of their metabolic functions. Patient fibroblasts contain a reduced 

number of enlarged peroxisomal membrane structures (so called ―ghosts‖), which are 

―empty‖, as peroxisomal matrix enzymes accumulate in the cytoplasm and/or are degraded. 

Remarkably, expression of MIRO1-Pex in PEX5-deficient fibroblasts resulted in the 

formation of highly elongated peroxisomal membrane protrusions, which associated with 

microtubules (Castro et al 2018a; Castro et al 2018b). Again, protrusion formation and 

membrane elongation is only possible when the peroxisomes are tethered. Furthermore, 

calculations based on ultrastructural and live cell imaging data indicate that the surface area of 

the spherical peroxisomes is far too low to give rise to the extended membrane protrusions 

without phospholipid transfer from another source (Castro et al 2018a; Castro et al 2018b). 

These observations further support the notion that peroxisome-ER MCSs tether peroxisomes 
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to the ER and mediate phospholipid transfer to allow peroxisomal membrane elongation and 

protrusion formation (see section 1.1.2). Such a scenario would indicate that the phospholipid 

transfer between the ER and peroxisomes is much more dynamic than previously anticipated. 

 

Detailed studies on the regulation of peroxisome positioning by MCSs have been performed 

in the yeast Saccharomyces cerevisiae. In baker’s yeast, peroxisomes move along actin 

filaments. The actin-dependent myosin V motor Myo2 is recruited to peroxisomes by Inp2 

(Inheritance protein 2), a peroxisomal single pass membrane protein. This is essential for the 

proper partitioning of peroxisomes between mother and daughter cells during asexual 

reproduction by budding, and thus for peroxisome inheritance. For balanced distribution, Inp1 

(Inheritance protein 1), a peripheral membrane protein, links peroxisomes to the peripheral 

ER, thus ensuring that some peroxisomes are retained in the mother cell (reviewed in 

Knoblach and Rachubinski 2015; Knoblach and Rachubinski 2016). Here, the MCS is 

composed of Pex3, a peroxisomal membrane protein, which distributes to peroxisomes and 

the ER, and is bridged by Inp1 (Knoblach et al 2013).  

 

1.2.1 Towards the identification of additional peroxisome-ER tethers 

 

ACBD4-VAPs  

It is very likely that besides ACBD5-VAPs and Pex3-Inp1, other proteins contribute to 

peroxisome-ER tethering in mammalian and yeast cells. A machine learning prediction 

approach revealed the peroxisomal localisation of ACBD4 (isoform 2) (Costello et al 2017a). 

Like ACBD5, ACBD4 (isoform 2) is also a C-tail-anchored membrane protein with an N-

terminal acyl-CoA binding domain. Although ACBD4 and ACBD5 share 58% sequence 

identity, this is mainly due to similarities in the N-terminal acyl-CoA binding domain, with 

the rest of the proteins showing significant differences. ACBD4 interacts with ER-resident 

VAPs via a FFAT-like motif (Fig. 3), and co-expression of ACBD4 and VAPB increased the 

number and surface of peroxisome-ER MCSs, indicating that ACBD4 also participates in ER-

peroxisome MCSs in mammalian cells (Costello et al 2017c).  

 

MOSPD2-ACBD5/4 

Very recently, motile sperm domain-containing protein 2 (MOSPD2) was identified as a 

novel ER tether in a proteomics approach (Di Mattia et al 2018). Like ER-resident VAPs, 

MOSPD2 is an ER-anchored protein which possesses an MSP domain (Fig. 3). It interacts 
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with several FFAT-containing tether proteins from endosomes, mitochondria, or Golgi, thus 

mediating the formation of MCSs by bridging the ER with a variety of distinct organelles. As 

MOSPD2 can interact with a variety of tether proteins containing a FFAT-motif (e.g. 

mitochondrial PTPIP51, endosomal ORP1L and STARD3, or Golgi STARD11), it is possible 

that MOSPD2 also interacts with peroxisomal ACBD5 and ACBD4, which both possess 

FFAT-like motifs (Fig. 3). However, experimental evidence for a role of MOSPD2-ACBD5/4 

in ER-peroxisome tethering is yet lacking. 

 

FIS1-BAP31 

B-cell receptor-associated protein 31 (BCAP31/BAP31), an abundant 28-kDa integral 

membrane chaperone protein of the ER and ER protein-sorting factor, has been shown to 

function in ER-mitochondria tethering by interacting with mitochondrial FIS1 (Iwasawa et al 

2011). FIS1-BAP31 form a mitochondria-ER platform which is crucial for the recruitment 

and activation of procaspase 8 and the conveyance of the apoptotic signal from mitochondria 

to ER (Iwasawa et al 2011). As the FIS1-BAP31 interaction is also present in normal, non-

apoptotic cells, it is suggested that the FIS1-BAP31 hub may have other roles than apoptotic 

signalling. Interestingly, FIS1, a C-tail anchored membrane protein, is also targeted to 

peroxisomes, where it contributes to peroxisomal division (Koch et al 2005; Delille and 

Schrader 2008). Several components of the division machinery at the outer mitochondrial 

membrane such as the C-tail anchored membrane adaptor MFF and the fission GTPase DRP1 

are also involved in peroxisomal division (reviewed in Schrader et al 2016; Schrader et al 

2015a) (see section 1.1.2). The adaptor proteins MFF and FIS1 recruit DRP1 to the organelle 

membrane, which oligomerises into ring-like structures, and upon GTP hydrolysis mediates 

membrane scission. As FIS1 is also a peroxisomal protein, it could as well contribute to 

peroxisome-ER MCSs by interaction with BAP31 (Fig. 3). Interestingly, the C-tail anchored 

anti-apoptotic proteins and BCL-2 can target peroxisomes (Costello et al 2017a). The 

physiological role of these proteins on peroxisomes awaits clarification. However, a recent 

study revealed that loss of VDAC2 shifts the localization of BAK, a pro-apoptotic member of 

the BCL-2 family, from mitochondria to peroxisomes and the cytosol, thereby leading to a 

release of peroxisomal matrix proteins including catalase to the cytosol (Hosoi et al 2017). A 

subset of BAK seems to localise to peroxisomes in control cells, regulating peroxisomal 

membrane permeability and catalase localisation (Hosoi et al 2017). Cytosolic catalase can 

protect against H2O2-mediated redox changes and may constitute a cellular defence 

mechanism to combat oxidative insults of extra-peroxisomal origin (Walton et al 2017). 
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1.3 ACBD5 deficiency – a novel peroxisomal disorder with an accumulation of VLCFAs 

Besides its FFAT-like motif, which mediates peroxisome-ER MCSs, ACBD5 also possesses 

an N-terminal acyl-CoA binding domain implying a function as an intracellular carrier of 

acyl-CoA esters (Fig. 3). The first patients diagnosed with a genetic ACBD5 deficiency were 

three siblings presenting with retinal dystrophy and white matter changes (Abu-Safieh et al 

2013). Further characterisation of those and another patient revealed a peroxisome-based 

disorder with progressive leukodystrophy, ataxia, progressive microcephaly with facial 

dysmorphisms, in addition to retinal dystrophy (Ferdinandusse et al 2017; Yagita et al 2017). 

In all cases, ACBD5 protein was absent due to a homozygous splice site mutation (Abu-

Safieh et al 2013) or a deleterious homozygous mutation deleting exons 7 and 8, causing a 

premature stop codon (Ferdinandusse et al 2017). The main biochemical feature of ACBD5 

deficiency is the accumulation of very long chain fatty acids (VLCFAs). Analysis of 

peroxisomal parameters in blood revealed an abnormal VLCFA profile and accumulation of 

C26:0 lysoPC (Ferdinandusse et al 2017). Studies with patient's skin fibroblasts confirmed an 

abnormal VLCFA profile with increased concentration of C26:0. Peroxisomal C26:0 β-

oxidation activity was reduced, but pristanic acid oxidation activity was normal (excluding a 

general defect in peroxisomal β-oxidation). Furthermore, accumulation of D3-C26:0 and D3-

C28:0 after loading of fibroblasts with D3-C22:0 was detected, indicating increased chain 

elongation due to increased substrate availability (Ferdinandusse et al 2017). Peroxisome 

integrity and the import of membrane or matrix proteins were not affected. The phenotype of 

ACBD5-deficient fibroblasts was also recapitulated in ACBD5-KO HeLa cells generated via 

the CRISPR/Cas9 system (Ferdinandusse et al 2017; Yagita et al 2017). Overall, these 

findings clearly show that ACBD5 deficiency is a novel single peroxisomal protein/enzyme 

deficiency causing an impaired VLCFA metabolism.  

VLCFAs enter the peroxisomes via ABCD1, a member of the ATP Binding Cassette 

Subfamily D family (van Roermund et al 2011) (Fig. 4). Defects in ABCD1 are the cause of 

X-linked adrenoleukodystrophy (X-ALD) (Engelen et al 2014). It has been suggested that 

ACBD5 facilitates transport of VLCFA-CoAs into peroxisomes for subsequent β-oxidation 

(Ferdinandusse et al 2017). ACBD5 is likely involved in capturing C26-CoA in the cytosol 

through its acyl-CoA binding domain and presenting it to the VLCFA transporter ABCD1. 

ABCD1 then transports the C26-CoA into the peroxisome where it is β-oxidised by the sequential 

action of the peroxisomal β-oxidation enzymes acyl-CoA oxidase 1 (ACOX1), D-bifunctional 

protein (DBP), sterol-carrier protein X and 3-ketoacyl-CoA thiolase (Ferdinandusse et al 2017; 
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Yagita et al 2017) (Fig. 4). In line with this, a preference for ACBD5 to bind VLCFA-CoAs has 

been reported (Yagita et al 2017).  

VLCFA accumulation as the dominant biochemical abnormality is also observed in the 

peroxisomal disorders X-ALD and ACOX1-deficiency (Waterham et al 2016). ACBD5-deficient 

patients develop clinical symptoms such as progressive leukodystrophy, ataxia, retinal dystrophy, 

cleft palate and facial dysmorphism, which resemble those of patients suffering from ACOX1 

deficiency, but are different from X-ALD, where e.g. retinopathy does not manifest. In addition, 

MRI abnormalities in ACBD5-deficient patients are distinct from those seen in X-ALD 

(Ferdinandusse et al 2007; Vanderver et al 1993). An underlying reason for these differences 

(besides potential differences in expression pattern, partial complementation by related proteins, 

or accumulation of different phospholipid species containing VLCFAs) may be the additional role 

of ACBD5 in the formation of peroxisome-ER MCSs. It is possible that ACBD5-mediated 

peroxisome-ER MCSs contribute to the formation of a peroxisome-ER hub to coordinate fatty 

acid metabolism at both organelles (Figs. 4, 5). The ER is the main site of VLCFA synthesis such 

as C26:0-CoA from shorter-chain fatty acids (synthesized from acetyl-CoA followed by their 

conversion into C16:0-CoA by the Fatty Acid Synthase (FAS)-complex in the cytosol), followed 

by chain elongation at the ER membrane by a multi-enzyme complex including ELOVLs 

(Elongation of very-long chain fatty acids protein) (Kihara 2012) (Fig. 4). Proximity of the 

organelles and membrane-bound proteins involved in fatty acid metabolism within the 

peroxisome-ER hub may allow coordinated channeling of fatty acids either towards elongation 

(and use in esterification reactions or PUFA synthesis; see section 1.4) or degradation by 

peroxisomal β-oxidation (e.g. when VLCFA concentration is too high) (Fig. 4). In a recent BioID 

study, the long-chain acyl-CoA synthetase ACSL1 was identified as a direct interaction partner of 

ACBD5 and VAPB (Young et al 2018). In the liver, about 50% of ACSL1 is located on the ER 

indicating that ACSL1 is present at the ER–peroxisome interface to activate fatty acids destined 

for peroxisomal metabolism (Fig. 4). ACSL1 can activate branched-chain fatty acids such as 

phytanic acid, which is derived from dietary phytol (Watkins et al 1996; Watkins and Ellis, 2012). 

Phytanic acid is degraded in peroxisomes by α- and β-oxidation. In line with this, ACSL1 was 

found to interact with proteins of the phytol metabolic pathway such as fatty aldehyde 

dehydrogenase (FALDH) and ABCD3, the peroxisomal transporter for branched-chain fatty acids. 

Although the functional role of the interaction of ACSL1 with VAPB and ACBD5 remains 

unclear, the findings are supportive of a peroxisome-ER hub which may be crucial for the capture, 

activation and channeling of fatty acids to coordinate lipid metabolism at the ER-peroxisome 

interface (Fig. 4). 

  

1.4 Peroxisome-ER MCSs and their role in cellular ether-phospholipid biosynthesis 
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It is well known that peroxisomes and the ER cooperate metabolically in the biosynthesis of 

ether-phospholipids, which is initiated in peroxisomes and completed in the ER (Braverman 

and Moser 2012). Ether glycerolipids constitute about 15-20% of total cellular membranes 

and are particularly enriched in brain (e.g. myelin sheath lipids), heart and immune cells of 

the blood. Plasmalogens, a class of ether phospholipids, represent ∼20% of the total 

phospholipid mass in humans (Braverman and Moser 2012). Ether phospholipids are 

supposed to contribute to a reduction in membrane fluidity (Paltauf 1994; Pike et al 2002) and 

to act as ROS scavengers preventing the oxidation of other membrane lipids (Sindelar et al 

1999). Patients with a defect in ether-phospholipid biosynthesis [for example due to 

DHAPAT (GNPAT) or ADHAPS (AGPS) deficiency; see below], present with Rhizomelic 

Chondrodysplasia Punctata (RCDP) characterised by skeletal dysplasia, severe CNS 

abnormalities, cortical cataracts and poor survival with most patients dying before reaching 

adulthood (Braverman and Moser 2012). On the cellular level, ether phospholipid deficiency 

affects membrane traffic and cholesterol distribution as well as the integrity of the plasma 

membrane (Thai et al 2001; Gorgas et al 2006). Furthermore, the peroxisomal steps in ether 

phospholipid biosynthesis are important for the formation of GPI-anchored proteins in the ER 

(Kanzawa et al 2012).  

In higher eukaryotes, alkyldihydroxyacetone phosphate synthase (ADHAPS) is the only 

enzyme able to catalyse the formation of the characteristic ether-bond in ether-phospholipids. 

ADHAPS forms a heterotrimeric enzyme complex with dihydroxyacetone phosphate 

acyltransferase (DHAPAT) at the inner site of the peroxisomal membrane (Thai et al 1997). 

DHAPAT catalyses the acylation of dihydroxyacetone phosphate (acyl—DHAP) from 

glycerone-3-phosphate and an acyl-CoA ester. ADHAPS then substitutes the acyl group with 

an alkyl group. Additional reactions providing the long-chain alcohol for the substitution 

reaction are performed by one of the two tail-anchored acyl-CoA reductases (FAR1 and 

FAR2), which are associated with the cytosolic site of the peroxisomal membrane. The three 

enzymes are indispensable for ether-phospholipid biosynthesis (Wanders et al 1992; Wanders 

et al 1994; Buchert et al 2014). As all further reactions (acylation in position 2 of the glycerol, 

dephosphorylation and addition of ethanolamine/cholin in position 3) are carried out in the 

ER, the alkyl-DHAP needs to be shuttled from peroxisomes to the ER. Interestingly, loss of 

the ACBD5-VAP tether by depleting either ACBD5 or VAPs has been reported to modestly 

reduce cellular PE-plasmalogen levels in cultured HeLa cells (Hua et al 2017). In line with 

this, both PE- and PC-ether phospholipids were markedly decreased in skin fibroblasts from 

patients with ACBD5 deficiency, suggesting a general defect in ether phospholipid 
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biosynthesis, including plasmalogens (Herzog et al 2018). These findings led to the 

suggestion that peroxisome-ER MCSs, in particular those mediated by the ACBD5-VAP 

tether, play a role in alkyl-DHAP shuttling and efficient ether-phospholipid biosynthesis. If 

ether-phospholipid biosynthesis is also reduced in tissues of ACBD5-deficient patients, and if 

a reduction in ether-phospholipids also contributes to the neurological abnormalities, awaits 

further clarification.  

Metabolic cooperation between ER and peroxisomes is also required for the generation of 

polyunsaturated fatty acids (PUFAs). This usually involves a series of chain-elongation and 

desaturation reactions at the ER; however, as mammalian cells are supposed to lack an acyl-

CoA-dependent delta-4-desaturase (Sprecher et al 1995), direct synthesis is not possible, and 

C24:6 (n-3) and C24:5 (n-6) fatty acids synthesized in the ER need to be transferred to 

peroxisomes (Fig. 5). It was recently suggested that human fatty acid desaturase 2 (FADS2) 

can perform delta-4 desaturation (Park et al 2015), however, studies are mainly based on 

overexpression, and the physiological relevance in vivo remains unclear. After transfer to the 

peroxisomes, those fatty acids then undergo a single round of peroxisomal β-oxidation to 

produce C22:6n-3 and C22:5n-6 and are transferred back to the ER for incorporation in 

different lipid species (Sprecher and Chen 1999; Ferdinandusse et al 2001; Ferdinandusse et 

al 2003) (Fig. 5). This metabolic ER-peroxisome interplay is particularly important for the 

synthesis of docosahexaenoic acid (DHA, C22:6n-3), a major n-3 PUFA in adult mammalian 

brain and retina, which can be produced endogenously from linolenic acid (C18:3 n-3). DHA 

deficiency results in memory loss, learning disabilities and impaired vision (Sun et al 2018). 

In patients with ACOX1- and DBP-deficiency and subsequent defects in peroxisomal β-

oxidation, DHA is known to be decreased (Ferdinandusse et al 2001). Interestingly, 

DHA/DHA-containing phospholipids are also required for the plasticity and membrane 

dynamics of peroxisomes, for example for membrane elongation and division (Itoyama et al 

2012). In a recent lipidomics study, a variety of phospholipid species containing PUFAs 

(including DHA) were found to be decreased in ACOX1- and DBP-deficient fibroblasts, but 

not in fibroblasts from ALD patients. The peroxisome-dependent synthesis of DHA in 

ACBD5-deficient fibroblasts appeared to be normal (Yagita et al 2017). 

 

2. Peroxisome – mitochondria contacts and functional interplay 

It is well established that peroxisomes and mitochondria are functionally connected (for 

recent reviews see (Schrader et al 2015b; Wanders et al 2016; Pascual-Ahuir et al 2017; 

Fransen et al 2017). This interplay, termed the ―peroxisome-mitochondria connection‖ 
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(Camões et al 2009; Schrader et al 2013; Schrader et al 2015) comprises the metabolic 

cooperation of peroxisomes and mitochondria (for example in the β-oxidation of fatty acids, 

phytanic acid α-oxidation, bile acid synthesis, and glyoxylate detoxification) (reviewed in 

Wanders et al 2018) (Fig. 2), peroxisome-mitochondria cooperation in cellular redox balance 

and redox signalling (reviewed in Lismont et al 2015; Fransen and Lismont 2018), 

cooperation in anti-viral signalling and combat (Dixit et al 2010; Kagan 2012), as well as 

coordinated biogenesis by sharing of key proteins of their division machinery (Schrader et al 

2015b; Schrader et al 2016; Costello et al 2018). Several key division proteins are C-tail 

anchored membrane proteins which are dually targeted to peroxisomes and mitochondria 

(Delille et al 2009; Schrader et al 2012; Costello et al 2017a; Costello et al 2018). 

Mitochondria can also contribute to the biogenesis (de novo formation) of peroxisomes under 

certain experimental conditions (Sugiura et al 2017; Costello and Schrader 2018). In addition, 

dysfunctional mitochondria were reported in several peroxisomal disorders (Peeters et al 

2015; Schrader et al 2015b; Shinde et al 2018) highlighting the physiological importance of 

peroxisome-mitochondria interplay, in particular in hepatocytes.  

Peroxisomes catalyse the β-oxidation of a variety of substrates including saturated VLCFA 

[e.g. hexacosanoic acid (C26:0], branched-chain fatty acids (e.g. pristanic acid), the bile acid 

intermediates di- and tri-hydroxycholestanoic acid (DHCA and THCA), and long-chain 

dicarboxylic acids (Wanders and Waterham 2006; Van Veldhoven 2010). Whereas fatty acid 

β-oxidation in yeast and plants is solely peroxisomal, in mammals both peroxisomes and 

mitochondria possess their separate β-oxidation pathways. Some fatty acid substrates (e.g. 

VLCFA) are unique to peroxisomes as they cannot be degraded by mitochondria. However, 

peroxisomal β-oxidation only results in chain-shortened fatty acids (medium chain acyl-CoA, 

C6-C8), which have to be shuttled to mitochondria for full oxidation to CO2 and H2O. 

Furthermore, acetyl-CoA and NADH generated by peroxisomal β-oxidation need to be routed 

to mitochondria, in particular for energy-efficient re-oxidation of NADH back to NAD+ 

(Wanders et al 2016). The α-oxidation of 3-methyl branched-chain FAs is another unique 

function of peroxisomes. Phytanic acid, a dominant 3-methyl branched-chain FA in our diet, 

for example, can only undergo β-oxidation after the terminal carboxyl group is released by α-

oxidation. Alpha-oxidation in peroxisomes relies on a close interplay with mitochondria, e.g. 

for the provision of 2-oxoglutarate (required in the phytanoyl-CoA hydroxylase reaction), the 

re-oxidation of NADH (generated by pristanal dehydrogenase) and the provision of ATP 

(required by pristanoyl-CoA synthetase) (reviewed in Wanders et al 2011; Wanders et al 

2018).  
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Molecular tethers which link peroxisomes to mitochondria have recently been identified in 

baker’s yeast by a systematic screening approach using a proximity detection method based 

on split fluorophores (Shai et al 2018). Individual tethering functions for the yeast mitofusin 

Fzo1 and the peroxisomal membrane protein Pex34 in peroxisome–mitochondria MCSs were 

revealed. Pex34 interacts with Pex11 family peroxins and is involved in the control of 

peroxisome morphology and abundance (Tower et al 2011). Importantly, the study also 

demonstrated a physiological role for peroxisome–mitochondria MCSs in linking peroxisomal 

β-oxidation and mitochondrial ATP generation by the citric acid cycle (Shai et al 2018). 

Peroxisome proximity to mitochondria was observed to increase based on fluorescence 

microscopy when yeast cells were grown on oleate as the sole carbon source. The 

involvement of Pex34-mediated peroxisome-mitochondria MCSs in the transfer of β-

oxidation products was demonstrated biochemically by incubating the yeast cells with 

radiolabeled [1-C14] octanoate (C8:0) and measuring the rate of acetyl-CoA transfer to 

mitochondria and its conversion to CO2. Overexpression of Pex34 (but not of Fzo1) resulted 

in a marked increase in CO2 production indicating that Pex34-mediated expansion of MCSs 

stimulated the transport of acetyl-CoA from peroxisomes to mitochondria (Shai et al 2018). 

The increased CO2 production in the Pex34 overexpressing cells was abolished by deleting 

citrate synthase and only reduced when deleting acetylcarnitine transferase. This indicates that 

peroxisomal acetyl-CoA is predominantly exported to mitochondria via conversion into 

citrate by peroxisomal citrate synthase, and not via the carnitine pathway (Shai et al 2018). 

Pex34 and Fzo1 likely act in different tether complexes at peroxisome-mitochondria MCSs, 

which have different functions. 

In baker’s yeast, peroxisomes have also been reported to localise adjacent to a specific 

mitochondrial niche near the ER–mitochondria MCS, proximal to where the pyruvate 

dehydrogenase complex is located in the mitochondrial matrix (Cohen et al 2014). This 

suggests a three-way organelle junction. Peroxisomal Pex11 and mitochondrial Mdm34, a 

protein of the ER–mitochondria tether (ERMES), are reported to mediate the peroxisome–

mitochondria MCS (Cohen et al 2014). 

In contrast to yeast, little information is available on MCS between peroxisomes and 

mitochondria in mammalian cells (Fig. 2). In addition to the pathways mentioned above, 

mammalian peroxisome-mitochondria interplay appears to be required for hormone-induced, 

controlled steroid hormone biosynthesis. Immunofluorescence and live-cell studies with MA-

10 mouse tumor Leydig cells revealed that treatment with di-butyryl-cAMP induced 

peroxisomes to approach mitochondria (Fan et al 2016). It is suggested that the acyl-CoA 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
binding protein ACBD2/ECI2 inserts head to tail into peroxisomes and mitochondria. This 

interaction between both organelles may contribute to the supply of cholesterol used for 

steroid hormone biosynthesis (Fan et al 2016). 

 

3. Peroxisome-lysosome contacts and cholesterol trafficking 

Out of the interactions between peroxisomes and other organelles, lysosomal contacts were 

the last to be recognized. Indeed, peroxisomal membrane contacts with lysosomes (LPMC) 

appear to be less frequent than those with the ER or mitochondria, but still comprise around 

15-20 % of the total peroxisome number in mammalian cells (Valm et al 2017; Chu et al 

2015). However, as LPMC formation is of transient nature, contact frequencies can change in 

response to different stimuli. Incubation of Hela cells with LDL (low-density lipoprotein), 

delivering lipids to the cell, increased LPMC in a time-dependent manner implying that 

LPMC form in a tightly controlled process in order to transfer specific metabolites (Chu et al 

2015). The metabolic significance of LPMCs was detected in an RNAi screen for genes 

associated with lysosomal cholesterol transport deficiencies (Chu et al 2015). Cholesterol is 

synthesized de novo by a pathway shared by the ER, mitochondria and the cytosol, or taken 

up by food consumption where it is delivered to the target cells via LDL, which under normal 

conditions is the dominant route of cellular cholesterol supply. After LDL uptake by plasma 

membrane LDL receptors, LDL-contained lipids are transported via endosomes to lysosomes, 

where cholesterol is liberated by acid lipase from the cholesteryl esters and targeted to the ER 

for redistribution into the different subcellular membranes (Luo et al 2017; Stefan et al 2017). 

Unexpectedly, knockdown of a considerable number of peroxisomal genes led to the 

accumulation of cholesterol in lysosomes indicating that peroxisomes might be involved in 

this cellular cholesterol transport system (Chu et al 2015). Subsequently, the authors showed 

that synaptotagmin VII (Syt7) on lysosomes forms specific interactions with 

phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) in the peroxisome membrane and is 

required for a functional cholesterol transport from lysosomes to peroxisomes (Fig. 2). It 

should be noted that some of the technical aspects of the paper are critically debated, for 

instance the use of anti-SKL-antibodies to pull down peroxisomes (as proteins with a C-

terminal SKL targeting signal are imported into the peroxisome lumen). According to these 

findings, Song and colleagues proposed a novel route for the intracellular cholesterol 

transport: after import of LDL-bound cholesterol esters and enzymatic hydrolysis in 

lysosomes, cholesterol is bound by lysosomal Niemann–Pick C2 and C1 protein (NPC2, 

NPC1) and subsequently delivered to peroxisomes via the LPMCs. At peroxisomes, 
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cholesterol could be incorporated into the peroxisome membrane or redistributed to other 

organelles like the ER using further organelle contact sites. As peroxisomes also perform the 

last steps in bile acid formation – the major route of cholesterol depletion – they might in this 

way act as a central sensory hub regulating intracellular cholesterol distribution. Indeed, 

decreased levels in cellular cholesterol after knockdown of the peroxisome-ER tethering 

protein ACBD5 may point to such a central position in cholesterol trafficking (Hua et al 

2017). Mutations in VAPB have been linked to amyotrophic lateral sclerosis (ALS) (Taylor et 

al 2016). As ALS patients carrying a VAPB (P56S) mutation are reported to have increased 

cholesterol levels (Marques et al 2006), it was speculated that this increase may be caused by 

increased ER–peroxisome contacts (Hua et al 2017). Further studies on a possible role of the 

ER–peroxisome tethering in the pathogenesis of ALS are required.  

Proteins which actively deliver cholesterol from lysosomes to peroxisomes have not yet been 

identified. Specific StAR-related lipid transfer (START) domain proteins (STARDs), 

oxysterol-binding proteins (OSBPs) and OSBP-related proteins (ORPs) may be involved in 

this non-vesicular trafficking pathway (Luo et al 2017). While such molecular details have 

still to be revealed, a recent follow-up study by the Song -group reports novel insights into the 

regulatory mechanism which could facilitate dynamic interactions of peroxisomes and 

lysosomes at the LPMCs (Hu et al 2018). In this work, the authors searched for enzymatic 

regulators of phosphatidylinositol phosphate (PIP) kinases producing PI(4,5)P2 from PI(4,5)P 

using an RNAi approach. Knockdown of a single enzyme, PIP4K2A, was found to induce 

lysosomal cholesterol accumulation and reduced LPMC formation via decreasing PI(4,5)P2 

levels (Hu et al 2018). Using an in vitro LPMC reconstitution assay, the authors reported that 

PIP4K2A has to specifically reside at peroxisomes to produce PI(4,5)P2. It remains to be 

clarified if the protein is imported into peroxisomes or if it localizes to specific binding 

partners at the outer surface of the peroxisomal membrane. 

With regard to this potential role in intracellular cholesterol transport, it is consequent to ask 

if the cellular cholesterol homeostasis is disturbed in peroxisomal disorders. Song and 

colleagues measured cholesterol concentrations in fibroblasts of Zellweger spectrum disorder 

(ZSD) and X-linked adrenoleukodystrophy patients and found a remarkable accumulation of 

cholesterol in all cases (Chu et al 2015). While this could be straight-forwardly explained by a 

general malfunction of peroxisome metabolism in ZSD, the accumulation of cholesterol in 

ABCD1 deficiency remains unexplained. However, the observed reduction in LPMCs after 

ABCD1 knockdown is consistent with the increase in cholesterol in patient cells, tissues from 

knockout mice and silenced cells.  
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Kassmann and coworkers observed an accumulation of lysosomes juxtaposed to peroxisomes 

at the paranodal loops of axons in Schwann-cell-/oligodendrocyte-specific and general 

peroxisomal KO mouse models including the Abcd1 -/ mouse (Kleinecke et al 2017). These 

lysosomes colocalized with ganglioside aggregates enriched in VLCFA suggesting a 

disruption of the interplay between peroxisomal and lysosomal lipid catabolism. Thus, the 

interaction between peroxisomes and lysosomes appears to include the exchange of several 

lipid metabolites between both organelles which may result in a general dysregulation in 

LPMC formation. Moreover, accumulation of non-functional lysosomes in parallel to a 

decrease in peroxisomes was recently reported after suppression of the mitochondrial and 

peroxisomal fission factor FIS1 in chondrocytes (Kim et al 2016). The knockdown of FIS1, 

resulting in a disturbed lipid metabolism, was further accompanied by dysregulation in micro-

RNAs targeting lysosomal function, indicating that the interplay between peroxisomes and 

lysosomes may be regulated at various different levels. Therefore, the unexpected 

accumulation in cholesterol in ABCD1 deficient cells may be a secondary response to a non-

functional interplay between peroxisomes and lysosomes, which represent in a lysosomal 

storage disease-like phenotype. In this regard, in addition to mitochondria and ER-contacts, 

the LPMCs appear to establish as another complex and tightly regulated interaction network, 

which requires further research to decipher individual molecular components and regulatory 

pathways to understand its role in the complicated pathology of peroxisomal disorders. 

 

4. Peroxisome-lipid droplet contacts and functional interplay 

Lipid droplets are dynamic organelles which contribute to the storage of neutral lipids such as 

triacylglycerols and sterol esters. Close associations of lipid droplets with other organelles 

including peroxisomes have been described (for recent reviews see Kohlwein et al 2013; Gao 

and Goodman 2015; Barbosa et al 2015; Schuldiner and Bohnert 2017; Olzmann and 

Carvalho, 2018). A systems-level analysis of the organelle interactome in COS-7 cells using a 

multispectral image acquisition method revealed that 10% of lipid droplets made contact with 

peroxisomes (Valm et al 2017). Interestingly, the fraction of lipid droplet-peroxisome contacts 

decreased (and that of lipid droplet-lysosome contacts increased) after treatment with excess 

oleic acid (Valm et al 2017). This is likely due to increased lysosomal digestion of lipid 

droplets under excess oleic acid conditions (Singh et al 2009). The peroxisome-lipid droplet 

interaction may link lipolysis mediated by lipid droplets to peroxisomal fatty acid β-oxidation; 

furthermore, lipids generated by peroxisomes may move into lipid droplets (reviewed in 

Schrader et al 2013) (Fig. 2). In addition, deficiency of peroxisomal β-oxidation or loss of 
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peroxisomes has been associated with enlarged lipid droplets and alterations in their number 

(Dirkx et al 2005; Zhang et al 2010). In baker’s yeast, peroxisomes form very intimate contact 

sites, termed pexopodia, with lipid droplets (Binns et al 2006). Pexopodia protrude into the 

lipid droplet core and are enriched in components of the β-oxidation machinery indicating that 

they might stimulate neutral lipid breakdown and transfer of fatty acids from the lipid droplet 

to the peroxisome. Although there are various reports about the interaction between 

peroxisomes and lipid droplets, peroxisome-lipid droplet tether proteins are still unknown. An 

interactome map of protein-protein interactions between peroxisomes and lipid droplets in 

baker’s yeast revealed that ERG6 and PET10, which reside in lipid droplets, interact with 

several peroxisomal proteins (Pu et al 2011). Whether these proteins constitute a genuine 

tether requires further investigation. Interestingly, in baker’s yeast, newly formed lipid 

droplets and peroxisomes remain associated with conserved ER subdomains, suggesting a link 

between lipid droplet and peroxisome biogenesis (Joshi et al 2018). Very recently, a role for 

the hereditary spastic paraplegia protein M1 Spastin, a membrane-bound AAA ATPase on 

lipid droplets, in the tethering of lipid droplets to peroxisomes was revealed (Chang et al 

2019). Interestingly, M1 Spastin forms a tethering complex with the peroxisomal fatty acid 

transporter ABCD1 to promote lipid droplet-peroxisome MCSs. The interaction depends on a 

peroxisome-interacting region (amino acids 197-328) in M1 Spastin, and its N-terminal 

hairpin motif, which inserts directly into the lipid monolayer of the lipid droplet. Furthermore, 

the ATPase activity of M1 Spastin can regulate lipid droplet-peroxisome MCSs, suggesting a 

link to fluctuations in cellular ATP levels. The authors also show that the M1 Spastin-ABCD1 

complex works in conjunction with the ESCRT-III (endosomal sorting complexes required for 

transport) proteins IST1 (increased sodium tolerance 1) and CHMP1B (charged 

multivesicular body protein 1B) in the delivery of fatty acids from lipid droplets to 

peroxisomes (Chang et al 2019). The membrane-shaping proteins IST1 and CHMP1B are 

recruited via the M1 Spastin MIT (microtubule interacting and trafficking) domain and may 

facilitate fatty acid trafficking through modification of lipid droplet membrane morphology. 

The Spastin-mediated trafficking of fatty acids to peroxisomes also prevents the accumulation 

of peroxidated lipids in lipid droplets. These exciting findings may help to shed light on the 

pathogenesis of diseases associated with defective fatty metabolism in lipid droplets and 

peroxisomes. 

 

5. Peroxisome-peroxisome and peroxisome-plasma membrane contacts and functional 

interplay 
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Live cell studies revealed that peroxisomes, which often move along microtubules in the cell, 

also self-interact in transient and long-term contacts (Bonekamp et al 2012; Schrader et al 

2013). The physiological role for this interaction is still unknown, but peroxisome-peroxisome 

contacts may promote efficient metabolite exchange (e.g. H2O2 or other ROS) and prevent 

leakage (Schrader et al 2013; Shai et al 2016) (Fig. 2). In this respect it may be speculated 

that such peroxisome-peroxisome interactions are part of a cellular ―signalling system‖ to 

monitor the distribution and state of peroxisomes ensuring maintenance of the peroxisome 

population (Schrader et al 2013). The molecular mechanisms mediating peroxisome self-

interaction have yet to be revealed. 

Budding yeast cells always retain some fraction of an organelle population in the mother cell 

and organelle retention requires MCSs/tethers among the organelles (Knoblach and 

Rachubinski 2016). In baker’s yeast, Inp1 and Pex3 tether peroxisomes to the cortical ER for 

coordinated inheritance (see section 1.2). These results suggested that peroxisomes interact 

indirectly with the plasma membrane via the cortical ER. Evidence for a direct interaction 

between peroxisomes and the plasma membrane in baker’s yeast was recently provided using 

a proximity detection method based on split fluorophores (Shai et al 2018). Whether this 

interaction also depends on Inp1 and Pex3, or involves other tether proteins, requires further 

clarification. Interactions between peroxisomes and the plasma membrane in human or animal 

cells have not yet been described.  

 

Perspectives 

Peroxisomes cannot function as isolated entities. As their metabolic functions require 

cooperation and exchange of metabolites with other organelles, they are integrated into a 

complex network of interacting organelles, which is now beginning to emerge. The molecular 

mechanisms and tethering components mediating peroxisome-ER contacts have now been 

identified in mammalian cells, and important roles in peroxisome membrane 

expansion/biogenesis, mobility, positioning, and lipid metabolism have been revealed. The 

current efforts in the development of new screening approaches and techniques to characterise 

organelle contacts and associated proteins will certainly result in a more complete picture of 

peroxisome-organelle contact sites and the molecules involved in tethering, which will further 

broaden our understanding of peroxisome cooperation and crosstalk with other compartments. 

A challenge ahead is to reveal their physiological functions and the mechanisms which 

mediate the transfer of phospholipids, metabolites and signalling molecules between 

interacting organelles. Importantly, tethers often have additional functions in contact sites 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
such as metabolite transfer. Addressing those challenges will require novel probes and tools, 

e.g. to monitor and quantify phospholipid transfer, as well as cross-discipline approaches 

combining molecular cell biology with biophysics, proteomics, lipidomics, metabolomics and 

sophisticated imaging/quantification techniques. Important questions are how the formation of 

organelle contacts is regulated to control their dynamics, and if and how the number of 

organelle contacts is changing under different (patho)physiological conditions. The disruption 

of organelle contacts has been linked to disease, for example to neurodegeneration (Krols et al 

2016), and the role and importance of MCSs in human health and disease is only starting to be 

revealed. A challenge is to diagnose MCS-related diseases, where symptoms are likely 

complex and not well characterised, as tether proteins can have multiple functions, and 

tethering can be redundant with multiple protein complexes involved. With respect to 

peroxisomes and their central role in cellular metabolism, loss of contacts is suggested to 

impact on their optimal function. It will be challenging to diagnose functional changes in 

patients, as the metabolic functions of peroxisomes may only be slightly affected, and 

peroxisome morphology (including shape, number, size) may be normal. Thus, current 

diagnostic approaches which determine biomarkers (e.g. VLCFA) in plasma or peroxisome 

morphology/protein localisation in skin fibroblasts may miss patients with peroxisome MCS 

disorders. It is also suggested that organelle contacts, and their dynamic interplay, influences 

the development of common, age-related disorders, for example neurodegenerative diseases 

(Krols et al 2016). A better understanding of organelle contacts may lead to therapeutic 

approaches allowing specific targeting and modulation of tethering complexes to combat 

degenerative diseases. This will require close cooperation between clinical, diagnostic and 

fundamental research-driven laboratories. Undoubtedly, research on organelle interplay and 

MCSs is an exciting, rapidly developing field, which will greatly impact on our understanding 

of human cell biology, health and disease. 
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Figure legends 

Figure 1. Electron micrograph of organelle contact sites in the rat liver. The centre of the 

image shows five peroxisomes (PO), which are surrounded by a reticular network of smooth 

ER tubules (arrows). Furthermore, several mitochondria (MI) with ER MAMs can be found 

(black arrowheads). Note an elongated mitochondrion (centre) in direct apposition to the PO-

ER contacts suggesting the existence of functionally relevant organelle triple contacts. ER – 

plasma membrane (PM) contacts are also observed (upper left corner; white arrowheads). 

Magnification:  25,000 (kindly provided by W. Kriz, Univ. of Heidelberg, GER). 

 

 

Figure 2. Peroxisome-organelle MCSs in mammalian cells and their suggested functions. 

Communication between PO and the nucleus is also indicated. ER, endoplasmic reticulum; 

LD, lipid droplet; MITO, mitochondrion; PO, peroxisome. 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e

 

Figure 3. Tethering complexes at peroxisome-ER MCSs. All hitherto identified and potential 

tethering complexes connect organelle membranes via protein-protein interactions. The C-

tail-anchored proxisomal membrane proteins ACBD4 and ACBD5 possess FFAT-like motifs 

in their middle domain which interact with N-terminal major sperm binding (MSP) domains 

of ER-resident VAPA and VAPB. With MOSPD2, another ER-resident protein with an MSP 

domain was recently identified, which interacts with a variety of tether proteins containing 

FFAT motifs (Di Mattia et al 2018). MOSPD1 is another MSP-domain containing protein 

with a proposed ER localization (Thaler et al 2011). Interaction of MOSPD proteins with 

ACBD4/5 has not yet been experimentally verified. The tail-anchored membrane protein FIS1 

was identified in a tethering complex with ER-resident BAP31 (Iwasawa et al 2011). As FIS1 

also localises to peroxisomes (Koch et al 2005), the FIS1-BAP31 tether may also contribute to 

peroxisome-ER MCSs.  
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Figure 4. Interplay between peroxisomal VLCFA degradation and ER fatty acid elongation at 

ACBD5-mediated MCSs at the PO-ER interface. At the ER membrane, palmitoyl-CoA (C16) 

is elongated to form saturated VLCFA-CoA in four subsequent steps by the enzymes 

ELOVL(1-7) (Elongation of very-long chain fatty acids protein), KAR (3-ketoacyl-CoA 

reductase), HACD(1-3) (Very-long-chain-3-hydroxyacyl-CoA dehydratase) and TER (trans-

2,3-enoyl-CoA reductase). VLCFAs are subsequently incorporated into membrane lipids at 

the ER or, when VLCFA concentrations in the membrane are already high, transferred to 

peroxisomal ACBD5. Long and very-long chain fatty acid-CoA synthetases (ACSL and 

FATP) generate fatty acyl-CoA from the cytosolic free fatty acid pool. ACBD5 ―senses‖ 

growing concentrations of VLCFA-CoA at the contact site by binding to its ACB domain 

(probably by direct interaction with e.g. ACSL1). Bound VLCFA-CoA is ―handed over‖ to 

the peroxisomal FA import protein ABCD1 to be imported and degraded by the peroxisomal 

β-oxidation pathway. Such a regulatory system may prevent excessive incorporation of 

VLCFA into phospholipids, which are as well generated at the ER. 
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Figure 5. Peroxisome-ER cooperation in PUFA synthesis at ACBD5-mediated MCSs. 

PUFAs are synthesized at the ER by combined FA elongation and desaturation. However, 

peroxisomes cooperate with the ER in the synthesis of n-3 long-chain PUFAs such as 

docosahaexenoic acid (DHA) (22:6n-3) as the ER appears to lack potent fatty acid Δ4-

desaturase activity. To this end, exploiting Δ6 desaturase activities, the ER produces 24:6 (n-

3) FA, which are subsequently chain-shortened by one round of β-oxidation in peroxisomes. 

In this scenario, ACBD5 may facilitate efficient transport of 24:6 (n-3) -CoA from the ER to 

peroxisomes at MCSs. PUFA, polyunsaturated fatty acid 
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Table 1. Relative concentrations of membrane lipids in different organelles from yeast 

and rat liver 

 

 Rat liver* Yeast** 

Mito ER Peroxisome Mito ER Peroxisome 

PE 29 % 19 % 27.5 % 26.5 % 33 % 23 % 

PC 42 % 55.5 % 56.5 % 40 % 51 % 48 % 

PS 7.2 % 7.2 % 3.0 % 3.0 % 6.6 % 4.5 % 

PI 3.7 % 10.5 % 4.7 % 14.6 % 7.5 % 16 % 

CL 7.6 % 0 % 0 % 13.3 % 6.6 % 7 % 

SPM 1.6 % 4.2 % 3.7 % n.d. n.d. n.d 

 

*values taken from Hardeman et al 1990, **values taken from Zinser et al 1991 

Abbreviations: n.d. – not determined, PE – phosphatidylethanolamine, PC – 

phosphatidylcholine, PS – phosphatidylserine, PI – phosphatidylinositol, CL – cardiolipin, 

SPM - sphingomyelin 
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