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Abstract

Background. The emergent constraint approach has received interest recently as a way of utilizing 
multi-model General Circulation Model (GCM) ensembles to identify relationships between observable 
variations of climate and future projections of climate change. These relationships, in combination 
with observations of the real climate system, can be used to infer an emergent constraint on the 
strength of that future projection in the real system. However, there is as yet no theoretical framework 
to guide the search for emergent constraints. As a result, there are significant risks that indiscriminate 
data-mining of the multidimensional outputs from GCMs could lead to spurious correlations and 
less than robust constraints on future changes. To mitigate against this risk, Cox et al. (Cox et al. 
Emergent constraint on equilibrium climate sensitivity from global temperature variability. Nature 
2018a; 553: 319, hereafter CHW18) proposed a theory-motivated emergent constraint, using the one-
box Hasselmann model to identify a linear relationship between equilibrium climate sensitivity (ECS) 
and a metric of global temperature variability involving both temperature standard deviation and 
autocorrelation (Ψ). A number of doubts have been raised about this approach, some concerning the 
application of the one-box model to understand relationships in complex GCMs, which are known to 
have more than the single characteristic timescale.
Objectives. To study whether the linear Ψ–ECS proportionality in CHW18 is an artefact of the one-box 
model. More precisely, we ask ‘Does the linear Ψ–ECS relationship feature in the more complex and 
realistic two-box and diffusion models?’.
Methods. We solve the two-box and diffusion models to find relationships between ECS and Ψ. These 
models are forced continually with white noise parameterizing internal variability. The resulting 
analytical relations are essentially fluctuation–dissipation theorems.
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Results. We show that the linear Ψ–ECS proportionality in the one-box model is not generally true in 
the two-box and diffusion models. However, the linear proportionality is a very good approximation 
for parameter ranges applicable to the current state-of-the-art CMIP5 climate models. This is not 
obvious—due to structural differences between the conceptual models, their predictions also differ. 
For example, the two-box and diffusion, unlike the one-box model, can reproduce the long-term 
transient behaviour of the CMIP5 abrupt4xCO2 and 1pcCO2 simulations. Each of the conceptual 
models also predicts different power spectra with only the diffusion model’s pink 1/f spectrum being 
compatible with observations and GCMs. We also show that the theoretically predicted Ψ–ECS 
relationship exists in the piControl as well as historical CMIP5 experiments and that the differing 
gradients of the proportionality are inversely related to the effective forcing in that experiment.
Conclusions. We argue that emergent constraints should ideally be derived by such theory-driven 
hypothesis testing, in part to protect against spurious correlations from blind data-mining but mainly 
to aid understanding. In this approach, an underlying model is proposed, the model is used to predict 
a potential emergent relationship between an observable and an unknown future projection, and the 
hypothesized emergent relationship is tested against an ensemble of GCMs.

Key words: Emergent constraint, equilibrium climate sensitivity, fluctuation-dissipation theorem, global temperature 
variability.

1.  Introduction

Emergent constraints (Hall and Qu 2006; Allen and Ingram, 2002) provide a promising way to relate observations of 
the present day to future projections of the climate. The usual approach is to take a model ensemble (such as the multi-
model CMIP5 ensemble; Taylor et al., 2012) and use it to find a relationship via a scatter plot between an observable 
plotted on the x axis and the future projection plotted on the y axis, each point on the plot being one member of the 
model ensemble. The model ensemble derived relationship or emergent relationship, and the uncertainty in it, can 
then be determined from regression on the scatter plot. A measurement of the observable in the real world can be 
combined with the model-derived emergent relationship to produce an emergent constraint on the climate projection.

Hall and Qu (2006) published one of the first emergent constraints relating the strength of the snow albedo feed-
back in the seasonal cycle (the observable) to the strength of the snow albedo feedback in climate projections within 
the multi-model ensemble used in IPCC AR4 (Meehl et  al., 2001). Since then, many others have been published 
including studies on sea-ice (Boe et al., 2009; Massonnet et al., 2012), tropical precipitation extremes (O’Gorman, 
2012), equilibrium climate sensitivity (ECS) (Annan and Hargreaves, 2006; Huber et al., 2010; Fasullo and Trenberth, 
2012; Brown and Caldeira, 2017; Cox et al., 2018a), carbon loss from tropical land under warming (Cox et al., 
2013), zonal shift of Southern Hemisphere westerlies (Kidston and Gerber, 2010), cloud feedbacks (Brient and Bony, 
2013; Sherwood et al., 2014; Klein and Hall, 2015; Tian, 2015; Tsushima et al., 2016; Lipat et al., 2017), strengthen-
ing of the hydrological cycle (DeAngelis et al., 2015), the climate-carbon cycle feedback (Wenzel et al., 2014) and CO2 
fertilization effect (Wenzel et al., 2016), future changes in ocean net primary production (Kwiatkowski et al., 2017), 
permafrost melt (Chadburn et al., 2017) and changes in natural sources and sinks of CO2 (Hoffman et al., 2014).

Some scepticism about emergent constraints is healthy, particularly when they are not founded on well under-
stood physical processes. There are significant risks that indiscriminate data-mining of the multidimensional outputs 
from models could lead to spurious correlations (Caldwell et al., 2014) and less than robust constraints on future 
changes (Bracegirdle and Stephenson, 2013). Care is also needed drawing statistical inferences from ensembles of 
small numbers of models. The problem is compounded if models within the ensemble share common components 
giving a smaller effective ensemble size (Pennell and Reichler, 2011; Masson and Knutti, 2011; Herger et al., 2018). 
Observations used to guide model development also may lead to dependencies (Masson and Knutti, 2012).

To minimize these risks, a theoretical framework for finding and evaluating emergent constraints is needed. The 
approach described here involves a form of hypothesis testing, in which an underlying simple, conceptual model is 
proposed, the model is used to predict an emergent relationship between an observable and an unknown future pro-
jection, and the predicted emergent relationship is tested against results from an ensemble of more complex models. 
Emergent relationships are usually assumed to be univariate and linear, but these are not necessary simplifications. As 
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an example, we illustrate this theory-led approach using simple conceptual models of the global mean temperature as 
emergent constraints on ECS and test the theoretically predicted relations against observations and the CMIP5 models.

In CHW18, the theoretical linear relationship between a measure of the variability of annual mean global surface 
air temperature, the observable Ψ and the ECS (the future projection) was used to derive an emergent constraint on 
ECS. Colman and Power (2018) also found a correlation between the tropical decadal temperature standard deviation 
and ECS in the CMIP5 models. A number of doubts have been raised about CHW18 (Brown et al., 2018; Po-Chedley 
et al., 2018; Rypdal et al., 2018; Cox et al., 2018b), some concerning the theory and the application of the one-box 
model to understand relationships in complex GCMs which are known to have more than the single characteristic 
timescale (MacMynowski et al., 2011, Geoffroy et al., 2013). In section 2, we investigate whether the relation in 
CHW18 derived for the one-box model still holds in more realistic yet still analytically soluble conceptual models, 
namely the often used two-box and diffusion models. It is known the two-box and diffusion models unlike the one-
box model are able to reproduce the long-term transient behaviour of the CMIP5 GCM abrupt4xCO2 and 1pcCO2 
simulations (Caldeira and Myhrvold, 2013; Geoffroy et al., 2013). Although we find the one-box linear proportional-
ity between Ψ and ECS is generally no longer true in the two-box and diffusion models, we show the linear propor-
tionality holds to a good approximation for both when the range of their parameters are applicable to the complex 
CMIP5 GCMs. This gives us increased confidence in the theoretical foundation of CHW18.

It is important to note that each of these conceptual models differs structurally, predicts different temperature 
responses and will not be able to reproduce all of the features of the global mean temperature response. One could 
loosely view these conceptual models as zeroth-order approximations and GCMs as higher order approximations of 
the real world. The often used quote ‘all models are wrong but some are useful’ is quite apt as a guiding principle for 
this manuscript. The usefulness of the model will depend on the question asked of it.

In section 3, conceptual model predictions are compared with the CMIP5 ensemble and observations, particularly 
the power spectra and autocorrelation functions. The pink power spectrum of global mean temperature in observa-
tions and CMIP5 models can only be reproduced by the diffusion model. However, if one is interested in the shorter 
timescale behaviour for use as an emergent constraint on ECS, we find the simplest conceptual one-box model will 
serve as a good approximation.

Also in section 3, Ψ versus ECS emergent relationships for both piControl and historical CMIP5 experiments are 
shown. Both have the theoretically predicted linear proportionality although they have differing gradients. This dif-
ference in gradient is theoretically expected to scale inversely with the effective forcing, and this is also observed in 
the CMIP5 models.

The current article can be seen as a companion article to CHW18, as it examines and tests the appropriateness of 
the theory used to inform that study.

2.  Conceptual models relating global temperature variability to ECS

Caldeira and Myhrvold (2013) (hereafter CM13) fitted three different conceptual models, namely the one-box, two-
box and diffusion models to the annual global mean air temperature time series of the CMIP5 abrupt4xCO2 experi-
ments (Taylor et al., 2012). These fits were then tested against the 1pcCO2 CMIP5 experiments. CM13 showed that 
while the one-box model was a poor fit to either experiment on longer timescales both the two-box and diffusion 
models did good jobs. Here we use these conceptual models to analyse the annual global mean air temperature vari-
ability in the CMIP5 historical experiments with a view to obtaining ECS as a function of Ψ as found in CHW18 for 
the one-box model.

Each of the conceptual models has differing numbers of free parameters, the one-box and diffusion models have 
three, and the two-box model has five. None of these are assumed to be fixed. These parameters are essentially fitted 
to each of the CMIP5 models and the observations in the historical period via Ψ (introduced in equation (12)). The 
models are introduced in order of complexity and completeness, the one-box model being the simplest analytically, 
while the diffusion model is harder to solve but reproduces more of the observed temperature response.

The historical time series can be approximated as the sum of the responses to the forcing resulting from changes 
in the atmospheric composition. These include greenhouse gases, tropospheric and stratospheric aerosols from large 
volcanic eruptions and solar variability. There is also a response to fast, internal variability that is parameterized 
here as the response to random, white noise forcing. We seek to isolate the response to the latter and relate it to ECS. 
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A relation between the system response to random fluctuations and its sensitivity is essentially a fluctuation-dissipa-
tion theorem (Kubo, 1966; Leith, 1975).

ECS is defined as the equilibrium temperature change due to the constant forcing ×Q CO2 2
 from the doubling of CO2,

	 λ
= ×

ECS
Q

,
CO2 2

	 (1)

and λ is the climate feedback factor.
Linearity of the conceptual models allows each temperature response T t( )i  to each forcing Q t( )i  to be added to give 

the total response, i.e. if the total forcing is ∑Q t Q t( ) ( )i i= , then the total temperature response is just the sum of the 
temperature responses to each of the individual forcings =T t T t( ) ( )i i∑  (principle of superposition). Linearity means 
that by suitable detrending the response from the trend in emissions can be removed from the total temperature 
response to leave the residual response, T t( )Δ , to the random forcing. For this study, we assume this detrending can be 
carried out to a good approximation and work with just the residual temperature. For notational ease, we also refer 
to ΔT as T, i.e. ΔT: = T.

Although the theory we derive here assumes external, random forcing, we have shown that the Ψ–ECS linear pro-
portionality will theoretically become more tightly defined in the presence of common forcing across a model ensem-
ble (Cox et al., 2018b). The gradient of the relationship does however change, being roughly inversely proportional 
to the amplitude of the forcing (see section 3).

The superposition principle implies the response to any forcing can be written as the convolution of the linear 
response function g t( ) (the response to delta function forcing) with the forcing, i.e.

	
= −T t g t s Q s ds( ) ( ) ( ) .

t

0
∫ 	 (2)

Each model can therefore be characterized by g t( ). We will be interested in their response in the stationary limit, i.e. 
when t τ≫  where τ is the longest timescale in the model. The residual response is found when Q(t) is a Gaussian 
random variable with zero mean and a standard deviation of σQ, σ=Q t dW( ) Q t, turning equation (2) into a stochastic 
integral

	
∫T t g t s dW( ) ( )Q

t

s
0

σ= −
	 (3)

where Ws is a Wiener process.
In the following we choose to use the two observables variance σT

2 and autocorrelation α t( )T  as fitting parameters 
for the conceptual models, as they can be easily estimated for a given time series, be it a CMIP5 model or observa-
tions. These can be computed for the residual temperature by using equation (3) and the relevant model g(t) via the 
autocovariance R(t)

	
= −

→
limR t

P
T s t T s ds( )

1
( ) ( ) .

P

P

0
∫

∞ 	 (4)

	 = R(0),T
2σ 	 (5)

	
α =t

R t
R

( )
( )
(0)

.T
	 (6)

Another useful quantity we use to compare the simple models to the CMIP5 models and observations is the power 
spectrum of T, ωT( ) 2, which can be found from the Fourier transform of the autocovariance

	
∫ω ω

∞

∞
T R t e dt( ) ( ) .i t2| | =

−

−

	 (7)
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2.1.  Hasselmann one-box model
The simplest, one-box (or one-timescale) model for the evolution of T(t) is

	
λC

dT
dt

Q t T( )= −
	 (8)

In this model, the climate system can be thought of as a single well-mixed box with effective heat capacity C forced 
by Q(t) and adjusting to this forcing with climate sensitivity λ proportional to the temperature anomaly. The single 
well-mixed box can be roughly thought of as representing the atmosphere, surface mixed ocean layer and the land.

The linear response function for this model is

	 λτ
Θ

τ
=

−
g t t

e
( ) ( )

H

t
H

	 (9)

where the timescale in the model τ
λ

=H
C  and t( )Θ  is the Heaviside step function. When the forcing Q t( ) is Gaussian 

white noise, equation (8) is known as the Hasselmann model (Hasselmann, 1976). Variance and autocorrelation for 
the one-box model can be computed from equations (3) and (4) to be

	 2
,T

Q

H

2
2

2
σ

σ

λ τ
=

	 (10)

	 α τ= −t e( ) .T

t
H 	 (11)

These equations can be combined with equation (1) to give (Cox et al., 2018a)

	 σ
Ψ= ×

ECS
Q

2 ,
CO

Q

2 2

	 (12)

where Ψ is defined as

	
=

−log
,T

T1

σ
α

Ψ
	 (13)

and α α= year(1 )T T1 . It was equation (12), namely the linear proportionality between the observable Ψ, estimated 
from time series of T and the future projection ECS, which was used to guide the search for an emergent constraint 
in CHW18. The magnitude of proportionality between Ψ and ECS, the ratio of the effective forcing due to doubling 

CO2 and the mean amplitude of the effective forcing in the experiment Qσ , ×Q
2

CO

Q

2 2

σ
 cannot be observed but is for-

tunately weakly correlated with ECS (r = −0.02) across the CMIP5 model ensemble (Cox et al., 2018a). By linearly 
regressing Ψ against ECS, the magnitude of proportionality is therefore determined by the model ensemble itself.

The power spectrum of the one-box model is

	
| | =

+
ω

σ

λ ω τ
T( )

(1 )
.

Q

H

2
2

2 2 2
	 (14)

This model predicts a red power spectrum temperature response, that is, the power scales inversely to the square of 
the forcing frequency ω.

2.2. Two-box model
The two-box model (Gregory, 2000; Held et  al., 2010; Geoffroy et  al., 2013) consists of two well-mixed layers, 
one representing the upper mixed layer of the ocean plus the lower atmosphere, with effective heat capacity C and 
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temperature T, and a second well-mixed box representing the deep ocean with heat capacity C0 and temperature T0. 
Heat transport between the two boxes is proportional to the temperature difference between the two boxes with 
constant of proportionality γ. The equations describing the evolution of temperature are therefore

	
λ γC

dT
dt

Q t T T T( ) ( ),0= − − −
	 (15)

	
C

dT
dt

T T( ) .0
0

0= −γ
	 (16)

This model has two timescales, a fast fτ  and slow one sτ . The linear response function is the sum of the fast and slow 
modes with amplitudes 

af

fτ
 and 

τ
as

s
,

	 λ τ τ
Θ τ τg t

t a
e

a
e( )

( )
.

f

f

t
s

s

t
f s=




 +






− −

	 (17)

This model has been extensively used in previous climate applications and here we use the notation and expressions 
for the amplitudes and timescales in terms of the quantities in equation (15) as given in Geoffroy et al. (2013). They 
also fitted this model to abrupt4xCO2 CMIP5 experiments for which they found two widely separated timescales, 
typical values being τ ∼ 4 yearsf  and ∼τ 250 yearss , while the dimensionless mode parameters, af  and as, were roughly 
of equal size (a 3/5f ∼  and ∼a 2/5s ).

The autocovariance function for Gaussian white noise forcing can be found by using equations (3) and (4) and in 
contrast to the one-box model features two modes:

	

σ

λ τ τ τ τ
τ τ τ τR t

a
e

a
e

a a
e e( )

2

2Q f

f

t
s

s

t f s

f s

t t2

2

2 2
f s f s








=





+ +
+




 +









− − − −

	 (18)

giving

	
=




 + +

+




σ

σ

λ τ τ τ τ

a a a a

2

4
,T

Q f

f

s

s

f s

f s

2
2

2

2 2

	 (19)

	
=

+ + + +

+ + +

− − − −

t
a e a e a a e e

a a a a
( )

( )( ) 2 ( )

( )( ) 4
.T

f s s f f s f s f s

f s s f f s f s f s

2 2

2 2

t
f

t
s

t
f

t
s

α
τ τ τ τ τ τ

τ τ τ τ τ τ

τ τ τ τ

	 (20)

This general result simplifies for typical fitted parameters to the CMIP5 models (Geoffroy et al., 2013) as the variance 

and the autocorrelation are dominated by the fast mode. These can be approximated in the limit (τ τ≫s f , a as f∼ ) by:

	
σ

σ

λ τ
≈

a

2
,T

Q f

f

2
2 2

2
	 (21)

	 α ≈ τt e( ) .T

t
f

−
	 (22)

The approximate expressions are therefore very similar to the one-box model for the CMIP5 models. Combining 
these expressions with the equation for ECS gives

	 σ
Ψ= ×

ECS
Q

a
2

CO

Q f

2 2

	 (23)
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so that the linear relationship between Ψ and ECS found in the one-box model also approximately holds for the 
two-box model. The constant of proportionality is however different, and it has an extra factor in the denominator 
af , which is roughly constant and is approximately a /( )f ∼ +λ λ γ  over the CMIP5 model range of parameters. Relative 
standard deviation in af  is 13%. The reason for the approximate equivalence between the ECS relations in one- and 
two-box models is due to the wide separation in timescales between the two modes fitted to the CMIP5 models. As 

in the one-box case, the ‘constant’ of proportionality between ECS and Ψ, 
Q

a
2

CO

Q f

2 2

σ
× , is weakly correlated with ECS 

(r = 0.03) across the CMIP5 models and one can linearly regress Ψ against ECS for a theoretical emergent relationship.
In contrast to the one-box, the two-box power spectrum is

	
ω

σ

λ
ω τ τ
ω τ ω τ

T
a a

( )
1 ( )

(1 )(1 )
.

Q f s s f

f s

2
2

2

2 2

2 2 2 2








| | =





+ +

+ +



 	 (24)

which depending on the size of terms can give red and ω−4 scaling, although when fitted to the CMIP5 models, the 
spectrum is approximately red.

2.3.  Diffusion equation
The diffusion equation (or heat equation) model (MacMynowski et al., 2011; Caldeira and Myhrvold, 2013) consists 
of a continuous vertical layer, ≥z 0, where radiative forcing at the surface (z 0= ) causes heating which is transported 
down through the water column by diffusion (parameterized by diffusivity D), representing heat uptake by the deep 
ocean. A mixed-layer surface box has also been added in previous studies to add realism (Oeschger et al., 1975; 
Hansen et al., 1985; Fraedrich et al., 2004) although here we use just the diffusion equation for simplicity. The model 
is described by a partial differential equation:

	
D

T
t

T
z

2

2
=

∂
∂

∂
∂ 	 (25)

with flux boundary conditions

	
D− = −

=
ρ λ∂

∂
c

T
z

Q t T t( ) (0, ),p
z 0 	 (26)

	

T
z

0.
z zmax

=
=

∂
∂ 	 (27)

where ρ and cp are the density and specific heat capacity of water, respectively. The maximal depth of the ocean, zmax, 
is taken to be infinite. The temperature is now a function of both depth and time, T z t( , ), although our interest is only 
in the surface temperature T t(0, ).

In contrast to the one- and two-box models, the ocean is modelled as a vertical continuum rather than a finite num-
ber of well-mixed boxes. As heat is diffused down the water column with time, the effective heat capacity increases 
as the heat sees more ocean. This model can also be thought of as an M-box model where M is very large and each 
well-mixed box is very thin resulting in a continuum of (M) timescales. The diffusion model reduces to a one-box 
model when times of interest are larger than the time taken for heat to be well diffused throughout the water column, 
i.e. when Dt z /max

2> . For ocean depths of zmax = 4000 m and typical diffusivities of D = 5 × 10−5 m2 s−1, this happens 
when t > 10 000 years, and so this limiting case is not met for the application here.

The linear response function for surface temperature T t(0, ) can be found using Laplace transforms on equations 
(25) and (26) to be

	

g t
t

t
e t

(0, )
( ) 1

erfc
D

t
D

D D








=





−











λ πτ τ τ

Θ τ

	 (28)
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A timescale, τD, can be identified in this model as =τ ρ

λ

D
D

cp
2 2

2 . τ 25yearsD∼  for the mean value of D found in CM13 

(Caldeira and Myhrvold, 2013). One needs to be aware of an unphysical infinity in g t(0, ) at t = 0 because of the time 
dependence of the effective heat capacity. At t = 0, this results in zero effective heat capacity and therefore an infinite 
response. In reality, energy is not absorbed in an infinitely thin surface layer and thus care needs to be taken when 
calculating at t = 0.

The power spectrum at the surface can also be found using either Laplace or Fourier transforms. This is given by

	

| | =




 + +






T(0, )

1

1 2
.

Q

D D

2
2

2
ω

σ

λ ω τ ω τ
	 (29)

The diffusion model therefore predicts a pink spectrum, i.e. power scales inversely proportional to ω−1 in contrast to 
the red spectra predicted by the one- and two-box models.

To obtain the autocovariance function at z = 0, we start with the power spectrum and Fourier transform it using 
equation (7):

	

σ

λ τ τ π τ

τ π τ

τ

τ
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2
erfi

1
E

erfc
1

E

Q

D

t

D D

t

D D

2

2 1

1

D

D









=


















 +




−











−














 −




















−

	 (30)

this rather long exact expression can be well approximated more compactly as
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D D
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	 (31)

where the exponential integral xE ( )1  is defined as ∫ ∞ e
t

E (x) dt
x

t

1 =
−

. Unfortunately, R t( 0) T
2σ= =  is also infinite because 

of the unphysical zero effective heat capacity. T
2σ  can however be approximated by taking a very small but finite time, 

t0. Starting with equation (31) and Taylor expanding the exponential integral to zeroth order around t = 0 results in
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where γ π= − −c t2 log( )EM0 0 , γ ≈ 0.577EM  is the Euler–Mascheroni constant and in the second line, the approximation 

= −x c x clog c0
1

00  has been used. This approximation gets better for larger c0 (smaller t0). So for small t0
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and the autocorrelation function is
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which is purely a function of Dτ .
Rearranging equation (34) and combining with the equation for ECS (equation (1)) gives

	
ECS

c

Q CO

Q
D

0

2 2π
σ

Ψ×=
	 (36)

where

	 .D T Dσ τΨ = 	 (37)

Or in terms of observables

	

σ πΨ α( )E
D

T
c

1
1

2
T0 1

=
−

	 (38)

where xE ( )1
1−  is defined as the inverse of the exponential integral. The linear Ψ–ECS proportionality is not true for 

the diffusion model. However, comparing equation (37) with similar for one- and two-box models (equation (13)), if

	 −

1

log
D

T1

τ
α

∝
	 (39)

is approximately true then the linear ECS–Ψ proportionality is also approximately true for the diffusion model. By 
plotting one against the other in Figure 1, this is the case for the range of values of τD applicable to CMIP5 models 
( [10, 60]Dτ ∈  years in CM13). α T1  is calculated from the exact formula, equation (30).

3.  Comparison with CMIP5 models and observations

Theoretical autocorrelation functions and power spectra predicted by the conceptual models are shown in Figure 2 
for typical values found in fits to the CMIP5 models (Caldeira and Myhrvold, 2013; Geoffroy et al., 2013). One- 
and two-box autocorrelation functions and power spectra are very similar for timescales < 100 years. Power spectra 
in these models have the same T( ) 2 2ω ω∝ −  red power spectra. In contrast to the box models, the diffusion model 
has a faster drop off in autocorrelation but a slower approach to equilibrium and a power spectrum that predicts a 
T( ) 2 1ω ω∝ −  pink power spectrum.

For comparison with the conceptual plots, the CMIP5 historical runs (coloured lines) and the HadCRUT4 his-
torical observational data set (Morice et al., 2012) (thick black line) are shown in Figure 3. The power spectra of the 
HadCRUT4 observations and CMIP5 models show approximately a −T( ) 2 1ω ω∝  pink spectrum most closely resem-
bled by the diffusion model. The dotted white line is shown as a guide to this proportionality. High sensitivity CMIP5 
models also generally have higher autocorrelation. The HadCRUT4 autocorrelation is more representative of the low 
sensitivity models, consistent with the findings of CHW18.

We have used detrended CMIP5 historical simulations as a comparison to observations can also be made and an 
emergent constraint obtained. However, conceptual model theoretical relations have been derived assuming white 
noise external forcing as a parameterization of internal variability. The CMIP5 piControl experiments are the clos-
est analogue to this simplification and one may wonder whether the same relations hold in these experiments as it is 
known the forced response may not always be the same as the response to internal variability (Lucarini and Sarno, 
2011; Gritsun and Lucarini, 2017). Power spectra and autocorrelation functions for the piControl experiments are 
broadly the same as Figure 3 (not shown). The linear Ψ–ECS emergent relationships are also similarly strong in both 
piControl and historical simulations having correlations of r = 0.68 and r = 0.77, respectively. The higher correlation in 
the historical experiment resulting in a reduced uncertainty emergent constraint is theoretically expected when there is 
common forcing across the model ensemble (see Cox et al., 2018b). In this case, the common forcing in the historical 
experiment is provided by the increasing concentrations of greenhouse gases, aerosols and volcanic eruptions.

There are differences in the emergent relationships however. In Figure 4a, the emergent relationships for the piCon-
trol and historical have different gradients. This is due to increased effective forcing in the historical simulations from 
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residual volcanic, aerosol and greenhouse gas forcing remaining after the detrending procedure. From equation (12), 
an inverse relationship with the magnitude of the effective forcing Qσ  is expected. When Ψ is divided by the estimated 
forcing, σ σ∼N Q, in Figure 4b, gradients are very similar. Forcing has been inferred in the CMIP5 models from the net 
top-of-atmosphere radiative flux N where −N Q Tλ≈  with standard deviation Nσ .

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
0.62

0.64

0.66
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0.72

0.74

true function
best linear fit

Figure 1.  Dτ  versus 
− α

1

log T1

 for the diffusion model. If these two functions are linearly proportional, then Ψ is also linearly 

proportional to ECS for the diffusion model. Although it is slightly nonlinear, for this range of values (solid line) linearity seems to 
be a good approximation (dotted line). T1α  is calculated from the exact formula, equation (30) with t 100

6= −  years (~1 min) and 
τ ∈ [10, 60]D  years. This spans the range of values of τD found in fits to CMIP5 models (Caldeira and Myhrvold, 2013).
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Figure 2.  Autocorrelation, α t( )T , (left) and power spectrum, ωT( ) 2, (right) for the three conceptual models. λ σ 1Q= =  are the 
same in all curves, while = = 4fτ τ  years for the one- and two-box models. For the two-box model = 250sτ  years and =a 3/5f , 
a 2/5s =  (these are the mean values found by Geoffroy et al. (2013) in fits to the CMIP5 models). For the diffusion model, τ = 25D  
years. Power spectra and autocorrelation functions are roughly the same for one- and two-box models at timescales less than 
a decade. For short periods, the diffusion model has a ω ω∝T( ) 2 1−  (power proportional to period) pink spectrum, whereas the 
one- and two-box models show a T( ) 2 2−ω ω∝  (power proportional to the square of the period) red spectra.
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4.  Discussion and conclusions

All three conceptual models have both physical similarities and deficiencies relative to the CMIP5 models and the 
real Earth system. The one-box model only really has any physical justification when the timescales of interest are 
dominated by the well-mixed atmosphere and ocean surface layer. This has led some to question the use of the one-
box model by CHW18 to motivate their emergent constraint between ECS and Ψ, a statistic dominated by the fast 
timescale processes, e.g. Rypdal et al. (2018). However, in this article, we have shown that a near-linear relationship is 
to be expected between ECS and Ψ for more realistic conceptual models. For the one- and two-box models, we were 
able to find analytical relations to show this. Semi-analytical relations for the diffusion model also show a similar 
near-linear relationship.

Even though a linear proportionality between Ψ and ECS is expected in the conceptual models for regions of par-
ameter space applicable to CMIP5 models, each of the conceptual models predicts different temperature responses. 
The one-box model cannot reproduce the long timescale behaviour of the two-box or diffusion model, and neither the 
one- or two-box models can mimic the observed and CMIP5 power spectra. Of the three, the diffusion model repro-
duces the power spectra of the CMIP5 models and the observations most closely although it is more difficult to work 
with and has some deficiencies as an analogue to the real climate system. Combining a well-mixed atmosphere-surface 
ocean box with a diffusive continuous deep ocean (Oeschger et al., 1975; Hansen et al., 1985; Fraedrich et al., 2004), 
although adding another layer of complexity and making the model less analytically amenable, would add physical 
realism. We suspect this would produce a similar linear relation to the one- and two-box models as well as mimicking 
the CMIP5 and HadCRUT4 power spectra due to the timescale separation between surface mixed and deep layers.

In conceptual models, we therefore expect to find emergent relationships between ECS and short-term variability 
(e.g. as measured by Ψ). However, the underlying models considered here remain deliberately very simple compared 
with the GCMs we are using to define emergent constraints. It is therefore vital that we continue to check that our 
conceptual models provide useful insights into the spread of projections from GCMs. We see this as a form of hypoth-
esis testing, in which a conceptual model is proposed, an emergent relationship between variability and sensitivity 
is predicted based-on that conceptual model, and then that predicted emergent relationship is checked against the 
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Figure 3.  Autocorrelation, t( )Tα , (left) and power spectrum, ωT( ) 2, (right) for the CMIP5 model historical runs. The CMIP5 models 
used are the same as in CHW18 (Cox et al., 2018a). Red lines are higher sensitivity models (λ < 1 W m−2 K−1), while blue lines are 
lower sensitivity models (λ ≥ 1 W m−2 K−1). The black line is the (historical) HadCRUT4 observational dataset. The white dotted line 
in the right-hand power spectrum plot is a guide to show the  pink spectrum predicted by the diffusion model. The power spectra 
have been smoothed with a 25 point moving average window.
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Figure 4.  (a) ECS versus Ψ emergent relationships in the historical (blue) and piControl (black) CMIP5 experiments. Each letter 
plotted is a CMIP5 model and corresponds to the same used in CHW18 (model-letter correspondence is given in Table 1). The emer-
gent relationship is calculated between 1880 and 2015 for the historical experiment and for the first 135 years of piControl using 
the same methodology of CHW18. The gradient of the emergent relationship (dashed line) is theoretically predicted to be smaller 
with increased forcing in the experiment. This is why the historical run with its volcanic, greenhouse gas, aerosol and internal forc-
ing has a shallower gradient than the control run. (b) is the same plot with Ψ renormalized by the estimated forcing from σN, the 
standard deviation of the top-of-atmosphere radiative forcing. Emergent relationships then have a very similar gradient, illustrat-
ing the inverse proportionality of the gradient to the forcing in (a).

Table 1.  CMIP5 models used in Figure 4 (letters in the first column identify the models) and in CHW18

Model ECS (K) λ (W m−2 K−1) Q2 CO2×  (W m−2)

a ACCESS1-0 3.8 0.8 3.0
b CanESM2 3.7 1.0 3.8
c CCSM4 2.9 1.2 3.6
d CNRM-CM5 3.3 1.1 3.7
e CSIRO-MK3-6-0 4.1 0.6 2.6
f GFDL-ESM2M 2.4 1.4 3.4
g HadGEM2-ES 4.6 0.6 2.9
h inmcm4 2.1 1.4 3.0
i IPSL-CM5B-LR 2.6 1.0 2.7
j MIROC-ESM 4.7 0.9 4.3
k MPI-ESM-LR 3.6 1.1 4.1
l MRI-CGCM3 2.6 1.2 3.2
m NorESM1-M 2.8 1.1 3.1
n bcc-csm1-1 2.8 1.1 3.2
o GISS-E2-R 2.1 1.8 3.8
p BNU-ESM 4.1 1.0 3.9

Values are taken from IPCC AR5 table 9.5 (Collins et al., 2013).
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ensemble of full-form GCMs. This approach requires that the search for emergent constraints becomes more theory 
led than it has been to date, but would also guard against spurious relationships that could easily arise from blind 
data-mining of the many diagnostics available from modern GCMs. Most importantly, in our view, such theory-led 
hypothesis testing is much more likely to improve understanding of the climate system than purely statistically derived 
emergent constraints.
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