
Emulating computer models with step-discontinuous outputs

using Gaussian processes

Hossein Mohammadi ∗1, 2, Peter Challenor1, 2, Marc Goodfellow1, 2, and Daniel
Williamson1

1College of Engineering, Mathematics and Physical Sciences, University of Exeter,
Exeter, UK

2EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter,
Exeter, UK

Abstract

In many real-world applications, we are interested in approximating functions that
are analytically unknown. An emulator provides a “fast” approximation of such func-
tions relying on a limited number of evaluations. Gaussian processes (GPs) are com-
monplace emulators due to their properties such as the ability to quantify uncertainty.
GPs are essentially developed to emulate smooth, continuous functions. However, the
assumptions of continuity and smoothness is unwarranted in many situations. For ex-
ample, in computer models where bifurcation, tipping points occur in their systems of
equations, the outputs can be discontinuous.
This paper examines the capacity of GPs for emulating step-discontinuous functions us-
ing two approaches. The first approach is based on choosing covariance functions/kernels,
namely neural network and Gibbs, that are most appropriate for modelling disconti-
nuities. The predictive performance of these two kernels is illustrated using several
examples. The results show that they have superior performance to standard covari-
ance functions, such as the Matérn family, in capturing sharp jumps. The second
approach is to transform the input space such that in the new space a GP with a stan-
dard kernel is able to predict the function well. A parametric transformation function
is used whose parameters are estimated by maximum likelihood.
Keywords: Covariance function, Discontinuity, Emulator, Gaussian processes, Warp-
ing.

1 Introduction

Computer models (or simulators) are widely used in many applications ranging from
modelling the ocean and atmosphere [1, 6] to healthcare [2, 7]. By simulating real-

∗Corresponding Author: h.mohammadi@exeter.ac.uk

1

ar
X

iv
:1

90
3.

02
07

1v
1

 [
st

at
.M

E
]

 5
 M

ar
 2

01
9

world phenomena, computer models allow us to better understand/analyse them as
a complement to conducting physical experiments. However, on the one hand, the
simulators are “black box” since they are often available as commercial packages, and
on the other hand, they are computationally expensive. The latter is due to the fact
that each simulation outcome is actually the solution of some complex mathematical
equations, such as partial differential equations.

One of the main purposes of using a computer model is to perform prediction.
However, such prediction is uncertain because simulators are simplifications of physical
phenomena. In addition, due to factors such as lack of knowledge or measurement
error, the inputs to the model are subject to uncertainty which yield uncertain outputs.
Under this condition, decision makers need to know how good the prediction is. In
other words, they need an estimation of the uncertainty propagated through the model
[23]. This entails running the simulator very many times which is impractical in the
context of time-consuming simulators. To overcome this, one can replace the simulator
with an emulator.

Emulation is a statistical approach for representing unknown functions by approx-
imating the input/output relationship based on evaluations at a finite set of points.
Gaussian process (GP) models (also known as kriging) are widely used to predict the
outputs of a simulator and are regarded as an important class of emulators [24]. GPs
are nonparametric probabilistic models that provide not only a mean predictor but
also a quantification of the associated uncertainty. They have become a standard tool
for the design and analysis of computer experiments over the last two decades. This
includes uncertainty propagation [22, 18], calibration [17, 14], design of experiments
[28, 26], optimisation [16, 3] and sensitivity analysis [23, 15].

GPs can be applied to fit any smooth, continuous function [20]. The basic assump-
tion when using a GP emulator is that the unknown function depends smoothly on its
input parameters. However, there are many situations where the model outputs are
not continuous. It is very common in computer models that at some regions of the
input space, a minor change in the input parameters leads to a sharp jump in the out-
put. For example, models described by nonlinear differential equations often exhibit
different modes (phases). Shifting from one mode to another relies on a different set
of equations which raises a discontinuity in the model output.

To our knowledge, there are only a few studies that investigate the applicability
of GPs in modelling discontinuities. The reason may be due to the fact that they
are essentially developed to model smooth and continuous surface forms. However,
a natural way of emulating discontinuous functions is to partition the input space by
finding discontinuities and then fit separate GP models within each partition. In [4], for
example, a simulator with tipping point behaviour is emulated such that the boundary
of the regions with discontinuity is found first and the simulator output is emulated
separately in each region. It is reported that finding the discontinuous regions is a
time-consuming operation.

The treed Gaussian process (TGP) [11] is a popular model introduced by Gramacy
and Lee. The TGP makes binary splits (parallel to the input axes) on the value of a
single variable recursively, i.e., each partition (leaf of the tree) is a subregion of the
previous section. Then, an independent stationary GP emulator is applied within each
section. The disadvantage of the TGP is that it requires many simulation runs which

2

is not affordable in the context of computationally expensive simulators. A similar
approach is presented in [25] where Voronoi tessellation is applied to partition the
input space. The procedure uses the reversible jump Markov chain Monte Carlo [12]
that is time-consuming.

Here we provide an alternative perspective in which a single kernel is used to capture
discontinuities. This includes two nonstationary covariance functions, namely neural
network and Gibbs, and the idea of transforming the input space. It is shown how
these techniques coming from machine learning can be applied to model discontinuous
functions in the field of computer experiments. The advantage is that there is no need
to detect discontinuous boundaries separately which is burdensome.

2 Overview of Gaussian process emulators

The random (or stochastic) process Z = (Z(x))x∈D, i.e. a collection of random vari-
ables indexed by the set D, is a Gaussian process if and only if ∀ N ∈ N, ∀ xi ∈
D,

(
Z(x1), . . . , Z(xN)

)>
has a multivariate normal distribution on RN [27]. Suppose

(Ω,B,P) is the probability space on which Z(x) is defined:

Z : (x, ω) ∈ D × (Ω,B,P) 7−→ Z(x).

For a given ωo ∈ Ω, Z(x, ωo) is called a realisation (or sample path) and for a given
xo ∈ D, Z(xo, ω) is a Gaussian random variable. In this framework, GPs can be
regarded as the probability distribution over functions such that the function being
approximated is considered as a particular realisation of the distribution. Herein,
f : D 7−→ F denotes the unknown function that maps the input space D ⊂ Rd to the
output space F . In this work, F = R.

A GP is fully determined by its mean function µ(.) and covariance kernel k(., .)
which are defined as:

Z ∼ GP (µ(.), k(., .)) ;
µ : D 7−→ R , µ(x) = E [Z(x)]
k : D ×D 7−→ R , k(x,x′) = Cov (Z(x), Z(x′)).

While µ(.) could be any function, k(., .) needs to be symmetric positive definite. The
function µ(.) captures the global trend and k(., .) controls the structure of sample paths
such as differentiability, symmetry, periodicity, etc. In this work, an unknown constant
function is used as the GP mean (µ(x) = µ) which is estimated from data, see Equation
(5).

Generally, covariance functions are divided into two groups: stationary and nonsta-
tionary. Stationary kernels depend only on the separation vector x − x′. As a result,
they are translation invariant in the input space:

k(x,x′) = k(x + τ ,x′ + τ) , τ ∈ Rd. (1)

Nonstationary kernels are applied to model functions that do not have uniform smooth-
ness within the input space and change significantly in some regions compared to others
[32]. In this paper, we are interested in kernels that are able to model discontinuity.

3

Sections 3 and 4 study two nonstationary covariance functions with this capability,
namely neural network and Gibbs.

A list of the most common univariate stationary kernels is given in Table 1. They
can be generalised to d-dimensional space using the tensor product of one-dimensional
forms. For example, a d-dimensional squared exponential (SE) kernel is expressed by

kSE(x,x′) = σ2
d∏

i=1

exp

(
−|xi − x

′
i|2

2l2i

)
,

where the parameters σ2 and li are called process variance and correlation length-scale
along the i-th coordinate, respectively. The former determines variation of sample
paths along y-axis and the latter controls how quickly they vary along x-axis. In
this paper, these parameters are estimated via maximum likelihood estimation (MLE)
[27, 16], see Appendix A. Figure 1 shows the shape of the SE kernel and two sample
paths with different length-scales.

Covariance function Formula

Exponential σ2 exp
(
− |x−x′|l

)

Matérn 3/2 σ2
(

1 +
√
3|x−x′|
l

)
exp

(
−
√
3|x−x′|
l

)

Matérn 5/2 σ2
(

1 +
√
5|x−x′|
θ + 5(x−x′)2

3l2

)
exp

(
−
√
5|x−x′|
l

)

Squared exponential (SE) σ2 exp
(
− |x−x′|2

2l2

)

Table 1: The most common univariate stationary covariance functions.

The GP prediction of f is obtained by conditioning Z on function evaluations. Let

X = {x1, . . . ,xn} denote n sample locations in the input space and y =
(
f(x1), . . . , f(xn)

)>
represent the corresponding outputs (observations). Together, the set A = {X,y} is
called the training set. The conditional distribution of Z on A is again a GP

Z|A ∼ GP (m(.), c(., .)) , (2)

specified by

m(x) = µ̂+ k(x)>K−1 (y − µ̂1) (3)

c(x,x′) = k(x,x′)− k(x)>K−1k(x′)

+
(
1− 1>K−1k(x)

)> (
1>K−11

)−1 (
1− 1>K−1k(x′)

)
. (4)

Here, µ̂ is the best linear unbiased estimate of µ obtained by

µ̂ =
1>K−1y
1>K−11

. (5)

4

x

-4

-2

0

2
4

x ′

-4

-2

0

2
4

0.0

0.2

0.4

0.6

0.8

1.0

-4 -2 0 2 4

-2
-1

0
1

2
3

x

kSE(x, x
′; l = 0.1)

kSE(x, x
′; l = 1)

Figure 1: Left: shape of the squared exponential kernel. Right: sample paths corresponding
to the SE kernel with l = 0.1 (solid) and 1 (red dased). In both cases σ2 = 1

Also, k(x) =
(
k(x,x1), . . . , k(x,xn)

)>
, K is an n×n covariance matrix whose elements

are: Kij = k(xi,xj) , ∀i, j ; 1 ≤ i, j ≤ n and 1 is a n × 1 vector of ones. We call
m(x) and s2(x) = c(x,x) the GP mean and variance which reflect the prediction and
the associated uncertainty at x, respectively.

If the covariance function k(., .) is stationary, the predictive mean expressed by
Equation (3) interpolates the points in the training set. Also, the prediction uncertainty
(Equation (4)) vanishes there. To clarify, we obtain the prediction and the associated
uncertainty at x = xj , the j-th training point. In this case, k(xj) is equivalent to
the jth column of the covariance matrix K. Because K is a positive definite matrix,
the term k(xj)>K−1 yields vector ej = (0, . . . , 0, 1, 0, . . . , 0) whose elements are zero
except the jth element which is one. As a result

m(xj) = µ̂+

ej︷ ︸︸ ︷
k(xj)>K−1(y − µ̂1) = f(xj), (6)

s2(xj) = k(xj ,xj)− k(xj)>K−1k(xj)

+

(
1− 1>K−1k(xj)

)2

1>K−11
= 0, (7)

since k(xj) = (k(xj ,x1), . . . ,

σ2

︷ ︸︸ ︷
k(xj ,xj), . . . , k(xj ,xn))>.

5

3 Neural network kernel

A neural network (NN) kernel is derived from a one-hidden-layer neural network with
infinite number of hidden units (neurons) [31]. Let f̃(x) is a neural network with J
units that maps inputs to outputs according to

f̃(x) = b+

J∑

j=1

vjh(x; uj), (8)

where b is the intercept, vjs are weights to the units, h(.) represents the transfer
(activation) function in which weight uj is assigned to the input x. Suppose b and every
vj have zero mean Gaussian distribution with variances σ2

b and σ2
v/J , respectively. If

ujs have independent and identical distribution, then the mean and covariance of f̃(x)
are (w represents all weights together)

Ew

[
f̃(x)

]
= 0 , (9)

Cov
(
f̃(x), f̃(x′)

)
= Ew

[
(f̃(x)− 0)(f̃(x′)− 0)

]

= σ2
b +

1

J

J∑

j=1

σ2
vEu

[
h(x; uj)h(x′; uj)

]

= σ2
b + σ2

vEu

[
h(x; u)h(x′; u)

]
. (10)

Since f̃(x) is the sum of independent random variables, it tends towards a normal dis-
tribution as , J →∞ according to the central theorem. In this situation, any collection{
f̃(x1), . . . , f̃(xN)| ∀N ∈ N

}
has a joint normal distribution and f̃(x) becomes a zero

mean Gaussian process with a covariance function specified in Equation (10).
The NN kernel is a particular case of the covariance structure expressed by Equation

(10) in which h(x; u) = erf
(
u0 +

∑d
j=1 ujxj

)
, erf(.) is the error function: erf(x) =

2√
π

∫ x
0

exp(−t2)dt, and u ∼ N (0,Σ) [31]. This leads to

kNN (x,x′) =
2σ2

π
arcsin

(
2x̃>Σx̃′√

(1 + 2x̃>Σx̃)(1 + 2x̃′>Σx̃′)

)
. (11)

where x̃ = (1, x1, . . . , xd)
> is the augmented input vector and Σ is a diagonal matrix

with elements σ2
0 , σ

2
1 , . . . , σ

2
d, i.e., the variances of u0, u1, . . . , ud. The length-scale of the

jth coordinate is of order 1/σj ; the larger σj , the sample functions vary more quickly in
the jth coordinate [19, 27]. This is illustrated in Figure 2 where the shapes of the NN
kernel for two different values of σ1 and the corresponding sample paths are plotted.
The NN kernel is nonstationary, see Figure 2 and also Equation (11) which does not
depend on x− x′. It can take negative values contrary to classic covariance functions
such as the SE kernel depicted in Figure 1. In this kernel due to the superposition of
the function erf(u0 + u1x), sample paths tend to constant values for large positive or
negative x [27]. Also, each observation has a correlation less than one with itself:

Corr(Z(x), Z(x)) = kNN (x,x;σ2 = 1) =
2

π
arcsin

(
2x̃>Σx̃

1 + 2x̃>Σx̃

)
< 1, (12)

6

x

-4

-2

0

2

4

x
′

-4

-2

0

2

4

-0.5

0.0

0.5

x

-4

-2

0

2

4

x
′

-4

-2

0

2

4

-0.5

0.0

0.5

-4 -2 0 2 4

-1
.0

-0
.5

0
.0

0
.5

1
.0

x

-4 -2 0 2 4

-1
.0

-0
.5

0
.0

0
.5

1
.0

x

Figure 2: Top: The shapes of the NN kernel for two different values of σ1: 1 (left) and 50
(right). Bottom: Two sample paths corresponding to the kernels on top. The kernel with
σ1 = 50 is a more suitable choice for modelling discontinuities. Here, σ = σ0 = 1.

7

since arcsin
(

2x̃>Σx̃
1+2x̃>Σx̃

)
< π/2. Thus, the mean predictor obtained by the NN kernel

does not interpolate the points in the training data and the prediction variances are
greater than zero there.

Figure 3 compares the Matérn 3/2 and NN kernels in modelling a step-function
defined as

f(x) =

{
−1 x1 ≤ 0

1 x1 > 0 .
(13)

As can be seen, the NN kernel has superior performance to Matérn 3/2 in both 1D
and 2D cases. The predictive mean of the GP with Matérn 3/2 neither captures
the discontinuity nor performs well in the flat regions. In the NN kernel, the MLE
estimation of the parameter that controls the horizontal scale of fluctuation, i.e. σ1,
takes its maximum possible value which is 103.

Figure 4 illustrates a function whose step-discontinuity is located at x = 0.5. As
can be seen from the picture on the left of Figure 4, the NN kernel is not able to model
f well. This problem can be solved if the NN kernel is modified as follows

k(x, x′) =
2σ2

π
arcsin


 2x̃>τ Σ−1x̃′τ√

(1 + 2x̃>τ Σ−1x̃τ)(1 + 2x̃′>τ Σ−1x̃′τ)


 , (14)

where x̃τ = (1, x − τ)> and is estimated together with other parameters using MLE.
In this case, τ̂ = 0.457 which is an estimation for the location of the discontinuity.

4 Gibbs kernel

Mark Gibbs [10] in his PhD thesis derived the following covariance function:

kGib(x,x
′) = σ2

d∏

i=1

(
2li(x)li(x

′)
li(x)2 + li(x′)2

)1/2

exp

(
−

d∑

i=1

(xi − x′i)2
li(x)2 + li(x′)2

)
, (15)

where li(.) is the length-scale in the ith input dimension. The length-scales could be any
arbitrary positive functions of x. This allows the kernel to model sudden variations in
the observations: a process with Gibbs kernel is smooth at regions of the input space
where the length-scales are relatively high and it changes rapidly where the length-
scales reduce. Note that the correlation is one when x = x′, i.e. k(x,x) = 1. In this
work, we use identical length-scale functions for all dimensions:

kGib(x,x
′) = σ2

(
2l(x)l(x′)

l2(x) + l2(x′)

)d/2
exp

(
−
∑d
i=1(xi − x′i)2
l2(x) + l2(x′)

)
. (16)

Figure 5 shows the shapes of the Gibbs kernel for three different length-scale func-
tions and corresponding sample paths. As can be seen, it is possible to model both
nonstationary and discontinuous functional forms with the Gibbs kernel if a suitable
length-scale function is chosen. For example, the nonstationary function depicted in
Figure 6 varies more quickly in the region x ∈ [0, 0.3] than in the region [0.3, 1]. Thus,

8

-2 -1 0 1 2-2
.0

-1
.0

0.
0

0.
5

1.
0

1.
5

x

f

f
Prediction, m(x)
m(x)± 2s(x)
Training data

-2 -1 0 1 2

-1
.0

-0
.5

0.
0

0.
5

1.
0

x
f

f
Prediction, m(x)
m(x)± 2s(x)
Training data

x 1

-2

-1

0

1

2
x
2

-2

-1

0

1

2

-1.0

-0.5

0.0

0.5

1.0

x
1

-2

-1

0

1

2

x 2

-2

-1

0

1

2
-1.0

-0.5

0.0

0.5

1.0

Figure 3: Emulation of the step-function f defined in (13) with the Matérn 3/2 (left panel)
and NN (right panel) kernels in 1D (top row) and 2D (bottom row). Red points are the
training data. In the NN kernel, 1D: σ̂1 = 103 which is the upper bound in the likelihood
optimisation. 2D: σ̂1 = 103 (corresponding to x1) and σ̂1 = 10−2 (corresponding to x2)
which is the upper bound in the likelihood optimisation.

9

-2 -1 0 1 2

-6
-4

-2
0

2

x

f

f
Prediction, m(x)
m(x)± 2s(x)
Training data

-2 -1 0 1 2

-1
.0

-0
.5

0.
0

0.
5

1.
0

x

f

f
Prediction, m(x)
m(x)± 2s(x)
Training data

Figure 4: Left: The NN kernel given by Equation (11) is not able to well-approximate
f (dashed red) whose discontinuity is at 0.5. Right: The modified NN kernel based on
Equation (14) can well-model f . The MLE estimation of τ is 0.457 which is the estimated
location of the discontinuity.

a suitable length-scale function should have “small” values when x ∈ [0, 0.3] and larger
values when x ∈ [0.3, 1]. The length-scale used for the Gibbs kernel (right picture) is
of the form l(x) = c1x

2 + c2 whose unknown parameters c1 and c2 are estimated by
MLE. This choice of the length-scale allows the GP to predict f with a higher accu-
racy in comparison to the GP with the Matérn 3/2 kernel (left picture). The estimated
parameters of the length-scale are ĉ1 ≈ 45.63 and ĉ2 ≈ 0.11 which are in line with the
nonstationarity of f .

In this paper, the Gibbs kernel with sigmoid shaped length-scale is employed to
model discontinuities. We conduct a simple experiment with four different sigmoid
functions, as the length-scale of the Gibbs kernel, to compare their performances in
emulating the step-function given by Equation (13) in 2D. The length-scales are: error
function (erf), logistic, hyperbolic tangent (tanh) and arctangent (arctan), see Table 2.
They are slightly modified to be positive: the logistic function, for example, is of the
form l(x) = 1

1+exp(c1ejx)
+c2 where c1 and c2 > 0 are constant parameters estimated by

MLE. The former controls the slope of the transition in the sigmoid function and the
latter makes l(x) strictly positive. Also, ej (in this example e1 = (1, 0)>) determines
the j-th axis in which the function is discontinuous.

The accuracy of prediction is measured by the root mean square error (RMSE)
criterion defined as

RMSE =

√√√√ 1

nt

nt∑

t=1

(
f(xt)− f̂(xt)

)2
(17)

10

-4 -2 0 2 4

0
2

4
6

8
10

12

x

l(
x
)

l(x) = 0.5x2 + 0.1

x

-4
-2

0

2

4

x
′

-4

-2

0

2
4

0.2

0.4

0.6

0.8

1.0

-4 -2 0 2 4

-2
-1

0
1

2

x

-4 -2 0 2 4

1.
0

1.
2

1.
4

1.
6

1
.8

2
.0

2
.2

x

l(
x
)

l(x) = 1
1+exp(30x) + 1

x

-4
-2

0

2

4

x
′

-4

-2

0

2
4

0.2

0.4

0.6

0.8

1.0

-4 -2 0 2 4-2
.5

-1
.5

-0
.5

0.
5

x

-4 -2 0 2 4

0
1

2
3

4

x

l(
x
)

l(x) =
{0.4 , x≤ 0

4 , x> 0

x

-4

-2

0

2
4

x ′

-4

-2

0

2
4

0.0
0.2

0.4

0.6

0.8

1.0

-4 -2 0 2 4

-2
-1

0
1

2

x

Figure 5: Left panel: three different length-scale functions. Middle panel: shapes of the
Gibbs kernel based on the corresponding length-scale functions. Right panel: two GP
sample paths with the Gibbs kernel on the left. With the Gibbs kernel, one can model
both nonstationary (first row) and discontinuous (second and third rows) functions.

11

0.0 0.2 0.4 0.6 0.8 1.0

-0
.5

0.
0

0.
5

x

f

f
Prediction (Matern 3/2)

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

x

f

f
Prediction (Gibbs)

Figure 6: GP prediction (solid blue) of a nonstationary function (dashed) with the
Matérn 3/2 (left) and Gibbs (right) kernels. The function is defined as f(x) =

sin
(
30(x− 0.9)4

)
cos (2(x− 0.9)) + (x−0.9)

2 [32] which varies more quickly in the region
x ∈ [0, 0.3] than in the region [0.3, 1]. The length-scale function used in the Gibbs kernel is
l(x) = c1x

2 + c2 whose parameters are estimated by MLE: ĉ1 ≈ 45.63 and ĉ2 ≈ 0.11. The
shaded area represents the prediction uncertainty and the red points are the training data.

12

where xt and nt represent the tth test point and the size of test set, here nt = 50. For
each length-scale, the emulation procedure is repeated 70 times with different training
sets, each of size 20, and the RMSE criterion is measured. The mean of 70 RMSEs
is demonstrated in Table 2 where the Gibbs kernel with the arctangent length-scale
function has the lowest RMSE and, therefore, best performance.

erf logistic tanh arctan

RMSE 0.031 0.063 0.033 0.029

Table 2: Mean of 70 RMSEs associated with four length-scale functions; 1) Error function:
erf(c1ejx) + c2; c2 > 1. 2) Logistic function: 1

1+exp(c1ejx)
+ c2; c2 > 0. 3) Hyperbolic

tangent: tanh(c1ejx) + c2; c2 > 1. 4) Arctangent: arctan(c1ejx) + c2; c2 > π. f is the
step-function given by Equation (13) in 2D, ej=1 = (1, 0)>. 70 different training sets are

used to build f̂ and each time the RMSE criterion is calculated based on a fixed test set
of size 50.

5 Transformation of the input space (warping)

In this section, warping or embedding is studied as an alternative approach to emulate
functions with discontinuities. The method first uses a non-linear parametric function
to map the input space into a feature space. Then, a GP with a standard kernel is
applied to approximate the map from the feature space to the output space [19, 5]. A
similar idea is used in [30] where the transformation is performed on the output space
to model non-Gaussian processes.

In warping, we assume that f is a composition of two functions

f = G ◦M : M : D 7−→ D′ , G : D′ 7−→ F , (18)

where M is the transformation function and D′ represents the feature space. The
function G is approximated by a GP relying on the training set {X̃,Y} in which X̃ =
{M(x1), . . . ,M(xn)}. Notice that D and D′ need not have the same dimensionality
[19]. For example, if the squared exponential kernel kSE : R × R 7−→ R is composed

with M(x) =
[
cos(2πx

T), sin(2πx
T)
]> ∈ R2, the result is a periodic kernel with period

T [29, 13]. In practice, a parametric family of M is selected and its parameters are
estimated together with the kernel parameters via MLE.

Such modelling is equivalent to emulate f with a GP whose covariance function k̃
is

k̃(x,x′) = k (M(x),M(x′)) . (19)

Note that k̃ is generally nonstationary even if k is a stationary kernel, see Figure 7. The
prediction (conditional mean) and the associated uncertainty (conditional variance) at

13

a generic point x read

m(x) = ˆ̃µ+ k̃(x)>K̃−1(y − ˆ̃µ1) (20)

s2(x) = k̃(x,x)− k̃(x)>K̃−1k̃(x) +

(
1− 1>K̃−1k̃(x)

)2

1>K̃−11
, (21)

where ˆ̃µ is obtained by Equation (5) replacing k with k̃. Other elements in the above
equations are calculated in the same way.

-4 -2 0 2 4

-1
.0

-0
.5

0
.0

0.
5

1.
0

x

M
(x
)

M(x) = sin(1.5x)

x

-4

-2

0

2

4
x
′

-4

-2

0

2

4

0.2
0.4
0.6

0.8
1.0

-4 -2 0 2 4

-1
.0

-0
.5

0.
0

0.
5

1.
0

x

-4 -2 0 2 4

0
.0

0
.2

0
.4

0
.6

0.
8

1.
0

1.
2

x

M
(x
)

M(x) = 1
1+exp(10x)

x

-4
-2

0

2

4

x
′

-4

-2

0

2
4

0.7
0.8
0.9
1.0

-4 -2 0 2 4

-1
.0

-0
.5

0.
0

x

Figure 7: Left panel: two different transformation functions, M(x). Middle panel: shapes
of the warped kernel k̃ (x, x′) = k (M(x),M(x′)) in which k is the squared exponential ker-
nel. Right panel: two sample paths of a GP with the covariance function k̃. As can be seen,
a sigmoid transformation function is a suitable choice for modelling step-discontinuities.

According to Figure 7 (second row), a sigmoid transformation is a suitable choice for
modelling step-discontinuities. We conduct a similar experiment, explained in Section
4, to test the performance of erf, logistic, hyperbolic tangent and arctangent func-
tions as the transformation mappings. The results are shown in Table 3 in which the
arctangent function has the best performance.

14

erf logistic tanh arctan

RMSE 0.049 0.101 0.069 0.007

Table 3: Mean of 70 RMSEs in emulating step-function f (Equation (13)) in 2D using
the warped kernel k̃(x,x′) = k (M(x),M(x′)) where k is the square exponential covariance
kernel. Four different sigmoid functions are considered for M(.): erf, logistic, tanh and
arctan. See Table 2 for the form of these mappings.

6 Conclusions

Gaussian processes are mainly used to predict smooth, continuous functions. How-
ever, there are many situations in which the output of a complex computer code has
discontinuity, e.g. when tipping points occur. This paper deals with the problem of
emulating step-discontinuous functions using GPs. Several methods, including two co-
variance kernels and the idea of transforming the input space (warping), are proposed.
The two covariance functions are neural network and Gibbs kernels whose properties
are demonstrated using several examples. Our experiments show that these techniques
have superior performance to GPs with standard kernels in capturing sharp jumps.

Acknowledgements

The authors gratefully acknowledge the financial support of the EPSRC via grant
EP/N014391/1.

References

[1] A. Adcroft, C. Hill, J-M. Campin, J. Marshall, and P. Heimbach. Overview of the
formulation and numerics of the MIT GCM. In Seminar on recent developments in
numerical methods for atmospheric and ocean modelling, pages 139–150, Shinfield
Park, Reading, September 2004.

[2] P.J. Birrell, G. Ketsetzis, N.J. Gay, B.S. Cooper, A.M. Presanis, R.J. Harris,
A. Charlett, X-S. Zhang, P.J. White, R.G. Pebody, and Angelis D. De. Bayesian
modeling to unmask and predict influenza A/H1N1 pdm dynamics in London.
Proceedings of the national academy of sciences of The United States of America,
108:18238–18243, 2011.

[3] Eric Brochu, Vlad M. Cora, and Nando de Freitas. A tutorial on Bayesian opti-
mization of expensive cost functions, with application to active user modeling and
hierarchical reinforcement learning. CoRR, abs/1012.2599, 2010.

[4] C.C.S. Caiado and M. Goldstein. Bayesian uncertainty analysis for complex phys-
ical systems modelled by computer simulators with applications to tipping points.
Communications in Nonlinear Science and Numerical Simulation, 26(1):123 – 136,
2015.

15

[5] R. Calandra, J. Peters, C. E. Rasmussen, and M. P. Deisenroth. Manifold Gaussian
processes for regression. ArXiv e-prints, 2014.

[6] Peter Challenor. The probability of rapid climate change. Significance, 1(4):155–
158, 2004.

[7] Proctor CJ., Boche D., Gray DA., and Nicoll JAR. Investigating interventions
in alzheimers disease with computer simulation models. PLoS ONE, 8(9):e73631,
2013.

[8] David Duvenaud. Automatic model construction with Gaussian processes. PhD
thesis, Computational and Biological Learning Laboratory, University of Cam-
bridge, 2014.

[9] Alexander I. J. Forrester, Andras Sobester, and Andy J. Keane. Engineering
design via surrogate modelling - A practical guide. Wiley, 2008.

[10] Mark N. Gibbs. Bayesian Gaussian processes for regression and classification.
PhD thesis, Department of Physics, University of Cambridge, 1997.

[11] Robert B. Gramacy and Herbert K. H. Lee. Bayesian treed Gaussian process mod-
els with an application to computer modeling. Journal of the American Statistical
Association, 103(483):1119–1130, 2008.

[12] Peter J. Green. Reversible jump markov chain monte carlo computation and
Bayesian model determination. Biometrika, 82:711–732, 1995.

[13] N. Haji-Ghassemi and M.P. Deisenroth. Approximate inference for long-term
forecasting with periodic Gaussian processes. In Proceedings of the International
Conference on Artificial Intelligence and Statistics (AISTATS), 2014.

[14] Dave Higdon, James Gattiker, Brian Williams, and Maria Rightley. Computer
model calibration using high-dimensional output. Journal of the American Sta-
tistical Association, 103(482):570–583, 2008.

[15] Bertrand Iooss and Paul Lemâıtre. A review on global sensitivity analysis meth-
ods. In Uncertainty Management in Simulation-Optimization of Complex Systems:
Algorithms and Applications. Springer, 2015.

[16] Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global
optimization of expensive black-box functions. Journal of Global Optimization,
13(4):455–492, 1998.

[17] Marc C. Kennedy and Anthony O’Hagan. Bayesian calibration of computer mod-
els. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
63(3):425–464, 2001.

[18] Brian A. Lockwood and Mihai Anitescu. Gradient-enhanced universal kriging for
uncertainty propagation. Nuclear Science and Engineering, 170(2):168–195, 2012.

[19] D. J. C. MacKay. Introduction to Gaussian processes. In C. M. Bishop, editor,
Neural Networks and Machine Learning, pages 133–166. Springer-Verlag, 1998.

[20] Radford M. Neal. Regression and classification using Gaussian process priors.
pages 475–501. Bayesian Statistics 6, Oxford University Press, 1998.

16

[21] H. B. Nielsen, S. N. Lophaven, and J. Søndergaard. DACE – A Matlab krig-
ing toolbox – version 2.0. Informatics and Mathematical Modelling, Technical
University of Denmark, DTU, 2002.

[22] Jeremy Oakley. Estimating percentiles of uncertain computer code outputs. Jour-
nal of the Royal Statistical Society: Series C (Applied Statistics), 53(1):83–93,
2004.

[23] Jeremy E. Oakley and Anthony O’Hagan. Probabilistic sensitivity analysis of
complex models: a Bayesian approach. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 66(3):751–769, 2004.

[24] A. O’Hagan. Bayesian analysis of computer code outputs: A tutorial. Reliability
Engineering & System Safety, 91(10-11):1290–1300, 2006.

[25] C. A. Pope, J. P. Gosling, S. Barber, J. Johnson, T. Yamaguchi, G. Feingold, and
P. Blackwell. Modelling spatial heterogeneity and discontinuities using Voronoi
tessellations. ArXiv e-prints, 2018.

[26] Luc Pronzato and Werner G. Müller. Design of computer experiments: space
filling and beyond. Statistics and Computing, 22(3):681–701, 2012.

[27] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for
machine learning (adaptive computation and machine learning). The MIT Press,
2005.

[28] Jerome Sacks, William J. Welch, Toby J. Mitchell, and Henry P. Wynn. Design
and analysis of computer experiments. Statistical Science, 4(4):409–423, 1989.

[29] Matthias Seeger. Bayesian Gaussian process models: PAC-Bayesian generalisa-
tion error bounds and sparse approximations. PhD thesis, University of Edinburgh,
2003.

[30] Edward Snelson, Carl Edward Rasmussen, and Zoubin Ghahramani. Warped
Gaussian processes. In Advances in Neural Information Processing Systems
(NIPS), pages 337–344. MIT Press, 2004.

[31] Christopher K. I. Williams. Computing with infinite networks. In M. C. Mozer,
M. I. Jordan, and T. Petsche, editors, Advances in Neural Information Processing
Systems 9, pages 295–301. MIT Press, 1997.

[32] Ying Xiong, Wei Chen, Daniel Apley, and Xuru Ding. A non-stationary
covariance-based kriging method for metamodelling in engineering design. In-
ternational Journal for Numerical Methods in Engineering, 71(6):733–756, 2007.

Appendix A Covariance functions/kernels

Covariance kernels are positive definite (PD) functions. The symmetric function k :
D ×D 7−→ R is PD if

N∑

i=1

N∑

j=1

αiαjk(xi,xj) ≥ 0

17

for any N ∈ N points x1, . . . ,xN ∈ D and α = [α1, . . . , αN]> ∈ RN . If k is a PD
function, then the N × N matrix K whose elements are Kij = k(xi,xj) is a positive

semidefinite matrix because
∑N
i=1

∑N
j=1 αiαjKij ≥ 0.

Checking the positive definiteness of a function is not easy. One can combine the
existing kernels to make a new one. For example, if k1 and k2 are two kernels, the
function k obtained by the following operations is a valid covariance kernel:

k(x,x′) = k1(x,x′) + k2(x,x′)

k(x,x′) = k1(x,x′)× k2(x,x′)

k(x,x′) = ck1(x,x′), c ∈ R+

k(x,x′) = k1(x,x′) + c, c ∈ R+

k(x,x′) = g(x)k1(x,x′)g(x′) for any function g(.).

We refer the reader to [27, 8] for a detailed discussion about the composition of covari-
ance functions. It is also possible to compose kernels with a function as explained in
Section 5.

Usually, a covariance function depends on some parameters p which are unknown
and need to be estimated from data. In practice, a parametric family of k is chosen
first. Then the parameters are estimated via maximum likelihood estimation (MLE),
cross-validation or (full) Bayesian approaches [27]. In the sequel, we describe the MLE
method as is used in this paper.

The likelihood function measures the adequacy between a probability distribution
and the data; a higher likelihood function means that observations are more consistent
with the assumed distribution. In the GP framework, as observations are presumed to
have the normal distribution, the likelihood function is

p (y|X,p, µ) =
1

(2π)n/2|K|1/2 exp

(
− (y − µ1)

>
K−1 (y − µ1)

2

)
, (22)

where |K| is the determinant of the covariance matrix. In the above equation, if µ is
unknown, it is replaced with its estimate given by Equation (5).

Usually for optimisation, it is more convenient to work with the natural logarithm
of the likelihood (log-likelihood) function which is

ln p (y|X,p, µ) = −n
2

ln(2π)− 1

2
ln |K| − (y − µ1)

>
K−1 (y − µ1)

2
. (23)

Maximising (23) is a challenging task as the log-likelihood function is often nonconvex
with multiple maxima. To do so, numerical optimisation algorithms are often applied.
We refer the reader to [21, 9] for further information.

18

	1 Introduction
	2 Overview of Gaussian process emulators
	3 Neural network kernel
	4 Gibbs kernel
	5 Transformation of the input space (warping)
	6 Conclusions
	Appendices
	A Covariance functions/kernels

