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Abstract 

Parasites are ubiquitous in wild animal populations and have wide ranging 

effects on the health, fitness and eco-evolutionary dynamics of their host 

populations. To counter parasites, hosts have evolved a myriad of defence 

strategies, but individuals vary considerably in the efficacy of these strategies, 

and so, in their susceptibility to infection. While variation can generally be 

viewed as stemming from genetic and environmental effects, we currently have 

little knowledge of their relative importance in wild and unmanaged host 

populations. In this thesis, I use long-term mark-recapture data on a population 

of European badgers (Meles meles) to examine the genetic basis of variation in 

bovine tuberculosis infection and its progression. I first estimate a genetic 

pedigree and characterise variation in extra-group paternity in the population 

(Chapter 2). Then, adopting a pedigree-based quantitative genetic approach, I 

investigate the relative importance of genetic and social environmental sources 

of variation in bTB infection status (Chapter 3). Thirdly, I characterise 

associations between body weight and bTB infection and test for variation in 

host tolerance (Chapter 4). And finally, I examine the genetic basis of 

(co)variation in and among four diagnostic test responses, representing different 

aspects of host immune function (Chapter 5). Taken together, this work 

provides novel insight into the genetic architecture of bovine tuberculosis 

infection in a wild host species, and the evolutionary potential of immune traits 

in the wild. 
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Chapter 1 

General Introduction 

Parasites are ubiquitous in wild animal populations and have wide ranging 

consequences, often impacting the health and fitness of their hosts, causing 

disease, loss of fertility and sometimes death (Schmid-Hempel 2011). Parasites 

can also greatly impact host population dynamics on ecological and 

evolutionary scales, acting, for instance, as the driving force of sexual selection 

in many species (Sheldon & Verhulst 1996; Hatcher & Dunn 2011). As a 

consequence of these impacts on individuals and populations, understanding 

host-parasite interactions is critical for ecology, conservation and wildlife 

management, just as it is for management of health in humans and captive 

animals. 

 To counter the negative effects of parasites (including micro-organisms 

such as bacteria, viruses, protists, fungi), hosts have developed a range of 

defence strategies. The first line of defence will often be avoiding exposure to 

infection. One of the most obvious examples includes the feeling of ‘disgust’ in 

humans (Oaten et al. 2009), but animals exhibit a wide array of behaviours 

linked to avoidance of infection. For instance, they may avoid foraging in 

locations (Hutchings et al. 2002) or times (Folgarait & Gilbert 1999) of increased 

risk. Avoidance, even social ostracism, of infected individuals has also been 

observed in many social species, such as social lobsters (Behringer et al. 

2006). However, avoidance is not a fool proof strategy and often exposure is 

inescapable. Thus, hosts have developed defences for preventing or limiting 

parasite entry given exposure. These can also include behaviours (e.g., 

grooming; Hart & Hart 2018) as well as physical and chemical barriers (e.g. 
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insect cuticles; Ortiz-Urquiza & Keyhani 2013). However, the primary defence 

against infections becoming established and causing disease, comes from the 

set of mechanisms that comprise the host’s immune system. 

The immune system can be viewed as comprising a number of distinct, 

but highly interconnected, arms. First, a distinction is generally made between 

innate and adaptive (acquired) immune responses. Innate responses are 

generally nonspecific, constitutive and rapid, taking minutes or hours (Schmid-

Hempel 2011). Representing the first line of defence, these fast mechanisms 

(e.g. phagocytosis and inflammation) clear the majority of infections but can 

also cause damage to host tissue (e.g. oxidative stress, Bogdan et al. 2000). By 

contrast, adaptive immune responses are characterised by highly diverse 

specificity to parasites. They are mediated through exposure to antigens 

(foreign objects, parasite molecules) and become increasingly specific to 

ongoing infections through retention of immunological memory (Ahmed & Gray 

1996). However, mounting a response is generally slow (relative to innate 

immune responses), and typically takes several days in mammals and longer in 

ectotherms (Whyte et al. 2007; Schmid-Hempel 2011). Though traditionally 

considered a feature of so-called ‘higher’ vertebrates, more recent studies have 

evidenced adaptive immune mechanisms in invertebrates (Sadd & Schmid-

Hempel 2006; Roth et al. 2009). Both adaptive and innate immune responses 

are affected through humoral (non-cellular, soluble components in body fluids) 

and/or cell-mediated processes. In vertebrates, antibodies such as serum 

immunoglobulins (Ig) play a key role in the humoral response, recognising and 

neutralising antigens (Barclay, 2003), while a crucial function of immune cells, 

such as T helper cells, is the release of signalling proteins which help 

orchestrate responses against parasites (Hope et al. 2000; Frucht et al. 2001). 
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The immune mechanisms briefly outlined above are usually viewed as 

contributing to host ‘resistance’, broadly defined as the ability to prevent or limit 

infection (i.e. parasite growth; Boots et al. 2009). However, rather than trying to 

limit parasite growth directly, hosts can also show ‘tolerance’ to infection by 

minimising parasite-induced damage and limiting loss of fitness occurring 

(Simms, 2000; Medzhitov et al. 2012).  Although tolerance is a well-established 

concept in plant ecology (Råberg et al., 2009), it has only been measured 

explicitly in a handful of animal studies (Råberg et al., 2007; Hayward et al., 

2014b; Mazé-Guilmo et al., 2014). Perhaps unsurprisingly, the mechanisms 

underpinning tolerance in animal are not yet well-studied. They may again 

include behaviours since, for instance, tadpoles of Hyla femoralis have been 

found to minimise damage from encystment of larval trematode by deflecting 

infections to non-essential body sites (Sears et al., 2013). The majority of 

tolerance mechanisms are, however, thought to operate via immunological and 

physiological processes. Examples include tissue repair, neutralising parasite 

toxins and minimising pathology caused by the host’s own immune responses 

(‘immunopathology’; Graham et al., 2005a; Glass, 2012).  

To date most work on host defence strategies in non-human animals has 

focused on resistance. This is particularly so in the veterinary sciences where 

increasing disease resistance in production animals is of great economic value 

(Morris, 2007). However, it is also true in an eco-evolutionary context where the 

prevailing view is that parasites should strongly select for increased host 

resistance. The evolution of resistance in the host population will then impose 

selection for counter-adaptations by parasites leading to a co-evolutionary ‘arms 

race’ (see Koskella 2018 and references therein). Numerous empirical studies 

in both laboratory and field systems have confirmed that hosts can and do 
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evolve resistance when challenged by pathogens (Janmaat et al. 2003; 

Bonneaud et al. 2011). Nonetheless, concerns about extrapolating laboratory 

results to natural populations can clearly arise. For instance, lab-based 

experiments lack ecological realism by using experimental inoculation of 

selected parasite strains (sometimes via transmission routes and/or at dosages 

that do not occur in nature). Experimental host populations are also often 

characterised by low genetic variability (Williams et al. 2005; Viney 2006; 

Corby-Harris et al. 2007) that may not be representative of wild populations. 

Finally, as already noted, the emerging importance of tolerance as a 

determinant of host fitness makes it clear that, in terms of evolutionary 

consequences of parasite infection, there is probably more to host defences 

than resistance alone.  

 

 

A quantitative genetic approach to studying host defences in the wild 

Parasites are generally expected to impose directional selection for increased 

effectiveness of host defence mechanism – including, but not limited to, 

resistance. However, since selection occurs when differential (relative) fitness 

arises from a causal dependence on individual phenotype (Morrissey et al., 

2010), it can only occur if host populations harbour among-individual variation in 

defence traits.  The importance of among-individual variation for population-

level processes has become increasingly clear in recent years (e.g. Madritch & 

Hunter, 2002; Grist et al., 2014; Svanbäck et al. 2015), particularly with respect 

to our understanding of infection dynamics (Kramer-Schadt et al. 2009; 

VanderWaal & Ezenwa, 2016). We now know that within host populations some 

individuals are resistant to infection where others are not, and that some 
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infected individuals will rapidly clear parasites while others experience disease 

and even death. While the parasite itself undoubtedly influences the outcome of 

an infection (e.g. virulence of different strains; (Grech et al., 2006), 

heterogeneity in the magnitude and effectiveness of host defences is likely to 

stem from numerous intrinsic and extrinsic sources.  

Among-individual variation in host defence phenotypes can generally be 

viewed as stemming from genetic and environmental (including social) effects. 

However, while genetic factors are well known to influence infection in humans 

and captive animal populations, we currently have little knowledge of their 

relative importance in wild populations. This is an important gap in our 

knowledge because, while among-individual variation is a prerequisite for 

selection, for an adaptive evolutionary response to occur there must also be a 

genetic basis to variation in any trait under selection (Falconer & Mackay 1996).  

The greater the variation that is explained by genes, the greater the potential 

response to selection will be. Thus, knowing what proportion of phenotypic 

variation has a genetic basis is crucial to our understanding of 

microevolutionary dynamics of traits. Quantitative genetics - the study of the 

genetic basis of complex (quantitative) traits – provides us with tools to 

determine this.  

Quantitative genetic models were largely developed by plant and animal 

breeders in order to understand, predict, and optimise responses to artificial 

selection (Falconer & Mackay 1996). Crucially, even when the detailed genetic 

architecture of a trait is unknown, classical quantitative genetic approaches 

allow us to characterise patterns of phenotypic similarity among individuals of 

known relatedness (or relationship) and thus to infer levels of genetic variation 

underpinning traits. This statistical approach has been widely adopted by 
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evolutionary biologists to understand the effects of natural and sexual selection 

on traits and has generated a wealth of knowledge about the underlying causes 

of variation in phenotypes (Lynch & Walsh 1998). Though broadly applicable to 

any type of trait in any population, it is only in the last two decades that 

application of quantitative genetic analyses to data from wild populations has 

become widespread. This is thanks to the increasing availability of high volume, 

often long-term, individual-based data sets from wild animal populations 

(Clutton-Brock & Sheldon 2010), but also due to advances in molecular and 

statistical techniques (Kruuk et al., 2008). Molecular tools have been important 

because of the need to combine relatedness information with trait data in order 

to estimate genetic variance for phenotypic traits. While breeding experiments 

can be conducted in the laboratory, and pedigree data is often recorded in 

livestock, it is not generally easy to track relatedness among wild animals from 

observational data alone. However, molecular markers are now widely used to 

estimate relatedness and infer pedigree structures (Townsend & Jamieson, 

2013; Bérénos et al., 2014). Statistical tools, notably a form of linear mixed 

effect model known as the ‘animal model’, have been equally important 

because data structures from wild populations are themselves usually complex 

(e.g. unbalanced family sizes, multiple generations, high levels of missing data) 

and so not well suited to classical methods for estimating genetic variance from 

controlled breeding experiments (e.g. ANOVA).   

Estimating quantitative genetic parameters in the wild is also made 

challenging by the fact that populations under real-world conditions experience 

high levels of environmental heterogeneity. This in turn means that natural 

selection regimes are likely to be more variable and complex than those 

imposed artificially in selection experiments or breeding programs. For instance, 
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in contrast to most artificial selection experiments, natural selection is generally 

expected to act on multiple traits simultaneously, while changes in 

environmental parameters can impact trait expression (through plasticity), the 

phenotype-fitness relationship (i.e. selection) and potentially the genetic basis of 

variation itself. These processes mean that evolutionary outcomes may often 

differ greatly from the theoretical predictions of simple models that perform well 

under artificial conditions (Merilä et al., 2001; Morrissey et al., 2010).  

Despite the inherent difficulty, if we hope to understand how phenotypes 

will evolve under natural selection, there is value in trying to estimate genetic 

variation in those same natural environments. To my knowledge, quantitative 

genetic techniques have only been used to examine host defences to specific 

parasites in two wild animal populations to date. Hayward et al. (2014a, 2014b) 

studied the heritability of and selection for resistance and tolerance against 

gastrointestinal nematodes in Soay sheep, while Mazé-Guilmo et al. (2014) 

found heritable variation in tolerance and resistance, and a genetic correlation 

between these traits, in a freshwater fish against an ectoparasite. In this thesis, 

I apply a quantitative genetic approach to investigate the genetic basis of 

variation in host defences in a third host organism, specifically a population of 

European badgers (Meles meles) naturally infected with bovine tuberculosis.  

 

 

Study system: badgers and bovine tuberculosis 

Bovine tuberculosis (bTB) is a chronic infectious disease of cattle caused by 

Mycobacterium bovis, a host-adapted bacterial strain in the M. tuberculosis 

species complex. In the United Kingdom (UK), it is a longstanding 
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socioeconomic burden on the livestock farming industry, costing the taxpayer 

an estimated £100 million a year (Defra, 2014) in addition to causing significant 

financial losses of individual farmers. Disease control in cattle - namely 

mandatory testing, slaughter of infected cattle, and herd movement restrictions - 

is complicated by low sensitivity of bTB diagnostic tests (tuberculin skin test; 

Roth et al. 2005) that leads to a proportion of infections going undetected. 

Additionally, current EU legislation prohibits vaccination of cattle (Council 

Directive 78/52/EEC) with the available BCG vaccine (which offers substantial, 

but incomplete protection; Wedlock et al. 2007) because vaccinated and 

infected animals cannot be distinguished with the tuberculin skin test. So, 

despite early successes in controlling the disease, incidence has steadily 

increased over the past 20 years, most notably in the southwest of England and 

in Wales (Proud 2006; Reynolds 2006). 

One reason for the continued persistence of the disease in the UK is that 

the European badger (Meles meles) provides a wildlife reservoir for bTB. 

Badgers have been implicated in the transmission of bTB to cattle via several 

lines of investigation (Little et al. 1982; Krebs et al. 1998; Proud et al. 1998; 

Smith et al., 2006; Woodroffe et al. 2009), but perhaps the most extensive 

evidence comes from the Randomised Badger Culling Trial (RBCT). The RBCT 

was undertaken to quantify the effects of badger culling on bTB incidence in 

cattle (Bourne et al. 2007), and dynamic modelling of data suggested badgers 

could be responsible for up to 38% of bTB cases in cattle. Of these, an 

estimated 6% result from direct (badger-cattle) contact, while the rest are from 

onward transmission from infected cattle. However, these models show 

considerable uncertainty in their predictions (Donnelly & Nouvellet, 2013) and 
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managing bTB remains a highly contentious political issue, with government-

implemented badger culls being met with both public and scientific opposition.  

Relatively little is known about the dynamics of bTB infection in badgers. 

The UK-wide prevalence of bTB in badgers is estimated at 16.6%, but 

populations show both inter- and intra-regional, as well as temporal variation in 

infection level (with estimates ranging from 0 to 32%; (Allen et al., 2011). 

Populations can contain high levels of variation in infection and disease status, 

which is likely to be explained in part by local environmental conditions but may 

also be linked to among-individual differences in behaviour (e.g. aggression; 

(Jenkins et al., 2012), physiology and, intuitively, immune function. Nothing is 

currently known regarding the contribution of genetic factors to variation in bTB-

related immune and infection phenotypes in wild badgers. Nonetheless, 

heritable variation has been found in studies of TB in both domestic animals 

and laboratory populations (Phillips et al., 2007; Schurr, 2011; Bermingham et 

al., 2014).  

 

Pathogenesis of bTB in badgers 

The primary route of infection in badgers is thought to be through inhalation of 

infectious aerosol, leading to chronic infection of the pulmonary system (though 

other organs can also be affected; (Gallagher et al., 1998; Murphy et al., 2010). 

Once in the respiratory system of the host, M. bovis gains entry through uptake 

by alveolar macrophages, leading to the formation of lesions (clusters of 

epithelioid cells surrounded by mild fibroblastic reaction) caused by a cell-

mediated response by the hosts immune system (Corner et al., 2011). Infection 

severity varies widely from latency (infection without clinical signs and no visible 

lesions) to severe disease with generalised pathology, cachexia (wasting) and 
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death (Murphy et al. 2010). Cell-mediated immune responses play a major role 

in host defence against M. bovis, particularly during early stages of infection, 

with the main cells involved being macrophages and T-cells (Skinner et al., 

2001). Humoral, antibody-mediated responses against M. bovis have also been 

observed in badgers, with MPB83 being the dominant antigen recognised by 

serum antibodies in infected badgers (Corner et al. 2011). However, the 

repertoire of M. bovis-specific antigens recognised by badgers appears limited 

compared to other host species (Corner et al. 2011). 

 

The Woodchester Park badger study 

This thesis investigates the genetic basis of among-individual variation in bTB 

susceptibility and progression in a wild population of badgers living in 

Woodchester Park, Gloucestershire, England. Woodchester Park lies in a 

steep-sided wooded valley surrounded by farmland and is home to a naturally 

infected population of badgers (200-300 animals). This population has been the 

subject of an ongoing mark-recapture study that was initiated in 1976 with the 

aim of studying the dynamics of M. bovis infection in badgers. Within the 11 km2 

study area, up to 45 social groups of badgers have been recorded at any time. 

Each group is associated with one or more underground dens (setts), and the 

number of social groups present has varied over time (as determined by bait 

marking; (Delahay et al., 2000a). However, the study area includes a core of 

20-25 defined social groups that have consistent and continuous trapping 

records across the study period.   

 Sampling of badgers is done through quarterly ‘trap-ups’ at or around 

known active setts. At each trapping event, badgers are sampled for two 
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consecutive nights using peanut-baited steel mesh box traps, set after 4-8 days 

of pre-baiting. Trapped badgers are anaesthetized using a combination of 

ketamine, butorphanol and medetomidine (de Leeuw et al., 2004) before further 

sampling, while individuals caught previously in the same trap-up are not 

resampled. At first capture each animal is marked with a unique tattoo and 

blood samples or guard hairs are taken for microsatellite genotyping (Carpenter 

et al., 2005). The marking allows identity to be recorded at each subsequent 

recapture. Capture location, sex, age class (cub, yearling, adult), body weight, 

length, condition, and reproductive status are all recorded and clinical samples 

collected (described below). After recovery from anaesthesia, all badgers are 

then released at the point of capture. Since its initiation, the mark-recapture 

program at Woodchester Park has collected >15,000 observations of over 

3,200 individual badgers. Because of this intensive sampling regime, birth and 

death dates are known for many individuals and we have a good understanding 

of individual life-histories as well as demographic features of the population. 

At each (re)capture event, badgers are tested for bTB using several 

diagnostic procedures. First, clinical samples from a number of body sites 

(faeces, urine, tracheal aspirate, pus, bite wound swabs; Clifton-Hadley et al., 

1993) are subjected to bacterial culture for M. bovis. Spoligotyping is used to 

identify any growth as M. bovis (Kamerbeek et al., 1997) and one or more 

positive results from among the body sites is considered indicative of current 

infection. Second, serological assays are used to test badger serum for IgM and 

IgG antibodies to M. bovis. These indicate activation of the humoral immune 

response and can thus indicate previous or current infection. Third, from 2006 

onwards, an interferon-γ (IFNγ, a signalling protein produced by T-cells) release 

assay has also been used to characterise cell-mediated immune activity. In this 
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two-part test, the production of IFNγ in heparinised whole-blood culture is first 

stimulated with mycobacterial antigens (bovine tuberculin), and then quantified 

using sandwich ELISA, producing a continuous optical density (OD) measure 

(Dalley et al., 2008). Since infection by environmental mycobacteria from the 

Mycobacterium avium complex (MAC) can bias results of bovine tuberculin 

assays (Pollock et al., 2005), IFNᵧ responses to avian tuberculin are 

simultaneously tested. Finally, in addition to testing for M. bovis specific 

responses, blood samples are also used to assay the cell-mediated immune 

response to pokeweed mitogen, a non-specific activator of humoral and cell-

mediated responses (Janossy & Greaves 1972), as a putative marker of 

general immune function. 

This long-term testing of the Woodchester Park population means that 

bovine TB infection is uniquely well-characterised in this badger population. 

Previous work has shown that individuals exhibit striking variation - both 

spatially and temporally - in the prevalence, progression, and severity of 

infection. For instance, (Delahay et al., 2001) showed that annual prevalence of 

bTB in a badger population in Woochester Park, Gloucestershire, varied 

between 10.3 and 17.7%, but was also strongly spatially aggregated (with 

higher incidence in the west of the study area). Interestingly, some social 

groups remained entirely test-negative for years, despite high rates of infection 

in neighbouring groups (Delahay et al. 2000b). Sexual dimorphism has also 

been documented, with males having a higher probability of infection, and 

suffering from faster disease progression and greater mortality than females 

(Graham et al., 2013; McDonald et al., 2014). The availability of individual-level 

ecological, genetic and epidemiological data now provides an opportunity to 

further characterise the drivers of variation among individuals.  
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Thesis overview   

In this thesis I apply a quantitative genetic approach to investigate the drivers of 

variation in host defence traits and disease outcomes in a wild vertebrate 

population. I use bovine tuberculosis (bTB) infection in the Woodchester Park 

population of European badgers as a study system. By decomposing a 

phenotypic trait into variance components, it is possible to discern the relative 

importance of not just genetic, but also non-genetic factors (e.g. environmental, 

maternal, and social) contributing to observed phenotypic variation. Thus, 

quantitative genetics provides a useful tool for teasing apart the causal 

relationships between host, parasite, and environment. Furthermore, because 

adaptive evolution requires selection and heritable variation, quantifying the 

heritability of host defence traits in situ in wild populations is necessary to 

understand their evolutionary potential (and so the coevolutionary outcomes of 

host-parasite interactions). While it is clearly the case that (genetic) variation 

can also exist among parasites, with important fitness consequences for hosts 

(e.g. differential virulence among parasite strains), quantification of parasite 

traits is beyond the scope of the present thesis and is not investigated here. 

Instead I focus on variation within the host population. Specifically, this thesis 

aims to: i) estimate a genetic pedigree and characterise variation in extra-group 

paternity in the population, ii) investigate the relative importance of genetic and 

social environmental sources of variation in bTB infection status, iii) 

characterise associations between body weight and bTB infection and test for 

(genetic) variation in host tolerance, and iv) examine the genetic basis of 

(co)variation in and among four diagnostic test responses, representing different 

aspects of host immune function.  
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In Chapter 2, I use ecological and genetic data provided by the Animal 

and Plant Health Agency (APHA) to resolve a multigenerational pedigree for the 

Woodchester Park badger population, implementing molecular parentage 

assignment in a Bayesian framework. I then use the resulting pedigree to 

characterise the extent of extra-group paternity (EGP), occurring as a 

consequence of breeding excursions, and to test hypothesised drivers of 

variation of paternity distance (PD; estimated as the distance between the home 

sett of a cub and that of its father) at multiple levels. I test whether population 

density and sex ratio influence mean annual PD, and model cub-level PD and 

extra-group paternity to ask whether this varies consistently among social 

groups and/or parental individuals. This chapter therefore seeks to understand 

variation in propensity of adult badgers to engage in breeding excursions 

outside of their groups, both because it is biologically interesting, and – in the 

context of the overall thesis – because EGP has implications for subsequent 

quantitative genetic analyses. Specifically, (i) bTB infection is known a priori to 

vary among social groups (Delahay et al.  2000b); (ii) social groups are known 

to contain high levels of related individuals (Carpenter et al. 2005); and (iii) this 

population is not amenable to experimental manipulation designed to reduce 

gene-environment correlation (e.g. cross-fostering; (Kruuk & Hadfield, 2007). 

This means that EGP is likely to be important for allowing subsequent statistical 

partitioning of genetic from common environment (e.g., social group) effects on 

bTB related traits. 

In Chapter 3 I use the pedigree structure resolved in Chapter 2, together 

with a progressive categorisation of disease status that approximates bTB 

progression using diagnostic test results (from test negative to advanced stages 

of infection), to quantify the relative importance of genetic and environmental 
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effects. I find that while both disease progression and lifetime infection risk have 

significant estimates of heritability, more variation is explained by effects of 

group membership in time and space, and (for cubs) maternal identity. I then 

build on this work in Chapter 4 by testing for among-individual, and genetic, 

variation in tolerance to bTB infection. To do this I use weight loss (and/or 

reduced growth) as a measure for infection severity and assume that the 

progressive bTB categorisation provides a valid proxy of pathogen load. I firstly 

confirm population-level average effects of bTB status on mean weight. Then 

adopting an individual ‘reaction norm’ approach in which individual tolerance is 

defined as the slope of an individual’s relationship between weight and bTB 

status, I test for among-individual, and genetic, variation in tolerance. This 

chapter provides the first explicit evidence of variation in tolerance against bTB 

in a wild host species. Furthermore, I find evidence that tolerance is genetically 

variable, and thus evolvable in this population. 

In Chapter 5 I explore the genetic (co)variation among traits thought to 

capture mechanistically distinct (but potentially correlated) components of the 

immune system. Specifically, I analyse data from the four separate bTB and 

immune function diagnostic tests used on the Woodchester Park population. 

This chapter addresses the increasingly highlighted need in ecoimmunology 

(and evolutionary ecology more generally) for multivariate quantitative genetic 

studies to characterise the genetic relationships among traits and thereby 

address gaps in our understanding of trade-offs, evolutionary constraints and 

phenotypic integration. I firstly determine whether genetic factors contribute to 

among-individual differences in all traits and find heritable variation for all but 

the cell-mediated response. I then evaluate the among-trait phenotypic and 

genetic correlation structure among host immune responses and assess 
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evolutionary potential of the traits and the possibility of trade-offs to constrain 

responses to selection. 

Finally, in Chapter 6 I summarise the key findings from the preceding 

chapters and relate them to the broader context of understanding of host-

parasite coevolutionary dynamics. I also briefly consider the potential 

implications of my work for the management of wildlife (and livestock) disease 

and highlight several future directions for research. 
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Chapter 2 
 
 

 Individual variation and the source-sink group dynamics of 

extra-group paternity in a social mammal 

 

 
 

This chapter has been accepted for publication as: Marjamäki P. H., Dugdale 
H., Dawson D., McDonald R.A., Delahay R.J., Burke T.A., Wilson A.J. (in press) 
Individual variation and the source-sink group dynamics of extra-group paternity 
in a social mammal. Behavioural Ecology. 

 

 

Abstract  

Movement of individuals, or their genes, can influence eco-evolutionary 

processes in structured populations. We have limited understanding of the 

extent to which spatial behaviour varies among groups and individuals within 

populations. Here we use genetic pedigree reconstruction in a long-term study 

of European badgers (Meles meles) to characterise the extent of extra-group 

paternity, occurring as a consequence of breeding excursions, and to test 

hypothesised drivers of variation at multiple levels. We jointly estimate 

parentage and paternity distance (PD; distance between a cub’s natal and its 

father’s social group), and test whether population density and sex ratio 

influence mean annual PD. We also model cub-level PD and extra-group 

paternity (EGP) to test for variation among social groups and parental 

individuals. Mean PD varied among years but was not explained by population 

density or sex ratio. However, cub-level analysis shows strong effects of social 

group, and parental identities, with some parental individuals being consistently 

more likely to produce cubs with extra-group partners. Group effects were 
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partially explained by local sex ratio. There was also a strong negative 

correlation between maternal and paternal social group effects on cub paternity 

distance, indicating source-sink dynamics. Our analyses of paternity distance 

and EGP indicate variation in extra-group mating at multiple levels – among 

years, social groups and individuals. The latter in particular is a phenomenon 

seldom documented and suggests that gene flow among groups may be 

disproportionately mediated by a non-random subset of adults, emphasising the 

importance of the individual in driving eco-evolutionary dynamics.   
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Introduction 

Movement of individuals and/or gametes influences the dynamics, persistence 

and genetic diversity of spatially structured populations (Ronce, 2007). 

Understanding movement is therefore crucial for wildlife conservation and 

management as it can determine species distributions (Holt, 2003), impact the 

vulnerability of populations to extinction (Thomas, 2000) and play an important 

role in the transmission of infections (Pope et al., 2007). Behaviours linked to 

‘dispersal’, in the broadest sense of any movement with potential consequences 

for gene flow (Ronce, 2007), are widely viewed as adaptive, allowing individuals 

to escape from locally intense competition for resources or mates (Daniels & 

Walters, 2000; Matthysen, 2005), seek good or compatible genes in potential 

mating partners (Hamilton 1990; Zeh & Zeh 1996), or avoid inbreeding by 

leaving the vicinity of related individuals (Greenwood, 1980). However, as such 

movements carry risks as well as benefits, associated behaviours are likely to 

have evolved under the influence of multiple interacting factors that ultimately 

shape the balance of costs and benefits (Bowler & Benton 2005; Ronce 2007). 

 Some of the factors influencing the costs and benefits of movement and 

dispersal are well documented. For instance, sex (Clarke et al. 1997; Beirinckx 

et al. 2006; Rabasa & Gutie 2007), age (Dale et al. 2005; Bowler & Benton 

2009; Kentie et al. 2014), and density (e.g. Matthysen 2005; Nowicki & Vrabec 

2011) are common drivers of variation in many taxa, although density effects 

can themselves be scale-dependent (e.g. Marjamäki et al. 2013). However, in 

addition to demographic and ecological effects, it is also becoming apparent 

that populations can harbor among-individual variation in the tendency to 

disperse. Our understanding of what drives this variation within animal 

populations remains limited, although social interactions and behavioral 
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differences (e.g. “personality” variation in exploratory tendency) likely play an 

important role (e.g. Cote et al. 2010; Patrick et al. 2012; Weiß et al. 2016).  

In this study, we employ an indirect approach to test for and investigate 

sources of variation in breeding excursions in a population of European badgers 

(Meles meles) in southwest England. Temporary excursions relating to mate 

acquisition are common in many populations but, while they will have important 

consequences for fine scale gene flow and genetic structure (e.g. among 

groups), temporary and short-term excursions can be difficult to observe 

directly.  Nonetheless, in the absence of direct observation of movement, 

indirect inferences on breeding excursions can be made from genetic data. This 

can be done, for example, by characterising population genetic structure (or 

lack thereof; Wilson et al. 2004), or by detecting extra-pair or extra-group 

paternity (hereafter ‘EGP’), which is commonly seen in birds and mammals 

(Griffith et al. 2002; Isvaran & Clutton-Brock 2007). Combined with genetic 

pedigree analysis, the latter approach allows identification of those individuals 

engaging in, as well as resulting from, extra-group matings, enabling the drivers 

of among-individual variation to be investigated. 

       Badgers are a facultatively social species and form social groups at 

high densities through retention of offspring in natal groups (Kruuk & Parish 

1982; da Silva et al. 1994). These social groups, ranging from 1 to 22 

individuals of mixed age and sex, form discrete, defended territories containing 

several communal setts (underground dens). Badgers have a polygynandrous 

mating system where as many as seven males and females might breed within 

a social group annually (Dugdale et al. 2007). While within-population 

movement is common (e.g., detected in 44% of individuals studied by Rogers et 

al. 1998), the majority of movements between social groups are temporary, with 
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short-term movements tending to be predominantly between neighboring social 

groups (Rogers et al., 1998). High rates of EGP (up to 50% reported in high-

density populations; Carpenter et al. 2005; Dugdale et al. 2007) are also 

consistent with an important role for breeding excursions in mediating gene 

flow, though whether EGP is mediated through transient contact between 

individuals, or temporary integration of individuals into social groups (or both) is 

not yet clear.   

   We use a long-term dataset on individually marked badgers from 

Woodchester Park (Gloucestershire, England) to reconstruct a genetic pedigree 

and indirectly estimate breeding excursions. We build on a previous parentage 

analysis of the population (Carpenter et al. 2005) to reconstruct a pedigree 

using a larger sample, more markers and more powerful parentage assignment 

methods. Crucially, for current purposes we adopt a Bayesian approach to 

pedigree analysis, which allows us to make better use of spatial and group 

membership information to improve the number of assigned relationships and 

our confidence in them (Hadfield et al. 2006). From this we simultaneously 

estimate both the pedigree structure and the mean distance between the 

father’s social group and the cub’s natal group (hereafter ‘paternity distance’) for 

each annual cohort. We first ask whether paternity distance varies among years 

as a function of population density and/or sex ratio, before using assigned 

parent-offspring relationships to test for among-individual (parent) variation in 

extra-group mating.  Finally, noting that from a cub’s perspective, EGP and non-

zero paternity distance may reflect temporary excursions by either parent, we 

ask whether among-parent variation can be explained by known predictors of 

breeding behaviour in other systems, including intrinsic factors (e.g. age, body 

mass) and social group properties.  
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Methods 

Study population & sampling 

The badger population at Woodchester Park (51°42’35”N 2°16’42”W), 

Gloucestershire, UK, has been subject to an ongoing mark-recapture study 

since 1976. The study area is approximately 11 km2 and consists of a steep-

sided, wooded valley surrounded by farmland. Here we utilize data from a 30-

year period from 1985 to 2014, for which badgers were trapped and sampled up 

to four times a year. Steel mesh box traps were deployed at active badger setts 

and set to catch for two consecutive nights after a period of 4-8 days of pre-

baiting with peanuts. Trapped badgers were anaesthetized (de Leeuw et al. 

2004) prior to examination and at first capture each individual received a unique 

identifier tattoo on their abdomen. Capture location, sex, age (if birth year 

known) or age class (adult, yearling, cub, based on size and tooth wear) and 

body weight were recorded (Delahay et al. 2013). Approximately 20-30 guard 

hairs were plucked and stored in 80% ethanol for microsatellite genotyping. 

After a recovery period, all badgers are released at the point of capture. The 

total trapping dataset is comprised of over 15,000 captures for 3,283 

individuals. While most badgers are first caught as cubs or yearlings, 19% were 

first captured as adults and likely represent a minimum estimate of immigration 

into the population. Social group territorial boundaries were determined for each 

year of the study by bait marking (Delahay et al. 2000b). A total of 45 defined 

social groups were counted throughout the study period, but from 1996 onwards 

sampling was focussed on 20—25 groups only. Thus, the variation in the 

number of social groups reflects variation in both sampling effort through time 

and the configuration of social groups, which occasionally undergo fissions and 
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fusions (though territories are largely stable over time; Delahay et al. 2000a; 

Robertson et al. 2014). All work was carried out under licence from the UK 

Home Office and from Natural England. 

 

DNA extraction & genotyping  

Microsatellite data used for parentage analyses have been produced as part of 

the ongoing Woodchester Park study. For current purposes, we used existing 

published data (Carpenter et al. 2005) coupled with de novo genotyping at 6 loci 

described in Carpenter et al. (2003) and Lopez-Giraldez et al. (2007).  In brief, 

individuals trapped between 1986 and 2002 have been genotyped with DNA 

extraction from hair samples according to protocols outlined in Carpenter et al. 

(2005), while samples between 2003 and 2014 were genotyped at the NERC 

Biomolecular Analysis Facility (University of Sheffield, UK) in batches across 

several time periods using the ammonium acetate extraction method described 

in Richardson et al. (2001). A minimum of 5 hairs with visible roots were used 

per individual.  

              Individuals have been genotyped at between 16 and 22 autosomal 

microsatellite loci, with slightly different, but overlapping subsets of markers 

used over the course of the project. We used a 2-μl Qiagen Multiplex PCR 

reaction (Qiagen Inc., Valencia, USA) and fluorescently-labelled primer sets, 

before separation of the amplicons on a 48-capillary ABI 3730 DNA Analyzer 

using Prism set D and a ROX size standard and genotype scoring using 

GENEMAPPER 3.7. Samples described in Carpenter et al. (2005) were 

genotyped at 16 loci (Mel 101-117; as described in Carpenter et al. 2003). An 

additional 6 loci were added to subsequent genotyping efforts (Mel 1, 10, 12, 

14, 15 & 116; Carpenter et al. 2003, Lopez-Giraldez et al. 2007) though for 209 
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individuals born (or captured for the first time) after 2011, markers Mel 15 and 

106 were not used.  As genotyping has been done in batches over a number of 

years, samples have been cross-validated by retyping subsets of previously 

genotyped individuals (min. 15% of samples). This was used to calibrate allele 

sizes at each locus to ensure consistent scoring across time periods and 

different sequencers. After scoring genotypes, we tested for deviations from 

Hardy-Weinberg equilibrium (HWE) and linkage equilibrium (LD) for pairs of loci 

using 40 unrelated individuals (based on ML-Relate relatedness estimates 

<0.125) using Genepop 4.4.3 (Raymond & Rousset 1995). P-values for LD 

tests were corrected to account for multiple tests (false discovery rate; 

Benjamini & Hochberg 1995).  No deviation from HWE (k = 22, alpha = 0.05) or 

LD (LD: k = 231, alpha = 0.05, adjusted p = 0.05-0.0002) were found. Null allele 

frequencies were estimated using CERVUS 3.0.7 (Marshall et al. 1998) and 

were <0.1 for all loci. Therefore, all loci were retained. 

             We also estimated mean allelic dropout (e1) and false allele rates (or 

stochastic sampling error, e2), using a random subset of individuals that were 

re-genotyped and analysed using PEDANT 1.0 (Johnson & Haydon, 2007) 

(Table S2.1). Overall, genotypes were available for 2,204 (out of 2,811) trapped 

individuals, at a mean (±standard deviation) of 16.1 (±5.1) loci per individual. 

Across loci the mean observed and expected heterozygosity were 0.56 (SD 

0.15) and 0.61 (SD 0.13), respectively, and the mean number of alleles per 

locus was 4.85 (SD 1.47).   

 

Parentage analysis 

We conducted Bayesian parentage analysis for 1768 genotyped cubs trapped 

between 1986 and 2014 inclusive, using MasterBayes 2.54 (Hadfield et al., 
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2006) in R 3.3.0 (R Development Core Team 2016). Relative to most wild birds 

and mammals in which molecular pedigree reconstruction has been applied, 

badgers present a particular challenge in that they are largely nocturnal and so 

difficult to observe. Furthermore, cubs remain underground for the first 12 

weeks of life (Roper 2010), and alloparental care may occur at the sett 

(Dugdale et al. 2010). As such, while maternal identities can often be (reliably) 

inferred from observation in other species, this is not the case in badgers. In the 

absence of any known parents, life-history, spatial and genetic data were used 

simultaneously to assign paternity and maternity jointly for each cohort of cubs 

(n = 29) and estimate mean annual paternity distance. The final pedigree used 

in downstream analyses was then compiled based on parental assignments that 

met a minimum confidence threshold of 80%. For comparison, we also 

compiled a pedigree structure according to a stricter 95% confidence threshold. 

 

Definition of candidate parents and use of spatial data 

Parentage assignments were run for each annual cub cohort (n=29). Although 

neither parent can be determined by observation we follow the approach used 

in other systems (e.g. Walling et al. 2010; Nielsen et al. 2012) of applying a 

biologically informed set of criteria to define a non-excluded list of candidate 

parents for each cub. For each cohort, candidate mothers were restricted to 

females aged ≥2 years present in the cub’s natal group (i.e. the group first 

captured in) in the year of birth, as females are sexually mature as yearlings 

and, due to delayed implantation (Yamaguchi et al. 2006), can first give birth as 

two-year olds. Males were considered candidate fathers (regardless of social 

group) if they were alive and ≥1 year of age 12 months before the cub was 

born, to account for delayed implantation. Individuals were designated as 
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belonging to a social group if they were caught within the territory of that group. 

Individuals recorded in multiple social groups were assigned joint membership 

to each; in years where individuals were not caught (but were known to be alive 

from subsequent captures), they were assigned to the social group(s) they were 

recorded in the preceding year. Only individuals caught as cubs or yearlings 

(i.e. those with known birth year) were included as offspring in parentage 

analysis, while badgers first caught as adults are likely to be immigrants and 

were included only as candidate parents. Since age data were incomplete for 

badgers that were not caught as cubs or yearlings (distinguishable from adults 

by size and tooth wear), we assumed adults of unknown age to be 2 years of 

age at first capture to prevent blanket exclusion from the set of candidate 

parents (note, this was for parentage assignment only, and assumed ages were 

not used in subsequent analyses described below). Similarly, where time of 

death was unknown, individuals were treated as being alive (for purposes of 

defining status as a potential candidate parent) for 1 year (cubs; Dugdale et al. 

2007) or 3 years (adults; Carpenter et al. 2005) after their last capture. 

Individuals with missing sex or social group data were excluded.   

In addition to microsatellite data, our parentage analyses also utilised 

geographical location data (main sett coordinates for each social group) for all 

offspring and candidate fathers. Inclusion of non-genetic data is expected to 

improve assignment where it provides additional information about the 

likelihood of parentage (Hadfield et al. 2006). For most cohorts (see below) we 

therefore used (Euclidean) “male distance” between the main sett of the 

candidate father’s social group and that of the cub’s natal group as a predictor 

of paternity, which yielded an estimate for each cohort (or year) of the mean 

paternity distance, i.e. distance between the main sett of the assigned father’s 
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social group and that in which the cub was born. Thus, paternity distance and 

parentage are jointly estimated from the data in a single analysis (i.e. it is not 

the case that distance effects on paternity likelihood are first estimated and 

imposed in a subsequent parentage assignment). Finally, we note that, while 

more complete genetic sampling of the population should result in greater 

parentage assignment success (all else being equal), the number of unsampled 

parents is estimated in a MasterBayes analysis, not specified a priori as an 

input parameter (as in some likelihood-based methods of parentage 

assignment). Here we have limited knowledge of the completeness of genetic 

sampling but certainly trapping does not sample all animals present on any 

given occasion. Quarterly recapture rates (i.e. across trapping sessions) are 

known to vary greatly across years, from 0.15-0.73 for females and from 0.20-

0.78 for males (Graham et al. 2013). Approximately 19% of individuals are first 

trapped as adults, providing an upper bound estimate for the proportion of 

immigrants to the study area. 

 

Parentage assignment settings and diagnostics 

Markov chains were run separately for each year (i.e. cub cohort) for 2 million 

iterations, with a thinning rate of 100 and burn-in period of 500,000. Mismatch 

tolerance between cub and candidate parent was set to one. Tuning parameters 

were specified for each cohort to ensure that Metropolis–Hastings acceptance 

rates were within acceptable limits (0.2-0.5; Hadfield 2012). Per locus 

genotyping error (e1 and e2; Table S2.1) and allele frequencies calculated 

based on the full dataset were provided in the model specifications (as direct 

estimation of error rates by MasterBayes from the data, though possible in 

principle, is particularly computationally demanding; Hadfield 2012).  The 
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presence of unsampled males (per population) and females (per social group) 

was also allowed for each cohort. Successive samples from the posterior 

distribution had low autocorrelation (r < 0.10) for estimates of unsampled males 

and paternity distance. Autocorrelation for unsampled females remained high 

(>0.10) for several cohorts, however, parentage assignments at ≥80% 

confidence for these cohorts did not differ when a fixed number of unsampled 

females (one per social group) was used, therefore all cohorts were retained. 

 In six of the 29 cohorts (1988, 1993, 2001, 2009, 2013 and 2014) 

inclusion of male distance as a predictor caused problems for the parentage 

assignment algorithm that we were unable to resolve.  The reasons for this 

remain unknown but could include, for instance, undetected outliers or errors in 

the spatial data. For these cohorts, parentage assignment was therefore 

estimated without male distance as a predictor meaning no direct estimate of 

mean paternity distance was obtained. As including the distance variable is 

expected to increase confidence in assignments (Hadfield 2012), excluding this 

variable from pedigree models could affect the resulting parent assignments. In 

order to account for this, we reran a subset of cohorts (including 339 cubs) 

without male distance and compared assignments with and without paternity 

distance estimation. As expected, excluding male distance generally reduced 

the confidence assigned to a cub’s most likely father, with the result that 

putative paternities were not assigned in 30 instances, when they had been with 

models utilising male distance. However, changes in most likely father were 

only observed for four cubs (out of 339). In all four cases, most likely candidate 

fathers failed to meet the 80% confidence threshold for assignment regardless 

of whether the male distance variable was included. Therefore, based on these 

comparisons, we expect fewer paternities will have been assigned for the six 
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cohorts where the distance variance could not be included, but consider it 

unlikely that the identity of the most likely father is sensitive to inclusion of male 

distance in many instances. 

 

Analysis of breeding excursion proxies 

We used the results of our pedigree analysis to extract and model variation in 

three response variables relating to extra-group paternity. First, we modelled 

among-cohort variation in mean paternity distance as estimated directly by 

MasterBayes (subsequently denoted PDc). Second, for each cub with an 

assigned father, we extracted the individual paternity distance (denoted PDi), 

and also defined a binary EGP variable (denoted EGPi) according to whether 

the assigned father was from within (0) or outside (1) the cub’s natal group. If a 

cub was assigned both within- and extra-group paternity by the same father 

(e.g. where a father was recorded in multiple social groups within a year), the 

cub was assumed to be within-group offspring. Both PDi and EGPi are defined 

for the cub (i) and non-zero values therefore reflect movements by the mother 

and/or the father beyond its own social group. We also note that these 

individual-level estimates are necessarily derived from an estimated pedigree 

and thus carry over error associated with parentage assignments to 

downstream analyses that is not readily accounted for. In this respect, we also 

note an unavoidable trade-off, regarding analyses of PDi and EGPi, between 

using assignments made at 80% confidence (increased samples size but higher 

error rate) or 95% confidence (reduced sample size but lower error rate). Here 

results from analyses are presented using the lower threshold but parallel 

analyses based on 95% confidence can be found in supplemental materials 

(Tables S6-S8). Overall, qualitative conclusions are consistent between 
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analyses based on the two thresholds. Note however that, since MasterBayes 

estimates a full posterior for PDc, uncertainty in the annual mean paternity 

distances could be readily accounted for in our analysis of among-cohort 

variation. 

 

Among-cohort variation in annual mean paternity distance  

Our MasterBayes analyses generated estimated posterior distributions (15,000 

values per cohort) of PDc for 23 cohorts caught between 1986 and 2014 (Figure 

1). As noted above, in six years (1988, 1993, 2001, 2009, 2013, 2014) inclusion 

of spatial data in the pedigree assignment step proved problematic so no 

estimates of PDc are available. Using a simple multiple regression model of PDc 

we tested whether total population size or population sex ratio, determined by 

dividing the number of males by total population size (as defined below), 

explained variation in mean paternity distance. We also included a (linear) effect 

of year to test for any systematic trend in PDc across the study timeline. All 

three variables were mean centered to ease interpretation of the intercept (i.e. 

as predicted PDc at mean population size, sex ratio and year). Because 

sampling effort for some social groups varied across years, proxies of total 

population size and population sex ratio values for each year were estimated 

using the POPAN model in the program MARK 8.2 (White & Burnham 1999) 

using capture data from 20 “core” social groups with consistent trapping efforts 

across all years. Graphical representation of annual mean estimates for 

population size and numbers of males and females can be found in Figure 1b. 

Badgers with missing sex information (n=2) were excluded from this analysis. In 

order to integrate across uncertainty in annual mean paternity distance 

estimation, our regression model was applied to the full posterior distributions of 



40 
 

PDc for each cohort, allowing estimation of 95% credible intervals (CI) for the 

partial regression coefficients. These were considered significant if 95% CI did 

not span zero.  

 

 

Among-individual and among-group variation in paternity distance and extra-

group paternity 

Using the program ASReml 3.0 (VSN International Ltd., Hemel Hempstead, 

UK), we fitted mixed effects models of PDi (i.e. Euclidean paternity distance 

measured in meters), and EGPi, a binary variable assigning the offspring of 

each male as either within (0) or extra (1) group. For both response variables, a 

Gaussian error structure was assumed but PDi was natural log-transformed 

prior to analysis to reduce positive skew in residuals. While noting that the 

Gaussian assumption cannot be strictly true for bounded (ln PDi) or binary 

(EGPi) response variables, inspection of model residuals showed it to be a 

reasonable approximation here (Figure S2.2). We therefore chose this 

approach as being more pragmatic than, for instance, Bayesian implementation 

of generalised mixed models as it more readily allows inference on, and 

modelling of hypothesized covariance between, random effects (see below). 

Both variables were then scaled to standard deviation units (SDU) to ease 

interpretation of results.  

For both response variables, models included fixed explanatory variables 

of maternal age, maternal body mass, maternal group size, and maternal social 

group sex ratio (as linear effects) and the corresponding paternal variables.  

Social group sizes (mean 6.40 SD ±3.60) reflect numbers of resident yearlings 

and adults (i.e. reproductively active individuals) in the cub’s conception year, 
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where group residency is determined from capture records each year following 

Vicente et al. (2007). Social group sex ratios are calculated as the number of 

males divided by the total number of adult group members, representing the 

proportion of males in each group (mean 0.40 SD ±0.20). These measures 

exclude cubs and transient non-residents (based on criteria used by Vicente et 

al. 2007) caught within social group boundaries, but represent a baseline 

measure for the density of potential breeders encountered by individuals in their 

social group. Body mass was included to test for size-dependence of extra-

group paternity and for individuals with more than one weight measurement 

within a year, the mean of these was used. Note that we also fitted the models 

using a standardised measure of body condition, the scaled mass index (SMI; 

Peig & Green 2009), in place of body mass. In principle, this might better 

account for sexual dimorphism and seasonal variation in body mass (Beirne et 

al 2015; Peig & Green, 2010). However, in practice, qualitative conclusions of 

the analyses were unaltered, and since use of SMI in place of body mass 

resulted in a 16% reduction in sample size, only the results of analyses using 

body mass are presented here (results for SMI analysis can be found in Tables 

S3-S5). Significance of fixed effects was determined using conditional Wald F-

tests implemented in ASReml (with denominator degrees of freedom calculated 

following Kenward & Roger 1997).  

             Year (as a factor), maternal and paternal identities and maternal and 

paternal social group IDs were included as random effects in the models. This 

allowed us to partition variance in PDi and EGPi to assess the relative 

importance of individual and group level effects (conditional on fixed effects). 

We make the standard assumptions that random effects are normally 

distributed with means of zero and variances to be estimated. For ease of 
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interpretation, variance components were standardized to intraclass correlations 

(ICC) by dividing by phenotypic variance (determined as the sum of all variance 

components). ICC are thus interpretable as individual and group repeatabilities 

(R) for random effects relating to parental individuals and their social groups 

(Nakagawa & Schielzeth, 2010). In addition, we explicitly modelled a covariance 

term between the maternal and paternal social group identity effects. The 

strength and sign of this relationship is biologically informative since, for 

instance, if groups vary in EGP in a non sex-specific way we predict a positive 

covariance. Conversely, since cub natal and maternal social groups are the 

same, if EGP follows a source-sink dynamic with respect to genetic 

consequences (i.e. some groups are net importers of genes and some net 

exporters) we predict a negative relationship.  

Statistical inference on random effects was by likelihood ratio test 

comparison of the full model to reduced formulations in which (co)variance 

components arising from the tested random effects were assumed absent. 

Twice the difference in log-likelihood between full and reduced models was 

assumed to have a χ2- distribution, and we conservatively (see Visscher 2006) 

assume the degrees of freedom (DF) equal to the number of additional 

parameters in the full model.  

The analyses described above were conducted using all available PDi 

and EGPi observations based on the 80% confidence threshold for parentage 

assignment. To assess sensitivity of results to this choice of confidence 

threshold, we repeated the analyses using only parentage assigned at 95% 

confidence. While the higher threshold should reduce ‘measurement error’ in 

PDi and EGPi arising from erroneous assignments, it also reduced sample size 

for analyses of these variables. Overall, conclusions regarding individual and 
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group-level variation remained broadly the same. Some inflation of variance 

components occurred in models using the higher threshold, and there were also 

some changes to the significance of fixed effects. Full results of these additional 

analyses are reported in the electronic supplement (Tables S2.6-S2.8) and 

commented on, where appropriate, below.  

 

 

Results 

Parentage analysis 

In total, pedigree reconstruction resulted in 617 cubs being assigned at 

least one parent (35% of genotyped cubs included in the analyses), 

representing 29 cohorts and 6 generations (see Figure S2.1 for visual 

representation). Out of these, 556 (89%) cubs were assigned both parents, 

while 23 (4%) were assigned only a mother and 40 (7%) only a father. Overall, 

the 1,175 parental relationships (579 maternities and 596 paternities) were 

represented by 239 fathers and 278 mothers. Among these, half-sibship sizes 

(mean ±SD) varied from 1-11 (2.08 ±1.53) for mothers and 1-14 (2.49 ± 2.37) 

for fathers, with a total of 638 maternal and 1113 paternal sibships out of which 

186 were full sibships. Additionally, 189 and 191 maternal grandmaternal and -

paternal, as well as 155 and 161 paternal grandmaternal and -paternal links 

were present. Based on successful maternal assignments, mean litter size was 

1.24 (range 1-3), which is slightly lower than previous reports for this and other 

populations (1.4-1.5; Carpenter et al. 2005; Dugdale et al. 2007; Annavi et al. 

2014). Out of 101 litters of more than one cub, 23% (compared to a previous 

estimate of 16%; Carpenter et al. 2005) were multiple paternity litters, 

comprising 18 litters of n=2 and 4 of n=3 contributed to by two different fathers, 



44 
 

and one of n=3 with each cub assigned a different father. Parent-offspring 

assignments covered 37 social groups out of the 45 represented in the full 

database. Based on the parent-offspring assignments made, the mean rate of 

extra-group paternity over the 29 years was 37% (SD ±18.40). The relatively 

small proportion of assignments likely reflects the lack of strong prior 

information on maternity in badgers.  Certainly, this greatly reduces power, and 

so the number of assignments, relative to paternity assignment when the 

mother is already known (Jones et al. 2010). Incomplete sampling of candidate 

parents is likely to be another contributing factor. The number of unsampled 

candidate parents estimated by MasterBayes varies considerably between 

cohorts with a median (range) of 0.82 (0.36-0.63) females per group, and 20.40 

(5.13-239) males in the whole study area (Table S2.9). Out of the total parent-

offspring assignments accepted at ≥80% confidence, 34% and 19% were 

assigned with ≥90% and ≥95% confidence, respectively. 

 

Among-cohort variation in mean annual paternity distance 

Across the 23 cohorts for which spatial data could be included in the 

parentage assignment, point estimates of PDc obtained as the mean of the 

posterior distributions for each cohort varied from 173 m (95% CI, 93-275 m) to 

608 m (95% CI, 270-1249 m) with a mean of 354 m (SE ±19.60) across cohorts. 

Despite relatively high uncertainty around some annual estimates, non-

overlapping credible intervals for some pairwise comparisons indicate 

significant annual variation in PDc (Figure 1a). However, this variation was not 

related to any of the explanatory variables (population size, sex ratio or year 

treated as a continuous variable to characterise any trend) tested in our multiple 

regression model (Table 1).  
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Table 1.  Estimated effects of population size, sex ratio and cohort (year) on modal annual 

paternity distance (PDc). Estimates are from multiple regression with uncertainty integrated over 

the full posteriors of annual PDc (see main text). Predictors were mean centred for analysis.  

 

† annual estimate of the number of badgers in Woodchester Park, based on 20 “core” social 

groups with consistent capture records 
‡ calculated from annual population size estimates as the number of males divided by total 

population 

 

 

Among-individual and among-group variation in paternity distance  

Our mixed model analysis of PDi indicated no significant effects of parental age, 

weight or group size (neither maternal nor paternal variables; Table 2). Maternal 

social group sex ratio, on the other hand, had a significant negative effect on 

paternity distance (Table 2), indicating that cubs from maternal social groups 

(i.e. cub’s natal group) with a higher proportion of males have lower paternity 

distances on average. Paternal social group sex ratio showed the opposite 

trend, but the effect was not significant (p>0.05). Testing the random effects 

provided evidence of significant among-individual variation in PDi for both 

mothers (among-mother repeatability, denoted RM = 0.16 SE ±0.05, χ2=40.29, 

p<0.001) and fathers (among-father repeatability, denoted RP = 0.2 SE ±0.06, 

χ2=35.82, p<0.001) (see Figure 2). Comparison of the full model fit to one in 

which maternal and paternal identity variance components were constrained to 

 Estimate 95% credible interval 

Intercept 332.43 319.90- 382.60 

Population size† 0.36 -0.67 – 1.15 

Sex ratio‡ -331.43 -1706.30 – 1743.66 

Year 0.44 -7.81 – 4.74 
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be equal provided no significant evidence against the null hypothesis that 

mother and father explain equal variance in cub PDi (χ2=0.38, p=0.5). The 

random effect of year was estimated at c. 1% of the variance and was not 

significant.  

 

 

Figure 1. Top: Annual modal paternity distance (PDc) estimated for each of 23 cohorts by 

MasterBayes (Hadfield et al. 2006) during pedigree reconstruction. Lines represent 95% 

credible intervals. Numbers above points represent the number of cubs assigned parentage in 

each year. Bottom: Total population size and number of males and females estimated in 

program MARK for each year of the study, based on 20 core social groups with consistent 

capture records. Bars represent standard errors. 

 

Parental social group identities also explained significant variation in PDi, 

with group level repeatabilities of RMSG=0.25 (SE ±0.05; χ2=58.2, p<0.001) and 

RPSG=0.38 (SE ±0.06; χ2=64.50, p<0.001), where MSG refers to maternal, and 

PSG to paternal social group (Figure 2).  The difference in the proportion of 

variance in PDi explained by PSG compared to that of MSG was marginally 
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non-significant (χ2=3.43, p=0.06). There was a strong negative covariance 

between maternal and paternal group identity effects, which corresponds to a 

correlation (±SE) of rMSG.PSG = -0.99 (±0.03; χ2=39.30, p<0.001; Figure 3c). 

Thus, social groups in which resident females (males) are more likely to mate 

with males (females) from further away are the same groups in which resident 

males (females) are less likely to mate with females (males) from further away. 

To visualise this pattern better, and the among-group variation in PD i generally, 

we extracted the group level random effect predictions (best linear unbiased 

predictors or, BLUPs, see Table S2.2), which represent the predicted deviation 

of each (maternal and paternal) social group from the mean paternity distance, 

and overlaid them on a spatial map of the study area (Figure 3). This confirms 

that PSG with longer-than-average paternity distances, correspond to MSG with 

shorter-than-average paternity distances. Biologically, this is consistent with 

source-sink dynamics where some groups both retain resident male genes as 

well as attracting extra-group paternity, however, under the current 

methodology it is not possible to discern whether it is primarily driven by 

physical movement of males, females, or both. Note that while the sources of 

among-group variation are unknown, we highlight that estimates here are 

conditioned on group size and sex ratio, the latter having some effects as 

described above.  
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Figure 2. Estimated intra-class correlations (i.e. proportion of total phenotypic variance 

calculated by dividing each component by the sum of all variance components) for each random 

effect in models of PDi and EGPi. Bars represent standard errors. M and P denote maternal and 

paternal individuals, while MSG and PSG denote the corresponding maternal and paternal 

social groups. 

 

 

Among-individual and among-group variation in extra-group paternity 

Analysis of EGPi yielded broadly similar insights to our model of PDi, although 

paternal, as well as maternal, social group sex ratio had significant effects on 

extra-group paternity (Table 2). Similar to PDi, the effect was negative for 

maternal, and positive for paternal group sex ratio. Thus, there is lower extra-

group paternity among offspring in groups with higher male to female ratios. 

Other fixed effects were non-significant (Table 2). Maternal and paternal ID had 

significant repeatabilities (RM = 0.15 ±0.04, χ2=40.61, p<0.001; RP = 0.17±0.04, 

χ2=35.34, p<0.001) indicating consistent differences among individuals of both 
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sexes in their tendency to have offspring with extra-group partners (Figure 2). 

Social group level effects were also significant and again almost perfectly 

negatively correlated (rMSG.PSG = -0.99 SE ±0.03; Table 3, Figure 3). Differences 

in the amount of variance explained by maternal versus paternal identity, and 

MSG versus PSG were not significant, while year explained only a small (and 

non-significant) amount of variance in EGPi (Table 3). 

 

Figure 3. Spatial representation of a) maternal and b) paternal social group effects and c) the 

relationship between them. Effects are predicted from the mixed model of log-transformed PDi 

(see main text) using best linear unbiased prediction (BLUP) while the spatial configuration of 

social group territories illustrated is derived from a bait marking survey in 1993 (when the 

maximum number of social groups were present). Six social groups included in current analyses 

are not shown on panels a) or b) due to missing bait-marking data, while grey shaded territories 

correspond to groups with no parentage assigned. Error bars in panel c) denote ± standard 

error and the regression line (red) slope is calculated directly from the model (co)variance 

estimates as COVMSG.PSG/VMSG. MSG and PSG denote maternal and paternal social groups. 
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Table 2. Estimated fixed effect coefficients (standard error) and Wald F-tests from mixed models of log-transformed PDi and EGPi (see main text for details). 

Response variables were standardised into standard deviation units (SDU) prior to analysis. M and P denote maternal and paternal individuals, while MSG and PSG 

denote the corresponding maternal and paternal social groups. DF stands for degrees of freedom. 

 
Full models fitted for each response were y ~ μ + AgeM + Body_MassM + Group_sizeMSG + Sex_ratioMSG + AgeP + Body_MassP + Group_sizePSG + Sex_ratioPSG + M 

+ P + MSG + PSG + Year where italic font denotes random effects and y is either log(PDi) or EGPi 

† mean body mass for parental individuals with multiple weight measurements within year of cub’s birth 

‡calculated as number of males divided by group size where group size is males plus females 

 Log(PDi) EGPi 
   Estimate (SE) DF F P Estimate (SE) DF F P 
Intercept -0.72 (0.15)             1, 214.7  24.56 <0.001 0.72 (0.14) 1, 226.9 74.97 <0.001 

AgeM -0.45 (0.15) 1, 533.1  0.09 0.76 -0.52 (0.15) 1, 534.0 0.12 0.73 

Body massM
† -0.61 (0.13) 1, 302.8 0.22 0.63 -0.66 (0.13) 1, 304.1 0.26 0.61 

Group sizeMSG   0.94 (0.18) 1, 456.9 0.28 0.59 0.96 (0.18) 1, 443.0 0.29 0.59 

Sex ratioMSG
‡ -0.74 (0.22) 1, 531.5 10.97 <0.001 -0.82 (0.22) 1, 524.2 13.55 <0.001 

AgeP 0.28 (0.2) 1, 516.7 2.11 0.15 0.30 (0.2) 1, 517.3 2.4 0.12 

Body massP
† -0.59 (0.12) 1, 213.4 0.25 0.62 -0.56 (0.19) 1, 215.0 0.23 0.64 

Group SizePSG   -0.12 (0.18) 1, 537.4 0.44 0.50 -0.12 (0.18) 1, 531.9 0.43 0.51 

Sex ratioPSG
‡ 0.43 (0.24) 1, 538.1 3.21 0.08 0.50 (0.24) 1, 536.0 4.48 0.04 



51 
 

Table 3. Estimated (co)variance components (standard error) associated with random effects in mixed models of EGPi and log-transformed PDi. Statistical inference 

of random effects is by likelihood ratio test results (see main text for details). M and P denote maternal and paternal individuals, while MSG and PSG denote the 

corresponding maternal and paternal social groups.  

 

  log(PDi)    EGPi   
 

Variance (SE) df χ2
1 P Variance (SE) χ2

1 df P 

Vyear 0.02 (0.02)     1 3.22 0.07 0.02 (0.03) 2.83 1 0.09 

VM
† 

0.26 (0.05) 1 40.29 <0.001 0.26 (0.06) 40.61 1 <0.001 

VP
† 

0.31 (0.06) 1 35.82 <0.001 0.31 (0.06) 35.34 1 <0.001 

VMSG
‡ 

0.39 (0.15) 2 58.16 <0.001 0.34 (0.13) 55.00 2 <0.001 

VPSG
‡ 

0.59 (0.21) 2 64.54 <0.001 0.54 (0.19) 62.91 2 <0.001 

COVMSG,PSG 
-0.48 (0.17) 1 39.33 <0.001 -0.43 (0.15) 36.84 1 <0.001 

VR 0.32 (0.04) - - - 0.32 (0.04) - - - 

† not significantly different from each other (logLRT, PDi: χ2 = 0.38, p=0.5 EGPi: χ2 = 0.28, p=0.6) 

‡ not significantly different from each other (logLRT, PDi: χ2 = 3.43, p=0.06, EGPi: χ2 = 3.68, p=0.06) 
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Discussion 

We examined variation in breeding excursions using pedigree-derived 

information on extra-group paternity and paternity distance in a wild population 

of badgers. We found evidence that cohort mean paternity distance (PDc, the 

mean distance between the social groups of fathers and their cubs) varied 

among years. Contrary to our predictions, this among-cohort variation in PDc 

was not explained by annual variation in population size or sex ratio, nor did we 

see any systematic temporal trend in paternity distance over the study period. 

However, individual (cub) level analyses showed significant among-parent (both 

mother and father) and among-social group variance in breeding excursions, 

with the latter contributed to (but not fully explained) by differences in group sex 

ratios. Below we discuss these findings in the context of the wider literature, 

focusing on their implications for ecological and evolutionary dynamics.  

 

Among-cohort variation in average paternity distance 

Our point estimates of PDc varied considerably among years, suggesting 

temporal variation in the tendency of badgers to undertake breeding excursions. 

However, there was no systematic trend over time and cohort variation was not 

explained by changes in the size or sex ratio of the Woodchester Park 

population as a whole. A post hoc analysis of PDi and EGPi with population-

level estimates included as additional predictors also revealed no significant 

effects of population size or sex ratio. Year-to-year variation in PDc therefore 

remains unexplained at present, but could plausibly be linked to other variables 

such as weather conditions, relatedness and neighbouring group composition, 

all of which are known to influence movement, activity and dispersal in badgers 

(Annavi et al., 2014; Noonan et al., 2014), but which were not investigated here. 
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More generally, the absence of population size effects on PDc contrasts 

somewhat with previous studies. In badgers and other species (e.g. Møller 

1991; Mougeot 2004; Annavi et al. 2014), local density-dependence has been 

reported in rates of extra-group paternity – a pattern often linked to changes in 

mate guarding behaviour (e.g.  Møller 1991; Kokko & Rankin 2006; Isvaran & 

Clutton-Brock 2007), though evidence for mate guarding in badgers is limited 

(Dugdale et al., 2007). Variation in movement distance has also been linked to 

population density in badgers (Frantz et al., 2010; Byrne et al., 2014) and is 

sensitive to local density reductions from culling (Tuyttens et al., 2000a; 

Tuyttens et al., 2000b; Pope et al., 2007). However, we note that paternity 

distance is considered a proxy for movements relating specifically to breeding 

excursions here. Certainly, the processes governing rates of breeding 

excursions may differ from those influencing other types of movement making 

direct comparisons difficult. 

There are also several other explanations for the apparent discrepancy 

between our results and these previous findings. Firstly, it is possible that 

among-year density variation in the current study is not sufficient to reveal a 

density-dependent response, as Woodchester Park has one of the highest 

recorded densities (25 adults/km2) of badgers throughout the species’ range 

(Rogers et al. 1997) and the habitat may be saturated. However, population 

fluctuation over the period of this study suggests this is not the case, as 

population size increased in some years. Second, it is possible that the (overall) 

population density measure used here doesn’t capture variation at the correct 

scale to reveal density-dependence. The latter appears to be the case for sex 

ratio, with temporal variation in population level PDc not being predicted by 

population sex ratio, but local (i.e. group) sex ratios contributing to spatial 
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variation in EGPi and PDi defined at individual (cub) level (discussed further 

below). However, parallel local density effects (modelled as social group size 

effects) did not contribute to spatial variation in either EGPi or PDi. An additional 

consideration is the fact that the lack of a clear density-dependent pattern could 

conceivably be an artefact of the study scale, as high-density populations (such 

as Woodchester Park) typically involve sampling over smaller spatial areas and 

may therefore miss longer distance movement (Byrne et al. 2014).  Finally, we 

note that the large proportion of unresolved parentage across the study period, 

as indicated by the relatively low number of parentage assignments (35% cubs 

assigned parent(s)), may well have resulted in a lack of power to distinguish 

density and sex ratio effects on cohort mean paternity distance.  

 

Among-group variation in cub PDi and EGPi 

Analysis of cub level proxies of (parental) breeding excursions revealed several 

important sources of variation. Parental social group sex ratios influenced both 

EGPi and PDi. Although we note that the effect of PSG sex ratio on PDi was not 

statistically significant in the main analysis presented, it was significant when we 

refitted our model using only those paternity distances inferred from 

assignments at the 95% confidence threshold (see Table S2.6). Cubs had 

higher PDi (on average) and were more likely to have an extra-group father if 

born into less male-biased social groups. Conversely, cubs born in groups with 

more male-biased sex ratios were more likely to be fathered by within-group 

males. These results are consistent with earlier analysis of trapping data in 

Woodchester Park in which Rogers et al. (1998) concluded that males 

preferentially move to groups with a higher proportion of females.  Woodroffe et 

al., (1993) also found that the peak of these temporary excursions coincides, for 
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both males and females, with female oestrus while in the Wytham Wood 

(Oxfordshire, UK) badger population, while, similar to Woodchester Park, higher 

numbers of within-group males were associated with lower rates of EGP 

(Annavi et al., 2014). Taken together, these results are consistent with ongoing 

mate guarding by males (anti-kleptogamy hypothesis; Robertson et al. 2014) 

although they do not provide direct evidence.  Although previous studies have 

thus emphasised the role of males in breeding excursions, we stress that our 

indirect inferences from paternity distance and extra-group paternity do not 

allow us to discriminate between male and female movements. Temporary 

excursions by both sexes are possible and our results could reflect important 

variation in female mating behavior in response to mate availability. For 

instance, females may be less inclined to seek extra-group matings in male-

biased groups if they have greater choice of partners. Nevertheless, the relative 

importance of contributing factors (e.g. avoidance of male-male competition, 

female choice for extra-group males, inbreeding avoidance by either sex) is not 

clear (although see Annavi et al. 2014).  

After accounting for sex ratio (and group size) effects, parental social 

group identities together account for more of the remaining variance in cub PDi 

and EGPi (63% and 49%, respectively) than any other variance component. 

Further, the strong negative correlation between maternal and paternal group 

identity effects in both models indicates that maternal groups that predispose to 

high paternity distance are the same as the paternal groups predisposed to low 

paternity distance. These social group identity effects are not readily explained 

as a simple consequence of, for example, (relative) distances between groups 

or edge-effects. In the former case, a positive correlation between maternal and 

paternal social groups would be present, while, in the latter, groups at the edges 
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of the study area would be expected to have below average PDi. This is 

because we expect failure to assign paternity to cubs sired by unsampled males 

from outside the study area, such that edge effects are likely to cause 

downward bias in average PDi and EGPi for peripheral maternal groups. 

However, no such pattern is readily apparent in our analysis (see spatial maps 

of group effects on cub paternity distance in Figure 3).  

Thus, while reiterating the earlier caveat that some long-distance 

movements may be missed by our analysis, among-group variation in cub 

paternity distance is not readily explained as an artefact here. Rather the 

emerging picture is one of source-sink dynamics, where some social groups are 

more ‘attractive’ than others thus both retaining and drawing in male genes. 

From the male’s point of view this could signal variation in some unknown 

aspect of “quality” among females from different social groups, which itself may 

be mediated by spatial variation in resource availability (e.g. food, setts) that 

determine habitat preferences of females. Conversely, the observed pattern 

could reflect variation in female mating preferences if ‘attractive’ males are 

spatially clustered. Spatial variation in habitat quality has previously been linked 

to differences in group size across Woodchester Park (Delahay et al. 2006) and 

is certainly a plausible hypothesis for explaining among-group differences 

‘attractiveness’, although variance explained by parental social group identities 

is estimated here conditional on a set of fixed effects including group size. 

Furthermore, group size itself was not a significant predictor of either response 

variable in the main analyses presented based on parentage assignments 

made at 80% confidence. However, using the more stringent assignments 

threshold of 95%, group sizes did have a significant effect. Given statistical 

support for group size effects is thus rather equivocal we draw no strong 
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conclusions about its role. However, at least in a qualitative sense it is worth 

pointing out that PDi and EGPi seem to increase with paternal group size and 

decrease with maternal group size.  

  Similar variation has been recorded in great cormorants (Phalacrocorax 

carbo sinensis), where Minias et al. (2016) found higher rates of extra-pair 

paternity in the periphery than in the centre of a nesting colony. This pattern 

was not explained by density but by variation in mate quality, as indicated by 

nest site location. Habitat structure has also been shown to influence rates of 

extra-pair paternity, for instance, in blue-footed boobies (Sula nebouxii), by 

restricting movements within the colony (Ramos et al., 2014). Although our 

results, as well as results from previous studies (Carpenter et al., 2005; Rogers 

et al., 1998), suggest that movement in this population is focused around 

neighbouring social groups, with an average PDC of 358 m and a nearest 

neighbour distance between social group main setts of 355 m (SD 84) m, 

habitat structure per se is unlikely to influence movement in this population, 

spatial structuring (particularly of females) instead being mediated by resource 

availability (da Silva et al., 1994; Delahay et al. 2006). 

 

Among-individual variation in cub PDi and EGPi 

In addition to social group effects, we found that there was repeatable variation 

among both mothers and fathers for cub PDi and EGPi. The most parsimonious 

interpretation of these results is that there is among-individual variation, in both 

sexes, for breeding behavior. This interpretation is in line with trapping-based 

inferences for the Woodchester Park badger population (Rogers et al., 1998), 

as well as studies of other taxa. For instance, Whittingham et al., (2006) found 

the proportion of extra-pair young produced to be highly repeatable for female 
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tree swallows (Tachycineta bicolor; intra-class correlation, r= 0.83). In coal tits 

(Parus ater), the proportion of extra-pair young showed repeatability in both 

sexes among the same social pairing (r=0.33 and 0.47 for males and females 

respectively; Dietrich et al. 2004). Conversely, breeding excursions were found 

not to be a repeatable behaviour in female roe deer (Capreolus capreolus; 

Debeffe et al., 2014). Among-individual differences in other dispersal and 

exploratory behaviours have also been recorded for spiders (Bonte et al., 2009; 

Johnson et al., 2015), fish (Harrison et al., 2015), amphibians (Cosentino & 

Droney, 2016) and birds (Reid et al. 2011a; Patrick et al. 2012; Grist et al. 

2014). Thus, among-individual variance in PDi and EGPi could be linked to both 

reproductive decision making (i.e., individuals varying in their propensity/ability 

to seek or obtain extra-group matings), and more general exploratory traits 

influencing encounter rates between badgers from different groups. Regardless, 

a further aspect of our analysis worth noting is that similar levels of variation in 

cub PDi and EGPi were explained by maternal and paternal identities. Thus, 

whether gene flow from breeding excursions is being mediated primarily by 

variation in movement per se, or by reproductive decision making, both sexes 

appear to have an equal impact.  

  Our analyses have not clearly identified the underlying source(s) of 

among-individual variance in (parental) mating behaviour. Neither size nor age 

(of either parent) significantly predict PDi and EGPi in the main analyses, 

although we note that using the 95% confidence pedigree the positive effects of 

paternal age on both response variables are statistically significant (Table 

S2.4). This suggests that older males tend to produce more extra-group 

offspring and make longer breeding excursions (or mate with females that do), 

though this conclusion remains tentative. In a broader sense, among-individual 
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variation will reflect the fact that individuals experience different environmental 

conditions (e.g. maternal effects, food availability, social status) even within 

groups and years (which were both modelled separately), although genetic 

variation may also be present.  Dispersal distance has been shown to be 

heritable in a free-living population of great tits (Parus major; h2= 0.15 SE ± 

0.01; Korsten et al. 2013), as has EGP rate in in female, but not male, song 

sparrows (Melospiza melodia; Reid et al. 2011a&b). It is, therefore, possible 

that the among-individual variance found here has a partial genetic basis. In 

fact, the pedigree will facilitate testing this, although it would best be achieved 

through quantitative genetic modelling of independently obtained trapping data.  

       

Conclusions 

We have used a genetic pedigree to characterise variation in paternity distance 

and extra-group paternity in a high-density badger population. We show there to 

be variation among years and social groups, but also among-parental 

individuals (both mothers and fathers) within groups. Although effects of social 

group sex ratio (and potentially group size and paternal age) were detected, in 

general this variation is not readily explained by life-history and social 

correlates. Among-group variation appears to follow a pattern of source-sink 

dynamics, suggesting that some social groups are more attractive to extra-

group partners than others, though levels of among-parental variation in our 

metrics were similar across the sexes. Not readily explained by age or body 

size, it is possible that genes as well as individual-specific (rather than group 

level) environmental factors contribute to among-individual variation although 

this remains to be tested.  Individual-level differences can have important 

consequences for many ecological and evolutionary processes, and our results 
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highlight the fact that individuals can vary consistently in their mating behavior. 

Together these results emphasise the importance of including individual-level 

variation in evolutionary models of animal movement and mating behavior, as 

well as management and conservation measures.   
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Chapter 3 

 

The relative importance of social, maternal and additive genetic 

effects on Mycobacterium bovis infection status of European 

badgers (Meles meles)  

 

Abstract  

Within host populations, individuals can vary in their susceptibility to infection by 

parasites and in rates of disease progression once infected. Though mediated 

through differences in behaviour, resistance or tolerance, variation in disease 

outcomes ultimately stems from both genetic and environmental (including 

social) factors. Despite obvious implications for evolutionary, ecological and 

epidemiological dynamics of disease traits, the relative importance of these 

factors has rarely been quantified in wild animal hosts. Here, we use a long-

term capture-mark-recapture study of group-living European badgers (Meles 

meles) to characterise genetic and social environmental sources of variation in 

bovine tuberculosis (bTB) infection status. Quantitative genetic analyses of 

individual variation in disease progression and lifetime infection risk yielded 

significant, but low, estimates of heritability. Of more importance were the 

effects of social group membership (in time and space), and maternal effects 

were an important source of variation in cub infection status. Thus, while genes 

do contribute to among-individual variation in this population, rapid evolution of 

host defence strategies under presumed parasite-mediated selection is unlikely. 

Conversely, our results lend further support to the view that social and early-life 
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environments are important drivers of dynamics of bTB infection in badger 

populations specifically, and of disease traits in wild hosts more generally.  
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Introduction 

Pathogens and parasites are key drivers of the ecological and evolutionary 

dynamics of their host populations (Schmid-Hempel 2011). To counter them, 

hosts have evolved a myriad of defence strategies that include behavioural 

avoidance of infection (Behringer et al.2006), immune responses that limit 

parasite growth (resistance; Rigby et al.2002), and repair of parasite-induced 

damage to minimise costs of infection (tolerance; Medzhitov et al. 2012).  

However, within host populations, there can be considerable variation among 

individuals in these traits which, in turn, leads to differences in susceptibility to 

infection and disease progression. The importance of among-individual variation 

for population-level processes has become increasingly clear in recent years 

(e.g. Madritch & Hunter, 2002; Grist et al., 2014; Svanbäck et al. 2015), 

particularly with respect to our understanding of infection dynamics (Kramer-

Schadt et al. 2009; VanderWaal & Ezenwa, 2016). Nonetheless, while variation 

can generally be viewed as stemming from genetic and environmental 

(including social) effects, we currently have little knowledge of their relative 

importance in wild and unmanaged host populations where environmental 

factors can exert considerable influence on infection dynamics.  

From an evolutionary point of view, parasites (in which we include 

pathogenic bacteria, viruses, fungi and protozoa) are expected to select for 

improved host defences. However, any response to selection is contingent on 

the presence of genetic variance in the host. A partial genetic basis of variation 

in host defence strategies against infectious disease is well-established in 

humans, model organisms, and livestock studies (Morris, 2007; Yan et al. 2006; 

Breitling et al., 2008). For instance, selective breeding for resistance to specific 

pathogens is important to agriculture and aquaculture (Stear et al. 2001; Yáñez 
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et al. 2014). In addition to enabling host selection responses, genetic variation 

among individuals may also impact pathogen emergence and prevalence by 

modifying transmission dynamics (Yates et al., 2006; Doeschl-Wilson et al., 

2011) and determining susceptible host availability. Thus, among-host genetic 

variation can influence the population-level  dynamics of infection through 

multiple routes  (Nath et al. 2008; Lough et al. 2015). However, at present 

relatively little is known about the extent of genetic variation in disease 

susceptibility in wild host populations, in large part due to the difficulties of 

obtaining appropriate immunological data coupled to genetic information over 

multiple generations. In wild bird populations, several quantitative genetic 

studies have investigated genetic variation in immune response traits with  

findings ranging from an apparent absence of genetic effects (Pitala et al. 2007) 

to evidence that immune function is moderately heritable (Bonneaud et al. 2009; 

Kim et al. 2013). In other studies, genetic variation in both resistance and 

tolerance to an ectoparasite has been reported in wild dace (Leuciscus 

leuciscus; Blanchet et al. 2010; Mazé-Guilmo et al. , 2014), while quantitative 

analyses of helminth infections in Soay sheep (Ovis aries) revealed  genetic 

variation in host resistance but not tolerance (Hayward et al., 2014a; Hayward 

et al., 2014b). There is also growing evidence that consistent differences in 

behavioural processes likely to influence infection risk (e.g. dispersal, 

sociability; Barber & Dingemanse, 2010) are heritable in natural populations 

(Korsten et al. 2013; Petelle et al. 2015). However, whether this represents an 

important source of genetic variation for infection status or disease progression 

remains to be determined.  

If studies to date have yielded mixed conclusions about the importance 

of genetic variation in disease traits in wild animal hosts, then a corollary of this 
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is that we also have limited understanding of how environmental factors 

contribute to among-host variation. Abiotic factors (e.g. rainfall, seasonality) 

play an important role in shaping disease dynamics at the population level 

(Altizer et al. 2006), as do biotic environmental influences such as the 

distribution and social structure of host populations. Social effects, broadly 

defined as influences of phenotype arising from interactions with conspecifics, 

are associated with heterogeneity in disease dynamics; on the one hand, 

transmission of pathogens within groups of closely interacting individuals 

represents a major cost of group living (Kappeler et al. 2015), while on the other 

hand, close-knit groups with limited among-group contact can inhibit the spread 

of disease over larger scales (Carter et al. 2007). In many cases social effects 

will also be age-specific. For example, mature individuals can be exposed to 

higher infection risks from inter-sexual contacts (e.g., sexually transmitted 

infections; Rhule et al.2010). 

In species with parental care, mothers (and/or fathers) are another 

source of social effect likely to be age (or stage) specific. In birds and 

mammals, for instance, offspring immunocompetence in early life is strongly 

linked to the transfer of maternal antibodies (Grindstaff et al. 2003; Grindstaff et 

al. 2006). The protection afforded by maternal antibodies to offspring is, 

however, temporary, lasting from a few days to months (Grindstaff et al. 2003) 

and subsiding with the beginning of antibody production by the offspring’s own 

immune system. More general environmental conditions experienced by the 

mother (e.g. food availability) can have knock-on effects on offspring immune 

development and disease resistance (Karell et al. 2008; Garbutt et al. 2014). 

Regardless of the mechanism, maternal effects present in early life will tend to 

decline with age, as the maternal phenotype typically has less opportunity to 
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influence the offspring after the cessation of maternal care. This pattern has 

been well documented for other trait types (e.g., growth, morphology, life 

history; Wilson et al. 2005b; Houde et al., 2015; Falica et al. 2017), but does not 

mean adult phenotypes can be assumed to be free from maternal influence 

(see e.g., Bonne et al 2015). 

Here, we seek to examine the relative importance of genetic and social 

environmental (including maternal) sources of variation in Mycobacterium bovis 

(the cause of bovine tuberculosis; bTB) infection status in a wild population of 

European badgers (Meles meles). Badgers are an important wildlife reservoir 

for bTB infection, a longstanding socioeconomic burden on the livestock 

industry and tax payers in the UK (Defra, 2014).  Some of the drivers of disease 

in badgers have now been documented. For instance, sexual dimorphism 

occurs, with bTB infection probability, disease progression and mortality risk all 

being higher in males (Graham et al., 2013; McDonald 2014).  Age effects have 

also been observed (Graham et al., 2013; McDonald et al., 2014; Beirne et al. 

2016), while at the population-level, bTB incidence and prevalence exhibit 

seasonal variation (incidence being highest in spring and prevalence peaking in 

autumn; Delahay et al. 2013). However, the relative importance of social 

environmental and genetic effects on bTB status has not been effectively 

characterised in part because kin-biased social groups make these potential 

sources of variation difficult to disentangle in the absence of experimental 

approaches.  

Badgers are facultatively social, forming groups in medium to high 

density populations but adopting a more solitary lifestyle when living at low 

density (Roper 2010). At the level of the population, natal philopatry and 

territorial defence limit mixing of animals among groups, which in turn is 
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expected to reduce disease transmission among social groups (Delahay et al. 

2000b) while at the same time being associated with relatively high within-group 

transmission rates. Social group structure should thus drive spatial clustering of 

bTB, and high among-group variation in disease status, relative to that found 

within-groups, has been previously reported (Delahay et al. 2000b). However, 

genetic data suggest alternative explanations may also have merit. Parentage 

analysis shows that among-group breeding dispersal is limited (though, crucially 

for current purposes, does occur; Chapter 2; Marjamäki et al. in press), leading 

to greater relatedness within than among groups (Dugdale et al., 2008). Recent 

work has also shown that bTB infection risk for cubs is increased by the 

presence of closely related infected adults (including but not limited to mothers) 

within the natal group (Benton et al. 2016). Spatial heterogeneity in host 

disease status is consistent with within-group (and by extension kin-biased) 

social interactions impacting infection risk, maternal effects, and/or genetic 

variation in one or more host defence strategies. These alternative explanations 

are in no sense mutually exclusive.  

While it is therefore clear that infection status can be influenced by 

numerous factors at multiple scales, the long-term life-history and genetic 

pedigree data from the Woodchester Park study affords a rare opportunity to 

assess their relative importance in a wild vertebrate system. We adopt a 

quantitative genetic animal model approach to decompose the variance in bTB 

infection status into its component parts and examine the relative contributions 

of genetic and environmental factors. We employ a progressive categorisation 

of disease status (based on live diagnostic test results) that approximates bTB 

progression from test negative to advanced stages of infection (Graham et al. 

2013). We ask: i) whether variation in host bTB infection status has a detectable 



68 
 

genetic basis; ii) what are the relative contributions of genetic and social (group 

and/or maternal) effects on the observed variation in host bTB status; and, iii) 

do the relative contributions of genetic and social effects on bTB status vary in 

relation to host age?   

 

Methods 

Study site and sampling 

The badger population under study at Woodchester Park (Gloucestershire, UK) 

has comprised approximately 200–300 badgers that have been the subjects of 

an ongoing capture-mark-recapture study, initiated in 1976. The study area, 

approximately 11 km2, consists of a steep-sided wooded valley surrounded by 

farmland and is located in an area where bTB infection is endemic in cattle and 

wildlife. Badger dens, or setts, in the study area have been the subject of 

trapping operations up to four times a year for two consecutive nights using 

peanut-baited steel mesh box traps, set after 4–8 days of pre-baiting. Trapped 

badgers were anaesthetized (de Leeuw et al. 2004) and their capture location, 

sex and age class (cub, adult) are then recorded. Individuals caught as cubs 

(distinguished from adults by size, pelage and toothwear; (Delahay et al. 2013) 

could then be accurately aged at subsequent captures. The bTB infection status 

of captured badgers was determined by bacterial culture of clinical samples 

(faeces, urine, sputum, pus, bite wound swabs; (Clifton-Hadley et al. 1993), and 

a serological test for the presence of M. bovis antibodies (Brock Elisa used 

1982 to 2006 (Goodger et al., 1994) and BrockTB Stat-Pak test used 2006 to 

2014 (Chambers et al., 2008)). Guard hairs were taken for DNA extraction and 

subsequent microsatellite genotyping (see below). After a recovery period, all 
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badgers were released at the point of capture. Social group boundaries were 

determined for each year of the study by bait marking (Delahay et al. 2000a). 

Overall, the mark-recapture dataset used here contained 15,252 observations 

on 3239 individual badgers between 1976 and 2014. 

 

Microsatellite genotyping and parentage analysis 

The procedures for microsatellite genotyping and parentage analysis are 

described in detail in Marjamäki et al. (in press) (Chapter 2). Briefly, DNA was 

extracted from hair samples using either the protocol outlined in Carpenter et al. 

(2005), or an ammonium acetate extraction method (Richardson et  al. 2001). 

We used a minimum of five hair follicles with visible roots per individual for 

extraction. Individuals were genotyped using a minimum of 16 (Carpenter et al. 

2005) and maximum of 22 fluorescently labelled autosomal microsatellite 

markers. We used a 2 μl Qiagen Multiplex PCR reaction (Qiagen Inc., Valencia, 

USA), before separation of the amplicons on an ABI 3730 DNA Anazlyer and 

genotype scoring using GENEMAPPER 3.7. Microsatellite genotypes and 

spatial data were then used for Bayesian parentage analysis performed using 

the R (R Core Team 2016) package MasterBayes (Hadfield et al. 2006). Markov 

chains were run separately for each year (i.e. cub cohort) for 2 million iterations, 

with a thinning rate of 100 and burn-in period of 500,000. Tuning parameters 

were specified for each cohort to ensure that the Metropolis–Hastings 

acceptance rates were within acceptable limits (0.2–0.5; Hadfield 2017). The 

presence of unsampled males (per population) and females (per social group) 

was also allowed for each cohort. Assignments were accepted and used in 

downstream analyses when a confidence threshold of 80% was met, resulting 
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in a total of 1175 parentage assignments (579 maternities and 596 paternities). 

A total of 617 cubs were assigned at least one parent (35% of genotyped cubs 

included in the analyses), and out of these, 556 (89%) cubs were assigned both 

parents. The pedigree information is therefore far from complete, which may 

have some implications for our analyses (discussed further below). We note 

that, in contrast to comparable long-term avian and mammalian studies, 

maternal identities cannot be determined by observation in badgers owing to 

their nocturnal and subterranean habits. Thus, pedigree analysis is more 

challenging because maternities must be estimated simultaneously with 

paternities based on genetic and spatial data.  

 

Infection status  

Based on diagnostic test results from samples taken at each capture event, 

badgers were assigned to one of four bTB infection status categories on an 

ordinal scale following Graham et al. (2013). Individuals that returned negative 

results for both the serological test and bacterial culture were classified as test-

negative (N) and assumed to be free of infection. Badgers that tested positive 

for blood antibodies but had negative culture results were assigned test-positive 

(P) status, indicating recent exposure to M. bovis. This classification potentially 

also includes individuals that have acquired immunity from a previous infection, 

though there is currently no evidence for acquired immunity to bTB in badgers. 

Positive test results could also indicate cross-reaction or presence of maternal 

antibodies (Maas et al., 2013; but see Tomlinson et al, 2012). To account for 

this possibility, and to reduce the error caused by false positive test results, a 

single test-positive followed by only negative results was considered a false 
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positive and classified as N. Badgers that tested positive for the presence of M. 

bovis by bacterial culture were assigned as either one-site (O) or multi-site (M) 

excretors, based on the number of sampled body sites that tested positive at 

each capture. Although culture has relatively low sensitivity as a diagnostic test, 

a positive result is a strong indicator of established bTB infection (see Drewe et 

al. 2010). These two categories are therefore considered to represent more 

advanced, infectious disease states. 

 Based on models of bTB immunopathogenesis in badgers (Mahmood et 

al., 1987; Lesellier et al., 2008), we assume these four categories can 

reasonably be ordered to reflect the progression of bTB within a host and 

converted them to a numerical score (N=0, P=1, O=2, M=3) to be used as a 

pseudo-continuous response variable in our quantitative genetic models. 

Finally, to further reduce the impact of the limited performance of the diagnostic 

tests, we elected to make the score progressive so that once a badger reaches 

a certain status, it can no longer return to a lower categorisation. As serological 

tests were performed using two different platforms (Brock Elisa 1982 -2005, 

BrockTB Stat-Pak 2006-2014) we reran the presented models (see ‘Statistical 

Analyses’) on two subsets of the data where only Brock Elisa or Stat-Pak was 

used.  

 

 Statistical analyses  

We performed variance decomposition of two response variables. Firstly, we 

used the multisite bTB status score described above that ranges from 0–3 

(hereafter denoted as bTBmulti) for which individuals have repeated 

observations, one for each capture event in the database. Secondly, we define 
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a binary “lifetime” bTB status score (bTBlifetime) for which individuals have a 

single observation of either 0 (if they did not test positive for bTB during their 

entire recorded lifetime) or 1 (if they did).  Both response variables were 

analysed using an animal model approach (Wilson et al., 2010), in which an 

individual’s breeding value – the additive effect of its genotype on phenotype 

(relative to the population mean) – is included as a random effect. This allows 

estimation of the (additive) genetic variance VA in addition to variance 

components attributable to other specified random effects. Fixed effects were 

also included in models of both response variables (as described below) to 

control for known sources of variance. These effects are not directly relevant to 

the current hypotheses and so are not discussed in detail (but see 

Supplemental Tables S3.4-S3.5 for a full presentation of parameter estimates 

and statistical inference).  

 

Multisite bTB status 

First, we analysed bTBmulti on the observed (0–3) scale using ASReml 4.0 (VSN 

International) with an assumption of Gaussian residuals. The assumption must 

necessarily be violated given the definition of the response variable and so 

statistical inference should be treated with some caution. Nonetheless, 

inspection of model residuals suggests it is not an unreasonable assumption 

(i.e. residuals show unimodal distributions with a strong central tendency) and 

so we view this as a pragmatically sensible decision. Significance of fixed 

effects was determined using conditional Wald F-tests, while statistical 

inference on random effects was by likelihood ratio test (LRT) comparison of the 

full model to reduced formulations in which the tested random effect was 
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omitted. Twice the difference in log-likelihood between the full and reduced 

models was assumed to have a χ2 distribution, and following Visscher (2006), 

we assumed the test statistic to be asymptotically distributed as an equal mix of 

χ20 and χ21 (denoted as χ20,1).  

Sex, season (spring = Mar–May, summer= Jun–Aug, autumn= Sep–Nov, 

winter = Dec–Feb), and the linear, quadratic and cubic effects of age, were 

included as fixed predictors. Age was zero-centred to the mean (known) age of 

adult records (4.06 years) in the data set. Random effects included the additive 

genetic merit, a permanent environment effect, maternal identity, social group, 

year of observation, and a social-group-by-year interaction. These random 

effects are assumed to be drawn from distributions with zero means and 

variances – to be estimated – of VA, VPE, VM, VSG, VY and VSGxY, respectively. 

The group by year interaction was included since, if bTB infection varies 

through time and among groups, then it seems plausible that the worst 

impacted groups could vary among years. Permanent environment effects were 

added to account for sources of among-individual variance not otherwise 

explicitly modelled. We note that progressive categorisation of bTB status may 

cause an upward bias in the amount of variance explained by individual identity 

(i.e., ‘measurement error’ will contribute to both VPE and VR here) so we limit 

biological interpretation of these generic ‘environmental’ variances. To ease 

interpretation of results, bTBmulti was scaled to standard deviation units (giving it 

an observed variance of 1) prior to model fitting. Thus, for example VA can 

actually be interpreted as an estimate of the heritability unconditional of fixed 

effects. However, estimated variance components were also divided by 

phenotypic variance VP, calculated as the sum of estimated variance 

components, to obtain intra-class correlations (ICC), conditional on fixed effects 
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(Wilson 2018), giving the proportion of variance in bTB status explained by each 

component. After removing individuals with missing social group information (n= 

293), analyses were run using 14,846 observations of 2946 individuals. 

To further disentangle the relative importance of maternal and additive 

genetic effects, we ran a variation of the above model (‘Model 1’) where 

maternal effects were restricted to cubs (‘Model 2’). Comparisons between 

these two models (Models 1 and 2) allows us to determine whether the 

previously reported effects of relatedness on bTB infection (Benton et al. 2016) 

stem from additive genetic or maternal (genetic and environmental) effects, or a 

combination of the two. Additionally, it allows us to examine whether the relative 

importance of VA and VM changes with age. Since Models 1 and 2 have the 

same number of parameters, significance testing through LRT was not possible 

and model fit was determined based on Akaike Information Criterion (AIC; 

Akaike 1974). Heritability and intra-class correlations for Model 2 variance 

components were calculated separately for adults and cubs, as VM in this model 

contributes to total phenotypic variance in cubs only (i.e., VPc = 

VA+VG+VY+VGxY+VPE+VM+VR, while for adults VPa = VA+VG+VY+VGxY+VPE+VR, 

where VR is residual variance). We also fitted Model 1 separately on adult and 

cub data. These age-specific models added relatively little further insight, so we 

do not present results in full below (but see electronic supplement Tables S3.6-

S3.7 and brief comments in the discussion).  

 

Lifetime bTB status 

Using the binary bTBlifetime metric as the response variable, we fitted a Bayesian 

generalised linear mixed model (GLMM) using the package MCMCglmm 
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(Hadfield 2010) in the R environment. The data set contained 3239 

observations of bTBlifetime of which 59% were zero. Sex and a linear effect of 

age at last capture were included as fixed effects, along with quadratic and 

cubic effects of age at last capture. Age at last capture was zero-centred to the 

mean (known) age of adult records (2.12 years) in the data set. The additive 

genetic merit, maternal ID, natal group (i.e. first group a cub is recorded at), and 

birth year, were included as random effects. We also included a natal-group-by-

birth-year effect by creating a new factor ‘group-birth year’ which groups 

individuals based on both their natal group and birth year. We used a parameter 

expanded prior distribution on one degree of freedom for random effects while 

residual variance was fixed to 1 (de Villemereuille 2012). We also attempted to 

fit the model using a scaled Fisher prior, however, we struggled to obtain 

satisfactory convergence in our dataset, so results are not presented. Fixed 

effects had normally distributed diffuse priors. After initial tests, the Markov 

chain was run on family “categorical” (see electronic supplement tables S8-S9 

for threshold model) for 7005000 iterations with a thinning interval and burn-in 

period of 5000 iterations each to ensure convergence and low autocorrelation 

(<0.1) between saved values. This resulted in 1,400 samples, which were used 

to calculate posterior modes and 95% credible intervals for the fixed effects and 

variance components on the latent scale. To enable more intuitive biological 

interpretation, estimated variance components on the latent scale were 

transformed to the corresponding ICC values (including heritability, h2) on the 

observed using the functions ‘QGparams’ and ‘QGicc’ from the R package 

‘QGglmm’ and the model ‘binom1.logit’ (de Villemereuil 2017).  
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Results  

For the pseudo-continuous variable bTBmulti estimated variance components 

were very similar for Models 1 and 2, with only VM differing notably between the 

two (Figure 1). However, the preferred model based on AIC comparison was 

that in which maternal effects were restricted to cubs (Model 2: AIC= 4987.87 

vs. Model 1: AIC= 5049.73). Likelihood ratio tests of variance components 

under Model 2 indicate the presence of significant additive genetic, social 

group, and maternal contributions to among-individual variance in infection 

status (Table 1). bTBmulti has an estimated heritability (conditional on fixed 

effects) of 5% in both adults and cubs (Table 1; note ICC are not identical 

between age classes as VM contributes to VPc but not VPa). Though the 

heritability is low, the additive genetic variance is nonetheless significantly 

greater than zero (LRT, χ20,1 =5.06, P=0.01). Overall, social group effects 

account for considerably more variation in bTB status than additive genetic 

effects.  

Social group and social group x year effects explain a combined 13% 

and 10% of variation in bTBmulti in adults and cubs, respectively. Most of the 

among-group variance was partitioned into VSGxYc (11% and 9%, respectively) 

indicating that the social groups themselves vary considerably in their effect on 

individual infection status between years. There was also evidence of significant 

among-year differences in bTB status that were independent of social group 

(with VY accounting for 8% and 7% of the variance in adults and cubs 

respectively; Table 1). For cubs, maternal effects explained a further 14% of 

variance in bTBmulti under Model 2, indicating that cubs born to the same mother 

share similarities in phenotype over and above those attributable to genetic and 

social group effects.  
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Figure 1. Comparison of variance component estimates from alternative bTBmulti models. In 

Model 1, maternal effects (VM) were estimated for adults and cubs, whereas in Model 2 they 

were restricted to cubs only. All other variance components (additive genetic [VA], social group 

[VSG], year [VY], social group by year[VSGxY], permanent environment [ VPE]) were estimated 

across age groups in both models. Lines represent 95% confidence intervals. 

 

Results from modelling bTBlifetime yielded qualitatively similar biological 

conclusions for the most part (Table 2). On the observed scale h2 (95% credible 

interval) was estimated as 7% (3.9x10-6 – 0.13), with natal group and natal 

group x birth year effects explaining 4% (0.01 – 0.08) and 14% (0.09 – 0.23) of 

observed variance, respectively. Birth year accounted for 14% of variance in 

bTBlifetime. While the Bayesian analysis does not lend itself to statistical 

inference in the frequentist sense, we note that posterior modes are distinct 

from zero for all estimated variance components (liability scale) except VM for 

which the observed variance in bTBlifetime  was only 0.01 (Supplemental Figure 

S3.1). We therefore conclude that maternal effects have a minimal influence on 

bTBlifetime (Table 2). Results for the subset analyses where only results from 

either Brock ELISA or StatPak were used to infer bTB status were overall 
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consistent with the full dataset analyses and are not discussed below but can 

be found in supplementary files (Table S3.1-S3.3).  

 

Table 1. Log-likelihood ratio test results for variance components from bTBmulti model and 

corresponding intraclass correlation (ICC) estimates with standard errors in parentheses. 

Parameter estimates are from Model 2 in which maternal effect variance (VM) is restricted to 

cubs only (denoted with subscript c). Consequently, ICC estimates are given for cubs (c) and 

adults (a) separately by dividing each variance component by the sum of the variance 

components (VP) such that VPa = VA + VSG+ VY +VSGxY + VPE + VR while VPc = VA + VMc +VSG+ VY 

+VSGxY + VPE + VR, where additive genetic = VA, social group = VSG, year = VY, social group by 

year = VSGxY, permanent environment = VPE and maternal effects = VM 

 

 χ2
0,1 P ICC (SE) 

Adult Cub 

VA 5.06 0.01 0.052 (0.027) 0.045 (0.023) 

VSG 25.88 <0.001 0.016 (0.006) 0.014 (0.005) 

VY 122.3 <0.001 0.078 (0.020) 0.067 (0.018) 

VSGxY 673.12 <0.001 0.109 (0.008) 0.094 (0.007) 

VPE 304.24 <0.001 0.355 (0.029) 0.307 (0.026) 

VMc 70.18 <0.001 - 0.136 (0.023) 

VR - - 0.389 (0.012) 0.335 (0.013) 

 

 

 

Table 2. Posterior means for variance components of bTBlifetime and their corresponding 

intraclass correlation (ICC) estimates run on family “categorical”. Estimates relate to the 

observed scale and 95% credible intervals are shown in parentheses.  

 
Mean  ICC  

VA 0.014 (7.6x10-7- 0.028) 0.069 (3.9x10-6 – 0.134) 

VM 0.002 (1.8x10-10- 0.009) 0.009 (8.2x10-10 – 0.042) 

VNG 0.008 (0.003 - 0.017) 0.040 (0.013 – 0.079) 
VBY 0.027 (0.016 - 0.046) 0.138 (0.093 – 0.229) 

VNGxBY 0.019 (0.013 - 0.031) 0.094 (0.062 – 0.146) 
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Discussion 

We have examined bovine tuberculosis (bTB) infection status in a naturally 

infected population of European badgers to ask whether, and to what extent, 

social (i.e. group, maternal) and genetic effects contribute to variation among 

individuals.  Using two measures of bTB infection status (bTBmulti, a progressive 

measure of disease at each capture event and bTBlifetime, a binary lifetime 

infection score), animal model analyses support the presence of a small, but 

statistically significant, heritable component of infection status.  However, our 

results also indicate that more variation in bTB status is due to the environment 

provided by social group and, at least for bTBmulti in cubs, the mother. Although 

results are somewhat equivocal (see below), overall our analyses suggest 

maternal effects on bTB infection status are largely limited to early life.  

      

Genetic variation in bTB status and progression 

Variation in both the progression of bTB (as measured by bTBmulti) and the 

lifetime risk of infection have a partial genetic basis, with heritabilities of 5% and 

7% respectively. Thus, in the Woodchester Park badger population, most 

variation in bTB infection status arises from environmental effects, a situation 

that also seems to generally hold in cattle where estimates of h2 for bTB 

resistance range from 0.06 to 0.18 (Allen et al. 2010). Interestingly, after 

experimental infection with M. bovis, h2 of bTB resistance was estimated at 0.49 

in one population of farmed red deer (Cervus elaphus; Mackintosh et al., 2000), 

a species that may also play an important role as a wildlife reservoir for the 

disease (Vicente et al. 2006; Delahay et al., 2007). There are few heritability 

estimates for other diseases in wild vertebrate populations and so 
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(unsurprisingly) there is currently little emergent consensus on the importance 

of standing genetic variation. However, a number of studies have found 

moderate additive genetic variation for host defence traits, including resistance 

to strongyle nematodes in feral sheep (inferred from nematode-specific antibody 

titers; Hayward et al., 2014a) and both resistance and tolerance to copepod 

parasites in a freshwater cyprinid fish (Mazé-Guilmo al. 2014). Conversely, 

experimental studies provided no evidence for a significant influence of host 

genotype on  cell-mediated immune responses in house martins (Delichon 

urbica; (Christe et al. 2000) and house wrens (Sakaluk et al. 2014). 

Interestingly, Ardia and Rice (2006) reached similar conclusions in two 

populations of tree swallows (Tachycineta bicolor) but actually found evidence 

for moderate heritability of immune function in a third (reported as h2 =0.42 

(0.27-0.51)).  

 Practical constraints in quantifying bacterial infection loads in a wild host 

meant that we have used live diagnostic test results (serological assays) and a 

qualitative presence/absence measure of parasite burden, both with imperfect 

sensitivities, to infer disease status and progression. It is thus the case that our 

lifetime and multi-site measures of bTB status and progression represent the 

outcome of multiple contributing traits and processes (e.g., behavioural 

exposure risk, resistance, tolerance). These underlying processes may 

themselves differ in their extent of genetic control. However, regardless of how 

the observed bTB progression and lifetime infection status scores are 

determined, the implication of their low heritabilities is that any natural selection 

acting has limited scope to affect an evolutionary response in this host 

population. Though we do not have formal estimates of contemporary selection, 

it is certainly possible that the observed, low levels of additive variance reflect 
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historically strong selection (i.e., if advantageous alleles go to fixation and 

deleterious ones are purged then variance is reduced; Fisher 1930). However, 

recent studies show that badger reproductive success does not appear to be 

impacted by disease (Tomlinson et al. 2013; McDonald et al.  2016), suggesting 

that the (presumed) costs of infection are mediated through survival. Indeed, 

badgers (particularly males) infected with bTB do show increased mortality 

rates (Graham et al. 2013; McDonald et al. 2016).  

In interpreting our heritability estimates, it should be noted that the 

serological tests and bacterial culture used to define phenotypes have relatively 

low levels of sensitivity, meaning that some proportion of truly infected animals 

will not have been correctly identified as such. Phenotypic scores may also be 

affected by intermittent excretion and latent periods characteristic of bTB 

infection (Clifton-Hadley et al. 1993; Gallagher et al. 1998) while seropositive 

test results can indicate recent recovery from, or acquired immunity to, infection 

(Maas et al. 2013), though whether this is the case in badgers is currently 

unknown. Thus, both bTB status response variables used in our analyses are 

likely to be subject to non-trivial variance from measurement error. This will be 

partitioned into residual and, in the case of bTBmulti, the generic permanent 

environment variances and so may well contribute to the low heritabilities 

estimated. If so, improved confidence in assigning individual infection status 

(e.g. use of probabilistic approaches to incorporate full test histories, Buzdugan 

et al., 2016) may be needed if we hope to gain greater resolution on genetic 

factors predisposing to disease. We note however, that high measurement error 

will impact all ICC estimates and so cannot explain the low importance of 

genetic factors relative to other modelled effects (see below). 
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Social effects explain more variation than genetic factors 

While significant additive genetic effects were detected, social environment 

effects attributable to (natal) social group and, at least for cubs, maternal 

identity collectively explained considerably more variation in bTB status. Spatial 

clustering of infection at the social group level has been reported previously in 

badger populations, with some groups in the Woodchester Park population 

remaining test-negative for long periods (Delahay et al., 2000b; Vicente et al. 

2007). We note that social group identity coincides with main sett location in the 

study area, so it is possible that group effects are driven by spatial 

heterogeneity in the habitat rather than social effects per se. However, the 

finding that most group effects were year-specific strongly suggests otherwise 

(since group composition varies on a year-to-year basis whereas location is 

fixed). Year effects were also detected independently of social group. These 

findings are consistent with an observed increase in bTB prevalence and 

incidence in Woodchester Park over the study period (Delahay et al., 2013). 

They also corroborate previous studies that suggest the importance of social 

processes (but which did not control for potentially confounding genetic or 

maternal effects). For instance, social network analyses have revealed 

evidence suggesting a positive association between bTB infection and levels of 

extra-group contact (Weber et al. 2013; Silk et al. 2018) . Extra-group contacts 

may include temporary excursions for breeding purposes, the rates of which 

have recently been found to vary among social groups (Chapter 2, Marjamäki et 

al. in press). Seasonal variation in bTB incidence (accounted for in our models 

by the fixed effect structure) has also been shown to correlate with peaks of 

within-group social contact (Silk et al., 2017), although indirect transmission 
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(e.g. via environmental contamination of communal latrines and setts) can also 

occur (Courtenay et al. 2006; King et al. 2015). 

Maternal effects were most important in explaining variation in individual 

bTB status among badger cubs in the present study. Though widely observed 

for life-history, reproductive and growth traits, the relative importance of 

maternal effects for disease risk is less well documented (but see e.g., Hall & 

Ebert, 2012; Seppälä & Langeloh, 2016). However, in Soay sheep maternal 

effects on offspring parasite load appear, at least in part, to occur through 

maternal age and parasite load (Hayward et al., 2010). In that population, and in 

some domestic sheep, quantitative genetic analyses support a substantial 

contribution of maternal genetic effects to nematode resistance (Coltman et al., 

2001; Stear et al., 2001). As noted above, our data are not informative for 

specific mechanism(s), although similarity among maternal siblings (over and 

above that attributable to additive genetic and social group effects) could arise 

from maternal provisioning of antibodies, variation in maternal infection status, 

or differential contact time with cubs. Second order mechanisms are also 

possible, for instance if maternally influenced nutritional status has 

consequences for cub immune response. Our results also do not suggest a 

genetic basis to the maternal effects detected (i.e. contribution of maternal 

genotype on offspring phenotype above and beyond direct inheritance), 

although we acknowledge that incomplete pedigree data limit our inference in 

this regard (discussed below). If present, maternal genetic effects will impact 

rates (and potentially directions) of selection response in offspring traits 

(McAdam et al. 2014), so the above conclusion that bTB status has limited 

evolvability may be contingent on the maternal effects detected being of 

principally environmental origin.  
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Maternal effects on offspring phenotype often decline with age, but 

whether this is the case for bTB status in Woodchester Park badgers is not 

completely clear from our analyses. On the one hand maternal effects on 

bTBlifetime were absent and the best supported model for bTBmulti was one in 

which maternal effects were restricted to cubs (i.e. Model 2). On the other hand, 

fitting a model including maternal effects to cub versus adult specific bTBmulti 

data sets yielded very similar point estimates of additive and maternal variances 

for cubs and adults (Table S3.7 in supplemental materials). Taken together, we 

view these results as suggestive, but not conclusive, evidence for a declining 

role of maternal effects with age, a pattern rarely documented for disease traits 

(but see e.g., (Clark et al., 2014). Regardless of this uncertainty, our results 

lend further support to previous studies highlighting the importance of early-life 

environment to bTB infection (Tomlinson et al. 2013), and suggest that the 

observed relationship between cub infection risk and the presence of infected 

relatives (Benton et al. 2016) could be driven by both maternal and additive 

genetic effects. 

 

Implications of genotype-(social) environment correlation  

As noted earlier, the preponderance of within-group paternities in the 

Woodchester Park population (63% within-group vs 37% extra-group paternity, 

Chapter 2; Marjamäki et al. in press) means that genetic relatedness will be, on 

average, greater for pairs of individuals that share a (natal) social group 

environment than for pairs that do not. Similarly, siblings necessarily share a 

maternal environment. The population is thus characterised by a ‘genotype-

environment correlation’ that cannot easily be disentangled.  Since experimental 
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approaches (e.g. cross-fostering; Kruuk & Hadfield, 2007) are not appropriate in 

this or similar systems, we have taken the conservative (with respect to 

estimation of h2) approach of simultaneously modelling additive genetic, 

maternal and social group (including group x year) effects. Failure to model 

common environment effects, including mothers and shared habitat use by 

relatives is a well-known potential source of upward bias in h2 estimates (e.g. 

Wilson et al. 2005a; Stopher et al., 2012; Regan et al. 2015). In our study, 

omitting maternal effects resulted in only modest increases in heritability 

estimates (e.g., from 3 to 4% under Model 1), but additional omission of social 

group and group by year effects led to larger increases (from 3% to 9 and 12%, 

respectively). This illustrates the point that wider modelling of shared (social) 

environmental effects in space (e.g., Stopher et al. 2012; Regan et al. 2015) 

and time, may be important for quantitative genetic analyses of longitudinal 

field-based data. However, accurate separation of correlated genetic and 

environmental effects necessarily depends on data structure and quality. Here 

incomplete parentage data is likely to have produced errors in the pedigree (e.g. 

unrecognised relatedness among true siblings) even in the unlikely event that 

all parentage assignments made are correct. Although pedigree error will 

usually downwardly bias the estimation of h2 (Morrissey et al. 2007) the 

consequences are not readily predicted here given the social group structure 

and the fact that maternal and paternal identities are both uncertain. 

 

Conclusions 

The long-term study of the Woodchester Park badger population provides a 

unique and valuable opportunity to investigate the factors driving among-
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individual variation in bTB infection status. We have found that genetic factors 

play a small, but significant role in structuring variation in bTB infection status. 

However, it is clear that social influences arising from group membership (in 

space and time) and maternal effects (in cubs) play a greater role. Genetic and 

social effects may influence observed bTB infection status through multiple 

pathways, including effects on infection risk (e.g. through behavioural traits), 

resistance, and/or its ability to limit damage caused (tolerance). Though not 

mutually exclusive, resistance and tolerance in particular are predicted to have 

very different consequences for parasite fitness; by limiting parasite growth, 

resistance will negatively impact parasite fitness, while tolerance can, in fact, 

promote parasite fitness by increasing the period over which transmission can 

occur. Given the implications of individual variation in infectiousness for the 

long-term persistence of parasites (Kramer-Schadt et al. 2009) and 

microevolutionary dynamics of both host and parasite (Best et al. 2008), 

determining whether genetic and environmental determinants of bTB status 

operate through resistance, tolerance, or both should be a useful  – if 

empirically challenging – priority. 
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Chapter 4 

Heterogeneity in tolerance of Mycobacterium bovis infection in 

a naturally infected population of European badgers (Meles 

meles) 

 

Abstract 

In order to defend themselves against parasites, hosts can either resist infection 

by preventing or limiting parasite growth or tolerate it by minimising parasite-

induced damage. Understanding the occurrence, causes, and consequences of 

variation in both resistance and tolerance is important as they can jointly and 

separately determine host fitness and thereby affect population dynamics on 

ecological and evolutionary scales. While variation in host resistance is well 

characterised, little is currently known about the causes and consequences of 

heterogeneity in host tolerance. We used long-term data on individually marked 

European badgers (Meles meles) to investigate associations between body 

weight and infection by Mycobacterium bovis, the causative agent of bovine 

tuberculosis (bTB). Our analyses reveal significant among-individual variation in 

tolerance, which we measure as the slope of a reaction norm describing the 

change in body weight with progression in bTB infection status, assigned from 

live diagnostic test results. This provides the first explicit demonstrations of 

variation in tolerance of tuberculosis in a wild host species. Furthermore, 

despite the a priori prediction that positive selection should rapidly erode 

genetic variance, we find that among-individual variance in tolerance is primarily 

attributable to additive genetic effects. Our results add to a growing literature 

that supports the idea of tolerance as a key host defence strategy alongside 
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resistance and suggest that it may be a key component of host-parasite 

coevolution. 
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Introduction 

Among hosts, differences in parasite infection and disease progression stem 

from multiple processes. One mechanism is heterogeneity in host defence 

strategies against challenges from parasites (including bacteria, viruses, protists 

and fungi). Two broad categories of defence strategy are commonly considered; 

hosts can ‘resist’ infection by preventing or limiting pathogen growth (Boots, 

2009) and/or they can ‘tolerate’ infection by limiting and mitigating damage 

caused by the parasite,  by repairing damaged tissue for example (Simms 2000; 

Medzhitov et al. 2012). Understanding the occurrence, causes, and 

consequences of variation in both resistance and tolerance is important, as they 

can jointly and separately determine host fitness, and thus impact population 

dynamics on ecological and evolutionary scales (Boots et al., 2009; Martin et 

al., 2006). However, while there is a large body of literature on the 

epidemiological, ecological and evolutionary implications of variation in host 

resistance, the recognition of tolerance as a distinct aspect of host defence is 

more recent (though well-established in plant immunology studies; Baucom & 

de Roode 2011).  

The extent to which tolerance, as opposed to resistance, contributes to 

host defence strategies in animal populations is predicted to have important 

ecological and (co)evolutionary consequences. For instance, host resistance 

negatively affects the fitness of a parasite, limiting its growth and prevalence in 

the host population. This in turn can drive negative frequency dependent 

selection on resistance phenotypes and thus maintenance of among-host 

genetic variance (Miller et al, 2005). Conversely, tolerance tends to promote the 

persistence and spread of infection through a host population by improving host 
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survival. This generates a positive feedback loop; increased parasite 

prevalence selects for increased tolerance in the host population which in turn 

results in a reduction of genetic variance as alleles increasing tolerance rapidly 

go to fixation in the host population (Best et al., 2008). Despite this theoretical 

prediction, genetic variation in tolerance has been widely observed in plants 

(e.g. Kover & Schaal 2002; Koskela et al. 2002) and has been reported in 

animals under laboratory conditions (Råberg et al. 2007; Vincent & Sharp 

2014). However, tolerance in wild animal host populations has seldom been 

investigated (but for exceptions see Blanchet et al. 2010; Mazé-Guilmo et al. 

2014; Hayward et al. 2014b). As a consequence, we have little understanding of 

whether tolerance varies among individuals and, if so, whether genetic as well 

as environmental factors contribute to the apparent variation. 

In this study we use long-term data on individually marked badgers from 

the Woodchester Park study population (Gloucestershire, United Kingdom) to 

characterise among-individual variation in tolerance to infection by 

Mycobacterium bovis, the causative agent of bovine tuberculosis (bTB). 

Badgers are considered an important wildlife reservoir for transmission of M. 

bovis to cattle in the UK, where bTB continues to be a major disease challenge 

for the livestock industry (Donnelly & Nouvellet 2013; Defra 2014). The primary 

route of infection in badgers is thought to be through inhalation of infected 

aerosol, leading to chronic infection of the pulmonary system, though other 

organs can  also be affected (Gallagher et al., 1998; Murphy et al., 2010). 

Interestingly, progression of infection and presenting symptoms are very 

variable among individuals. In most badgers, infection remains latent (i.e. 

bacteria are effectively contained) while in others it can progress, sometimes 

rapidly, to generalised disease (Murphy et al., 2010). As a consequence, some 
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infected badgers reproduce successfully and survive for years (Clifton-Hadley et 

al. 1993; Tomlinson et al. 2013) while others do not. Although sex is one 

important determining factor – males suffer from higher rates of infection, 

disease progression and mortality than females (Graham et al., 2013; 

McDonald et al., 2014) – there is also considerable heterogeneity among 

individuals. This is likely to arise, at least in part, from variation in the 

mechanism and effectiveness of host defence strategies in the population, a 

notion supported by recent quantitative genetic analysis indicating heritable 

variation for bTB infection status (measured from diagnostic test results) and 

lifetime infection risk (a putative proxy for resistance; Chapter 3).  

Here we build on our previous study, by testing for (genetic) variation in 

tolerance of M. bovis infection. To do so we use repeated capture records of 

marked individuals and characterise tolerance as the changes in individual 

weight with the progression of bTB infection status. Body weight is an important 

trait contributing to reproductive success and survival in the European badger 

(Macdonald & Newman, 2002; Macdonald et al., 1995), and thus weight loss (or 

reduced weight gain) is used here as a proxy for the impact of infection on 

fitness. This follows the approach of Hayward et al. (2014b) who similarly used 

weight change with increasing parasite burden to investigate tolerance of 

helminth infections in Soay sheep (Ovis aries). Importantly for current purposes, 

bTB infection is generally associated with a reduction in weight and body 

condition in badgers (Clifton-Hadley et al. 1993; Gallagher & Clifton-Hadley 

2000), although males and females show somewhat different patterns. 

Tomlinson et al. (2013) observed a gradual decline in body mass from initial 

test-positive status in females, whereas for males marked weight loss occurred 

only at the more advanced stages of disseminated disease. We first seek to 
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confirm the previously reported population-level effects of bTB status on mean 

weight (while controlling statistically for other known or hypothesised sources of 

variation in weight). We then test for among-individual variation in tolerance 

adopting a ‘reaction norm’ approach in which individual tolerance is 

conceptualised as the slope of an individual’s relationship between weight and 

infection status. Individuals that are more tolerant of bTB are, therefore, 

identified as those that experience less severe infection-related weight loss (i.e. 

have shallower slopes). Finally, using a pedigree structure based on genetic 

parentage analysis (described in Chapter 2; Marjamäki et al. in press) we ask 

whether genetic variance in tolerance contributes to heterogeneity of disease 

outcomes in this population. 

 

Methods 

Study system & sampling  

Woodchester Park, Gloucestershire, UK is the site of a long-term capture-mark-

recapture study of a naturally infected population of 200-300 badgers. The 

dataset used here contains 14846 records of 2946 individual badgers captured 

between 1976 and 2014. The study area of approximately 11 km2 consists of a 

steep-sided wooded valley surrounded by farmland. Within this area, up to 45 

badger social groups are resident, each occupying a territory containing several 

underground dens (setts). Group territorial boundaries are determined  annually 

by bait marking (Delahay, et al., 2000a). The majority of records come from a 

core of 20-25 social groups with consistent and continuous trapping records 

throughout the study period.   
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Badgers are trapped in the vicinity of their setts up to four times a year 

for two consecutive nights using steel mesh box traps baited with peanuts. They 

are transported to a central location for examination and sampling before being 

released at the point of capture. Sampling of badgers is carried out under 

anaesthesia (de Leeuw et al. 2004) and at first capture each animal is marked 

with a unique tattoo.  At each subsequent capture event, the sex, age class 

(cub, yearling, adult), body weight, length, condition, and capture location are 

recorded. Most badgers are first caught as cubs or yearlings (distinguished from 

adults by size and toothwear; Delahay et al. 2013) and can therefore be aged 

accurately at each subsequent capture. The infection status of captured 

badgers is determined at each capture event using bacterial culture of clinical 

samples (faeces, urine, tracheal aspirate, pus, bite wound swabs; Clifton-

Hadley et al 1993), and a serological test for the presence of M. bovis 

antibodies (Brock Elisa used 1982 to 2006; Goodger et al. 1994 and BrockTB 

Stat-Pak test used 2006 to 2014; Chambers et al. 2008). Based on these test 

results, badgers are assigned a bTB status of test-negative (0), seropositive 

(positive serological test only; 1), excretor (positive culture from a single body 

site sampled; 2) or multisite excretor (positive culture from >1 body site; 3). This 

progressive categorisation approximates the progression of infection from 

uninfected to exposed, to more advanced stages of disseminated infection 

(Lesellier et al., 2008; Mahmood et al., 1987), though we acknowledge that we 

expect it to do so imperfectly (due for example to varying diagnostic test 

sensitivities and specificities (Drewe et al., 2010), or potential recovery from 

infection; see Chapter 3 for further discussion).  

Since 1986, guard hairs have been taken from each individual badger at 

first capture for DNA extraction and subsequent microsatellite genotyping using 
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a minimum of 16 (Carpenter et al., 2005) and maximum of 22 fluorescently 

labelled autosomal microsatellite markers (Marjamäki et al. in press). Based on 

this genetic information, a six-generation genetic pedigree structure was 

recently estimated by Marjamäki et al. (in press), using the R (R Core Team 

2016) package MasterBayes (Hadfield et al., 2006). In contrast to most avian 

and mammalian systems, badger maternal identities cannot be determined from 

direct observation as cubs spend most time pre-weaning out of sight and 

underground. The requirement to simultaneously estimate maternities and 

paternities from genetic data alone, reduces the ability to assign parentage with 

high confidence. Consequently, the available pedigree is far from complete. 

Nevertheless, including those parent-offspring assignments where a candidate 

parent was specified in at least 80% of the samples of the posterior distributions 

of the pedigree, results in a structure containing 1175 parentage assignments 

(579 maternities and 596 paternities), with 617 offspring individuals assigned at 

least one parent and 556 of those assigned both parents. For full details of the 

badger pedigree, see Marjamäki et al. (in press).  

        

Statistical analyses 

We investigated the association between body weight and bTB infection status 

at the population level (i.e. average tolerance) and tested for among-individual 

and genetic variance in weight and tolerance using a series of nested linear 

mixed effects models described in full below and fitted in ASReml 4.0 (VSN 

International). All models had a common fixed effect structure but differed in 

their random effects. Significance of fixed effects was determined using Wald F-

tests, while statistical inference on random effects was by likelihood ratio tests 

(LRT). Twice the difference in log-likelihood between full and reduced models 



95 
 

was assumed to have a χ2 distribution with the degrees of freedom equal to the 

number of additional parameters in the more complex model. However, 

following Visscher (2006), we assume the test statistic to be asymptotically 

distributed as an equal mix of χ20 and χ21 (denoted as χ20,1) where a single 

variance component was being tested. We also use Akaike Information 

Criterion (AIC) as an additional guide for model comparison. The response 

variable (body weight) was scaled to standard deviation units prior to analysis to 

ease interpretation of estimated variance components, which can thus be 

interpreted as the proportion of (observed) variance attributable to a given 

effect. However, we also obtained intra-class correlations (ICC) conditional on 

fixed effects (Wilson, 2018), as the ratio of each random effect variance to the 

conditional phenotypic variance (VP), calculated as the sum of the variance 

component estimates. 

 

Population-level association between body weight and bTB status  

First, we fitted a model of body weight that included the fixed effects of sex, 

age, age2, sex x age and sex x age2 (Model 1). This was to capture sex specific 

changes in mean weight with age. Badgers show sexual dimorphism in body 

size; males growing faster to become heavier (on average) as yearlings, with an 

average difference of 1.2 kg between adult (≥ 2yr) male and female badgers 

caught in Woodchester Park. In addition, senescence in body weight is 

observed in older animals, occurring more rapidly in males (Beirne et al., 2015). 

Marked seasonal fluctuations in body weight are also observed in this 

population and so season was included (as a four-level factor), as was the 

observed age at last capture for each individual. The latter was to reduce any 
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possible bias from selective disappearance (Bouwhuis et al., 2009). Finally, 

Model 1 included a fixed effect of bTB status (as a four-level factor to avoid 

assuming a linear relationship) and a sex-by-bTB status interaction term to test 

for sex-specific negative effects of infection status on mean weight.  

Random effects were included in Model 1 both to prevent pseudo-

replication in fixed effect inference and to partition remaining variance around 

the (fixed effect) mean. Individual identity was included (to account for the 

repeated observations on individuals), as was social group identity, year of 

observation, and a social group-by-year term. These latter effects were included 

to account for temporal and spatial heterogeneity in the environment and 

reduce the risk of genetic parameters being biased by common-environment 

effects in subsequent models (described below). Since maternal effects on 

mammalian body weight are widespread, we also included a random effect of 

maternal identity on records for cubs (<1yr) only. This decision was based on 

preliminary models (not reported here) that found significant maternal variance 

on cub weight, but not when records from ages were analysed simultaneously. 

Note that as a consequence of this decision, ICC (for all models) will differ 

between cubs and adults (≥1yr), since VP includes the maternal variance (VM) in 

cubs only. We make the standard assumption that all random effects (and 

residuals) are drawn from Gaussian distributions with means of zero and 

variances to be estimated, and that residuals are uncorrelated across 

observations.  
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Among-individual variance in tolerance 

Having established a negative relationship between bTB status and body weight 

(see results), Model 1 was used as a null model against which to test for 

among-individual variation in tolerance. Tolerance was defined as the slope of 

the reaction norm for body weight across bTB status (i.e. range tolerance). This 

was done using a first order random regression formulation, following several 

recent studies (e.g. Råberg et al. 2007; Baucom & De Roode 2011; Hayward et 

al. 2014b), by adding an interaction between individual identity and bTB status 

(as a continuous covariate; Model 2). Note that individual reaction norm slopes 

(i.e. tolerances) were allowed to covary with individual intercepts (interpretable 

as individual effects on weight at bTB status = 0).  

 

Genetic variance for weight and tolerance 

In order to estimate the heritability (h2) of body weight, Model 1 was extended 

into a quantitative genetic ‘animal model’ (Model 3), which uses population 

genetic pedigree information to estimate the effect of relatedness on phenotypic 

similarity. This is achieved by including the additive genetic merit of an 

individual as a random effect, thereby decomposing the variance arising from 

individual effects into distinct additive genetic (VA) and permanent environment 

(VPE) components. Comparison of Models 1 and 3 thus provides a test for 

genetic variance in body weight. In Model 4 we assume the additive genetic 

effect is constant with bTB status, but the permanent environment effect was 

modelled as a random regression (as per Model 2). Finally, we decomposed 

among-individual variance in tolerance, by fitting both additive genetic and 

permanent environment effects as first order random regressions of bTB status 
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simultaneously (Model 5). Comparison of Models 4 and 5 thus provides a test 

for genetic variance in tolerance of body weight to bTB status. Results show 

high level of consistency among models. For clarity, we present population-level 

results from Model 1 and individual-level results from Model 5 below. 

 

Results 

Model 1 provided evidence for the previously described seasonal effects 

(badgers being heaviest in autumn and lightest in spring/summer), and for sex-

specific patterns in mean weight with age (Table 1). Though not directly relevant 

to current hypotheses, model predictions of body weight across age show the 

expected sexual dimorphism in growth and adult size, as well as late-life 

declines in mean weight consistent with senescence (Beirne et al., 2015). 

Conditional on other fixed effects, bTB status (fitted as a factor) also has a 

significant effect on body weight, although the bTB status x sex interaction term 

was marginally non-significant (Table 1). Thus, in contrast to previous studies, 

we find no strong statistical support for sex-specificity of bTB effects on weight 

per se. There is a general pattern of decreasing weight with increasing bTB 

status, with multisite excretors (bTB status = 3) weighing the least, on average 

(Figure 1). However, somewhat counterintuitively, test-positive badgers (bTB 

status =1) are predicted to be heavier on average than test-negative badgers 

(bTB status = 0). 
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Table 1. Fixed effect estimates (standard errors) and associated inference from conditional Wald F-tests from Model 1 testing population-level associations 
between body weight and bTB status. DF= degrees of freedom P-values in bold denote significance at α=0.05 

  Model Term (reference level) Effect (SE) F DF P 
Intercept 1.303 (0.518) 4.61 1, 5712.3 0.032 
Age  0.508 (0.009) 6614.61 1, 13519.7 <0.001 
Age2 -0.045 (0.001) 4392.31 1, 13780.8 <0.001 
Sex (NA)  35.25 2, 3391.9 <0.001 
       Female 1.001 (0.514)    
       Male 0.949 (0.517)    
Season (Spring)  2244.13 3, 12294.3 <0.001 
         Winter 0.707 (0.019)    
         Autumn 0.850 (0.017)    
         Summer -0.0003 (0.016)    
TB status (NA)  30.87 4, 2753.8 <0.001 
         0 -0.175 (0.084)    
         1 0.005 (0.060)    
         2 -0.233 (0.071)    
         3 -0.350 (0.084)    
Age last capture -0.006 (0.004) 2.09 1, 2389.0 0.149 
Sex x Age (Female)  149.64 1, 14240.2 <0.001 
         Male        0.160 (0.013)    
Sex x Age2 (Female)  105.95 1, 13744.5 <0.001 
          Male -0.016 (0.002)    
TB status x Sex (Female)  2.23 4, 13121.1 0.063 
          0.Male 0.134 (0.065)    
          1.Male 0.194 (0.074)    
          2.Male 0.193 (0.095)    
          3.Male 0.032 (0.004)    
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Table 2. Estimated variances (V), covariances (COV) and intraclass correlations (ICC) from Models 1 testing associations between body weight and bTB status (0-3) 
and and Model 5 a random regression of body weight on bTB status including additive genetic effects. Both models included the same fixed effects. Subscripts 
denote source of variance (Y=year, SG=social group, M= maternal, I=individual, A=additive genetic, PE =permanent environment, R=residual) and, for Model 5 
differentiate random regression intercepts (i) and slopes (s). ICC are evaluated at bTB status =0 under Model 5 and differ between cubs and adults for both models 
as maternal effects are restricted to cubs. Standard errors are shown in parentheses. 

 Random effect Estimate (SE) Cub ICC (SE) Adult ICC (SE) 

Model 1     
 VY 0.018 (0.006) 0.022 (0.007) 0.031 (0.010) 
 VSG 0.051 (0.014) 0.062 (0.016) 0.086 (0.022) 
 VYxSG 0.065 (0.005) 0.079 (0.007) 0.110 (0.010) 
 VM 0.176 (0.028) 0.215 (0.027) - 
 VI 0.232 (0.010) 0.283 (0.014) 0.299 (0.034) 
 VR 0.280 (0.014) 0.341 (0.014) 0.475 (0.026) 

Model 5     
 VY 0.019 (0.006) 0.021 (0.007) 0.028 (0.009) 
 VSG 0.049 (0.014) 0.055 (0.015) 0.074 (0.019) 
 VYxSG 0.063 (0.005) 0.072 (0.006) 0.096 (0.008) 
 VM 0.224 (0.032) 0.252 (0.028) - 
 VPei 0.036 (0.016) 0.041 (0.018) 0.055 (0.024) 

 COVPE(i,s) 0.000 (-)1 0.000 (-)1 0.000 (-)1 
 VPes 0.000 (-)1 - - 
 VAi 0.222 (0.021) 0.250 (0.023) 0.335 (0.029) 

 COVA(i,s) -0.044 (0.010) - - 
 VAs 0.041 (0.008) - - 
 VR 0.274 (0.004) - - 

1The estimate of VPEs was bound to (almost) zero and no standard error is estimated. In this situation the slope-intercept covariance is also bound and the corresponding 
correlation undefined.   
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All random effects specified in Model 1 were statistically significant, 

based on likelihood ratio test comparison to reduced models. Body weight 

varies among individuals (χ20,1= 2121.622, p<0.001) with estimated ICCs (i.e. 

repeatabilities) of 0.28 (0.01) and 0.30 (0.03) in cubs and adults respectively 

(conditional on fixed effects; Table 2). Significant effects of social group (χ20,1= 

279.100, p<0.001), year (χ20,1= 285.660, p<0.001), and group-by-year (χ20,1= 

673.662, p<0.001) are relatively small (Table 2) but in sum account for 16 % 

and 23 % of variance in cub and adult weights, respectively. A significant effect 

of maternal identity on cub weight (χ20,1= 158.048, p<0.001) is more important, 

explaining 22 % of body weight variation in this age group. 

 

 

Figure 1. Predicted effect of bTB status on mean body weight in male and female badgers of 

average age. TB status 0 = test negative, 1 = test positive, 2 = excretor, 3 = multisite excretor. 

Bars represent 95% confidence intervals and predictions are from Model 1. 
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The simple animal model (Model 3) was a better fit to the data than 

Model 1 (Table 3) supporting the presence of additive genetic variance in 

weight. Comparison of models with more complex decompositions of among-

individual variance portioned in Model 1 also provided evidence for variance in 

the individual slopes of body weight on bTB status, indicating among-individual 

variance in tolerance is present (Model 2 and 4). Furthermore, Model 5 was a 

significant improvement on Model 4 (Table 3) and was the preferred model 

overall (based on AIC), from which we conclude that variation in tolerance has a 

partial genetic basis. In fact, under Model 5, all variation in tolerance was 

partitioned into the additive genetic, as opposed to the permanent environment, 

component (Table 2). 

 

Figure 2. Predicted body weight with changing bTB status (0 test -ve, 1 test +ve, 2 excretor, 3 

multisite excretor) showing the population mean (red line) and individual reaction norms (black). 

Individual reaction norms incorporate additive and permanent environment deviations from the 

population average pattern in intercept (weight at bTB=0) and slope (tolerance) as predicted 

under Model 5.   
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(Co)variance components estimated under Model 5 indicate body weight 

heritabilities of 0.25 (0.02) and 0.34 (0.03) for cubs and adults, respectively, at 

bTB status = 0 while the genetic correlation (standard error) between reaction 

norm intercepts (i) and slope (s) was -0.46 (0.08). This indicates that genotypes 

predisposing to heavier weight in test negative individuals also predispose to 

reduced tolerance (i.e. more weight loss with increasing bTB status). This 

pattern is seen in the predicted individual reaction norms (Figure 2) and leads to 

a reduction in genetic variance for weight at higher bTB status scores. Note, 

however, that the genetic correlation between intercept (weight at bTB status 

=0) and slope (tolerance) is significantly different from -1 (comparison to 

constrained formulation of Model 5 in which a correlation of -1 is imposed; 

χ21=4.564, p=0.03). This indicates that some genetic variation in tolerance is 

independent of weight. In other words, genetic variance in tolerance cannot be 

fully explained as a consequence of (genetically) heavier individuals simply 

having more weight to lose.  

Finally, we note that with the covariance matrix of random effects 

constrained to be positive definite, the estimate of the permanent environment 

slope (VPEs) was bound to (effectively) zero. This precludes biological 

interpretation of the permanent environment intercept-slope covariance and, 

interpreting VPEs as zero, means that the corresponding intercept-slope 

correlation is undefined. 
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Table 3. Comparison of models 1-5 of body weight. All models contain the same fixed effects (sex, age, age2, season, bTB status, age at last capture, sex x age, 

sex x age2, sex x bTB status) and random effects (social group, year, group x year and maternal identity), but differ in the decomposition of among-individual 

variance. V =variance, COV=covariance, I=individual, PE= permanent environment, A= additive genetic, i= intercept, s= slope, LogL= log-likelihood, AIC = Akaike 

Information Criterion, DF= degrees of freedom. 

 

 

 

 

 

 

 

 

Model Variance partition LogL AIC Comparison Tests for χ2 DF P 

1 VI -826.36 1664.72 - - -  - 

2 [VIi, COVI(i,s),VIs] -798.86 1613.71 1 vs 2 Variance in tolerance 55.00 2 <0.001 

3 VPE + VA -799.11 1612.21 1 vs 3 Genetic variance in 
weight 

54.5 1 <0.001 

4 [VPEi, COVPE(i,s),VPEs] + VA -772.89 1563.77 - - - - - 

5 [VPEi, COVPE(i,s),VPEs] + [VAi, 

COVA(i,s),VAs]  
-767.02 1556.03 4 vs 5 Genetic variance in 

tolerance 
11.74 2 <0.01 
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Discussion 

We have identified evidence for significant among-individual variation in the 

slope of the regression of host body weight on bovine tuberculosis infection 

status. We view this as the first explicit evidence of variation in tolerance 

against bovine tuberculosis in a wild host species. Furthermore, we found 

heritable variation in both body weight and in the rate of weight loss with the 

progression of infection status. The latter indicates that our proxy for tolerance 

(reaction norm slopes) has a significant additive genetic basis of variation. 

Given an expectation of positive selection, increased tolerance is therefore 

expected to evolve, bringing consequences for the dynamics of disease in this 

host. In what follows, we first highlight features of the population-level patterns 

of variation in weight and discuss the eco-evolutionary implications of (genetic) 

variance in tolerance, while noting some important assumptions and caveats 

underpinning our interpretation.  

With respect to variation in the population mean, the effects revealed by 

our current analyses are largely consistent with previous studies of weight in 

this, and other, badger populations. Seasonal fluctuations followed expected 

patterns, and likely result from temporal variation in weather conditions and food 

abundance (Delahay et al., 2006; Macdonald et al., 2010). Similarly, sexual 

dimorphism and age effects estimated here match previously noted patterns of 

sex-specific growth and senescence reported for this population (Rogers 1997; 

Beirne et al. 2015), which are also common to other mammals (Clutton-Brock & 

Isvaran, 2007; Douhard et al., 2017). We also found evidence that bTB infection 

tends, overall, to reduce weight in the Woodchester Park badgers. Weight loss 

is a common symptom of tuberculosis, in humans and other animal hosts, 

particularly during late-stage infection (Macallan 1999; Lisle et al. 2002; 
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Tomlinson et al. 2013). Our study found that animals in the most advanced 

disease status category (i.e. multisite excretors, bTB status =3) were lightest on 

average (conditional on other effects in the model), but somewhat 

counterintuitively, that test-positive badgers (bTB status =1) were heavier on 

average than test-negative individuals (bTB status =0). This appears to be 

driven by cubs and yearlings (the most abundant age classes in the data) as a 

post hoc analysis limited to adults (i.e. ages ≥ 2) predicts sequential declines 

with advancing bTB status from a mean weight that is highest in test-negative 

individuals (results not shown). The overall pattern could potentially be an 

artefact of data structure (e.g., there are few cubs with high bTB scores) or may 

indicate some underlying (but as yet unknown) age-related variation in 

responses to infection.  In contrast to Tomlinson et al. (2013), using the current, 

more extensive data set and, we did not detect statistically significant sex-

dependence of the bTB status effects on body weight. Although we note the 

interaction term was marginally non-significant, model predictions suggest both 

sexes exhibit a qualitatively similar pattern of gradual weight loss from first 

testing positive to disseminated disease. This contrasts somewhat with the 

earlier conclusion that males maintain weight till late-stage infection (Tomlinson 

et al. 2013).  

While bTB infection causes weight loss on average, our analyses also 

provide evidence of significant among-individual variation in reaction norm 

slopes and intercepts. Furthermore, our pedigree-based quantitative genetic 

analyses show this variation is largely underpinned by genetic factors. Among-

individual variation in reaction norm intercept is unsurprising since this can be 

interpreted biologically as variation in weight at bTB status =0. Thus, under 

Model 5, weight has an estimated repeatability of approximately 39% in test-
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negative adults (conditional on fixed effects), of which most (33.5%) was 

partitioned as heritability. In cubs, additive genetic and maternal effects each 

explained approximately 25% of body weight at bTB status =0. Maternal effects 

on cub weight have not previously been reported in badgers, but these results 

add to the increasingly well-documented importance of maternal provisioning for 

offspring growth in wild mammals (e.g. Wilson et al. 2005b; Dantzer et al. 2013; 

English et al. 2014). Of greater importance in the current context is the finding 

of among-individual, and genetic variation in the degree of weight loss with 

increasing bTB status. Although there are some important caveats to note (see 

below), we interpret this as evidence that badgers in the Woodchester Park 

population vary (genetically) in their tolerance of M. bovis infection. Our results 

add to a growing literature that supports a key host defence role for tolerance 

alongside resistance ( Restif & Koella, 2004; Råberg et al., 2009a; Hayward et 

al., 2014a).  

Variation in tolerance could arise through numerous pathways. 

Speculatively, these could include, for instance, individual differences in efficacy 

of tissue repair and anti-toxin pathways (Råberg et al., 2009; Glass, 2012;).  

Stress-related changes in immune function can also be mediated by 

reproductive or social status, and intra-specific competition (Hawley et al., 2006; 

Sapolsky, 2005; Theodorou et al., 2007) while habitat quality could impact 

tolerance via effects on host diet and nutritional status (Clough et al. 2016; 

Kutzer & Armitage 2016b). Although the current study is not informative for the 

specific pathways involved, it does indicate that heterogeneity in tolerance to M. 

bovis infection in badgers appears to have a largely genetic basis.  This runs 

counter to some theoretical predictions. Specifically, if tolerance improves host 

survival (mortality tolerance) it should positively impact parasite fitness (Best et 
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al. 2008). This is because increasing host longevity without limiting parasite 

growth (as resistance does) prolongs the period over which transmission can 

occur, thereby increasing parasite persistence. This leads to a positive 

feedback loop whereby increased parasite prevalence selects for increased 

host tolerance which increases prevalence further, with an expectation that 

genetic variance in tolerance will be rapidly lost from the population (Roy & 

Kirchner, 2000).   

Empirical support for the prediction that genetic variance in tolerance will 

largely be absent is mixed, as our results highlight. For example, in Soay sheep 

tolerance against helminth infection was found to be under positive selection 

through lifetime reproductive success but not genetically variable (Hayward et 

al. 2014b). Conversely, genetic variation in tolerance has been found in plants ( 

Kover & Schaal, 2002;Du et al., 2008) and in several recent animal hosts 

studied under laboratory and field conditions (Råberg et al. 2007; Mazé-Guilmo 

et al. 2014; Lough et al. 2017; but see Lefèvre et al. 2011). Together with our 

results, these latter studies therefore raise the question of how (genetic) 

variation in host tolerance is maintained. One general possibility is that 

tolerance mitigates parasite-induced costs to fecundity (sterility tolerance) rather 

than survival. In which case, tolerance will not necessarily increase parasite 

fitness and the positive feedback loop is broken, which could allow genetic 

polymorphism (and thus variance) in host tolerance to persist (Best et al., 

2008). However, while body weight is linked to both reproductive success 

(Woodroffe, 1995; Woodroffe & MacDonald, 1995; Dugdale et al., 2011) and 

survival (MacDonald & Newman 2002) in badgers, population-level reproduction 

and recruitment measures appear largely unaffected by bTB infection in 

Woodchester Park (McDonald et al., 2016; Tomlinson et al., 2013). In contrast, 



109 
 

bTB-induced reductions in survival are readily detected (McDonald et al. 2014, 

2016).  

Trade-offs in resource allocation among immune and/or life-history traits 

have also been invoked as a general explanation for the maintenance of genetic 

heterogeneity in tolerance. Several studies have reported a negative correlation 

between measures of resistance and tolerance (Fineblum & Rausher 1995; 

Miller et al. 2005; Råberg et al. 2007), suggesting investment in one defence 

strategy could sometimes come at the cost of the other (but see Mauricio et al. 

1997). In the Woodchester Park badger population, our recent analysis of bTB 

status provides putative support for genetic variance in resistance, although we 

note that obtaining unbiased measures of resistance without experimental 

manipulation is problematic (see below), limiting our ability to test for this trade-

off here. Trade-offs could also occur among immune responses to different 

parasites and/or strains of the same parasite. For instance, helminth infection, 

which is common in badgers (Torres et al., 2001; Sin et al., 2014), can alter the 

severity of microparasite-induced disease (Furze et al. 2006; Graham et al., 

2005b), while hosts may also vary in their response to different strains of the 

same parasite (Morrison et al., 2010). Scrutiny of coinfections and variation 

within parasite populations could therefore provide key insights into 

maintenance of host tolerance variation.  

As with all analyses, there are a number of caveats to the conclusions 

drawn from this study. Most crucial among them is our quantification of 

tolerance. While the reaction norm approach adopted here has clear 

advantages over other approaches to characterising tolerance variance (e.g. 

point tolerance; Kutzer & Armitage 2016a) it is also true that weight loss is a 

non-specific symptom. Thus, we cannot be certain that what we are measuring 
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is exclusively representative of the host’s ability to mitigate infection costs. Our 

finding that heavier individuals (at bTB status =0) tend to exhibit lower tolerance 

could, at least in part, be driven by the fact that hosts in better condition (i.e. 

heavier badgers) have “farther to fall”. Nonetheless, the correlation between 

test-negative weight (intercept) and tolerance (slope) being significantly greater 

than -1 indicates that some variation in tolerance is (statistically) independent of 

initial weight.  

Similarly, because obtaining direct measurements of parasite load was 

not possible here, we used bTB status (inferred from live diagnostic test results) 

as a proxy. This necessarily assumes a linear relationship between parasite 

load and bTB status which may be too simplistic. Although bacterial culture 

(used here to assign badgers ‘excretor’ status) could feasibly provide a direct 

measure of parasite burden, data were only available as a qualitative 

(presence/absence) measure in the current study. Additionally, low sensitivity of 

bacterial culture means that many true infections are likely to be missed, 

leading to expected bias in tolerance estimates based on this one test alone 

(Drewe et al., 2010). Overall, previous studies suggest the bTB status 

categorisation used here is a reasonable approximation of disease progression 

(Mahmood et al., 1987; Lesellier et al., 2008) and, as direct measurements of 

parasite load are not practicable here (or in most wild systems), we view these 

simplifying assumptions as justifiable. Nonetheless, results must be interpreted 

accordingly. 
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Conclusions 

In summary, we found significant among-individual variation in tolerance to 

infection by M. bovis, measured as the rate of weight loss with increasing 

infection status, in a naturally infected population of badgers. Pedigree-based 

analysis reveals this variation can largely be ascribed to genetic factors. This is 

despite the theoretical prediction that positive feedback between selection on 

host and parasite should lead to rapid fixation of the most tolerant genotypes in 

a host population. Our results provide the first evidence for tolerance against 

bovine tuberculosis in a wild host and add to a growing body of work 

documenting among-individual variation in tolerance in natural host populations. 

Further research into the mechanisms underpinning tolerance, together with 

investigation of selective processes hypothesised to maintain (genetic) variation 

are needed to determine the importance of tolerance for host-parasite 

coevolutionary dynamics.  
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Chapter 5 

 

Genetic correlations among responses to bovine tuberculosis 

diagnostic tests in European badgers (Meles meles) 

 

 

Abstract 

Knowledge of the causes and consequences of variation in host responses to 

infection is crucial for understanding host-parasite co-evolutionary dynamics as 

variation among individuals is a prerequisite for natural selection, while a 

genetic basis to such variation is required for evolution. Quantification of this 

host heterogeneity depends on appropriate measures of host immune 

responses. However, the complexity of the immune system and environmental 

variability limit extrapolation based on single measures, which has led to calls to 

integrate multiple immune measures into immune phenotypes in order to better 

characterise host variation and its evolutionary implications. This need arises 

because natural selection rarely operates on single traits in isolation, and it is 

the genetic correlation structure among traits that shapes (and sometimes 

constrains) the multivariate selection responses. Yet few studies have 

attempted to characterise the genetic associations among different measures of 

immunity and infection status in wild systems. Here, we take a quantitative 

genetic approach to investigate the phenotypic and genetic correlation structure 

among four measures of host immune responses to infection; nonspecific 

immune function, antibody- and cell-mediated responses and bacterial load. 

Using longitudinal data from a population of European badgers (Meles meles) 

infected with Mycobacterium bovis we find significant correlation structure 
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among the traits; phenotypic correlations were positive among M. bovis-specific 

traits, and both antibody production and parasite load were negatively 

correlated with nonspecific immune function, a qualitative pattern indicating 

general immune function positively (though weakly) predicts an individual’s 

ability to fight bTB infection. Genetic correlations among traits were relatively 

weak and we suggest that while heritable traits are not completely free to evolve 

independent of each other, there is no compelling evidence for trade-offs that 

might constrain their evolution. 
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Introduction 

Parasites are ubiquitous in wild animal populations and have wide ranging 

consequences. Infectious disease outbreaks can sometimes pose a threat to 

the persistence of wildlife populations (Daszak et al. 2000), while wild hosts can 

also act as important reservoirs for pathogens that impact human and livestock 

health (Allen et al., 2011; McDaniel et al., 2014). From an evolutionary 

perspective, parasites negatively impact the fitness of an infected host, and can 

therefore be an important source of selection, and hence driver of host 

evolutionary dynamics. Though behavioural strategies to limit exposure to 

parasites are clearly important (Sarabian et al., 2018), the suite of defence 

strategies comprising host immune function provides striking evidence of 

evolutionary adaptation to parasite challenge. However, populations typically 

contain heterogeneity in host immune response and so infection outcomes; 

some individuals are resistant to infection where others are susceptible, some 

infected individuals may rapidly clear parasites, others experience disease and 

even death. Variation among individuals is a prerequisite for natural selection, 

while a (partial) genetic basis to such variation is required for evolution 

(Falconer & Mackay 1996).  Understanding the causes and consequences of 

variation in host responses to infection is therefore likely to provide key insight 

into host-parasite co-evolutionary dynamics. However, quantification of host 

heterogeneity depends on appropriate measures of host immune responses.  

 Most of our understanding of host heterogeneity comes from 

experimental studies conducted in laboratory models and livestock systems. 

Such studies have found heritable variation in a number of immune responses 

and susceptibility to disease (Ham & Yang, 1996; Morris, 2007; Gunia et al., 
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2015). It is logistically and ethically challenging to utilise similar experimental 

infection approaches in wild animal hosts, though it is sometimes possible to 

bring wild-caught hosts into the laboratory for this purpose (e.g. Diegel et al., 

2002; Bonneaud et al., 2018). Experimentally clearing infections by treating wild 

animals is also a useful approach to understand the impacts of infection on host 

fitness (Craig, Jones et al., 2009; Jolles & Ezenwa, 2015). Nonetheless, there is 

also considerable interest in directly measuring host immune function in 

unmanipulated populations, with three broad approaches being used by 

ecoimmunologists. First, and common, has been the measurement nonspecific 

immune activity in wild animals using non-infectious immunostimulants such as 

lipopolysaccharides (LPS; e.g. Moret & Schmid-Hempel 2000; Bonneaud et al. 

2003) or phytohaemagglutinin (PHA; e.g.(Chakarov et al., 2017). Such generic 

immune challenges are thought to provide a measure of ‘immunocompetence’, 

with higher responsiveness indicating the overall ‘strength’ of an individual’s 

immune system and its ability to fight disease. Second, more recent studies 

have utilised assays of parasite-specific immune responses, which may be 

targeted to examine different arms of immune system (e.g. humoral vs cell-

mediated responses). For example, parasite-specific antibody responses have 

been used to study helminth infections in wild mice (Clerc et al., 2018) and 

Soay sheep (Hayward et al. 2014a). Thirdly, quantification of parasite burden 

may also be used to measure infection status from which inferences about host 

immune function can be made (subject to assumptions) (e.g. Graham et al., 

2013). Typically, high parasite loads are presumed to indicate low resistance. It 

is worth noting perhaps that in many cases parasite loads themselves may also 

be indirectly inferred. For instance, faecal egg counts are a widely used proxy of 
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gut helminth load in ecological studies (e.g., Debeffe et al., 2016) but may not 

always be perfectly correlated with worm burden. 

Variable environments may impact infection probability, immune function 

and/or fitness consequences of infection via multiple routes (Prokkola et al., 

2013;Garbutt et al., 2014; Patterson et al., 2017).  Furthermore, the complexity 

of the immune system means that relationships among different measures of 

immune function and response may not always be straightforward to predict. 

Although perhaps tempting to conceptualise variation in immune function as 

lying along an axis of performance from low to high, this may sometimes be too 

simplistic. For instance, the need to allocate limited resources to defence may 

result in trade-offs between i) immune function and life history (Van Der Most et 

al., 2011); ii) different defence strategies (e.g., resistance versus tolerance; 

(Restif & Koella, 2004); and/or different components of the immune system (e.g. 

investment in  type 1 T helper cell  (Th1) mediated immunity against intracellular 

parasites versus Th2 mediated  humoral responses against extracellular 

parasites; Habig et al. 2015). The fitness consequences of variation in immune 

function, mediated for example via differential disease progression and 

symptom severity may also depend on environmental conditions (Lazzaro & 

Little, 2009). In this respect it is also worth noting that an implicit assumption of 

many studies using immunocompetence measures and parasite-specific 

antibody assays is that high responsiveness should lead to high fitness. 

However, given the costs of mounting an immune response (e.g. energetic, or 

resulting immunopathology), individuals with the strongest immune responses 

are not necessarily the fittest (Viney et al., 2005). Nor will a low parasite load 

necessarily mean high (relative) fitness in populations where individuals differ in 

tolerance.   
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 Uncertain, and sometimes contrasting, predictions for relationships 

among immune traits have led to increasing calls for the use multiple measures 

to characterise immune phenotypic variation (Adamo, 2004; Martin et al., 

2006b; Hawley & Altizer, 2011). Practically, this will sometimes help to 

‘triangulate the truth’ if, for instance, the goal is to determine individual infection 

states and diagnostic tests have high error rates (i.e. low sensitivity and/or 

specificity, e.g. Buzdugan et al. 2016).  However, from an evolutionary 

standpoint, the key advantage is that it becomes possible to characterise the 

genetic relationships among different immune traits (provided data on among-

host relatedness can also be obtained; (Kruuk, 2004). In this sense, calls to 

integrate multiple immune measures into immune phenotypes converge with a 

wider recognition of the need for multivariate studies in evolutionary ecology 

(Blows 2007; Wilson et al. 2008). This need arises because natural selection 

rarely operates on single traits in isolation, and it is the genetic correlation 

structure among traits that shapes (and sometimes constrains) the multivariate 

selection responses (Blows & Walsh 2009). Thus, for instance, if resource 

allocation trade-offs among immune traits really are present and act as 

evolutionary constraints, we predict that there will be negative genetic 

correlations between them (with traits defined so as to be under positive 

selection; Kruuk et al., 2008) even if total phenotypic correlations are positive 

(e.g., due to environmentally driven heterogeneity in resource acquisition; van 

Noordwijk & de Jong, 1986).  

Few studies to date have attempted to characterise the genetic 

associations among different measures of immunity and infection status in wild 

systems. Here, we attempt to do this, taking a quantitative genetic approach to 

investigate the correlation structure among different measures of host immune 
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responses to infection, using longitudinal data from a population of European 

badgers (Meles meles) infected with Mycobacterium bovis (cause of bovine 

tuberculosis; bTB). This unmanaged population has been subject to consistent 

live testing for bTB using a number of diagnostic tests and provides a unique 

opportunity to explore the genetics underpinning immune phenotypic variation in 

the wild. Using a pedigree reconstructed from genetic data (Chapter 2; 

Marjamäki et al. in press) and a progressive infection status categorisation 

(‘bTB status’; Graham et al 2013) we have previously found evidence for 

genetic variation in disease state (Chapter 3) and tolerance to infection (inferred 

from weight loss with increasing bTB status; Chapter 4).  

In the current study we examine the genetic basis of (co)variation in, and 

among, four diagnostic test responses, two of which have been used to assign 

bTB status. These four diagnostic traits represent different, but putatively 

correlated, aspects of host immune function and infection status: general 

immunocompetence (pokeweed mitogen response), bTB-specific humoral 

(blood antibody assay) and cell-mediated responses (interferon gamma; IFNγ 

assay) and parasite burden (bacterial culture). Our objectives are firstly to 

determine whether genetic factors contribute to among-individual differences in 

all traits and secondly to evaluate the among-trait genetic correlation structure. 

The latter will allow us to determine whether different immune traits are free to 

evolve independently of each other and, if not, whether there is potential for 

trade-offs among traits to act as evolutionary constraints. 
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Methods 

Study system & data collection 

Woodchester Park contains a naturally infected population of badgers, 

comprising 200-300 animals at any one time, which are the subjects of an 

ongoing mark-recapture study. The study area (ca. 11 km2) consists of a steep-

sided wooded valley surrounded by farmland. Within the study area up to 45 

social groups have been recorded, each associated with one or more 

underground dens (setts). The number of social groups (as determined by bait 

marking; Delahay et al. 2000a) varies among years, but the study area includes 

a core of 20-25 social groups with relatively consistent and continuous trapping 

records across the study period.  In total, the mark-recapture dataset used here 

contains 15252 observations of 3239 individual badgers sampled between 1976 

and 2014. Full details of trapping procedures are presented elsewhere (Delahay 

et al. 2013) but, in brief, badgers are trapped at or around setts up to four times 

a year for two consecutive nights using peanut-baited steel mesh box traps. 

Once captured, the identity, sex, age class (cub, yearling, adult), body weight 

(KG), and capture location of each marked badger is recorded. Badgers caught 

more than once during a trap-up are only sampled once. Most animals are first 

caught as either cubs or yearlings (distinguished from adults by size and 

toothwear; Delahay et al. 2013) allowing determination of age at all subsequent 

captures. Sampling is carried out under anaesthesia (MacKintosh et al. 1976; 

de Leeuw et al. 2004), with guard hairs, blood and clinical samples taken for 

genotyping and bTB diagnostics (see below). Badgers are then released at the 

point of capture after recovery from anaesthesia. 
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Diagnostic tests and designation of bTB infection status 

Following each capture event, badgers are tested for bTB using several 

diagnostic procedures (Table 1). First, clinical samples from a number of body 

sites (faeces, urine, tracheal aspirate, pus, bite wound swabs; Clifton-Hadley et 

al. 1993) are subjected to bacterial culture for M. bovis. Spoligotyping is used to 

identify any growth as M. bovis (Kamerbeek et al. 1997) and one or more 

positive results from among the body sites is considered indicative of current 

infection. This ‘CULTURE’ status is used in our analyses as a binary response 

variable in which M. bovis is detected as present (1) or absent (0). Second, 

serological assays are used to test badger serum for IgM and IgG antibodies to 

M. bovis, which indicate activation of the humoral immune response and can 

thus indicate previous or current infection. Between 1982 and 2005 these 

serological tests were done using an enzyme-linked immunosorbent assay 

(ELISA) Goodger et al., 1994) referred to as Brock-ELISA. This was replaced in 

2006 with a lateral flow immunoassay (referred to as BrockTB Stat-Pak; 

Chambers et al., 2008). However, for present analyses these two serological 

assays are combined into a single response variable, ‘BROCK’ indicating either 

presence (1) or absence (0) of antibodies. Third, from 2006 onwards, an 

interferon-γ (IFNᵧ) release assay has also been used to test cell-mediated 

immunity. In this two-part test, the production of IFNᵧ in heparinised whole-blood 

culture is first stimulated with mycobacterial antigens (bovine tuberculin), and 

then quantified using sandwich ELISA, producing a continuous optical density 

(OD) measure (Dalley et al. 2008). Since infection by environmental 

mycobacteria from the Mycobacterium avium complex (MAC) can bias results of 

bovine tuberculin assays (Pollock et al. 2005), IFNᵧ responses to avian 
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tuberculin are simultaneously tested. The OD measure from the avian stimulus 

is then subtracted from that obtained with the bovine tuberculin stimulus to yield 

a putatively M. bovis specific test measure that we refer to as ‘B-A’. Finally, in 

addition to testing for M. bovis specific responses, blood samples are also used 

to assay the cell-mediated immune response to pokeweed mitogen (‘PWM’), 

This non-specific activator of cell-mediated and humoral responses (Janossy & 

Greaves 1972) used here as a putative test of generalised immune function. We 

include this data to characterise the strength of the (genetic) correlation 

between general immune function and bTB-specific immune responses (see 

below). All assays are conducted in duplicate and the mean of these two used 

in analyses. 

Due to the low and variable sensitivities of the different diagnostic tests 

(Table 1) they have been used in combination to assign a bTB infection status 

(‘bTB status’) for previous studies of this population (Graham et al. 2013). This 

progressive infection status categorisation runs from 0-3 and is determined as 

follows. At each capture, individuals testing negative to both serological test and 

culture are assigned test-negative status (0). Badgers with a positive serological 

test but negative bacterial culture are considered test-positive (1). Badgers 

testing positive to bacterial culture are assigned a bTB status of either 2 (if a 

positive test comes from a single body site) or 3 (if positive cultures are 

obtained from multiple body sites). This categorisation is progressive and 

unidirectional such that once a badger reaches a certain status category it can 

no longer be assigned a lower one. We have previously shown this summary 

variable to be heritable in the Woodchester Park population (Chapter 3). 
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Table 1. Response variables used in analyses, including a summary of the diagnostic tests underpinning each and the years in which each test has been applied. 

Sensitivity (false negative rate) and specificity (false positive rate) estimates from Greenwald et al. 2003, Buzdugan et al. 2016 (and references therein).  

 

 

Variable  Diagnostic test 
 

Years applied Description Sensitivity Specificity 

CULTURE Bacterial culture 
 

1976-present Tests presence/absence of M. bovis bacilli in sampled 
tissue/excreta 

8% 100% 

BROCK Brock Elisa 
 

1982-2005 Tests presence/absence of M. bovis antibodies in 
blood serum (humoral response). Enzyme linked 
immunosorbent assay. 

47%  89–94% 

BrockTB Stat-Pak 
 

2006-2014 Tests presence/absence of M. bovis antibodies in 
blood serum (humoral response). 
Lateral flow immunosorbent assay  

49-78% 93% 

B-A Interferon-γ 
 

2006-present Detection of IFNγ in whole-blood cultures (cell-
mediated immune response). Measured as the 
difference in continuous optical density of IFNγ 
production between stimulus by M. bovis and M. 
avium.  
 

52-85% 93.6% 

PWM Interferon-γ 
 

2006-present Detection of IFNγ in whole-blood cultures (cell-
mediated immune response). Measured as the 
continuous optical density of IFNγ production in 
response to challenge with pokeweed mitogen. Used 
as generic measure of immune responsiveness. 

 
- 

 
- 
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Overview of statistical analyses 

In order to characterise genetic variation in, and associations among, response 

variables from the different diagnostic tests, we fitted a number of univariate 

and multivariate pedigree-based ‘animal models’ (Wilson et al. 2010). Since our 

primary interest is in estimating the multivariate genetic correlation structure (as 

opposed to statistical inference) we took the pragmatic decision to model traits 

using restricted maximum likelihood (REML) under an assumption of 

(multivariate) residual normality. All models were thus fitted using ASReml 4.0 

(VSN International) with response variables scaled to standard deviation units 

prior to analysis. This approach was taken because it yields valid genetic 

correlation estimates on the observed data scale, while greatly improving ease 

of model fitting relative to the alternatives (e.g., building multivariate generalised 

animal models with parameterisation by MCMC). However, since the 

assumption of residual normality is necessarily violated for binomial and ordinal 

response variables (BROCK, CULTURE, bTB status), all statistical inferences 

presented should be treated as provisional. We note that previous analysis by 

MCMC does support a genetic basis of variation in a binary ‘lifetime bTB status’ 

in the population (Chapter 3). 

For present purposes, and reiterating the above caveat, we provisionally 

test the significance of variance and covariance terms associated with model 

random effects by assuming that twice the difference in log-likelihood between 

full and reduced models has a χ2 distribution with the degrees of freedom equal 

to the number of additional parameters in the more complex model. Following 

Visscher (2006), we assume an equal mix of χ20 and χ21 (denoted as χ20,1) for 

the specific case that a single variance component is being tested. We also use 

Akaike Information Criterion (AIC) as an additional guide for comparison of non-
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nested models, and the approximate standard errors (SE) as a guide to 

significance of individual correlation estimates (i.e., we consider a correlation 

nominally significant at α=0.05 if |r|/SE >1.96). 

 Animal models utilised a pedigree structure recently estimated for the 

Woodchester Park population using microsatellite genotype data and a 

Bayesian pedigree reconstruction method implemented in the MasterBayes 

library (Hadfield et al. 2006) for R (R Core Team 2016). This analysis and the 

resultant pedigree structure is described in Marjamäki et al. (in press). The 

pedigree has a maximum depth of six-generations and includes all parent-

offspring assignments where a candidate parent was specified in at least 80% 

of the samples of the posterior distributions of the pedigree. In total 617 

individuals captured as cubs are assigned at least one parent (35% of 

genotyped cubs), of which 556 have both parents assigned.  

 

Univariate analyses 

We first ran four univariate animal models to test for and estimate the heritability 

of each diagnostic response variable (BROCK, CULTURE, B-A, PWM). We 

have previously shown that heritable variation exists in the progressive bTB 

status (denoted bTBmulti in Chapter 3; Marjamäki et al. in press). However, bTB-

multi is also subject to environmental effects arising from year, social group, and 

– in cubs – maternal effects, while mean phenotype also varies with sex, 

season and age. To maintain consistency across traits we therefore elected to 

include a common set of fixed and random effects for all traits. These were fixed 

effects of sex, season (a four-level factor denoting Spring, Summer, Autumn or 

Winter), and linear, quadratic and cubic age (zero-centred to the mean age 

(4.06 years) of adult records). To account for the use of two different serological 

tests, an additional fixed effect of ‘type’ was included in the BROCK model to 
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control for any difference in mean test results between Brock ELISA and Stat-

Pak.  

Random effects included the individual breeding values (i.e. additive 

effect of an individual’s genotype on phenotype relative to the population mean), 

as well as a permanent environment effect of individual identity (to account for 

non-genetic sources of among individual variation given the repeated 

measures), and a factor defined by the interactions of social group and year of 

sampling. (Note that in our previous modelling of bTBmulti we partitioned the 

latter into separate random effects of social group, year, and group x year but 

these are not of specific interest here and collapsing to a single factor facilitates 

model fitting by reducing the number of parameters). As in the bTBmulti model we 

also included a random effect of maternal identity but restricted to records on 

cubs only. Since failure to adequately model maternal effects can lead to 

upward bias in genetic parameters (Wilson et al., 2005a), we validated this 

decision by refitting univariate models with maternal effects included on all 

ages. Full results of these latter models are not shown as AIC comparison 

confirmed that the preferred model formulation was with cub-restricted maternal 

effects in all cases (ΔAIC of 937.271, 194.360, 110.820, 167.170 for BROCK, 

CULTURE, B-A, PWM respectively). Random effects are assumed to be drawn 

from distributions with zero means and variances of VA (additive genetic), VPE 

(permanent environment), VM (maternal), and VSGxY (social group x year) to be 

estimated. For each response variable, the estimated variance components 

were divided by total phenotypic variance (VP), calculated as the sum of 

estimated variance components, to obtain heritabilities and other intra-class 

correlations (ICC) conditional on fixed effects (Wilson 2018). This was done 

separately for adults and cubs, as VM in these models contributed to total 
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phenotypic variance in cubs only (i.e., VP = VA+VGxY+VPE+VM+VR, while for 

adults VP = VA+VGxY+VPE+VR, where VR is residual variance). 

 

Multivariate analyses 

We next estimated phenotypic and genetic correlation structures among the 

four scaled diagnostic response variables using multivariate models. First, we 

simply estimated the total phenotypic correlation structure among observed 

(scaled) data by fitting all four traits in a multivariate model with no fixed or 

random effects (except for trait specific means). This yields an estimate of the 

phenotypic covariance matrix among observed traits (which we denote PO) 

which was rescaled to give the corresponding correlations (noting that between 

traits x and y, r = COVx,y/(Vx.Vy)0.5). We then refitted this model with fixed effects 

(as described above) included on all traits to determine the total phenotypic 

covariance matrix conditional on fixed effects (P). Note that PO and P simply 

describe the total covariance/correlation among traits at the level of the 

observation (capture event) before and after conditioning on the fixed effects. 

Assuming BROCK, CULTURE, B-A are all indicative of bTB infection, we 

expect uniformly positive correlation structure among these traits at this level. 

However, if PWM is a useful measure of general immunocompetence, and if 

this in turn negatively influences the probability of bTB infection, then we would 

expect covariances between PWM and the other three traits to be negative.    

 We then added the full complement of random effects (as described for 

univariate models), including the additive genetic merit, to the model. This 

allowed us to estimate the among-trait genetic covariance matrix G and the 

corresponding pairwise genetic correlations (rG). The estimate of VA was bound 
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to zero in the univariate model of B-A suggesting that there is no heritable 

variation in this trait (see Results). This trait was consequently dropped from the 

multivariate animal model to facilitate convergence. Note that previous work has 

suggested responses to diagnostic tests may be size (or condition) dependent 

(Waring) and we have shown that size (measured as weight) is itself heritable 

(see Chapter 4). We therefore also estimated a ‘conditional’ G matrix which we 

denote G|WT to determine whether the effect of weight on genetic correlations 

among diagnostic tests influences our conclusions in any way. This was done 

by adding weight as an additional response to the multivariate animal model 

(with all fixed and random effects as specified above). This yields an estimate of 

the genetic covariance between weight and each of the other traits, which can 

be used to calculate G|WT (following equations presented in Hansen and Houle 

2008). 

Finally, we also ran bivariate animal models to estimate rG between 

bTBmulti and BROCK, CULTURE and PWM (but not B-A as it lacked detectable 

heritable variation in the univariate model). Bivariate models were used 

because inclusion of bTBmulti as a response in the full multivariate model 

resulted in convergence problems. This is likely because the bTBmulti phenotype 

is defined by the combination of BROCK and CULTURE.  

 

Results 

Univariate animal models indicated the presence of statistically significant 

additive genetic variance for BROCK, CULTURE and PWM (all p<0.001 based 

on likelihood ratio tests; Table 2). Corresponding estimates of adult heritability 

(SE) on the observed scale are; h2BROCK= 0.091 (0.024), h2CULTURE= 0.096 
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(0.022) and h2PWM= 0.138 (0.036) (Table 3). However, no additive genetic 

variance was detected for B-A, the estimate being bound to zero (Table 3). We 

therefore conclude that there is a lack of heritable variation for this trait in the 

Woodchester Park population. Permanent environment, social group-by-year 

effects, contribute nominally significant variance to all traits, as do maternal 

effects on cubs (Table 2). These findings differ somewhat with previously 

documented social and environmental effects on bTB incidence and 

progression (see analysis of bTBmulti presented in Chapter 3), which could 

reflect the slight differences in random effects (i.e. exclusion of social group and 

year from the current models). Since our primary focus here is on the genetic 

basis of trait (co)variation we do not discuss these results further. Nor are fixed 

effect estimates directly relevant to present aims (but see supplemental table 1 

for a full presentation).  

 

 

Figure 1. Raw phenotypic correlations a) and correlations conditional on fixed effects b) 

represented in numerical form below diagonal, and graphically above diagonal. * denotes 

statistical significance as inferred from standard errors (|r|/SE >1.96). 
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Multivariate models revealed that the total phenotypic correlation 

structure among BROCK, CULTURE and B-A is positive as predicted.  

Furthermore, phenotypic correlations between BROCK and CULTURE, and 

PWM are negative (Figure 1). Counter to our prediction, however, B-A was 

positively correlated with PWM. Overall, there is evidence of significant 

covariance structure among the observed traits (likelihood ratio comparison 

between the unconstrained multivariate model and a simplified model in which 

all covariances are constrained to zero; χ26= 4849.06, P<0.001) and pairwise 

correlations among the observed traits are all nominally significant (based 

on|r|/SE >1.96; Figure 1a). However, despite apparent statistical significance, 

the correlations are also uniformly weak (Figure 1a), ranging in magnitude from 

a maximum of r=0.28 between BROCK and CULTURE, to a minimum of r=-0.07 

between PWM and BROCK. Furthermore, these phenotypic correlations are 

largely unaffected by conditioning on fixed effects of sex, season and age at 

capture (Figure 1b).  

 

 

Figure 2. Genetic correlations among diagnostic tests from multivariate animal model (B-A 

excluded due to lack of genetic variance). a) shows rG b) shows rG|WT. * denotes statistical 

significance as inferred from standard errors (|r|/SE >1.96). 
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The genetic correlation structure among diagnostic traits (as estimated 

from the multivariate animal model including weight) was also similar to the 

phenotypic structure (though rG estimates between B-A and other traits were not 

estimated; Figure 2). Overall, there was evidence of significant genetic 

covariance structure in G based on likelihood ratio comparison between the 

unconstrained multivariate model and a simplified model in which all genetic 

covariances were constrained to zero (χ26=13.08, p=0.042). Examining the 

pairwise correlations, a positive (and nominally significant) correlation was 

estimated between BROCK and CULTURE (rG=0.558 (0.119)) indicating that 

antibody production is genetically associated with M. bovis infection. PWM was 

weakly (and non-significantly) negatively correlated with both BROCK and 

CULTURE (rG= -0.208 (0.199) and -0.143 (0.227), respectively). Inclusion of 

weight allowed us to confirm previous analyses showing size to be heritable, 

with VA as estimated in the multivariate animal model equating to heritabilities 

(SE) of h2=0.29 (0.021) and 0.28 (0.029) for weight in cubs and adults. 

However, we detected no strong (or significant) pairwise genetic correlations 

between the diagnostic traits and body weight. Consequently, it is unsurprising 

that the correlation structure among diagnostic traits in G is almost unchanged 

by conditioning on weight to determine G|WT (Figure 2b). 
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Table 2. Variance component estimates (standard error) and likelihood ratio tests of random effect from univariate models for each diagnostic test variable; BROCK 

= serological test for bTB specific antibody production, CULTURE = bacterial culture of M.bovis, B-A = IFNγ production in response to bovine tuberculin minus IFNγ 

production in response to avian tuberculin, PWM = IFNγ production in response to pokeweed mitogen.  V=variance. Subscripts denote source of variance; SGxY = 

social group by year, M = maternal, PE = permanent environment, A = additive genetic, R = residual 

 

 

 

    

 

                                    

*Variance component estimate bound to zero so no standard error is estimated  

 

 

  

 BROCK CULTURE B-A PWM 

Estimate (SE) χ2
0,1 p Estimate (SE) χ2

0,1 p Estimate (SE) χ2
0,1 P Estimate (SE) χ2

0,1
 P 

VSGxY 0.301 (0.017) 6155.80 <0.001 0.133 (0.009) 1272.38 <0.001 0.223 (0.026) 1056.56 <0.001 0.347 (0.037) 2978.81 <0.001 

VM 0.472 (0.052) 961.78 <0.001 0.192 (0.028) 194.34 <0.001 0.712 (0.121) 598.78 <0.001 0.225 (0.050) 167.25 <0.001 

VPE 0.350 (0.028) 320.92 <0.001 0.149 (0.022) 68.88 <0.001 0.577 (0.039) 112.84 <0.001 0.116 (0.029) 25.41 <0.001 

VA 0.105 (0.028) 24.56 <0.001 0.105 (0.024) 14.50 <0.001 0.000 (-)* 0 0.500 0.125 (0.034) 19.97 <0.001 

VR 0.399 (0.003) - - 0.705 (0.005) - - 0.437 (0.007) - - 0.322 (0.005) - - 
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Table 3. Intraclass correlations (standard error) for cubs and adults calculated as the ratio of each variance components to total phenotypic variance (VP). Note ICC 

differ between age classes since VM contributes to VP in cubs but not adults. BROCK = serological test for bTB specific antibody production, CULTURE = bacterial 

culture of M.bovis, B-A = IFNγ production in response to bovine tuberculin minus IFNγ production in response to avian tuberculin, PWM = IFNγ production in 

response to pokeweed mitogen.   

 

 BROCK CULTURE B-A PWM 

Cub ICC Adult ICC Cub ICC Adult ICC Cub ICC Adult ICC Cub ICC Adult ICC 

Social group x year 0.185 (0.010) 0.261 (0.011) 0.103 (0.007) 0.122 (0.008) 0.115 (0.013) 0.180 (0.018) 0.298 (0.026) 0.381 (0.026) 

Maternal  0.290 (0.023) - 0.150 (0.018) - 0.365 (0.040) - 0.218 (0.034) - 

Permanent environment  0.215 (0.018) 0.303 (0.024) 0.116 (0.017) 0.137 (0.020) 0.296 (0.023) 0.466 (0.020) 0.099 (0.025) 0.127 (0.032) 

Heritability 0.064 (0.017) 0.091 (0.024) 0.082 (0.018) 0.096 (0.022) 0.000 (-)* 0.000 (-)* 0.108 (0.029) 0.138 (0.036) 

* Additive genetic variance component estimate bound to zero, so no standard error is estimated on corresponding heritabilities 
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 Finally, bivariate animals model yielded significant positive estimates of 

rG between the progressive bTB status (bTBmulti) and both BROCK (rG =0.913 

(0.114)) and CULTURE (rG=0.856 (0.055); Table 4). This is not surprising as 

bTB status is assigned based on the results of these two diagnostic traits. The 

genetic correlation between PWM and bTB status was moderately negative 

though not statistically significant (rG = -0.413 (0.272)).  

 

 

 

 

Table 4. Estimated genetic correlations (rG) between diagnostic test traits and the progressive 

bTB infection status score (bTBmulti). Estimates (with standard errors) are from bivariate animal 

models and likelihood ratio tests against a null hypothesis of rG=0 are shown.  

   
rG (SE) Χ2

1 P   

BROCK 0.913 (0.114) 15.960 <0.001   

CULTURE 0.856 (0.055) 13.980 <0.001   

PWM -0.413 (0.272) 2.600 0.106   
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Discussion  

Using a quantitative genetic approach, we have characterised the contribution 

of genetic factors to variation in, and covariation among, four diagnostic 

measures of host immune response and bTB infection status in the 

Woodchester Park badger population. We detected a small, but significant, 

heritable component of variation in three of these; bTB-specific antibody 

production (BROCK), parasite load (CULTURE) and general immune function 

(PWM). However, we found no evidence that genetic factors contribute to 

variance in cell-mediated immune response against bTB (as measured by B-A). 

There is also significant correlation structure among the traits. Phenotypic 

correlations were positive among bTB specific traits, and both BROCK and 

CULTURE were negatively correlated with PWM, a qualitative pattern that 

means general immune function positively (though weakly) predicts an 

individual’s ability to fight bTB infection. Except between BROCK and 

CULTURE, genetic correlations among traits were relatively weak and we 

suggest that while heritable traits are not completely independent of each other, 

there is no compelling evidence for trade-offs.     

The finding of heritable variation in bTB-specific antibody production 

(BROCK) and parasite load (CULTURE) corroborates our previous conclusion 

that genes do contribute to variance in immune function and disease state 

(Chapter 3). We have previously identified a partial genetic basis for variation in 

a progressive bTB status (bTBmulti) and in lifetime infection risk, the latter 

providing a putative proxy of resistance (Chapter 3). We have also found 

evidence of heritable variation in tolerance to bTB infection (Chapter 4). Here 

we add further to this picture, by showing that general immune function (PWM) 

is also genetically variable. However, in all cases estimated heritabilities are low 
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and (social) environment factors, including maternal effects for cubs, explain 

more variance than genetics. Whether this finding is more generally true for 

immune traits in wild populations is difficult to assess at present as comparable 

studies remain limited in number and taxonomic scope. In birds, studies of 

response to PHA skin test (a widely used field-assay of non-specific immune 

function) have produced variable results, with no (or very little) genetic variation 

detected in some cases (Kilpismaa et al. 2007; Pitala et al., 2007; Sakaluk et 

al., 2014) and moderately high heritabilities reported in others (e.g. 

0.46,Bonneaud et al., 2009; 0.38, Drobniak et al., 2010). Published heritability 

estimates for parasite-specific immune responses and infection status are even 

scarcer, but those that do exist are low.  For example, in Soay sheep, faecal 

egg count and strongyle-specific antibody titres used as proxies of resistance 

yield estimates of h2= 0.11-0.14 (Coltman et al. 2001; Hayward et al. 2014a).  

Thus, while standing genetic variance is present in Woodchester 

badgers, its importance as a source of host heterogeneity in immune traits 

should not be overstated. We also note that there was no detectable genetic 

variance for cell-mediated responses to bTB as measured by the IFNγ assay 

(B-A). This could potentially be an artefact of the diagnostic measure if the 

component traits ‘B’ (optical density of response to bovine tuberculin) and ‘A’ 

(response to avian tuberculin) are themselves heritable and positively 

genetically correlated. This follows mathematically because, for any two 

variables x and y, Vx-y = Vx -2COVx,y + Vy. However, additional post hoc 

univariate animal models detected no genetic variance in either optical density 

measure contributing to the B-A diagnostic (results not shown). Although 

speculative, the lack of genetic variation in the bTB-specific cell-mediated 

response could be indicative of past selection pressures. Since production of 
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IFNγ is critical to the effectiveness of cell-mediated immune responses against 

intracellular parasites such as M. bovis (Skinner et al. 2001), strong directional 

selection could have led to the trait becoming fixed in the population. Indeed, 

the same argument may also explain the low heritabilities of other traits; if M. 

bovis has imposed strong directional selection on them, standing genetic 

variance may have been eroded. We have no direct evidence for this however, 

and note also that low values of h2 can equally reflect high levels of 

environmental variance rather than an absolute lack of VA. 

Our multivariate analyses provided evidence for significant phenotypic 

and genetic correlation structure among the immune traits. The positive 

correlations among bTB-specific responses are broadly consistent with the 

previous conclusion that seropositivity is more likely in badgers at advanced 

stages of infection (characterised by excretion of bacteria and thus positive 

culture tests; Buzdugan et al. 2016). The moderately strong positive genetic 

correlation between BROCK (i.e. presence of bTB-specific antibodies) and 

bacterial CULTURE indicates these traits likely have a shared genetic basis of 

variation and suggests that high antibody levels are more indicative of current 

infection than of expected resistance to infection. This follows since, in the latter 

case, negative correlations between antibodies and pathogen loads would be 

expected (Graham et al. 2011).  

We found only weak phenotypic relationships between bTB specific cell-

mediated immune responses (B-A) and BROCK and CULTURE (r=0.259 and 

0.202, respectively). This was initially surprising given that cell-mediated 

immune response, measured by IFNγ production, has been found to predict 

future (6 to 24 months) seropositivity and excretion of M. bovis (Buzdugan et al. 

2016). However, the total phenotypic correlations estimated in the current 
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analysis are within a single sampling ‘time step’. Thus, it seems the phenotypic 

correlations among traits differ within, versus across, sampling events, which 

implies that the temporal structure of response differs among the various 

components of the immune system over the course of an infection (Buzdugan et 

al 2016). Given that B-A is not heritable, genetic correlations between cell-

mediated immune response and the other traits (including the bTBmulti) were not 

be estimated.  We note that significant positive genetic correlations were 

detected between both BROCK and CULTURE and bTBmulti. However, this is an 

almost inevitable consequence of trait definition so provides little additional 

biological insight.   

From an evolutionary standpoint, the presence of at least some genetic 

covariance structure among heritable traits mean that immune response has 

some potential to evolve under selection. However, rapid evolution is unlikely 

given low heritabilities, and the traits considered are not free to evolve 

completely independently. Nonetheless, we find no suggestion that trade-offs 

among components of the immune system will constrain adaptation. In fact, 

negative genetic (and phenotypic) correlations between bTB-specific traits and 

responses to pokeweed mitogen provide some, albeit limited, evidence that 

higher general immune responsiveness is associated with lower risk of bTB 

infection. Thus, our results are largely consistent with the position, commonly 

assumed in ecoimmunological studies, that using non-infectious stimulants (e.g. 

PHA, PWM) to assay general immunocompetence can provide information 

about the ability of individuals (or genotypes) to fight specific infections 

(Sheldong & Verhulst 1996). However, these negative associations are weak 

(and none of the genetic correlations are significantly less than zero when 

considered individually). Furthermore, the pattern is imperfect since, at the 
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phenotypic level PWM is weakly (but significantly) positively correlated with B-A. 

This could be indicative differential investment in cell-mediated (B-A, PWM) 

versus humoral responses (BROCK), but it is difficult to make firm inferences 

from what is a weak pattern. 

Beyond the present study, attempts to estimate phenotypic correlations 

among components of immune response in wild populations have produced a 

mixed picture, ranging from positive to negative correlations (e.g. Møller et al. 

2001, Buchanan et al. 2003; Faivre et al. 2003). Corresponding genetic 

correlation estimates are scarce for wild populations, and even relatively rare in 

livestock and laboratory model systems (but see (Lambrechts et al., 2004; 

Okamura et al., 2016).  Consequently, there is no emergent empirical 

consensus yet as to whether trade-offs among immune traits are widespread, or 

whether variation among individuals and/or genotypes lies more along a single 

high-low axis of immune function competence or ‘quality’ (sensu Wilson and 

Nussey 2010).  A simple, but slightly trite, conclusion would be that different 

patterns arise for methodological and/or taxonomical reasons; the majority of 

field-studies having used experimental stimulation (i.e. subcutaneous injections) 

in avian species (but see e.g. Nussey et al., 2014). In fact, both experimental 

and observational studies have reported an apparent lack of (phenotypic) 

association among immune response traits in bird and mammal hosts (Martin et 

al., 2006a; Matson et al., 2006; Arriero et al., 2017). Such a scenario could 

easily arise if genetically based trade-offs among costly immune traits do exist 

but are masked by environmentally driven heterogeneity in resource acquisition 

(van Noordwijk and de Jong 1986). Such effects are unlikely in Woodchester 

Park badgers, as we directly estimate the genetic correlation structure itself and 
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show it to be similar to the phenotypic structure. Nor is genetic correlation 

structure notably changed by conditioning on body weight.  

In summary, we find evidence that bTB-specific and general immune 

function traits are genetically variable in the Woodchester Park population of 

badgers, and that there is correlation structure among them arising, in part, from 

genetic effects.  These conclusions must be tempered by acknowledgement of 

analytical limitations arising from phenotypic data structure (e.g., the proportion 

of infected badgers is low overall) and volume (e.g., IFNγ testing only 

commenced in 2006), and the incomplete pedigree data (which likely, but not 

inevitably, will lead to downward bias in h2 estimates; Morrissey et al., 2007). 

We also reiterate that assuming (multivariate) residual normality in our models 

means all statistical inferences should be treated as provisional. These caveats 

notwithstanding, the findings here are; i) that genetic variation is present, but is 

a much less important driver of immune response variation than temporal, 

spatial and social (including maternal) factors; and ii) that there is genetic 

covariance present (notably between bTB-specific antibody production and 

parasite load), but no support for genetically determined trade-offs among the 

different arms of the immune response assayed. The extent to which these 

patterns generalise to other wild host-parasite systems is unknown, and we 

suggest that more genetic studies of multivariate phenotypes are urgently 

needed if we hope to understand how immune response evolves under 

selection in wild populations. 
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Chapter 6 

General discussion 

 

Parasites, such as Mycobacterium bovis (cause of bTB), are expected to 

impose directional selection on defence traits in host populations through their 

detrimental effects on fitness (Schmid-Hempel 2011). Among-individual 

variation in defence traits is a prerequisite for selection, but in order for hosts to 

evolve, there must also be a genetic basis to this variation. Thus, knowing what 

proportion of phenotypic variation has a genetic basis is crucial to our 

understanding of microevolutionary dynamics of host-parasite interactions. 

However, while genetic factors are well known to influence infection in humans 

and captive animal populations (Morris, 2007; Yan et al. 2006; Breitling et al., 

2008), we currently have little knowledge of their relative importance in wild 

populations. The central aim of this thesis was to address this gap, by 

characterise the genetic basis of variation in bovine tuberculosis infection and 

its progression in a wild host and key wildlife reservoir for the disease – the 

European badger. In this final chapter, I first summarise first the key findings 

and conclusions of each chapter. I then reflect on the implications of this work 

for (i) understanding eco-evolutionary dynamics of host-parasite in this system 

and more generally, and (ii) management of bovine tuberculosis more 

specifically. Finally, I conclude with by briefly highlighting several promising 

avenues for future work.  
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Summary of main findings 

In Chapter 2, I used the wealth of ecological and genetic data produced by the 

four-decade long mark-recapture study at Woodchester Park to build a 

multigenerational pedigree for the population. This represented a crucial first 

methodological step to understanding genetic architecture of bTB infection, but 

also provided an opportunity to explore variation in extra-group paternity in the 

population. Analysing the annual mean paternity distance (PD), generated 

simultaneously with the pedigree, I found among-cohort variation was present 

suggesting that the tendency of adults to engage in short term breeding 

excursions is not completely stable through time. However, this temporal 

variation was not explained by changes in population density or sex ratio, 

factors that are widely hypothesised to drive movement for breeding purposes.  

In contrast, modelling cub-level variation in PD and extra-group paternity 

(EGP) was more successful in identifying source of variation, with strong effects 

of social group, and parental identity detected. With respect to the former, I 

found a strong negative correlation between maternal and paternal social group 

effects on cub paternity distance, indicating that maternal groups that 

predispose to high paternity distance are the same as the paternal groups 

predisposed to low paternity distance. This pattern is not readily explained as a 

simple consequence of, for example, (relative) distances between groups or 

edge-effects, but instead suggests source-sink dynamics, with some social 

groups both retaining and ‘drawing in’ male genes. With respect to the latter, 

both paternal and maternal identity effects mean that some individuals are 

consistently more likely to produce cubs with extra-group partners. The 

behavioural mechanisms underpinning this remain to be resolved, which 

represents a formidable empirical challenge given the shy nature of badgers 
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makes observational studies difficult. For instance, relatively little is known 

about female excursions. Do mothers that produce more extra-group sired 

offspring do so because of a greater tendency to leave the group territory to find 

partners, or because of a greater tendency to accept intruding males from 

outside? At present we do not know. 

However, what the analysis does demonstrate, is variation in extra-group 

mating at multiple levels – among years, social groups and individuals. The 

latter in particular is a phenomenon seldom documented and emphasises the 

importance of considering the individual in driving eco-evolutionary dynamics. It 

also suggests among-individual differences in traits related to movement 

(dispersal, exploration) that may well have implications for conspecific 

encounter rates and thereby disease transmission (Weber et al., 2013). 

Crucially, in the context of the wider thesis, the resolved pedigree structure 

suggests moderate levels of EGP (an estimated 37% across the study period) 

that serve to break up (social) environment – genetic correlation, providing a 

data structure in which we could reasonably hope to statistically partition 

genetic from common environment effects on immune function traits.   

 In Chapter 3, I sought to examine the relative importance of genetic and 

social environmental (including maternal) sources of variation in bTB infection 

status, using a previously described progressive score assigned at each 

capture event based on diagnostic tests. Quantitative genetic analysis of this 

metric of disease progression, and of a simplified (binary) proxy of lifetime 

infection risk yielded evidence of significant additive genetic variance, providing 

the first estimates for heritability of bTB infection in a wild host. However, 

despite nominal significance, levels of additive genetic variance are low relative 

to modelled sources of environmental variation (social group and, for cubs, 
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maternal). Thus, while I showed that genes do contribute to among-individual 

variation in this population, rapid evolution of host defence strategies from 

standing genetic variance under (presumed) parasite-mediated selection seems 

unlikely. Instead, the results lend further support to the view that social and 

early-life environments are important drivers of dynamics of bTB infection in 

badgers. However, due to the scarcity of heritability estimates for disease traits 

in wild vertebrate populations there remains little consensus on the importance 

of standing genetic variation. 

Variation in bTB infection status as measured in Chapter 3 could result 

from numerous pathways involved in immune response. With some 

assumptions (e.g. that individuals are equally exposed to Mycobacterium bovis), 

variation in infection risk can be interpreted as reflecting among-individual 

and/or genotype differences in ‘resistance’ – the ability of a host to prevent 

infection by limiting parasite growth or entry. However, the fitness 

consequences of infection will also depend on host tolerance – the ability to limit 

damage caused by the parasite. Though not mutually exclusive, these two host 

conceptually distinct defence strategies are predicted to have very different 

consequences for parasite fitness, and as a consequence, for co-evolutionary 

dynamics. By limiting parasite growth, host resistance will negatively impact 

parasite fitness while tolerance can, in fact, promote parasite fitness by 

increasing the period over which transmission to a new host can occur (Miller et 

al. 2006; Boots et al. 2009). Given the divergent implications of resistance and 

tolerance on host ecological and evolutionary dynamics, determining whether 

genetic and environmental determinants of infection status operate through 

resistance, tolerance, or both, should advance our understanding of bTB 

dynamics.  
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There is a large literature on the epidemiological, ecological and 

evolutionary implications of variation in resistance, even if estimates of genetic 

variance remain scarce for wild hosts. By comparison, variation in tolerance as 

a distinct aspect of host defence has been less well characterised. I attempted 

to bridge this gap in Chapter 4, by testing for (genetic) variation in tolerance of 

M. bovis infection. To do this I adopted a ‘reaction norm’ approach in which 

individual tolerance is conceptualised as the slope of an individual’s relationship 

between weight and infection status. Weight was chosen in part because we 

know bTB causes weight loss but also for pragmatic reasons as there are no 

records of bTB specific symptoms for the population. The analyses revealed 

significant among-individual variation in tolerance to bTB and also provides the 

first explicit demonstrations of heritable variation underpinning this in any wild 

host species. In fact, the finding that among-individual variation in tolerance is 

primarily attributable to additive genetic effects is counter to a priori 

expectations. Specifically, I had predicted that positive selection would rapidly 

erode genetic variance – such that variation in tolerance would, if present, be 

principally attributable to environmental factors. This result leads to the question 

of what maintains genetic variance, assuming of course that it really is under 

strong positive selection in the host population. Others have suggested that the 

mode through which tolerance operates (e.g., by mitigating costs on survival 

versus fecundity), and/or trade-offs with resistance (or life-history traits) could 

allow genetic variation to persist in populations. However, whether such 

mechanisms are at play in the Woodchester badger population remains to be 

determined. 

Finally, Chapter 5 seeks to characterise genetic variance in traits that 

can be tied more mechanistically to distinct arms of the immune response. At 
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the same time, in this chapter I was also looking to overcome a central limitation 

to many studies of evolutionary ecology, the focus on single trait. In fact, natural 

selection rarely operates on single traits in isolation, but rather on multivariate 

phenotypes comprised of suites (potentially) correlated traits. Importantly, 

multivariate selection responses are shaped (and sometimes constrained) by 

the extent to which correlations structure is determined by genetic factors 

(Morrissey et al. 2010). While this could certainly be the case for host immune 

responses which are generated through multiple distinct pathways, few studies 

to date have attempted to characterise the genetic associations among aspects 

of immune function and/or infection status in wild systems. 

 In this chapter I estimated the genetic basis of (co)variation in, and 

among, four diagnostic test responses, two of which are used to assign the 

progressive bTB status used in previous chapters. The four diagnostic traits 

represent different aspects of host immune function and infection status: 

general immunocompetence (PWM), bTB-specific humoral (BROCK) and cell-

mediated responses (B-A), and parasite burden (CULTURE). Of these detected 

a small, but significant, heritable component of variation in all but the cell-

mediated response measured with the interferon gamma assay (B-A). I also 

found significant phenotypic correlation structure (within a sampling event) that 

was partially attributable to genetic effects. Correlations were positive among 

bTB specific traits, and both BROCK and CULTURE were negatively correlated 

with PWM. Thus, the signs of the correlations (both phenotypic and genetic) are 

broadly consistent with the premise that assays of general immune function 

(here PWM) positively predict an individual’s ability to fight a specific infection 

(here bTB). Thus, traits are not completely free to evolve independently under 

selection, but, I found no support for trade-offs among them.  
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Eco-evolutionary implications   

In this thesis I find evidence for genetic variance contributing to among-

individual heterogeneity in both resistance and tolerance of Woodchester 

badgers to infection by Mycobacterium bovis. Broadly speaking, genetic 

heterogeneity in resistance – putatively captured here by multisite and lifetime 

bTB status scores - is consistent with theoretical predictions. Commonly models 

assume negative frequency-dependent selection arises because resistant traits 

are costly. As resistance spreads in a host population parasite abundance will 

be reduced (Boots et al. 2009). This in turn weakens selection because the 

benefits of resistance decline relative to the costs. Less easy to explain is why 

genetic variance for tolerance should persist in a host population; the simplest 

prediction being that alleles favourable for tolerance should rapidly go to fixation 

while deleterious alleles are purged (Best et al. 2008). This is because of a 

positive feedback loop in the strength of selection; increasing tolerance in a host 

population should increase parasite fitness (and so abundance), further 

strengthening selection for tolerance. In this context, the result that detectable 

heterogeneity in tolerance is primarily due to genetic rather than non-genetic 

effects is surprising, and potentially suggestive of some unknown costs to 

tolerance. These may occur if, for instance, there are trade-offs between 

tolerance and other host defences or components of life-history (Best et al. 

2008).  

So, what can be said about the likely eco-evolutionary dynamics of TB-

related traits in this population? Based on the presence of heritable variation 

there is some potential for resistance and tolerance - and the immune traits 

underpinning them - to evolve. However, this potential is limited in as much as 

the amount of genetic variation present is low (at least relative to non-genetic 
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variation arising from social, spatial and temporal effects). Notwithstanding the 

above argument for frequency dependent selection on resistance, low levels of 

standing genetic variance are consistent with parasites asserting consistent, 

strong directional selection on host defences in populations where they are 

endemic. Interestingly, however there are some well documented instances of 

resistance and/or tolerance evolving rapidly in wild vertebrates during epizootic 

events where parasites invade previously naïve host population (e.g. 

Mycoplasma gallisepticum in house finches; Bonneaud et al. 2018). One 

possibility then is that host defences can evolve rapidly from standing genetic 

variation in response to novel selection imposed by an invading parasite, but 

over time, further adaptation to endemic infections becomes increasingly 

dependent on de novo mutations. If this is the case then, substantial genetic 

variance for host defences may be a relatively transient phenomenon in wild 

populations.  

While I have focussed here on genetic (co)variation a more complete 

understanding of the evolutionary dynamics of host defence strategies clearly 

requires quantitative estimates of selection. We know that bTB infection causes 

disease that ultimately reduced survival and reproduction in badgers, so it is 

probably reasonable to assume positive selection on host defences. But, how 

strong is this selection? Does it vary among groups or through time? And how 

much variance in relative fitness (which sets the opportunity for selection) is 

caused by infection dynamics relative to, for instance, variation arising from 

sexual selection or stochastic mortality events (e.g. road kills). Answering these 

questions requires a proxy of individual fitness such as lifetime reproductive 

success (LRS), usually defined as the number of offspring produced by an 

individual. While LRS inferred from pedigree structures is widely used for 
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selection analyses in wild vertebrates (Pemberton, 2008), pedigree data for 

Woodchester is sufficiently incomplete (35% cubs assigned parents) that LRS 

estimates are likely to be rather inaccurate and imprecise. Likewise, death 

dates are unknown for most individuals in the population and emigration from 

the study area certainly occurs, making estimation through survival or longevity 

alone similarly difficult.   

Practically, overcoming these limitations will likely require future 

increases in genotyping and/or capture effort. While challenging logistically and 

financially, robust estimates of individual fitness would allow us to build on the 

current results by: (i) generating selection gradients on (multivariate) immune 

response allowing us to generate evolutionary predictions (e.g. using the 

multivariate breeders equation); (ii) formally test for the widely hypothesised 

fitness trade-offs between tolerance and resistance (Best et al. 2008), and (iii) 

look for evidence that investment in immune function really is costly (e.g. in 

terms of future reproduction or survival).  

 

Potential impacts on management of bTB in badgers and other hosts 

As well as influencing eco-evolutionary dynamics, heritable variation in host 

defence strategies may have potential implications for the management of bTB. 

In cattle, genetic variation for bTB is found among- and within-breeds but 

appears to be present at a low level, just as we find in the Woodchester 

badgers. Thus, while breeding for resistance has been generally suggested as 

a viable option for managing some livestock diseases (Stear et al. 2001; Yáñez 

et al. 2014), it may have limited application in the case of reducing bTB in cattle. 

More generally, artificial selection for resistance can sometimes be complicated 
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by genetic correlations that impose trade-offs with production traits; for instance, 

in dairy cattle increased resistance to mastitis correlated with reductions in milk 

yield (Heringstad et al. 2000). Interestingly, if genetic variance in tolerance is 

also widespread in livestock, it may provide a useful alternative for disease 

management in livestock, as by definition it limits damage to ‘fitness’ which 

should mean improvements to both welfare and production traits. However, in 

the particular case of bTB in cattle this is not a viable option given that the 

disease is notifiable and infected animals are legally required to be slaughtered. 

Given the risk to human health risk for those working with cattle, a move 

towards tolerance of bTB infection in cattle - in any sense of the word - seems 

unlikely.  

From the perspective of managing disease in cattle, if genetic variance 

facilitates evolution of resistance in badgers this would be advantageous. Lower 

rate of infection in the wildlife host population should, all else being equal, mean 

reduced transmission to livestock. Conversely, genetic variance in tolerance 

could detrimental consequences. If tolerance can spread under selection, bTB 

incidence in badgers is expected to rise and thus increased transmission to 

cattle is likely. The heterogeneity detected also raises interesting questions 

regarding the general role of more tolerant individuals and genotypes in the 

epidemiology and pathogenesis of bTB in badgers and other hosts. Particularly, 

the potential links between tolerance and so-called ‘superspreaders’, a term 

describing individuals that contribute disproportionately to the transmission and 

spread of disease through a population (Lloyd- Smith et al., 2005). In 

Woodchester Park, superspreading appears to operate both through 

heightened bacterial excretion and behavioural differences affecting social 

contacts among individuals (McDonald et al, 2018). The links between these 
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three mechanisms present an interesting avenue of investigation. Tolerance 

mechanisms could, at least in part, also explain the preponderance of latent 

infection observed in mycobacterial infections. 

However, as noted above, attempting to predict eco-evolutionary 

dynamics based solely on heritable variation and an untested assumption of 

strong directional selection is problematic. Furthermore, while genetic variation 

is vital for evolutionary responses, it is clearly not the most important source of 

heterogeneity in bTB infection or progression for Woodchester Park badgers. 

Ultimately, this provides some grounds for cautious optimism in the sense that 

managing environmental effects, no matter how challenging, is surely more 

tractable that attempting to manage the genetic make-up of a wild population. 

For instance, social effects appear to play a significant role in bTB infection, and 

while intervention strategies to date are (arguably) counterproductive in this 

respect (e.g. culling causing social disruption that increase movement and thus 

bTB transmission; Carter et al., 2007) it is possible that other manipulations 

targeting social structure could be beneficial. However, probably the most 

promising short-term avenue for control in badgers is vaccination (Chambers et 

al., 2011). 

Finally, a major challenge to understanding and managing bTB – both in 

wildlife and livestock – continues to be the relatively low sensitivity of available 

diagnostic tests. In my thesis, this adds some nuance to the interpretation of 

phenotypic correlations reported among immune response traits in Chapter 5. 

For instance, taken at face value the relatively low phenotypic correlation 

between measures of humoral and cell-mediated immune responses within 

capture event suggests these two components of the immune response are not 

strongly coupled in their expression (at least within a time point). An alternative 
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possibility is that in fact they are, but that the correlation is low because of one 

or both diagnostic tests is subject to high levels of measurement error (and 

errors are uncorrelated across tests).  In this respect it is notable, for instance 

that between CULTURE and BROCK the genetic correlation (which should be 

robust to such effects providing test errors are not themselves linked to 

genotype) is double the phenotypic correlation. Thus, while not directly 

connected to the genetic questions at the core of this thesis, an important task 

for management strategies going forward should be to better determine the 

reliability and sensitivity of the tests being used and consider how best to use 

them for reliable inference of individual status. Increasing the breadth of 

immune tests even further could add biological understanding but may – or may 

not - improve accurate determination of a specific individual’s infection status. 

An alternative strategy may be to increasing sampling effort with existing tests 

(or even a subset of them) to obtain more repeat measures on individuals (over 

short time periods) which might be averaged to improve accuracy. 

 

 

Future directions and concluding remarks 

The natural world is multivariate, and host immune function is a prime example 

of the complexity underlying many phenotypic traits. Multivariate approaches 

provide the necessary tools for examining associations between immune traits 

and fitness, by extension enabling the strength and direction of selection on 

traits, and thus their full evolutionary potential, to be assessed. Multivariate 

quantitative genetics is also well-suited suited to answer outstanding questions 

in ecoimmunology. For instance, it is increasingly recognised that coinfection is 
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the norm rather than the exception in natural environments and can lead to 

complex within-host interactions that augment infection outcomes (Bordes et al. 

2011), yet relatively few studies of wild host populations consider multiple 

infections (but see e.g. Clerc et al.). Multivariate approach would allow the 

phenotypic and genetic associations among different parasites, host responses 

and fitness to be characterised. Coinfection with gastrointestinal helminths, 

commonly found in badgers (Sin et al. 2014), may be of particular relevance to 

understanding the dynamics of bTB infection as they have been shown can lead 

to suppression of key anti-TB immune defences (Ezenwa et al., 2010).  

While I highlight the need for more (multivariate) studies of immune traits 

in the wild, the availability of longitudinal data and pedigree information remains 

a major limitation for many populations. Going forward, however, advances in 

genomics and declining costs of sequencing are likely to provide access to 

methods and study systems that were once unfeasible for wild populations. 

Crucially, this will enable quantitative genetics studies in large populations on 

individuals that are not closely related or whose relationships are unknown. 

Advances in genomics (and other ‘omics) technologies will also greatly facilitate 

exploration of immune markers and their underlying genetic in non-model 

species and enable better detection of parasites in the wild. Combined with the 

detailed mechanistic, molecular and physiological understanding of host and 

parasite biology provided by laboratory studies, these advances promise to 

advance our understanding greatly. Ultimately, however, more multivariate 

approaches will be necessary to disentangle this complexity and gain more 

realistic evolutionary insight of host-parasite interactions. 
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Supplementary Tables and Figures for Chapter 2 

 
Table S2.1. Per locus mean allelic dropout (e1) and false allele or stochastic sampling error 

rates (e2), estimated using PEDANT 1.0 (Johnson & Haydon 2007) using 209 individuals for 

which repeat genotypes were available. Loci for which estimated error was zero, and those for 

which estimation was not possible (Mel15 & 106) due to lack of repeat genotypes, the default 

rate of 0.005 was used (Hadfield 2012). 

 

 

 

 

 

 

Locus E1 95% CI E2 95% CI2 

Mel1 0.03 0.005-0.08 0.006 0.0006-0.02 

Mel10 0.03 0.005-0.1 0 0-0.02 

Mel12 0.1 0.07-0.2 0.07 0.05-0.1 

Mel14 0.02 0.006-0.04 0.03 0.01-0.04 

Mel15 0.005 - 0.005 - 

Mel101 0.1 0.03-0.2 0.02 0.002-0.06 

Mel102 0.02 0.006-0.05 0 0-0.009 

Mel103 0.02 0.0009-0.07 0.03 0.006-0.06 

Mel104 0.03 0.008-0.08 0.01 0.001-0.04 

Mel105 0.03 0.01-0.05 0.05 0.03-0.07 

Mel106 0.005 - 0.005 - 

Mel107 0.01 0.002-0.05 0 0-0.007 

Mel108 0.01 0.003-0.04 0 0-0.007 

Mel109 0.07 0.04-0.1 0.08 0.05-0.1 

Mel110 0.02 0.003-0.05 0.004 0.00008-0.02 

Mel111 0.08 0.04-0.1 0.04 0.01-0.07 

Mel112 0.006 0-0.03 0.003 0.00006-0.02 

Mel113 0.06 0.02-0.1 0.02 0.005-0.06 

Mel114 0.05 0.004-0.2 0 0-0.06 

Mel115 0.02 0.004-0.04 0.006 0.0005-0.02 

Mel116 0.1 0.05-0.3 0.2 0.002-0.07 

Mel117 0.009 0.001-0.03 0 0-0.01 
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Table S2.2. Best linear unbiased predictor (BLUP) values (represent the predicted deviation of 

each (maternal and paternal) social group from the mean paternity distance) and standard 

errors for each maternal (M) and paternal (P) social group extracted from the PD i model. Values 

represent the predicted deviation of each social group from the mean. Groups with missing data 

had no parentage assignments, therefore BLUPs were not estimated. Results are on the log-

transformed scale with untransformed PD in meters. 

Social group BLUPP (SE)     BLUPM (SE) 

Arthurs 0.31 (0.29) -0.27 (0.25) 

Atcombe West -0.09 (0.75) 0.07 (0.62) 

Atcombe Corner 1.12 (0.53) -0.92 (0.43) 

Bamboo 0.08 (0.56) -0.07 (0.46) 

Beech 0.26 (0.26) -0.17 (0.22) 

Bungalow -0.63 (0.55) 0.52 (0.45) 

Cedar 0.35 (0.31) -0.31 (0.26) 

Cole Park -0.88 (0.63) 0.72 (0.52) 

Colliers Wood 0.03 (0.3) 0.01 (0.28) 

Convent - - 

Dark Wood - -0.38(0.45) 

Dingle -0.73 (0.53) 0.59 (0.43) 

Field Farm 0.55 (0.50) -0.47 (0.42) 

Gully - - 

Hedge -0.36 (0.35) 0.30 (0.29) 

Hogarths - - 

Holly Wood 0.41 (0.41) 0.41 (0.41) 

Honeywell 0.65 (0.41) -0.56 (0.34) 

Inchbrook 0.12 (0.42) -0.14 (0.35) 

Jacks Mirey 1.16 (0.32) -0.95 (0.27) 

Kennel -0.003 (0.30) 0.036 (0.25) 

Larch 0.14 (0.29) -0.10 (0.25) 

Listers -0.73 (0.59) 0.59 (0.48) 

Nettle 0.64 (0.47) -0.52 (0.39) 

Old Oak 0.38 (0.37) -0.32 (0.31) 

Park Mill 0.11 (0.39) -0.09 (0.33) 

Peglars 0.02 (0.37) -0.02 (0.31) 

Septic Tank 0.56 (0.28) -0.38 (0.24) 

Thistle Wood Bank - - 

Top Sett -1.97 (0.32) 1.60 (0.26) 

West 0.17 (0.34) -0.09 (0.28) 

Windsor Edge 0.76 (0.33) -0.60 (0.28) 

Wood Farm -0.42 (0.33) 0.34 (0.27) 

Wych Elm -0.25 (0.32) 0.19(0.26) 

Yew -0.55 (0.29) 0.42 (0.25) 
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Table S2.3. Reanalysis of PDi and EGPi using standardised body mass index (SMI) in place of body mass. Response variables were standardised into standard 
deviation units (SDU) prior to analysis. M and P denote maternal and paternal individuals, while MSG and PSG denote the corresponding maternal and paternal 
social groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

†mean body mass for parental individuals with multiple weight measurements within cub’s birth year 

‡calculated as number of males divided by group size where group size is males plus females 

Full models fitted for each response were y ~ μ + AgeM + SMIM + Group_sizeMSG + Sex_ratioMSG + AgeP + SMIP + Group_sizePSG + Sex_ratioPSG + M + P + MSG + 
PSG + Year where italic font denotes random effects and y is either log(PDi) or EGPi 

 

 Log(PDi) EGPi 

 Estimate (SE) DF F P Estimate (SE) DF F P 

Intercept 0.73 (0.16)                1, 284.6 20.47 <0.001 0.74 (0.16)   1, 297.7 21.01 <0.001 

AgeM -0.009 (0.01) 1, 539.9 0.55 0.46 0.01 (0.01) 1, 543.3 0.64 0.42 

SMIM† 0.009 (0.01) 1, 333.3 0.78 0.38 0.009 (0.01) 1, 336.9 0.69 0.41 

Group_sizeMSG   0.007 (0.02) 1, 461.4 0.19 0.66 0.008 (0.02) 1, 446.9 0.20 0.66 

Sex_ratioMSG ‡ -0.71 (0.22) 1, 533.4 10.28 <0.001 -0.79 (0.22) 1, 526.5 12.74 <0.001 

AgeP 0.03 (0.02) 1, 506.6 2.24 0.14 0.03 (0.02) 1, 507.9 2.54 0.11 

SMIP† -0.02 (0.01) 1, 247.7 1.15 0.29 -0.02 (0.01) 1, 249.9 1.11 0.29 

Group.SizePSG   -0.02 (0.02) 1, 538.2  0.69 0.41 -0.02 (0.02) 1, 532.4 0.68 0.04 

Sex_ratioPSG ‡ 0.42 (0.24) 1, 539.6 3.06 0.08 0.50 (0.24) 1, 537.1 4.29 <0.001 
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Table S2.4. Estimated (co)variance components (standard error) associated with random 

effects in mixed models of EGPi and log-transformed PDi, reanalysed using using standardised 

body mass index (SMI) in place of body mass. Statistical inference of random effects is by 

likelihood ratio test results (see main text for details). M and P denote maternal and paternal 

individuals, while MSG and PSG denote the corresponding maternal and paternal social groups.  

 

  log(PDi)    EGPi   
 Variance 

(SE) 
df χ2

1 P 
Variance 

(SE) 
Df χ2

1 P 

Vyear 0.06 
(0.02) 

1 3.76 0.05 
0.02 

(0.01) 
1 3.20 0.07 

VM
† 0.25 

(0.05) 
1 40.74 <0.001 

0.26 
(0.05) 

1 40.91 <0.001 

VP
† 0.31 

(0.06) 
1 35.22 <0.001 

0.31 
(0.06) 

1 34.71 <0.001 

VMSG
‡ 0.41 

(0.15) 
1 20.64 <0.001 

0.35 
(0.13) 

1 19.92 <0.001 

VPSG
‡ 0.60 

(0.21) 
1 26.57 <0.001 

0.54 
(0.19) 

 1 27.5 <0.001 

COVMSG,PSG -0.49 
(0.17) 

1 39.84 <0.001 
-0.44 
(0.15) 

  1  37.05 <0.001 

VR 0.32 
(0.04) 

- - - 
0.32 

(0.03) 
-    - - 

† not significantly different from each other (logLRT, PDi: χ2
1 = 0.22, p=0. 0.64; EGPi: χ2

1 = 0.30, 
p=0.59) 

‡ not significantly different from each other (logLRT, PDi: χ2
1 = 3.73, p= 0.05; EGPi: χ2

1 = 3.69, 
p=0.05) 

 

 

Table S2.5. Repeatabilities (R) of variance components from reanalyses of EGPi and log-

transformed PDi, reanalysed using standardised body mass index (SMI) in place of body mass. 

R calculated as variance component/sum of all variance components. Values for CORMSG,PSG 

are correlation coefficients. M and P denote maternal and paternal individuals, while MSG and 

PSG denote the corresponding maternal and paternal social groups. 

                log(PDi) EGPi 

 R (SE) R (SE) 

Ryear 0.01(0.008) 0.009 (0.008) 

RM
a 0.13 (0.04) 0.14 (0.04) 

RP
a 0.16 (0.04) 0.17 (0.04) 

RMSG
b 0.22 (0.05) 0.20 (0.05) 

RPSG
b 0.31 (0.06) 0.30 (0.06) 

CORMSG,PSG -0.99 (0.03) -0.99 (0.03) 

RR 0.17 (0.04) 0.18 (0.04) 
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Table S2.6. Estimated fixed effect coefficients (standard error) and Wald F-tests from mixed models from reanalysis on log-PDi and EGPi using the 95% confidence 

pedigree, where only those parent assignments that met a 95% confidence threshold were included. Response variables were standardised into standard deviation 

units (SDU) prior to analysis. M and P denote maternal and paternal individuals, while MSG and PSG denote the corresponding maternal and paternal social groups. 

 

 

 

 

 

 

†mean body mass for parental individuals with multiple weight measurements within cub’s birth year 

‡calculated as number of males divided by group size where group size is males plus females 

Full models fitted for each response were y ~ μ + AgeM + Body_MassM + Group_sizeMSG + Sex_ratioMSG + AgeP + Body_MassP + Group_sizePSG + Sex_ratioPSG + M 

+ P + MSG + PSG + Year where italic font denotes random effects and y is either log(PDi) or EGPi 

 

 

 

 Log(PDi) EGPi 

 Estimate (SE) DF F P Estimate (SE) DF F P 

Intercept 0.62 (0.23)                1, 94.3 7.22 <0.01 0.64 (0.23)   1, 92.7 7.51 <0.01 

AgeM -0.01 (0.008) 1, 115.9 0.01 0.91 0.002 (0.007) 1, 115.5 0.09 0.76 

Body massM
† -0.04 (0.026) 1, 219.1 2.01 0.16 -0.04 (0.03) 1, 220.0 2.09 0.15 

Group_sizeMSG   0.12 (0.01) 1, 96.0 127.59 <0.001 0.13 (0.01) 1, 88.3 185.62 <0.001 

Sex_ratioMSG ‡ -3.29 (0.14) 1, 142.5 535.52 <0.001 -3.65 (0.13) 1, 135.1 805.31 <0.001 

AgeP 0.03 (0.008) 1, 112.0 19.16 <0.001 0.03 (0.007) 1, 112.9 18.67 <0.001 

Body massP
† -0.02 (0.03) 1, 156.8 0.71 0.40 -0.02 (0.03) 1, 160.7 0.66 0.42 

Group.SizePSG   -0.08 (0.01) 1, 97.0  28.90 <0.001 -0.09 (0.01) 1, 89.4 52.63 <0.001 

Sex_ratioPSG ‡ 2.84 (0.17) 1, 160.2 287.70 <0.001 3.22 (0.15) 1, 149.8 446.25 <0.001 
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Table S2.7. Estimated (co)variance components (standard error) associated with random 

effects in mixed models of EGPi and log-transformed PDi, reanalysed using 95% confidence 

pedigree. Statistical inference of random effects is by likelihood ratio test results (see main text 

for details). M and P denote maternal and paternal individuals, while MSG and PSG denote the 

corresponding maternal and paternal social groups.  

 

  log(PDi)    EGPi   

 Variance 

(SE) 
df χ2

1 P 
Variance 

(SE) 
Df χ2

1 P 

Vyear 0.04 

(0.02) 
1 45.88 <0.001 

0.04 

(0.02) 
1 60.89 <0.001 

VM
† 1.86 

(0.23) 
1 115.12 <0.001 

1.94 

(0.24) 
1 131.15 <0.001 

VP
† 1.80 

(0.25) 
1 98.34 <0.001 

1.93 

(0.26) 
1 114.94 <0.001 

VMSG
‡ 2.21 

(0.71) 
1 41.93 <0.001 

2.13 

(0.68) 
1 55.91 <0.001 

VPSG
‡ 2.22 

(0.71) 
1 197.85 <0.001 

2.16 

(0.69) 
 1 80.31 <0.001 

COVMSG,PSG -2.04 

(0.66) 
1 37.27 <0.001 

-1.96 

(0.64) 
  1  35.58 <0.001 

VR 0.005 

(0.0008) 
- - - 

0.004 

(0.0006) 
-    - - 

 

†not significantly different from each other (logLRT, PDi: χ2
1 = 0.038, p=0.85; EGPi: χ2

1 = 0.002, 

p=0.96) 

‡ not significantly different from each other (logLRT, PDi: χ2
1 = 0, p= 1; EGPi: χ2

1 = 0.006, 

p=0.94) 
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Table S2.8. Repeatabilities (R) of variance components from reanalyses of EGPi and log-

transformed PDi, reanalysed using 95% confidence pedigree. R calculated as variance 

component/sum of all variance components. Values for COVMSG,PSG are correlation coefficients. 

M and P denote maternal and paternal individuals, while MSG and PSG denote the 

corresponding maternal and paternal social groups.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          log(PDi) EGPi 

 R (SE) R (SE) 

Ryear 0.005(0.002) 0.004 (0.002) 

RM
a 0.23 (0.04) 0.24 (0.04) 

RP
a 0.22 (0.04) 0.24 (0.04) 

RMSG
b 0.27 (0.05) 0.26 (0.05) 

RPSG
b 0.27 (0.05) 0.26 (0.05) 

CORMSG,PSG -0.92 (0.05) -0.92 (0.05) 

RR 0.0007 (0.0002) 0.0005 (0.05) 
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Table S2.9. Posterior mean (credible intervals) estimates of unsampled males and females per 

cohort estimated in MasterBayes simultaneously with parentage and paternity distance. Values 

for unsampled males represent population-level estimates, while number of unsampled females 

was estimated per social group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year Unsampled males Unsampled females  

1986 11.827 (0.407-43.445) 1.2651 (0.316-3.474)  

1987 35.622 (6.093-89.752) 0.819 (0.1945-1.958)  

1988 26.1864 (0.805-96.173) 0.975 (0.122-2.801)  

1989 6.401 (0.250-21.541) 0.548 (0.044-1.626)  

1990 10.764 (0.676-32.665) 0.803 (0.054-2.465)  

1991 16.404 (1.693-44.149) 2.314 (0.960-4.439)  

1992 37.147 (6.335-90.084) 0.380 (0.011-1.269)  

1993 20.403 (0.6008-68.087) 0.843 (0.123-2.136)  

1994 12.696 (0.680-39.903) 0.359 (0.009-1.341)  

1995 40.303 (5.744-102.097) 6.283 (2.062-12.629)  

1996 239.383 (32.810-812.610) 2.370 (0.091-7.561)  

1997 16.930 (2.090-43.140) 0.980 (0.100-2.640)  

1998 47.200 (17.15-89.200 0.540 (0.110-1.250)  

1999 35.000 (10.390-71.470) 0.650 (0.160-1.400)  

2000 35.081 (12.290-68.310) 0.799 (0.239-1.76)  

2001 28.868 (12.280-50.640) 0.604 (0.226-1.174)  

2002 55.9474 (12.230-132.450) 0.428 (0.010-1.610)  

2003 24.937 (5.672-55.067) 0.517 (0.066-1.312)  

2004 20.150 (2.961-49.365) 0.705 (0.142-1.695)  

2005 10.192 (1.035-26.744) 0.919 (0.313-1.850)  

2006 5.129 (0.208-17.236) 2.653 (1.141-4.951)  

2007 6.859 (0.389-20.929) 1.363 (0.403 -2.915)  

2008 18.010 (4.195-39.820) 1.896 (0.661-3.836)  

2009 16.416 (5.726-31.224) 0.702 (0.210-1.462)  

2010 18.812 (0.970-57.216) 2.353 (0.482-6.379)  

2011 6.698 (0.168-23.674) 1.3234 (0.308-2.703)  

2012 49.145 (13.680-105.520) 0.739 (0.153-1.795)  

2013 50.206 (21.790-88.780) 0.614 (0.167-1.338)  

2014 111.922 (49.660-217.92) 2.225 (1.000-4.137)  
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Figure S2.1. Inferred pedigree structure for 29 cohorts showing maternal assignments in red, 

paternal in blue and individuals as dots. Reconstructed pedigree has a maximum depth of six 

generations and contains 579 maternal-cub and 596 paternal-cub links, 186 full sibships, 452 

maternal half-sibs, and 927 paternal half sibs. 
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Figure S2.2. Histogram of model residuals for binary EGPi (0/1) run in ASReml 3.0 with a 

Gaussian error structure. 
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Supplementary Tables and Figures for Chapter 3 

 
Table S3.1. Estimates (standard error) and Wald F-test results of bTBmulti analysis run on subsets where test-negative/-positive (0/1) status is determined using only 

Brock ELISA (dataset spanning 1982 -2005) or BrockTB StatPak (dataset spanning 2011-2014) assay. DF = degrees of freedom; SE = standard error; Bold p-values 

are significant at α = 0.05.  

 Brock ELISA BrockTB StatPak 

 Estimate (SE) DF F p-value Estimate (SE) DF F p-value 

Intercept 0.585 (0.503) 1, 4556.4 1.43 0.232 0.957 (0.080) 1, 16.6 212.37 <0.001 

Sex.male -0.061 (0.501) 2, 2986.8 0.42 0.657 -0.074 

(0.066) 

1, 602.1 1.26 0.262 

Sex.female - - - - - 

 

- - - 

Scaled age 0.067 (0.007) 1, 10374.1 102.9 <0.001 0.013 (0.017) 1, 1714.0 60.49 0.4533 

Scaled age2 -0.009 (0.001) 1, 10382.9 16.23 <0.001 -0.022 (0.003) 1, 2324.0 69.58 <0.001 

Scaled age3 0.001 

(0.0003) 

1, 10319.0 0.3 0.005 0.003 (0.001) 1, 2518.5 16.27 <0.001 
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Table S3.1 continued…        

Season.spring 0.025 (0.026) 3, 9833.2 8.9 <0.001 - 3, 2149.3 24.44 <0.001 

Season.winter - - - - 0.166 

(0.041) 

- - - 

Season.autumn 0.089 

(0.021) 

- - - 0.228 

(0.035) 

- - - 

Season.summer 0.036 

(0.019) 

- - - 0.008  

(0.034) 

- - - 

         

 

Model structure: bTBmulti~ sex + season + scaled_age + scaled_age2 + scaled_age3    ai + ID + maternal ID + group + year + group.year  where terms in italics 

represent random effects, ai  denotes additive genetic merit of individual i, and group.year the interaction between social group and observation year  
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Table S3.2. Log-likelihood ratio test results for variance components from bTBmulti model (standard error) run on subsets where test-negative/-positive (0/1) status is 

determined using only Brock ELISA test (dataset spanning 1982 -2005). Parameter estimates are from Model 2 in which maternal effect variance (VM) is restricted to 

cubs only (denoted with subscript c). Consequently, ICC estimates are given separately for cubs and adults separately by dividing each variance component by the 

sum of the variance components (VP) such that VPa = VA + VG + VY +VGY + VPE + VR while VPc = VA + VMc + VG + VY +VGxY + VPE + VR.  

 χ2
0,1 P ICC (SE) 

Adult Cub 

VA 13.42 <0.001 0.110 (0.009) 0.093 (0.009) 

VSG 19.7 <0.001 0.019 (0.008) 0.017 (0.007) 

VY 36.94 <0.001 0.031 (0.011) 0.026 (0.02) 

VSGxY 519.72 <0.001 0.111 (0.009) 0.09 (0.010) 

VPE 174.5 <0.001 0.308 (0.035) 0.262 (0.031) 

VMc 43.84 <0.001 NA 0.147 (0.030) 

VR - - 0.420 (0.011) 0.358 (0.015) 
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Table S3.3. Log-likelihood ratio test results for variance components from bTBmulti model (standard error) run on subsets where test-negative/-positive (0/1) status is 

determined using only Stat Pak assay (dataset spanning 2011-2014). Parameter estimates are from Model 2 in which maternal effect variance (VM) is restricted to 

cubs only (denoted with subscript c). Consequently, ICC estimates are given separately for cubs and adults separately by dividing each variance component by the 

sum of the variance components (VP) such that VPa = VA + VG + VY +VGY + VPE + VR while VPc = VA + VMc + VG + VY +VGxY + VPE + VR.  

 χ2
0,1 P ICC (SE) 

Adult Cub 

VA 0.322 0.285 0.031 (0.061) 0.026 (0.052) 

VSG 6.456 <0.001 0.017 (0.011) 0.015 (0.009) 

VY 11.028 <0.001 0.022 (0.014) 0.019 (0.012) 

VSGxY 44.98 <0.01 0.043 (0.009) 0.036 (0.007) 

VPE 100.388 <0.001 0.578 (0.626) 0.493 (0.058) 

VMc 31.31 <0.001 NA 0.147 (0.039) 

VR - - 0.309 (0.016) 0.264 (0.018) 

 

 

 

 

 

 



218 
 

Table S3.4. Effects of sex, season and scaled age on multisite bTB status and lifetime bTB risk. Coefficient estimates and Wald F-test results for the bTBmulti 

(scaled to standard deviation units) models where maternal effects are estimated for all ages (Model 1) and where they are restricted to cubs (Model 2). Spring is 

reference level for season; SE = standard error; DF = degrees of freedom. 

 Model 1 Model 2 

 Estimate 

(SE) 

DF F p Estimate 

(SE) 

DF F p 

Intercept 0.74 

(0.49) 

1, 5228.4 2.16 0.14 0.72 

(0.5) 

1, 5493.2 2.00 0.16 

Sex.male -0.08 

(0.49) 

2, 3560.6 0.59 0.55 -0.06 

(0.49) 

2, 3613.8 0.51 0.6 

Sex.female -0.11 

(0.49) 

- - - -0.09 

(0.49) 

- - - 

Scaled age 0.05 (0.006) 1, 13805.3 76.83 <0.001 0.05 (0.006) 1, 13751.8 84.52 <0.001 

Scaled age2 -0.01 (0.001) 1, 13500.6 135.94 <0.001 -0.01 

(0.001) 

1, 12478.0 117.07 <0.001 

Scaled age3 0.001 

(0.0002) 

1, 12762.3 23.02 <0.001 0.001 (0.001) 1, 12712.9 18.01 <0.001 

Season.winter 0.02 

(0.02) 

3, 12216.5 15.71 <0.001 0.02  

(0.02) 

3, 12051.9 16.08 <0.001 

Season.autumn 0.09 

(0.02) 

- - - 0.09  

(0.02) 

- - - 

Season.summer 0.01 

(0.02) 

- - - 0.02  

(0.02) 

- - - 
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Table S3.5. Effects of sex, season and scaled age on multisite bTB status and lifetime bTB risk. Mean estimates of the posterior density for fixed effects in the 

bTBlifetime categorical model. Statistical significance was assessed based on 95% credible intervals (in parentheses) and pMCMC. 

  

 

 

 

 

                                      †age at last capture 

 

 

 

 

 

 

 

 

 

 Mean pMCMC 

Intercept -1.899 (-2.730 – -1.130) <0.001 

Sex.male 0.506 (0.173 – 0.849) <0.001 

Scaled.age 0.589 (0.447 – 0.743) <0.001 

Scaled.age2 † -0.134 (-0.193 – -0.084) <0.001 

Scaled.age3 † 0.009 (0.003 – 0.014) <0.01 



220 
 

Table S3.6. Estimates and Wald F-test results of bTBmulti analyses run separately on adult (including yearlings) and cub data. Standard error = standard error; DF = 

degrees of freedom. In an attempt to examine changes in the importance of social and genetic effects with age, we ran the bTBmulti model on adult and cub data 

separately, in addition to the models described in the main text. Overall, these models give little evidence regarding age-related differences in maternal or additive 

genetic effects, and the qualitative conclusions regarding variation in bTBmulti are largely in line with the main results. The most notable differences between these 

analyses and the main results are the non-significant heritabilities and a difference in the amount of variance explained by the group-by-year term between adults 

and cubs. The former is likely a result of the loss of power due to reduced sample size (adults: 10123 obs. for 2044 individuals, cubs: 4723 obs. for 2407 individuals), 

while the latter likely reflects differences in data structure between cubs and adults. Namely, individual badgers only ever experience a single year as cubs, while 

adult badgers experience several. Therefore, year specific spatial effects (group by year) will likely be inflated for cubs when compared to adults. 

 

 Adultsa Cubsb 

 Estimate (SE) DF F p Estimate (SE) DF F p 

Intercept 0.58 (0.06) 1, 45.3 99.5 <0.001 0.12 (0.5) 1, 2624.0 0.20 0.65 

Sex.male - - - - -0.03 

(0.5) 

2, 2347.1 0.17 0.85 

Sex.female -0.08 

(0.06) 

1, 1792.7 4.97 0.03 -0.01 

(0.5) 

- - - 

Scaled age 0.06 (0.006) 1, 9081.8 102.9 <0.001 - - - - 

Scaled age2 -0.01 (0.001) 1, 8855.6 16.23 <0.001 - - - - 

Scaled age3 0.0002 (0.0003) 1, 8417.4 0.3 0.58 - - - - 
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Table S3.6 continued…    

Season.spring 0.04 (0.02) 3, 7980.9 8.9 <0.001 - - - - 

 

Season.winter - - - - 0.82 

(0.04) 

3, 3098.2 89.71 <0.001 

Season.autumn 0.09 

(0.02) 

- - - 0.4  

(0.04) 

- - - 

Season.summer 0.05 

(0.02) 

- - - 0.15  

(0.04) 

- - - 

         

 

a Model structure: bTBmulti~ sex + season + scaled_age + scaled_age2 + scaled_age3    ai + ID + maternal ID + group + year + group.year  where terms in italics 

represent random effects, ai  denotes additive genetic merit of individual i, and group.year the interaction between social group and observation year  

bModel structure: bTBmulti~ sex + season     ai + ID + maternal ID + group + year + group.year  where terms in italics represent random effects, ai  denotes additive 

genetic merit of individual i, and group.year the interaction between social group and observation year  
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Table S3.7. Variance estimates (standard error), log-likelihood ratio test results for variance components and corresponding intraclass correlations (ICC) values from 

bTBmulti model run separately for adults and cubs. 

 Adults Cubs 

 Estimate χ2
0,1 p-value ICC (SE) Estimate χ2

0,1 p-value ICC (SE) 

VA 0.04 (0.04) 0.94 0.33 0.05 (0.03) 0.01 (0.03) 0.1 0.75 0.01 (0.04) 

VG 0.02 (0.006) 20.24 <0.001 0.02 (0.007) 0.02 (0.01) 19.7 <0.001 0.03 (0.01) 

VY 0.08 (0.02) 98.9 <0.001 0.08 (0.02) 0.06 (0.02) 50.44 <0.001 0.07 (0.02) 

VGxY 0.09 (0.008) 451.06 <0.001 0.09 (0.008) 0.14 (0.02) 86.62 <0.001 0.15 (0.02) 

VPE 0.44 (0.05) 103.62 <0.001 0.46 (0.05) 0.32 (0.04) 63.84 <0.001 0.36 (0.04) 

VM 0.1 (0.05) 5.96 0.01 0.10 (0.05) 0.08 (0.01) 5.04 0.02 0.09 (0.04) 

VR 0.27 (0.005) - - 0.29 (0.01) 0.34 (0.01) - - 0.38 (0.02) 
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Table S3.8. Threshold model for lifetime bTB risk (bTBlifetime) using a χ2 prior. Posterior 

mean estimates for fixed effects bTBlifetime threshold model. Statistical significance was 

assessed based on 95%? credible intervals (in parentheses) and pMCMC. 

 Mean pMCMC 

Intercept -1.084 (-1.633 – -0.546) <0.001 

Sex.male 0.280 (0.081 – 0.474) <0.01 

Scaled.age 0.332 (0.233 – 0.453) <0.001 

Scaled.age2 † -0.075 (-0.111 – -0.043) <0.001 

Scaled.age3 † 0.005 (0.002 – 0.008) <0.001 

 †age at last capture 

 

 

Table S3.9. Posterior means for variance components from the threshold model of bTBlifetime 

and their corresponding intraclass correlation (ICC) estimates. Estimates relate to the observed 

scale and 95% credible intervals are shown in parentheses.  

 Mean  ICC  

VA 0.016 (0.001- 0.031) 0.072 (0.006 – 0.136) 

VM 0.002 (4.7x10-11- 0.006) 0.008 (2.1x10-10 – 0.029) 

VNG 0.005 (0.002 - 0.011) 0.025 (0.007 – 0.048) 

VBY 0.019 (0.011 - 0.034) 0.09 (0.048 – 0.147) 

VNGxBY 0.013 (0.008 - 0.019) 0.057 (0.035 – 0.087) 
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Figure S3.1. Posterior density plots of means for variance components from bTBlifetime model 
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Supplementary Tables and Figures for Chapter 5 

Table S5.1. Fixed effects estimates (standard error) and Wald F-test results for univariate models of each diagnostic test. BROCK = response to bTB specific 

antibodies (0/1), CULTURE = bacterial culture of M. bovis (present/absent), B-A= IFNγ production in response to bovine tuberculin minus IFNγ production in 

response to avian tuberculin, PWM = IFNγ production in response to pokeweed mitogen. All models contained the same fixed (below) and random effects (maternal 

ID, individual ID, social group x year, additive genetic merit) 

 BROCK CULTURE B-A PWM 

 Estimate F P Estimate F P Estimate F P Estimate F P 

Intercept 0.532 
(0.039) 

467.52 <0.001 0.315 
(0.570) 

0.30 0.584 0.511 
(0.063) 

55.43 <0.001 1.261 
(0.058) 

567.35 <0.001 

Sex (Female)  4.00 0.046 0.003 
(0.570) 

1.32 0.266  0.72 0.395  12.43 <0.001 

Male 0.056 
(0.277) 

  0.040 
(0.570) 

  -0.058 
(0.068) 

  -0.158 
(0.045) 

  

Age 0.036 
(0.004) 

80.46 <0.001 0.035 
(0.005) 

54.88 <0.001 0.063 
(0.014) 

19.91 <0.001 -0.071 
(0.012) 

38.17 <0.001 

Age2 -0.006 
(0.001) 

91.79 <0.001 -0.006 
(0.001) 

57.72 <0.001 -0.0003 
(0.002) 

0.02 0.890 0.014 
(0.002) 

55.54 <0.001 

Age3 0.001 
(0.0002) 

31.49 <0.001 0.0004 
(0.0002) 

3.53 0.060 -0.0002 
(0.0006) 

0.16 0.688 -0.0007 
(0.0005) 

2.56 0.109 

Season 
(Autumn) 

 26.87 <0.001  2.11 0.097  10.24 <0.001  158.02 <0.001 

Spring -0.002 
(0.012) 

  0.008 
(0.015) 

  -0.131 
(0.027) 

  0.140 
(0.023) 
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 Table S5.1 continued… 

Summer -0.051 
(0.008) 

  -0.010 
(0.010) 

  -0.089 
(0.211) 

  -0.056 
(0.018) 

  

Winter -0.087 
(0.012) 

  -0.031 
(0.015) 

  -0.073 
(0.027) 

  0.430 
(0.235) 

  

Type (StatPak)  0.32 0.569  - -       

Brock ELISA 0.021  

(0.036) 

- - - - - - - - - - - 


