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On the order of vanishing of newforms

at cusps

Andrew Corbett and Abhishek Saha

Let E be an elliptic curve over Q of conductor N . We obtain an
explicit formula, as a product of local terms, for the ramification
index at each cusp of a modular parametrization of E by X0(N).
Our formula shows that the ramification index always divides 24, a
fact that had been previously conjectured by Brunault as a result
of numerical computations. In fact, we prove a more general result
which gives the order of vanishing at each cusp of a holomorphic
newform of arbitary level, weight and character, provided that its
field of rationality satisfies a certain condition.

The above result relies on a purely p-adic computation of pos-
sibly independent interest. Let F be a non-archimedean local field
of characteristic 0 and π an irreducible, admissible, generic repre-
sentation of GL2(F ). We introduce a new integral invariant, which
we call the vanishing index and denote eπ(l), that measures the
degree of “extra vanishing” at matrices of level l of the Whittaker
function associated to the new-vector of π. Our main local result
writes down the value of eπ(l) in every case.

1. Introduction

Let E be an elliptic curve over Q of conductor N and let ϕ : X0(N)→ E
denote a modular parametrization defined over Q (the existence of ϕ fol-
lows from the famous modularity theorem [BCDT01]). The points of X0(N)
where the map ϕ is ramified are of great interest; for instance they are rel-
evant for the Birch and Swinnerton-Dyer conjecture [MSD74]. We refer the
reader to the papers [Bru16, Del05] for further discussion, as well as for some
numerical methods one can use to find these points.

In particular, it is natural to ask if ϕ can ramify at a cusp of X0(N).
This problem was considered by Brunault [Bru16] who proved that if E
is semistable (N is squarefree), or more generally if the modular form f
attached to E has minimal conductor among its twists, then all critical
points lie in the bulk, i.e., ϕ is unramified at all cusps of X0(N).
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1772 A. Corbett and A. Saha

However, if E does not have the above properties, then ϕ can ramify
at certain cusps. Indeed, Brunault numerically computed the ramification
index eϕ(a) of ϕ at each cusp a for all elliptic curves with N ≤ 2000 and
found many examples where the experiments suggested that eϕ(a) is greater
than 1. Any cusp of X0(N) can be represented by a rational number a

L with
L|N and (a,N) = 1; we refer to the integer L as the denominator of this
cusp.1 As an immediate consequence of the fact that the Galois action on
X0(N) is transitive on the set of cusps of a given denominator, it follows
that eϕ(a) depends only on the denominator of a.

As a result of his computations, Brunault made the following exper-
imental observations for the ramification index eϕ(a) at a cusp a = a

L of
denominator L.

1) The integer eϕ(a) is always a divisor of 24.

2) If eϕ(a) is even, then v2(L) ∈ {2, 3, 4} and v2(N) = 2v2(L). (Through-
out this paper, vp(a) denotes the highest power of p dividing a.)

3) If eϕ(a) is divisible by 8, then v2(L) = 4 and v2(N) = 8.

4) If eϕ(a) is divisible by 3, then v3(L) = 2 and v3(N) = 4.

In this paper we prove the following explicit formula for eϕ(a), which explains
all the above observations.

Theorem 1.1. Let E, N , φ be as above. Let a be a cusp of X0(N) and let
L denote the denominator of a. Then eϕ(a) =

∏
p p

ep where the non-negative
integers ep are given for each prime p as follows.

1) If p ≥ 5, then we have ep = 0.

2) If p = 3, then we have e3 = 0 except in the following special case:
(i) If v3(N) = 2v3(L) = 4 and the local component of E at 3 is a prin-

cipal series representation, then we have e3 = 1.

3) The case p = 2.
(ii) If either v2(N) ≤ 2 or v2(N) 6= 2v2(L), then we have e2 = 0.

1There are exactly φ(L,N/L) cusps of denominator L. The cusp at infinity is the
unique one of denominator N .
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On the order of vanishing of newforms at cusps 1773

(iii) If n2 := v2(N) = 2v2(L) ≥ 4 and the local component2 of E at the
prime 2 is a supercuspidal representation (of conductor 2n2) whose
minimal twist has conductor equal to 2n2−1, then e2 = 1.

(iv) If v2(N) = 2v2(L) = 8, and the local component of E at the prime
2 is a principal series representation, then we have e2 = 3.

(v) If we are not in any of the above three cases, then e2 = 2.

Incidentally, Theorem 1.1 also implies the result of Brunault described
earlier. To see this, let the setup be as in the theorem and suppose that the
modular form associated to E has minimal conductor among its twists. If
p divides N , then the associated local representation of GL2(Qp) cannot be
a principal series representation (since a ramified principal series represen-
tation of GL2(Qp) of trivial central character is not twist-minimal). So our
Theorem implies that e3 = 0. Furthermore, a result of Atkin-Li (see Theo-
rem 4.4 of [AL78]) implies that either v2(N) ≤ 2 or v2(N) is odd. In either
case, e2 = 0 by our theorem. Hence ep = 0 for all primes p and therefore
eϕ(a) = 1 in this case.

Theorem 1.1 is a special case of a more general result about modu-
lar forms that we describe now. Recall that the modularity theorem as-
sociates a cuspidal holomorphic newform f (of weight 2, level N , trivial
character, and rational Fourier coefficients) to our elliptic curve E. The
pullback by ϕ of a Néron differential on E is equal to a non-zero multiple of
ωf := 2πif(z)dz, and for any cusp a of X0(N), the ramification index eϕ(a)
equals 1 + orda(ωf ). This latter quantity can be rewritten using the Fourier
expansion of f at a. Let L be the denominator of a and let w(a) = N/(L2, N).
The integer w(a) is known as the width of the cusp a. Let σ ∈ SL2(Z) be
such that σa =∞. The Fourier expansion of f at a looks as follows:

(1) (f |2σ−1)(z) =
∑
n>0

af (n; a)e
2πinz

w(a) ,

where the complex numbers af (n; a) are the Fourier coefficients of f at the
cusp a. Strictly speaking, the Fourier coefficients af (n; a) depend not just
on a but also on the choice of σ. However, if a′f (n; a) denotes the coefficient

obtained by a different choice σ′, then one has af (n; a) = e
2πibn

w(a) a′f (n; a) for
some integer b.

2By the local component of E at some prime p, we mean the local representa-
tion of GL2(Qp) coming from the irreducible automorphic representation associated
to E.
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As eϕ(a) equals 1 + orda(ωf ), it follows that

(2) eϕ(a) = min{n > 0 : af (n; a) 6= 0}.

In other words, computing the ramification index at a cusp reduces to finding
the order of vanishing of the corresponding newform f at that cusp. It is
natural to try to solve this problem for all newforms f (or arbitrary weight
and character) and not just those coming from elliptic curves.

So, let f be a holomorphic cuspidal newform of weight k, level N , and
character χ, that is,

f |k
[
a b
c d

]
= χ(d)f

for all

[
a b
c d

]
∈ Γ0(N). Let M denote the conductor of χ (so M divides N).

As before, let a = a
L be a cusp of X0(N), let σ ∈ SL2(Z) be such that σa =

∞, and let w(a) = N/(L2, N). The presence of the character χ complicates
the Fourier expansion slightly. Indeed, an easy calculation shows that for
any integer t, we have, (f |kσ−1)(z + tw(a)) = χ(1 + atw(a)L)(f |kσ−1)(z).
Therefore, to ensure that the value of the character is 1, we need M |Lw(a)t,

or equivalently, M
(Lw(a),M) |t. So define3 δ(a) := w(a) M

(Lw(a),M) = [L2,N,LM ]
L2 .

We have (f |kσ−1)(z + δ(a)) = (f |kσ−1)(z), and so the Fourier expansion of
f at a is as follows:

(3) (f |kσ−1)(z) =
∑
n>0

af (n; a)e
2πinz

δ(a) .

If a is the cusp at infinity (i.e., L = N), then we simply use af (n) to denote
af (n; a); these are the usual Fourier coefficients of f . Define the quantities

(4) ef (a) := min{n > 0 : af (n; a) 6= 0}, ef (L) = min
denominator(a)=L

ef (a).

Our main global result gives an explicit formula for ef (L) as a product of
local terms which depend on the representations πp.

Theorem 1.2. Let f be a cuspidal holomorphic newform of weight k, level
N =

∏
p p

np and character χ, and let π ' ⊗pπp be the automorphic repre-

sentation associated to f . Then for any integer L =
∏
p p

lp dividing N , we

3Note that δ(a) equals w(a) for all cusps a if and only if the conductor M of χ
divides N1 where N1 is the smallest integer such that N |N2

1 .
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have ef (L) =
∏
p p

eπp (lp) where for all irreducible admissible generic repre-
sentations πp of GL2(Qp), and all 0 ≤ lp ≤ np, the “vanishing index” eπp(lp)
is given as follows:

1) If p ≥ 5, then we have eπp(lp) = 0.

2) If p = 3, then eπp(lp) = 0, except in one case:
• eπp(lp) = 1 if

(i) πp = χ1 � χ2 with a(χ1) = a(χ2) = lp, np = 2lp ≥ 4, and
a(χ1χ

−1
2 ) = lp.

3) If p = 2, then eπp(lp) = 0, aside from the following exceptions:
• eπp(lp) = 1 when

(ii) πp = χ1 � χ2 with a(χ1) and a(χ2) both at least 2, a(χ1) 6=
a(χ2), and either lp = a(χ1) or lp = a(χ2);

(iii) πp = χπ0 and np = 2lp ≥ 4 where π0 is a supercuspidal repre-
sentation with a(π0) = np − 1 and χ is a character such that
a(χ) = np/2.

• eπp(lp) = 2 when
(iv) πp = χSt with a(χ) ≥ 2 and np = 2lp = 2a(χ) ≥ 4;
(v) πp = χ1 � χ2 with np = 2lp ≥ 4, a(χ1) = a(χ2) = lp, χ1χ

−1
2 /∈

{| · |, | · |−1}, and a(χ1χ
−1
2 ) < lp − 1;

(vi) πp = χπ0 and np = 2lp ≥ 4 where a(χ) = np/2 and π0 is a min-
imal supercuspidal representation (see Definition 2.5) with
a(π0) ≤ np − 2.

• eπp(lp) = 3 when
(vii) πp = χ1 � χ2 with np = 2lp ≥ 6, a(χ1) = a(χ2) = lp and

a(χ1χ
−1
2 ) = lp − 1.

For unfamiliar notation and a general definition of the vanishing index
for representations of GL2 over arbitrary non-archimedean local fields, as
well as a formula in every case, we refer the reader to §2 and in particular
Theorem 2.14. Note that Theorem 1.2 implies that ef (L) equals 1 unless at
least one of the integers 16 or 81 divides N . In order to read off ef (L) in
these cases using Theorem 1.2, it is necessary to know only the local rep-
resentations of GL2(Q2) and GL2(Q3) associated to f ; this can be achieved
using the algorithm presented in [LW12].

The proof of Theorem 1.2 follows from a local computation, which is
the heart of this paper. From the adelic viewpoint, the Fourier coefficient
af (n; a) is equal to the value of the global Whittaker newform associated
to f at a certain adelic matrix. By the uniqueness of the Whittaker model,
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the global Whittaker newform factors as a product of local newforms. So
we are reduced to solving the problem of “extra vanishing” at matrices of
level l of the local Whittaker newform associated to an arbitary irreducible,
admissible, generic representation of GL2(Qp). We do this in the more gen-
eral context of an arbitrary non-archimedean local field of characteristic zero
(this also means that Theorem 1.2 can be generalized in a straightforward
manner to automorphic forms of GL2 over number fields, if one so chooses).
Our key tool is a certain “basic identity” that was proved by the second
author in [Sah16] (this identity is obtained from the Jacquet–Langlands lo-
cal functional equation via some elementary Fourier analysis over a finite
abelian group). Ultimately, we are reduced to the problem of counting char-
acters whose twists have certain prescribed conductors; this is done in §2.3.

Theorem 1.2 gives an exact formula for the minimum value of ef (a)
taken over cusps a of a fixed denominator. Ideally we would like a formula
for ef (a) for each cusp a. In general, such a refined result cannot be deduced
from Theorem 1.2; however, we now give a key case where this is possible.

Proposition 1.3. Let f be as in Theorem 1.2, and let Q(f) be the (num-
ber) field4 generated by all the Fourier coefficients af (n). Suppose for some

divisor L of N we have Q(f) ∩Q(e
2πi

(L,N/L) ) = Q (where we think of all our
number fields as subsets of the complex numbers). Then all cusps a of de-
nominator L have the same value of ef (a); in other words, ef (a) = ef (L).

If the modular form f comes from an elliptic curve, then we have Q(f) =

Q; therefore the condition Q(f) ∩Q(e
2πi

(L,N/L) ) = Q is trivially satisfied. In
this case, Theorem 1.2 gives an exact formula for ef (a) = eϕ(a) which is
precisely what is stated in Theorem 1.1. Several of the cases of eπp(lp) > 0
that are described in Theorem 1.2 do not appear in Theorem 1.1. This is a
reflection of the fact that the modular forms f associated to elliptic curves
are in some sense special.

Proposition 1.3 is a reflection of the fact that there exists an action of
Aut(C) on the set of cohomological automorphic representations of GL2,
which factors into a product of local actions and is compatible with the
classical action of Aut(C) on Fourier coefficients. The local action can be
studied via local Whittaker newforms, and the condition in Proposition 1.3
ensures that this action is transitive on the cusps of a given denominator

4In fact, it is known that Q(f) is always a subfield of a CM field. Moreover, by
strong multiplicity, it follows that for every positive integer t, Q(f) is generated by
the quantities af (n) where n ranges over only the positive integers that are coprime
to t.
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L. For the details, see §2.2.2 and §3.3. In fact, Proposition 1.3 remains true
when Q(f) is replaced by the the compositum of the fields of rationality of
the local representations πp over the (finitely many) primes p with p2|N (see
Proposition 3.6). When k = 2, Proposition 1.3 also follows from Lemma 1.3
of [Bru16]; this alternate method, however, does not give the stronger result
described in the previous sentence.

We end this introduction with a few further remarks about the condition
in Proposition 1.3. Let N0 denote the largest integer whose square divides
N . If it is true that

(5) Q(f) ∩Q(e
2πi

N0 ) = Q,

then the condition in Proposition 1.3 is satisfied for all L|N . So in this case,
ef (a)=ef (L) for all cusps a of denominator L, and therefore Theorem 1.2
gives an exact formula for ef (a). While we are unaware of any results describ-
ing how often a form f satisfies the rationality condition (5), a perusal of the
LMFDB database makes it clear that this condition is indeed satisfied the
vast majority of the time5 for 1 ≤ N ≤ 100, 2 ≤ k ≤ 12. An interesting low
weight case where this condition is not satisfied occurs when k = 2,M = 1,
and N = 567 = 34 × 7. For this data, there exists a form f such that Q(f) is
the maximal totally real subfield of Q(e2πi/9), and for which numerical exper-
iments performed by Brunault strongly indicate that ef (1/9) = ef (2/9) = 3
but ef (4/9) = 6.6 The above example shows that the condition in Propo-
sition 1.3 is indeed necessary. Another example, with N = 625, is given in
Remark 5.1 of [Bru16]. More generally, it was shown by François Brunault
and Paul Nelson (personal communication, July 2012) that if p ≥ 5 is a
prime and f is a newform with M = 1, N = p4, such that the local compo-
nent πp is a principal series representation, then we have that ef ( ap2 ) = 1 for
only about half the values of a, and ef ( ap2 ) > 1 for the remaining half! This

follows from the automatic vanishing of certain exponential sums modulo p2.
For any f as above, the corresponding local field of rationality Q(πp) (which
is contained in Q(f)) intersects non-trivially the cyclotomic field Q(e2πi/p).

The above examples make it clear that when the rationality condition
(5) is not satisfied, the problem of computing ef (a) for individual cusps a
is a subtle one. In fact, one can show that this problem is equivalent to
understanding the vanishing of certain p-adic analogues of hypergeometric

5However, we believe that this condition is never satisfied when a high power of
an odd prime divides N .

6This example and a few others were discovered by François Brunault [personal
communication, July 2012].
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functions. Further investigation of these functions from an analytic point of
view will be done in forthcoming work of the second author with Yueke Hu.

Notations

We collect here some general notations that will be used throughout this
paper. Additional notations will be defined where they first appear in the
paper.

Given two integers a and b, we use a|b to denote that a divides b, and we
use a|b∞ to denote that a|bn for some positive integer n. We let va(b) denote
the largest non-negative integer such that ava(b)|b. We will occasionally use
the shorthand notation e(x) = e2πix.

The group Γ0(N) consists of those matrices
(
a b
c d

)
∈ SL2(Z) such that

N | c. The subgroup Γ1(N) consists of those matrices in Γ0(N) with the
added property that a ≡ d ≡ 1 mod N . Let H denote the upper half plane
and GL2(R)+ the group of real two-by-two matrices with positive determi-
nant. For z ∈ H,

(
a b
c d

)
∈ GL2(R)+, we let

(
a b
c d

)
z = az+b

cz+d ∈ H be the point
obtained by Möbius transformation. Let X0(N) denote the usual modular
curve obtained by the compactification of Γ0(N)\H. Given a function f on
H, an integer k, and some γ =

(
a b
c d

)
∈ GL2(R)+, we define a function f |kγ

on H via (f |kγ)(z) = det(γ)k/2(cz + d)−kf(γz).
We shall always assume every character is continuous (but not neces-

sarily unitary). For a complex representation π of some group H and an
automorphism σ of C, there is a complex representation σπ of H defined
as follows. Let V be the space of π and let V ′ be any vector space such
that t : V → V ′ is a σ-linear isomorphism (that is, t(v1 + v2) = t(v1) + t(v2)
and t(λv) = σ(λ)t(v)). We define the representation (σπ, V ′) via σπ(g) =
t ◦ π(g) ◦ t−1. It can be shown easily that the representation σπ does not
depend on the choice of V ′ or t. We define Q(π) to be the fixed field of the
set of all automorphisms σ such that σπ ' π.

2. Local computations

2.1. Notations and background

2.1.1. Notations for local fields. Let F be a non-archimedean local
field of characteristic zero and let G = GL2(F ). We denote by o the ring of
integers of F and denote by p the maximal ideal of o. We fix a uniformiser,
that is a generator of p, and denote it by $; we let q = #(o/p). Let | · | be
the absolute value on F , normalised so that |$| = q−1, and v the valuation
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on F defined via |x| = q−v(x). The subgroups Uk of o× are defined as follows:
Uk = 1 +$ko for k > 0, and U0 = o×. Let dy be the Haar measure on F ,
normalised so that Vol(o, dy) = 1, and d×y the Haar measure on F×, nor-
malised so that Vol(o×, d×y) = 1. Finally, ζ(s) = (1− q−s)−1 denotes the
(local) zeta-function of F .

2.1.2. Characters of o×. For a character χ : F× → C× we denote by
a(χ) (the exponent of) its conductor ; this is the smallest integer k ≥ 0 such
that χ(Uk) = {1}. We say χ is unramified if a(χ) = 0. Let

X =
{
µ : F× → C× : µ($) = 1

}
so that X is isomorphic to the group of continuous characters on o×. Any
character of X is unitary and of finite order. We also consider characters in
X of particular conductors, duly introducing the notation:

Xk = {µ ∈ X : a(µ) ≤ k } and X′k = {µ ∈ X : a(µ) = k } .

Note that {1} = X0 ⊂ X1 ⊂ · · · ⊂ Xk ⊂ · · · ⊂ X as subgroups. We have for
each k ≥ 1, #Xk = qk−1(q−1), #X′1 = q−2, and for k ≥ 2, #X′k = qk−2(q−
1)2. Furthermore, for all l ≥ k ≥ l/2 ≥ 1, we have Xl/Xk ∼= Uk/Ul ∼= o/pl−k.

We now answer a question which will frequently sprout up in our com-
putations.

Lemma 2.1. Let k ≥ 2 and let χ be a character of F× with conductor
a(χ) = k.

1) Then there exists a character µ ∈ X such that a(µ) = a(µχ) = k if and
only if q > 2.

2) Let q = 2. If k > 2, then there exists a character µ ∈ X such that
a(µ) = k and a(µχ) = k − 1. If k = 2, then for any µ ∈ X satisfying
a(µ) = 2, we have a(µχ) = 0.

Proof. For the first assertion, asking for such a µ is equivalent to demanding
µ 6≡ 1 and µχ 6≡ 1 in the group Xk/Xk−1 (where we abuse notation by writing
χ for the restriction χ|o×). Since the group Xk/Xk−1 has order q, and we
need to avoid µ ≡ 1 and µ ≡ χ−1, there always exists such a µ whenever
q − 2 > 0.

Now let q = 2. If k > 2, then, as #(Xk/Xk−1) = 2 but #(Xk/Xk−2) = 4,
we can always find a µ with a(µ) = k and a(µχ) = k − 1. On the other hand,
if k = 2, then #X2 = 2, the class of these characters being those of 1 and χ,
and the class of χ2 is therefore trivial. �
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We shall also require an extension of Lemma 2.1 for two characters χ1,
χ2 of the same conductor.

Lemma 2.2. Let k ≥ 2 and let χ1, χ2 be characters of F× such that a(χ1) =
a(χ2) = k.

1) Suppose that either a) q > 3 or b) q = 3 and a(χ1χ
−1
2 ) < k. Then there

exists a character µ ∈ X such that a(µ) = a(µχ1) = a(µχ2) = k.

2) Suppose that q = 3 and a(χ1χ
−1
2 ) = k. Then max{a(µχ1) + a(µχ2) :

µ ∈ X′k} = 2k − 1.

3) Suppose that q = 2 and a(χ1χ
−1
2 ) < k − 1. If k > 2, then there exists

a character µ ∈ X such that a(µ) = k and a(µχ1) = a(µχ2) = k − 1.
If k = 2, then for any µ ∈ X satisfying a(µ) = 2, we have a(µχ1) =
a(µχ2) = 0.

4) Suppose that q = 2 and a(χ1χ
−1
2 ) = k − 1. Then automatically k ≥ 3.

If k ≥ 4, then max{a(µχ1) + a(µχ2) : µ ∈ X′k} = 2k − 3. If k = 3, then
for any µ ∈ X satisfying a(µ) = 3, we have {a(µχ1), a(µχ2)} = {2, 0}.

Proof. This follows the same routine as the proof of Lemma 2.1. In case
(1) we use a) #(Xk/Xk−1) = q > 3, so that there is at least a fourth class
inequivalent to 1, χ−11 , or χ−12 ; in b) we allow q = 3 but force χ1 ≡ χ2

mod Xk−1 so µ should be chosen outside just two classes and #(Xk/Xk−1) >
2.

In case (2) we have q = 3 and χ1 6≡ χ2 mod Xk−1. Necessarily, µ is
equivalent to precisely one of χ−11 or χ−12 in #(Xk/Xk−1). But there are
always at least five non-trivial classes (in the worst case q = 3 and k = 2) in
#(Xk/Xk−2) so we can find µ such that {a(µχ1), a(µχ2)} = {k, k − 1}. In
cases (3) and (4) we apply this reasoning, mutatis mutandis, for q = 2. �

2.1.3. The Gauss sum. We fix once and for all an additive character
ψ : F/o→ C× on F such that ψ is trivial on o but non-trivial on p−1. For
each a ∈ F× and µ ∈ X define the Gauss sum:

G(a, µ) =

∫
o×
ψ(ay)µ(y) d×y.

Lemma 2.3. Let v ∈ o×, r ∈ Z and µ ∈ X. Then

(6) G(v$−r, 1) =


1 if r ≤ 0,

−ζ(1)q−1 if r = 1,

0 otherwise.
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If a(µ) > 0, then

(7) G(v$−r, µ) =

{
ζ(1)q−r/2ε(1/2, µ−1, ψ)µ−1(v) if r = a(µ),

0 otherwise.

Above, ε(1/2, µ−1, ψ) is the usual GL(1)-epsilon factor (or root number)
associated to the character µ−1 and the additive character ψ; in particular
|ε(1/2, µ−1, ψ)| = 1.

Proof. We first prove (6). By our normalisation of measures we have

G(v$−r, 1) = ζ(1)

(∫
o

ψ(v$−ry)dy − q−1
∫
o

ψ(v$−r+1y)dy

)
.

The result (6) now follows immediately from the orthogonality of additive
characters and the fact that ψ is trivial on o but not on p−1. Next we prove
(7). The vanishing of the Gauss sum when a(µ) 6= r follows from [RV99,
Lemma 7-4]. On the other hand, when a(µ) = r we get using Ur-invariance

G(v$−r, µ) = µ−1(v) vol(Ur)
∑
Ur\o×

ψ($−ry)µ(y).

The result now follows from [RV99, (7.6)] (where ε(1/2, µ−1, ψ) is denoted
W (µ−1)). �

2.1.4. Definitions of matrix groups. Let K = GL2(o) and for an inte-
ger n ≥ 0 let

K1(n) =

{(
a b
c d

)
∈ K : c ∈ $no, a ∈ Un

}
,

K ′1(n) =

{(
a b
c d

)
∈ K : c ∈ $no, d ∈ Un

}
.

(8)

Define the matrices a(y) =

(
y

1

)
, w =

(
1

−1

)
, n(x) =

(
1 x

1

)
for

each y ∈ F× and x ∈ F . Define subgroups

N = {n(x) : x ∈ F}, A = {a(y) : y ∈ F×}, Z = {z(t) : t ∈ F×}

of G. For any t, l ∈ Z and v ∈ o× define

gt,l,v = a($t)wn(v$−l) =

(
$t

−1 −v$−l
)
.
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Remark 2.4. Suppose that n is fixed. Then, for each g ∈ G there is a
unique integer l satisfying 0 ≤ l ≤ n such that g ∈ ZNgt,l,vK1(n) for some
t ∈ Z, v ∈ o× (see Lemma 2.13 of [Sah16]).

2.1.5. Notation for representations of G. For an irreducible, admissi-
ble, generic representation π of G we define (the exponent of) its conductor
a(π) to be the smallest integer n ≥ 0 such that the space of K1(n)-fixed
vectors in π contains a non-zero vector. It is well known that the space of
K1(a(π))-fixed vectors is one-dimensional. If a(π) = 0, then π is said to be
unramified.

For a character χ of F× we write the character twist of π as χπ which is
defined to be the representation of G given by g 7→ χ(det(g))π(g). The cen-
tral character of π shall be denoted ωπ and the representation contragredient
to π is denoted π̃; as G = GL2(F ) we can realise π̃ = ω−1π π.

For two characters χ1, χ2 of F×, let χ1 � χ2 denote the (normalised)
principal series representation of G parabolically induced from the charac-
ter χ1 ⊗ χ2 on the standard Levi subgroup B = ZNA of G. The parabolic
induction is normalised by multiplying χ1 ⊗ χ2 by |y|1/2 (which is the square-
root of the modulus character on B) before inducing; see equation (4.9) of
[Gel75]. This ensures that χ1 � χ2 is unitary whenever χ1 and χ2 are unitary.
The representation χ1 � χ2 is irreducible if and only if χ1χ

−1
2 /∈ {| · |, | · |−1}.

This condition is automatically satisfied if a(χ1) 6= a(χ2), or more generally,
if a(χ1χ

−1
2 ) 6= 0. Whenever χ1 � χ2 is irreducible, it is true that χ1 � χ2

∼=
χ2 � χ1 and ωπ = χ1χ2.

For an irreducible, admissible, generic representation π of G, we let
L(s, π) denote the local L-factor and ε(s, π) = ε(s, π, ψ) denote the local
ε-factor with respect to our fixed additive character ψ; these factors are de-
fined by their existence in [JL70, Theorem 2.18]. It is known that ε(s, π, ψ)
is a non-zero complex number and

ε(s, π, ψ) = ε(1/2, π| · |1/2−s, ψ) = q(1/2−s)a(π)ε(1/2, π, ψ).

2.1.6. A classification of representations of G. For our analysis, we
give a classification of the irreducible, admissible, generic representations π
of G satisfying a(π) ≥ 1. This classification is well known in the literature
(for example, see [Gel75, Theorem 4.18, Theorem 4.21, and Remark 4.25]).

1) π ' χSt, a twist of the Steinberg representation St by an unramified
character χ; these have a(π) = 1, ωπ = χ2 and L(s, π) = L(s, χ| · |1/2).

2) π ' χ1 � χ2, where χ1, χ2 are characters of F× with a(χ1) > 0 = a(χ2).
These have a(π) = a(χ1) ≥ 1, ωπ = χ1χ2 and L(s, π) = L(s, χ2).
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3) π satisfies L(s, π) = 1. In this case we enumerate the following sub-
cases:

a) π ' χSt, where a(χ) > 0; these have a(π) = 2a(χ) ≥ 2.

b) π ' χ1 � χ2, where χ1, χ2 are characters with a(χ1) ≥ a(χ2) > 0
and χ1χ

−1
2 /∈ {| · |, | · |−1}; these have a(π) = a(χ1) + a(χ2) ≥ 2.

c) π is supercuspidal; these also have a(π) ≥ 2.

By a well-known result of Tunnell [Tun78, Prop. 3.4] it follows that a
supercuspidal representation π always satisfies a(ωπ) ≤ a(π)/2.

2.1.7. Conductors of character-twists of representations.

Definition 2.5. We call π minimal if a(π) = min{a(χπ) : χ ∈ X}.

Example 2.6. Representations of type (1) and type (2) are always mini-
mal. Representations of types (3.a) and (3.b) are never minimal.

Lemma 2.7. Let π be an irreducible, admissible, generic representation of
G and let χ be a character of F×. We have that the conductor

(9) a(χπ) ≤ max { a(π), a(ωπ) + a(χ), 2a(χ) } .

Moreover, we have equality in (9) in each of the following cases: (i) a(ωπ) ≤
a(π)/2, π minimal, (ii) a(ωπ) ≤ a(π)/2, a(π) 6= 2a(χ), (iii) a(ωπ) > a(π)/2,
π minimal, a(π) 6= a(χ), (iv) a(ωπ) > a(π)/2, a(χ) /∈ {a(ωπ), a(π)− a(ωπ)}.

Proof. In the supercuspidal case, this follows from [Tun78, Proposition 3.4];
in fact the proof there holds verbatim for all square-integrable represen-
tations π. The Lemma also holds trivially when a(π) = 0, as in this case
a(χπ) = 2a(χ). So we are left to only prove the lemma for the ramified prin-
cipal series representations χ1 � χ2, types (2) and (3.b) in our notation. Of
these, the former is always minimal and the latter is never minimal. Moreover
in those cases, we have the formulas: a(π) = a(χ1) + a(χ2), a(ωπ) = a(χ1χ2),
a(χπ) = a(χχ1) + a(χχ2). The problem is thus reduced to computing con-
ductors of one-dimensional representations; each case may thus be deter-
mined via the observation a(µ1µ2) ≤ max{a(µ1), a(µ2)} for arbitrary char-
acters µ1, µ2, with equality guaranteed whenever a(µ1) 6= a(µ2). �

Example 2.8. As a special case of Lemma 2.7, if a supercuspidal repre-
sentation π has the property that a(π) is odd or a(π) = 2, then it is auto-
matically minimal. A well-known theorem of Atkin–Li [AL78, Theorem 4.4]
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gives a partial converse when q = 2: a representation π of GL2(Q2) with
a(ωπ) < a(π)/2 is minimal if and only if a(π) is odd or a(π) = 2.

2.1.8. Newforms and the Whittaker model. We shall work in the
Whittaker modelW(π, ψ) ∼= π which carries the right-regular action of G in
the space of functions W : G→ C satisfying W (zn(x)g) = ωπ(z)ψ(x)W (g)
for each z ∈ Z, x ∈ F , g ∈ G.

Definition 2.9. We call the uniqueK1(a(π))-invariant vectorWπ∈W(π, ψ)
satisfying Wπ(1) = 1 the normalised Whittaker newform.

The following lemma records the value of Wπ, for each π, on the toral
elements a($r) ∈ A.

Lemma 2.10. Suppose a(π) ≥ 1.

• If π ' χ1 � χ2 with a(χ1) > 0 = a(χ2), then

(10) Wπ(a($r)) =

{
(χ1($)q−1/2)r if r ≥ 0

0 if r < 0.

• If π ' χSt with a(χ) = 0, then

(11) Wπ(a($r)) =

{
(χ($)q−1)r if r ≥ 0

0 if r < 0.

• Else if π satisfies L(s, π) = 1, then

(12) Wπ(a($r)) =

{
1 if r = 0

0 if r 6= 0.

Proof. The above formulae are well-known in the literature; for example,
they appear verbatim in [PSS14, (121)]. For completeness, we give a detailed
proof here relying on the results in [Sch02].

Let W ∗π̃ be the unique K ′1(a(π))-invariant vector in W(π̃, ψ) satisfy-
ing W ∗π̃ (1) = 1 (recall that a(π) = a(π̃)). As π̃ ∼= ω−1π π, we may define a
linear isomorphism from W(π, ψ) to W(π̃, ψ) by W 7→W ′ where W ′(g) =
ω−1π (det(g))W (g). The function W ′π is K ′1(a(π))-invariant, so by uniqueness,



i
i

“4-Saha” — 2019/2/14 — 16:01 — page 1785 — #15 i
i

i
i

i
i

On the order of vanishing of newforms at cusps 1785

we have W ∗π̃ (g) = W ′π(g) = ω−1π (det(g))Wπ(g). This implies that

(13) Wπ(a($r)) = ωπ($r)W ∗π̃ (a($r)).

The values W ∗π̃ (a(y)) in all cases were computed explicitly and written
down in the table just before Section 3 of [Sch02]. We note here that the
function y 7→W ∗π̃ (a(y)) is the local newform in the Kirillov model of π̃ by
the conventions of [Sch02].

In particular, when π ' χ1 � χ2 with a(χ1) > 0 = a(χ2) then π̃ ' χ−11 �
χ−12 and the table from [Sch02] gives us that W ∗π̃ (a($r)) = χ−12 ($r). Com-
bined with (13) this gives us (10). If π ' χSt with a(χ) = 0, then π̃ ' χ−1St
and the table of [Sch02] gives us that W ∗π̃ (a($r)) = q−rχ−1($r) if r ≥ 0
and equal to 0 if r < 0. Combined with (13) this gives us (11). Finally if
L(s, π) = 1, then the table of [Sch02] gives us that W ∗π̃ (a($r)) = 1 if r = 0
and equal to 0 if r 6= 0. Combined with (13) this gives us (12). �

2.2. The vanishing index

Throughout the rest of §2, π will be an irreducible, admissible, generic rep-
resentation of G. We will denote n = a(π) and m = a(ωπ). The triple (t, l, v)
will always be so that t ∈ Z, 0 ≤ l ≤ n, v ∈ o×. By Lemma 2.13 of [Sah16]
and by right-K1(n)-invariance, the newform Wπ is completely determined by
its values on the representatives gt,l,v of G; moreover, for each t, l, the map
v 7→Wπ(gt,l,v) depends only on v modulo Ul and the map v 7→ |Wπ(gt,l,v)|
depends only on v modulo Umin(l,n−l).

The following proposition was proved in [Sah17, Prop. 2.10].

Proposition 2.11. Define dπ(l) = max{n, l +m, 2l}. Suppose Wπ(gt,l,v) 6=
0. Then t ≥ −dπ(l).

Remark 2.12. The quantity dπ(l)− l is invariant under the substitution
l 7→ n− l.

Definition 2.13. For each 0 ≤ l ≤ n, the level l vanishing index eπ(l) of π
is defined via

eπ(l) = min
{
r ≥ 0 : ∃v ∈ o× satisfying Wπ(gr−dπ(l),l,v) 6= 0

}
= min

{
r ≥ 0 :

∫
v∈o×
|Wπ(gr−dπ(l),l,v)|

2 d×v 6= 0

}
.

We now state our main local result.
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Theorem 2.14. Let π be an irreducible, admissible, generic representation
of G with conductor a(π) = n. Let l be an integer such that 0 ≤ l ≤ n. Then
if q > 3 we have eπ(l) = 0.

If q = 3, then eπ(l) = 0, except in one case:

• eπ(l) = 1 if
(i) π ' χ1 � χ2 with a(χ1) = a(χ2) = l, n = 2l ≥ 4, and a(χ1χ

−1
2 ) = l.

If q = 2, then eπ(l) = 0, aside from the following exceptions:

• eπ(l) = 1 when
(ii) π ' χ1 � χ2 with a(χ1) and a(χ2) both at least 2, a(χ1) 6= a(χ2),

and l = a(χ1) or l = a(χ2);
(iii) π ' χπ0 and n = 2l ≥ 4 where π0 is a supercuspidal representation

with7 a(π0) = n− 1 and χ is a character of conductor a(χ) = n/2.

• eπ(l) = 2 when
(iv) π ' χSt with a(χ) ≥ 2 and n = 2l = 2a(χ) ≥ 4;
(v) π ' χ1 � χ2 with n = 2l ≥ 4, a(χ1) = a(χ2) = l, χ1χ

−1
2 /∈ {| · |, | ·

|−1}, and a(χ1χ
−1
2 ) < l − 1;

(vi) π ' χπ0 and n = 2l ≥ 4 where π0 is a minimal supercuspidal rep-
resentation with a(π0) ≤ n− 2 and χ is a character of conductor
a(χ) = n/2.

• eπ(l) = 3 when
(vii) π ' χ1 � χ2 with n = 2l ≥ 6, a(χ1) = a(χ2) = l and a(χ1χ

−1
2 ) =

l − 1.

We give a proof of Theorem 2.14 in §2.3.

2.2.1. Basic properties.

Proposition 2.15. The vanishing index eπ(l) has the following properties:

1) For all unramified characters χ we have eπ(l) = eχπ(l).

2) We have eπ(l) = eπ̃(n− l).

Proof. The first assertion follows from the fact that

Wπχ(g) = χ(det(g))Wπ(g)

for all unramified characters χ. For the second identity, we may first twist π
by an unramified character to ensure that ωπ($) = 1 (by part (1), this does

7As n− 1 is odd, note that π0 is automatically minimal.
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not change the vanishing index). Moreover, dπ(l) = dπ̃(l) = dπ̃(n− l) + 2l −
n. Now use the “generalised Atkin-Lehner relation” of [Sah16, Prop. 2.28]
that implies that Wπ(gt,l,v) is non-zero if and only if Wπ̃(gt+2l−n,n−l,−v) is
non-zero. The result follows. �

Proposition 2.16. Suppose that n ≤ 1. Then eπ(l) = 0.

Proof. The case n = 0 is trivial, since Wπ(1) 6= 0. Now suppose n = 1. Using
part (2) of the previous Proposition, we may assume (by replacing π by π̃
if necessary) that l = 1. In this case, dπ(1) = 2 and the matrix g−2,1,1 lies in
the double coset class ZNK1(1); this follows from the more general formula

(14) a(y) =

(
y

1

)
= z(−$n)n($v(y)−n)gv(y)−2n,n,1

(
1
−$n 1

)
a($−v(y)y)

for any y ∈ F× and n ≥ 0. It follows that |Wπ(g−2,1,1)| = 1 and therefore
eπ(1) = 0. �

2.2.2. Uniform vanishing and rationality. As it stands, the quantity
eπ(l) is characterized by the following properties:

1) Wπ(gt,l,v) = 0 for all t < eπ(l)− dπ(l), and all v ∈ o×.

2) Wπ(geπ(l)−dπ(l),l,v) 6= 0 for some v ∈ o×.

It would be nice if in the second condition above, we could replace “some”
by “all”. While this cannot be done in general, there are indeed some sit-
uations where this is possible. One such situation is when n ≤ 1, as then
eπ(l) = 0 and |Wπ(g−dπ(l),l,v)| (which depends only on v modulo Umin(l,n−l))
is non-zero for all v since 0 ≤ l ≤ 1. We now describe another such situation
in the special case F = Qp.

Proposition 2.17. Suppose that F = Qp and that there exists a complex
number s such that πs := π| · |s has the property that Q(πs) is a number field.
Suppose that for some 0 ≤ l ≤ n, Q(πs) ∩Q(µpmin{l,n−l}) = Q. Then for any
integer t, the following are equivalent:

1) Wπ(gt,l,v) 6= 0 for some v ∈ Z×p .

2) Wπ(gt,l,v) 6= 0 for all v ∈ Z×p .

In particular, Wπ(geπ(l)−dπ(l),l,v) 6= 0 for all v ∈ Z×p .

Proof. Using the fact that Wπs(g) = | det(g)|sWπ(g), it follows that (by re-
placing π by πs) we may assume that s = 0.
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For each σ ∈ Aut(C) let tσ ∈ Z×p be the unique element such that

σ(ψ(x)) = ψ(tσx)

for all x ∈ Qp. The map σ 7→ tσ factors through Gal(Q(µp∞)/Q) and, as is
well-known, gives an isomorphism Gal(Q(µp∞)/Q) ' Z×p (in fact, this is a
special case of class field theory). The image of Gal(Q(µp∞)/Q(µpr)) under
this isomorphism is precisely Ur. In particular, as σ traverses

Gal(Q(π)Q(µpmin{l,n−l})/Q(π)) ' Gal(Q(µpmin{l,n−l})/Q),

tσ traverses every coset in Z×p /Umin{l,n−l}.

Next, let mσ =

[
1
tσ

]
. It is easy to check that the map W 7→W ′ defined

by W ′(g) := σ(W (mσg)) is σ-linear and takes W(π, ψ) to W(σπ, ψ). There-
fore, we getWσπ(g) = σ(Wπ(mσg)). In particular, for each σ ∈ Aut(C/Q(π)),
we have Wπ(gt,l,v) 6= 0⇔Wπ(gt,l,vtσ) 6= 0. Letting σ vary in

Gal(Q(π)Q(µpmin{l,n−l})/Q(π)),

we see that if Wπ(gt,l,v) 6= 0 for some v in Z×p /Umin{l,n−l}, then Wπ(gt,l,v) 6= 0
for all v in Z×p /Umin{l,n−l}. �

2.3. The proof of Theorem 2.14

In this subsection, we prove Theorem 2.14. Thanks to Propositions 2.15
and 2.16, we can and will make the following assumptions throughout this
subsection: n ≥ 2, ωπ ∈ X, l ≤ n

2 .

2.3.1. The basic identity. We now review a powerful tool for computing
the values Wπ(gt,l,v). For each t, l, the function on v ∈ o× given by v 7→
Wπ(gt,l,v) is well defined on the quotient o×/Ul. By Fourier inversion, for
each µ ∈ Xl there exists a Fourier coefficient ct,l(µ) ∈ C such that

(15) Wπ(gt,l,v) =
∑
µ∈Xl

ct,l(µ)µ(v).

In [Sah16, §2] it was shown that one can mill down the zeta-integrals occur-
ring in the local functional equation for GL2 to reveal a polynomial equation
in the ct,l(µ): we call this the basic identity.
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Proposition 2.18. Assume that ωπ($) = 1. We have the following identity
between polynomials in the variables qs and q−s:

ε(1/2, µπ)
∑
t∈Z

q(t+a(µπ))(1/2−s) ct,l(µ)L(s, µπ)−1

= ωπ(−1)
∑
r≥0

q−r(1/2−s)Wπ(a($r))G($r−l, µ−1)L(1− s, µ−1ω−1π π)−1.

Proof. This is proved explicitly in [Sah16, Prop. 2.23]. We briefly recall
the proof. Let W ′ = π(w.n($−k))Wπ and let the Jacquet–Langlands local
zeta integrals Z(W ′, s, µ), Z(w ·W ′, 1− s, µ−1ω−1π ) be defined as in §2.5 of
[Sah16]. By the Jacquet-Langlands functional equation (see Theorem 2.21
of [Sah16])

Z(W ′, s, µ)

L(s, µπ)
ε(s, µπ) =

Z(w ·W ′, 1− s, µ−1ω−1π )

L(1− s, πµ−1ω−1π )
.

On the other hand, using ε(s, µπ) = ε(1/2, µπ)qa(µπ)(
1

2
−s), a calculation (per-

formed in detail in [Sah16, Sec. 2.6]) gives that the left side of the Proposition

is equal to Z(W ′,s,µ)
L(s,µπ) ε(s, µπ) and the right side is equal to Z(w·W ′,1−s,µ−1ω−1

π )

L(1−s,πµ−1ω−1
π )

.

�

Remark 2.19. The fact that each side the basic identity is an element
of C[qs, q−s] follows from the proof of Jacquet–Langlands’ local functional
equation [JL70, Theorem 2.18].

Remark 2.20. Apart from the basic identity proved in [Sah16, §2], there
exist other formulas for the Whittaker newvector which are useful in various
contexts. In particular, Templier in an unpublished manuscript from 2011,
obtained a formula that expresses the Whittaker newvector in terms of a
family of 2F1 hypergeometric integrals, see also [Tem14, §4]; a very simi-
lar formula was obtained independently by Hu in 2016 (also unpublished but
see [Hu17, Lemma 2.12] for the case of principal series), and also indepen-
dently by Assing [Ass18, §3] in all cases. However, the basic identity is more
suitable for the purpose of establishing the results in the present paper.

Let us introduce the notation

(16) tπ(µ, l) = min{t ∈ Z : ct,l(µ) 6= 0} ∈ Z ∪ {∞}

where we say tπ(µ, l) =∞ if and only if ct,l(µ) = 0 for all t ∈ Z. We have
already noted that ct,l(µ) = 0 for t < −dπ(l). In terms of the expansion (15),
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for any t ∈ Z and 0 ≤ l ≤ n we have
∫
v∈o× |Wπ(gt,l,v)|2 d×v =

∑
µ∈Xl |ct,l(µ)|2

by orthogonality of characters. So we have

(17) eπ(l) = min{tπ(µ, l) + dπ(l) : µ ∈ Xl}.

2.3.2. A case by case analysis. We now compute tπ(µ, l) as π varies
over the types listed in §2.1.6, using the formula (17) to evaluate eπ(l) in
each instance. As n ≥ 2, we only need to consider representations of types
(2) and (3).

Type (2). Let π ' χ1 � χ2 with a(χ1) > 0 and a(χ2) = 0. Since m = n
we have dπ(l) = n+ l. It shall be sufficient to check the case of the trivial
character µ = 1, which belongs to Xl for each l. We compare both sides of
the basic identity given by Proposition 2.18: on the left-hand side, the least
non-zero exponent of q−s that appears is tπ(1, l) + n while on the right-hand
side we claim it is −l. Indeed, putting X = q−s and using the formula (10),
the right side of the basic identity is as follows:

ωπ(−1) (1− χ1($)q−1X−1)
∑
r≥0

q−rX−rχ1($)rG($r−l, 1).

Using (6), this simplifies to

ωπ(−1)ζ(1)q−lX−lχ1($
l)(1− χ1($

−1)X),

which makes it clear that the least non-zero exponent of X on the right side
is −l.

We thus conclude tπ(1, l) = −n− l = −dπ(l). This implies that

(18) eπ(l) = min{tπ(µ, l) + dπ(l) : µ ∈ Xl} ≤ 0.

Since eπ(l) is a non-negative integer, it follows that eπ(l) = 0.

Generalities on type (3). Let π be any representation of type (3). Then
L(s, π) = 1 andWπ(a($r)) is non-zero if and only if r = 0. The basic identity
reads

ωπ(−1)G($−l, µ−1)L(1− s, µ−1ω−1π π)−1(19)

= ε(1/2, µπ)
∑
t∈Z

q(t+a(µπ))(1/2−s) ct,l(µ)L(s, µπ)−1

The least t = tπ(µ, l) for which such a ct,l(µ) is non-zero depends on the
support for the Gauss sum (Lemma 2.3) and the specific form of the (at
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most degree-two) L-factors, but we can make a few general remarks. In the
sequel, put X = q−s for simplicity.

Lemma 2.21. Let π be of type (3).

1) If l ≤ 1 (which is always the case when n ≤ 3), then tπ(1, l) = −n. In
particular, as dπ(l) = n, it follows that eπ(l) = 0 whenever l ≤ 1.

2) If l ≥ 2, then tπ(µ, l) =∞ unless a(µ) = l, in which case tπ(µ, l) =
−δ−a(µπ), where δ∈{0, 1, 2} is the degree of the polynomial L(s, µπ)−1

in q−s.

Proof. In part (1) we need to consider µ = 1. Then

L(s, µπ) = L(1− s, µ−1ω−1π π) = 1

and combining (19) with Lemma 2.3 we have

ωπ(−1) (ζ(1)q−1)δl,1 = ε(1/2, π)
∑
t

q(t+n)(1/2−s)ct,l(1)

implying c−n,l(µ) is the only non-zero value of ct,l(µ) in this case.
For part (2), we begin by noting that G($−l, µ−1) = 0 whenever a(µ) 6=

l ≥ 2. So tπ(µ, l) =∞ unless a(µ) = l, in which case the least exponent of
X occurring in the right side of (19) is tπ(µ, l) + a(µπ) and in the left side
is −δ. We deduce tπ(µ, l) = −δ − a(µπ). �

Thus, after Lemma 2.21, we proceed by assuming that l ≥ 2 (and hence
n ≥ 4) and furthermore that a(µ) = l.

Type (3.a). Let π ' χSt with a(χ) > 0. By twisting by an unramified
character, we may assume that χ ∈ X. Here we note m ≤ n/2 = a(χ) so that
dπ(l) = n. As explained above, we assume l ≥ 2 and a(µ) = l. First consider
the case µ 6= χ−1; hence L(s, µπ) = 1. We get tπ(µ, l) = −a(µπ) and hence

dπ(l) + tπ(µ, l) = n− a(µπ) = n− 2a(µχ).

So we need to look for those µ ∈ X′l, µ 6= χ−1 that maximise a(µχ). Indeed
if l 6= n/2, then a(µχ) = n/2, implying eπ(l) = 0.

So, we assume from now on that l = n/2, implying a(µχ) ≤ n/2. By
Lemma 2.1 we can always find µ ∈ X′l satisfying a(µχ) = l if and only if
q > 2; in this case again eπ(l) = 0. If q = 2, then by the same lemma we
can choose µ ∈ X′l such that a(µχ) = l − 1 if and only if l > 2, in which case
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dπ(l) + tπ(µ, l) = 2 and so eπ(l) ≤ 2. If q = 2 and l = n/2 = 2, then we have
a(µχ) = 0 and hence dπ(l) + tπ(µ, l) = n = 4.

Finally, we consider the case µ = χ−1. Then δ = 1 and the basic identity
gives us

dπ(l) + tπ(µ, l) = n− 1− a(µπ) = n− 2

as a(µπ) = 1. This estimate falls short of eπ(l) ≤ 2 whenever n > 4 so we
must in fact have eπ(l) = 2 in those cases. If n = 2k = 4, then we have found
eπ(l) = 2.

So, to summarize, eπ(l) = 2 if l = n/2 ≥ 2 and equals 0 otherwise.

Type (3.b). Let π'χ1�χ2 with a(χ1)≥a(χ2)>0. Here, m=a(χ1χ2)<n
and dπ(l) = max{n,m+ l}. We shall need to divide our analysis into several
cases.

Case 1: Suppose a(χi) 6= l for both i = 1, 2. In this case δ = 0. Hence by
Lemma 2.7, tπ(µ, l) = −a(µπ) = −dπ(l) for all µ ∈ X′l; consequently eπ(l) =
0.

Case 2: Suppose a(χ1) > a(χ2) = l. Then if q > 2 there exists a µ ∈ X′l
such that a(µχ2) = l; in particular a(µχi) > 0 so that L(s, µπ) = 1. There-
fore we again get eπ(l) = 0. If q = 2 but l > 2, then we can find a µ ∈ X′l such
that a(µχ2) = l − 1 and this gives the maximum value for a(µπ) = l − 1;
hence eπ(l) = dπ(l)− a(χ1)− l + 1 = 1. If q = l = 2, then we instead get
a(µχ2) = 0; this implies that δ = 1 and we once again get eπ(l) = 1.

We have shown that if a(χ1) > a(χ2) = l then

eπ(l) =

{
0 if q > 2 or l ≤ 1

1 if q = 2 and l ≥ 2.

Case 3: Suppose a(χ1) = a(χ2) = l and either q > 3 or q = 3 and
a(χ1χ

−1
2 ) < l. We have dπ(l) = 2l = n. Lemma 2.2, part (1) implies that

there exists a µ ∈ X′l such that a(µχ1) = a(µχ2) = l. We conclude that
eπ(l) = 0.

Case 4: Suppose a(χ1) = a(χ2) = l, q = 3 and a(χ1χ
−1
2 ) = l. We have

dπ(l) = 2l = n. Using Lemma 2.2, part (2), we see that the minimum value
of tπ(µ, l) is n− 1 and hence eπ(l) = 1.

Case 5: Suppose a(χ1) = a(χ2) = l, q = 2 and a(χ1χ
−1
2 ) < l − 1. In this

case Lemma 2.2, part (3) tells us that eπ(l) = 2 (note that if l = 2 then
δ = 2)

Case 6: Suppose a(χ1) = a(χ2) = l, q = 2 and a(χ1χ
−1
2 ) = l − 1. In this

case we have l ≥ 3, and Lemma 2.2, part (4) tells us that eπ(l) = 3.
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Type (3.c). Let π be a supercuspidal representation of G. As before we
can assume a(µ) = l ≥ 2. We have m ≤ n/2 so dπ(l) = n. For supercuspidal
representations we always have δ = 0 so that

eπ(l) = n+ min{tπ(µ, l) : µ ∈ Xl} = n−max{a(µπ) : µ ∈ Xl}

By Lemma 2.7, if π is minimal or n 6= 2l, then a(µπ) = n; hence eπ(l) = 0
in these cases. Otherwise suppose n = 2l is even and that π0 is the minimal
supercuspidal representation such that π ∼= χπ0 with χ ∈ X. We must have
n > a(π0), by assumption on π, and a(χ) = l = n/2, by the minimality of
π0. Moreover, by Lemma 2.7 we have a(µπ) = max{a(π0), 2a(µχ)}. If q > 2,
then there exists a µ ∈ X′l such that a(µχ) = l. Therefore eπ(l) = 0 if q > 2.
If q = 2 but l > 2, then there exist a µ ∈ X′l such that a(µχ) = l − 1 implying

eπ(l) = 2−max{a(π0)− n+ 2, 0}.

Finally, if n = 2l = 4, then a(µχ) = 0. Thus eπ(2) = 4− a(π0).

3. Global results

In this section, we work over the field Q for simplicity; the modifications
required for a number field are straightforward. Also, while we stick to holo-
morphic newforms, one could easily write down corresponding results for
Maass newforms.

3.1. Adelisation of modular forms

Let A denote the ring of adeles over Q, let Sf denote the set of rational
primes, that is the finite places of Q, and let ∞ denote the real place. We
put Ẑ =

∏
p∈Sf

Zp. For any place v of Q, and any g ∈ GL2(Q), let ιv(g) be
the element of GL2(A) whose vth place equals g and all other places equal
1; thus ιv is given by the embedding GL2(Q) ↪→ GL2(Qv) ↪→ GL2(A). We
let ιf = ⊗p<∞ιp, so that ιf(g) is the element of GL2(A) which equals g at
all finite places and equals the identity at the infinite place. More generally,
for any g ∈ GL2(A), we use ιf(g) to denote the element of GL2(A) whose
p’th component equals gp if p ∈ Sf and whose infinite component equals the
identity.

Let ψ : Q\A→ C× be the additive character defined by ψ =
∏
v ψv where

ψ∞(x) = e(x) if x ∈ R and ψp(x) = 1 for x ∈ Zp. Let π ' ⊗vπv be an irre-
ducible, unitary, cuspidal automorphic representation of GL2(A) with cen-
tral character ωπ =

∏
v ωπv , which we assume to be trivial on R>0. We can
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(and shall) realise π as a subspace of the space of square-integrable, cuspidal
automorphic forms on GL2(A). Let χ be the Dirichlet character associated
to ωπ. For each p ∈ Sf , let np = a(πp), mp = a(ωπp); we put N =

∏
p p

np ,
M =

∏
p p

mp . Let k ≥ 2 be an integer, and assume that π∞ is the holomor-
phic discrete series representation of lowest weight k. In other words, π∞ is
the unique irreducible subrepresentation of | · |

k−1

2 sgnk � | · |
1−k
2 ; note that

ωπ∞ = sgnk.
Let K1(N) =

∏
p∈Sf

K1,p(np) =
∏
p-N GL2(Zp)

∏
p|N K1,p(np) be a stan-

dard congruence subgroup of GL2(Ẑ) =
∏
p∈Sf

GL2(Zp). Above, K1,p(np) is
the group defined in (8); throughout this section, we will use subscripts to
denote previously defined local objects. We have the diagonal realisation

(20) Γ1(N) = K1(N)GL2(R)+ ∩GL2(Q).

Let K∞ = SO2(R), which is a maximal compact subgroup of GL2(R)+. We
say that a non-zero automorphic form φ ∈ π is an adelic newform if φ is
K1(N)-invariant and satisfies

(21) φ

(
g

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

])
= eikθφ(g)

for all g ∈ GL2(A). It is well-known that an adelic newform φ exists and is
unique up to multiples, and corresponds to a factorizable vector φ = ⊗vφv.

If φ is an adelic newform, then the function f on H defined by

(22) f(gi) = det(g)−k/2j(g, i)kφ(g)

for each g ∈ GL2(R)+ is a classical newform (see [Li79]) of weight k, level
N , and character χ. The map (22) from adelic to classical newforms is a
bijection. Indeed, given a classical newform f of weight k, level N , and
character χ, one has the procedure of adelisation (see §3.1 of [Sah15]) that
produces an automorphic form φf on GL2(A) that is K1(N)-invariant and
such that (21) and (22) hold (with φ replaced by φf ). This automorphic
form φf is the adelic newform inside an irreducible cuspidal automorphic
representation π which has the properties described earlier.

Finally, for any elements x, y lying in some ring, we define the matri-

ces n(x) =

[
1 x

1

]
, a(y) =

[
y

1

]
. For z = x+ iy ∈ H, put gz = n(x)a(y) =
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[
y x
0 1

]
∈ GL2(R)+. So gzi = z ∈ H and we have for all σ ∈ SL2(Q) the equal-

ities

(23) (f |kσ−1)(z) = (f |kσ−1gz)(i) = y−k/2φf (ι∞(σ−1)gz) = y−k/2φ(gzιf(σ)).

3.2. Whittaker and Fourier expansions

3.2.1. Adelic Whittaker expansion. A function W : GL2(A)→ C is a
ψ-Whittaker function if W satisfies W (n(x)g) = ψ(x)W (g) for each x ∈ A
and g ∈ GL2(A). By the existence and uniqueness of Whittaker models for
GL2, there exists a (unique) subspace of such functions which, under the
right-regular action of GL2(A), is isomorphic to π; this subspace is called
the Whittaker model and is denoted W(π, ψ). This GL2(A)-isomorphism
may be explicated as the map

φ(g) 7−→Wφ(g) =

∫
Q\A

φ(n(x)g)ψ(x) dx

where we take the invariant probability measure dx on A. By Fourier inver-
sion, we can derive a Fourier expansion for φ in terms of Wφ,

(24) φ(g) =
∑
ξ∈Q×

Wφ(a(ξ)g).

3.2.2. Classical Fourier expansion. We will now explicate the relation
between the adelic Whittaker expansion and the classical Fourier expansion.
We begin with the following lemma.

Lemma 3.1. Let φ be an automorphic form in the space of π that satisfies
(21) and let δ ∈ Z be such that φ is right invariant by ιf(n(δu)) for all u ∈ Ẑ.
Let h be the holomorphic function on H defined by the equation

h(z) = j(gz, i)
kφ(gz).

Then h has a Fourier expansion given by

h(z) =
∑
n>0

ah(n)e
2πinz

δ .

Moreover, for all ξ ∈ Q×, we have

Wφ(a(ξ)gz) =

{
yk/2 ah(n) e(nz/δ) if ξ = n/δ for some n ∈ Z,
0 otherwise.
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Proof. This proposition is given in [Gel75, Lemma 3.6] in a special case. Our
statement is more general, thus we give a detailed proof. We have

h(z + δ) = y−k/2φ(gzιf(n(−δ))) = h(z)

and as h is a holomorphic cusp form (of weight k with respect to some
principal congruence subgroup), it follows that h has a Fourier expansion of
the type specified. Next note that

Wφ(a(ξ)gz) =

∫
Q\A

φ(n(x′)a(ξ)gz)ψ(−x′) dx′

=

∫
Q\A

φ(n(x′ + x)a(y))ψ(−ξx′) dx′

= e(ξx)Iφ(y, ξ),

where

Iφ(y, ξ) =

∫
Q\A

φ(n(x′)a(y))ψ(−ξx′) dx′.

Choose the following fundamental domain for the (compact) quotient Q\A
using strong approximation: Q\A = [0, δ)×

∏
p<∞ δZp.

This gives us

Iφ(y, ξ) =

∫ δ

0
yk/2h(x∞ + iy)e (−ξx∞) dx∞

(
1

δ

∏
p<∞

∫
Zp
ψp(−ξδxp)dxp

)
.

If δξ is not an integer, then let p be any prime dividing its denominator.
We have

∫
Zp ψp(−ξδxp)dxp = 0 and so Iφ(y, ξ) = 0. On the other hand, if

ξ = nδ, then
∏
p<∞

∫
Zp ψp(−ξδxp)dxp = 1 and we have

Iφ(y, n/δ) =
1

δ

∫ δ

0
yk/2h(x∞ + iy)e (−ξx∞) dx∞

= yk/2 ah(n) e (niy/δ) .

where we have used the Fourier expansion of h. Therefore in this case we
have

Wφ(a(n/δ)gz) = e(nx/δ)Iφ(y, n/δ) = yk/2 ah(n) e(nz/δ)

as required. �
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Henceforth, let φ be an adelic newform in the space of π and f the corre-
sponding classical newform. We have the usual Fourier expansion for f at
infinity given by

(25) f(z) =
∑
n>0

af (n)e2πinz,

and henceforth we normalise f and φ so that af (1) = 1. More generally, for

any cusp a = a
L with (a,N) = 1, we put δ(a) = lcm[L2,N,LM ]

L2 , and as explained
in the introduction, we have the Fourier expansion of f at a:

(26) (f |kσ−1)(z) =
∑
n>0

af (n; a)e
2πinz

δ(a) .

Above, σ is any matrix in SL2(Z) such that σ(a/L) =∞. In particular, we

may choose σ =

[
a b
L d

]−1
where b, d are any integers such that ad− bL = 1.

Note that af (n) = af (n, 1
N ), which follows by taking σ =

[
1
−N 1

]
∈ Γ1(N)

(note also that δ(∞) = δ(1/N) = 1). When δ(a) > 1, the Fourier coefficient
af (n, a) depends not just on a but also (weakly) on the choice of σ; precisely,
for two choices σ, σ′ both taking a to ∞, the corresponding Fourier coeffi-

cients af (n, a) and a′f (n, a) are related via af (n, a) = e
2πint

δ(a) a′f (n, a) where t

is some integer depending on σ′σ−1. However, the absolute value |af (n, a)|
is independent of the choice of σ.

From (23), we see that the modular form f |kσ−1 corresponds to the
automorphic form φ′ = π(ιf(σ))φ. Let x be a finite adele such that x/δ(a) ∈
Ẑ. Using the explicit formula

(27)

[
a b
L d

][
1 x

1

][
a b
L d

]−1
=

[
1− xaL a2x
−L2x 1 + xaL

]
,

we see that our adelic newform φ is right invariant by σ−1n(x)σ and conse-
quently the automorphic form φ′ is right invariant by n(x).

Proposition 3.2. With notation as above, let ξ ∈ Q×. Then

Wφ(a(ξ)gzιf(σ)) =

{
yk/2 af (n; a) e (nz/δ(a)) if ξ=n/δ(a) for some n∈Z,
0 otherwise
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Proof. This follows from applying Lemma 3.1 on the automorphic form φ′ =
π(ιf(σ))φ, and using the fact that φ′ is right invariant by ιf(n(δ(a)u)) for all
u ∈ Ẑ. �

3.2.3. A product formula for classical Fourier coefficients. We can
use Proposition 3.2 to pin-down the coefficients af (n; a) precisely in terms
of the factorisation of Wφ into local Whittaker functionals. Indeed, by the
uniqueness of local and global Whittaker models, we have for all g ∈ G(A),

(28) Wφ(g) = W∞(g∞)
∏
p<∞

Wπp(gp),

where, for each p ∈ Sf , the function Wπp on GL2(Qp) is defined as in Defini-
tion 2.9 while W∞ corresponds to φ∞ in the Whittaker model for π∞, and
is normalised so that (28) holds. To explicate the function W∞, we observe
using Proposition 3.2 that for any y > 0,

W∞(a(y)) = Wφ(a(y)) = yk/2e−2πy.

For each prime p|N , and each 0 ≤ lp ≤ np, let the integer dπp(lp) be
defined as in Proposition 2.11, and let the integer eπp(lp) be as defined in
(2.13) (and written down explicitly in Theorem 2.14). The next Proposition
rewrites the Fourier coefficients af (n; a) in terms of the local Whittaker
newforms Wπp .

Proposition 3.3. Let a = σ−1∞ be a cusp of Γ0(N)\H with σ−1 =
(
a b
L d

)
∈

SL2(Z), L|N , (a,N) = 1, so that a corresponds to the cusp a/L. Let r be a
positive integer and write r = r0

∏
p|N p

rp with (r0, N) = 1, and write L =∏
p|N p

lp. For each p|N define

up = −a× prp

r
× [L,M,N/L]

pdπp (lp)−lp
∈ Z×p .

Then we have

(29)
af (r; a)

rk/2
=
af (r0)

r
k/2
0

e

(
rd

δ(a)L

) ∏
p|N Wπp(grp−dπp (lp),lp,up)

δ(a)k/2

where Wπp are the local Whittaker newforms associated to f normalised so
that Wπp(1) = 1.



i
i

“4-Saha” — 2019/2/14 — 16:01 — page 1799 — #29 i
i

i
i

i
i

On the order of vanishing of newforms at cusps 1799

Proof. Applying (28) to Proposition 3.2 (taking z = i) we determine

af (r; a) = e

(
ri

δ(a)

)
W∞(a(r/δ(a)))

∏
p<∞

Wπp(a(r/δ(a))σ)

= af (1)

(
r

δ(a)

)k/2∏
p|r0

Wπp(a(r0))
∏
p|N

Wπp(a(r/δ(a))σ).

Considering the r0-th Fourier coefficient in the expansion at a =∞, (so that
δ(∞) = 1, and each Wπp is right invariant by ιp(σ)); this formula simplifies
to

af (r0) = af (1)r
k/2
0

∏
p|r0

Wπp(a(r0))

since Wπp(a(r0)) = 1 for p - r0. Comparing the formulas for af (r; a) and
af (r0), we see

(30) af (r; a) =
af (r0)

r
k/2
0

(
r

δ(a)

)k/2 ∏
p|N

Wπp(a(r/δ(a))σ).

Let us decompose this expression on the right. First consider the Bruhat
decomposition of σ:

σ =

(
d −b
−L a

)
= z(L)n(−d/L)a(1/L2)wn(−a/L).

This gives us, for each p|N ,

Wπp (a(r/δ(a))σ)(31)

= ωπp(L)ψp

(
−rd
δ(a)L

)
Wπp

(
a

(
r

L2δ(a)

)
wn

(
−a
L

))
= ωπp(L)ψp

(
−rd
δ(a)L

)
Wπp

(
a(prp−dπp (lp))w

[
1 −a/L

rpdπp (lp)

L2δ(a)prp

])

= ωπp(L)ψp

(
−rd
δ(a)L

)
Wπp

(
a(prp−dπp (lp))wn

(
upp
−lp
))

.
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where we have used the right-K1,p(N)-transformation property of Wπp . Sub-
stituting (31) into (30), we obtain
(32)

af (r; a)

rk/2
=

∏
p|N

ψp

(
−rd
δ(a)L

)
ωπp(L)

 af (r0)

r
k/2
0

∏
p|N Wπp(grp−dπp (lp),lp,up)

δ(a)k/2
.

Our desired result (29) now follows from the equalities∏
p|N

ψp(−rd/(δ(a)L)) =
∏
p<∞

ψp(−rd/(δ(a)L)) = e(rd/δ(a)L)

and ∏
p|N

ωπp(L) =
∏
p<∞

ωπp(L) = 1.

�

3.2.4. Global to local reduction of the vanishing index.

Corollary 3.4. Let L =
∏
p p

lp, r = r0
∏
p|N p

rp be positive integers with
L|N , (r0, N) = 1.

1) If rp < eπp(lp) for some prime p|N , then af (r, a) = 0 for all cusps a =
a
L , (a,N) = 1.

2) Let r =
∏
p|N p

eπp (lp). Then there exists some cusp a = a
L , (a,N) = 1,

such that af (r, a) 6= 0.

Proof. Both parts follow immediately from Proposition 3.3. Indeed, if rp <
eπp(lp) for some prime p|N , then Wπp(grp−dπp (lp),lp,v) = 0 for all v ∈ Z×p and

so (29) implies that af (r; a) = 0. On the other hand, if r =
∏
p|N p

eπp (lp),

then by the definition of eπp(lp), there exists for each p|N some vp ∈ Z×p
such that Wπp(grp−dπp (lp),lp,vp) 6= 0. By the Chinese remainder theorem, we

can now choose some a coprime to N satisfying −a× prp+lp

Lr ×
[L2,N,LM ]

pdπp (lp)
≡ vp

(mod N) for all p|N . Therefore, by (29), we have af (r, a) 6= 0 (recall that
af (1) 6= 0). �

Define the quantities

ef (a) := min{n > 0 : af (n; a) 6= 0}, ef (L) = min
a∈(Z/NZ)×

ef (a/L).

We can now prove our main result (stated as Theorem 1.2 in the introduc-
tion).
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Theorem 3.5. For any integer L =
∏
p p

lp dividing N , we have

ef (L) =
∏
p

peπp (lp).

Proof. The proof follows immediately from Corollary 3.4. �

3.3. Proofs of Proposition 1.3 and Theorem 1.1

We begin by proving (a slightly stronger version of) Proposition 1.3. Let
π′ = π if k is even and π′ = π| · |1/2 if k is odd (here, | · | denotes the adelic
norm, which is just the product of all the local norms). Then, as noted in
[RT11], π′ is a regular algebraic cuspidal automorphic representation (note
however, that π′ is no longer unitary if k is odd). In particular, if we define
π′p = πp if k is even and π′p = πp| · |1/2 if k is odd, so that π′ = ⊗vπ′v, then
the compositum Q(π′) of all the fields Q(π′p) with p ∈ Sf is a number field
(see [RT11]). In fact Q(π′) = Q(f) where Q(f) is the number field generated
by all the Fourier coefficients af (n) (see part (5) of Theorem 1.4 of [RT11]).

Let us define KN to be the compositum of all the fields Q(π′p) over the
primes p such that p2|N . Clearly KN is a subfield of Q(f).

Proposition 3.6. Suppose that KN ∩Q(e
2πi

(L,N/L) ) = Q for some divisor L =∏
p p

lp of N . Then ef (a) = ef (L).

Proof. Using Proposition 3.3, it suffices to show that

Wπp(geπp (lp)−dπp (lp),lp,v) 6= 0

for all v ∈ Z×p . If p2 - N , this follows from Proposition 2.16. If p2|N , this
follows from Proposition 2.17. �

Note that the above Proposition implies Proposition 1.3 as KN ⊆ Q(f).
Next, let f , π be such that f is the newform associated to an elliptic curve
E over Q. In particular, f has trivial character (M = 1), k = 2, and the
Fourier coefficients af (n) are all rational numbers.

Lemma 3.7. In the present case, the ep of Theorem 1.1 is equal to the
eπp(lp) of Theorem 1.2.

Proof. Since the af (n) are all rational numbers, the representation π satisfies
the hypothesis of Proposition 3.6. We consequently have ef (a) = ef (L) for
any cusp a of denominator L, in particular for the f attached to E. �
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We now give the proof of how Theorem 1.2 implies Theorem 1.1. The
fact that f now has trivial character implies that if πp is a principal series
representation, then it must be of the form χ� χ−1. Furthermore it is known
(see, e.g., [Sil94, Theorem 10.4]) that the exponents np = vp(N) have the fol-
lowing bounds: np ≤ 2 if p ≥ 5, n3 ≤ 5, and n2 ≤ 8. Now, one is left to rattle
through the short (finite) list of possible entrants into Theorem 1.1 (that is,
which representations occur that satisfy the aforementioned bounds), with
index ep given in Theorem 1.2. Indeed, let p = 3. Then, by Theorem 1.2,
and the bound n3 ≤ 5, we see that e3 = 0 unless n3 = 4, l3 = 2 and π3 is
a principal series representation, which is exactly Case (i) of Theorem 1.1.
Next, let p = 2. Case (ii) of Theorem 1.2 cannot occur in our present sit-
uation because f has trivial character. Case (iii) of Theorem 1.2 exactly
corresponds to Case (iii) of Theorem 1.1. Case (vii) of Theorem 1.2 corre-
sponds to Case (iv) of Theorem 1.1 (observe that there is no character χ
of Q×2 satisfying a(χ) = 3, a(χ2) = 2, so we cannot have n3 = 6). If we are
not in any of the Cases (ii–vii) of Theorem 1.2, then we must have either
n2 ≤ 2 or n2 6= 2v2(L), which corresponds to Case (ii) of Theorem 1.1. Fi-
nally, Cases (iv–vi) of Theorem 1.2 correspond to Case (v) of Theorem 1.1.
This completes the proof that Theorem 1.2 implies Theorem 1.1.
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