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Abstract

This thesis details original experimental work on the observation of the

underwater acoustic response of flat plates and acoustic metamaterial-like

arrays of holes. There are five main experimental chapters that examine the

excitation, detection and analysis of the radiative and evanescent acoustic

fields of structured and unstructured surfaces. There are two main types

of acoustic excitation and detection methods employed to detect and char-

acterise the transmitted and propagating surface fields of these systems.

The first two and the final experimental chapters examine the radiative

excitation of plate modes and the remaining two experimental chapters

investigate trapped surface modes of structured hole arrays. Using compu-

tational Fourier analysis of the acoustic fields, the frequency components

and wavevector components are extracted from the spatially scanned time-

resolved data. These results are used to characterise the fields by plotting

the dispersion relation and identifying the acoustic modes.

The first experimental chapter investigates the Lamb mode responses of

mild steel, aluminium alloy and acrylic plates. By comparing the experi-

mentally extracted dispersion relation to an analytic model of layered media,

these plates are elastically characterised. Experimentation is performed us-

ing ultrasound pulsed through these plates by a transducer and detected

using a hydrophone setup with a usable range of 50 to 500 kHz. These

results are successfully used to extract values of the elastic modulus and

Poisson’s ratio for each sample. Whilst results vary, they are reasonably

close to that of the industry estimates. This method of non-destructively

testing material properties is advantageous compared to the standard meth-

ods that render samples unusable after testing.

Plate modes are further investigated in the second experimental chapter

which examines the dispersion when an aluminium alloy plate is acoustically

excited using a symmetrically aligned source. The experimental results are

compared against Finite Element Model (FEM) computational data. The

results show a region of transmission where the acoustic fields are focussed.

Modelled results of the fields inside the plate agree with the shape of the

fields in frequency and wavevector domains. Focussing of the fields is at-

tributed to the region where the symmetric Lamb mode S1 becomes the

S1b mode. This region, labelled the Zero or Negative Group Velocity (ZGV

or NGV) region, has gained recent interest as a potential application of

concentrating sound power. Additionally, a beat pattern in the transmitted

fields of the centred plate is observed and an explanation of it is analytically



derived. This focussing phenomenon has applications in enhanced acoustic

transmission and absorption.

In the third experimental chapter, lines of holes with differing symmetries

are examined. Four samples are scanned using near-field excitation and

detection of the surface modes of lines of holes. Single lines of holes, double

lines of holes, with mirror and glide symmetry, and three lines of holes, with

a pseudo-glide symmetry, are shown to support “trapped” Acoustic Surface

Waves (ASWs). These modes are characterised using Fourier analysis of

time-domain data to plot the two-dimensional frequency dependent field

maps and the evanescent dispersion relation. These experimental results

are compared against Finite Element Method (FEM) calculated dispersion.

The results show a 2.53 kHz difference between the asymptotic frequency of

the mode calculated using a perfectly rigid structure and that of an elastic

hole array. This is expanded upon in the fourth experimental chapter, in

which the acoustic near-fields of two-dimensional square arrays of holes in

aluminium alloy plates are investigated. ASWs are excited and detected

over two different thickness plates and characterised using Fourier analysis

of the time-domain data. In addition, in-plane acoustic beaming is observed

over very narrow frequency ranges. These types of surface mode support-

ing structures offer a method of controlling the direction and amplitude of

sound.

The final results chapter details an array of holes in a pressure-release foam.

This sample is excited using a far field source and then the normalised trans-

mission is calculated using a two-dimensionally scanned plane. Spatially

scanned frequency dependent results show the propagating fields above the

cut-off frequency of the array. Using the spatial plot of the transmitted

fields the acoustic cut-off response is plotted. These results are compared

to FEM calculated transmission results. In addition, plotting the spatially

mapped FEM calculated fields inside the holes shows the Fabry-Perot like

resonances inside the holes of the array and the Bessel-function shape of the

modes. Comparisons between the experimental and computational results

show that the Fabry-Perot-like modes are not visible in the experimental

data. In addition, the spatial modulation of the transmitted and reflected

diffracting fields is derived. Surfaces that allow the flow of fluid through

the structures whilst blocking certain frequencies of sound from propagating

through them are already finding commercial applications in air and will

have similar sound blocking applications underwater.



The works presented in this thesis has important implications and appli-

cations in underwater acoustics that range from the first observations of

fundamental and widely used concepts to a method of supporting specific

acoustic modes over structured surfaces. Although many of these ideas have

been relatively well known in acoustics, they were not observed underwater.

In addition, water-solid acoustics proved to be a source of much complex-

ity and interest that this work explores using computational models and

analytic theory.

The work presented in this thesis has important implications for and appli-

cations in underwater acoustics. These range from initial observations on

fundamental and widely-used concepts to a method of supporting specific

acoustic modes over structured surfaces. Although many of these ideas are

already relatively well-known in the general field of acoustics, they have not

yet been observed underwater. Water-solid acoustics proves to be a source

of much complexity and interest which this work explores using computa-

tional models and analytic theory.
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Chapter 1

Introduction

1.1 Historical Overview

Acoustics is the study of sound: a vibration in the particles that constitute solids,

gases and liquids. The study of sound is one of the earliest fields of science to be

studied, with written records by Pythagoras and Aristotle dating back to the time of

the Ancient Greeks1. This thesis focusses on underwater and solid bound ultrasound,

and the progression towards this area of acoustics research has been by no means linear.

Studies in the fields of in-air acoustics, underwater acoustics, bulk acoustics, acoustics

in structured materials and wave theory have impacted upon this topic.

Some of the earliest research was linked to music theory. In particular, between

1590 and 1627 Vincenzo Galilei, Galileo Galilei and Marin Mersenne remarked on the

modes of vibrating strings2,3. Later that century, in 1687, Sir Isaac Newton was the

first to derive the speed of sound in air in Philosophiae Naturalis Principia Mathemat-

ica 4. This was later adapted by Pierre-Simon Laplace to calculate a more accurate

approximation including the thermal properties5,6 set out by Gustav Kirchoff7. Paral-

lel to these airborne studies of sound, underwater scientific studies date back to 1490

when Leonardo Da Vinci noted8, “If you cause your ship to stop and place the head of

a long tube in the water and place the other extremity to your ear, you will hear ships

at great distances.” Yet, it was not until 1827 that an accurate measure of the speed of

sound underwater was performed on Lake Geneva by Jean-Daniel Colladon, using the

rudimentary equipment of an underwater bell and a listening device9.

The modern age of electronic underwater acoustics was sparked by the develop-

ment in transduction and the invention of piezoelectric devices, whereby sound could

be converted into electrical currents and vice versa. The invention of speech devices is

collectively attributed to scientists such as Jamie Joules Jacques and Pierre Currie10

between 1840 and 1880. The potential of various transduction mechanisms was demon-
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1. Introduction

strated by inventors such as Alexander Graham-Bell with his membrane-devices11. The

applications of underwater sound became clear after the sinking of the ship Titanic in

1912. A month following the disaster, Lewis F. Richardson filed a patent for an under-

water echo locating device to detect icebergs8, although unfortunately the device was

not built. It was in 1914 that the Canadian-American inventor Reginald Fessenden cre-

ated a coil transducer that was used to echo locate underwater12,13 and which was able

to detect icebergs. The outbreak of World War I marked an increased drive to develop

SONAR (SOund Navigation And Ranging) as submarine warfare took off. Although

early SONAR was found to be unreliable, the development of cost-effective methods

of detecting and projecting sound, audible and ultrasound, with synthetic piezoelectric

devices became a top priority of international naval research laboratories. During this

period the first hydrophones were used to passively record underwater sound. Post-

WWI piezoelectric devices improved dramatically and in 1940 Paul Langevin created

an improved composite transducer using quartz14.

Sound travels through any elastic media and can propagate through bulk solids. The

study of bulk and surface waves was accelerated through the research of the prolific

acoustician Lord Rayleigh (John W. Strutt). His ideas were set out in The Theory

of Sound 15 in 1894, where he developed the formal theory of sound including surface

wave phenomena, non-linear effects and many other acoustic concepts that are still

used today. Furthermore, he defined the first the Surface Acoustic Wave (SAW), the

Rayleigh Wave, that propagates at the interface between a solid and vacuum. Rayleigh’s

work was adapted to plates in the early twentieth century to the coupling between

two Rayleigh-like interfaces by Horace Lamb16, as Lamb waves. Additional SAWs

were classified by Robert Scholte as Scholte-Stoneley waves17, which are waves at an

interface between two elastic media. The underwater dispersive nature of Lamb modes

shows enhanced transmission or absorption over specific ranges and has been examined

in varying degrees of detail more recently18,19,20,21,22,23,24. Mapping the dispersive

properties of elastic solids is a method of acoustic tomography or Non-Destructive

Testing (NDT). This is an emerging technique, the use of which ranges from material

characterisation to defect identification25,26,27,28,29,30,31.

The reflection of sound at the interface between a bulk and a fluid is of a particular

interest in this work. These bulk solid materials can be shaped to support acoustic

resonances. This idea was exploited musically long before it was understood scientifi-

cally. Hermann von Helmholtz wrote extensively on music and acoustic theory in the

nineteenth century. Notably, he built a device called a Helmholtz resonator that was

able to resonate at a select frequency32. Much of his work explored acoustic phenomena

such as whispering gallery modes32,33, although he worked on theoretical acoustics too

and is known for the Helmholtz wave equation. However, Rayleigh appears to be the
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first to define the acoustic boundary conditions34 fundamental to the understanding of

these structures. With these definitions, simple structures were then explored math-

ematically, with Philip M. Morse explaining boundary conditions for the geometry of

pipes35. Since then, a variety of studies have explained the dispersion of sound waves

within acoustic waveguides with different boundaries36,37,38,39,40.

Parallel to these studies, research on other wave types has been the driving force

behind much of structured acoustics. In 1807, Thomas Young, who worked in optics

and acoustics, demonstrated using a double slit experiment that two acoustic or light

waves diffracting from slits create an interference pattern as they interact41,42, showing

that wave intensity can be locally modulated with the use of structure. Fundamen-

tal structures that support optical resonance were further described by scientists such

as Charles Fabry and Alfred Perot, who detailed a type of resonance between two

flat surfaces in 189943,44. Extending the research on such devices led to the develop-

ment of periodically structured surfaces, patterned with resonant features, that support

“trapped” surface waves in photonics and phononics45,46,47,48.

Practical uses of structuring solids to manipulate electro-magnetic and acoustic

waves date back to World War II, however recent interest has been stimulated by an

eruption of work on structured surfaces and acoustic metamaterials, materials that are

designed to modulate wave energy in a way not normally found in nature. This recent

interest is in part due to the work by Ebbesen et al. in 1998 on the “extraordinary-

optical-transmission” through“tunable” sub-wavelength hole arrays49, in which the

coupling between the “surface-plasmon” excitations of the structured array and the

transmitted signal was demonstrated. Pendry later showed that it was possible to

mimic this effect in the microwave regime48 by exciting a “spoof-surface-plasmon” over

a structured array of sub-wavelength cavities. Consequently, the same “spoof” effect

was realised in air as an “Acoustic Surface Wave” (ASW) excitation over structured

arrays of simple resonators50. A highly localised and slow travelling ASW has poten-

tial applications in acoustic sensing, energy harvesting, signal processing and material

characterisation. Most research into ASWs has been undertaken in air51,52,53 with

some studies underwater on two-dimensional structured materials that support sur-

face waves. These include grooves54,55 and 2D arrays that have been modulated using

material-filled arrays of holes56. Craster et al. and Cummer et al. have recently

summarised the possible broad applications of metamaterials in acoustics research57,58.

The aim of the research presented in this thesis is to set up an experiment that

can be used to study structured and unstructured underwater surfaces. The following

work explores a variety of underwater acoustic materials with a range of geometries

that demonstrate the manipulation of sound in novel ways.
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1. Introduction

1.2 Thesis Outline

The work detailed in this thesis describes original experimental and computational stud-

ies of underwater ultrasound over flat unstructured and structured plates that support

acoustic modes. Notably, this investigation includes methods of acoustic tomography,

detecting acoustic surface waves and observing the acoustic cut-off frequency. This

work aims to add to the research on trapped surface waves in electromagnetism and in

air acoustics by applying these concepts to underwater metamaterial-like studies. The

structure of the thesis is broadly split into two parts: flat unstructured plates (chap-

ters 4 and 5) and structured plates with lines and arrays of resonating holes (chapters 6,

7 and 8).

Chapter 2, the background theory, covers the fundamental ideas of underwater

acoustics, with derivations of the acoustic wave equation and the Navier-Stokes equa-

tions. Using these, the importance of thermal-viscous effects in bulk and at a boundary

are discussed. Acoustic boundary conditions are introduced and then resonating struc-

tures that exploit them are shown. The bulk elastic properties of solids are also in-

troduced and the waves at the interface between two elastic media are described, with

example dispersion relations shown. A combination of the techniques developed are

then used to describe acoustic waves trapped at the interface of a structured surface.

Lastly, the effects of periodicity are explored with the dispersion relation detailed.

Chapter 3 describes the experimental methodology and the data analysis used

throughout this work. Here reasoning for the selection of sample materials is given,

followed by the experimental setup and pulse method used to explore the acoustic prop-

erties of these materials, detailing the ultrasonic sources and detectors. The explanation

of the technique is split into the far-field and near-field scanning techniques. To char-

acterise each source-detector pair, the transmitted fields are spatially plotted. Here the

speed of sound in the water tank used throughout this work is extracted using a line

scan of travelling ultrasound. Further to this, plots are shown of the computational

Fourier methods used throughout this work. These methods include time windowing,

zero padding and the use of window functions to improve Fourier analysis. Finally, a

discussion of the Finite Element Method (FEM) modelling used to verify experimental

results in this work concludes this chapter.

The first results chapter is presented in chapter 4, Acoustic Tomography. Here

aluminium alloy, mild steel and acrylic plates are investigated using the broadband

ultrasound from a source positioned at a finite distance from the sample to excite the

response over a range of angles. The experimental Lamb modes of plates are compared

to the dispersion relation of the transmitted fields using Leonid Brekhovskikh’s plate

theory. This method is used to obtain the elastic material properties of the plates: the
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Poisson’s ratio and the elastic modulus. Although NDT is widely used, this simple

method is usable between 50 and 500 kHz. Elastic parameter results obtained are

mostly at or close to industry estimates. In the case of aluminium alloy, FEM modelling

is used to verify the technique and it is in good agreement. This chapter has a bearing

on the rest of the thesis as the same aluminium alloy is used for the majority of this

work and its essential characteristics had to be parametrised.

Chapter 5, further investigates the dispersion through a single aluminium alloy

plate, focussing on the dispersion of sound transmitted through the plate near the nor-

mal incidence. The sample is excited symmetrically with the source central to the plate.

The resultant response shows “acoustic beaming” in the frequency domain and disper-

sion relation, attributed to the regions where symmetric modes of “Negative Group

Velocity” (NGV) exist. Spatial plots normal to the surface uncover the frequency de-

pendent shape of the transmitted fields and depict the focussing effect of the symmetric

excitation of the plate. Additionally, a beat pattern between the plane wave excitation

of the plate and the Lamb mode fields is experimentally and computationally observed,

and then explained analytically. These results show enhanced focussing with up to

130% transmission through the sample. FEM modelling is used to plot the fields inside

the plate and further investigate the NGV region.

In chapter 6 a near-field scanning technique is used to measure the directional

dispersion of one-dimensional arrays of open-ended holes in an aluminium alloy. By

varying the number of rows and the form of the symmetry, the dispersion properties

of ASWs these structures support are documented. Glide symmetric structures are

seen to give modes with linear dispersion over a larger frequency range because of the

absence of a band gap at the Brillouin Zone (BZ) boundary. These structures are

demonstrated as possible sources of “slow” surface waves. These results are compared

to computational FEM models of the array both as perfectly rigid and with the elas-

tic properties of the plate included. These results demonstrate a 2.53 kHz difference

between the dispersions at the BZ boundary and signify the importance of the elastic

properties of these structures.

Following on naturally from the previous chapter, chapter 7 investigates ASWs

bound to the surface of two-dimensional square arrays of open-ended on holes in alu-

minium alloy. Results of Fourier analysed experimental data demonstrate the presence

of ASWs supported on two different thickness water filled hole arrays, with the same

pitch and radius holes. Experimental results are compared against FEM-modelled dis-

persion relations, with good agreement between the two in both cases. Additionally,

in-plane acoustic beaming is observed over a very narrow frequency range in both fre-

quency and wavevector results. Finally, the pressure fields in and plate deformation

around the holes is visualised using FEM modelling. The resonant frequency reduction
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seen between the asymptotic frequencies of the rigid and elastic cases presented in both

chapters 6 and 7 is explained following a Biot treatment of the elastic holes.

In the last results chapter, chapter 8, a pressure-release hole array is examined

using a radiative source to excite the sample from a distance. The results show a clear

cut-off frequency in the normalised mean amplitude of the transmitted signal through

the array. Spatially plotted transmission through the array shows the below and above

cut-off frequency transmission, confirming the negligible transmission below the cut-off.

These results are compared to an FEM model of a perfect pressure-release hole array.

The model results show Fabry-Perot like oscillations above the cut-off that are not seen

in the experimental data.

The final chapter, chapter 9, summarises the work covered in this thesis and de-

tails possible extensions of the work. This includes works in progress that have been

established experimentally as well as other ideas that may prove to be worthwhile in

the near future.

In addition, appendix A details the point-like source used to excite samples in chap-

ters 6 and 7. Appendix B is the derivation of the spatial modulation of the transmitted

fields of the flat plate in chapter 5 and appendix C is a derivation of the spatial modu-

lation of the transmitted and reflection fields around a pressure-release array of holes in

chapter 8. Finally, appendix D details the conferences at which this work was presented

orally and as posters.
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Chapter 2

Background

2.1 Introduction

Acoustic surface wave phenomena have been studied since the late nineteenth century.

Rayleigh explained the boundary between solid materials and air34. This was adapted

in the early twentieth century to plates and the coupling between two Rayleigh-like

interfaces by Horace Lamb16. Further to this, J. G. Scholte showed that there are

additional waves at the interface between two elastic media, liquid-solid and solid-solid

interfaces17. Parallel to these, studies of sound-structure interactions date back to the

late nineteenth and early twentieth century15,32. More recently, the focus has been

on the development of surface wave supporting structures called metamaterials and

other metamaterial-like systems. These structures make use of near to sub-wavelength

features that have been specifically designed to manipulate wave energy and have “tun-

able” applications.

Acoustic metamaterials use the coupling between the modes supported by the scat-

tering periodic features and the spaces between them to create materials that can

project, absorb and direct acoustic energy57,59. There are many tunable applications

of these materials ranging from defect detection, acoustic energy harvesting, sound

absorption and transmission. Underwater, these studies have mainly focussed on the

properties of the transmitted fields through metasurfaces whilst generally neglecting

their in-plane properties. This area of research has gained a lot of interest recently, in

part due to greater access to high-end personal computing and purpose-built software

that allow multiple domains of physics to be modelled alongside each other.

The following work will endeavour to bridge the gap between surface wave and

metamaterial research, looking at how in-plane elastic waves interact with in-plane

surface waves. The research discussed throughout this thesis will cover a range of

topics in acoustics looking at material characterisation, boundary conditions, one and
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2. Background

two-dimensional structured surfaces. All experimental work will be conducted under-

water and in the ultrasonic regime. First the basic acoustic theory and literature in

underwater systems will be described. Any other relevant theory will be mentioned in

further chapters as and when it is necessary to explain further. The following deriva-

tions in this chapter are based on the works of John William Rayleigh15, Lawrence E.

Kinsler60, David Cheeke61 and Benny Lautrup62.

2.2 Fluid Acoustics

To fully describe fluid acoustics mathematically it is necessary to make assumptions

that determine the way in which a fluid reacts to acoustic forces. In this section

the assumptions and approximations made about the way in which fluid molecules,

modelled as particles, interact individually and as a volume will be outlined. For

simplicity this work will first describe the nature of a lossless sound wave travelling

through a fluid. Later sections of this chapter explain more complicated bulk and

structured acoustic cases.

2.2.1 A Travelling Pressure Wave

Sound is a pressure wave that will propagate through any medium having mass, density

and elasticity. Underwater systems are made up of sub-nanometre size (≈ 0.275 nm63)

molecules that are constantly colliding with each other semi-elastically when perturbed

by a change in acoustic pressure, pa. A plane pressure wave incident on particles of

a lossless fluid medium is examined to visualise a simplified travelling sound wave. A

monochromatic plane wave source acting on a fluid is depicted in Figure 2.1.

This plot shows the instantaneous position of a vibrating plane source driving the

local position of particles in a fluid medium in x. This change in position causes a region

of the fluid to locally undergo a change in pressure, ∆p. On average the particles of

fluid oscillate around a centre point in x with a maximum displacement of the plate and

particles proportional to the peak pressure change ∆pmax. This oscillatory motion has

a time period, τ , a frequency, f = 1/τ , and wavelength, λ. The background pressure

for the majority of this work is assumed to be atmospheric pressure, patm ≈ 105 Pa.

Note particle size is assumed to be far less than the wavelength of sound and is near

point like, neglecting any orientation effects. This simplified example of a compression

wave (P-wave) travelling through a fluid is applicable to realistic planar sources within

a few wavelengths of the source. As a wave propagates further into a fluid the field

becomes complicated by particle-particle interactions and where motion is not confined

to one-dimension. This is mainly due to the non-particle-like nature of the molecules.
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Figure 2.1: A 2D graphical representation of a vibrating plane wave (bar) source
exciting a sound wave in the x direction. The oscillation of fluid particles responds to
changes in relative pressure, ∆p, with maximum pressure, ∆pmax.

This chapter describes how sound waves are further complicated when viscous ef-

fects, thermodynamic effects, elastic motion and interface effects are introduced. But

first the general form of the wave equation using some common approximations of

acoustics in fluids is derived.

2.2.2 Equation of State

The first law of thermodynamics states that the change to the internal energy of a

system is defined as dU = dQ ± dW . Here U is the internal energy, W is the work

done and Q is heat energy. In the acoustic case the work done on the system is related

to pressure as dU = −pdV , where p is pressure and dV is the change in volume.

The internal energy of the system is a function of temperature at a constant volume,

dU = nCvdT , and at a constant pressure, dU = nCpdT . Here, Cv and Cp are the heat

capacities of the fluid at a constant volume and pressure, respectively. Summing the

energies obtains:

nCvdT = nCpdT − pdV. (2.1)

It is assumed for the purposes of this work that there is no transfer of heat during the

elastic collisions between the particles of our fluid. This is called an adiabatic process.

The assumption means pV = constant which is equivalent to p = k′ρ where ρ is the
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density of the material defined as the mass m contained in a volume V and k is a

constant. k′ can be defined as k′ = ∂p/∂ρ. Equation 2.1 can be expressed in terms

more familiar to acoustics:

pa =

(
∂p

∂ρ

)
S

, (2.2)

where acoustic pressure pa = ∆p = p− p0, ρ is the density and S is entropy.

The assumption that water is are adiabatic is widely accepted as a good approx-

imation. More complicated models will assume the fluid to be isothermal (dT = 0),

rather than adiabatic. But the discrepancy between the adiabatic and isothermal bulk

modulus is small (0.1%)9 for the case of water, so thermal effects will be ignored for

the majority of this work. Although the thermal properties of acoustic fluids will be

revisited in sections 2.2.9.2 and 2.2.11.

2.2.3 Continuity Equation

A standard acoustic assumption to make of a fluid medium is conservation of mass or

the continuity equation. This relates the motion of the particles in or out of a volume,

V , to the change in density in that volume over time. This is mathematically described

as60,9:
∂ρ

∂t
+ ∇ · (ρv) = 0, (2.3)

where v is the fluid particle velocity, t is time and ∇ is the gradient operator,

∇ =
∂

∂x
x̂+

∂

∂y
ŷ +

∂

∂z
ẑ.

2.2.4 Conservation of Momentum

As stated in section 2.2.1, molecular shape and thus orientation may play a key role

in how particles collide. In a many-particle system the vast combination of collisions

means that the system is non-trivial to predict. To simplify this, the fluid is treated as

a macroscopically flowing elastic medium.

In 1827 Augustin-Louis Cauchy rewrote Newton’s second law of motion (F = ma)

in terms of the effective force acting on a volume,

f =

∫
V
ρ

(
∂v

∂t
+ (v ·∇)v

)
dV. (2.4)

Here, V is the volume of the fluid.
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This uses the local material time derivative, D
Dt , commonly used in fluid dynamics:

D

Dt
=

∂

∂t
+ v ·∇. (2.5)

Cauchy redefined the total momentum equation for a fluid as:

Dv

Dt
=

1

ρ
∇ ·σ + g. (2.6)

Here, g is the body force and σ is the three-dimensional stress tensor64:

σ =

σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

 , (2.7)

where τij and σij are the three-dimensional shear and normal stress.

The measure of friction of force resisting a flow is the viscosity η 60,61. Viscous loss is

commonly referred to as frictional loss, which scales with the viscosity of the fluid. Like

stress, viscosity can also be represented as a tensor65. Assuming the fluid is isotropic,

the stress forces relate to the viscosity through the form66,62:

σij = −pδij − η(∇i ·vj + ∇j ·vi). (2.8)

The result of substituting the viscous stress properties into equation 2.4 is the Navier-

Stokes equation, which will be discussed in section 2.2.8. But for the purposes of this

section the equation is simplified assuming the fluid medium is Newtonian, there are

no viscous forces (η = 0), the medium is homogeneous and under small disturbances

in pressure. The resultant conservation of momentum (from equations 2.4 and 2.6), or

Euler’s equation of motion is62:

ρ0
∂v

∂t
+ ∇pa = 0. (2.9)

This equation relates the fluid velocity, v, to the steady state density, ρ0, and the

acoustic pressure, pa, in time, t.
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2.2.5 Bulk Modulus

An intrinsic property of elastic materials in a volume is the bulk modulus60:

K = −V
(
dp

dV

)
S

. (2.10)

Here, p is pressure and V is the volume. K is related to the compressibility of the fluid,

β = − 1

V

∂V

∂p
. (2.11)

As compressibility, β, is a measure of how easy it is to squeeze and object or the

change in volume when pressure is applied to the material, a material with a large bulk

modulus is near incompressible.

As ∂p is in this analysis the acoustic pressure pa the equation 2.10 is rearranged to

define the acoustic pressure in terms of elastic properties:

pa = K

(
ρ− ρ0

ρ0

)
, (2.12)

where ρ0 is the unperturbed density of the material.

2.2.6 The Speed of Sound in Water

Sir Isaac Newton was the first to analytically derive the speed of sound travelling

through a fluid in Principia Mathematica 4. His analysis investigated a simple wave

depicted in figure 2.1 with a reference pressure, p0. When this travelling wave reaches a

point in space the local particles of the medium experience total pressure p1 (equivalent

to peak acoustic pressure) leading to a resultant acceleration. As particles outside the

pulse are moving at v0 the acceleration is defined as a = (v0 − v1)/dt. Using F = ma

then:

p1 − p0 = (ρ0dx)
v0 − v1

dt
= ρ0v0(v0 − v1). (2.13)

Rearranging this obtains:

v2
0 =

ρ1

ρ0

(
p1 − p0

ρ1 − ρ0

)
. (2.14)

Approximating to small perturbations in density this simplifies to:

v2
0 =

p1 − p0

ρ1 − ρ0
=

(
dp

dρ

)
(ρ− ρ0). (2.15)
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Combining equations 2.12 and 2.15, Newton derived speed of sound in an elastic fluid67,

cfluid =

√
K

ρ0
, (2.16)

where K is the bulk modulus of elasticity.

Comparisons between the experimentally observed and analytically calculated re-

sults in air were 343 m/s and 280 m/s. To correct this Laplace adapted the equation

to include an adiabatic index6 γ =
Cp

Cv
, saying that, γK = K ′ and cfluid =

√
K ′/ρ0. At

room tempertaure (T ≈ 293 K) water’s heat capacity Cp ≈ Cv, where the the adiabatic

index is ≈ 168,69. Therefore 2.16 is a valid approximation for underwater use.

A free travelling non-dispersive wave has a speed of c = fλ0 where c is a constant.

This means that the wave has a constant speed which is frequency independent. Al-

though it is a good approximation for sound in air and water, in reality this is not the

case for most elastic media.

The first recorded experimental measurements of the speed of sound in water were

performed in Lake Geneva in 18269 giving 1435 m/s. But as the speed of sound varies

with depth, salinity and temperature, each body of water has a different characteristic

speed of sound. For this thesis the speed of sound in room temperature (≈ 293K)

non-saline water is taken to be 1512 m/s, as will be shown in section 3.6.

2.2.7 Acoustic Wave Equation

Combining the effects of the continuity equation, the equation of state and the con-

servation of mass produces a mathematical description of the nature of propagating

acoustic waves called the acoustic wave equation. Here, equations 2.2, 2.3 and 2.9 are

incorporated to form the first-order loss-free three-dimensional acoustic wave equation,

∇2pa −
1

c2

∂2pa

∂t2
= 0, (2.17)

where c is the speed of sound. Helmholtz restated this in terms of angular frequency,

ω (ω = 2πf) or wavevector, k = ω/c:

∇2pa + k2pa = 0. (2.18)

For planar and monochromatic acoustic waves, as shown in figure 2.1, the general

solution to the wave equation has the form,

pa(r, t,k) = Ae−i(k · r−ωt), (2.19)
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2. Background

where ω is the angular frequency, k is the wavevector and r is the direction of propa-

gation. The corresponding fluid flow speed for this solution:

v =
A

ρ0c
e−i(k · r−ωt). (2.20)

2.2.8 Navier-Stokes Equation

Equating the separate forces acting on a fluid in equation 2.4 and inputting the velocity

gradient in equation 2.8 the new effective density force becomes62:

∇ ·σij = −∇ip+ η
(
Σj∇i∇jvj + Σj∇2

jvi
)

= −∇ip+ η∇2vi. (2.21)

Inserting this into the Cauchy equation of motion results in the Navier-Stokes equation:

∂v

∂t
+ (v ·∇)v = −1

ρ
∇p+

η

ρ
∇2v + g. (2.22)

This form is commonly used to describe the fluid structure interactions. In acoustics,

the Cauchy stress tensor must be resated for a compressible fluid as62:

σij = −pδij + 2ηvij . (2.23)

Here vij is the symmetric velocity gradient,

vij =
1

2

(
∇ivj +∇jvi −

2

3
∇ ·vδij

)
. (2.24)

It is necessary to state this in this form as vij accounts for the friction between local

areas of the fluid, ∇ivj +∇jvi is the gradient of the fluid and 2
3∇ ·vδij accounts for the

resistance to compression. Inserting this into equation 2.22 results in the compressible

Navier-Stokes equation,

ρ

(
∂v

∂t
+ (v ·∇)v

)
= −∇p+ η

(
∇2v +

1

3
∇(∇ ·v)

)
+ f , (2.25)

where f accounts for the body and external forces acting on the fluid. As the Navier-

Stokes infamously difficult to solve, it is approximated. Acoustics software, such as

Comsol Finite Element Method (FEM) modelling70 used in this work, does this com-

putationally and is further described in section 3.8.
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2.2.9 Acoustic Attenuation

Until now this study has assumed that acoustic waves undergo lossless propagation, but

this is not true as they are subject to attenuation. On a molecular scale, the particles

of a system collide with each other in a non-elastic manner and have some associated

loss. Using a complex wavenumber k = −iα + β, now the flow speed (equation 2.20)

of the fluid is:

vr = vr0e
−i(β · r−ωt)e−αr, (2.26)

where α is the unknown coefficient of attenuation to be determined61.

Acoustic attenuation and losses transfer kinetic energy into thermal energy. In an

infinitely large volume all propagating sound energy will eventually convert into thermal

energy. In a fluid-based system the majority of loss comes from viscous losses, the form

of which is examined in the next section.

2.2.9.1 Viscous Loss

As the fluid is compressible and viscous, the definition of the way in which it reacts to

changes in pressure (equation 2.12) must be redefined as62:

pa =
K0

ρ0
∆ρ− ηB∇ ·v, (2.27)

where ηB is the bulk viscosity of the fluid and K0 is the steady state bulk modu-

lus. Combining this pressure correction, the Navier-Stokes equation 2.25 and the time

derivative of the continuity equation 2.3 obtains:

∂2∆p

∂t2
=
K0

ρ0
∇2∆ρ+

ηB + 4
3η

ρ0
∇2∂∆ρ

∂t
. (2.28)

This has as similar form to the acoustic wave equation 2.18, with the addition of the

term on the far right. This term accounts for the viscous attenuation. This equation

has phase velocity, c0 =
√

K0
ρ0

, and angular frequency,

ω0 =
K0

ηB + 4
3η

=
c2

0ρ0

ηB + 4
3η
. (2.29)

The resulting attenuation is62:

α =
ω2

2ρ0c3
0

(
ηB +

4

3
η

)
. (2.30)
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2. Background

This shows that α ∝ ω2, meaning that as frequencies increase viscous losses increase

quadratically with that of frequency.

2.2.9.2 Thermal Loss

The thermal conductivity of a medium, κ, is a measure of how long it takes for heat to

transfer quantified as the temperature gradient. For simplicity this work has thus far

assumed that fluids subjected to sound are adiabatic. This is strictly only true if the

thermal conductivity is zero, which is not realistic. As κ is finite, heat energy in areas

of high pressure (compression) will be transferred to areas of low pressure (rarefaction).

This is related to the Fourier equation or the standard diffusion equation62:

∂T

∂t
= κ∇2T, (2.31)

where the heat diffusivity, κ, is mathematically described as:

κ =
k

ρ0Cp
. (2.32)

Here, κ is the thermal conductivity, ρ0 is the unperturbed density and Cp is the heat

capacity at constant pressure. Substituting this into equation 2.30 in the previous

section, the attenuation constant is now:

α =
ω2

2ρ0V 3
0

(
4η

3
+ ηB +

κ(γ − 1)

Cp

)
. (2.33)

Both thermal and viscous loss have been included in this equation. In water the viscous

losses are far more dominant and, as γ ≈ 1. Therefore, in most cases thermal loss is

ignored71.

2.2.10 Reynold’s Number

In 1883 Osborne Reynolds introduced another intrinsic property of all fluids72, the

Reynolds number,

Re =
ρvL

η
. (2.34)

Here, v is the velocity of the fluid, η is the dynamic viscosity and L is the characteristic

linear dimension (of the system being considered). This is used to predict how a fluid

medium will react to flow. This work deals with water.
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2.2.11 Fluid Mechanic Boundary Layers

Acoustic waves in fluids have the macroscopic property of flow. When flowing liquids

come into contact with a boundary they interact dependent on the type of boundary.

As was the case for the loss of energy of freely travelling sound waves, the dominant

factors are viscous forces and thermal conductivity. These boundary conditions lead

to viscous boundary layers and the thermal boundary layers. that fall into two sub-

categories that are Reynolds number dependent: laminar and turbulent. This work will

only look at low Reynolds number, Laminar flow as only small variations in pressure

are considered. In this case, travelling fluid particles interact with a fixed boundary

condition, as shown in figure 2.2. This type of boundary is called a no-slip boundary

condition as the fluid particles which come into contact with the boundary match the

speed of the surface.

Viscous

Boundary 
Layer

v

Fluid

Solid
No Slip Boundary

(v = 0 m/s)

Plane

Wave

δv

Thermal

Boundary 
Layer

δT

Tfluid

Tsurface

Figure 2.2: A 2D illustration of the thickness and effect of viscous and thermal
boundary layers over a rigid boundary. The thickness of the viscous and thermal
boundary layers are labelled as δv (blue) and δT (red). Both transition from the local
velocity and temperature of the surface, vsurface and Tsurface, to the fluid’s temperature
and flow speed, Tfluid and vfluid.

The viscous boundary thickness results from the Navier-Stokes equation 2.25, the

acoustic boundary condition 2.53, the continuity equation 2.9 at a boundary73. For a

flat plate flat plate this takes the form62,73:

δv =

√
2η

ρ0ω
. (2.35)
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2. Background

Also shown in figure 2.2 is an illustration of the thermal boundary layer. This

example shows that the fluid in contact with the surface has a different temperature to

that of the bulk liquid, with a temperature gradient in between. The thermal boundary

layer thickness δT is related to the viscous boundary layer thickness, δv, and the Prandtl

number9,62,73 Pr as:

δT = δvPr
−1/3 =

√
2κ

ωρ0Cp
. (2.36)

The Prandtl number is the ratio of the viscous diffusion rate to the thermal diffusion

rate (thermal diffusivity), Pr =
Cpη
κ . For water at 293 K the Prandtl number74 is

≈ 8. Therefore the thermal viscous layer is half the viscous boundary layer thickness,

δT = δv/2.

2.3 Solid Acoustics

Not only can sound waves travel through liquids and gases, they also travel through solid

materials with elastic properties. When confined to a solid material, the speed of sound

is dependent on the elastic properties: mass density, elastic modulus, and Poisson’s

ratio. These properties are quantified as extensions of the generalised Hooke’s Law and

are all metrics of how the material bends, flexes and wobbles in three dimensions as

force or pressure is applied to it.

For a solid, the mass density ρ and bulk modulus K take the same form as for the

the fluid: ρ = m
V and K = −V dp

dV , where m is mass, V is volume and p is the solid

pressure. But now a new set of parameters to describe elastic solids are introduced.

2.3.1 Poisson’s Ratio, Elastic Modulus and Shear Modulus

The Poisson’s ratio, ν, is a measure of the Poisson effect, whereby materials tend to

expand outwards in one direction when compressed in another direction. The Poisson’s

ratio is defined as:

ν = dεtransverse/dεaxial, (2.37)

where εtransverse and εaxial are the transverse and axial strain (dεr ≈ dr
r ). For very small

variations in axial length, ∆L, and radial length, ∆L′, the Poisson’s ratio is ν ≈ −∆L′

∆L .

Typically, unstructured metals have a positive Poisson’s ratio75 between 0.25 and

0.5. Some more exotic materials have Poison’s ratios that vary significantly: cork has

a Poisson’s ratio of around zero and auxetic materials have negative Poisson’s ratio76.
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But this study will only examine materials that have positive ν.

The elastic modulus, E, is a measure of how a material responds when force is

applied as a compression or contraction normal to the surface of the material. This is

commonly defined as77:

E =
σtensile

εextensional
, (2.38)

where σtensile is tensile stress and εextensional is extensional strain.

Measurements of the elastic modulus are performed on rods or bars by applying

force to one end and measuring the change in length, approximated as E = FL0
A∆L in the

elastic regime. Here F is the force applied, L0 is the initial length of the object, ∆L is

the change in the objects length and A is the area of the object over which force was

applied. This will be revisited briefly in chapter 4.

Shear modulus, G, is an elastic measure of how a material reacts when force is

applied in a direction parallel to a surface. It is usually defined as shear stress, σshear,

over shear strain, εshear:

G =
σshear(εshear)

εshear
. (2.39)

Measurements of the shear modulus are calculated using G = FA
∆L/L0

.

Although the elastic modulus and shear modulus can alter with strain in materials

that are subjected to extreme forces that result in non-linearity. The majority of this

work will look at materials that are subjected to weak forces that remain in the linear

regime. Therefore these materials have an assumed constant elastic modulus and shear

modulus.

2.3.2 Related Elastic Properties

The elastic properties of a material can be described using the linear elastic tensor (an

expansion on Hooke’s Law)78,79:

σ11

σ22

σ33

σ23

σ31

σ12


=



C1111 C1122 C1133 C1123 C1131 C1112

C2211 C2222 C2233 C2223 C2231 C2212

C3311 C3322 C3333 C3323 C3331 C3312

C2311 C2322 C2333 C2323 C2331 C2312

C3111 C3122 C3133 C3123 C3131 C3112

C1211 C1222 C1233 C1223 C1231 C1212





ε11

ε22

ε33

2 ε23

2 ε31

2 ε12


(2.40)
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Here Cijkl represents the tensor elastic properties of a material (in Voigt notation80).

Assuming the elastic properties of a material are homogeneous and isotropic this matrix

takes the form:

σ11

σ22

σ33

σ23

σ31

σ12


=



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 (C11−C12)
2 0 0

0 0 0 0 (C11−C12)
2 0

0 0 0 0 0 (C11−C12)
2





ε11

ε22

ε33

2 ε23

2 ε31

2 ε12


(2.41)

Substituting in the elastic properties of the material of Poisson’s ratio, ν, elastic mod-

ulus, E, and shear modulus, G. This is commonly represented as the constitutive

relation62,81:



εxx

εyy

εzz

2εyz

2εzx

2εxy


=



1

E
−
ν

E
−
ν

E
0 0 0

−
ν

E

1

E
−
ν

E
0 0 0

−
ν

E
−
ν

E

1

E
0 0 0

0 0 0
1

G
0 0

0 0 0 0
1

G
0

0 0 0 0 0
1

G





σxx

σyy

σzz

σyz

σzx

σxy


(2.42)

This can be restates simply in a one line equation,

E = 3K(1− 2ν) = 2G(1 + ν). (2.43)

Importantly, this shows how the different elastic properties of material can be derived

from two other elastic properties of the material. In this work, this is used to derive

the wavespeeds in solids and is restated using another method in chapter 4.

2.3.3 Bulk Wave Speed

The sound velocity of a travelling pressure wave in a solid is a function of the materials’

elastic properties. Unlike a fluid, there are a number of different sound wavespeeds in

an elastic solid Poisson’s ratio and the elastic modulus (due to the extra degrees of

freedom related to crystal symmetry). Bulk wavespeeds come in two different varieties:
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compressional and shear.

The compressional wave is similar to that of the compressional of an acoustic wave

travelling through a fluid. Unlike a fluid, the intermolecular elastic collisions of the

solid are not confined to one dimension so are dependent on a combination of the shear

and bulk modulus. A first order approximation of the compressional or P-wave wave

speed60:

cP =

√
K + 4

3G

ρ
(2.44)

Here ρ is the mass density and K and G are the bulk and shear moduli of the material.

The compressional wave is generally the fastest type of wave to travel through a solid.

Therefore during seismic events the P-wave are the first type of wave to be detected.

The shear wave speed or S-wave speed is given by60:

cS =

√
G

ρ
(2.45)

Here ρ is the mass density. Usually G < K + 4
3G, the S-wave is typically slower in

wavespeed than the P-wave.

2.4 Acoustic Impedance

To quantify the effects of loss, the most commonly used analogy is to compare an

acoustic system to a system made up of masses, springs, resistors and dampers. This

assumes that acoustics follows Hookean laws and can be simplified to an LCR cir-

cuit60,61. Acoustic impedance is a measure of the resistance to a change in pressure

of a medium or at a boundary. This term is a common parameter associated with the

mechanical-electrical analogy and acoustic impedance is a directly translated with the

impedance in an LCR circuit60. There are a few different types of acoustic impedance.

The specific acoustic impedance is a function of pressure, p, and flow speed, v:

z =
p

v
, (2.46)

measured in Pa · s
m . Another type of acoustic impedance is called the characteristic

acoustic impedance and is defined as:

Z0 = ρ0c, (2.47)
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where ρ0 is density of the medium and speed of sound travelling through it c, which

can be split into shear and compressional (cS and cP). A third type of impedance called

“normal impedance” is introduced in Section 2.4.3.

2.4.1 Particle Displacement

When considering pressure interacting with a fluid, it is useful to picture the particle

displacement. For a plane sinusoidal wave particles undergo displacement,

δ(r, t) = δ cos(k · r − ωt+ ψ), (2.48)

where δ is the displacement and ψ is the phase shift. Pressure and velocity have

equivalent forms:

p(r, t) = p cos(k · r − ωt+ ψp), (2.49)

v(r, t) = v cos(k · r − ωt+ ψv), (2.50)

The specific impedance (equation 2.46) states that:

z(r, t) =
p

v
=
ρc2k

ω
. (2.51)

Consequently, this relates to particle displacement as:

δ =
v

ω
=

p

ωz(r, t)
, (2.52)

where δ is the spatial displacement. The next section will discuss what happens when

materials that significantly differ in impedance respond to sound.

2.4.2 Ideal Acoustic Boundary Conditions

Two types of ideal acoustic boundary conditions called acoustically rigid and pressure-

release (or acoustically soft), first outlined by Rayleigh15. The acoustically rigid bound-

ary condition takes the form:
∂pa

∂n
= 0. (2.53)

Here pa is the acoustic pressure and n is the boundary vector normal the interface. An

example of this is the boundary between air and steel.

The acoustic pressure at a pressure-release boundary is:

pa = 0. (2.54)
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This condition is sometimes called free boundary. Both of these boundaries reflect

sound. But the pressure-release boundary reflects with zero phase shift whereas the

rigid boundary reflects with a π phase shift.

In reality no interfaces are perfectly acoustically rigid or pressure-release, but some-

where in between. Therefore, waves can propagate through interfaces from one medium

to another, without being perfectly reflected. This will be investigated in section 2.4.3.

2.4.3 Reflection and Transmission

At the boundary between two media the acoustic impedance changes with the angle

of the incident sound. A new definition of impedance must be introduced, the Normal

Impedance60,

Zi = ρ0c cos(θi). (2.55)

Here, θi is the angle of incident sound from the normal to the surface.

The proportion of energy transmitted, T , and reflected, R, are functions of the

acoustic impedance of the materials60:

R =

(
Z2 − Z1

Z2 + Z1

)2

, (2.56)

T =

(
2Z1

Z2 + Z1

)2

. (2.57)

The next section will explore how structuring rigid materials beyond flat surfaces

changes the way in which acoustic fields propagate and support resonances.

2.5 Acoustic Resonance

Structures can be shaped to support acoustic resonance. Later sections of this chap-

ter will detail how closely spaced coupled resonators can be used to support in-plane

acoustic modes, or surface waves. But first, this section gives an overview of acoustic

resonance in a single structure, using rigid or pressure-release boundary conditions.

2.5.1 A Helmholtz Resonator

One common method of supporting acoustic resonance is that of air blowing over the

edge of the rim of an empty bottle. This type of acoustic cavity mode is called a

Helmholtz resonator. In the idealised case, Helmholtz created a spherical hollow cavity
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made of metal that had a tube connecting the air-filled inner cavity to the outside

ambient environment32. A typical Helmholtz resonator is shown in figure 2.3.

Helmholtz stated that these devices could be used to select specific tones from a

broadband source of noise. That frequency is given by the equation60:

fH =
c

2π

√
A

V0Lh
, (2.58)

where c is the speed of sound, A is the cross-sectional area of the neck, V0 is the volume

of the cavity and Lh is the length of the neck. The motion of air inside the cavity

is lossy and, through viscous and thermal damping, can be used to absorb unwanted

frequencies. This has been known and used in structural acoustics for some time82,83,84.

x
y

Lh

Rigid

Solid

Rh
Rs

Fluid

Figure 2.3: A cross sectional schematic of a Helmholtz resonator. This type of
resonant cavity is defined by it is inner radius Rs, the length of the connecting neck
Lh and the radius of the neck Rh. The resonator is surrounded by an acoustically
rigid material (grey).

2.5.2 Modes of a Circular Hole

Another simple resonating object is that of a pipe, well studied in music and acoustic

physics32,85,86. The resonant frequencies of the pipe modes are dictated by its geometric

properties of length, L, and radius, R. For the open-open case, the acoustic pressures

(pa) field minima are expected to be at the open ends of the pipe and the maxima at the

centre. Therefore, the form of the equation to estimate the nth mode of an open-open
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pipes (ignoring end effects) is simply:

fn(open-open) =
nc

2L
, (2.59)

where c is the speed of sound, n is the order of the mode (harmonic) and L is the pipes

length. When one of the ends is closed the closed, end functions as a maximum in the

pressure field amplitude and therefore the harmonics are estimated to be:

fn(open-closed) =
nc

4L
. (2.60)

In practice there are end effects that are discuss in section 2.5.3. Furthermore, the effect

of using multiple open ended pipes in close proximity to each other will be discussed

in chapters 6 and 7 .

2.5.3 End Corrections

Rayleigh experimentally observed that there is a shift of the frequency of a resonating

cavity associated with the radius or width of the entrance and exit of a resonant cavity.

This shift was due to the effective length of the structure being longer than predicted

and longer than the structure itself. The correction to the length is called the end

correction87, ∆L.

This study will only discuss simple structures made of open-ended holes. Rayleigh

was the first to publish the end correction to an open-closed ended pipe87 in 1871:

∆L = 0.6R = 0.3D, (2.61)

where L is the length of the pipe, R is its radius and D is its diameter. Therefore open-

open ended pipes have an end correction ∆L = 0.6D. Therefore, the pipe equation

stated in the section 2.5.2 (equation 2.59) have to be restated as:

fn =
nc

2(L+ ∆L)
(2.62)

for the open-open ended pipe modes. This has been well documented15,88,89 and most

good acoustic computational modelling software will have this correction built in to

their analytical calculations70.

2.5.4 Acoustic Cut-off Frequency of a Circular Hole

The pressure-release boundary described in section 2.4.2 is analogues to a Perfect Elec-

tric Conductor (PEC) in electromagnetism (EM). A well-known property is that struc-
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tures made out of PECs have an associated cut-off frequency, under which EM waves

will not propagate through it. Thus, a hole in a pressure-release material has an equiv-

alent acoustic cut-off frequency.

The acoustic cut-off frequency of a circular hole is given as90:

fcut-off =
Zmnc

2πR
, (2.63)

where R is the radius of the hole and Zmn is the mth and nth zero of the Bessel’s function

of a first kind Jn. First order Bessel functions have the form plotted in figure 2.4.

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40
x

J n
 (x

)

J 1 2 3

— J1

— J2

— J3

Figure 2.4: A graph of the solutions to the Bessel’s function from orders 1 to 3. Here
the Bessel functions cross the x-axis are called the zeros of the Bessel’s function, Zmn.

Figure 2.4 shows that first order Bessel’s functions have a number of zeros and

therefore there are a number of cut-off frequencies associated with a single hole. The

first zero is Z01 = 2.4048 to 5 significant figures91 and defines the fundamental cut-off.

This will be revisited in the final experimental chapter, chapter 8, which investigates

and observes the cut-off frequency of arrays of pressure-release holes.

Many resonators in close proximity to one another can support types of modes that

depend on the geometry of the array. This will later be investigated in section 2.6.2, but

first the modes of a unstructured plate are discussed as the foundation of the in-plane

studies.
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2.6 Surface Waves

Surface waves are waves that are supported at the interface between two or more

elastic media. In acoustics there are several different types of surface waves. For a

truly “trapped” surface wave, the magnitude of the in-plane wavevector, |kx|, is greater

than the maximum bulk wavevector magnitude of the system, k0, where k2
0 = k2

x + k2
z .

Here x and y are in the plane of the surface and z is out from the plane. This means

that beyond k0, k2
z is negative and kz is imaginary. Therefore the wave is localised to

the surface and exponentially decays normal to it.

2.6.1 Surface Acoustic Waves

Surface Acoustic Waves (SAWs) exist at the boundary between two elastic media and

depend on the elastic properties of the material through which they travel. Due to

the asymmetry of elastic motion these waves can travel in elliptical motion and have

an associated “polarisation”. Like all surface waves, the decay length normal to the

surface of a SAW is an exponential function of the material properties and is typically

less than a free travelling wavelength out of the plane of the surface. SAWs are divided

into different sub-classifications, as summarised by Hess92.

λ

Vacuum

Solid

Particle 
Motion

z

x

Figure 2.5: A diagram of a Rayleigh wave over the surface of an infinitely thick
elastic medium beside a vacuum. This type of Rayleigh wave is non-radiative as it
cannot couple into the vacuum. Exaggerated particle motion is highlighted in red.

One of the first SAWs to be named was the Rayleigh wave34. Generally, this type

of wave occurs at the interface between an elastic medium and a near-vacuum. This

interface has a high to low impedance mismatch (Z1 � Z2) and can be approximated as

with metal to air, with the Rayleigh wave travelling within the metal. A cross section
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2. Background

showing the expected particle motion in a Rayleigh wave in an isotropic medium is

shown in figure 2.5.

The atoms in figure 2.5 move in an approximately elliptical motion when a Rayleigh

wave propagates across the surface (shown as a red arrow), a motion which decreases in

amplitude inward from the surface. These types of waves are supported by the ground

and, due the vertical motion of the surface, are some of the most destructive in the

event of an earthquake. Therefore, a lot of recent work has been conducted in order to

reflect or guide the wave energy of ground supported Rayleigh waves93,94.

The Rayleigh wavespeed cR is associated to the shear wavespeed cS. In an infinitely

thick linear elastic medium cR is a fixed and therefore is non-disperive. The Rayleigh

wavespeed has been approximated a number of times, each working for a specific bound

of Poisson’s ratios95,18,96. Recently set out, Malischewsky’s approximation97 works for

both positive and negative values of Poisson’s ratio,

cR = cS(0.874 + 0.196ν − 0.043ν2 − 0.055ν3), (2.64)

where ν is the Poisson’s ratio of the material. As the equation shows, the Rayleigh

wavespeed is close to the Shear wavespeed cS.

Particle 
Motion

λ

Elastic Medium I

Elastic Medium II

Interface

Figure 2.6: A diagram of a Scholte-Stoneley wave propagating at the interface be-
tween two elastic media. The interface between the two elastic materials is highlighted
in blue and the exaggerated particle motion in each medium is highlighted in red.

Another type of SAW occurs at the interface between two elastic media with sim-

ilar elastic properties. Scholte classified these types as Scholte waves at water-solid

interfaces and Stoneley waves at solid-solid interfaces17,56. In the literature, these have

been grouped together as Scholte-Stoneley Waves (SSWs) as they have very similar
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characteristics. In this work they will therefore be referred to as SSWs. A cross-section

of a travelling SSW has been depicted in figure 2.6.

Although SSWs travel in much the same way as Rayleigh waves, they travel at a

slower group velocity. However, they are also non-dispersive in infinitely thick media.

Underwater, SSWs are very important as many of the elastic properties of common

metals are similar to that of water and therefore support SSWs.

So far this work has only discussed elastic media where thickness L � λ. When

the thickness of the medium is finite and is near the wavelength of sound (L ≈ λ0)

the medium will support types of SAWs called Lamb waves. There are two families

of Lamb waves: Symmetric (Sn) and Asymmetric (An)16. Example shapes of these

categories are shown in figure 2.7. There is theoretically an infinite number of Lamb

modes, only limited by the elastic properties of the material. Unlike the Rayleigh and

SSW modes, Lamb modes are highly dispersive.

λ
Vacuum

λ

Symmetric Mode

Asymmetric Mode

Solid

Solid

Vacuum

Figure 2.7: A diagram of the two different classes of Lamb wave. These are general
shapes to show the symmetry of the symmetric and asymmetric modes, which have
wavelength λ.

2.6.1.1 Finite Element Method SAWs

It is possible to use Finite Element Method (FEM) models to visualise acoustic waves

travelling within media. A broadband monopole point source exciting the flat inter-

face between water and aluminium is shown in figure 2.8. Here, is an instantaneous

picture of the different SAWs propagating over the surface as well as the bulk waves

travelling through the water and the aluminium 0.03 ms after the single cycle pulse was

launched. Each of the labelled modes has a different wavespeed. Therefore at 0.03 ms

the Rayleigh, SSW and bulk waves have all travelled different distances from the point

of excitation. Note that figure 2.8 has introduced “leaky” Rayleigh waves that exist at
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2. Background

the interface between most metals and water. This will further be explained using the

help of SAW dispersion in the section 2.6.1.2.

Compressional, shear, Lamb, Rayleigh, Schote-Stoneley waves can all exist in mate-

rial at the same time98. It can become very hard to discern and characterise one wave

from one another in time and frequency domains. A way to separate and label these

modes is by plotting the dispersion relation, which will be covered in section 2.6.1.2.
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Figure 2.8: Comsol modelled instantaneous pressure arising from a single cycle
Hanning-windowed pulse from a point source on the surface of a submerged elas-
tic solid (Aluminium) in space (x and z) at 0.03 ms after the pulse was launched. The
propagating SAWs present in both materials are labelled. As the positions of each
wave shows, each SAW has a different wavespeed.

2.6.1.2 SAW Dispersion Relation

The dispersion of a wave represents how its phase and group wavespeed (vp = 2πf/k

and vg = 2π ∂f∂k ) changes with frequency f and wavevector k. A wave is non-dispersive

when the group velocity and phase velocity are the same (vg = vp) at every frequency.

As SAWs come in many different forms that are difficult to characterise in the time and

frequency domain, it is helpful to show how the dispersion relation. This shows how each

different type of wave evolves and overlaps over a range of frequencies and wavevectors,
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and is widely used in condensed matter, photonics, phononics and acoustics99,100.

Figure 2.9 shows a simplified example of the dispersion of different plate modes.

This plot shows frequency, f , plotted against the wavevector component parallel to the

surface of a plate in one direction, kx. The modes themselves are eigenfrequencies of the

finite thickness plate, the Lamb modes. These fall into two categories antisymmetric

An and symmetric Sn, as was previously outlined. Similar plots are exhibited in several

works on elastic plates18,101,22.
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Figure 2.9: An example dispersion plot of the acoustic wave transmission through a
solid plate immersed in water. The wavespeed limits have been plotted as the Rayleigh
wavespeed cR, the S-wave speed cS , the P-wave speed cP and the SSW speed cSSW .
This example includes a sound line, k0, which represents a typical sound line for water.
As such, most acoustic modes fall into the radiative regime, whereas SAW modes are
in the evanescent regime. In this case, the SSW mode is an SAW.

A common feature of dispersion plots is the sound line defined as k0 = 2πf
cw

where

cw is the non-dispersive speed of sound in the surrounding water. This is shown as

a black dashed line in figure 2.9. k0 defines the maximum wavevector which a freely

propagating wave can have (|k| < |k0|) in the chosen direction. k0 also defines the point

at which a mode is radiative or evanescent. When |kx| < |k0| the mode is radiative

as it can couple to the surrounding medium and radiate away from the surface. In

contrast, when |kx| > |k0| the mode is evanescent, trapped within the medium and

exponentially decaying into the surrounding medium. Experimentally, the range of kx

values detected is a function of the field that excites them kx = k0 sin θi. Here θi is the
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angle of incidence of sound. This will be discussed in detail in the methods chapter 3

and investigated much further in experimental chapters 4 and 5.

In figure 2.9, the dotted black lines show the compressional, shear, Rayleigh and

Scholte-Stoneley wavespeeds (cP, cS, cR and cSSW). As can be seen the different Lamb

modes, plotted in blue (asymmetric) and red (symmetric), follow these wavespeed lines

as function of frequency and wavevector. For small values of f and k, the S0 and A0

modes have very different phase velocities vp and group velocities vg, but at higher

values the two modes disperse similarly, and are one and the same mode can be seen.

This linear region is where the A0 and S0 modes are now Rayleigh waves. For the

purposes of this work, the Rayleigh wavespeed is defined as the limit at which the A0

and S0 modes become degenerate and linear will be referred to. This will be explored

much further in the experimental chapters of this thesis.

In the underwater example of figure 2.9, most of the Lamb and Rayleigh waves exist

inside the radiative regime and therefore not bound to the surface. This means that

they are “Leaky Rayleigh” and “Leaky Lamb” waves that couple into the surrounding

medium and are not surface waves. Leaky waves radiate from the plate and can be

detected at large distances from the plate102. This was mentioned and depicted in

figure 2.8. On the other hand, the one SSW mode depicted exists beyond the sound

line in the evanescent domain, which means that this wave is non-radiative and SSW

acoustic energy is confined close to the surface of the plate.

2.6.2 Acoustic Surface Waves

Another type of surface wave is that of the non-radiative, trapped, highly localised,

evanescent decaying waves supported by near-acoustically-rigid periodically structured

surfaces called Acoustic Surface Waves (ASWs). These waves are sometimes referred

to as “spoof surface waves” or “coupled Rayleigh waves”. Usually, they are excited

over surfaces periodically patterned with sub-wavelength sized cavities (sections 2.5.1

and 2.5.2) integrated into a solid material.

Analytical theory of these systems varies depending on the medium supporting

the ASW, the shape of the cavity and the size of the unit-cell. The most common

method to derive the radiative transmission and plot the evanescent dispersions of such

structures is modal-matching. This method uses approximations of the diffraction55,50

from perfectly rigid cavities and Bloch periodicities to calculate the eigenfrequencies of

the system. This method is commonly used in plasmonics and photonics. It is a useful

but somewhat inexact method and many studies have opted to use Finite Element

Method (FEM) models to model ASW supporting systems51,103.

A cross-section of an example ASW-supporting rigid grating is shown in figure 2.10.
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The pictured system is periodic with a repeated “unit-cell” of the structure outlined

in purple with pitch λg. Each unit cell contains a single water-filled rigged-walled

cavity that has length, L, width, w, and material spacing, d. As mentioned before,

each of these cavities will have an associated end-correction ∆L that will change the

resonant frequency of the Fabry-Perot (fFP = c/λFP) modes of the system. But the

short periodicity of λg � λFP between each cavity changes the end correction due to

the coupling between each cavity, and an associated overlap integral55,104. Through

evanescent diffracted coupling, the system will support ASWs over very narrow fre-

quency ranges where kx > k0 and kz is purely imaginary above the grating, with the

magnitude of pa shown in figure 2.10 inside the red dashed box.

|pa|

Water

x

z

Rigid Solid Unit Cell

L

w
d

λg

n

θi

Figure 2.10: An illustration of an underwater acoustically rigid grating with pitch
λg, cavity width w, cavity length L and material spacing d. The grating is periodic
with a unit-cell of width λg (bounded by purple dotted-dashed lines). Also shown is
the incident angle of sound θi. The exponentially decaying magnitude of pa is plotted
in red.

2.6.2.1 Finite Element Method ASWs

Again this is modelled using an FEM. Figure 2.11 shows an instantaneous time-domain

pressure field plot of a Hanning-windowed pulse point excitation travelling over the

surface of an ASW supporting 6 mm pitch grating in a perfectly rigid solid at 0.12

ms after the pulse launched. A scaled up view of this system is shown in the top

of figure 2.11. Here the free travelling wave has moved through the fluid at the speed

cw ≈ 1500 m/s and behind it there are later arriving waves. As these fields interact with

the resonant cavities these cavities then act as secondary sources that couple into the

water, diffracting radiating fields. Unlike the unstructured case, there is the presence
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of a slowly travelling wave close to the surface. These are the ASW waves. As the

model uses a Hanning-windowed pulse containing many frequencies, there are a range

of excited wavelengths.
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Figure 2.11: The Comsol modelled instantaneous pressure arising from an approx-
imately single-cycle Hanning-windowed pulse from a point source on the surface of
a submerged perfectly rigid array of cavities in space plotted as normalised pressure
amplitude (p/pmax). These cavities have pitch λg = 6 mm and width w = 3 mm.

First observed in air by Ivanov-Shits and Rozhin105 in 1959, ASWs have been the

focus of a large body of work as they can be supported by air and water systems

to direct and manipulate in-plane acoustic waves. They have been shown to support

surface waves with near-infinite in-plane decay lengths due to the impedance matching

between periodic features of the systems at specific frequencies which can be “tuned”

by varying the size and pitch of the ASW supporting grating. Most of the work on

ASWs was performed in air as it is easier to experimentally observe them. Underwater

the situation is more complex due to the similar velocities of sound in water to that in

patterned solids, which may be treated as imperfectly rigid.
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2.6.2.2 ASW Dispersion Relation

Figure 2.12 shows an example dispersion of an ASW in kx. This example is that of a

typical short pitch (λg � λFP) ASW supporting system similar to that of the grating

pictured in figure 2.10. Shown are two ASW modes being excited at two different

frequencies. The asymptotic frequencies of both these modes is approximately defined

by the length of the coupled resonant features, as in the case of Fabry-Perot resonances.

As can be seen in the figure, the gradient and therefore group velocity is not constant,

so these modes disperse. This plot is bounded in kx by the BZ, kBZ = kg/2 = π/λg.

If the λg was increased, the second mode would eventually surpass the diffraction edge

and would be found on the sound line.
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Figure 2.12: The dispersion plot of Acoustic Surface Waves (ASWs), plotted between
kx = 0 and kx = kg/2. The wavespeed limit of the non-dispersive wave k0 has been
plotted as the black dashed line. The Fabry-Perot frequencies fFP and the asymptotic
frequencies fasymptote are plotted as black dotted lines. The ASW eigenmodes of the
system are plotted as red lines.

Note that in figure 2.12, there are two regions defined by k0 = ± 2πf
cwater

. Modes

with |kx| < |k0| are radiative and modes with |kx| > |k0| are evanescent. All the ASW

modes of this system are evanescent, meaning that they are trapped at the surface.

In the radiative regime the modes have a small enough wavevector to couple into the

water with an associated angle of incidence, θi. This relates to the wavevector as

kx = k0 sin(θi), which at normal incidence (θi = 0◦) has zero amplitude kx = 0 and at
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grazing (θi = 90◦) kx = k0. This type of dispersion will be experimentally plotted in

chapters 6 and 7.

In figure 2.12, the radiative regime includes the presence of so called “Fabry-

Perot Evanescent-Waves” (FPEVs). The radiative transmissive properties of structured

plates are the focus of many studies as they can be designed to enhance or absorb the

SAWs106,107,108,109.

2.6.3 The Extended Zone Scheme

The last section looked at the ASW dispersion with 0 < kx < kg/2. Values outside of

this range were ignored, to avoid confusion. However, the periodicity, λg, is the reason

the ASW mode can be supported and it is instructive to also look outside of the range

of the first BZ. There are three common ways to represent the extended dispersion

relation100

� A “repeated-zone” scheme, where every eigenfrequency band is drawn within

every Brillouin zone.

� A “reduced-zone” scheme, where only the first Brillouin zone is included, this

time with every mode “band-folded” back and represented between 0 < kg/2.

� An “extended-zone” scheme, where the band structure is extended from the origin

to higher k without repeats in each zone.

It is of course possible to plot the dispersion in more than one direction, but this work

is primarily concerned with the dispersion in one-dimension. Therefore an example

of repeated-zone scheme dispersion is plotted for a structure similar to that of the

one-dimensional periodic grating, similar to that in figure 2.10, in figure 2.13.

There are a few important features to note. At the edge of the first Brillouin

Zone (BZ) |kx| = |kg/2| the first standing wave condition is met. At these points the

gradient and therefore the group velocity of the ASW modes is zero and in practice it is

impossible to excite this mode at the BZ boundary. Beyond this at |kg| > |kx| > |kg/2|
the waves shown are Bragg-scattered with negative group and phase velocities, these

regions are referred to as the diffracted regions.
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Figure 2.13: A plot of an example extended zone scheme of an ASW supporting
structure. Here, the first and second Brillouin zones in the forward and backward
propagating directions. Labelled are the ASW modes and the FPEV modes. Shaded
are the radiative and the evanescent regimes.

2.6.4 Bloch Theorem

It is useful to use a mathematical description of a physical system whenever possible.

Felix Bloch’s thoerem describes wave interactions with periodic systems, such as the

ones explored in two of the experiemental chapters of this work. For lattice structures

Bloch theorem states that a wavefunction takes the form100,

ψn,k = eik · run,k(r) =
∑
G

Cn(k +G)ei(k+G) · r. (2.65)

Here k is the wavevector in the band n, G is the reciprocal lattice vector of the periodic

structure and Cn is the band dependent amplitude. Bloch theorem is a useful analytical

method of quantifying the effects of structure on a waveform ψ(r), which is analogous

to p(r). Although, for complicated structures it becomes much harder to specify and

solve for G. This will be revisited in chapters 6 and 7.

2.6.5 The Effect of Elasticity

The descriptions of the nature of Acoustic Surface Waves have so far only looked at peri-

odic structures which are perfectly rigid. Underwater metamaterials and metamaterial-

like structures must include the elastic properties of the structures to be studied. The
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bridge between metamaterial-like concepts and elastic plate theory is where the research

presented in this thesis will focus.

In figures 2.14 and 2.15 shows a 6 mm pitch grating made out of aluminium, the

same as the structure described in the previous section, excited with the same Hanning-

windowed shaped single-cycle pulse at 0.12 ms after the pulse was first sent. Figures 2.14

shows the full time-domain model where the wave is travelling through both the alu-

minium and the water. Like the unstructured surface (section 2.6.1), the compression

and non-dispersive wave within the water have travelled away from the origin the fur-

thest. But unlike the unstructured surface the proceeding waves are a mix of all the

resonating cavities, making it a far more complicated field map to identify the Rayleigh,

Leaky Rayleigh and SSWs.
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Figure 2.14: The Comsol calculated instantaneous pressure arising from a single-
cycle Hanning-windowed pulse from a point source on the surface of a submerged
aluminium sample with a patterned array of cavities on it’s surface in space, plotted
as normalised pressure amplitude (p/pmax) at 0.12 ms after the pulse was first sent.
These cavities have pitch λg = 6 mm and width w = 3 mm.

Figures 2.15 shows the comparison between the complicated elastic and the simpler

rigid case. This highlights how even though it may be possible to analytically determine
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the modes of the rigid case, the waves become further complicated by the presence of

an elastic structure. A large part of this work concerns experimentally detecting ASWs

over submerged metal plates that have been structured to support ASWs. This thesis

investigates how ASWs and elastic modes of the plate interact. This will be further

discussed and investigated in experimental chapters 6 and 7.

Point source

N
or

m
al

is
ed

 P
re

ss
ur

e 
A

m
pl

it
ud

e 
(p

/p
m

ax
)

x (mm)

z 
(m

m
)

0
-1

00
1

0
0

-160 1600

Water

Perfect Acoustically Rigid

Water

Aluminium

0
10

0

Figure 2.15: A comparison between the surface of a perfectly rigid vs an elastic
aluminium patterned surface using Comsol to plot the normalised pressure (p/pmax).
These cavities have pitch λg = 6 mm and width w = 3 mm.
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2.7 Conclusion

This chapter covered fundamental concepts of the acoustics of fluids and solids including

the loss-free acoustic wave equation, impedance, elastic properties, losses and resonant

structures. Importantly, this chapter looked surface wave phenomena at the interface

between two elastic materials, which is particularly common underwater. Further to

this, the idea of acoustic resonance and how arrays of closely packed resonators support

surface bound waves was outlined. To help understand and characterise acoustic fields,

the dispersion relations of each type of wave was plotted and showed how it is useful

for identifying the different radiative and evanescent modes of a system. Experimental

results outlined later in this work will reflect on the theory set out here with the final

results set out as dispersion diagrams. The next chapter will outline the experimental

techniques used to detect sound underwater and the work expands on some of the

analytical theory and computational modelling of sound propagating over periodically

structured surfaces.
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Chapter 3

Methods

3.1 Introduction

In this chapter the experimental, computational and analytical methods used through-

out the subsequent chapters are presented. Firstly the details and reasoning for the

choice of materials from which samples are made is described. Then the experimental

pulse techniques used to acoustically excite the samples are described, including the

equipment used to send and receive ultrasound and the methods used to analyse the

data produced. Two types of experiment are detailed; the first setup with the source

in the far field, used to acoustically excite the plate in the radiative regime, and the

second setup with the source in the near field used to excite the evanescent fields of the

modes of a structure. Finally, the computational analysis of the systems is described.

Many of the methods of the work discussed in this chapter can be found in textbooks

by Xavier Lurton110, Allan D. Pierce9 and Earl G. Williams111.

3.2 Material Selection

There are a vast array of solid materials that can be cut, drilled and shaped to create

patterned surfaces. For experiments in air there is little dependence on the material

properties as most will closely approximate to being acoustically rigid15, described in

section 2.4.2. These types of boundary conditions have been used to create “exotic”

acoustic structures using additive manufacturing techniques58,112. However, these tech-

niques use polymer-based materials, which may be unsuitable for underwater work (sec-

tion 2.6.1) as the speed of sound in polymers can be slower than in water and it may

also be quite lossy. As discussed in section 2.6.1.2, the speed of sound underwater sets

the limit between the radiative and the evanescent regimes. However, solids support

wavespeeds (Rayleigh, shear and compressional) that are close to, and slower than, the
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speed of sound underwater and so certainly may not be treated as perfectly rigid. This

was briefly discussed in section 2.6.1.2 and will be further investigated in chapter 4.

Another point of interest is that generally the most common boundary found in air is

the rigid boundary condition as most solid materials have a large impedance mismatch

from low to high characteristic impedance, Z, previously described in section 2.4. In

contrast to this it is difficult to find a material that fulfils the role of being a perfect

pressure-release material in air as the high to low characteristic impedance mismatch

would need to be satisfied. Aerogels are one possible candidate but are notoriously hard

to cut and shape as they are brittle113. Underwater it is easier to achieve this boundary

condition, as most thin walled air-filled cavities act as pressure-release materials. Thus,

underwater novel experiments on pressure-release boundaries may be conducted which

cannot readily be undertaken in air.

3.2.1 Underwater Pressure-release Materials

The majority of fluids have a far greater characteristic acoustic impedance than light

gases such as air. For example, the characteristic impedance of room temperature wa-

ter114 is Zwater ≈ 1.5× 106 Pa · s
m3 and air115 has Zair ≈ 4× 102 Pa · s

m3 . As Zwater � Zair

a material such as a closed cell foam can be used as a pressure-release material under-

water.

There are a numbers of different foams available116,117,118. They fall into two cat-

egories: open-cell foams or closed-cell foams. A comparison between open-cell and

closed-cell foam microscope images is shown in figure 3.1. As shown, open-cell foams

consist of a series of open walled cells that are interlinked. Common open-cell foams

are widely used as dish sponges, bedding and packing foams. These foams will quickly

fill with liquid when submerged as a result of having interconnected cells. This makes

them unsuitable as a candidate for constructing pressure-release structures underwa-

ter. By contrast, closed cell foams usually consist of a polymer-based substance that

is cured using an active agent that produces gas whilst it cures. Once cured, these

materials have the majority of their cell walls intact and are not primarily intercon-

nected. In general, closed cell foams are not as malleable as open-cell foams, which

makes them easier to cut and drill. This makes them ideal candidates for a pressure-

release material underwater. This work will use the closed-cell foam pictured on the

right of figure 3.1, the Ethylene Vinyl-Acetate (EVA) foam to construct a foam adapter

described in section 3.5 and the sample examined in chapter 8.
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200 μm 200 μm

Figure 3.1: 10× magnification microscope images of open (left) and closed (right)
cell foams. The pore sizes of the closed-cell foam ranges from dpore ≈ 50 µm to
dpore ≈ 200 µm. The open cell foam does not have pores, but strands of polymer that
connect throughout.

Ethylene Vinyl Acetate, Ethylene Polymer Acetate and Polyurethane foams are

closed cell foams that have a variety of applications, from the sports to the aerospace

industry. The main criteria that determines the effectiveness of a pressure-release ma-

terial is the acoustic wavelength, λ, compared to pore size, dpore. Note that when these

materials are machined the outer surface of these materials will have a range of intact

and compromised pores.

3.2.2 Underwater Elastic Materials

Many common metals have a similar impedance to that of water and therefore cannot

be classed as acoustically rigid when submerged. Therefore, the metals studied in this

work are treated as elastic materials.

This work investigates simple resonating structures integrated into these elastic

materials. In order to structure these metals, they will be drilled and cut. Metals such

as steel and aluminium are ideal candidates to be cut and shaped. The majority of

the experiments in this thesis will investigate the properties of aluminium alloy as flat

unstructured and structured plates. Cutting and drilling was performed using a CNC

(Computer Numerical Control119) machine to pattern the surfaces with arrays of holes

in one-dimensional or two-dimensional geometries.

Underwater, there are several issues that need to be addressed before using metals.

Galvanisation and oxidization become issues that are heightened by impurities present

within the water, as water bubbles form on metal surfaces scattering acoustic waves

and acting as secondary sources. This problem is of course more of an issue with longer

scan times. In this work, many experimental scan times fell in the 8− 34 hours range.

There are techniques to reduce this such as the use of sacrificial metals120, but the

simplest technique is just to remove all other metals from within the water tank and if
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other metals are needed for construction purposes then choose the same alloy, removing

the potential difference between the two.

3.3 Experimental Setup

The experiments discussed in this work are performed underwater in a 3.00 ± 0.05 by

1.75±0.05 by 1.20±0.05 m fibreglass water tank in the lab. This tank is filled with tap

water up to 1 m deep, with the addition of a minimal amount of chlorine (≈ 1 ppm)

to keep the water free of fouling. The water has no flow and the ambient temperature

stays similar to that of the room, varying from 291.0 to 295.0 K. The assumed ambient

pressure of the room is that of the air pressure in the room that is p0 ≈ 1 atm. The

water tank is pictured and graphically rendered in figure 3.2. The size of the setup

makes it hard to photograph without obscuring parts of the tank, so graphical renders

are utilised to help visualise it and to later visualise the in-water experiments.

Photo3D Render

Figure 3.2: The water tank used for experiments outlined in this thesis. The right
figure is a photo of the water tank and the left is a scale 3D render of the water tank
with the addition of a scanning stage that will be later explained.

3.3.1 Ultrasound Sources

A Neptune Sonar D70 transducer121 is used as an acoustic source. The transducer is

a 3.4 ± 0.1 cm diameter ball made of a black polyurethane outer shell with an inner

core made of a piezoelectric (lead zirconate titanate or PZT) that generates ultrasound

through an applied voltage, V . An image of the transducer is shown in figure 3.3.

This source has a nominal resonant frequency of 70 kHz and has an omni-directional

beam pattern (quoted121 up to 80 kHz). The typical transmission response for the D70

transducer is shown in figure 3.4121, calibrated up to 150 kHz, but as will be discussed

in section 3.5, the source can be driven outside of this range.
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Figure 3.3: Photos and renders of the two sources. Top is the normal Neptune
Sonar D70 transducer and bottom is the EVA foam wrapped D70 transducer. Left are
photos of the devices on a 1 by 1 cm grid and right is the graphical representations
of these devices with the dimensions given. Measurements of the diameter of the ball
D70 has ±0.1 mm error and the dimensions of the wrapped D70 has ± 0.5 mm error.

To use the D70 transducer in the near field, a purpose-built 10.0 ± 0.5 mm thick

pressure-release foam (Ethylene-Vinyl Acetate or EVA) source adapter was built. It

was fashioned into the shape of a box with a 0.50 ± 0.01 mm walled 6.00 ± 0.01 mm

diameter aluminium tube linking the outside to the water filled cavity containing the

transducer. In making this device it was necessary to fulfil two criteria: maintain the

broad usable frequency spectrum that the source outputs and reduce the apparent size

of the source by varying the radial aperture to the end of the narrow tube. This is

designed to make the modified source more point-like and directional to excite modes

supported by samples that are examined. Figure 3.3 shows the source in the bottom

two plots. More details about the construction of this source is explained in appendix A

and the output of this source is given in section 3.5.
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Figure 3.4: A typical transmissivity calibration of a Neptune Sonar D70 transducer.
Peak nominal frequency of 70 kHz, although it has a broad output usable down to
1 kHz and up to 150 kHz. This data was taken from the Neptune Sonar public web
page121.

3.3.2 Ultrasound Detectors

Hydrophones are used to detect underwater pressure fields. This type of detector

converts local pressure into electrical current using piezoelectric crystals110. In this

work two different types of hydrophone are used: a Precision Acoustics (PA) 1 mm

diameter needle hydrophone122 and a Brüel & Kjær 8103 hydrophone123. These are

pictured in figure 3.5 as well as their 3D rendered images, showing the dimensions of

the two detectors. The hydrophone is gold plated, to make it inert underwater, and

encloses a 28 µm thick gold electrode Polyvinylidene fluoride (PVdF) detector film at

the tip of the 1 mm extrusion. This means it is a relatively point-like detector at the

frequencies that are investigated in this work.
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Figure 3.5: Photos and renders of the two detectors. Top is the Precision Acoustics
1 mm needle hydrophone and bottom is the Brüel & Kjær foam 8103 hydrophone.
The left photos are of the devices on a 1 by 1 cm grid and right is the graphical
representations of these devices with the dimensions given. The PVdF detector is
positioned is at the tip of the measured 1.1 mm diameter extrusion. Measurements of
the dimensions of both detectors have ± 0.1 mm error.

Calibration data for the two detectors is shown separately in figures 3.6 and 3.7.

The two plots show the receiving sensitivity of the two detectors. The Brüel & Kjær

hydrophone has a broad non-zero receiving sensitivity in the frequency range between

0 and 300 kHz with a peak response at ≈ 250 kHz. Shown in figure 3.7, the needle

hydrophone is not calibrated in the frequency range that will be studied. Experimental

results here use the spatial mean and maximum values in order to avoid minima in the

output amplitude of the source, when normalisation takes place, and to visualise the

detected signals, further explained in section 3.5. The results are collected and analysed

using and normalised using a reference or self-normalisation technique described further

in section 3.5. Therefore, it is only important that the source-detector setup has a usable

range that is suitable for acoustically probing the samples in this work.
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Figure 3.6: The measured receiving sensitivity of the Brüel & Kjær 8103 hydrophone.
This graph shows that the receiving sensitivity, V

µPa , is generally flat between 0 and
300 kHz with a minimum at 190 kHz. This measurement was taken by Thales.

Figure 3.7: The measured receiving sensitivity, mV
MPa , of the Precision Acoustics

needle hydrophone. The sensitivity drops off at the higher frequencies. But as this
work will show, it is usable in the range of 50-150 kHz.
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3.4 Other Equipment

The experimental system is run computationally using a LabView code that defines

the output pulse shape as voltage, V , over time, t, and reads the detected signal using

a USB linked digital oscilloscope124 (Picoscope 5442D). This also synchronises the

sending, from the waveform generator, and detecting of signals. The Picoscope runs at

14-bit dynamic range, but to improve the signal to noise and take advantage of the full

dynamic range of the Picoscope it is necessary to use a wideband signal amplifier (pre-

amp), which will be further detailed in section 3.5. A full schematic of the experiment

is presented in figure 3.8.

PC
LabView

KH Amplifier

Waveform 
generator

TTI Amplifier

Picoscope
5442D

Photo of Setup:

Setup Schematic:

Figure 3.8: Top is a photograph of the full experimental setup used to run exper-
iments. Bottom is a schematic of the setup, including the in-water equipment. The
source and detector can be interchanged as to best suit the sample and the frequency
range being scanned.
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To scan the fields spatially, a LabView controlled XYZ scanning stage is used. The

hydrophone detectors are mounted to the stage using bespoke acrylic and 3D printed

mounts that allow the detector to be positioned with precision with reference to the

sample. Further details about this and the process used to analyse the data is discussed

in section 3.7.

3.5 Pulse Measurement Technique

There are several different types of pulse shapes used to extract the response function

of a sample: Continuous Wave (CW), chirped and broadband pulses are commonly

used in material evaluation techniques to excite acoustic systems with single frequency

or a range of frequencies25,125.

The interface between two different impedance materials is a source of acoustic

reflections, scattering and diffraction (section 2.4.3). As experimentation takes place in

1.00 m deep water and the speed of sound in water is, cw ≈ 1500 m/s (experimentally

measured in section 3.6), detected signals may include significant reflections from the

sides of the tank. There are two ways to deal with these reflections. The first method is

to cover any reflecting surfaces in an absorbing material. This method is commonly used

in air126,127, but underwater this method is very costly as it is necessary to use specialist

syntactic rubber which is limited to a usable frequency range128. The second method is

to remove the reflected signal in post-processing by time-gating the results. This time-

gating of the signal is by the far the simplest and most cost-effective method. Reflections

in the tank also mean that for repeat pulses, the time-gap between each pulse must be

large enough for all reverberations to dissipate. Therefore experimentation is gathered

over 120 µs recording times, time-gated at 65 µs, when necessary, and with a pulse rate

of 1 every 0.3 s. In summary, the experimentation in this thesis uses the broadband

pulse technique that uses approximately double-cycle Hanning windowed pulses centred

around ultrasonic frequencies that are then time-gated to remove reflections.

A comparison of different Hanning shaped pulses centred around the same carrier

frequency is shown in figure 3.9. Changing the length of the pulse changes the number

of oscillations contained within the pulse and changes the frequency bandwidth of the

pulse. The Fourier analysis used here will be discussed in detail in section 3.7. Unlike

CW experimentation, this pulse technique can then be used to test a broad frequency

range of acoustic signals.
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Figure 3.9: Example pulses centred at 250 kHz with 4 µs, 8 µs and 50 µs pulse
length output from a waveform generator. On the left the time domain data for each
pulse and on the right is the frequency spectra of the detected electrical signals.

Pulses can be changed to alter the central frequency of the Fourier analysed fre-

quency spectrum, as evidenced in figure 3.10. In this work, the experiments are per-

formed with pulses centred at 60 (chapters 6 and 7) and 250 kHz (chapters 4, 5 and

8). These are excited with double-cycle Hanning pulses, chosen as they output higher

power and can be centred on the chosen frequency, figure 3.9.
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Figure 3.10: Example pulses centred at 100, 250 and 400 kHz output from a wave-
form generator. On the left the time domain data for each pulse and on the right is
the frequency components of the detected electrical signals.

The signal to noise ratio is improved for this setup by pulsing, recording and then

averaging temporally, by taking ΣNV (t)
N . Here N is the number of repeats averaged.

The majority of scans in this work are performed using an average of 50 pulses.

The dynamic range of a measurement sets the minimum possible signal that can

be detected. The Picoscope settings set the dynamic range of this work. Generally the

range is set to 500 mV at 14-bits. This means the minimum voltage (V) that can be

recorded is Vmin = 0.5V
214

= 30.5 µV. In order to take advantage of the full dynamic-range
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of the Picoscope, the output signal is amplified along with the input signal. To do this

two amplifiers are used: a Krohn Hite (KH) 7500 power amplifier for the input129 and

a Thurlby Thandar Instruments (TTI) wideband WA301 amplifier130 for the output.

Figure 3.11 shows the signal of a double-cycle Hanning pulse centred at 250 kHz sent

with use of both amplifiers. The gain on the KH amplifier was set to ≈ ×70 and the

gain on the TTI amplifier was set to ≈ ×10. The results in fact show that the pulse was

amplified by AmpKH ≈ ×10 (due to being below the flat banded range of the amplifier)

and AmpTTI ≈ ×8.
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Figure 3.11: The output 8 ms waveform pulse (red) centred at 250 kHz and amplified
voltage detected from the Krohn-Hite (blue) and the TTI amplifiers (green).

The plots in figures 3.9 and 3.11 show mostly clean well-defined signals that are

Fourier transformed into broadband peaks containing many frequencies. Experimen-

tally detected signal between the D70 source and the 8103 hydrophone are shown in

figure 3.12. When this signal excites the Neptune Sonar D70 source, the results is a

transfer function of the input signal with response of the device. The same is also true

for the detector. Here the results show the 50 pulse signal centred at 250 kHz, showing

that the signal “rings down” over time quite significantly, but the frequency spectrum

remains broad and non-zero around the central frequencies of the pulse.

To excite a sample using a broadband pulse, the source is positioned some distance

away from the sample. Each source used will also have a characteristic beam pattern

which may mean that the source has increased amplitude signal in a certain direction.

The next section will describe how the wrapped and unwrapped D70 transducer sources

are employed.
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Figure 3.12: Experimentally detected in-water example measurements, showing the
detected time domain and frequency domain output after 8 ms Hanning pulses centred
at 100, 250 and 400 kHZ are projected and detected using the D70 transducer to Brüel
& Kjær hydrophone.

53



3. Methods

3.5.1 Radiative Excitation and Detection

In this work both structured and unstructured plates are explored using acoustic pulse

excitation with a range of incident angles and therefore a range of in-plane wavevector,

k, values. The radiative regime is that where k < k0. In order to excite these modes,

the source must be positioned some distance away from the sample. But given the finite

size of the sample it is clear that larger source-sample distances reduces the incidence

angles possible, therefore the source distance is dictated by the range of angles and

wavevectors necessary to excite the modes of the system. In this work the sample

is positioned 40.0 ± 0.5 cm from the unwrapped omnidirectional source i.e. in the

“far-field” when scanning the radiative modes of the plates.

Although this experiment can be used to scan the reflected radiative modes of a ma-

terial, this work mainly uses transmission measurements. This means that the detector

(Brüel & Kjær hydrophone) is positioned on the opposite side to the source (Neptune

Sonar D70 transducer) and detects the signal transmitted through the samples. By

scanning the detector spatially, parallel to the plate, the different angular components

of the fields (θi) can be probed to characterise the acoustically excited modes within

the plate. This method is used in chapters 4, 5 and 8 to excite the acoustic response

of different materials. In these chapters the source is positioned 400 ± 10 mm away

from the sample and the detector positioned 10± 1 mm from the opposite side of the

samples.

The Brüel & Kjær 8013 hydrophone is used to spatially scan the fields transmit-

ted through the plate. To do this the hydrophone is mounted on the scanning stage

described in section 3.3. This Aerotech controller device allows the detectors to be

accurately positioned and moved spatially with ± 30 µm minimum precision. Scanning

takes place in a plane or a line parallel or normal to a sample surface.

In this work results are normalised using reference scans and self normalisation. A

spatial scanned empty tank measurement (reference) of the D70 transducer is shown

in figure 3.13. For this, the detector was scanned in a plane at z = 400 ± 1 mm

with a double-cycle Hanning pulse centred at 250 kHz. Perhaps naively, it might be

expected that the most intense signal is recorded at the centre of the area. However, the

bottom row of figure 3.13 shows this maximum in other positions, which are dependent

on frequency. This is the reason the reference data is recorded spatially for every

frequency step. The maximum value of the spatial reference data is used as the data

set used to normalise the experimental frequency absolute amplitude (A) data, where

|Aresult(f)| = |Aexperiment(f)|
|Areference(f)| . Whereas wavevector data is self normalised, |Aresult(k)| =

|Aexperiment(k)|
|Amax(k)| .
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Figure 3.13: Spatial field-maps of the instantaneous amplitude (top), the phase
(middle) and the absolute amplitude (bottom) of a freely travelling sound wave ex-
cited by an approximately double-cycle Hanning pulse from the Neptune Sonar D70
transducer and detected using the 8103 hydrophone, 41.0± 0.5 mm from the source.
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3.5.2 Evanescent Excitation and Detection

As discussed in section 2.6.1, surface waves are “trapped” acoustic fields that propagate

at the interface between two elastic media. As these types of evanescent fields expo-

nentially decay normal to the surface it is necessary to acoustically excite the sample

close to the surface and with high wavevector along the surface. This is undertaken

using the point-like D70 foam-wrapped transducer positioned ≈ 3 mm from the sample

surface.

It is also necessary to scan close to the sample surface, within the near field (< λ).

But this also introduces the complication of detector-to-sample reflections that may

influence the measured data. Therefore it is best to use of a point-like detector. Ex-

perimentation is performed using the PA 1 mm diameter needle hydrophone described

in section 3.3. The evanescent field experiments are performed by scanning spatially

and Fourier transforming the signal in x, y and z. To do this, the needle hydrophone

is mounted on the scanning stage described in section 3.3. This allows the detector to

be accurately positioned and moved spatially with ± 30 µm precision. Generally scans

are taken in a plane parallel to the surface of the sample 0.500 mm from the sample

surface to detect the evanescent acoustic fields.

Again these results are normalised using reference scans without a sample and self

normalisation. Spatially scanned reference data for foam-wrapped D70 transducer is

shown in figure 3.14. This scan area has the closest point to the source here is at the

centre of the plot and z = 0.50±0.01 mm using a double-cycle Hanning pulse centred at

60 kHz. The scanned data shows that the source works well as a localised point source,

which is needed to excite the structured samples in chapters 6 and 7. This source-

detector setup is usable from 40-150 kHz. The upper limit of the source is shown in

the right row plots of figure 3.14. Here the signal is weaker and the background “noise”

is clearly visible. Again, this data is used to normalise the experimental frequency

absolute amplitude data, where |Aresult(f)| = |Aexperiment(f)|
|Areference(f)| and any wavevector data is

self normalised, |Aresult(k)| = |Aexperiment(k)|
|Amax(k)| .
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Figure 3.14: Spatially plotted frequency domain data of the instantaneous real pres-
sure (top), the instantaneous phase (middle) and the absolute amplified (bottom) of a
freely travelling sound wave excited by an approximately double-cycle Hanning pulse
from the EVA foam wrapped Neptune Sonar D70 transducer and detected using the
PA 1 mm needle hydrophone, positioned 5.0± 0.1 mm from the source.
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3. Methods

3.6 Measuring the Speed of Sound in Water

Chapter 2 explained that it is common to use in-the-field measurements of the speed

of sound in a body of water as the speed significantly depends on the salinity and

impurities of the water9. As unperturbed sound in water is non-dispersive, the speed

is extracted by tracking the phase fronts of a broadband pulse travelling through water

by scanning a line moving away from the transducer (foam wrapped D70), as shown in

figure 3.15.
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Figure 3.15: The line-scan time-domain data of a freely travelling sound wave excited
by an approximately double-cycle Hanning pulse from the wrapped D70 transducer.

The experimental results in figure 3.15 were obtained by scanning the PA 1 mm

needle hydrophone from 60.0± 0.1 mm from the source to 220± 0.1 mm from it, with

2.5±0.1 mm step size of the scan. At each point of the scan a 8 ms long broadband pulse,

was sent and received 50 times and averaged. The speed of sound is extracted from the

experimental results by taking the gradient of phase (cwater = ∆x/∆t) over multiple

phase fronts in the region pictured in figure 3.15. The average result of measuring

the speed of sound is cw(293.5 ± 0.5K) = 1512 ± 6 m/s. This speed of sound does

not significantly depend on the water temperature, therefore this value is used in all

experimental work throughout this thesis.
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3.7 Fourier Acoustics

This section will elaborate the method used to extract the frequency, f , and wavevector,

k, components of the recorded time-domain data. The Fourier acoustic method set out

here is commonly used in other acoustics research25,111,57.

3.7.1 Time Domain

In the following example, an FFT algorithm is used to extract the frequency and

wavevector components, performed using a computational R-code131. Data is collected

by scanning the detectors spatially, for example in x and y with total scan lengths xmax

and ymax (section 3.3). Here the spatial resolutions of the scan are ∆x, ∆y and ∆z.

At each point in space the voltage, V, over time, t, is collected and then averaged over

50 or 250 repeats. Results at each point have a time resolution of ∆t = 0.104 µs.
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Figure 3.16: An example of the Instantaneous voltage above the 6.4 mm thick plate
at three different points in time: 0.100, 0.150, 0.200 and 0.250 ms after the source first
projects a signal. Voltage (mV) is shown as blue (positive) and red (negative).

An example of a scanned time domain results for a square array of holes in alu-

minium alloy, discussed in chapter 7, is shown in figure 3.16. This figure depicts four

instantaneous snapshots of the voltage detected spatially at 0.100, 0.150, 0.200 and
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3. Methods

0.250 ms, after the electrical pulse was launched. This source is located at x = 0 mm,

y = 0 mm and z ≈ 3 mm from the sample.

3.7.2 Frequency Domain

By Fourier transforming the time-domain data in time using an FFT(t) (a discrete

Fourier transform algorithm) the frequency, f, dependent complex Fourier amplitudes

present within a signal are extracted at each point in space.

An example frequency domain set of plots for the two-dimensional data in figure 3.16

is shown in figure 3.17.
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Figure 3.17: Example plots of three different frequency dependent xy spatial plots
showing the instantaneous real amplitude (top), which shows the phase and amplitude,
and normalised absolute amplitude (bottom) of the excited field of the square array
of holes at 80.0, 82.4 and 85.0 kHz.
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Figure 3.17 is taken from a data set for a 6.4 mm thick square array of holes

chapter 7. Here the data shows the three outputs of the FFT as real instantaneous

amplitude, phase and then normalised absolute amplitudes at 80.0, 82.4 and 85.0 kHz.

The maximum frequency resolution of these scans is dictated by the length of the

window, twindow, where ∆f = 1/twindow = 833 Hz with twindow = 1.2 ms. The highest

frequency value accessible is set by the Nyquist limit132 of fmax = 1
2∆t = 4.8× 106 Hz.

3.7.3 Reciprocal Space

The work here will eventually explore structured surfaces, like the square array example

in the previous section. Through Fourier analysis the wavevector components of the

fields (kx, ky and kz) the effect of the periodicity can be visualised in reciprocal space.

This is analysed using a two-dimensional spatial FFT of the complex amplitude of

the frequency components, FFT(x, y, z). An example set of k-space plots is shown in

figure 3.18, which are also taken from chapter 7.
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Figure 3.18: Example wavevector plots of the field propagating over a 6.4 mm
thick square array of holes at four different frequencies: 75.0, 80.0, 82.4 and 85.0 kHz
These plots show directional components of the fields as the Fourier amplitude of the
signal propagating in the x and y directions as kx and ky components. The sound line
is represented as a white continuous circle with the diffracted sound lines as dashed
circles. The white dotted lines are the Brillouin zone boundaries in x and y.
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3. Methods

These results are essential in determining the directionality of the excited modes.

The maximum measurable wavevector component in a given direction is determined

by the step size ∆x, ∆y or ∆z, through the relation kmax = 2π
∆x etc. The maximum

resolution of the wavevector components, ∆k, is determined by the total scan length,

xmax, as ∆k = 2π
xmax

.

3.7.4 Extracting the Dispersion

To plot the dispersion relation of the data both the wave vector and frequency com-

ponents are taken at selected value of kx, ky or kz. An example dispersion is shown

in figure 3.19, resulting from the k-space plots in the previous section. This example

shows the dispersion plotted between the points of high symmetry in reciprocal space Γ,

X and M . As previously mentioned in 2.6.3, the points of high symmetry are dictated

by the intersection of Bragg planes in reciprocal space that in this example is a simple

square. Γ, X and M are indicated in the insert in the top right corner of the figure.

For the majority of this work, dispersion plots will be plotted in only one wavevector

direction (kx, ky or kz).

··· Brillouin 
zone edge

··· Model

— Sound line

(a) (b)

Normalised
Magnitude 
(a.u.)

Figure 3.19: An example dispersion of a square array of holes plotted along lines of
high symmetry Γ−X−M −Γ. X, M and Γ are defined by the shape of the array and
the wavevector of the grating, kg/2. Modelled data (green dotted line) is the result of
computationally calculated FEM modelling to be explained in section 3.8.
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3.7.5 Zero-padding and Window Functions

Fourier results can be modulated by artefacts that are entirely related to the finite size

of the data, the resolution and any non-zero components at the ends of the windowed

data. One of the most important tasks is to match the phase components at the

edge of the scanned data, temporally and spatially. Fast Fourier Transforms (FFTs)

assume periodic data sets and therefore the edges of the data window must match

temporally and spatially. This can be done by simply setting the amplitude to zero

using a window function. Windows such as Hanning windows are widely used to remove

these artefacts133. A Tukey window commonly used throughout this work is shown in

figure 3.20.
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Figure 3.20: An example Tukey window which is centred around the 500 samples.
This window is multiplied with a list of data of length N , where in this case N = 1000.

A comparison between the raw and Tukey windowed and zero-padded dispersion

relations of the surface modes of a single line of resonating holes is shown in figure 3.21

and is discussed further in chapter 6. These results show that some features are en-

hanced and some features removed using a Tukey window, which has changed the result.

Therefore, spatial windows will not be employed in chapter 7.
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0 1

Normalised Fourier
Amplitude (Arb.)

Figure 3.21: An example data set from chapter 6 of the surface mode of a single line
of holes plotted as the dispersion between kx = 0 and kx = kg/2. Here, the left-hand
plot has not been post processed and the right hand plot has been zero padded to
three times the length in time and space with a Tukey window applied. The cyan blue
line is the sound line for water, cw.

Zero padding is used throughout this work to interpolate in frequency and wavevec-

tor space. Zero padding three times the data length (temporal and spatial) was used

to produce the data presented in figures 3.17, 3.18 and 3.19.

3.8 Finite Element Method Modelling

As this work will examine both the pressure-acoustic and the elastic properties of

different media, any software packages used to model these systems will need to be able

to model both as coupled domains. Comsol multiphysics 5.3a70 is a Finite Element

Method (FEM) software that is widely used to solve these types of systems. This is

used throughout this thesis to verify results as the software can be used to model our

systems with multiple types of coupled regions, using different fundamental physics in

each and results can be extracted in time and frequency space in up to three dimensions.

One way of representing the FEM method is in acoustic matrix form:

M ·p = b, (3.1)

where M is the matrix representation of the governing equations of the system, p is the
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unknown pressure matrix and b is the matrix form of the source function. For further

details please view the Comsol handbook70.

FEM modelling involves a four step process:

� The geometry being examined is built and the physics in each region set.

� The geometry is meshed.

� The appropriate wave equations are solved within and at the boundaries of each

region.

� The quality of the solutions are assessed (whether the solutions converge to a

reasonable solution).

Setting up the models means building a 2D or 3D system that consists of the whole

model or uses a unit cell with periodic conditions to describe an infinitely repeated

system. These models are then meshed using tetrahedral components and rectangular

layers as shown in the example 3D system in figure 3.22, used in chapter 7.

Figure 3.22: An example 3D Comsol model of a 2D array of holes in an aluminium
plate. The top plot shows the geometry of the system being studied and bottom is a
side-on xz view of the system with each domain labelled.

Figure 3.22 shows the different component parts of a 3D model used to extract the

eigenfrequencies of a geometry. This model consists of six domains which are made of

either water or aluminium. Regions containing water are governed by pressure acoustics
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and regions containing aluminium are governed by solid mechanics (elastic waves). The

model is bounded in the z direction by Perfectly Matched Layers (PMLs) that work as

absorbers. This section will use this example to describe how FEM models are used to

calculate the eigenfrequencies of a system.

3.8.1 Meshing

Once the geometry is selected and built, the first step is to construct a mesh that fills it

in order to calculate transmission, reflection or eigenfrequencies of a specific modelled

system. This dictates where the software solves the governing physics equations. Note

that because the wavelength of sound in any of the solids being investigated is typically

smaller than that in water and this dictates λmin = cw/f . Here cw is the speed of sound

in water. For the purposes of this work we used a λmesh = λmin
16 .

The two different mesh types used in this work are the tetrahedral and swept meshes.

Tetrahedral meshes are more commonly used to mesh geometries as they can effectively

fill most shapes. Importantly, the region defined as the Perfectly Matched Layer (PML)

cannot be meshed using the tetrahedral method as PMLs rely on a method of extending

the mesh infinitely, which cannot be performed computationally on a triangular face.

PMLs use swept meshing as there are no infinitesimally narrow regions associated when

approximated infinitely. Swept meshes use rectangular shaped elements normal to the

boundaries of the region being meshed. Both methods of meshing have been used in

figure 3.22.

3.8.2 Solving the Acoustic Wave Equation

Time evolved, frequency domain and eigenfrequency analysis solving methods are used

in order to model the systems presented in this work. These models either use a

well-defined source of acoustic waves (a point, line, face or domain source) or solve

the steady state solutions of the system. At each intersecting element of the meshed

system, Comsol solves an adapted Helmholtz equation to obtain p(x, ω). In the absence

of the source components, this Helmholtz wave equation has the form70

∇2

(
− p

ρc

)
− ω2p

ρ2
cc

2
c

= 0, (3.2)

where ω is the angular frequency and cc is the complex speed of sound, governed by

the viscosity of the water and accounts for the loss within the system:

cc = c0

(
1 + iω

(4η
3 + ηB)

ρc2

) 1
2

. (3.3)
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Here, c0 is the compressional speed of sound within that medium, η is the dynamic

viscosity, ηB is the bulk viscosity and ρc is the complex density, which is related to

complex density:

ρc =
ρ0c

2

c2
c

, (3.4)

where ρ0 is the initial density of the medium. These equations are the same as those

described in chapter 2. During processing, the software tries to minimise equation 3.2.

The simulation solves this equation at every mesh element at the vertices contained

within the model. For large models there are thousands of mesh elements that need to

be solved and this requires a great deal of processing power.

3.8.3 Periodicity and Symmetry

To reduce the processing power needed to run these models, periodic or symmetric

boundary conditions are used. Symmetric and axis symmetric systems simply mirror

or rotate the model at a symmetric boundary or about a symmetric axis. The axial

symmetric results being output as p(r, θ, z). There are fewer mesh elements in these

models. By mirroring the mesh in one plane the computational power used is approxi-

mately halved and it is even further reduced by rotating the mesh around an axis, as

shown in the example in figure 3.23. This example is used to model the modes within

a single layer of aluminium alloy in chapters 4 and 5.

Figure 3.23: An example axisymmetric used in chapter 4. The model used pressure
acoustics and elastic physics with the entire model surrounded by a layer of PML.

Another condition used in this work is Floquet periodicity. In the previously exam-

ined figure 3.22, the model is bounded in the x and y directions by Floquet periodicity,
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3. Methods

simulating an infinite array of unit cells in those directions. In this simulation the

pressure is now redefined as:

p = pe−kFloquet · r. (3.5)

Here kFloquet is the wavevector of the periodicity. This is used in chapters 6, 7 and 8.

3.8.4 Results

Typical FEM results are extracted as spatial plots or global evaluations of the eigen-

frequencies of a system. Both types results are used throughout this work to verify

experimental results. Figure 3.19 shown in section 3.7 shows the eigenfrequencies of

the a square set of holes overlaid on top of the experimental data for a square array of

holes, with a unit cell 6.0 by 6.0 mm and 6.4 mm thick.

Figure 3.24 shows example plots of the spatially calculated transmission, as nor-

malised absolute pressure, through a 9.0±0.5 mm thick array of pressure-release holes,

which will be further discussed in the final experimental chapter, chapter 8. These types

of results are useful for visualising the pressure inside a material or structure, as this

cannot be easily extracted without damaging the sample or altering it in a non-trivial

way, and was used to test a system before fabricating it.
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Figure 3.24: Example Comsol multphysics 5.3a modelled spatial data of the nor-
malised absolute pressure in and around a unit cell of the square array of pressure-
release holes. Cross-sections of the absolute amplitude of the fields at the centre of
the hole in all three dimensions are shown.
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3.9 Summary of methods

To clarify the methods used to Fourier transform and remove artefacts from the data,

here is a list of the steps involved:

� Raw data is recorded as voltage, measured in V , over time, measured in s, in

space, x, y, z.

� Raw data is time-windowed to remove reflected and diffracted signals.

� This data is then windowed using a Hanning function in time.

� Data is then Fast Fourier Transformed (FFT) in time at each spatial coordinate.

� Frequency dependent data is then windowed using a Tukey window in space,

x, y, z.

� The frequency domain data is then FFT’d in space to produce the k-space data.

� Lastly, the k-space data is windowed to remove regions that are not of interest

(past the first or second Brillouin zone boundary).

This method is used throughout the following work.

3.10 Conclusion

This chapter outlined the experimental and computational methods used throughout

this thesis to extract, analyse and characterise the acoustic fields of the original work

detailed in later chapters. Firstly, this chapter reasoned the choice of the materials used

to fabricate the samples made of metals and closed-cell foams. Then the experimental

setup was described and how a pulse measurement technique is used to excite the

response of the samples. Furthermore, the method of collecting these results spatially

was outlined and a method of computationally extracting the dispersion relation of

these results was outlined. Finally, the Finite Element Method (FEM) was detailed,

which will be used throughout this work to verify the results. The next chapter is the

first experimental chapter, exploring a method of elastically characterising flat solid

plates by extracting the dispersion relation of their acoustic responses.
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Chapter 4

Underwater Acoustic

Tomography of Flat Plates

4.1 Introduction

This chapter explores the dispersive properties of modes within flat plates submerged

in water. Using pulsed broadband ultrasound signals from a point-like source, multiple

elastic modes of plates are simultaneously excited. By Fourier analysing the trans-

mitted fields temporally and then spatially, the detailed dispersion relations of the

transmitted ultrasonic signals through the plates are obtained. Experimental data is

plotted against models developed from analytic theory and compared to determine the

elastic properties of the solids. The experimental results agree well with analytic mod-

els. The properties of the resonant modes depend on the plate thickness and material

parameters and therefore may be readily controlled. This work investigates the spatial

components of focussing and direction sound and has implications on both the radia-

tive and non-radiative regime. Therefore, this work has applications in acoustic energy

harvesting134 (focussing of surface waves135 onto piezoelectric microelectromechanical

systems), acoustic imaging (lens-like characteristics further explored in chapter 5), en-

hanced sound transmission and absorption over narrow bands, non-destructive testing

and defect detection28,30.

4.2 Background

First studied at the end of the eighteenth century, Rayleigh and Lamb waves are two

types of wave that are supported in solids34,16. As described in chapter 2, Rayleigh

waves are a type of Surface Acoustic Wave (SAW) bound to an interface of an elastic

medium that exponentially decay in amplitude outwards from the boundary (i.e. decay
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4. Underwater Acoustic Tomography of Flat Plates

away from the interface). These non-radiative Rayleigh waves have been well studied

in air and there has been a substantial amount of work undertaken in seismology136,137.

When the wavelength of sound inside the material is near the thickness of the elastic

medium, Rayleigh-like waves become redefined as Lamb modes16. Lamb modes are

highly dispersive and dependent on the elastic material properties of the plate.

A submerged elastic material responds differently to that of one in a near-vacuum,

like air. For most metals their acoustic waves have a speed faster than that of water,

thus they become radiative and are referred to as “Leaky Rayleigh” or “Leaky Lamb”

waves. The dispersive nature of these modes (section 2.6.1) shows enhanced transmis-

sion or absorption over specific wavevector and frequency ranges and has been looked

at in varying degrees of detail recently19,20,21,22,23,24. Mapping the dispersive proper-

ties of elastic solids is a method of acoustic tomography or Non-Destructive Testing

(NDT). This has been an emerging technique whose use ranges from material char-

acterisation to defect identification25,26,27,28,29,30,31. Most of this work has been done

temporally or in the frequency domain and is yet to take advantage of Fourier acous-

tics and consequential fitting to the dispersion of Lamb modes to extract the material

properties138.

In this study of acoustic tomography, ultrasonic pulsed signals are used to excite

modes in plates of different thickness and dispersive properties, detecting the trans-

mitted fields from which are used to obtain the elastic properties: elastic modulus,

E, and Poisson’s ratio, ν. The results are then compared against a model of Lamb

mode transmission and for one metal compared to standard measurement technique to

obtain E.

4.3 Experimental Method

Flat plates made of solid cast aluminium alloy, cast steel and rolled acrylic are fabricated

and immersed in water. These materials were chosen as they have a range of elastic

properties that can be used to test the characterisation method outlined in this chapter.

The list of materials with their typical and range of industry-estimated elastic properties

are shown in table 4.1. These solid materials are assumed to be isotropic, homogeneous

and linearly elastic. In plate form these materials support acoustic Rayleigh and Lamb

modes.

The experiments described in this chapter are performed in a water tank with all

samples in plate form. The centre points of these plates are held in place using a

perspex frame 62.0± 0.5 cm by 74.0± 0.5 cm submerged in ≈ 100 cm deep water. The

water is static and left to settle after samples are positioned. The ambient temperature

of experiment was approximately 293.0± 0.5 K. The density of water was estimated to
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Medium E (GPa) ρ ( kg
m3 ) ν

Aluminium alloy 68 - 82 2550 - 2800 ≈ 0.34
Acrylic (PMMA) 2.24 - 3.80 1150 - 1190 0.35 - 0.40

Mild Steel 200 - 215 7800 - 7900 0.28 - 0.30

Table 4.1: Estimated ranges of the elastic bulk properties of aluminium alloy, mild
steel, acrylic (PMMA)139,140,141,142,143.

be ρw = 997 kg
m3 and the measured speed of sound cw = 1512± 6 m/s.

Approximately single-cycle Hanning-windowed ultrasonic pulses were projected at

the samples using a ball shaped Neptune-Sonar D70 transducer positioned 40.0 ± 0.5

cm away from the surface of each plate, as seen in figure 4.1. Exciting the plate at this

distance means the source excites over a range of incident angles, θi, and a range of

wavevectors, kr. The maximum angle is θmax = tan(dx/dr), where dr is the source to

detector distance and dx is the distance between the position of the source and the origin

of the excited field, radially. This defines the maximum wavevector kmax = k0 sin(θmax).

Bringing the source closer to the plate would increase the value of kmax but it would

also mean the source appears less point-like, which would broaden the plate modes

in k-space. A pulse measurement technique was used to avoid late arriving reflected

and refracted waves that would interfere with the primary wave in a Continuous Wave

(CW) experiment (section 3.5). This method is an updated method of that presented

by Castaings and Hosten144.

Sample

Source Detector

400 mm 10 mm

605 mm
x

y

z

Figure 4.1: A 3D rendered image showing the source-sample-detector setup used in
the experiment. Source to sample and detector to sample distances are shown (± 0.1
mm).

A Brüel & Kjær 8013 hydrophone123 positioned 10.0 ± 0.1 mm from the sample

surface on the opposite side to the transducer was used to detect acoustic transmission

through the plates. The hydrophone is scanned spatially, using an xyz scanning stage,

to obtain the spatial dependence of the transmitted fields. At each point of a scan the
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4. Underwater Acoustic Tomography of Flat Plates

results are averaged over multiple pulses to improve the signal-to-noise ratio. For a

line scan, results are collected as voltage, V , which is equivalent to acoustic pressure,

pa, and time, t, over a line scan with spacing, ∆x, and total length, xmax. For an area

scan, repeat lines are scanned with steps in y, ∆y, or for z, ∆z. This method detects

a range of angles, which contain a range of transmitted wavevectors kx. The usable

frequency range of this setup is between 50-500 kHz, as detailed in chapter 2. Scans

take around 2 hours.

Using the Fourier acoustic method111 (section 3.7), the time and spatially dependent

pressure is used to extract the frequency, f , and in-plane wavevector, kx, components

of the transmitted fields. The frequency resolution of the scan is limited by the total

time length of the signal recorded at each point tmax. The k-space values are limited

by the minimum step of ∆x (maximum wavevector kmax = 2π/∆x) and the k-space

resolution ∆k = 1/xmax. Finally, plotting frequency, f , against the k-space data, kx,

produces the dispersion of the family of modes of the plate. To reduce the pixelation

of the data and to remove artefacts that result from Fourier transforming, the results

were zero-padded, three times the length of the data set, and then had a Hanning-like

window applied in both space and time145,133.

4.4 Theory of Waves in Layered Media

The transmission of acoustic waves through layered media has been theorised and

approximated using known formulae set out by Leonid Brekovskikh18. This splits a

multi-layered system into constituent regions.

This chapter will focus on a solid plates surrounded by water. Figure 4.2 sets out

the spatial parameters of the parameters used in the theory: the angle of incidence

is θ1, the plate thickness is L and the angle of the transmitted signal at the second

interface is γ2. Each region of this system has elastic properties defined by the acoustic

impedance, Z, density, ρ, elastic modulus, E, and Poisson’s ratio, ν. This theory

assumes that all regions are linear, homogeneous, isotropic and obeys the LCR analogy

outlined in section 2.4.
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Figure 4.2: An illustration outlining the spatial parameters used to calculate the
coefficients of transmission and reflection for a three-layered elastic system. In this
example sound is incident at an angle θ1 and transmitted at an angle γ2. Elastic
medium 2 has a finite thickness L whereas regions 1 and 2 are infinite in there half
spaces.

For a three-layered system the impedance of each region of this three-layered system

is a function of the angle of incident or transmitted sound at each interface. The acoustic

impedances in each region are:

Z1 = ρ1c1/ cos(θ1), (4.1)

Z2 = ρ2c2/ cos(θ2), (4.2)

Z3 = ρ3c3/ cos(θ3). (4.3)

(4.4)

With the transverse impedance in the second region given by:

Z2t =
ρ2cs2

cos(γ2)
. (4.5)

Here ρ1, ρ2 and ρ3 are the densities of the materials in each region and c1, c2 and c3 are

the compressional wavespeeds. cs2 is the shear wavespeed in region 2 that is function

of the elastic properties,

cs2 =
√

(E2/(2(1 + ν2)ρ2)). (4.6)

Here E2 and ν2 are the elastic modulus and the Poisson’s ratio of the second region.

There is no transverse wave in water, regions 1 and 2 in the systems studied in this
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4. Underwater Acoustic Tomography of Flat Plates

chapter.

Brevoskikh’s generalised theory uses a matrix that includes all the elastic properties

of the system to derive the transmission and reflection coefficients. Using Brekhoskikh’s

notation P = ad and Q = αβ, which relate the loss coefficients α and β and variables

dn, the thickness of the layers of order n (the sum of which is L), and anm, which

corresponds to the matrix amplitude of A (see Waves in Layered Media18 for full

derivation). For our system, we can write

P =
2πf ·L cos(θ2)√

E2(1− ν2)/(1 + ν2)(1− 2ν2)ρ2

, (4.7)

and

Q =
2πf ·L cos(θ2)

L cos(γ2) ·

√
E2/2(1 + ν2)ρ2

. (4.8)

Here E2 is the elastic modulus of material 2, f is the acoustic frequency and ν2 the

Poisson’s ratio of the second region (section 2.3). P and Q both affect the amplitude

of acoustic transmission and reflection. These may be combined together as N and M :

N =
Z2

Z1

cos2(2γ2)

sin(P )
+
Z2t

Z1

sin2(2γ2)

sin(Q)
, (4.9)

and

M =
Z2

Z1
cos2(2γ2) cot(P ) +

Z2t

Z1
sin2(2γ2) cot(Q), (4.10)

where γ2 is the angle of transmitted sound. The resultant transmission coefficient T

and the reflection coefficient R, and then given by:

T =
4N2

4M2 + (N2 −M2 + 1)2
(4.11)

and

R =
(N2 −M2 − 1)2

4M2 + (N2 −M2 + 1)2
. (4.12)

Using Brekovskikh’s theory, the percentage transmitted and reflected fields propa-

gating through layered elastic media can be calculated. One thing to note is that this

model is equivalent to a steady state solution and the primary affect of loss is just a

reduction in the amplitude of T and R.

Calculated example dispersion diagrams for transmitted sound through plates are
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plotted in figure 4.3. These results show that the dispersion of the plates depends

strongly on the elastic properties of the plate. As discussed in section 2.6.1, these modes

fall into two categories: symmetric and asymmetric (Sn and An). These analytical

results show both ranging from A0 and S0 up to higher symmetric modes in thicker

steel. Unlike metals, acrylic plate modes are much less defined and they overlap far

more as they are more lossy.

Increasing Elastic Modulus

Increasing Poisson’s Ratio

Increasing Density

ν = 0.29
L = 10 mm
E = 210 GPa
⍴ = 7850 kg/m3

ν = 0.29
L = 10 mm
E = 210 GPa
⍴ = 7850 kg/m3

ν = 0.29
L = 10 mm
E = 210 GPa
⍴ = 7850 kg/m3

ν = 0.29
L = 10 mm
E = 300 GPa
⍴ = 7850 kg/m3

ν = 0.29
L = 10 mm
E = 100 GPa
⍴ = 7850 kg/m3

ν = 0.29
L = 10 mm
E = 210 GPa
⍴ = 5000 kg/m3

ν = 0.20
L = 10 mm
E = 210 GPa
⍴ = 7850 kg/m3

ν = 0.4
L = 10 mm
E = 210 GPa
⍴ = 7850 kg/m3

ν = 0.29
L = 10 mm
E = 210 GPa
⍴ = 10000 kg/m3

Increasing Thickness

ν = 0.29
L = 10 mm
E = 210 GPa
⍴ = 7850 kg/m3

ν = 0.29
L = 20 mm
E = 210 GPa
⍴ = 7850 kg/m3

ν = 0.29
L = 5 mm
E = 210 GPa
⍴ = 7850 kg/m3

Figure 4.3: Plots of the calculated transmission coefficient from 0 (blue) to 100 %
(yellow) transmission. They are plotted as dispersions varying thickness, L, elastic
modulus, E, Poisson’s ratio, ν, and density, ρ. The middle plot of each row is the
same and typical of the dispersion of steel.
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This elastic model is used to define the Rayleigh, compressional (P) and shear (S)

wave speeds of a material: cR, cP and cS. In Brekovskikh’s theory, they are defined as:

cP =

√
E2(1− ν2)

((1 + ν2)(1− 2ν2)ρ2))
, (4.13)

cS =

√
E2

(2(1 + ν2)ρ2
, (4.14)

cR = cS
0.862 + 1.14ν2

1 + ν2
. (4.15)

These wave speeds limit the dispersive properties of the modes in the plate, as will be

shown experimentally and through modelling in the next section.

4.5 Results

Experimentation was performed by pulsing identical singe cycle pulses underwater at

the 605 by 605± 1 mm area plates, shown in figure 4.4, with the source positioned at

400± 5 mm from the sample surface.

Aluminium
Alloy Mild

Steel

Acrylic
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Figure 4.4: The four samples examined in this chapter. Left to right: one acrylic,
two aluminium alloy samples and one mild steel. Each sample has holes at the edges
to mount them to the acrylic frame shown in the picture attached to the mild steel
plate. A 35 cm ruler and a whiteboard marker are present for scale.

Transmitted signals were detected at points along a line parallel to the surface of

the sample, in the x direction, the nearest part of the hydrophone being 10.0 ± 0.1 mm

from the surface. The samples are offset so that propagating signal first hits at

50 ± 2.5 mm from the sample edge, to increase the maximum x-coordinate accessible
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up to x ≈ 550 mm (giving a maximum k-space resolution of ∆k = 11.4 m−1 in the ab-

sence of zero padding). Spatial scans are performed over 400 mm with ∆x = 2.5 mm.

At each point in space the voltage, V , over time, t, is recorded by averaging over

250 identical pulses with a pulse every 0.3 s and averaged in time with sample rate

∆t = 0.104 µs and maximum time tmax = 1.2 ms. The following results are for four

different samples using the same experimental and analytical technique to determine

their elastic properties.

4.5.1 Mild Steel

Time domain results for the 9.4 ± 0.1 mm thick mild steel (low carbon steel) plate

are shown in figure 4.5. Depicted is the transmitted pulse as voltage, time and spatial

coordinate, x, in mm. Time domain data of the scan swept between 0 mm and 400 mm

(chosen to avoid the edges of the samples where the plate modes are damped) shows

the shape of the wavefront transmitted through the plate, first arriving at the detector

at t = 0.32 ms at x = 0 mm (50± 2.5 mm from the edge of the sample). The presence

of diffracted signals originating at the edges of the plate are visible in the time domain

data at x = 0 mm when t = 0.36 ms and at x = 400 mm when 0.45 ms. These are

independent of the Lamb modes of the plate.
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Figure 4.5: Detected signal transmitted through a 9.4 mm thick steel plate, plotted
as spatial coordinate x in mm against voltage over time at a distance of 10.0±0.1 mm
from the sample surface. Propagating signal is first detected at 0.32 ms at x = 0 mm.
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The time domain results are time-windowed between 0.25 and 0.70 ms to remove

significant reflections that originate from the sides of the water tank. These results are

then zero-padded (three times the sample length), have a Hanning-like window applied

and are Fourier analysed in time. Applying an FFT to the data in time produces the

frequency components of the fields, shown in figure 4.6. These results indicate that

there is a significant spatial dependence of the normalised fields travelling through the

steel plate. Note that the transmission is above 100%, peaking at ≈ 175%. This feature

will be explained in chapter 5.
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Figure 4.6: Normalised absolute amplitude data for the 9.4 mm thick steel plate
plotted against frequency, f , and spatial coordinate in x.

Applying an FFT to the data spatially in x produces the wavevector components,

kx, of the transmitted fields. Plotting f against kx produces the dispersion relation,

presented in the top plot of figure 4.7. These results show the dispersion of the inde-

pendent symmetric, Sn, and asymmetric, An, Lamb modes excited within the plate,

coupled to plane waves and transmitted. By comparing this to the model data it is

possible to fit using by-eye comparisons to the experimental data through varying the

elastic moduli. Castaings and Hosten144 use a similar characterisation method whereby

they plot the phase velocity at selected frequencies and compare their results against

theory. But here we present an updated full description, which plots multiple bands at

the same frequency (not shown by Castaings and Hosten).

Empirically measured constants of the mass density of steel ρsteel = 7850±10 kg/m3
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and thickness 9.4±0.1 mm are input into Brekovskikh’s theory to allow fitting the model

to the data and thereby attaining the elastic modulus, E, and the Poisson’s ratio, ν. A

plot of the fitted model is shown in the bottom figure of 4.7. To fit this model to the

data the maximum 5% transmission coefficient is first fitted at kx = 0 by adjusting E

and then the shape of the dispersion is fitted by varying ν. The extracted values for

steel are E = 210± 2 GPa and ν = 0.30± 0.02. These values are within the expected

values of steel (table 4.1). The fit matches the shape and position of the experimentally

observed Lamb modes well, although the results could be improved through the use of

computational fitting algorithm. This is not in the scope of this work. Also depicted

in the figure are the compression (P), shear (S) and Rayleigh wavespeed limits. The

data shows that all Lamb modes have, as expected, wavespeed faster or equal to the

Rayleigh wave speed, cR.
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cR
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cW

Normalised
Magnitude (a.u.)
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A0
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Figure 4.7: The 9.4 mm thick steel plate dispersion plotted as normalised magnitude.
Top is the uncharacterised data and the bottom has an overlaid fitted model which
uses E = 210.0 GPa and ν = 0.30. Also shown are the Rayleigh (red dashed line), S
(yellow dashed line) and P (green dashed line) wave speed limits and the water sound
line (cyan line). The labels show the different symmetric and asymmetric modes of
the plate, Sn and An).
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4.5.2 Aluminium Alloy

To confirm that the parameter (E) extraction method can be used for a range of

materials, the extraction method is applied to aluminium alloy (grade 5083) sample.

Additionally, to test that the extracted properties do not depend on sample thickness,

two samples of thickness 9.8±0.1 mm and 19.98±0.02 mm are studied. Experimentation

is performed using samples offset as before with the same pulse measurement technique

used on the mild steel plate.

Figure 4.8: The extracted dispersion of the modes support by a 9.8 mm thick alu-
minium alloy plate calculated from the measured transmitted fields. Top is the disper-
sion plotted as Fourier amplitude with frequency and wavevector in x direction. The
bottom plot is the same data with an model fit overlaid. Also shown are the Rayleigh
cR (red dashed line), shear cS (yellow dashed line) and compression cP (green dashed
line) wave speeds and the water sound line (cyan line). The labels show the different
symmetric and asymmetric modes of the plate, Sn and An.
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Figure 4.8 shows the resultant dispersion of the 9.8 ± 0.1 mm thick aluminium

alloy plotted alongside the fitted data with the Rayleigh, shear and compressional wave

speeds shown and the different asymmetric and symmetric modes labelled (An and Sn).

The measured density for this material is ρ = 2660 ± 10 kg/m3. Using L and ρ the

extracted elastic modulus and Poisson’s ratio are E = 72± 2 GPa and ν = 0.34± 0.02.

These values also fall within the expected bounds of other aluminium alloys in table 4.2.

Performing the same experiment on the 19.9 ± 0.1 mm thick plate produced the

results shown in figure 4.9.

cR

cW

cScP

cW

Normalised
Magnitude (a.u.)

S2
S1

A1 A0
S0

-Model

A2

Figure 4.9: The extracted dispersion of the modes support by a 19.9 mm thick
aluminium alloy plate calculated from the measured transmitted fields. Top is the
raw dispersion and on the bottom is the data with an model fit overlaid. Also plotted
are the Rayleigh cR (red dashed line), shear cS (yellow dashed line) and compression
cP (green dashed line) wave speeds and the water sound line (cyan line). Labelled are
the symmetric and asymmetric modes of the plate (Sn and An).
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Figure 4.9 shows the dispersion plotted next to the fitted data with the wave speeds

and Lamb modes labelled (An and Sn). Approximately doubling the thickness means

that the modes at kx = 0 are excited at half the frequencies and between 50 and 500 kHz

higher order symmetric and asymmetric modes now exist. The measured density for

this material is the same as the thinner sample, ρ = 2660± 10 kg/m3. Again, L and ρ

are used to extract the elastic modulus and Poisson’s ratio. These are the same as the

extracted values for the 9.8 mm thick plate with E = 72±0.1 GPa and ν = 0.34±0.02.

The excellent agreement between deduced elastic properties confirms the method of

extraction is independent of the thickness of the plate.

4.5.2.1 Tensile Testing Aluminium

To verify the results measured using the ultrasonic testing above, the results will now

be compared using a standard method of measuring the elastic modulus done by using

a tensile test.

Camera

20
 m

m

80 mm

Sample

15
 m

m

25 mm

Clamps

Light

Source

Dogbone Sample

Shimadzu AGX 
Tensile Tester

Figure 4.10: Top is a picture of a single aluminium alloy dogbone sample of thickness
2.9±0.1 mm, length 80.0±0.1 mm and a ≈ 25 mm gauge length. Bottom is a picture
of the sample positioned in the in the Shimadzu AGX tensile testing machine146.
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4. Underwater Acoustic Tomography of Flat Plates

Using the Shimadzu tensile testing machine146 pictured in figure 4.10, the elastic

modulus of a material is extracted by clamping a “dogbone” shaped sample and pulling

with force, F , both ends (with maximum force Fmax ≈ 6500 N). Whilst this is performed

the extension of the central region of the sample is tracked using a camera-extensometer.

Ten samples cut from the same sheet of aluminium alloy 5083 using a CNC to have

thickness 2.9 ± 0.1 mm, length 80.0 mm and a ≈ 25 mm gauge length. The tensile

test was ran in reference to the ASTM E8147 using a 0.375 mm/min tensile rate up

to a maximum extension of 0.125 mm. Out of the ten samples six failed the test due

to early slipping and deformation leaving no linear region to extract the value of the

Elastic modulus. The results for the four remaining samples are shown in figure 4.11.
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Figure 4.11: The results of the tensile test of the four aluminium alloy 5083 dog-bone
samples.

The results show four labelled regions:

� Bite region, where the frictional forces result in the sample moving within the

clamps and the patterned surface of the clamps cut into the sample.

� Linear region, the usable elastic regime where the tensile properties are extracted.

� Deformation region, where samples deform in a random manner.

� Slip region, where the sample becomes too thin within the clamps under the force

applied and slips out of them.
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Averaging the results the elastic modulus was measured to be E = 65.35 ± 4.26 GPa,

with error being 11.4% of the range.

Even though the elastic modulus measured using the ultrasonic technique developed

for this work does not fall in the range of 65.35± 4.26 GPa, the result is still within a

reasonable error of the acoustically extracted result. Also, typically the elastic modulus

of materials are lower under in tension than compression. The method also is very

dependent on the subjective choice of linear region of the data. Choosing a linear

region below 1250 kN in the “bite region” of figure 4.11 would result in a higher value

of E.

4.5.3 Acrylic

This study has so far only looked at metals that have well-specified estimates of their

material properties. Other materials have properties that will vary significantly from

sample to sample. Acrylics are such materials. Now the ultrasonic tomography method,

used to characterise mild steel and aluminium alloy, is employed to estimate the elastic

properties of a 7.4± 0.1 mm thick acrylic plate.

Figure 4.12 shows the Fourier extracted dispersion of the acoustic transmission

through the 7.4 ± 0.1 mm thick acrylic plate. In contrast to the aluminium and steel

models, the model of the acrylic data is fitted using the well-defined minima (lowest

15%) rather than maximum in intensity. This is because the modes in the acrylic are

lossy and therefore broadened. The fitted analytical data is shown in the bottom plot of

figure 4.12. Using the measured density of the plate of ρ = 1180±10 kg/m3, the elastic

modulus and Poisson’s ratio are extracted as E = 5.2±0.2 GPa and ν = 0.33±0.02 by

fitting the model to the experimental dispersion. The value of the ν is slightly outside

expected for acrylic, but still within a reasonable 0.02 of the lower limit. However the

elastic modulus, E, is outside the range stated in table 4.1. This is probably due to

the specific make of the manufactured material.
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Normalised
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Figure 4.12: The dispersion of the transmitted sound through a 7.4 mm thick acrylic
plate. Top is the experimental dispersion and on the bottom is the data with an model
fit of the minimum transmission coefficient overlaid. Also plotted are the Rayleigh cR
(red dashed line), shear cS (yellow dashed line) and compression cP (green dashed
line) wave speeds and the water sound line (cyan line).
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4.5.4 Summary

Table 4.2 shows the complete list of material properties extracted using by-eye fitting

of the dispersion curves. The extracted results are mostly within the error expected for

the general elastic properties of these materials, set out in table 4.1.

Medium L (mm) E (GPa) ρ (kg/m3) ν

Aluminium Alloy (5083) 19.9± 0.1 72± 2 2660± 10 0.34± 0.2
Aluminium Alloy (5083) 9.8± 0.1 72± 2 2660± 10 0.34± 0.2

Acrylic 7.4± 0.1 5.2± 0.2 1180± 10 0.33± 0.2
Mild Steel 9.4± 0.1 210± 2 7850± 10 0.30± 0.2

Table 4.2: The measured results for the four different plates.

The benefit of this simple ultrasonic method for determining plate elastic modulus

is that it is non-destructive and easy to implement on large plates. However there are

limitations. Firstly, this can only be performed in a fluid environment as there needs

to be acoustic power transmitted through the sample and the fields can be spatially

scanned. The impedance mismatch in air is too great to perform this method for most

solid materials. It is also necessary to use a source-detector setup that has a large

frequency range to obtain an accurate fit of the model to experimental data. Other

limitations of the value of the Poisson’s ratio for which this method will work were

outlined briefly in section 2.3.175.

4.6 Conclusions

This chapter has shown that it is possible to extract the elastic properties of solids

using underwater broadband ultrasonic pulses between 50 and 500 kHz together with

Fourier acoustics. The method employed a point-like source positioned 400 mm from the

samples to excite the modes with in-plane wavevectors, kx. Four samples made of alu-

minium alloy, mild steel and acrylic were scanned and characterised using Brekhovskikh’s

analytical theory. Results for the elastic modulus, E, and Poisson’s ratio, ν, were mostly

in the expected region of elastic properties, with the acrylic being the one outlier with

E = 5.2 ± 0.2 GPa beyond the expected value. This method can be used to extract

E and ν of a range of metals, plastics and other homogeneous materials. It may be

possible to use other liquids and source-detector setups to expand the range of materi-

als that can be characterised using the same acoustic tomographic method. This work

has obvious applications in material characterisation and defect detection. The next

chapters will use the characterised aluminium alloy (5083) to examine the out of plane

properties and the detailed dispersion of the 9.8 mm thick sample.
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Chapter 5

Ultrasonic Focussing Through

Coupled Excitation of Symmetric

Lamb Modes

5.1 Introduction

This chapter concerns further investigations into the properties of the symmetric and

antisymmetric Lamb modes within a thin flat aluminium plate submerged in water

and excited using pulsed broadband ultrasound from a point-like source. By Fourier

analysing the transmitted fields in time and space, the dispersion of the excited Lamb

modes is acquired. Experimental data is compared against computational Finite El-

ement Method (FEM) modelled data. Acoustic power beaming for a small frequency

band supported by a 9.8 mm thick aluminium alloy plate is observed. This is attributed

to collimation of acoustic energy to the coupling between the first and second order

symmetric plate modes leading to negative dispersion and zero in-plane group velocity.

The properties of the acoustic focussing depend on the plate thickness and material

parameters and may be readily controlled. The experimental results agree well with

computational models.

5.2 Background

Lamb acoustic waves are a type of bulk wave that propagate through solids and were

first studied at the start of the nineteenth century16. Lamb modes are supported

by elastic plates when the wavelength, λ, of sound is near the thickness, L, of the

medium (λ ≈ L). These modes are highly dispersive and are dependent on the elastic
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material properties of the plate. They are classified into two families of symmetric and

asymmetric modes. The interactions between thin plates and shells are significant in

guided wave applications, such as acoustic energy harvesting, acoustic absorption and

transmission.

Narrowing of the acoustic field emitted from these plates has been widely observed

and classified as a feature of the “Negative Group Velocity” (NGV) or “Zero Group

Velocity” (ZGV) mode148. This mode is the first order symmetric mode of the plate

and previous theories have show the gradient of the dispersion of this mode in the

in-plane direction switches from positive to negative. Prada et. al. have shown that

it is possible to focus in-plane waves using this ZGV mode whilst exciting the plate

from a free edge22,149,150. Further work recently evidenced the shape of the fields

inside the plate151,152. In addition, it has also been observed that the ZGV mode

affects the radiated acoustic waves whereby the beam pattern of fields is directionally

dependent over narrow frequency ranges153. These effects are similar to those seen

on structured plates using bulleye or arranged resonators in order to enhance acoustic

transmission154,155.

This chapter will investigate the NGV/ZGV mode and observe its focussing effect.

The experimentally derived frequency and dispersion data is compared to a compu-

tationally modelled system to verify the method of extraction and the validity of the

results. There is excellent agreement between the two. Using the FEM models the com-

putationally calculated dispersion of the modes inside the plate is observed, showing

how the NGV/ZGV mode propagates.

5.3 Experimental Method

The experiment described in this chapter is performed using the same experimental

technique as described in chapter 4. Experiments are performed in a water tank with

an aluminium alloy (5083) plate which is 9.8±0.1 mm thick and 605±1 by 605±1 mm in

area. The centre point of the plate is held in place using a perspex frame approximately

620±1 mm by 740±1 mm submerged ≈ 50 cm in approximately ≈ 100 cm deep water.

The water is static and left to settle after samples are positioned.

Approximately single-cycle Hanning-windowed ultrasonic pulses are projected at

the samples using a ball-shaped Neptune-Sonar D70 transducer positioned 40.0 ± 0.5

cm away from the surface of the plate. Exciting the plate at this distance means the

source excites over a range of incident angles, θi, and a range of wavevectors, kx. A

Brüel & Kjær 8103 hydrophone123 placed 10.0±0.1 mm from the surface of the sample

is used to measure acoustic transmission. For a line scan the hydrophone is scanned in

space, using an xyz scanning stage. The data is recorded as voltage, V , and time, t,
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over a linear scan with spacing ∆x and total length xmax and for an area scan repeat

lines are scanned with steps in y, ∆y, or for z, ∆z. The usable frequency range of this

setup is between 50 and 500 kHz. The results at each spatial point are averaged over

multiple pulses to improve the signal-to-noise ratio.

Using Fourier acoustic methods111 (section 3.7) the temporally and spatially de-

pendent pressure is used to extract the frequency, f , and in-plane wavevector, kx,

components of the transmitted fields. The frequency resolution of the scan is limited

by the total time length of the signal recorded at each point tmax. The k-space values

are limited by the minimum step of ∆x (maximum wavevector kmax = 2π/∆x) and

the k-space resolution ∆k = 1/xmax. Finally the dispersion of the modes is plotted as

frequency, f , against in-plane wavevector, kx. To visualise the results and to remove

artefacts that result from Fourier transforming, the results were zero-padded and then

had a Hanning-like window applied145,133.

5.4 Results

In chapter 4, the dispersion of a 9.8 mm aluminium alloy plate, in figure 4.8, was

shown to have Lamb modes at kx = 0, where two of these modes intersected at 300

kHz. These two modes are characterised as the S1 or S2 modes. In this chapter, the

plate dispersion is explored with the source exciting central to the sample and no longer

offset. This symmetrically excites the plate around kx = 0 more effectively. In-plane

experimentation on the 9.8 mm thick aluminium alloy (5083) plate are performed by

pulsing identical singe-cycle pulses underwater at a 605 by 605± 1 mm area plate with

the source positioned at 400± 5 mm from the sample surface. Transmitted signals are

detected at points along a line parallel to the surface of the sample, in the x direction.

The nearest part of the hydrophone is 10.0 ± 0.1 mm from the surface. Spatial scans

are performed over 400 mm with the centre of the plate at x = 200 mm and with

spatial resolution ∆x = 2.5 mm. At each point in space the voltage, V , over time, t, is

recorded over 250 identical pulses with a 0.3 ms pulse rate and averaged in time with

sample rate ∆t = 0.104 µs until maximum time tmax = 0.65 ms.

5.4.1 Time Domain

Time domain data for the centred 9.8 mm aluminium alloy sample are shown in fig-

ure 5.1. At x = 0 there appears to be a faint concentration of fields which may be

attributed to the overlapping S1 and S2 modes. These results also show diffraction

from the edges as straight diagonal phase fronts appearing at the edges, x = −180 and

x = 180 mm at 0.47 ms.
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Figure 5.1: Voltage, V , over time, t, of the averaged detected signal propagating
through a centred 9.8 mm thick aluminium alloy plate.

5.4.2 Frequency Domain

Fourier transforming the time domain data using an FFT temporally produces the fre-

quency domain data presented in the top plot of figure 5.2. The transmission amplitude

is ≈ 130% at the centre of the plate (x = 0 mm). It is unclear from this data as to why

this is occurring, but it suggests some form of focussing of power.

To verify the results a FEM Comsol 5.3a model of the system is employed. The

model shows the results of an equivalent system, where the source is a point source

positioned 400 mm away from the sample surface, the plate is equivalent to the 9.8 mm

thick aluminium alloy with elastic properties of elastic modulus E = 72 GPa, Poisson’s

ratio 0.34 and density 2660 kgm−3 (measured values from chapter 4). The model is

an axis-symmetric frequency domain analysis of the system swept through frequency

calculating the field projected through the plate. The model is used to extract the

transmitted complex acoustic pressure, pa, to create a like-for-like data set. In figure 5.2

the comparison between the modelled (bottom) data and the experimental data (top)

is shown. These results are in reasonable agreement with the major difference being

that the minima seen in the experimental data at 280 kHz, associated with the source-

detector response functions, are not seen in the modelled data. Both sets of data show

concentrated power at f ≈ 300 kHz at x = 0 mm.
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Figure 5.2: The normalised Fourier amplitude of transmitted fields through the
centred 9.8 mm thick aluminium alloy plate plotted in frequency, f , and x coordinate.
Top is experimental data; bottom is model data. The amplitude of the model at
x = 0 mm have been set to zero to remove necessary data, which will be further
explained in section 5.4.4.

95



5. Ultrasonic Focussing Through Coupled Excitation of Symmetric Lamb
Modes

5.4.3 Dispersion

Fourier transforming spatially produces the wavevector components in x. From this

the dispersion in kx is produced, figure 5.3.
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Figure 5.3: The dispersion of the transmitted signal through the centred 9.8 mm thick
aluminium alloy plate. Experimental results are plotted top and Comsol modelled data
is shown for comparison bottom. Labelled are the different Lamb modes and areas
where the group velocity is zero (vg = 0).

Figure 5.3 shows the region where the first order (S1) and second order (S2) sym-

metric modes form a band-gap. Moving away from kx = 0 along the S1 mode, an area

of “negative” dispersion is seen as the phase velocity (vp) is negative for positive group

velocities (vg). This region of the S1 dispersion is labelled the S1b mode in accordance

with the literature22,149,150. At the points where the group velocity is zero, vg = 0, both

the model and experimental data show an eigenmode of the system. This is because

vg = 0, the wave cannot propagate in x so there must be an out-of-plane component
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to the wave normal to the plate. For values of negative phase velocity, the wave is

“focussed” inwards with in-plane energy projected back towards x = 0 over narrow

frequency ranges resulting in the beaming of acoustic energy at ≈ 300 kHz. This effect

is also visible in figure 5.2 and is the reason for the “above 100 %” transmission.

5.4.4 XZ Two-dimensional Spatial Scan

A 2D plane normal to the surface in x and z is scanned to picture acoustic focussing

in radiative fields of the plate is shown in figure 5.4.
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Figure 5.4: 2D scanned results for the plane normal to the surface of a 9.8 mm thick
aluminium alloy plate. The results are for frequencies 280.0, 298.8 and 305.0 kHz,
where the acoustic focussing is visible.
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Figure 5.4 shows the experimental results for the 2D area in front of the plate at

280.0, 298.8 and 305.0 kHz. The effect of acoustic beaming through the plate is seen at

all of the frequencies depicted. This effect is visible at 280.0 kHz, where the beaming

is localised within the scanned area, and 305.0 kHz, where the beam is wider and

projects beyond the scanned area. Note that the maximum Fourier magnitude drops

as the results go up in frequency.

In addition to the acoustic beaming, there is also a beat pattern in the z direction

in the phase and instantaneous real amplitude plots of figure 5.4. The cause of this is

the presence of two oscillating waves in z with two values of kz. The surface wave, ψ1,

and the plane wave, ψ2, can be represented by the equations:

ψ1 = A sin(k‖x− ωt)e−kzz, (5.1)

ψ2 = B sin(k⊥z − ωt). (5.2)

The resultant intensity of the fields, fully derived in appendix B, is:

ψ2
t =

1

2
(A2 +B2) +AB(cos(k‖x− k⊥z),

Here the factor of cos(k‖x − k⊥z) gives the modulation that is seen in the phase of

figure 5.4.
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5.4.5 FEM Plate Modes

It is very difficult experimentally to probe the fields inside the plate. But using the FEM

model the predicted fields inside the plate are plotted. Using this the solid acoustic

pressure of the fields inside the plate are plotted in figure 5.5. In this there are distinct

regions of pressure within the plate, which shift in x position dependent on frequency.

These regions help to identify the different modes of the plate that are depicted in the

dispersion diagrams of figures 5.5 and 5.6: S0,A0,A1, S1 and S1b.
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Figure 5.5: The normalised modelled instantaneous pressure fields within the solid
L = 9.8 mm thick aluminium alloy plate plotted at individual frequencies.

In figure 5.6 the five different Lamb mode regions of the plate have been identified.

Here the five spatial regions are subjected to an acoustic field with a range of kx values,

as identified as the cyan dashed line in figure 5.3. Thus, each region represented here

depicts a mode identified in the plate dispersion. Importantly, the region between the

S1 and S1b mode shows the switching of the direction of the phase fronts. This is

the cause of this acoustic focussing, where acoustic energy is directed back towards

x = 0 mm.
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Mode Regions Inside the Plate at 290 kHz
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Figure 5.6: A close-up visualisation of the modelled L = 9.8 mm thick aluminium
plate with pressure fields at 290 kHz. Shown are the five different modes contained
within the excited fields.

5.5 Conclusions

In this chapter, the coupling between symmetric S1b Lamb modes were shown to focus

acoustic energy at ≈ 300 kHz for a 9.8± 0.1 mm thick aluminium alloy plate. Comsol

5.3a was used to show that it is possible to extract the equivalent dispersion results

from the modelled data. Further use of modelled data was employed to investigate

the modes within the plate, showing that the phase fronts of sound within the plate

are refracted inwards towards the centre of the plate. Additionally, an explanation

for the beat pattern in the radiated fields of the scanned data was shown analytically.

This was a combination of a surface wave and plane wave acoustic waves of the same

frequency component with different wavevector components, adding together to give a

time averaged spatially periodic wave. The next chapter investigates aluminium alloy

plates that are patterned with lines of holes.
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Chapter 6

Underwater Acoustic Surface

Waves on Straight Parallel Lines

of Regularly Spaced Holes

6.1 Introduction

This chapter details a method of supporting underwater Acoustic Surface Waves (ASWs)

using straight lines of equally spaced holes in aluminium alloy plates. One, two and

three parallel lines of open ended holes will be utilised to support multiple degenerate

or non-degenerate ASW modes. This work includes a method of pulsing broadband

ultrasound close to the surface of the samples to excite high momentum surface waves

and detect their propagating fields using an xyz scanning stage mounted hydrophone.

Fourier analyses of the two-dimensionally scanned data, in time and in space, is used

characterise the ASWs in frequency and reciprocal space. In addition, interactions be-

tween ASWs and Scholte-Stoneley Waves (SSWs) are shown. Fully modelled acoustic-

elastic computational data will be used to verify the experimental results. This work has

applications in acoustic communications, acoustic energy harvesting, defect detection

and acoustic circuitry.

6.2 Background

Surface acoustic waves are supported at the boundary between two differing medi-

ums and they come in several distinct varieties92. ASWs are a type of surface wave

that are non-radiative, highly localised and evanescently decaying normal to, and

propagate over, an acoustically rigid periodically patterned surfaces, discussed in sec-
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tion 2.6.2. Similar non-radiative surface waves were first observed in photonic and

airborne phononic systems45,46,47,48, but there has been significant recent interest in

acoustics. Periodically patterned elastic media also support ASWs, the nature of which

depends on the elastic properties of the plate and is yet to be fully investigated.

ASWs are supported by one-dimensional periodic arrays of simple resonators. First

hypothesised by Scholte, one-dimensional periodic underwater structures influence both

the evanescent and radiative fields156,157,158,159. Recently it has been shown that 1D

arrays of metal rods can support ASWs or so-called spoof surface waves160,161,162. Most

underwater studies of spoof surface waves and ASWs have been very recent and there

is still much to investigate.

The following chapter examines the acoustic excitation of periodically structured

lines of holes, which through the coupled diffraction of simple patterned resonators

supports surface bound ASWs. A hole in a solid is a simple diffracting object and

therefore solid flat plates patterned with a periodic array of holes are expected to

support ASWs. Through diffraction and nearest neighbour coupling, acoustic fields in

these resonating cavities interact in a way that is dependent on the spacing between

features or the pitch, λg. Briefly mentioned in chapter 2, in 1D this type of array should

have an adapted waveform,

ψ(x) =
∑
n

ψne
i(kx+G)x (6.1)

Here the acoustic wavevector is kx and G is the reciprocal lattice vector of the array.

For a single row of holes G = kg = (2π/λg). For two and three lines of holes, the

structure will have additional degrees of freedom and will support additional modes.

Experimentally, this work will begin by looking at the simplest case of the single

row of holes and finish with the more complicated three row samples. But first, sample

fabrication and the experimental method will be discussed.

6.3 Sample Fabrication

This study investigates the coupling of diffracted fields from water filled circular open

ended holes in solid aluminium alloy (5083). The arrays are patterned into the four

plates with a fixed 150± 1 by 600± 1 mm area. The alloy’s mechanical properties are

defined by the Poisson’s ratio ν = 0.34 ± 0.2, elastic modulus E = 72 ± 2 GPa and

mass density ρ = 2660±10 kgm−3 (chapter 4). A CNC (Computer Numerical Control)

machine is used to pattern the plates with lines of holes. These lines have a fixed pitch

λg = 6.00±0.01 mm, radius of holes R = 1.50±0.01 mm and thickness L = 9.7±0.1 mm,

as they were fabricated using the same sheet of alloy. The results in this chapter are
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Fourier analysed using triple zero-padding and a Hanning-like window fit. Frequency

domain results are presented as reference normalised data and k-space data is presented

as self normalised amplitude (section 3.5). Figure 6.1 shows the four line samples with

one row of holes, two mirror-symmetric rows of holes, two glide-symmetric rows of holes

and three psuedo-glide-symmetric rows of holes.

One Line of Holes

600 mm
150 mm

150 mm

150 mm

150 mm

Two Glide-Symmetric Rows

Two Mirror-Symmetric Rows

Three Psuedo-Glide Symmetric Rows

Figure 6.1: The four 9.7 ± 0.1 mm thick aluminium alloy (5083) samples that are
investigated in this chapter.

6.4 Experimental Method

Experimentation is performed on the samples that are fully submerged underwater in

≈ 100 cm deep water contained in a fibreglass water tank (described in section 3.3). A

3.0 ± 0.1 cm diameter acrylic arm is used to suspend samples underwater, centred at

≈ 50 cm above the bottom of the tank. The plate is fixed to this arm using flat pieces

of perspex threaded with nylon screws. Sample and support materials were chosen to

be inert underwater, to avoid galvanisation during the scanning process that can take

up to 8 hours.

The experiment uses the foam-wrapped Neptune Sonar D70 transducer (described

in section 3.5). The transducer emits approximately double-cycle Hanning-windowed
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pulses projected at the 150 ± 1 by 600 ± 1 mm area plates. The source is positioned

above one of the holes of the sample at a point ≈ 10 cm from the edge of the sample to

limit edge reflections and ≈ 3 mm from the samples surface as shown in figure 6.3. The

exit of the source is a 6.00± 0.01 mm diameter 0.05± 0.01 mm thick steel tube. This

source is directional and uses its own diffraction plus that from one of the open-ended

holes of the sample to excite surface waves.

Foam

Aluminium
Sample

Source 
Exit

xy
z

Figure 6.2: A 3D render of the foam-wrapped D70 source positioned in front of a
singe line of holes in a 9.7 mm thick aluminium alloy plate. The exit of the source is
approximately 3 mm from the surface of the sample and is positioned over one of the
holes.

Transmitted signals are detected spatially by scanning a Precision Acoustics

1.00 ± 0.01 mm diameter needle hydrophone in an xy plane. Results are collected as

spatial xy maps of the time averaged voltage, V , over time, t. Spatial scans are acquired

detecting 0.50± 0.01 mm from the surface in a 21.21± 0.03 mm by 128.70± 0.03 mm

area with a non-commensurate ∆x = ∆y = 0.707± 0.003 mm. At each point in space

the voltage, V , over time, t, is recorded over 50 identical pulses with a 0.03 s pulse rate

and averaged in time with ∆t = 0.104 µs and tmax = 1.20 ms.
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1 mm Needle 
Hydrophone

Aluminium
Sample

0.5 mm

xyz

Figure 6.3: A 3D render of the gold plated Precision Acoustics 1.00 mm diameter
needle hydrophones positioned in front of a line of holes in a 9.7 mm thick aluminium
alloy plate. This needle is positioned 0.50 mm from the sample’s surface as it is
spatially scanned.

The 2D scanned results are Fourier analysed using a computational FFT in time,

t, and space, x and y, to produce the frequency, f , and wavevector components of

the fields, kx and ky. The resolution in frequency is limited by the total time of the

signal recorded at each point tmax. The k-space values are limited by the maximum

wavevector (kmax = 2π/∆x = 2π/∆y) and the k-space resolution ∆k = 2π/xmax. This

method has been widely applied to scanning fields in acoustics, electromagntism and

optics111 as field maps allow easy attribution and characterisation of fields that contain

multiple interacting surface waves.
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6.5 One Row of Holes

The first sample examined is the one-dimensional line of holes fabricated in a

9.7 ± 0.1 mm thick aluminium alloy (5083) plate, depicted in figure 6.4. The row

of holes is central to the plate in y, with pitch λg = 6.00 ± 0.01 mm and radius

R = 1.50± 0.01 mm. The aluminium plate was machined using a CNC device to drill

100 open-ended holes along its length. The sample is then submerged underwater with

the holes being entirely water filled whilst experimentation took place.

Figure 6.4: A scale 3D rendered image of the single row of holes in the alu-
minium alloy plate. Labelled is the pitch λg = 6.00 ± 0.01 mm, radius of the holes
R = 1.50 ± 0.01mm and thickness L = 9.7 ± 0.1 mm. The holes are open-ended and
the entire sample is submerged underwater during experimentation.

6.5.1 Time Domain

Scanning in a 21.21± 0.03 by 128.70± 0.03 mm area the field components containing

the ASWs are collected. Unfiltered time-averaged results of the instantaneous fields are

shown in figure 6.5, as voltage, V , in space. The excited acoustic waves travel from left,

x = 0 mm, to right. In this figure, four instances in time are plotted at 0.100, 0.150,

0.200 and 0.250 ms after the pulse was launched. These results show the propagating

fields that are predicted to contain the ASW, SAW and free wave components. To char-

acterise the modes of the plate, this data is Fourier analysed to produce the frequency

and k-space components, kx and ky, of the acoustic fields.
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Figure 6.5: The instantaneous voltage fields of acoustic waves propagating over the
surface of a single row of holes in the flat aluminium alloy sample. These plot show the
instantaneous voltage at 0.100, 0.150, 0.200 and 0.250 ms after the pulse was launched.

6.5.2 Frequency Domain

The diffracted coupling between neighbouring holes of a structure that supports ASWs

means that at the BZ boundary there is only one possible excitation for the single row

of holes. The predicted phase map of this mode is shown in figure 6.6. As depicted,

the fields in neighbouring holes are π out of phase at the BZ boundary.

++ +
Fundamental Mode

--- --
λg

Unit cell

Figure 6.6: The only predicted excitable ASW mode of a single line of acoustically
coupled holes at the BZ boundary. The colour represents the phase of each hole, where
blue is positive phase (π/2) and red is negative phase (−π/2).

Time domain results are computationally Fast Fourier Transformed (FFT), in time

t, to produce the frequency components of the fields. The instantaneous amplitude,

absolute amplitude and phase experimental results are shown in figure 6.7, figure 6.8

and figure 6.9, respectively. The results are plotted at 50.0, 52.5, 55.0, 57.5, 59.0

and 60.0 kHz frequencies. Instantaneous amplitude plots contain both the phase and
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amplitude content present in figure 6.8 and figure 6.9. Although, they are plotted

independently for visualisation of the power and the structure of the fields.
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Figure 6.7: The experimental instantaneous amplitude above the single line of holes
at 50.0, 52.5, 55.0, 57.5, 59.0 and 60.0 kHz. Field amplitude at 55.0 and 57.5 kHz
increases as the propagating ASW mode is present.

These frequency results show the nature of the ASW mode over the range of 50.0

to 60.0 kHz. As can be seen in the phase plots, at 55.0 kHz the curvature of the

field at x ≈ 95 mm suggests the presence of more than a single signal, resulting in

interference. In both figures 6.7 and 6.8, at 59.0 and 60.0 kHz the ASW mode is

not present. Instead the result contains the free travelling water wave and the SSW

scattering from the structure, leaving an absence of amplitude where the holes of the

array are positioned.
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Figure 6.8: The experimental absolute amplitude results of the fields over the line
of holes at 50.0, 52.5, 55.0, 58.0, 59.0 and 60.0 kHz. At 55.0 and 57.5 kHz the field
amplitude and the propagation distance increases, as the propagating ASW mode is
present.
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Figure 6.9: The experimental phase results above the line of holes at 50.0, 52.5,
55.0, 58.0, 59.0 and 60.0 kHz plotted between −π and +π. The curvature of the field
spatially at x ≈ 95 mm at f = 55 kHz suggests multiple interfering in-plane travelling
acoustic signals.
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6.5.3 Wavevector Components

To obtain the directionality, investigate the source of the spatial quantisation and con-

firm our initial characterisation of the ASW, it is necessary to examine the wavevector

components of the fields. Processing the frequency components using a spatial FFT, in

x and y, produces the wavevector components of the fields, kx and ky. Two-dimensional

wave vector results of the excited fields of the one-dimensional single line of holes at

52.0, 54.0, 56.0 and 58.0 kHz frequencies are shown in figure 6.10.
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Figure 6.10: The experimental wavevector components of the excited fields above a
single row of holes, plotted as self normalised magnitude in kx and ky at 52.0, 54.0,
56.0 and 58.0 kHz. Data is plotted beyond the BZ boundaries, white dotted lines, in
the kx direction.
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These results are plotted as normalised magnitude, with high amplitude components

representing eigenmodes of the system at these chosen frequencies. The k-space results

are plotted beyond the BZ, showing the diffracted components of the fields beyond the

BZ boundary. The BZ lies at kBZ =
kg
2 = π/(6mm) = 523m−1. Also shown is the

corresponding frequency dependent sound lines, defined by the compressional speed of

sound in the water, cw = 1512 m/s.

The results in figure 6.10 show the ASW dispersing from the sound line until the

mode weakens at 58.0 kHz. At 56.0 and 58.0 kHz a weak mode bound to the sound line

and propagating in the x direction at all frequencies is present. This is characteristic

of an SSW or water sound line bound mode. Both the SSW mode and ASW modes

appear as straight lines perpendicular to kx as the propagate only in the x direction.

The diffracted order ASW has the same shape and symmetry as the mode in positive

kx region.
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6.5.4 Dispersion

Figure 6.11 shows the dispersion at the chosen wavevector ky = 0 m−1 (a cross section

of figure 6.10).
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Figure 6.11: The experimentally observed dispersion of a single line holes in 9.7 mm
thick aluminium alloy. Top is the experimentally extracted dispersion of the single
line of holes. Bottom is the dispersion compared to overlaid Comsol multiphyics 5.3a
modelled eigenfrequencies of an equivalent system with L = 9.7 mm, λg = 6.0 mm and
R = 1.5 mm. This was modelled as an elastic solid with elastic properties Poisson’s
ratio, σ = 0.32, elastic modulus, E = 72.0 GPa, and density, ρ = 2660 kg/m3.

Figure 6.11 shows the ASW dispersing from the sound line between 55 and 65 kHz.

As it approaches the BZ boundary the mode weakens in amplitude. This is where the

group velocity of the ASW is near zero and the wave therefore does not propagate far

enough to be measured. The mode on the sound line is evident at all frequencies in this

range explaining the interference signal. The diffracted portion of the dispersion shows

the presence of the diffracted orders of this sound line. The results here are plotted

against the results of a Comsol multiphysics 5.3a model pressure acoustic-elastic model

of the system.

113



6. Underwater Acoustic Surface Waves on Straight Parallel Lines of
Regularly Spaced Holes

6.5.5 A Rigid vs Elastic Comparison

This study has uncovered that it is essential to model the eigenfrequencies of the single

row of holes treat the plate as an elastic medium. Here, Comsol multiphysics is used

to demonstrate the difference between the FEM rigid plate and elastic plate computed

eigenvalues of an ASW mode in figure 6.12.

cW

- Sound Line

■ Rigid Model

· Elastic Model

Figure 6.12: Comsol multiphysics modelled eigenfrequency results of a single line of
holes for open in an elastic aluminium alloy plate (green dots) and a perfectly rigid
plate (red squares). The geometry of the array is 6.00 mm pitch, 1.5 mm radius and
9.7 mm thick.

The results in figure 6.12 shows that there is a significant difference between the

produced dispersion of the perfectly acoustically rigid solid (red squares) and that

of an elastic solid (green dots). The difference in the value of the asymptotic final

eigenfrequency is ∆f = 2.53 kHz at kx ≈ kg
2 . The agreement between the modelled

and experimental results in figure 6.11 show that it is necessary to factor in the elastic

properties of the plate when modelling their evanescent modes.
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6.6 Two Rows of Holes with Mirror Symmetry

The second sample examined has two parallel lines of holes drilled into a

L = 9.7± 0.1 mm thick aluminium alloy (5083) plate with spacing between the centre

lines of the holes d = 3.50 ± 0.01 mm, λg = 6.00 ± 0.01 mm and R = 1.50 ± 0.01

mm. The holes in rows are aligned with a mirror plane between the lines. This sam-

ple is depicted in figure 6.13. The Brillouin zone boundary of this sample remains at

kBZ = 523 m−1, the same as for the single row as the pitch has not changed.

λg

R

L

y z
x

d

Two Symmetric
Rows of Holes

Figure 6.13: A to scale 3D rendered image of the two symmetric rows of holes in
the aluminium alloy sample. Labelled are the pitch λg = 6.00 mm, radius of the holes
R = 1.50 mm, thickness L = 9.7 ± 0.1 mm and spacing between the centre of both
rows d = 3.5 mm. The holes are open-ended and the entire sample is submerged
underwater during experimentation.

Due to the extra degree of freedom, it is expected that there are two excitable

ASW modes of this sample at the BZ boundary, as shown in figure 6.14. These modes

are labelled the symmetric and antisymmetric modes after the associated field in the y

direction symmetry. At the BZ boundary both the these modes can exist independently.

To excite these two modes, the source is positioned off-centre of the two lines of holes,

over one of the holes. This will give the field plots an asymmetry, but is necessary to

excite the antisymmetric mode.
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Figure 6.14: The two excitable ASW modes of two mirror symmetric lines of coupled
resonating holes at the BZ boundary. The colour represents the phase of each hole,
where blue is positive phase (π/2) and red is negative phase (−pi/2).

Taken from the generalised Floquet theorem, this system has the glide operator:

G =


x→ x

y → −y

z → z

(6.2)

6.6.1 Frequency Domain

Time domain data is collected 0.50 ± 0.01 mm from the surface in a 21.21 ± 0.03 mm

by 128.70± 0.03 mm area as voltage over time. These results are Fourier transformed

in time using an FFT to produce the instantaneous amplitude, absolute amplitude and

phase, presented in figures 6.15, 6.16 and 6.17. The four frequencies depicted are 53.6,

55.0, 56.4 and 59.0 kHz illustrating the two supported ASW modes.

At 53.6, 55.0, 56.4 and 59.0 kHz the presence of the ASW modes are seen, shown by

the significant increase in power in figures 6.15 and 6.16. They split into two distinct

modes as the BZ is approached, figure 6.14. The lower frequency mode shown at 53.6,

55.0 and 56.4 kHz is the symmetric mode of the sample and the the antisymmetric

mode is clearly visible in figures 6.15 and 6.16 at the higher frequency of 59.0 kHz. In

addition, note that three plots at 59.0 kHz show the expected null in the field at the

centre of the two rows of holes.

In addition, the frequency plots show a presence of the modulation, as seen pre-

viously in the single row of holes, at x ≈ 60 mm at 55.0 kHz in the phase plots of

figure 6.17. This feature is associated with the overlapping ASW and SSW modes. It is

expect that these features disperse independently when the wavevectors and dispersions

are plotted.

116



0

10

20

50 100

y 
(m

m
)

−1 0 1

53.6 kHz

0

10

20

50 100

−5 0 5

55.0 kHz

0

10

20

50 100

x (mm)

y 
(m

m
)

−2.5 0.0 2.5

56.4 kHz

0

10

20

50 100

x (mm)

−5 0 5

59.0 kHz

Figure 6.15: The experimental instantaneous signal of the fields above two rows of
symmetrically aligned holes in the 9.7 mm thick aluminium alloy plate. Shown are
the results at 53.6, 55.0, 56.4 and 59.0 kHz.
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Figure 6.16: The absolute amplitude results of the fields above two rows of symmet-
rically aligned holes in the 9.7 mm thick aluminium alloy plate. Shown are the results
at 53.6, 55.0, 56.4 and 59.0 kHz.
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Figure 6.17: The experimentally measured results of the phase of the fields above
two rows of symmetrically aligned holes in the 9.7 mm thick aluminium alloy plate.
Shown are the results at 53.6, 55.0, 56.4 and 59.0 kHz. Here blue represents positive
phase +π/2 and red is negative phase −π/2.

6.6.2 Wavevector Components

The frequency results are now Fourier transformed spatially in x and y to produce the

wavevector components of the detected fields, shown in figure 6.18. These results depict

the wavevector components at 53.6, 55.0, 56.4 and 59.0 kHz as Fourier magnitude in

wavevector space, kx and ky.

The propagating symmetric ASW mode has a symmetric amplitude distribution

similar to the fundamental mode of the single line of holes at 53.6 and 55.0 kHz in

figure 6.10. There is a second forward-propagating ASW mode that appears at larger

|ky| at 59.0 kHz. This antisymmetric mode is split in amplitude with a minimum at

ky = 0. The slight asymmetric intensity of this order mode is due to the fact that the

excitation is at one side of the structure. Note that the diffracted modes have the same

intensity distribution with regard to the y-axis as the forward-propagating modes.
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Figure 6.18: The experimentally extracted wavevector plots for the two mirror sym-
metric rows of holes at 53.6, 55.0, 56.4 and 59.0 kHz. Each plot shows the normalised
magnitude of signal in a given direction, with high amplitude features characterised
as the ASW modes.

119



6. Underwater Acoustic Surface Waves on Straight Parallel Lines of
Regularly Spaced Holes

6.6.3 Dispersion

Plotting frequency, f , against wavevector, kx, at ky = 0 produces the dispersion de-

picted in figure 6.19. As highlighted in figure 6.18, the second order antisymmetric

ASW has zero amplitude at ky = 0. Therefore when plotting the dispersion at ky = 0,

results show that the forward-propagating and negative wavevector diffracted order of

the antisymmetric mode does not exist. To visualise the fundamental antisymmetric

mode, the dispersion at finite ky is plotted, choosing ky =
kg
2 = 523 m−1 in figure 6.20.

The group velocity of this mode is significantly lower than that for the symmetric mode

and it decays more quickly in the propagation direction, making it harder to detect,

but now both modes are visible in the diffracted side of the dispersion diagram with a

gap between the two at the BZ boundary.
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Figure 6.19: The experimentally-measured and Comsol-calculated (green dots) dis-
persion of the detected fields over the 9.7 mm thick aluminium sample with two mirror-
symmetric rows of holes drilled into it. The top plot is the data at a cross-section in
wavevector space at ky = 0 and the bottom plot has the elastic-acoustic model super-
posed for the comparison.
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Plotted against the experimental data is the Comsol pressure acoustic-elastic dis-

persion curve results of the system in figures 6.19 and 6.20. The dispersion curves of the

model are overlaid onto the experimental eigenvalues and are in excellent agreement.

Shown in the modelled data, the two modes are separate at the BZ boundary as they

do not overlap. Experimentally the results do not reach the BZ boundary because as

the group velocity of these modes decreases to zero there is progressively less signal to

detect. The band gap between the upper and lower mode at the BZ is 3.1 kHz.
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Figure 6.20: The experimentally-measured and Comsol-calculated (green circles)
dispersion of the detected fields over the 9.7 mm thick aluminium sample with two
mirror symmetric rows of holes. The top plot is taken at a cross-section in wavevector
space at ky =

kg
2 and the bottom plot has the elastic-acoustic model superposed for

the comparison. The backwards-propagating diffracted orders are present between
kx < −kg/2 and the forward-propagating waves exist in the range 0 < kx <

kg
2 .
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6. Underwater Acoustic Surface Waves on Straight Parallel Lines of
Regularly Spaced Holes

6.7 Two Glide-symmetric Rows of Holes

The third sample studied is composed of two parallel lines of holes having glide-

symmetry drilled fabricated in a 9.7± 0.1 mm thick aluminium alloy (5083) plate with

spacing between the centre points of each row d = 3.5 ± 0.1 mm, λg = 6.0 ± 0.1 mm

and R = 1.5± 0.1 mm, as shown in figure 6.21. The BZ boundary in the x direction is

again kBZ = 523 m−1.

λg

R

L

y z
x

d

2 Glide symmetric
rows of holes

Figure 6.21: A 3D rendered image of the two glide-symmetric rows of holes sample
in a 9.7 ± 0.1 mm thick aluminium alloy plate. Labelled is the spacing between the
centre of the rows, d, pitch, λg, radius of the holes, R, and thickness, L.

The sample pictured in figure 6.21 is similar to the symmetric sample but one of

the rows has been translated by 3.0± 0.1 mm in the x direction. This system has the

glide operator:

G =


x→ x+

λg
2

y → −y

z → z

(6.3)

Here λg is the spacing between holes, the lattice period, in x and kg is the fixed

wavevector component of the glide symmetric array, kg = 2kBZ = 2π/λg. This type of

symmetry has been well studied in electromagnetism163.

The glide symmetry of the system means that there is no band-gap between the

higher and lower frequency branches of the dispersion curve at the BZ boundary, unlike

for the mirror symmetric rows of holes. At the BZ boundary there is only two allowed
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degenerate excitable modes, with the expected phase maps shown in figure 6.22. The

figure shows the two modes at the BZ boundary, which are independent of each other,

but can exist at the same time.

++ + --- - +
Top Mode

-- -
-++ +

Bottom Mode

000000

000000 0

λg

Figure 6.22: The excitable ASW modes of the two row glide symmetric sample made
of coupled resonating holes and the two modes at the BZ. They are fully degenerate
in energy. The colour represents the instantaneous phase of each hole. Here blue is
positive phase (+π/2) and red is negative phase (−π/2).

6.7.1 Frequency Domain

Spatially scanned time averaged data is fast Fourier transformed in time to extract

the frequency plots of the fields above the glide-symmetric sample. Instantaneous

amplitude, absolute amplitude and phase plots of the fields are shown in figures 6.23,

6.24 and 6.25, respectively. Plotted in each are the components at 53.6, 55.0, 56.4 and

59.0 kHz. These frequencies are chosen to illustrate the essential mode behaviour. It

is anticipated that there are two degenerate solutions at the BZ boundary depicted in

figure 6.22.

In figures 6.23 and 6.24, at all frequencies depicted the field amplitude increases

where the ASW is present. At 53.6, 55.0 and 56.4 kHz the field has the antisym-

metric intensity distribution of the long wavelength excitation. At 59.0 kHz this is

seen along with the symmetric short wavelength intensity distribution of the higher

frequency mode. The absolute pressure plots in figure 6.24 shows that the field of the

antisymmetric mode propagates further than the mode at 59.0 kHz. The 55.0 kHz field

is modulated by the SSW-ASW interaction at x ≈ 60 mm.
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Figure 6.23: The experimental instantaneous signal of the fields above the two row
glide-symmetric sample at 53.6, 55.0, 56.4 and 59.0 kHz.
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Figure 6.24: The experimental absolute amplitude of the fields above the two row
glide symmetric sample at 53.6, 55.0, 56.4 and 59.0 kHz.
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In figure 6.25, there is a “zig-zag” pattern of the mode of the field at 59.0 kHz

as the mode appears to propagate along the array as if reflecting from the edges of a

waveguide.
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Figure 6.25: The experimental phase above the two row glide symmetric sample at
53.6, 55.0, 56.4 and 59.0 kHz. The phase is plotted between −π/2 as red and +π/2
as blue.
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6.7.2 Wavevector Components

Fourier transforming frequency dependent spatial data in x and y produces the wavevec-

tor component plots of the detected fields above the glide symmetric sample, shown in

figure 6.26.
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Figure 6.26: The wavevector components of the fields over the two row glide-
symmetric sample plotted as Fourier magnitude in reciprocal space at 53.6, 55.0, 56.4
and 59.0 kHz. The solid white ring represents the sound line at each frequency and
the blue dashed lines are the diffracted sound lines. The Brillouin zone boundaries are
marked by the dotted white lines.

Figure 6.26 shows the fundamental mode at 53.6, 55.0 and 56.4 kHz in the forward

propagating direction. The diffracted fundamental has negligible amplitude at ky = 0.

This shows that the coupling between the forward-propagating ASW. This is also seen
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in the higher frequency mode at 59.0 kHz, where there is negligible amplitude of the

mode in the forward propagating direction at ky = 0.

6.7.3 Dispersion

Comparing the dispersion in kx at both ky = 0 and ky =
kg
2 , as shown in figures 6.27

and 6.28, the higher frequency mode is not excited at ky = 0 but is present at ky =
kg
2 .
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Figure 6.27: The experimental dispersion at ky = 0 plotted between −kg and +kg

with the model in the bottom plot and without the model in the top plot. The full
elastic-pressure acoustic Comsol model is plotted as green dots between −kg/2 and
+kg/2.

Because there is no mode gap at the BZ, here the group velocity no longer becomes

zero and the wave propagates further over the sample at higher kx. This high wavevector

overlap region has a low group velocity, making this a method of supporting “slow”

surface waves. Unlike in the mirror symmetric case, the diffracted modes are negligible,

but not zero amplitude, at ky = 0. This is due to the change in symmetry of the sample.
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Figure 6.28: The experimental dispersion at ky =
kg
2 = 512m−1 plotted between

−kg and +kg with the model in the bottom plot and without the model in the top

plot. The full elastic-acoustic Comsol model is plotted as green dots between −kg2 and

+
kg
2 .
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6.8 Three Pseudo-glide Symmetric Rows of Holes

The final sample investigated in this chapter is the Pseudo-Glide Symmetric (PGS)

sample composed of three rows of holes drilled in a 9.7±0.1 mm thick aluminium alloy

plate in an array depicted in figure 6.29. This has space between the centre points of

the rows d = 3.50± 0.01 mm, λg = 6.00± 0.01 mm and R = 1.5± 0.01 mm. This array

is not glide symmetric, but it does share similarities in the geometry of neighbouring

rows to the previous glide symmetric sample.

λg

R

L

y z
x

d

Three Psuedo-Glide-Symmetric
Lines of Holes

Figure 6.29: A 3D rendered image of the sample with three PGS rows of holes.
Labelled is the pitch, λg, radius of the holes, R, thickness, L, and the spacing between
the centre of the rows, d.

This system is expected to support three different fundamental ASWs that are

represented at the BZ in figure 6.30. These modes are labelled the inner and outer

symmetric and the outer antisymmetric modes after their associated phase symmetry.

As the figure shows, there is a null at the centre of the first two modes. This means

that to excite either of these modes the point-source should be positioned over one of

the holes at the edge of the array. The inner and outer symmetric modes occur at

the same frequency: they are degenerate since the coupling between the outer rows is

negligible.
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Figure 6.30: The three excitable ASW mode of three glide translated lines of coupled
resonating holes and the allowed glide-symmetric mode, outlined in red. The colour
represents the phase of each hole. Here blue is positive phase (π/2), red is negative
phase (−π/2) and grey is a null.

6.8.1 Frequency Domain

Instantaneous and absolute amplitude plots, figures 6.31 and 6.32, show the ASW fields

excited above the sample. The lowest order frequency at 53.6 kHz shows the symmetry

of lowest order ASW. At 55.0 and 56.4 kHz the fields “zig-zag”, also seen in figure 6.33,

as the wave propagates as if confined to a waveguide reflecting from the edges of the

array. This is similar to the low-to-high impedance acoustic reflections seen in 2D

phononic devices164. At 59.0 kHz the field begins to weaken and becomes localised

near the point of excitation.
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Figure 6.31: The experimental instantaneous amplitude of the fields above the three
row PGS sample at 53.6, 55.0, 56.4 and 59.0 kHz.
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Figure 6.32: The experimental absolute amplitude of the fields above the three row
PGS sample at 53.6, 55.0, 56.4 and 59.0 kHz.
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Figure 6.33: The experimental phase of the fields above the three row PGS sample
at 53.6, 55.0, 56.4 and 59.0 kHz. The phase is plotted between −π and +π, where red
is negative and blue is positive.
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6.8.2 Wavevector Components

Wavevector plots of the three row PGS array are shown in figure 6.34. The outer and

inner symmetric modes are visible at 53.6, 55.0 and 56.4 kHz. At the higher frequency

of 56.4 kHz, the outer antisymmetric mode is apparent. At the even higher frequency

of 59.0 kHz, the modes become blurred and it becomes difficult to identify the highest

frequency mode.
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Figure 6.34: The wavevector components of the fields over the three row PGS sample
plotted as Fourier magnitude in reciprocal space at 53.6, 55.0, 56.4 and 59.0 kHz. The
white circle represents the sound line and the blue dashes are the diffracted sound
lines. The BZ boundaries are marked by the dotted white lines.
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6.8.3 Dispersion

The dispersion at ky = 0 and ky =
kg
2 is shown in figures 6.35 and 6.36. Again, the

antisymmetric mode is not excited at ky = 0. This time, just like the two row glide-

symmetric sample, there are no diffracted orders excited at ky = 0 m−1. But now there

is expected be three modes dispersion at ky =
kg
2 . Again, the dispersion extend up to

and through the BZ boundary as there is finite group velocity at the BZ boundary.
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Figure 6.35: The experimental dispersion of the 3 PGS sample at ky = 0 plotted
between −kg and +kg with the model in the bottom plot and without the model
in the top plot. The full elastic-acoustic Comsol model is plotted as green dots be-
tween −kg2 and +

kg
2 . The backwards-propagating diffracted orders are present between

kx < −kg/2 and the forward-propagating waves are represented as 0 < kx <
kg
2 .

The cross section at ky =
kg
2 shows only two distinct modes in the forward propa-

gating direction. Looking at the diffracted (negative) side of the plots, all modes that

appear in the positive kx appear on the left hand side of the plots. Although the model

predicts three modes, the results only show two. This is because there is essentially

only nearest neighbour coupling, so the “inner” and “outer” modes are degenerate.
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Figure 6.36: The experimental dispersion of the 3 PGS sample at ky =
kg
2 plotted

between −kg and +kg with the model in the bottom plot and without the model in
the top plot. The full elastic-acoustic comsol model is plotted as green dots.

6.9 Conclusions

This chapter presented original results on the ASWs supported by rows of holes in alu-

minium alloy underwater. Through the visualisation of time, frequency and wavevector

components of the fields, the different excited ASWs were characterised and dispersion

relations mapped. Looking at the frequency domain, results were used to identify

these modes propagating over narrow frequency ranges with little loss. Importantly

data showed how it is possible to create degenerate ASW modes at the BZ boundary

through the imposition of glide-symmetry. Interestingly for the three row pseudo-glide-

symmetric sample, because of nearest neighbour coupling, only supports two modes that

are degenerate. Additionally, it was shown that there is a significant 2.53 kHz difference

between the asymptotic eigenfrequencies of a 1D array of holes in a perfectly rigid solid

and the case of an elastic solid. Results also showed that there is modulation of the

fields associated with the ASWs and the sound line bound SSWs. The next chapter

will explore two-dimensional ASWs.
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Chapter 7

Underwater Acoustic Surface

Waves on Two-dimensional

Arrays of Holes

7.1 Introduction

Surface waves occur at the boundary between two differing elastic materials. There

are several different classifications of surface wave phenomena in acoustics34,16,17,165,

as discussed in chapter 2. In addition, periodically structured surfaces that support

non-radiative surface waves are well documented in many photonic, phononic and air-

borne phononic systems45,46,47,48. These non-radiative waves, here Acoustic Surface

Waves (ASWs), are highly localised, evanescently decaying in a direction normal to

the surface on which they are supported. They are found on surfaces patterned with

near-wavelength sized cavities integrated into a solid material. Unlike Rayleigh and

Lamb bulk waves which propagate through a material, ASWs do not penetrate far

into the material to which they are bound. Surfaces between solids and fluids support

ASWs that are excited in the same frequency regime as Scholte-Stoneley Waves (SSWs).

These propagate along the interface between two elastic media and may overlap, and

thus interfere with ASWs.

Research into structures that support SSWs and ASWs are areas which have gained

attention as these structures can be easily tailored to change their useable frequency

ranges simply by changing their geometry. A highly localised and slow travelling ASW

has potential applications in acoustic sensing, energy harvesting, signal processing and

material characterisation. Most research into ASWs has been undertaken in air51,52,53

with some studies underwater of two-dimensional structured materials that support
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surface waves. These include grooves54,55 and 2D arrays that have been modulated

using material-filled arrays of holes56.

This chapter details the quantification of the direction dependent dispersions of

underwater ASWs bound to two different thickness 2D square arrays of water-filled

holes in aluminium alloy plates. Results will be Fourier analysed two-dimensionally

using scanned data to characterise ASWs and to show how they mix with SSWs. In

addition, directional in-plane beaming at a particular frequencies is observed. A fully

pressure-acoustic-elastic computational model of the systems is used to confirm and

compare to the experimental results. There is good agreement between experimental

and computationally calculated data for the full dispersion.

7.2 Experimental Method

Periodically structured arrays produce, by diffraction, localised ASWs that are non-

radiative. A water-filled hole in a solid is a simple diffracting object and by patterning

a solid plate with a periodic array of holes it possible to create a structure that supports

ASWs. This chapter considers square arrays of open-ended holes with a radius of

R = 1.50± 0.010 mm and pitch of λg = 5.50± 0.01 mm in finite thickness solid plates,

as shown in figure 7.1.

Rx

λg

L

λg

λg

z

y

Figure 7.1: A 3D rendered image of the two-dimensional square array of holes exam-
ined in this chapter. The parameters shown are the radius of the holes, R, the pitch
of the array, λg, and the plate thickness, L. A unit cell of the array is outlined by the
red dotted box.
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Two-dimensional square arrays of open-ended holes were drilled through both the

L = 6.4± 0.1 mm and L = 9.9± 0.1 mm thick plates of aluminium alloy (5083). The

plate is 400 ± 1 mm by 400 ± 1 mm in area and has 4900 holes, in a 70 by 70 square

array. Scanning these arrays takes up to 36 hours.

Experiments are performed underwater with the aluminium alloy plate fixed in

position. 8 ms wide approximately Hanning-windowed ultrasonic pulses (double-cycle)

centred at 70 kHz are projected at the sample using a foam-wrapped D70 source with

an exit diameter of 6.0± 0.1 mm. This narrow source is positioned directly over one of

the holes and ≈ 3 mm from the sample surface. Projecting at such close proximity to

the sample with a small source excites locally, confining the mode, and gives the pulse

high wave momentum in the plane of the surface. The excited fields are detected in the

near-field using an xyz spatial scanning stage mounted Precision Acoustics 1 mm needle

hydrophone. The tip of the detector is positioned on the opposite side of the plate to

the source, 0.5 mm from the face of the sample. This is well within the decay length,

δP, of the expected ASW fields (δP ≈ 40 mm60) . The usable frequency range of this

source-detector arrangement is between 40 and 100 kHz. A render of the underwater

setup is shown in figure 7.2.

Source

Needle
Hydrophone

Sample 10
 m

m

0.5 mm

5.0 cm

3.0 mm

5.5 mm

x y
z

Origin

Figure 7.2: A 3D rendered image of the square array submerged in the water tank.
Acoustic pulses are projected from the foam-wrapped Neptune Sonar D70 hydrophone
with a d = 6.00 ± 0.01 mm diameter exit and detected by the Precision Acoustic
1.0 ± 0.1 mm diameter needle hydrophone, which is scanned spatially using an xyz
stage.
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7.3 Computational Analysis

FEM Comsol modelling is used to run an eigenfrequency model for the arrays of holes,

with the solid treated as elastic and water as viscous. The elastic and viscous acoustic

parameters of each medium are listed in table 7.1166,167. These figures are the ex-

perimentally derived values for aluminium alloy from chapter 4 and estimates of the

properties of water.

Medium E (GPa) ρ (kgm−3) σ ηB (Pa.s) η (Pa.s) c (m/s)

Water - 997 - 2.47 ×10−3 8.88 ×10−4 1512
Aluminium alloy 72 2660 0.34 - - -

Table 7.1: Elastic and viscous acoustic parameters for water and aluminium alloy
5083.

These models use a single hole unit cell and are bounded by Floquet periodicities

in the x and y directions and by Perfectly Matched Layers (PMLs) in z. From this the

eigenfrequencies of the system are derived, as detailed in section 3.8.

7.4 Results

This section details the results of experimental data, acquired by scanning the detector

over a 106.05± 0.01 by 106.05± 0.01 mm area, 0.50± 0.01 mm from the surface of the

sample in the xy plane with signals being averaged at each point over 50 repeated pulses

to improve the signal to noise ratio. The resolution of the scan is ∆x = 0.707± 0.01−
mm and ∆y = 0.707 ± 0.010 mm. The source is positioned at a hole at the edge of

the sample, position (0, 0) in the data, and results are thus attained for one of four

symmetric quadrants in reciprocal space (+kx,+ky only). This avoids high amplitude

plate modes that are present when exciting the plate at the centre of the plate. For

this, the Hanning-like window function is, used to soften the edges spatially, is removed

as this would limit the amount of data along the x and y axes but the data is still zero

padded to three times the data length.

7.4.1 6.4 mm Thick Two-dimensional Square Array

Unfiltered instantaneous voltage field maps of the wave travelling across the surface of

the 6.4± 0.1 mm thick plate are presented in figure 7.3, shown as detected voltage, V ,

in space, x and y.
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Figure 7.3: Instantaneous voltage above the 6.4 mm thick plate at three different
points in time: 0.100, 0.150, 0.200 and 0.250 ms after the source first projects a signal.
The scale shows the voltage in mV as red (positive) and blue (negative). The max
voltage varies significantly as the driving signal positioned at the origin is included in
the scan area.

Figure 7.3 shows the acoustic field propagating across the square array of holes,

starting nearest the source at 0.100 ms after the pulse was sent until 0.250 ms. At

0.250 ms the results clearly show the holey structure of the plate diffracting as well as

the freely propagating wave.

Fourier analysis of these results in time, t, reveals the individual frequency compo-

nents in 2D. Three sets of frequency plots are depicted in figure 7.4 as Fourier amplitude,

phase and absolute Fourier amplitude. At 82.4 kHz results show highly directional ASW

power beaming at an angle of 45◦ from the x and y axes.
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Figure 7.4: Three different frequency dependent 6.4 mm thick plate xy spatial plots
showing the instantaneous amplitude (top), phase (middle) and normalised absolute
amplitude (bottom) of the excited field of the square array of holes at 80.0, 82.4 and
85.0 kHz. Acoustic beaming is clearly shown at 82.4 kHz at 45◦ off the x axis.

Further, Fourier transforming the 2D frequency data spatially in x and y produces

the frequency dependent wavevector components, kx and ky. Figure 7.5 shows the
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experimental k-space results for frequencies: 75.0, 80.0, 82.4 and 85.0 kHz. The overall

trend shows that from 75.0 to 85.0 kHz the ASW disperses away from the sound line

defined by k0 = 2πf/c (where the measured c = 1512 m/s) and changes shape as it

approaches the Brillouin zone boundary, |kx|, |ky| = kg
2 . At 82.4 kHz the isofrequency

contour has clearly flattened at the frequency that results showed beaming across the

sample in the frequency domain in figure 7.4. A bound mode SSW is visible, close to

the sound line, at 80.0 kHz in figure 7.5 along with the ASW.
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Figure 7.5: Wavevector plots of the field propagating over the 6.4 mm thick square
array of holes at four different frequencies: 75.0, 80.0, 82.4 and 85.0 kHz. These
plots show directional components of the fields as the Fourier amplitude of the signal
propagating in the x and y directions as kx and ky components. The sound line is
represented as a white circle line with the diffracted sound lines as dashed circles.
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7.4.1.1 Dispersion Relation

The modelled dispersion is plotted against experimental results in Figure 7.6. It shows

data along lines of high symmetry Γ to X, M to X and M to Γ, at the zone boundary,

indicated in the top right corner of figure 7.6. The computationally predicted ASW

mode lies between 60 and 85 kHz, the X point at kx =
kg
2 and ky = 0 is at 82.4 kHz

and the M point kx =
kg
2 and ky =

kg
2 is at 85.0 kHz. There is clear agreement between

the experimental and the model data.

··· Brillouin 
zone edge

··· Model

— Sound line

(a) (b)

Normalised
Magnitude 
(a.u.)

Figure 7.6: The directional dispersion between along lines of high symmetry Γ −
X −M −Γ of the 6.4 mm thick square array of holes. X, M and Γ are defined by the
shape of the array and the maximum wavevector of the grating,

kg
2 . Modelled data

(green dotted line) is the result of computationally calculated FEM modelling.

The enhanced amplitude of the signal between X and M is due to an interference

effect between the ASW and reflected signal from the edge of the finite size sample,

which can also be seen in the x direction of Figure 7.5. Results also show evidence of a

weak mode bound to the sound line in Figure 7.6 that is another source of interference.

7.4.1.2 Acoustic and Elastic Mode Shapes

To investigate the interaction between the elastic plate and the acoustic pressure field,

the computationally calculated deformation of the plate is now investigated. Figure 7.7,

shows the mode shapes at maximum pressure inside the holes of the array and the

maximum deformation of the surrounding elastic solid at X and M , enhanced by a

factor of 109 to visualise it. The maximum pressure in all plots falls at the centre of
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the holes, which is characteristic of the fundamental mode within the hole.
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Figure 7.7: The computationally calculated mode shapes inside one unit cell of
the square array. Shown are the surface acoustic pressure plots, left, and the elastic
displacement plots, middle and right at X, top row, and M , bottom row. Graphically,
the displacement has been enhanced by ×109 to allow visualisation.

The asymptotic frequencies found for the dispersion of the elastic solid are ≈ 3 kHz

lower than predicted for the same geometry in a perfectly rigid solid. It was posited

by Biot168 that the speed of sound in the hole is slower in the case of the elastic

plate, as plate deformation changes the effective compressibility β of the fluid. As

compressibility β is related to the bulk modulus B as β = B−1 and as c =
√

B
ρ where

ρ is the density then the speed of sound in the water inside the hole must decrease,

reducing the asymptotic frequency of the ASW. A 3 kHz change in the frequency would

equate to a ≈ 5% change in the bulk modulus of water.

7.4.2 9.9 mm Thick Two-dimensional Square Array

To demonstrate the tuneability of these surfaces, to test the limits of ASW mode

propagation and to verify the method, results will also be taken for a sample made of

a 9.9 ± 0.1 mm thick aluminium alloy. The radius and pitch of the array remain the

same at R = 1.50± 0.01 mm and λg = 6.00± 0.01 mm.

Figure 7.8 shows the voltage field maps of the acoustic pressure wave travelling

across the 9.9± 0.1 mm thick array.
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Figure 7.8: Instantaneous voltage above the 9.9 mm thick samples at four points in
time: 0.100, 0.150, 0.200 and 0.250 ms after the source first projects the pulse. Voltage
is shown as blue (positive) and red (negative).

Figure 7.8 shows the pressure field propagating across the square array of holes,

starting nearest the source at 0.100 ms after the pulse has been sent until 0.250 ms.

These times are the same as those presented in figure 7.3. This time there is a clear

minimum due to an interaction with a reflection from the side of sample.

Again, Fourier analysis of the time domain data in time reveals the discrete fre-

quency components of the 2D fields. Three sets of frequency plots above the 9.9 mm

thick sample are depicted in figure 7.9. At 58.0 kHz there is directional ASW beaming

at an angle of 45◦ from the x and y axes. Unlike the case of the 6.4 mm thick plate,

this beaming is highly localised and is not visible more than 70 mm from the origin at

58.0 kHz.
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Figure 7.9: Three sets of frequency dependent xy spatial plots showing the instan-
taneous amplitude (top), phase (middle) and normalised absolute amplitude (bottom)
of the excited field of the square array of holes at 52.0, 56.0 and 58.0 kHz.

The 2D frequency data is spatially Fourier transformed to produces the wavevector

components, kx and ky. Figure 7.10 shows the experimental k-space results for four
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different frequencies: 52.0, 54.0, 56.0 and 58.0 kHz. These results again show an ASW

mode split away from the sound line which changes from circular as the frequency

increases. However as it approaches the Brillouin zone boundary it now weakens sig-

nificantly. Significantly now this thicker plate mode supports a comparatively strong

mode at k(x, y) = 0, similar to that discussed in chapter 5, which was not seen in the

6.4 mm thick sample.
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Figure 7.10: Wavevector plots of the field propagating over the square array of
holes at four different frequencies: 52.0, 54.0, 56.0 and 58.0 kHz. The sound line
is represented as a white circle, the diffracted sound lines as dashed circles and the
Brillouin zone boundaries as white dotted lines.

7.4.2.1 Dispersion Relation

The resultant Γ−X −M dispersion of the 9.9 mm thick plate is shown in figure 7.11.

The computationally predicted ASW mode lies between 50 and 60 kHz. There is no

data between X −M which suggests that the majority of the coupling of this ASW
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occurs between neighbouring pairs of holes in the x and y directions. By thickening

the plate, the coupling in the diagonal direction has weakened. These results also show

that the asymptotic frequency has changed, therefore demonstrating the tuneability.

··· Brillouin 
zone edge

··· Model

— Sound line

(a) (b)

Normalised
Magnitude 
(a.u.)

Figure 7.11: The directional dispersion over the 9.9 mm thick plate between the
points of high symmetry Γ−X −M − Γ of the square array of holes. Modelled data
(green dotted line) is the result of computationally calculated FEM modelling.

7.5 Conclusions

This chapter presented results for the observation of underwater ultrasonic Acoustic

Surface Waves (ASWs) supported by two square arrays of open-ended holes in a perfo-

rated aluminium plates of differing thickness. By Fourier analysing the fields temporally

and spatially the ASWs were characterised and the dispersions plotted. Experimental

data agree well with FEM modelled data of the structured elastic array, showing that

the results depend significantly on the elastic properties of the material. These results

also demonstrated that by varying the thickness the ASW modes are tuneable, whilst

directional coupling strength varies. Moreover, ultrasonic beaming over a narrow band

of frequencies has been observed. The ultrasound technique presented can be applied to

any submerged flat 2D system and can be used to detect ASWs over any periodic array

of diffracting structures, limited by the usable frequency range of the source-detector

setup. By adding degrees of freedom or changing the geometry of the array, these

surfaces can be readily adapted to support multiple ASW modes tuned to selected fre-

quency ranges. Acoustic devices made up of similar 2D arrays could be used to harvest
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directional energy surface waves using micromechanical systems (MEMS)134, improve

acoustic propagation for communications or direct unwanted sound away from an area

(using acoustic waveguide-like effects135,169 similar to that shown for SAWs to send and

receive sound). The next chapter will investigate the acoustic response of structured

pressure-release materials.
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Chapter 8

Ultrasonic Observation of the

Cut-off Frequency of Holes in a

Pressure-release Material

8.1 Introduction

As mentioned in chapter 2, there are two types of idealised boundary conditions in

acoustics: pressure-release and rigid boundaries. Rayleigh appears to have been the

first to define the pressure-release boundary in 188534 as:

pa = 0. (8.1)

Morse expanded on this, exploring the geometry of pipes35. But it was not until half a

century later that the first extensive experimental work on fluid filled cylindrical waveg-

uides with pressure-release boundaries was published by William J. Jacobi170. Jacobi

explored theoretically and experimentally the dispersion of sound travelling through

cylindrical waveguides and plotted the dispersion of a sound wave travelling through

both a rigid and pressure-release cylindrical waveguide by probing pressure-release

tubes with a needle hydrophone. Since then, there have been a variety of different

studies exploring the dispersion of sound waves within acoustic waveguides with differ-

ent boundaries36,37,39,40. A number of studies have published data on lined ducts and

cylinders, effectively showing pressure-release conditions of a cylindrical waveguide38.

More recently, Baik, Leighton and Jiang published an extensive review of the topic,

discussing group velocities, attenuation and phase of sound waves travelling in liquid

filled pipes171,172,173. Yet none of these studies have demonstrated that the acoustic

cut-off exists in the radiative regime.
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Pressure-release Material

In this chapter the underwater ultrasonic response of a cylindrical waveguide arrays,

with pressure-release boundary conditions is explored. A derivation of the approximate

cut-off frequency for this system is presented. Using pulsed signals sent between a

transducer and a hydrophone, the acoustic transmission through cylindrical waveguides

with pressure-release walls is measured and then analysed in the frequency domain

using Fast Fourier Transforms (FFTs). To verify the result further, computational

modelling of the system is used and then compared with both experimental and analytic

predictions.

8.2 Approximating the Cut-off Frequency

This work examines cylindrical holes that are made in pressure-release materials. The

following section derives the approximate frequency of the acoustic cut-off, fc. For this

derivation of the cut-off in a cylindrical hole for simplicity, the wave equation takes the

form:
1

r

∂

∂t2

(
r
∂p

∂r

)
+

1

r2

∂2p

∂φ2
+
∂2p

∂z2
=

1

c2

∂2p

∂t2
(8.2)

For the case of a pressure-release cylindrical waveguide, the boundary condition implies

that the field pressure falls to zero at the walls of the waveguide. This means that the

modes of this system lie at the zeros of the Bessel function, Jn(Znm) = 0. Here Zmn is

the value at which the Jn Bessel function is zero, fulfilling the role of a function that is

zero at the walls. Thus, the solution to this equation is:

p = einφeikzzJn (Zmn) , (8.3)

where z is the distance in the direction of the propagating wave and φ is the angle.

The dispersion relation of this system is:

(√
k2

0 − k2
z

)
r = Zmn → kz = ±

√
k2

0 −
(
Znm
r

)2

, (8.4)

where k0 is the wavevector of the sound wave and kz is its z component. At the cut-off

frequency the wavevector kz = 0 in the waveguide. Therefore,

k0 =
Zmn
r
. (8.5)

The cut-off frequency, fc, is then approximated90:

fc =
Zmnc

2πr
. (8.6)
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8.3 Experimental Method

A sample was made out of flat Ethylene Vinyl-Acetate (EVA) foam sheet of thickness

L = 10±0.2 mm by cutting into it a square array of holes with pitch λg = 12±0.2 mm

and radius R = 5.0± 0.2 mm. The holes were cut using a sharpened tube rather than

a drill, in order to preserve the cell walls of the EVA foam. This sample is depicted in

figure 8.1. From equation 8.6, the cut-off of this structure is expected at fc ≈ 116 kHz.

Figure 8.1: The EVA foam sample with the square hole array cut into it having
pitch λg = 12± 0.2 mm, radius R = 5.0± 0.1 mm and thickness L = 10± 0.1 mm. A
15 cm ruler is present for a scale.

To explore the pressure-release array radiatively, the Neptune Sonar D70 transducer

source was used to pulse 8 ms approximately double cycle Hanning-windowed pulses,

positioned 400 ± 5 mm from the surface of the sample. This signal was then detected

using the Brüel & Kjær 8103 hydrophone positioned 10.0 ± 0.1 mm away from the

sample surface. The detector is spatially scanned in x and y in a 106.5 by 106.5 mm

area with 0.707 by 0.707 mm resolution (see section 3.5 for further details).

The total recorded time for each scan was 0.65 ms, time-gated to remove reflections.

This is with a time resolution of ∆t = 0.104 µs. The resultant spatially collected voltage

over time is Fourier analysed with triple length zero padding with Hanning-like windows

applied in time and space.
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8.4 Results

8.4.1 Spatial Transmission Plots

Figure 8.2 shows the spatially plotted results at 85, 120 and 140 kHz. These results

clearly show that little to no acoustic amplitude is propagating through the material

at 85 kHz but above the predicted cut-off frequency (fc ≈ 116 kHz) the propagation is

clear, highlighting the structure of the array.

0

50

100

0 50 100

y
(m

m
)

−0.02 0.00 0.02

85.0 kHz

0

50

100

0 50 100

−0.5 0.0 0.5

120.0 kHz

0

50

100

0 50 100

−0.1 0.0 0.1

140.0 kHz

0

50

100

0 50 100

y
(m

m
)

−3 −2 −1 0 1 2 3

0

50

100

0 50 100

−3 −2 −1 0 1 2 3

0

50

100

0 50 100

−3 −2 −1 0 1 2 3

0

50

100

0 50 100

x (mm)

y
(m

m
)

0.00 0.01 0.02 0.03

0

50

100

0 50 100

x (mm)

0.0 0.2 0.4 0.6

0

50

100

0 50 100

x (mm)

0.00 0.05 0.10 0.15

0

50

100

0 50 100

y
(m

m
)

−0.02 0.00 0.02

85.0 kHz

0

50

100

0 50 100

−0.5 0.0 0.5

120.0 kHz

0

50

100

0 50 100

−0.1 0.0 0.1

140.0 kHz

0

50

100

0 50 100

y
(m

m
)

−3 −2 −1 0 1 2 3

0

50

100

0 50 100

−3 −2 −1 0 1 2 3

0

50

100

0 50 100

−3 −2 −1 0 1 2 3

0

50

100

0 50 100

x (mm)

y
(m

m
)

0.00 0.01 0.02 0.03

0

50

100

0 50 100

x (mm)

0.0 0.2 0.4 0.6

0

50

100

0 50 100

x (mm)

0.00 0.05 0.10 0.15

0

50

100

0 50 100

y
(m

m
)

−0.02 0.00 0.02

85.0 kHz

0

50

100

0 50 100

−0.5 0.0 0.5

120.0 kHz

0

50

100

0 50 100

−0.1 0.0 0.1

140.0 kHz

0

50

100

0 50 100

y
(m

m
)

−3 −2 −1 0 1 2 3

0

50

100

0 50 100

−3 −2 −1 0 1 2 3

0

50

100

0 50 100

−3 −2 −1 0 1 2 3

0

50

100

0 50 100

x (mm)

y
(m

m
)

0.00 0.01 0.02 0.03

0

50

100

0 50 100

x (mm)

0.0 0.2 0.4 0.6

0

50

100

0 50 100

x (mm)

0.00 0.05 0.10 0.15

0

50

100

0 50 100

y
(m

m
)

−0.02 0.00 0.02

85.0 kHz

0

50

100

0 50 100

−0.5 0.0 0.5

120.0 kHz

0

50

100

0 50 100

−0.1 0.0 0.1

140.0 kHz

0

50

100

0 50 100

y
(m

m
)

−3 −2 −1 0 1 2 3

0

50

100

0 50 100

−3 −2 −1 0 1 2 3

0

50

100

0 50 100

−3 −2 −1 0 1 2 3

0

50

100

0 50 100

x (mm)

y
(m

m
)

0.00 0.01 0.02 0.03

0

50

100

0 50 100

x (mm)

0.0 0.2 0.4 0.6

0

50

100

0 50 100

x (mm)

0.00 0.05 0.10 0.15

Normalised Absolute Amplitude

Phase

Instantaneous Amplitude (a.u.)

Figure 8.2: Spatially plotted Fourier amplitude, phase and normalised absolute am-
plitude of the transmitted results transmitted through the pressure-release array at 80,
120 and 140 kHz. 80 kHz is below the estimated cut-off frequency of fc ≈ 116 kHz.
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8.4.2 Normalised Transmission

The mean signal from the transmitted Fourier absolute amplitude is extracted by

Fourier transforming the time domain results and then normalising against the ref-

erence signal for an empty tank measurement to produce the results in figure 8.3.

These results are compared with a Comsol Finite Element Method (FEM) model. The

experimental results clearly show a cut-off with the signal at 100 kHz much smaller

than the Fourier magnitude above 120 kHz. The cut-off edge of the modelled data is

sharper than the experimentally measured result. The predicted position of the cut-off

of fc ≈ 116 kHz is greater than the apparent frequency at which the signal begins to

propagate through the surface, which is attributed to the edge broadening associated

with variation in hole sizes.
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Figure 8.3: The normalised mean absolute amplitude of the area scan against fre-
quency plot. This is the response of the square array of 5 mm radius holes in 10 mm
thick foam. Experimental data is plotted in red and FEM modelled data is plotted in
blue dots. The FEM transmission is calculated using an equivalent area integration of
the absolute amplitude and is then normalised to the maximum of the experimental
result to compare the acoustic response.

The FEM Comsol 5.3a modelled results are the normalised absolute amplitude of

the signal propagating through the surface averaged over an area 10 mm from face of

the sample, which is equivalent to the experimental method. The oscillations, above

the cut-off frequency, in amplitude as a function of frequency and shown in the model
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in figure 8.3 are characterised as Fabry-Perot like modes in the holes43,44. Yet they are

not clear in the experimental data. This difference may be attributed to the material

having a pore size of ≈ 100 µm, as shown in figure 8.4, and therefore a distinct hole

radius cannot be defined. The microscope image, figure 8.4 shows the how the EVA

foam is made up of pores that range from dpore ≈ 50 µm to dpore ≈ 200 µm in size.

200 µm

Figure 8.4: A 10× magnification microscope image of the closed cell EVA foam. The
pore sizes of the closed cell foam ranges from dpore ≈ 50 µm to dpore ≈ 200 µm.

8.4.3 FEM Modelled Fields

Plotting the fields using Comsol multiphysics 5.3a, the Fabry-Perot like resonances can

be visualised inside the holes, demonstrated in figure 8.5. The top three plots of the

figure show that the self normalised absolute pressure of the fields in the holes below

the cut-off frequency are negligible. In the bottom three plots, the pressure fields in

the xz plane show that the difference between the peak-to-peak amplitude of these

modes arises from the longitudinal quantisation within the hole. These fields show

that the mode within the hole is symmetric, in x and y, and shaped like the Bessel

function, used to approximate the cut-off frequency. Additionally, they show that the

the peak amplitude in the transmitted signal occurs when the centre of the mode is not

at x = 0 mm. These fields are generated for a perfect pressure-release material, without

modelling pore size. It may be that for a foam-like material, the fields inside the hole

are almost always asymmetric in x and y, where the resonances become ill-defined.
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Figure 8.5: Comsol multiphysics 5.3a modelled spatial data of the pressure in and
around a unit cell of the square array of pressure-release holes, shown at 80, 120 and
160 kHz. Top is the normalised absolute amplitude of the fields at the centre of the
hole in x and y. Bottom are the normalised absolute pressure plots in the xz plane.
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Note that the fields shown in figure 8.5 contain a beat pattern that differs between

the transmission side, left, and the propagation side, right. Interestingly, this beat

pattern differs in wavelength. This is due to the content of the fields on both sides of

the array. The modulation in the transmission intensity is km = k0−kz = k0−(k2
0−k2

g)
1
2 ,

where kg is the grating wavevector. This is fully derived along with the modulation to

the reflected signal in appendix C.

8.5 Conclusion

In this chapter results of measurement of a square array of holes in a foam sheet

have shown the ultrasonic cut-off frequency in a pressure-release material. Through

careful extraction of the Fourier-analysed transmission through this structure, results

clearly show the acoustic cut-off. Finite element models overlay reasonably with the

transmission data, although experimental results were broader and the Fabry-Perot

oscillations expected from modelling were not at all clear in the experiment. Visualising

these modes with FEM modelling showed that the transmission maxima occurs where

the fields inside the hole were asymmetric along the holes of the array, whilst the in-

plane field inside the hole remains symmetric in the shape of the Bessel function in

this frequency range. These results demonstrate for the first time the expected cut-off

frequency for a pressure-release material using sound transmission. By varying the

radius, the acoustic cut-off frequency can be readily changed. This type of surface

can be utilised to allow the flow of a fluid through it, whilst blocking lower acoustic

frequencies. Additionally, an explanation for the beat pattern seen in the transmitted

and reflected signals was discussed and derived. The next and final chapter will further

explore how this work and the preceding work can be adapted and applied to future

projects.
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Chapter 9

Conclusions

9.1 Summary of Thesis

This thesis set out original experimental investigations of the underwater radiative and

evanescent fields of unstructured and structured flat plates. This thesis is divided into

three main areas of research: the study of Lamb modes in unstructured plates, Acoustic

Surface Wave (ASW) modes of hole arrays in aluminium alloy plates and the acoustic

cut-off frequency of arrays of holes in a pressure-release material.

In the chapters 2 and 3 the background theory and methodology used throughout

this work were outlined. Chapter 3 included a novel method of exciting samples using

an adapted transducer, wrapped in foam to make it point-like, which was scanned

spatially to collect acoustic field maps.

In the first results chapter, chapter 4, the Lamb mode dispersions supported by flat

solid plates were experimentally explored, using the methods outlined in chapter 2, and

analysed using Fourier analysis of spatially acquired field maps. Four samples made of

aluminium alloy, mild steel and acrylic were spatially scanned and compared to analytic

theory. Hence, the materials were elastically characterised using the experimental and

analytic dispersions. Material parameters elastic modulus, E, and Poisson’s ratio, ν,

were extracted for each sample, with most results within the expected error of industry

estimates of the elastic properties. Furthermore, aluminium results were compared to a

industry standard method to extract the elastic modulus and shared good agreement.

This method of non-destructive testing is usable between 50 and 500 kHz. The material

properties of aluminium alloy determined in chapter 4 were used in chapter 5, 6 and 7.

Plate modes were further explored in chapter 5. An investigation of the coupling

between symmetric Lamb modes of an aluminium alloy plate was shown to focus trans-

mitted acoustic energy over a very narrow frequency range. This experiment was

performed using the same technique and ≈ 10 mm thick plate used in chapter 4, but
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with the source exciting symmetrically. The acoustic focussing was attributed to the

“Negative Group Velocity” region of the S1b mode that was experimentally observed

in the dispersion relation. The experiment agreed well with the dispersion predicted

using an FEM model. Further results extracted from the model showed that the pres-

sure phase fronts of sound within the plate are refracted inwards towards the centre of

the plate between the point at which the wavevector excitation of that region switches

between the symmetric S1b and the S1 Lamb modes. In addition, a transmitted spatial

beat pattern was observed. This pattern was confirmed analytically to the interference

between a plane wave source and plate modes with similar wavevector components,

normal to the plate (fully derived in appendix B).

Chapter 6 was the first chapter to explore structured plates, demonstrating that it

is possible to fabricate simple one-dimensional periodic arrays of resonators that can

support “trapped” ASWs underwater. The fields above single, double and triple rows

of holes are characterised by scanning the near-fields of each sample with a method

outlined in chapter 3. Then temporal and spatial Fourier analysis was utilised to plot

the iso-frequency contour plots and the dispersion relations of the surface modes. The

detected ASW modes are shown to propagate over narrow frequency ranges along each

of the structured lines of holes. Results showed how it is possible to create degenerate

ASW modes at the Brillouin Zone (BZ) boundary on glide-symmetric samples. Impor-

tantly, comparisons between FEM modelled rigid and elastic dispersions showed that

there is a significant 2.53 kHz difference between the asymptotic eigenfrequencies of

these one-dimensional arrays, with the experimental results agreeing with the elastic

case. Finally, it was revealed there is significant coupling between the fields resulting

from the ASWs and the sound line bound Scholte-Stoneley Waves (SSWs).

ASWs were further explored in chapter 7, where two different thickness square-

arrays of open-ended holes in aluminium alloy plates were used. The excitation and

detection methods used in chapter 6 were again employed to pulse and detect the

diffracted near-fields. Temporal and spatial analysis of the evanescent fields was used

to characterise the two-dimensional surface bound ASWs. The resulting Γ − X −M
directional dispersion was compared with FEM modelled data showing good agreement

in both the 6.4 mm and the 9.99 mm thick cases. Moreover, in-plane ultrasonic beaming

in the Γ −M direction is observed over a very narrow band of frequencies. Finally,

a 3D FEM model of the 6.4 mm thick array was used to show that these results

depend significantly on the elastic properties of the material and that the holes deform

differently depending on the direction of the exciting ASW wave.

In the final results chapter, chapter 8, the ultrasonic cut-off frequency of a square

array of holes in a pressure-release material was explored. Through careful extraction

of the Fourier-analysed transmission through this structure, results clearly showed the
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acoustic cut-off frequency in the spatially plotted transmission and the normalised

transmission data. FEM modelled transmission data shows good agreement with the

experimental results, although Fabry-Perot-like oscillations above the cut-off frequency

seen in the FEM spatially modelled data were not seen experimentally. The FEM

model was employed to plot the fields of the Fabry-Perot modes inside the holes. These

results showed that the transmission maxima occurs where the fields inside the holes

were axially asymmetric, whilst the in-plane field inside the hole remains symmetric in

the shape of the Bessel function in this frequency range. In addition, a beat pattern

in the transmitted and the reflected signals was observed in the FEM models. An

analytical explanation of this was then shown. These results demonstrated for the first

time the expected cut-off frequency response of an underwater pressure-release hole

array.

9.2 Future Work

In this section further extensions to the previous five chapters are discussed. Prelimi-

nary results have been gathered to establish the viability of the majority of the ideas

set out here.

9.2.1 Hexagonal and Honeycomb Arrays

Chapter 7 demonstrated that by patterning solid plates with square arrays of open-

ended holes, it is possible to support ASWs. This simple structure has an equivalently

simple structure in in reciprocal space. The next step in this investigation is to use sam-

ples that have more complicated structures and that have a different lattice symmetries

with different points of high symmetry.

Graphene and graphene-like structures made of honeycomb arrays of simple res-

onators have shown significant potential in optics174, plasmonics175 and electromag-

netics176. More recently similar structures have been explored using in acoustics in

air177. These structures can support in-plane ASWs with zero-bandgap and linear

dispersion. Yet, they are still to be utilised in underwater environments.

9.2.1.1 Preliminary Results

The following results were not in the scope of this thesis, but can be easily obtained

and developed. An example honeycomb array sample is shown in figure 9.1. A similar

method to the one used to scan the samples in chapter 6 and 7 would be used to excite

and detect ASWs on this sample using near-field coupling.
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9. Conclusions

Figure 9.1: An aluminium alloy honeycomb array sample, fabricated using a CNC
machine.

Here we demonstrate the viability of using honeycomb and hexagonal arrays of

holes using FEM Comsol 5.3a models of two new arrays. For the honeycomb arrays

the models were built using a unit cell that includes two holes. Preliminary results for

the dispersion of the honeycomb array are shown in the left plot of figure 9.2. This

figure shows the zero band gap occurring at the BZ boundary at the K point of higher

symmetry. Similar features are seen in the FEM modelled dispersion of the hexagonal

array depicted in right plot of figure 9.2.
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Figure 9.2: The Comsol multiphysics 5.3a FEM modelled directional dispersion of
the perforated rigid material in a honeycomb array (left) and hexagonal array (right).
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9.2.2 Slow Surface Waves

The work presented in chapters 4, 5, 6 and 7 used aluminium alloy for the main body

of the work. Although in chapter 4 results were presented for the characterisation

of the acrylic, it was intentionally decided that acrylic would not be used to observe

ASW phenomena as the Rayleigh and Shear wavespeeds in acrylic fall lower than the

free speed of sound in water. These “slow surface waves” or slow SAWs may have

some interesting applications when coupled to the modes resulting from structuring

the plates. However the preliminary results, presented in the next section, are for a flat

unstructured piece of acrylic.

9.2.2.1 Preliminary Results

Experimentation presented here uses the evanescent technique used in chapters 6 and

7. The sample examined as an example of a source of slow SAWs is the 7.4 ± 0.1

mm acrylic sample examined in chapter 4. Here the foam wrapped D70 transducer is

used to excite the sample ≈ 3 mm from the sample surface with a central Hanning-

windowed pulse frequency of fc = 125 kHz. The surface fields are scanned along the in

the x direction parallel to the surface 0.50±0.01 mm from the sample surface using the

Precision Acoustics 1 mm needle hydrophone between x = 0 mm, directly opposite to

the source, and x = 212.1 mm with ∆x = 0.707 mm spatial resolution. These trapped

SAWs are evidenced in figure 9.3 beyond the sound line, confirming that they can be

excited and detected underwater.
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Figure 9.3: The dispersion of the surface excited SAW modes of a 7.4±0.1 mm thick
acrylic plate. Here, the wavespeed limit should be cR = 1198 m/s.
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9. Conclusions

9.2.3 Acoustic Circuitry

The work set out in chapters 6 and 7 demonstrated that it is possible to support ASWs

underwater using structured elastic solid plates. This fundamentally means that it is

possible to transmit and absorb slow travelling wave energy in-plane to a surface over

specific frequency ranges. By patterning surfaces with arrays of simple resonators in a

combinations of 1D and 2D arrays, it should be possible to transmit acoustic energy

through acoustic circuits. Acoustic waveguides178, SAW focussing155 and topological

transport of SAWs179 have all got potential applications in this area.

9.2.3.1 Preliminary Results

Samples were made using the 10 mm thick aluminium alloy plates with 100 and 50 mm

radius rings drilled into them, shown in figure 9.4. These holes have a centre-to-centre

pitch around the arc of ≈ 6 mm and radius of 1.5 mm to remain similar to the lines of

holes explored in chapter 6.

Figure 9.4: 50 and 100 mm radius rings of holes drilled in to a 10 mm thick aluminium
alloy plate. The pitch of these holes is ≈ 6 mm and radius are 1.5 mm.

Initial experimentation has been performed on the coupling between the ASW

modes of a line and a ring of holes. This was conducted using the wrapped Nep-

tune Sonar D70 transducer to 1 mm needle hydrophone (as detailed in chapter 3). The

source positioned ≈ 3 mm from one of the holes of the line and the hydrophone is

scanned in a plane 0.5±0.1 mm from the opposite side of the sample. Figure 9.5 shows

the parameters of the ring and the line discussed as well as the absolute pressure plots

of the fields above this surface at 52.4 kHz. This is the result of a 6.00 mm pitch line

of holes coupling into the 50 mm radius ring. Where they almost meet, the distance

between the centre of each hole is 3.5 mm. At the frequency depicted the ASW mode of

the line appears to be coupling into the ring, with propagation along the line reduced

in amplitude significantly.
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Figure 9.5: Left is a 3D render of the line-to-ring sample and right is is the experi-
mentally acquired normalised absolute amplitude plotted spatially at 52.4 kHz.

9.2.4 The Non-existence of Pressure-release Surface Waves

The acoustically soft or pressure release boundary conditions state that pa = 0 at the

surface34. This means that any structures made out of a pressure-release material

cannot support an ASW mode as the pressure is zero at the interface. Specifically, the

in-plane diffracted component of the field at the entrance and exit of a resonant feature

of the structure will be zero in amplitude. This is yet to be reported in the community

although it has been breifly studied in similar systems of imperfect pressure-release

surfaces of poro-elastic rock and soil for seismic wavelengths180,181,182.

9.2.4.1 Preliminary Results

A Comsol time-domain model was used to simulate a point source excitation over a

1D array of grooves. Figure 9.6 shows the results 0.12 ms after a single-cycle Gaussian

pulse. Here a point source is placed in close proximity to a 1D array of grooves in a

pressure-release material. The wave does not couple into the patterned array and the

grazing acoustic pressure amplitude has dropped to zero.
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Figure 9.6: A Comsol modelled instantaneous snapshot plot of the normalised acous-
tic pressure travelling over the surface of a structured pressure release material. This
idealised case shows no propagation of sound into the material of a 1D surface array.
This model is infinite in the y direction.

9.2.5 Other Ideas

In this thesis, results were acquired for static systems. By further adapting these

structures, to incoperate flow, non-linearity and variation in ambient conditions, it may

lead to a variety of new and exciting ways to generate and couple into surface waves.

As discussed briefly in chapter 2, this involves the use of Navier-Stokes physics, and

consideration of the turbulent regime and can become rather complex and, although

this idea is not new, it is yet to be fully realised183,184,185.

The work presented in thesis covered a wide variety of boundary conditions, struc-

tures and acoustic phenomena. Combinations of these may be used to create structures

that support novel surface waves and to affect transmission and reflection amplitudes

of sound. Furthermore, by layering these types of surfaces it would be possible to im-

pinge multiple types of acoustic modulation on the transmitted and reflected fields. 3D

acoustic metmaterials are gaining traction in the literature and are the current frontier

of metamaterial research. There has been a significant amount of interest in this area

of the last five years186,187 as a results of improved additive manufacturing techniques.

There are vast amounts of 3D arrays and curved geometries that could be built and

utilised. This is an exciting time to be working in acoustics.
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Appendix A

The EVA Foam Wrapped D70

Source

In chapters 6 and 7 it is necessary to use a point-like source to excite the surface modes.

To do this a foam wrapped D70 transducer was built. This adapted source needs to

work as a localised broadband source of ultrasound, whilst pulse lengths remain short.

The first step to constructing this adapter was to test the acoustic response of the

exit hole. A single hole in an EVA foam sheet has an acoustic cut-off frequency, as

outlined in chapter 8. Yet, by placing a thin walled hollow metal tube down the length

of a hole in EVA foam, a “semi-rigid” boundary was created.

The acoustic response of the 6.00 ± 0.01 mm diameter 0.05 ± 0.01 thick tube pro-

truding through a flat 10.0 ± 0.2 mm thick EVA foam plate is shown in figure A.1.

The result shows a broad frequency response. This is ideal for exciting surface waves

with a range of frequencies. Further spatial plots of transmitted fields of this adapted

transducer are presented in section 3.5.

Using this, a cavity was constructed to contain the Neptune Sonar D70 transducer.

This cavity was built to allow the “breathing” mode of the ball source to operate, whilst

not supporting a high quality cavity resonance that would not function as a source of

ultrasonic pulses. A schematic of the adapter is shown in figure A.2. Further details

are shown in section 3.5.
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A. The EVA Foam Wrapped D70 Source

N
or

m
al

is
ed

 A
bs

ol
ut

e A
m

pl
itu

de

Frequency (kHz)

Figure A.1: The normalised acoustic absolute amplitude of transmission through a
6.00 mm diameter thin walled steel tube in a 10.0 ± 0.2 mm thick EVA foam sheet.
The hole was excited with a D70 transducer 50 ± 5 mm from the hole and detected
5.0± 0.1 mm on the other side with a Brüel & Kjær 8103 hydrophone.

Figure A.2: A schematic of the foam cavity adapter. The purpose built foam adapter
has dtube = 6.00 mm, foam walls are 10.0 ± 0.2 mm thick and a cavity geometry of
Lcavity ≈ 50 mm by dcavity ≈ 40 mm.
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Appendix B

The Spatially Modulated

Transmission Through a Flat

Aluminium Plate

This appendix presents the derivation of the cause of the spatially modulated trans-

mission seen in chapter 5. This is caused by presence of two oscillating waves in z with

two values of kz. The surface wave, ψ1, and the plane wave, ψ2, can be represented by

the equations

ψ1 = A sin(k‖x− ωt)e−kzz, (B.1)

ψ2 = A sin(k⊥z − ωt). (B.2)

Combining these two waves results in:

ψ1 + ψ2 = ψt = Ae−kzz(sin(k‖x) cos(ωt)− cos(k‖x) sin(ωt))

+B sin(k⊥x) cos(ωt)−B cos(k⊥x) sin(ωt)

= cos(ωt)[A sin(k‖x)e−kzz +B sin(k⊥z)]

− sin(ωt)[A cos(k‖x)e−kzz +B cos(k⊥z)].

For a surface wave with kz → 0 then,

ψt = cos(ωt)[A sin(k‖x) +B sin(k⊥z)]− sin(ωt)[A cos(k‖x) +B cos(k⊥z)].
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B. The Spatially Modulated Transmission Through a Flat Aluminium
Plate

Squaring this wavefunction to obtain the intensity results in:

ψ2
t = cos2(ωt)[A2 sin(k‖x)2 + 2AB sin(k‖z) sin(k⊥z) +B2 sin2(k⊥z)]

+ sin2(ωt)[A2 cos(k‖x)2 + 2AB cos(k‖z) cos(k⊥z) +B2 cos2(k⊥z)]

−2 cos(ωt) sin(ωt)[A2 sin(k‖x) cos(k‖x) +B2 sin(k⊥z) cos(k⊥z)

+AB(sin(k‖x) cos(k⊥z) + sin(k⊥z) cos(k‖x))].

Now integrating in time obtains:∫ τ
0 ψ

2
t dt

τ
=

1

2
[A2 sin(k‖x)2 + 2AB sin(k‖z) sin(k⊥z) +B2 sin2(k⊥z)]

+
1

2
[A2 cos(k‖x)2 + 2AB cos(k‖z) cos(k⊥z) +B2 cos2(k⊥z)]

=
1

2
(A2 +B2) +AB[(sin(k‖x) sin(k⊥z) + cos(k‖x) cos(k⊥z)],

where the intensity is now:

ψ2
t =

1

2
(A2 +B2) +AB(cos(k‖x− k⊥z).

Here the factor of cos(k‖x − k⊥z) gives the modulation that is seen in the phase of

figure 5.4.
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Appendix C

The Spatially Modulated Fields

of Pressure-release Arrays of

Holes

This appendix presents the derivation of the spatial modulation in the transmitted and

reflected fields in chapter 8. The sample explored here is a square array of diffracting

holes in a pressure-release foam. Considering only first order diffraction:

k1 = k1xx̂+ k1z ŷ,

with,

k1x = kg

k2 = −k1xx̂+ k1z ŷ

k2
1 = k2

0 = k2
1x + k2

1z = k2
g + k2

1z

Therefore:

k1z =
(
k2

0 − k2
g

) 1
2 . (C.1)

C.1 Transmitted Spatial Modulation

On the transmission side of a square array of pressure-release holes there are five fields.

The zero order A sin(k0z − ωt) and two pairs of diffracted order, two in x and two in

y. All four diffracted orders have the same k1z =
(
k2

0 − k2
g

) 1
2 = kz. In addition the two
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C. The Spatially Modulated Fields of Pressure-release Arrays of Holes

x diffracted orders pair up to form a standing wave in the x, with zero field between

the holes. Likewise the two y diffracted orders pair up to form a standing wave in the

y with zero field between the holes.

In the z direction:

ψ = A sin(k0z − ωt) +B sin(kzz − ωt)

= A sin(k0z) cos(ωt)−A cos(k0z) sin(ωt)

+B sin(kzz) cos(ωt)−B cos(kzz) sin(ωt)

= (A sin(k0z) +B sin(k0z)) cos(ωt)

−(A cos(k0z) +B cos(k0z)) sin(ωt)

,

where B is the addition of the four diffracted orders with equal kz. Then,

ψ2 = (A sin(k0z) +B sin(kzz))
2 cos2(ωt)

+(A cos(k0z) +B cos(k0z))
2 sin2(ωt)

−2(A sin(k0z) +B sin(k2
z))(A cos(k0z)

+B cos(kzz)) cos(ωt) sin(ωt)

Time averaging of cos2(ωt) = 1
2 , sin2(ωt) = 1

2 and 2 cos(ωt) sin(ωt) = 0. Therefore:

< ψ2 >=
1

2
[A2 sin2(k2

0) +B2 sin2(k2
z) + 2AB sin(k0z) sin(kzz)

+A2 cos2(k0z) +B2 sin2(kzz) + 2AB cos(k0z) cos(kzz)]

=
1

2
(A2 +B2) +AB cos(k0 − kz)z.

Here 1
2(A2 +B2) is a constant and AB cos(k0− kz)z is the modulation in the intensity.

Now, Then,

km = k0 − kz = k0 − (k2
0 − k2

g)
1
2 ,

and when:

k0 = kg then km = kg,

k0 =
√

2kg then km = (
√

2− 1)kg,

k0 = 2kg then km = (2−
√

3)kg,

k0 =
√

5kg then km = (
√

5− 2)kg.
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For frequencies below kg, the diffracted fields are evanescent, so only act as decaying

fields in z that leads to modulation at k0 only.

C.2 Reflected Spatial Modulation

On the input side there are is an extra reflected field.

ψ = C sin(k0z) cos(ωt)− C cos(k0z) sin(ωt)

−D sin(k0z) cos(ωt)−D cos(k0z) sin(ωt)

−E sin(kzz) cos(ωt)− E cos(kzz) sin(ωt)

= [(C −D) sin(k0z)− E cos(kzz)] cos(ωt)

−[(C +D) sin(k0z)− E cos(k0z)] sin(ωt)

The resultant intensity is:

< ψ2 >=
1

2
[(C −D)2 sin2(k0z) + E2 sin2(kzz)− 2(C −D)E sin(k0z) sin(kzz)

+(C +D)2 cos2(k0z) + E2 cos2(kzz) + 2(C +D)E cos(k0z) cos(kzz)]

=
1

2
[C2 +D2 + E2 + 2CD(cos2(k0z)− sin2(k0z)) + 2CE(cos(kzz)

− sin(k0z) sin(kzz)) + 2DE(cos(k0z) cos(kzz) + sin(k0z) sin(kzz))],

and finally:

< ψ2 >=
1

2
(C2 +D2 + E2) + CD cos2(2k0z)

+CE cos((k0 + kz)z) +DE cos((k0 − kz)z).

Here, CD cos2(2k0z) is the primary source of the modulation (λ = λ0
2 ) in the reflected

fields and CE cos((k0 + kz)z) and DE cos((k0 − kz)z) are secondary sources of modu-

lation.
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edition (2002). ISBN 9780817641177. 19

[80] Voigt, W. Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik).

Vieweg+Teubner Verlag, first edition (1966). ISBN 9783663158844. 20
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