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Abstract  32 

Despite being a fundamental life history character, there is a paucity of population-wide, 33 

data-driven studies of primary sex ratios for any marine turtle species. The Republic of Cape 34 

Verde hosts the third largest nesting population of loggerhead turtles in the world (hosting 35 

up to 15% of global nesting by the species). Weighting for the spatial distribution of nests, 36 

we estimate that 84% female hatchlings are currently likely produced across the population, 37 

with 85% of nests laid on Boa Vista, where incubation temperatures were coolest. In future 38 

climate change scenarios (by 2100), irrespective of beach, island or sand colour, sex ratios 39 

reach over 99% female, and three islands (Fogo, Sao Nicolau, Santiago) would cease to 40 

produce males, with >90% of nests incubating at lethally high temperatures. Given that 41 

most of the population cannot move to nest on cooler islands, we highlight that temporal 42 

refugia are amongst primary means available to this population to adapt. Under Low 43 

Emissions Scenario, without phenological adaptation, there would only be an estimated 44 

0.14% males produced across the whole population but in Mid and High Emissions 45 

Scenarios, male production may cease on most islands.  46 

  47 
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1.  INTRODUCTION  48 

Climate change is considered one of the greatest modern threats to biodiversity (Urban 49 

2015). By 2050 models predict that up to 54% of species’ extinctions could be attributed, 50 

both directly (e.g. via temperature related embryo death) and indirectly (e.g. competition, 51 

declining food sources), to climate change (Urban 2015). Global temperatures (mean air and 52 

surface temperatures) have risen by approximately 0.6 °C in the past 100 years (IPCC 2014) 53 

and are expected to rise a total of 2 °C between the pre-industrial period and 2030 (IPCC 54 

2014), which is a much faster rate than the previous years and may be too fast to enable 55 

species to adapt (Quintero & Wiens 2013). Ectothermic taxa, such as sea turtles, may be 56 

more likely to be negatively affected by climate change (Bohm et al. 2016), as 57 

environmental conditions affect their performance (Refsnider 2013), reproduction 58 

(Starostova et al. 2012) and survival (Miller et al. 2004). Understanding and modelling the 59 

response of species to climate change is a key future challenge (Urban et al. 2015). 60 

 61 

1.1 Temperature dependent sex determination  62 

Many reptile species (e.g. turtles, crocodilians and some lizards) exhibit temperature 63 

dependent sex determination (Refsnider 2013), where the temperature experienced during 64 

development controls hormone expression and therefore determines offspring sex 65 

(Tedeschi et al. 2016). In marine turtles, lower temperatures produce males and higher 66 

temperatures produce females, with a ‘pivotal temperature’ (the constant incubation 67 

temperature that produces a 1:1 ratio of hatchling males:females) of approximately 29 °C 68 

for most marine species (reviewed in Hawkes et al. 2009). In most marine turtle rookeries 69 

that have been studied, primary sex ratios (the sex ratio at the point of sex determination) 70 

are strongly female biased, and may be expected to become more biased with increased 71 

future temperatures (Hawkes et al. 2007, Katselidis et al. 2012, Jensen et al. 2018). If marine 72 

turtles fail to adapt in pace with the rate of climate change, mortality could increase (Witt et 73 

al. 2010, Fuentes et al. 2011) and male hatchling production could diminish to a point that 74 

could reduce nest fertilisation rate (Witt et al. 2010, Katselidis et al. 2012, Jensen et al. 75 

2018). Currently there is a debate as to whether marine turtles could buffer such effects 76 

(Wright et al. 2012), through polygamy (Wright et al. 2012), and/or breeding frequency 77 

(Tedeschi et al. 2014). Polygyny (a mating system where one male mates with multiple 78 

females) has been shown in other species which display biased sex ratios, thereby stabilising 79 
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the population (Wright et al. 2012). In marine turtles, females have a breeding interval of 80 

two to three years, whereas it is assumed that males mate every year. This would therefore 81 

mean that less males would be required in the population to maintain a stable breeding 82 

population (Hays et al. 2014). The Operational Sex Ratio (the ratio of breeding males to 83 

females) is not yet comprehensively described across global rookeries (but see Lee et al. 84 

2017), but may not be balanced in some areas, for example, in Ghana ‘by-catch’ (or 85 

incidental fishing capture) data showed only female loggerhead (Caretta caretta) turtles 86 

were captured in coastal waters throughout the four month study period during the nesting 87 

season (Tanner 2014), which suggested a very low male presence in the overall population, 88 

or early departure from the breeding area by males. In contrast, in foraging areas in Greece 89 

the percentage of males can be much higher, ranging from 31 to 55% male (Rees et al. 90 

2013). Furthermore, multiple paternity has been recorded in all marine turtle species 91 

(Wright et al. 2012, Tedeschi et al. 2014, Lee et al. 2017), which means a polygamous mating 92 

system is already present. This would assist adaptive capacity as it is a more flexible mating 93 

system allowing for sex ratio bias in a population without causing a population decline.  94 

 95 

1.2 Maternal behaviour 96 

Although there is no parental care in marine turtles, turtles usually select nest-sites that 97 

should be beneficial for the development of offspring. It has been suggested that to 98 

maintain current nest temperatures in future warmer climates, turtles could nest closer to 99 

the water, where evaporative cooling may be increased, in cooler parts of the nesting range 100 

(e.g. at higher latitudes, or on a smaller scale, on lighter sand beaches, or beaches with 101 

more shade), or at earlier and later times of the year where and when temperatures may be 102 

cooler (Witt et al. 2010, Fuentes et al. 2011, Abella-Perez et al. 2016).  103 

There have been few data-driven assessments to date of primary sex ratios across entire 104 

nesting rookeries for any marine turtle species and even fewer across an entire population 105 

of marine turtles (Fuentes et al. 2011, Jensen et al. 2018). Most studies measure sand or 106 

nest temperature at just a few key sites and extrapolate (Wyneken & Lolavar 2015), which 107 

fails to recognise intra-beach (spatial and geomorphological), intra-individual, intra-regional, 108 

intra-annual variation or differences in nesting seasonality between years. Such insights into 109 

likely change to primary sex ratios are therefore helpful but potentially misleading at a 110 

population level (Wyneken & Lolavar 2015). The Republic of Cape Verde is considered to 111 
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host the third largest nesting population of loggerhead turtles in the world, with 112 

approximately 12 to 20,000 nests laid per year, or between 9 and 15% of global nesting by 113 

the species (López Jurado 2007, Marco et al. 2012, Casale & Tucker 2015), and may be the 114 

oldest population in the Atlantic (Shamblin et al. 2014). Most of the nesting is concentrated 115 

on 40km of beaches on just a few islands: Boa Vista, Maio, Sal and Sao Nicolau (López 116 

Jurado 2007, Lino et al. 2010), which makes it possible to study the entire population. Laloë 117 

et al. (2014) published an initial estimate of the sex ratio across the Cape Verdean rookery, 118 

but their study was based on 24 temperature recorders on only one of the Cape Verdean 119 

islands. The present study, by contrast, uses empirical measurements of temperature across 120 

nine of the major islands (and 40 beaches) of the archipelago. We used previously published 121 

equations to convert sand temperature to calculate primary sex ratios and estimate 122 

potential future primary sex ratios considering climate change using predicted global 123 

surface temperature increases.    124 
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2. MATERIALS AND METHODS 125 

2.1 Sand temperature 126 

Between 18th July and 15th November (inclusively) of 2012, 2013 and 2014, sand 127 

temperature data were recorded using Tidbit HOBO temperature data loggers (‘TDLs’ from 128 

hereon; accuracy ± 0.25 °C; https://www.tempcon.co.uk) buried at a depth of 40cm (the 129 

mean depth of loggerhead nests in Cape Verde) (Varo-Cruz et al. 2007) on nine of the Cape 130 

Verde islands: Sao Vicente, Santa Lucia, Sao Nicolau, Sal, Boa Vista, Maio, Santiago, Fogo, 131 

and Illeu de Cima (Fig. 1). Islands and beaches were selected based on historical nesting data 132 

from TAOLA (The Cape Verdean Sea Turtle Network), from which the beaches with the 133 

highest nesting densities were chosen. All the TDLs were inter-compared prior to use and 134 

were only accepted for the study if they were accurate to within ± 0.1 °C of the National 135 

Measurement Accreditation Service (NAMAS) standards. TDLs were programmed to record 136 

temperature every 30 minutes. In total, 31 TDLs were buried in 2012, 31 in 2013, and 32 in 137 

2014 on 40 beaches on the nine islands (mean four beaches per island, range two to eight, 138 

Fig. 1). Due to logistical reasons (TDLs lost, damaged or broken) not all the beaches could be 139 

measured every year, and consequently only 18 beaches on six islands have temperature 140 

data for all three years. Some islands (Sao Nicolau, Sao Vicente, Maio and Santiago) have 141 

nesting beaches with light and dark sand, and hence TDLs were buried in both light and dark 142 

sand beaches for this study (Fig. 1). The Cape Verdean Sea Turtle Network (TAOLA) have 143 

found that significant nesting occurs on the Cape Verde archipelago from 1st July to 10th 144 

October. The thermosensitive period was determined by assuming sex determination period 145 

starts approximately 18 days after egg laying and finishes at day 36 of incubation 146 

(Mrosovsky et al. 1999, Woolgar et al. 2013), and as the thermosensitive period occurs in 147 

the middle third of incubation (Woolgar et al. 2013), we have therefore only considered 148 

data from 18th July until 15th November.  149 

 150 

2.2 Sand reflectance 151 

Sand samples (n= three from each beach), weighing 50g each, were collected from 31 152 

beaches where temperature data loggers had been buried. Samples were collected from the 153 

sand column directly above the temperature data loggers. The luminosity of each sand 154 

sample (measured in percentage reflectance to ± 0.01% accuracy, where 0% = black and 155 

100% = white) was recorded using a calibrated Spectrophotometer CM-2600d/2500d 156 
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(Konica Minolta) in the Consejo Superior de Investigaciones Científicas (CSIC) laboratories, in 157 

Seville, Spain, (http://www.konicaminolta.eu/en/measuring-instruments/products/colour-158 

measurement.html). Each sand sample was measured three times under lab conditions and 159 

the mean of the three values used per beach. Due to logistical reasons, sand samples were 160 

not collected at Illeu de Cima and Santa Lucia. 161 

 162 

2.3 Estimating sex ratio 163 

The pivotal temperature (TPIV) has not been determined for loggerhead turtles nesting in 164 

Cape Verde, but is relatively conserved across the populations it has been described in (from 165 

27.5 °C to 30.5 °C; Hawkes et al. 2009; Appendix Table 1.). The actual temperatures that 166 

turtle eggs experience during incubation also depends on the three-dimensional location of 167 

nests, and the time of year in which they were laid. In addition, Wyneken & Lolavar (2015) 168 

presented new data concerning nest moisture that suggested that male offspring can be 169 

produced above TPIV if there is sufficient moisture. It is thus extremely challenging for any 170 

study to accurately estimate what the primary sex ratio may be, although a raft of previous 171 

studies have done so (Wyneken & Lolavar 2015). Taking this into account, we estimate the 172 

potential primary sex ratios using the following equation from (Mrosovsky et al. 2002), with 173 

the median TPIV study for loggerhead turtles (please see Appendix Table 1 for minimum and 174 

maximum TPIV): 175 

𝑌 =
100

1 + 𝑒((𝑎−𝑏)×2.767)
 176 

Where Y = percent females, a = pivotal temperature for loggerhead turtles on the eastern 177 

beaches of USA (29.25 °C) (Marcovaldi et al. 1997) and, b = mean thermosensitive period 178 

temperature. Mean thermosensitive period temperature was estimated as the product of 179 

sand temperature and metabolic heating, the heat produced by the eggs during incubation. 180 

Mean metabolic heating has been estimated at 0.5 °C on Boa Vista and Sal (Laloë et al. 181 

2014, Abella-Perez et al. 2016). It is important to note that the pivotal temperature varies 182 

between nesting sites (Mrosovsky et al. 2002, Woolgar et al. 2013, Wyneken & Lolavar 183 

2015) and although this has never been empirically determined for the Cape Verde rookery, 184 

the pivotal temperature for the Mediteranean, Brazil and USA are all very similar, and hence 185 

the USA population’s pivotal temperature was used for this study (Mrosovsky et al. 2002). 186 

Sex is determined during the middle third of embryogenesis, which may not be the same as 187 
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the middle third of the total incubation period (Wyneken & Lolavar 2015). Unable to derive 188 

our own local pivotal temperature or monitor embryogenesis in the field, we therefore 189 

cautiously use the middle third, generalised pivotal temperature approach but recognise 190 

that reality may differ. 191 

 192 

Current hatchling production was estimated by weighting primary sex ratios (as calculated 193 

above) by spatial nest abundance, using previous estimates of annual nesting density in the 194 

Cape Verdean population from multi-year nest counts in all beaches using Cape Verdean Sea 195 

Turtle Network (TAOLA) and previously published data (López Jurado 2007, Lino et al. 2010). 196 

The sites selected include the islands with the majority of nesting (over 100 nests laid per 197 

year) and the beaches with the highest documented nesting densities (Marco et al. 2011), 198 

which represent  approximately 99% of the current nesting activity in Cape Verde. These 199 

estimates do not include any locations with minimal (<100 nests per year) or random 200 

nesting occurrences, as it would be difficult to include all nesting occurrences, but we 201 

emphasise that they could be important for the population as historical information has 202 

suggested that nesting was more uniform centuries ago, with loggerhead nesting abundant 203 

throughout the Cape Verdes (López-Jurado 2007). Hence, we cautiously use the phrase 204 

“entire archipelago” when referring to these results as although they are not exhaustive, 205 

they include the majority of nesting locations recorded for loggerheads on the Cape 206 

Verdean archipelago.  207 

For this study, although the sex ratios are weighted to account for spatial distribution they 208 

are not weighted according to temporal distribution. Due to this, we acknowledge that this 209 

assumes equal nesting across the nesting period, whereas this is likely not to be the case. 210 

However, as more nests are currently laid in warmer periods, our results may underestimate 211 

the percentage female sex ratios and should therefore be viewed cautiously when 212 

considering the effects of global climate change on the population. 213 

 214 

2.4 Estimating future temperatures and sex ratios 215 

The Intergovernmental Panel on Climate Change (IPCC) predicts that surface air 216 

temperature will likely increase to 1.8 °C, 2.8 °C and 3.4 °C for the B1, A1B and A2 scenarios 217 

by 2090 to 2099 (IPCC 2007), which will be referred to as Low Emissions Scenario (LES), Mid 218 

Emissions Scenario (MES), and High Emissions Scenario (HES) hereafter. As these estimates 219 
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are from a global climate model, there would be variation expected regionally and 220 

temporally (i.e. for seasonal differences).   In previous studies, in USA and Greece  (Hawkes 221 

et al. 2007, Katselidis et al. 2012), sand temperature increases by 0.72 °C for every 1 °C of 222 

air temperature increase so we estimated future sex ratios by adding the corresponding 223 

sand temperature increase from predicted air temperature increases (IPCC 2007) to current 224 

sand temperatures (i.e. adjusting ‘b’ in the equation before calculating future sex ratios). 225 

This has been recorded for both Greece (Katselidis et al. 2012) and USA (Hawkes et al. 226 

2007), which assumes that this will be similar for Cape Verde as it is located between these 227 

two locations. 228 

 229 

2.5 Statistical tests 230 

All statistical analyses were completed in R (R Core Development Team). All data were 231 

tested for normality using Shapiro-Wilks tests; luminosity data were normal, temperature 232 

data were non-normal. Non-parametric statistical analyses were completed on sex ratio 233 

estimates. As the data included multiple years (with data from different beaches collected in 234 

different years), the temperature was compared between years (for each beach) using a 235 

Kruskal-Wallis test. Reflectance was split into light and dark beaches based on k-means 236 

cluster analyses (visualised on a histogram; Fig. 3), with luminosities above 40% (of the 237 

perceived brightness) classed as a light beach (n=19), and those under 40% as dark beaches 238 

(n=11). A Wilcox-test was used to analyse the correlation between temperature and sand 239 

colour; an F-test was used to analyse any differences between sex ratios and the sand 240 

colour; and Kruskal-Wallis tests were used to analyse any significant differences between 241 

sex ratios within and between islands. We considered that statistical significant was 242 

denoted by an alpha <0.05.  243 
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3. RESULTS 244 

In total 94 TDL deployments collected sand temperature data every half hour from 18th July 245 

to 15th November inclusively in 2012, 2013 and 2014 (mean 108 days per TDL, range 32 to 246 

121 days per TDL). Sand temperature during the nesting season varied from a minimum half 247 

hourly point count of  25.1 °C (Porto Lapa, Sao Nicolau, 2013) to maximum 38.9 °C (Sao 248 

Felipe, Fogo, 2013) (Fig. 2a). There was no significant difference in sand temperature 249 

between years (Kruskal-Wallis x2 = 1.485, p=0.476; Fig. 2b), hence average sand 250 

temperature for each beach irrespective of year was used in further analysis. Sand 251 

temperatures were significantly different between light and dark beaches (mean half hourly 252 

point count for light sand beach was 30.0°C, range 26.1 to 37.0 °C; mean dark sand beach 253 

31.9 °C, range 25.1 to 38.9 °C; Wilcox W=1396, p<0.001; Fig. 3b).  254 

 255 

3.1 Estimated sex ratios by island 256 

Mean estimated primary sex ratios range from a minimum of 67.5% females on Boa Vista to 257 

a maximum of 100% on Fogo, with three beaches on Boa Vista (Boa Esperanza, Lacacao and 258 

Varandinha) estimated to produce more than 75% male hatchlings which accounts for 259 

18.5% of nesting on Boa Vista (Fig. 4a,b). There was no significant difference between the 260 

estimated primary sex ratios produced on light (n=19) and dark (n=11) sand beaches across 261 

the archipelago (F1,29=1.66, p=0.208) with 88.8% female (range 0.4 to 100%) produced on 262 

light sand beaches and 100% female (range 100 to 100%) on dark sand beaches. There was 263 

also no significant difference in estimated primary sex ratios between islands (Kruskal-Wallis 264 

x2 =8, p=0.434; Fig. 4), or between beaches within each island (x2 =39, p=0.47). 265 

 266 

3.2 Estimated sex ratio of the population 267 

Loggerhead nesting is not spatially uniform across all islands of the Cape Verdean 268 

archipelago, with highly variable annual densities, for example Boa Vista currently hosts 269 

approximately 85% of all nests laid on Cape Verde (in excess of 10,000 nests per year; Marco 270 

et al. 2012), a further 1,000 nests are laid per year in Sal (Lino et al. 2010) and minor nesting 271 

occurs elsewhere. Accounting for spatial distribution of nests across the archipelago (i.e. the 272 

proportion of all nests that are laid on each island, and assuming no future change), mean 273 

estimated primary sex ratios for the whole archipelago were 84.3% female at present, 274 
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99.9% in Low Emissions Scenario, 100% in Mid Emissions Scenario and 100% in High 275 

Emissions Scenario (Fig. 4b, d, f, h).  276 

 277 

3.3 Estimated future sex ratios by island 278 

In future Low Emissions Scenario (1.8 °C increase in mean air temperature) estimated 279 

primary sex ratios would range from 98.7% females on the island of Boa Vista to 100% on 280 

the islands of Fogo, Maio, Illeu de Cima, Sao Nicolau, and Santiago. Although only a few 281 

beaches would cease to produce any male hatchlings in Low Emissions Scenario, only three 282 

beaches on Boa Vista would produce more than 0.01% male hatchlings (Varandinha, 6.3% 283 

male; Boa Esperanza, 0.9% male; Lacacao, 0.2% male). In future Mid Emissions Scenarios 284 

only Boa Vista would be producing any male hatchlings (0.01% male hatchlings produced), 285 

with no male hatchlings produced on any Cape Verdean island in High Emissions Scenarios.  286 

 287 

3.4 Incubation above critical upper temperatures 288 

At current temperatures, nests on the island of Fogo already experience critically high 289 

incubation temperatures above 35 °C for 25.2% (or 30.44 days) of the study period (Fig. 290 

4a,b), with Sao Felipe (Fogo) exceeding the critical upper temperature for 75.5%  (or 91.34 291 

days) of the study period. In all (LES, MES and HES) future scenarios between 41.3 and 292 

81.7% of nests on Fogo would be incubating above critical upper temperatures (LES: 41.3%, 293 

MES: 72.5%, HES: 81.7% of the study period for the whole island). On Sao Felipe beach, 294 

Fogo, the model suggests that over 93.2% of the study period would be over critical upper 295 

temperatures by LES. By MES a total of 16 beaches (Sao Felipe (Fogo), Praia Cais (Fogo), 296 

Praia Grande (Fogo), Djam Padja (Maio), Lomba Greija (Maio), Santa Clara (Maio),  Soca 297 

(Illeu de Cima), Bequinho (Illeu de Cima), Praia Canoa (Illeu de Cima), Porto Lapa (Sao 298 

Nicolau), Praia Grande (Sao Nicolau), Achada Baleia (Santiago), Medronho (Santiago), Rib 299 

das Pratas (Santiago), Sao Francisco (Santiago), Topim (Sao Vicente)) would have reached 300 

critical upper temperatures for over 20% of the study period. Beaches on these six islands 301 

constitute 13.3% of nesting in the Cape Verdean archipelago (López Jurado 2007, Lino et al. 302 

2010, Marco et al. 2012, Cape Verdean Sea Turtle Network (TAOLA)). In HES Boa Vista would 303 

be the only island to have no nesting beaches that would reach critical upper temperatures.  304 
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4. DISCUSSION 305 

In the face of climate change it is important to model the potential effects of temperature 306 

increase on biodiversity to gain insight into which populations and species may be 307 

negatively affected, and which may be able to adapt (Estrada et al. 2016). Patterns of 308 

warming are expected to be heterogeneous across the planet (IPCC 2007), therefore it is 309 

important to study biodiversity, where possible, at scales appropriate to detect such 310 

adaptive capacity. Bohm et al. (2016), for example, suggested that one fifth of reptile 311 

species may be ‘highly vulnerable’ to climate change, with hotspots for the wider Caribbean 312 

and Australia. To date, few marine turtle rookeries have been studied at a population scale 313 

regarding sex ratios (Jensen et al. 2018), yet this is key to ensure that climate change 314 

interventions can be planned properly. The present study has collected empirical data for 315 

the entire nesting range for the Cape Verde loggerhead turtle rookery, which hosts up to 316 

15% of the global nesting by loggerhead turtles, and 22% of all loggerhead nesting in the 317 

Atlantic (Marco et al. 2012). Although the pivotal temperature has not been determined for 318 

the Cape Verde population, and thus our results are indicative, we suggest that the 319 

population produces predominantly females and that it is likely to become extremely 320 

skewed in the future with climate change. 321 

 322 

4.1 Capacity to adapt 323 

In reality, it is likely that adaptation by loggerhead turtles to future climate conditions will 324 

happen to some degree. In other rookeries, loggerhead turtle nesting appears to be shifting 325 

to earlier (cooler) times of the year as sea surface temperatures increase (Weishampel et al. 326 

2004), which could increase male hatchling production. In Cape Verde, turtles currently nest 327 

in the warmest part of the year, meaning that cooler conditions are available for them 328 

earlier or later in the year (Laloë et al. 2017, Abella-Perez et al. 2016). Earlier nesting has 329 

been shown, however, to reduce the length of nesting seasons (Pike et al. 2006), which 330 

could increase competition for nesting sites, or reduce total fecundity as females might nest 331 

fewer times in a given nesting season (Pike et al. 2006). While some marine turtle 332 

populations could also adapt by nesting at higher latitudes where incubation conditions 333 

should be cooler, for turtles nesting on the Cape Verde archipelago, the next closest land at 334 

higher latitude is some >700km away on the west African coast. As well as the long distance 335 

to the continent, there is a strong barrier to dispersal as the Atlantic sea towards the north 336 
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is much colder due to upwelling events, so loggerheads attempting to disperse to the North 337 

Atlantic might have reduced fecundity due to longer nesting intervals (Hays et al. 2002). 338 

Another point to note is that legal and illegal harvesting of marine turtles occurs on some 339 

beaches of the west and central African continent (Tanner 2013, Humber et al. 2014), and 340 

may be as high as the levels reported in Cape Verde (as much as 6% of nesting females, 341 

hundreds of individuals per year; Marco et al. 2012) meaning successful colonisation of 342 

nesting beaches there may be partially offset by hunting.  343 

 344 

Nesting turtles could also influence incubation temperature by changing the depth at which 345 

nests are laid (Kamel & Mrosovsky 2006), or nesting in areas with vegetation cover (which 346 

could potentially increase shading and thus reduce incubation temperatures for the 347 

developing embryos; McGaugh et al. 2010). Whether these responses can be exhibited by 348 

loggerhead turtles nesting in Cape Verde remain to be investigated. Recent research has 349 

suggested that the role of sand moisture has been largely overlooked in its role in 350 

influencing primary sex ratios, with nests at female producing temperatures still producing 351 

male offspring if sand moisture is sufficiently high (Wyneken & Lolavar 2015). If, as 352 

predicted, future climate conditions lead to increased frequency of storm events, some of 353 

the feminising effect of temperature could therefore be offset by increased prevalence and 354 

intensity of rainfall. It is also possible that the population as a whole could evolve via 355 

thermal physiology, as there is significant variation in heat-shock gene expression both at 356 

clutch and population level in sea turtles (Tedeschi et al. 2016).  357 

 358 

4.2 Sex ratios and mortality 359 

Considering appropriate caveats (Wyneken & Lolavar 2015), the results of the present study 360 

suggest that, overall primary sex ratios across the Cape Verde archipelago are presently 361 

approximately 84% female. This study is the first to demonstrate this via empirical 362 

measurements of sand temperatures across the whole nesting rookery, as previous studies 363 

have focused on single islands, such as Boa Vista and Sal (Laloë et al. 2014, Abella-Perez et 364 

al. 2016), and no previous studies have collected data on the islands of Fogo, Sao Nicolau, 365 

Santiago or Maio, where approximately 12% of nesting (approximately 1,300 nests per year) 366 

occurs (Marco et al. 2011). Our data suggests that hatchling production on these other 367 

islands is strongly female biased.  368 
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 369 

The results also show that female production would increase in future Low, Medium and 370 

High emissions scenarios without sufficient adaptation or selection (i.e. by temporal 371 

selection, spatial selection, thermal physiological evolution). Under LES, there would only be 372 

an estimated 0.14% males produced across the whole population but in MES and HES, male 373 

production will completely cease on most islands. This has the potential to affect the 374 

population, which hosts approximately 12 to 20,000 nests per year, or between 9 and 15% 375 

of global nesting by the species (Marco et al. 2011, Marco et al. 2012, Casale & Tucker 376 

2015). Boa Vista, however, would continue to produce a very small proportion of male 377 

hatchlings until 3.4 °C of warming had occurred. At present mixed stock analysis suggests 378 

that CC-A1 haplotypes appear to be shared across the Cape Verdean islands and between 379 

Cape Verde and other Atlantic rookeries. This suggests that the few males from Boa Vista 380 

could mate with females from other islands, although the shared haplotypes could be an 381 

artefact of their relative evolutionary age, with the Cape Verdean loggerhead rookery being 382 

the oldest in the Atlantic (Shamblin et al. 2014). The contrast in potential resilience between 383 

Boa Vista and the other Cape Verdean islands is of note, and suggests that Boa Vista may 384 

represent the best refuge from climate change for this globally important population. Minor 385 

rookeries were not included in this study, and hence it is unknown as to the effect that 386 

climate change will have on these minor islands and beaches. It could be that these minor 387 

rookeries could also provide male hatchlings to support the population in the future 388 

warming climate. 389 

The results also suggest that a change in spatial nest distribution could have a significant 390 

effect on the overall sex ratio for the Cape Verdean population. Currently, the majority of 391 

nesting is occurring on Boa Vista, which is providing a refuge for the male production of 392 

hatchlings. If the spatial nest distribution alters so that a lower proportion of nests are laid 393 

on Boa Vista, this would decrease the proportion of male hatchlings being produced. On the 394 

other hand, if the shift was to occur so that a larger proportion of nests occurred on Boa 395 

Vista this would reduce the sex ratio skew to be less female biased. Continued long-term 396 

nest monitoring on all the islands will be key to both further our understanding of the 397 

spatial distribution of nesting on the national level and to follow the nation-wide trend in 398 

nest numbers in the decades to come. 399 

 400 



15 
 

Our study highlights the conservation concerns for the future of this major loggerhead 401 

population, including the need for a better understanding of management strategies, and 402 

research into the potential for behavioural adaptation. Current estimates suggest that if the 403 

current rate of temperature increase is sustained, climate change is likely to increase global 404 

mean temperatures by 1.5 °C between 2030 and 2052 (IPCC 2018). As the rates of 405 

greenhouse gas emission are not currently slowing, the climate could be ‘committed’ to a 406 

MES or HES scenario by 2100 rather than the LES scenario which has been included in this 407 

study. 408 

 409 

5. CONCLUSION 410 

We present the first ever population-wide assessment of both current and future estimated 411 

primary sex ratios for the third largest loggerhead turtle rookery in the world (Marco et al. 412 

2011, Marco et al. 2012). Previous work (Abella-Perez et al. 2016) has highlighted that Boa 413 

Vista, where the majority of nesting occurs, should be relatively resilient to climate change, 414 

but we showed that similar resilience does not exist on other islands. Worryingly, coastal 415 

development of the Cape Verde islands is increasing at a huge rate (Marco et al. 2012), with 416 

massive socio-economic implications for the Cape Verde economy. As marine turtles have 417 

previously been exposed to climate change (between the Pleistocene and the Paleocene) 418 

and survived (Nicholson et al. 2015), it is assumed that they may retain some capacity to 419 

adapt to changing temperatures (Estrada et al. 2016). However, climate change is now 420 

occurring at a faster pace than in the past (Refsnider 2013) which could potentially uncouple 421 

adaptive capacity. This estimate could be improved by conducting experiments in Cape 422 

Verde to determine the Cape Verdean pivotal temperature and the thermosensitive period 423 

using a “switch-back” experiment (Stubbs et al. 2014). 424 

 425 
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 558 

559 
  560 

Figure 1: Map showing locations of the 40 nesting beaches (marked with dots; across the 561 

nine islands, labelled in black) in the Republic of Cape Verde (inset showing location off the 562 

West African coast) at which sand temperature and luminosity data was recorded in the 563 

present study (black dots show dark sand beaches, white dots show light sand beaches, grey 564 

dots show beaches from which luminosity data was not collected, number of loggers on 565 

each island indicated). Also labelled in grey are major Islands of the Cape Verdes that were 566 

not studied. 567 
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 568 

Figure 2: (A) Boxplots showing sand temperatures recorded in the three study years (boxes 569 

show inter-quartile range, horizontal line shows median value, whiskers show range, 570 

notches indicate 95% confidence interval of the median). The two outliers in 2012 and 2013 571 

are shown as white dots. (B) Line plot showing mean  sand temperature over the nesting 572 

season for the nine islands (differing line styles for each island; Sao Vicente as a black large-573 

dashed line, Santa Lucia a grey small dot-dashed line, Sao Nicolau as a grey solid line, Sal as 574 

a grey dotted line, Boa Vista as a black solid line, Maio as a black dotted line, Santiago as a 575 

black small dot-dashed line, Fogo as a black solid line, and Illeu de Cima as a small dashed 576 

grey line). A marked decrease in sand temperature can be seen in mid September as this is 577 

the rainiest month of the year in the Cape Verde, which reduces sand temperature.  578 
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 579 

Figure 3: (A) Frequency histogram of luminosity data collected from each beach (where 580 

<40% are classed as dark sand beaches, and >40% classed as light sand beaches for the 581 

present study), and (B) scatterplot showing average sand temperature (measured using 582 

buried TDLs) plotted against average beach sand luminosity (measured as percent of light 583 

reflected, where 0 = black and 100 = white) for the 40 beaches studied across the Cape 584 

Verde archipelago.  585 
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 586 

Figure 4: (A, C, E, G) Stacked histograms for each of the nine study islands showing absolute 587 

overall mean percent embryos incubating above the thermal maximum of 35 °C (dark grey 588 

shading), estimated % female hatchlings (mid grey shading), and estimated % male 589 

hatchlings (light grey shading). (B, D, F, H) Weighted histograms displaying the spatially 590 

proportionally corrected production of female and male hatchlings and nests incubating 591 

over the thermal maximum across the Cape Verde rookery by Island (symbology as in parts 592 

A, C, E, G). Top row (A, B) shows present conditions, second row (C,D) shows Low Emissions 593 
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Scenario, third row (E, F) shows Middle Emissions Scenario, and bottom row (G, H) shows 594 

High Emissions Scenario (G, H). 595 

 596 

Appendix 597 

Table 1.  Overall primary sex ratios (% female) of the Cape Verdean population of 598 

loggerhead turtles weighted by spatial nesting. Three different TPIV temperatures have been 599 

used (°C), including the minimum, median and maximum TPIV temperatures for loggerhead 600 

populations globally (Hawkes et al. 2009). These have been used to calculate the sex ratios 601 

for current temperatures, as well as future low, mid and high emissions scenarios. 602 

TPIV temperature (°C) Emissions scenario Primary sex ratio of 
Cape Verde (% 
female) 

30.5 (Maximum) Current 19.1 

Low 89.2 

Mid 97.9 

High 99.7 

29.25 (Median TPIV) Current 87.8 

Low 99.8 

Mid 100 

High 100 

27.5 (Minimum) Current 100 

Low 100 

Mid 100 

High 100 

 603 


