Accepted Manuscript

Investigation on Masticatory Muscular Functionality Following Oral Reconstruction – An Inverse Identification Approach

Keke Zheng, Zhipeng Liao, Nobuhiro Yoda, Jianguang Fang, Junning Chen, Zhongpu Zhang, Jingxiao Zhong, Christopher Peck, Keiichi Sasaki, Michael V Swain, Qing Li

PII: S0021-9290(19)30259-3
DOI: https://doi.org/10.1016/j.jbiomech.2019.04.007
Reference: BM 9143

To appear in: Journal of Biomechanics

Accepted Date: 4 April 2019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Investigation on Masticatory Muscular Functionality Following Oral Reconstruction – An Inverse Identification Approach

Keke Zhenga,\#, Zhipeng Liaoa,\#, Nobuhiro Yodab, Jianguang Fangc, Junning Chend, Zhongpu Zhanga, Jingxiao Zhonga, Christopher Pecke, Keiichi Sasakib, Michael V Swaina, Qing Lia,*

aSchool of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006, Australia

bDivision of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Japan 9808575

cSchool of Civil and Environmental Engineering, University of Technology Sydney, NSW 2006, Australia

dCollege of Engineering, Mathematics, and Physical Sciences, University of Exeter, EX4 4QF United Kingdom

eFaculty of Dentistry, The University of Sydney, NSW 2006, Australia

*Correspondence to: Qing Li

\#: These authors contributed equally to this study

Room S542, Mechanical Engineering Building (J07), Darlington Campus, The University of Sydney, NSW 2006, Australia

Phone: +61-02 9351 8607; Fax: +61-02 9351 7060;

Email: qing.li@sydney.edu.au

Word count: 3495
Abstract

The human masticatory system has received significant attention in the areas of biomechanics due to its sophisticated co-activation of a group of masticatory muscles which contribute to the fundamental oral functions. However, determination of each muscular force remains fairly challenging in vivo; the conventional data available may be inapplicable to patients who experience major oral interventions such as maxillofacial reconstruction, in which the resultant unsymmetrical anatomical structure invokes a more complex stomatognathic functioning system. Therefore, this study aimed to (1) establish an inverse identification procedure by incorporating the sequential Kriging optimization (SKO) algorithm, coupled with the patient-specific finite element analysis (FEA) in silico and occlusal force measurements at different time points over a course of rehabilitation in vivo; and (2) to evaluate muscular functionality for a patient with mandibular reconstruction using a fibula free flap (FFF) procedure. The results from this study proved the hypothesis that the proposed method is of certain statistical advantage of utilizing occlusal force measurements, compared to the traditionally adopted optimality criteria approaches that are basically driven by minimizing the energy consumption of muscle systems engaged. Therefore, it is speculated that mastication may not be optimally controlled, in particular for maxillofacially reconstructed patients. For the abnormal muscular system in the patient with orofacial reconstruction, the study shows that in general, the magnitude of muscle forces fluctuates over the 28-month rehabilitation period regardless of the decreasing trend of the maximum muscular capacity, which implies that the reduction of the masticatory muscle activities on the resection side might lead to non-physiological oral biomechanical responses, which can change the muscular activities for stabilizing the reconstructed mandible.
Keywords: Muscle forces, Occlusal force, Mandibular reconstruction, Inverse identification, Sequential Kriging Optimization (SKO), Optimality criteria.
1. Introduction

Human masticatory functionality and capability is consummated by co-energizing a bunch of masticatory muscles that contribute to the execution of chewing, biting, clenching, proper speech, jaw movement, etc, in a highly sophisticated manner. The form of mastication and thus stomatognathic performance would be substantially perturbed, and in most likelihood deteriorate, following major oral interventions, such as the instalment of dental prosthesis and maxillofacial reconstruction (Marunick et al., 1992a; Pepato et al., 2013; RENAUD et al., 1984). While the influence of muscular alteration on masticatory efficiency induced by different oral surgeries has been explored in literature, the observations remain rather inconsistent and even controversial among those studies (Endo, 1972; Namaki et al., 2004). Despite the fact that such conflicts may be ascribable to various factors, such as the demographic variance of the subjects and different nature of cranio-maxillo-facial surgeries, lack of an effective and accurate measurement technique makes solution of this issue rather challenging. Therefore, a new measurement system or protocol for determination of mastication in vivo, normally functioning or even potentially malfunctioning, is required.

Over decades, various techniques have been developed to qualitatively or quantitatively determine muscular activities, such as electromyography (EMG) (Fukunaga et al., 2001; Van Ruijven and Weijs, 1990), computed tomography (CT) (Katsumata et al., 2004) and optimization methods (Schindler et al., 2007). Each technique has its own advantages yet considerable limitations. For example, EMG is in vivo in nature but known for its incapability to accurately quantify joint reactions and characteristics of motor skills, including the exact force magnitude, orientation and muscle force ratio (Hattori et al., 2003). The CT technique is only able to approximate the maximum capacity of muscular magnitude and its direction (Katsumata et al.,
2004). The optimization methods allow accommodating static equilibrium and physiological constraints for estimating the magnitude, orientation and activation ratio (AR) of muscular functional groups in various movements (Chou et al., 2015; Schindler et al., 2007), by minimizing the summed muscle forces (Pedotti et al., 1978), summed joint forces (Osborn and Baragar, 1985), summed reaction forces or summed elastic energies (Schindler et al., 2007), but it remains uncertain which or any of these optimality criteria is correct most universally, with conflicting results recorded. The criteria of minimal energy (Rues et al., 2008; Schindler et al., 2007), minimal activation ratio (Pedotti et al., 1978) and combination of minimal muscle force and moment (Seireg and Arvikar, 1973) were respectively found to better agree with the EMG data for various groups of subjects in comparison with the other criteria. However, there is lack of solid evidence and consensus about which, if any, of such optimality criteria, can be applied to characterize muscle forces, in particular to the patients undertaking major oral interventions.

This study thus aimed to (1) propose a physiologically validated and clinically applicable approach for the quantification of muscular activity through a mandibulectomy follow-up; (2) compare the established inverse identification approach with the existing optimality criteria through statistical models; and (3) analyze the muscular behaviour following the mandibular resection at different rehabilitation stages.
2. Materials and Methods

2.1 Clinical treatment and medical imaging analysis

A male patient aged 66, diagnosed with the squamous-cell carcinoma at the right molar gingiva in August 2013, was recruited to undergo the mandibular reconstruction with osteotomized fibular free flap (FFF). The fibular bone was harvested, segmented and modeled to accommodate the defect morphology, followed by the installation of a titanium reconstruction plate (Synthes, Solothurn, Switzerland) which was configured to be fixed monocortically. The CT scans were performed before the surgery and at 4, 16 and 28 months after the surgery, denoted as BS (before surgery), M4, M16 and M28, respectively.

The occlusal forces on the remaining teeth were measured after surgery at M4, M16 and M28 with a pressure-indicating film (Dental Prescale 50H, type R, Fuji Photo Film Co., Tokyo, Japan) (Hidaka et al., 1999) (Fig. 1a) as the study aimed to quantify the muscle force after the mandibular reconstruction. The force magnitudes were calculated by scanning the films using a pre-calibrated device (Occluzer FPD 707, Fuji Photo Film Co.). Bite records were acquired using silicone impression (Flexicon, injection type, GC Co., Tokyo, Japan) to identify coloured spots on the film and hence determine the occlusal contact regions on the lower arches (Fig. 1b & c).

The maximum muscle force \(F_{\text{max}} \), or the maximum muscular capacity (MMC) was determined by multiplying the muscle’s physiological cross-sectional area \(PCSA \) with a constant of \(\lambda = 4 \times 10^{-3} \text{ N/cm}^2 \) (Hattori et al., 2003; Peck et al., 2000; Pruim et al., 1980; Weijs and Hillen, 1985). Thus, each muscle force was determined according to the following formula:

\[
F_{\text{max}} = PCSA \times \lambda. \tag{1}
\]

The \(PCSA \) was obtained from whole muscle cross-sections measured from the CT sectional images of this patient (Fig. 2). The measurement was conducted according to the existing
techniques established (Weijs and Hillen, 1984, 1985). The PCSA of each muscle, included the left masseter (MA), left medial pterygoid (MP), left temporalis (T) muscle, left lateral pterygoid (LLP) and right lateral pterygoid (RLP) muscle, was estimated by selecting the largest one from the reference plane as well as the 10 planes that lie from 1 to 5 mm above and below or anterior and posterior of each reference plane (Fig. 2).

2.2 Finite element modeling

CT images at BS, M4, M16 and M28 were registered and segmented with ScanIP 7.0 (Simpleware Ltd, Exeter, UK) and Amira 4.1.2 (Mercury Computer Systems, Inc., Chelmsford, MA, USA); based upon which the parametric non-uniform rational basis splines (NURBs) models were generated using Rhinoceros (Robert McNeel & Associates, Seattle, US); and imported into finite element (FE) analysis code ABAQUS 6.11 (Dassault Systèmes, Tokyo, Japan). The bony tissues were featured with the CT-based heterogeneous distribution (Field et al., 2010), which were calculated through interpolation between the lowest and highest densities in terms of Hounsfield units (HU) (Liao et al., 2016). The orthotropic cortical layer was also incorporated by employing the curve fitting results as presented in (Liao et al., 2017). The full details of FE modeling, including the material properties, loading and boundary conditions, as shown in Fig. 3, were established by following our previous studies (Chen et al., 2015; Liao et al., 2015). The scalar components that form the vector of each resultant muscle force are summarized in Table 1.
Table 1 Details of scalar components of the vector representing each resultant muscle force (Unit: N)

<table>
<thead>
<tr>
<th></th>
<th>\mathbf{F}_{Ma}</th>
<th>\mathbf{F}_{MP}</th>
<th>\mathbf{T}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M_{Ax}</td>
<td>M_{Ay}</td>
<td>M_{A_z}</td>
</tr>
<tr>
<td>M4</td>
<td>5.46</td>
<td>1.16</td>
<td>116.86</td>
</tr>
<tr>
<td>M16</td>
<td>3.51</td>
<td>1.2</td>
<td>114.48</td>
</tr>
<tr>
<td>M28</td>
<td>2.15</td>
<td>0.9</td>
<td>103.8</td>
</tr>
<tr>
<td></td>
<td>\mathbf{F}_{LLP}</td>
<td>\mathbf{F}_{RLP}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$L_{P_{x}}$</td>
<td>$L_{P_{y}}$</td>
<td>$L_{P_{z}}$</td>
</tr>
<tr>
<td>M4</td>
<td>-30.41</td>
<td>79.8</td>
<td>-12.63</td>
</tr>
<tr>
<td>M16</td>
<td>-24.29</td>
<td>23.54</td>
<td>-3.61</td>
</tr>
<tr>
<td>M28</td>
<td>-44.11</td>
<td>27.03</td>
<td>-9.96</td>
</tr>
</tbody>
</table>

2.3 Inverse identification of muscle forces

Inverse identification can be defined to minimize the deviation between the experimental measurement and numerical prediction in terms of unknown muscle force components (\mathbf{x}), as:

$$
\begin{align*}
\min & \quad -J(\mathbf{x}) = -J(\mathbf{F}_{\text{Ma}}, \mathbf{F}_{\text{MP}}, \mathbf{T}, \mathbf{F}_{\text{LLP}}, \mathbf{F}_{\text{RLP}}) \\
\text{s.t.} & \quad [1.56,0.83,1.72,0.53,1.15,0.99]^T \leq \begin{bmatrix} M_{A_x} & M_{A_y} & M_{A_z} & M_{P_x} & M_{P_y} & M_{P_z} & T_{x} & T_{y} & T_{z} \end{bmatrix}^T \\
& \leq [2.15,2.15,4.07,1.16,2.61,4.92]^T \\
& \quad [59 \text{ N}, 39 \text{ N}, 34 \text{ N}, 34 \text{ N}]^T \leq [M_{A_x}, M_{P_x}, T, L_{P_{x}}]^T \leq [372 \text{ N}, 264 \text{ N}, 279 \text{ N}, 382 \text{ N}]^T
\end{align*}
$$

(2)

where $\mathbf{F}_{\text{Ma}}, \mathbf{F}_{\text{MP}}, \mathbf{T}, \mathbf{F}_{\text{LLP}}, \mathbf{F}_{\text{RLP}}$ are defined as the muscle force vectors for Ma, MP, T, LLP and RLP (Table 1), respectively. The physiological constraints, which are based upon a series of previous literature studies (Al-Ahmari et al., 2015; Cruz et al., 2003; Faulkner et al., 1987; Gonda et al., 2014; Korioth et al., 1992; Osborn and Baragar, 1985) and the CT measurements obtained from this study, were utilized for establishing the minimum and maximum magnitudes; and the muscle group ratios that restrict the relative magnitudes among different groups of
muscles.

The cost function in terms of the deviation, $f(x)$, can be formulated as:

$$J(x) = 1 - \frac{\sum_{i=1}^{N}(F_{O_i} - F_{R_i}(x))^2}{\sum_{i=1}^{N}(F_{O_i} - \bar{F}_O)^2}$$

(3)

where i denotes the number of reaction forces (or occlusal measurements), N is the number of muscle force components ($N = 12$ here). F_{O_i} and F_{R_i} are the experimental measurements of occlusal forces and the resultant reaction forces obtained from the FE prediction, as

$$F_{R_i} = |F_{R_i}|$$

(4)

where F_{R_i} represents the vector of FE occlusal reactions on the mandibular canine (C), first premolar (P_1), second premolar (P_2) and second molar (M_2), respectively. \bar{F}_O is the average measurements of occlusal loads used to normalize the deviation of the cost function (Eq. (3)).

To reduce the computational cost due to iterative analysis, surrogate modeling techniques are commonly employed as an alternative for formulating the responses of interest as per a simple and explicit function with unknowns to be determined, such as the components of muscle forces in this particular case. In the application of surrogate-based optimization, the Sequential Kriging Optimization (SKO) algorithm, which considers both local region exploitation and global exploration in whole design space, was adopted here to determine the unknown muscle force components by matching the numerical simulation results with the clinical measurement data. The detail of this method can be referred to a previous study (Fang et al., 2017).

To compare the proposed SKO approach with conventional gradient-based optimization for its effectiveness and reliability in determining muscle forces, four commonly used gradient-based optimizations driven by energy-consumption-minimizing strategy were also considered here. Of them, several aforementioned optimization criteria, such as minimization of the summed
muscle forces \((F_M) \), minimization of summed joint forces \((F_J) \), minimization of summed reaction forces \((F_R) \) and minimization of summed elastic energies were defined as in Eqs. (5)-(8), respectively (Pedotti et al., 1978, Osborn and Baragar, 1985, Schindler et al., 2007):

\[
\begin{align*}
\min f_1 &= \sum F_M \\
\min f_2 &= \sum F_J \\
\min f_3 &= \sum F_R \\
\min f_4 &= \sum \left(\frac{l_F}{A \cos^2 \alpha} F_M^2 \right)
\end{align*}
\]

where \(l_F \), \(A \) and \(\alpha \) represents fibre length, physiological cross-section and pennation angle, respectively.

The constraints of each optimization problem were defined to be the muscle forces, occlusal and TMJ loads which should satisfy the static equilibrium of forces and moments, as follows:

\[
\begin{align*}
\sum F &= \sum F_m + \sum F_j + \sum F_R = 0 \\
\sum M &= \sum r_m \times F_m + \sum r_j \times F_j + \sum r_R \times F_R = 0
\end{align*}
\]

where \(F_m \), \(F_j \) and \(F_R \) are muscular, joint and occlusal forces (reaction forces on teeth), and \(r_m \), \(r_j \) and \(r_R \) are the moment arms for each muscular group, which were evaluated from the CT images by assuming the single force vector, muscle attachment and contact conditions.

A linear regression analysis was performed in this study by using Graph-Pad Prism 7 (GraphPad Software, Inc., CA, USA), to evaluate the coefficients of determination \((R^2) \) and \(p \) values. \(R^2 \) were calculated for the correlation between the clinical and computational data, in
terms of the occlusal forces measured and calculated. The p values were calculated to test against the null hypothesis that the overall slope of the fitted line is zero.

3. Results

3.1 Occlusal and medical imaging analysis

The clinical occlusal loads at time points M4, M16 and M28 are presented in Fig. 4. It can be found that the right mandibular C, one of the remaining teeth after surgery, carried significantly less occlusal loads in comparison with P1, P2 and M2 at Months 4 and 16. It therefore implies that P1, P2 and M2 were the primary teeth executing the occlusal function. In addition, an increase in the occlusal load was recorded from M4 to M28 for all the remaining teeth. It should be noted, nonetheless, that the standard deviation (SD) was significantly high for the measurements at M28, indicating substantial discrepancies of multiple measuring results in vivo.

3.2 Muscular force identification

$POCS$ were measured and are presented in Fig. 5a. Overall, declining trends were observed for most of the time and muscle groups from duration of BS to M16, except for LLP and RLP, in which a slight gain of capacity can be found from BS to M4 and from M16 to M28. In addition, no significant change was recorded from M16 to M28 for all the groups. The similar trend, due to linearity, occurred to the maximum capacity of masticatory muscles which were estimated accordingly and presented in Fig. 5b. All the five groups of muscles experienced
evident declines in magnitude from M4 to M16 but remained almost unchanged thereafter (Fig. 5b). The maximum capacities of muscles Ma, MP, T, LLP and RLP were calculated to be 196.0 – 206.5 N, 145.4 – 151.3 N, 147.1 – 151.7 N, 181.7 – 191.2 N and 186.2 – 203.6 N, respectively. LLP and RLP, the only muscle pair of this resected mandible, presented comparably similar magnitudes throughout the entire observation period.

According to the identification results (Fig. 5b), the actual muscle forces presented different patterns in a time-dependent fashion. The magnitude of muscle Ma decreased slightly during the rehabilitation process; while muscle T increased slightly from M4 to M16, followed by almost no change towards M28. By comparison, muscle MP showed minimal change in magnitude, fluctuating around 116 N. Muscles LLP and RLP, on the other hand, varied greatly; specifically they decreased at M16 and then increased at M28. It was also evident that muscles MP and T exerted up to 80.3% of their corresponding maximum capacity during clenching, whereas muscles Ma, LLP and RLP used only 58.2%, 57.3% and 49.8% of their maximum capacity, respectively.

The linear regression analysis in Fig. 6a shows that the SKO technique yielded fairly high \(R^2 \) values, i.e. 0.92, 0.97 and 0.84, for time points M4, M16 and M28, respectively. The scatter generated by SKO was well fitted by the regression line. Conversely, \(R^2 \) values determined from the linear optimality criteria method were substantially lower and the corresponding data scattering was relatively poorly fitted by the regression line, indicating that use of conventional optimality criteria approach may not be able to generate accurate occlusal loads, at least for the case involving major oral intervention such as jaw reconstruction across different stages of
rehabilitation (Fig. 6a). As a result, the displacement contours generated by the linear optimality methods are visibly deviated from those obtained from the SKO method (Fig. 6b).

4. Discussion

The sequential Kriging optimization (SKO) based inverse identification technique as proposed in this study quantified the muscle force components (magnitudes and directions) during the maximum voluntary clenching at different time points, by virtue of the in vivo measurements of occlusal loads. In contrast, the conventional methods assume that the input, output (i.e. muscle force, reaction force and joint force in this case) or their combination tends to be minimum overall during muscle co-activation, physiologically (Chou et al., 2015; Nubar and Contini, 1961; Osborn and Baragar, 1985; Pedotti et al., 1978; Schindler et al., 2007). Our comparative study showed that SKO could detail the resultant muscular force magnitudes and directions with fairly high R² values against the occlusal measurements in vivo, ranging from 0.84 to 0.97, attesting to its effectiveness and accuracy. Conversely, the optimal control theory resulted in the occlusal loads significantly diverging from the clinical measurements in the course of rehabilitation (Fig. 6a).

The deduction herein is that while the neuro-musculo-skeletal system still tends to reduce, if not to minimize the consumption of energy, or the potential detriment to tissues, it is unlikely to provide an absolute optimal behavior which may define a limit that our body can hardly achieve. In other words, it can be sufficiently good rather than optimally best (Loeb, 2012). The central nervous system (CNS) may be as complex as computing power but would address the masticatory coordination in a way different from the single-objective optimization that seeks
ideal solution based upon a large number of statistically randomized samples and corresponding outputs (De Rugy et al., 2012). On the other hand, the CNS has no capability of foreseeing the results but referring to the feedbacks from the relevant biochemical events accumulatively (Kistemaker et al., 2010). Such an inherent distinction between human and computer may to a certain extent restrict the favourability and effectiveness of using traditional optimality criterion approaches for determining the muscular activation and functionality, at least for such a jaw reconstruction case.

Despite the ongoing applications of minimization strategy in human locomotion and neuroscience studies, the forgoing conclusions indicated that the preferable muscular patterns (e.g. during gaiting, arm or wrist movements and running) may not be always consistent with or solely dominated by a single-objective optimization for minimizing metabolic consumption (De Rugy et al., 2012; Hunter et al., 2010; Kistemaker et al., 2010; Miller et al., 2011; Morgan et al., 1994). It may be irrational to use a single optimality criterion for determining entire masticatory muscle activity during mastication. Further, it is speculated that as the mastication has a relatively narrower range of motion, compared with the other types of locomotion such as gaiting and running, the CNS may have relatively smaller ranges of control to regulate the muscular activity beneficially, i.e. reduce the energy consumption or harm.

Due to its substantial role in stomatognathic performance, masticatory functionality has been directly or indirectly measured using a range of different methods to date, including EMG (Van Ruijven and Weijs, 1990), CT-based imaging analysis (Katsumata et al., 2004), gnathodynamometer (Marunick et al., 1992a), colour-changing gum (Shibuya et al., 2013), gummy jelly (Shiga et al., 2012), questionnaires (Sato et al., 1989) and the above-mentioned optimality criteria (Schindler et al., 2007) techniques. None of these methods alone can produce
the proper quantification of muscle force in both magnitude and direction. The inverse identification approach proposed in this study allows addressing this issue with its advantage of matching the clinical data collected over a 28-month rehabilitation course.

As shown in Fig. 5, the results indicate that the maximum capacity of muscular contraction could slightly decrease at the early stage of rehabilitation, caused by the reduction of PCSA. This finding was consistent with that by Dicker et al. (Dicker et al., 2007), in which the shrinkage of PCSA was found for muscles Ma and MP at the 18 months after the bilateral sagittal split osteotomies. In literature, Katsumata et al. (Katsumata et al., 2004) also reported the reduction in PCSA of Ma following mandibular setback osteotomy. This could be attributable to the muscular atrophy as a consequence of the dissection of bony and muscular tissues by neglecting re-joining with the surrounding tissues for recovering substantial muscle force over time, hypothetically causing the regional interference with the blood supply (Conley and Lindstedt, 2002; López-Arcas et al., 2010; Sieg et al., 2002). Nonetheless, it is found that PCSA stopped decreasing after M16 in this specific case, indicating a stabilizing functional condition of the muscles in the resected regions undergoing certain rehabilitation.

The activation ratio and actual muscle force generated here, however, witnessed dissimilar patterns with irregular fluctuations (Fig. 5b). The activation rates of muscles Ma and T with complete dentitions during maximum voluntary clenching were reported to be laid in between 70.3% and 77.7% (Hattori et al., 2003), which is higher than that of Ma (53.0 - 58.2%) and on par with that of T (71.7 - 80.0%), as calculated in this study. This implies that the hesitation of the patient to bite, especially using the resected side, has a major effect on Ma, reducing its activation ratio by supposedly 20% from the normal (Marunick et al., 1992b). Furthermore, due
to the lack of consideration of different biting strategies, the present results might only be able to explain a particular situation (i.e. clenching) (Ogawa et al., 2006).

Furthermore, inconsiderable consecutive decreases in force magnitude of muscle Ma were recorded throughout the rehabilitation follow-up, echoing the outcomes of the study by Nakata et al. (Nakata et al., 2007) in which the Ma activity was measured to decrease slightly for 31 months after mandibular prognathism. In comparison, MP presented no significant change from M4 to M28 in the maximum muscular capacity, activation ratio and actual resultant muscle force (Fig. 5). Different patterns were observed with LLP and RLP, in which the activation ratios and actual muscle forces decreased from M4 to M16, but subsequently increased and surpassed the M4 values at M28. The loss of some major masticatory muscles in the resection side (right) led to non-physiological conditions, which can considerably alter the normal muscle activities for re-stabilizing the reconstructed mandible, implying that the higher activation rates of MP and T might thus be related to the stabilization of mandibular position. The reason why the calculated muscle forces were high for the LLP and RLP, can be due to the lack of suprahyoid muscles, such as the mylohyoid muscles, which contribute on stabilization of the mandible during biting. Another possible reason is that the vertical direction of the occlusal force was applied in FEA. The force direction in vivo can actually tilt ipsilaterally (Kawata 2007). Considering the jaw biomechanics, the lateral force vector of LPTs may be needed to ensure force vertically in the model.

One of the limitations in this study is the sample size for its patient specific nature. First, only one patient, who underwent a major mandibular resection/reconstruction, has been followed up over a rehabilitation course of 28 months. While it is not advocated, given the uniqueness of the case, the findings of this study could still shed lights on the determination of a more realistic
masticatory pattern for a large population, including those with normal or nearly normal masticatory functionality. A future study should therefore recruit more patients with demographic and clinical variances over a longer course of rehabilitation. Second, the present study has focused on the static equilibrium when occlusion occurred, whereby its dynamic characteristics were not investigated, which could have caused the results to deviate from reality to a certain extent. Third, the high standard deviation of occlusal measurements at M28 may render that the evaluation of muscular activity at this time point could be less accurate, while it also indicates the instability of masticatory patterns not long after the introduction of the dental crown.

Overall, this study developed a new framework by correlating the clinical measurements in vivo with numerical modeling in silico at different time points for quantifying the magnitudes and directions of oral muscle forces. An effective identification procedure was established here to determine patient-specific muscular activities inversely in the course of 28-month rehabilitation. This method has proven to significantly improve the accuracy and reliability of conventional gradient-based optimization techniques which minimize overall energy consumption. This study and SKO approach exhibits considerable potentials for the further development of digitalizing major intervention of maxillofacial surgery.

Acknowledgements

We are grateful to Dr. Shigeto Koyama, Dr. Atsushi Takeda and Dr. Naoko Sato for recruiting and caring for the patient. This work was supported by Australian Research Council.
(ARC) through the Discovery Scheme (DP160104602). The first and second authors are the recipients of Australian Postgraduate Award (APA) at The University of Sydney.

Conflict of interest

Authors have no conflict of interest concerning the present manuscript.
Abstract. This study developed a new framework by correlating the clinical measurements \textit{in vivo} with numerical modeling \textit{in silico} at different time points for quantifying the magnitudes and directions of oral muscle forces.

Fig. 1. (a) Occlusal force measurement using pressure-indicating film. (b) Silicone impression as bite records from maxilla view, and (c) from mandible view.

Fig. 2. Estimation of muscle physiological cross-sectional areas (PCSA). (a) Reference planes for measuring PCSA of Ma (red line), MP (red line) and T (purple line) and (b) LP (green line). (c) Examples of muscle PCSA of Ma and MP, (d) T and (e) LPs.

Fig. 3. FE model with illustration of loading and boundary conditions (at M16).

Fig. 4 Clinically measured occlusal loading changes with standard deviations, at 4(M4), 16 (M16) and 28 (M28) months after mandibular reconstruction.

Fig. 5. (a) PCSA changes before and after surgery. (b) CT-derived maximum muscle capacities and the identified muscle force magnitudes at time points M4, M16 and M28; AR are also shown on top of each bar.

Fig. 6. (a) Regression analysis between occlusal forces obtained from the proposed identification procedure and experimental measurements; (b) Comparison of displacement magnitude contours at M4, M16 and M28, using different optimization techniques. Vectors of the displacements at the specific points of interests were illustrated.
References

Graphical abstract

Inverse identification of unknown muscle forces by minimizing the discrepancy between in-vivo measurement and in-silico modeling:

Unknown muscle force vector: \(\mathbf{x} = (\mathbf{F}_{\text{mus}}, \mathbf{F}_{\text{exp}}, \mathbf{T}, \mathbf{F}_{\text{exp}}, \mathbf{F}_{\text{ILP}})^T \)

\[
\min_j(\mathbf{x}) = 1 - \frac{\sum_{i=1}^{N} \left(\frac{F_{\text{exp}}^i - F_{\text{mus}}^i(\mathbf{x})}{\sum_{i=1}^{N} F_{\text{exp}}^i} \right)^2}{\sum_{i=1}^{N} \left(\frac{F_{\text{exp}}^i - \mathbf{F}_{\text{exp}}}{\sum_{i=1}^{N} F_{\text{exp}}} \right)^2}
\]