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ABSTRACT 
 
Given current risks of pollutant exposures in aquatic environments, there is a 

growing need to generate reliable computational risk assessment methods to 

establish how adverse outcomes can be produced across exposure 

organisms. The adaptive stress response is widely targeted by pollutants of 

concern and includes transcription factors including nuclear factor (erythroid-

derived 2)-like 2 (Nrf2), hypoxia inducible factor (HIF-1α), heat shock factor 

(HSF1), nuclear factor kappa-light-chain-enhancer of activated -B cells 

(NFkB), metal transcription factor 1 (MTF1), the aryl hydrocarbon receptor 

(AhR) and tumor protein P53 (P53).  While these TFs are known to be 

activated by distinct inducers, less is understood about the regulatory links 

between factors, particularly at the transcription factor (TF) DNA-binding level. 

 

In this thesis, a gene regulatory network (GRN) of adaptive-stress response 

factors that are key targets of chemical toxicity was constructed based on 

experimental evidence from mammalian cell-lines. The GRN was modeled 

using boolean logic and this identified a number of response outcomes that 

could be attributed to the activation of pathways including antioxidant defence 

processes and glucose metabolism. The GRN model illustrated that the 

activation of Nrf2, HIF-1α, AhR, MTF1 and HSF1 led to the same adverse 

outcomes, suggesting canalisation in stress response pathways.  

 

The ability to use GRNs across different species is widely supported by the 

identification of TF binding sites (TFBS) within target genes. To assess the 

efficiency of using the mammalian GRN across teleost fish species, a 

comprehensive analysis of validated binding sites for the AhR, MTF1, HIF-1α 

and Nrf2 was conducted across fish-species in comparison to the mammalian 

consensus binding sequence. This showed variations in binding site 

composition across validated TFBS for HIF-1α and Nrf2 in fish compared to 

the mammalian consensus, preventing the identification of the functional 

sequences for these factors using traditional methods. To establish if such 

changes affected the efficiency to predict positive downstream target genes 

for Nrf2 and HIF-1α in mammals and across teleost fish species, random 
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forest classification models were used to compare the efficiency of multiple 

positional weight matrices (PWM) motifs of TFBS for Nrf2 and HIF-1α. Whilst 

the result from this analysis identified discrepancies in the ability to predict 

target genes based on the mammalian motif file used, mammalian motifs 

were able to predict target genes across fish species. Validated binding sites 

in fish species were then aligned to generate PWM motifs and sites were 

predicted across shared target genes hsp70 and hmox1 using both fish based 

and mammalian based models. This showed that whilst there was some 

overlap in identified sites across species, fish-specific motifs identified unique 

sites from mammalian models.   

 

To validate the GRN, gene-expression responses across exposures 

traditionally associated with activating distinct adaptive stress response 

factors were collated across the literature. This showed support for some of 

the key responses identified in the model. Chemical exposure studies were 

then undertaken in vivo in embryo-larval zebrafish (2 and 4 dpf) to identify 

potential connectivity between the TFs NFkB, MTF1 and HIF-1α with Nrf2, a 

key factor in the adaptive stress-response and a regulator of antioxidant 

response processes. The inducer of Nrf2, tert-butylhydroquinone (tBHQ), was 

used to determine if there was a change in transcriptional output of mtf1, hif1a 

and nfkb1 over time and with exposure concentration. This showed a 

significant difference in expression for nfkb1 and alterations in expression of 

mtf1 over prolonged exposure scenarios. In addition, the developmental 

expression of nrf2a, mtf1, hif1α and nfkb1 from 2 hpf to 96 hpf showed 

differences between transcript levels with hif1α and nfkb1 having the highest 

levels of expression compared to nrf2a and mtf1.   

 

Overall, the research presented in this thesis provides a novel approach to 

assess the initiation of adaptive stress-response factors from molecular 

interactions. The research goes some way in establishing the feedback loops 

and connections between NFkB, MTF1, Nrf2, AhR, HIF-1α, HSF1 and P53. In 

doing so, the model generated in this thesis provides a novel approach of 

establishing outcomes under toxicant exposures. 
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1.1 Introduction  

Freshwater environments are considered a major sink for pollutants derived 

from agricultural, industrial and domestic sources[1].  The advanced 

engineering of novel pharmaceuticals and materials such as nanoparticles[2] 

has created an increasing risk of pollution from substances which have 

unknown toxicities in environmental systems. Additional pressures, including 

changes in temperature[3] and increases in hypoxia[4] have added to the 

growing concern for adverse consequences in aquatic systems, particularly 

for organisms that are of significant ecological or economical importance. As 

such, freshwater environments are estimated to have had a 76% decline in 

biodiversity from 1970 to 2012, the largest decline of any ecosystem[1].  

 

Whilst it is not feasible to test the toxic potential of every chemical or pollutant 

combination, there is a clear acknowledgement at the international level for 

the need to develop robust and high-throughput (HT) environmental risk 

assessment methods in accordance with the growing complexity of pollutant 

exposures[5]. It has been widely established that progress in the field requires 

the development of predictive platforms which test the toxic potential of 

multiple chemical groups at various levels of biological organisation, an aim 

only likely to be achieved by combining advances in computational modeling 

techniques with experimental evidence derived from field-realistic exposure 

scenarios[5,6].  

 

Currently, regulatory organisations including the Environmental Protection 

Agency (EPA) and the Organisation for Economic growth and Development 

(OECD) have adopted frameworks that rely on integrated approaches to 

testing and assessment (IATAs), combining the available knowledge on 

chemical exposures from molecular to population level effects [7] .  IATAs, 

including Adverse outcome pathway (AOP) and mode of action (MoA) 

frameworks, have been established with the long-term aim of conducting 

environmental risk assessments across species in silico [7], reducing both the 

ethical concerns associated with toxicity testing on multiple organisms and 
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aiding in silico predictions of adverse outcomes (AOs) across chemical groups 

[7].  

 

At the basis of both frameworks are pollutant-induced molecular initiating 

events (MIEs), defined as “the initial interaction between a molecule and a 

biomolecule or biosystem that can be causally linked to an outcome via a 

pathway” [8]. MIEs include processes such as receptor binding which initiates 

the transcription of specific cohorts of genes, an example being toxicants that 

target gene expression in the endocrine system through the oestrogen 

receptor. Such processes lead to changes at the cellular and tissue level, so 

called key events (KEs), and subsequently lead to observable AOs, be it 

chronic, such as DNA damage, or acute, such as a general decreases in 

biological activity (narcosis)[9], to the whole organism and population (Figure 

1.1). Though both frameworks are conceptually similar, MoAs include 

outcomes up to the individual level whereas AOPs include dose-responses 

and outcomes at the population level [10] (Figure 1.1). 

 

 

 

 

Figure 1.1: Adverse outcome pathway/ Mode of Action frameworks. 

adapted from Perkins et al.  2011. Chemical toxicants activate molecular initiating 

events (MIEs) that cause measurable key events (KE) processes. This can lead to an 

adverse outcome (AO) at the whole organism or population level. MIEs can be 

predicted through quantitative structural activity relationships (QSARs).  
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Given the large number of potential pollutants, predictive toxicology for 

chemicals  relies on quantitative structural activity relationships (QSARs), a 

“read-across” method which predict that chemicals with similar structures will 

cause toxic effects through the same MIEs [7]. Although this has been shown 

to be  accurate in some instances, the method is limited by assuming that  

expected molecular interactions, such as receptor-mediated gene expression, 

act on only one downstream process, whereas in reality, multiple or different 

events may be triggered for a novel compound compared with a structurally 

similar counterpart [7]. In addition, the actions of metabolites, which could 

cause different biological interactions to the original compound, are as yet not 

well understood and even where known, are rarely considered within QSAR 

predictions. 

 

 The adoption of IATAs in toxicity testing, where knowledge is assembled for a 

range of chemicals and outcome processes, are likely to inform and improve 

on the outcomes of QSARs models[7]. However, the weight of evidence 

(WOE) between the compound and the observed outcome(s) as well as the 

transferability of the response across species needs to be considered. WOE 

for AOP/MoAs are assigned by 5 factors adopted from the Bradford-Hill 

considerations and comprise of the consistency, essentiality of key events, 

temporal, dose response and biological concordance as described in Table 

1.1 [11]. The inclusion of evidence scores acknowledges the complexity of 

toxicity responses where, particularly at the molecular level, it can be 

challenging to directly determine the events that lead to observable adverse 

outcomes. The OECD’s AOP Knowledge Base (AOP-KB) has been 

developed as a tool to compile evidence across research organisations and 

allows for the input of MIEs, KEs and AOs for chemical toxicants across 

vertebrates with respective WOE scores [12].  

 

However, despite these developments in predictive toxicology, the integration 

of novel experimental methods widely used in other fields is lacking. In 

particular, the last decade has seen significant advances in the knowledge of 

gene regulation, which form the basis of MIEs in all AOP and MoA 

frameworks. Developments in sequencing technologies, epigenetics and 
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transcription factor interactions has led to a more robust understanding of 

gene-expression dynamics and regulatory cascades which could provide 

significant insight into toxic effects for both singular and mixture effects.    

 

 

Bradford-Hill Considerations Consideration 

Consistency 
Pattern of effects across 

species/strains/organisms/test systems as 
expected. 

Essentiality of Key Events 
Reversibility of events if dosing is stopped or a KE 

prevented. 

Temporal Concordance KE observed in hypothesized order. 

Dose-Response Concordance 
KE observed in doses bellow/similar to the adverse 

effect. 

Biological Concordance 
MoA in agreement with broader biological 

knowledge.  

 

Table 1.1: Bradford-Hill considerations for MoA and AOP frameworks 

(adapted from Meek et. al. 2014)  

 

This thesis investigates  a novel approach to addressing the understanding of 

gene-regulatory cascades in a toxicology setting focusing on the adaptive 

stress response; an evolutionary conserved process across aerobic 

organisms, describing pathways which mitigate against adverse effects such 

as DNA damage to maintain cellular homeostasis [13]. Biomarkers of the 

stress-response have become standpoint measures in ecotoxicology testing, 

with processes such as DNA-damage, lipid peroxidation and in severe cases, 

cell death determined under chemical exposures in vitro and in vivo [14]. 

Oxidative stress is a primary activator of the adaptive stress-response and 

arguably comprises the most common outcome to pollutant exposures in 

vertebrates [13].  

 

1.2 The oxygen paradigm 
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All aerobic life forms rely on the mitochondrial electron transport chain to 

produce adenosine 5’-triphosphate (ATP) through a series of steps that utilise 

O2 [15].  However, aerobic respiration produces the bi-product superoxide 

(O2) from 1-2% of electrons ‘leaking out’ of the electron transport chain and 

binding to oxygen[15]. The conversion of O2 to O2
- is the first of a series of 4 

reduction steps in the production of reactive oxygen species (ROS) [15]. ROS 

are defined as molecules containing oxygen that are either oxidising agents 

and/or are easily converted into free radicals that contain one or more 

unpaired electrons[16]. On leaving the mitochondria, the antioxidant 

superoxide dismutase (SOD) reduces O2
- to produce hydrogen peroxide 

H2O2, which can be converted to the hydroxyl radical HO. through the Haber-

Wiess and Fenton reaction (Figure 2).  

 

Although ROS can have beneficial roles in processes ranging from cell 

signaling to host defence they can also cause damaging effects to molecules 

through interactions that add (oxidising) or subtract (reducing) electrons 3.  

Excess ROS can result in DNA damage and lipid peroxidation, which can be 

largely attributed to the OH- radical, and are responsible for diseases such as 

neurodegenerative disorders and cancer [17]. This creates the paradox that 

O2 is required for survival but can itself be a toxic compound[18].  

The evolutionary conserved antioxidant defence system, broadly defined as 

“any substance that delays, prevents or removes oxidative damage to a target 

molecule” [15], counteracts the damaging effects mediated by free radicals 

and maintains ROS at low-levels. However, an imbalance in the levels of 

antioxidants to ROS in favor of the latter, causes a condition termed oxidative 

stress[18]. Antioxidants are required to neutralise reactive molecules, largely 

by initiating reduction reactions or acting as electron acceptors, and in turn 

maintain the redox balance through keeping a stable ratio of oxidised to 

reduced molecules[19]. Central to this is the antioxidant and scavenger 

molecule glutathione that exists in either a reduced form as GSH or oxidised 

as GSSG. The ratio of GSH:GSSG is widely used as an indicator of the 

severity of oxidative stress and is termed the redox status[19], a measure of 

the level of antioxidants to ROS. The basal ratio of GSH:GSSG can in-part be 
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controlled by the cofactors nicotinamide adenine dinucleotide phosphate 

(NADPH:NADP), which reduces GSSG in the presence of glutathione 

reductase (GR) to GSH[19] (Figure 2). In turn, NADP is reduced back to 

NADPH by glucose-6-phosphate dehydrogenase (G6PD) derived from 

glycolysis[20] (Figure 2). In addition to ROS from aerobic respiration, nitric 

oxide NO, formed from L-Arginine (L-Arg), an amino acid resulting from 

metabolic processes, can bind to O2
- to produce ONOO-, a highly reactive 

ROS[21]. The dietary intake of antioxidants, including vitamin C and bilirubin, 

can support antioxidant defences in order to maintain redox homeostasis 

where production of ROS occurs due to general biological activity[21].    

 

 

Figure 1.2: Biological production of ROS. Superoxide O2
- is released from the 

electron transport chain and is converted to hydrogen peroxide H2O2 through 

superoxide dismutase (SOD). O2
- also reacts with the Fe3+ to produce Fe 2+ in the 

Haber-Weiss reaction[22]. H2O2 is then bound to Fe2+ to produce the OH- and OH. in 

the Fenton reaction[22]. H2O2 is reduced by glutathione peroxidase (GPx) to produce 

H2O and GSSG. GSSG is reduced to GSH by glutathione reductase (GR), converting 

NAD(P)H to NADP[19]. NADP is reduced by glucose-6-phosphate dehydrogenase 

(G6PD) [20]. L-Argenine (L-Arg) and nitric oxide synthase (NOS) produces ON[21]. 

ON reacts with O2
- to produce ONOO- [21]. Figure created from information derived 

from the literature as cited.  
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1.3 Fish model organisms in ecotoxicology 

 
An estimated 90% of all fish species belong to the teleost subfamily which 

comprise 50% of all vertebrates [23]. The divergence of teleost fish from 

mammals occurred with a whole genome duplication (WGD) event leading to 

genes conserved in mammals often exist as two copies, or paralogs, within 

fish species [24]. These duplicated genes are evolutionary preserved through 

processes such as sub-functional partitioning (where gene paralogs each 

have specific functions that are conserved in the mammalian counterpart 

[24]), neofunctionalization (where genes obtain novel functions) and dosage 

selection (where genes are preserved to maintain balance between other 

interconnected components) [25]. Evidence suggests additional gene 

duplication events have occurred within fish species, through further WGD or 

processes such as unequal cross-over and retrotransposition [26]. Copy 

number variants (CNVs) can exist for genes between species for example, the 

common carp (Cyprinus carpio) is predicted to have undergone a further 

genome duplication event compared to the zebrafish [26]. This is also 

reflected in genome size, for example being 342 Mb in the fugu but 1.5 Gb in 

the zebrafish genome [26]. WGD event caused in the divergence of teleost 

fish has allowed for larger evolutionary plasticity by providing a greater 

amount of genetic information for adaption and this is believed to be at least 

partially responsible for the high levels of diversity seen within the vertebrate 

group[25].There are huge variations in niches filled by teleost fish and this is 

reflected by differences in factors such as lifespan and reproductive strategy 

(REF).  Given the evolutionary distances between teleosts, it is therefore 

questionable whether the findings derived from one fish species under 

chemical toxicity can be applied to all fish species. 

 

A number of model organisms have been adopted to assess chemical toxicity 

in aquatic environments and include the zebrafish (Danio rerio), rainbow trout 

(Oncorhynchus mykiss), three-spined stickleback (Gasterosteus aculeatus), 

Japanese medaka (Oryzias latipes), fathead minnow (Pimephales promelas), 

Atlantic killifish (Fundulus heteroclitus) and brown trout (Salmo trutta). These 

belong to distinct taxonomic orders representing belinoforms (medaka),  
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cypriniforms (zebrafish and fathead minnow), salmoniforms (brown trout) and 

percomorpha (stickleback)[25]. However, given that the adaptive stress 

response evolved prior to the divergence of prokaryotes and eukaroytes, 

these processes are highly conserved across vertebrates [27].  

 

A large proportion of research has been conducted on laboratory strains of 

zebrafish, which have the advantage of translucent embryos and rapid 

developmental lifespans[28]. The use of the zebrafish model not only in 

ecotoxicology but also across the life sciences has provided a wealth of 

information regarding the genetics and characterization of developmental 

stages as well as the development of a number of model lines that incorporate 

gene reporter systems[28]. From a toxicology perspective, experimental 

evidence derived from zebrafish studies have provided an in-depth 

understanding of exposure effects at the molecular level. However, laboratory 

strains of zebrafish, which suffer from some level of inbreeding, can have 

different levels of susceptibility in comparison to wild-type strains [29]. 

Zebrafish models are therefore used as a platform to identify mechanisms of 

toxicity, which can, once established, be supported by environmentally 

relevant exposures in either wild-type strains or in species that are more 

challenging to maintain under laboratory conditions when necessary.  

 

1.4 The transferability of experimental evidence from fish-specific 

exposures to mammals.  

 
 

Despite the evolutionary distances within teleost species and across to 

mammals, experimental evidence derived from studies on zebrafish have 

provided advances in biomedical science and toxicology. Comparisons 

between exposure results between zebrafish and rodents has shown high 

levels of conservation in response phenotypes [30]. 71 % of human genes 

have atleast one zebrafish ortholog and zebrafish disease models are used as 

a reliable indicator of the molecular processes behind diseases across 

vertebrates [31]. The similarities between zebrafish and mammals have 
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allowed it to be a successful model to study oestotoxicity [32], blood cell 

development and immune responses [33].  

 

1.4 Pollutants and environmental stressors as a source of ROS in 

aquatic systems 

 
While the production of ROS is a natural byproduct of cellular processes, a 

range of pollutants and environmental stressors can cause oxidative stress. 

Metals[22], chemical toxicants and/or their metabolites in addition to 

environmental changes in temperature[3] and increases in hypoxia[34] have 

been shown to induce oxidative stress. Biomarkers of stress-response 

processes are widely used in ecotoxicology to assess for oxidative damage. 

This section discusses the general MoAs for selected pollutant groups that 

are of most concern in freshwater environments. However, it should be noted 

that the severity of adverse outcomes discussed in this section is dependent 

on parameters including the dose and duration of the inducer as well as the 

route of uptake and life-stage of the targeted organism. In addition, responses 

to infection where macrophages induce the “oxidative burst” and release ROS 

to destroy pathogens, is a major endogenous source of ROS [35] but is 

beyond the scope of this thesis.   

1.4.1 Biomakers for adverse outcomes induced by ROS 

 
A range of biomarkers have been adopted to monitor the occurrence of 

oxidative stress in aquatic organisms and these provide representative 

measures of outcomes from antioxidant defence processes to cell death 

(Table 1.2). In some cases, markers can be used in vivo, such as staining 

dyes indicating apoptosis by binding to DNA including propidium iodine (PI), 

acridine orange and the Terminal deoxynucleotidyl transferase (dUTP) nick 

end labeling (TUNEL) assay. In other cases, biomarkers can only be used on 

cellular homogenates such as RT-qPCR assays.  As oxidative stress is widely 

conserved, the same markers are often used across both vertebrates and 

invertebrates [14].  

 

https://en.wikipedia.org/wiki/Terminal_deoxynucleotidyl_transferase
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Table 1.2 Biomarkers of oxidative stress responses. Oxidative damage can 

have wide ranging outcomes in cell systems that are measured using representative 

biomarkers of response processes as shown.   

 

1.4.2 Metal pollution 

 
Metal pollution is ubiquitous in the aquatic environment and caused by 

industrial activities such as mining [22]. Although essential metals are 

required for normal cellular functioning, pollutant exposures can lead to 

detrimental effects, causing mutagenesis and tetragenesis[22], widely 

associated with the formation of ROS through the action of metal ions. 

Underlying toxicity to some metals is an ability for ions to act as catalysts in 

the Fenton reaction[39]. Chromium, copper, titanium, cobalt and vanadium 

have all been identified as producing OH- through reactions with H2O2  [39] 

Process Biomarker 

Antioxidant defence Gene expression analysis of antioxidants (e.g. SOD, 
GST, NQO1, HMOX1) using techniques such as RT-
qPCR. 

Lipid Peroxidation Measurements of isoprostanes produced from 
peroxidation of polyunsaturated fatty acids can also 
be measured using gas-chromatography mass 
spectrometry (GC-MS)[36]. 

DNA-damage Comet assay measures DNA strand breaks by 
electrophoresis. DNA from individual nuclei is 
unwound and run on a gel. Damaged segments form 
a tail that is proportional to the amount of damaged 
DNA. Alternatively, 8-hydroxy-2-deoxyguanosine (8-
OHdG) can be measured using GC-MS as a maker 
for DNA oxidation[37]. 

Hydrogen Peroxide Hydrogen peroxide probes such as HyPer where 
H2O2 is bound to a fluorescent protein to visualise 
responses in vivo. Alternatively, dichloroflourescin 
diacete (DCFDA) can be used which is oxidised by 
ROS to produce a fluorescent compound[38]. 

Cell death 
(apoptosis and necrosis) 

Acradine Orange stains for pre-apoptotic and 
apoptotic cells in-vivo by binding to nucleated DNA. 
The fluorescent maker propidium iodine (PI) can be 
used which enters permeable cells due to necrosis 
and apoptosis and binds to nucleated DNA.  Terminal 
deoxynucleotidyl transferase dUTP nick end labeling 
(TUNEL assay) can stain DNA strained breaks 
formed as a result of apoptosis.[36]. 

Inflammation Gene expression analysis of inflammatory response 
genes e.g. (IL6, IL8) using techniques such as RT-
qPCR. 

https://en.wikipedia.org/wiki/Terminal_deoxynucleotidyl_transferase
https://en.wikipedia.org/wiki/Terminal_deoxynucleotidyl_transferase
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(Figure 1.3).  In addition, metal ions can also act as catalysts in the Haber-

Weiss reaction, inducing HO- production through reducing O2
- and reacting 

with H2O2 [39] (Figure 1.3).  

 

Silver ions have been identified as highly toxic and the release of silver has 

been tightly controlled in wastewater management following high levels of 

contamination from the photography industry in the 1970s[40]. AgNO3
+ 

inhibits the ion exchange of Na+ and Cl- in the gills of fish leading to a 

decrease in osmoregulation, a process coupled with the induction of a stress 

response[41].  In addition, silver and other redox-unreactive metals can react 

with sulfurhydl groups on cellular proteins to produce thiol radicals[41].  

Damaging effects of metals can also be removed through interactions with 

sulfhydryl groups of metallothioniens (MTs), low-molecular weight proteins 

which have metal binding capacity[22]. 

 

More recently, engineered metal nanomaterials, which have distinct properties 

to their bulk counterparts, such as an increased surface-area to volume 

ratio[42], have been shown to induce toxic effects via oxidative stress 

pathways. Metal nanoparticles are increasingly being used in domestic 

applications, such as anti-microbial silver nanoparticles in socks, and in the 

pharmaceutical industry[42].  Silver[43,44] and zinc-oxide[45] nanoparticle 

exposures in zebrafish embryos initiated the expression of antioxidant 

defence genes and the production of ROS is considered a likely MOA for 

nanoparticle toxicity[2]. 

1.4.3 Chemical toxicants 

 
The toxicity of chemical pollutants can be explained using the Verharr 

classification scheme which associates MOA with chemical structure[9]. 

Chemical MOAs are broadly grouped as narcotics, polar narcotics, 

electrophiles or as acting through specific molecular targets (specifically-

acting). In some cases, a chemical can belong to multiple groups for example 

oestrogenic chemicals are considered specifically-acting by causing receptor-

mediated toxicity but their metabolites are also electrophilic.  
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1.4.4 Electrophiles 

 
 Electrophilic molecules are defined as molecules that have one or more 

electron poor atoms which can accept electrons from nucleophiles, molecules 

that are electron rich to form covalent bounds[46]. Electrophiles have 

carcinogenic potential and can bind to DNA causing mutagenesis[47]. They 

fall into two distinct categories based on the selectivity of nucleophilic 

reactions; either soft, where a soft electrophile reacts with soft nucleophile or 

hard, where hard electrophiles react with hard nucleophiles[47]. Soft 

electrophiles exert toxicity through Michael-addition reactions, where 

nucleophiles are added to conjugated alkenes/alkyenes [46]. Such 

interactions include the covalent bounding of xenobiotics with GSH, reducing 

the overall cellular GSH:GSSG ratio[48] (Figure 3).   

 

Chemical toxicants can be metabolized to electrophiles that are often short-

lived but can drive toxic responses. Metabolites formed as a result of phase I 

drug metabolism initiated by the enzyme Cytochrome-P450 (CYP450) are 

often electrophilic (Figure 3)[49].  Electrophiles derived from the 

biotransformation of aromatic compounds such as polyaromatic hydrocarbons 

(PAHs) and oestrogens are termed quinones. Quinones are Michael 

acceptors [48] and their reduction by CYP450 leads to the release of O2
-, 

initiating redox cycling and the eventual production of .OH[48].  PAHs and 

oestrogens including 17-beta estradiol (E2) and bisphenol-A (BPA), which 

have the potential to form quinone compounds, are associated with initiating 

oxidative stress indicated through the up-regulation of antioxidants [50,51].  

 

1.4.5 Specifically-acting toxicants 

 
The specifically acting group of toxicants describes toxicity where chemicals 

act on individual cellular components such receptors to initiate responses. 

Receptor mediated toxicants are widespread MOAs particularly for pollutants 

derived from the pharmaceutical and pesticide industry. Many drugs are 
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specifically designed to target individual receptor or protein complexes in-

order to initiate responses. However, receptors can be highly conserved 

across the animal kingdom leading to indirect toxicity in non-target organisms 

if released into the environment [52]. The glucocorticoid, androgen, oestrogen 

and thyroid receptors are all targets for environmental toxicants in fish, 

initiating responses that include the production of the yolk precursor protein, 

vitellogenin, and feminisation in the case of oestrogen[53]. Despite specifically 

acting toxicants not primarily initiating toxicity through oxidative stress, there is 

an increasing body of evidence supporting antioxidant induction following 

exposures to such compounds. For example, the MOA for the herbicide 

glyphosate is plant specific, but has been shown to up regulate antioxidant 

defence genes in fish [34]. It is therefore highly likely that oxidative stress 

responses, which can result from xenobiotic metabolism, will be initiated 

alongside specifically targeted response pathways.  

 

1.4.6 Temperature Change  

 
Acute changes in temperature can lead to the formation of ROS through 

altering the metabolic activity of the organism in accordance with 

thermodynamic theory and thus increase the consumption of O2 and the rate 

of aerobic respiration[34]. This response has been widely shown across fish 

species where increased temperature has been identified as producing 

ROS[3]. In addition, acute cold stress has been shown to induce antioxidant 

defences in zebrafish [54].  

 

1.4.7 Hypoxia 

 
Hypoxia, where the level of O2 is below that necessary for aerobic respiration, 

is predicted to rise due to increases in eutrophication and greater numbers of 

microbial blooms resulting from climate change[4]. There are several 

hypotheses of how ROS are produced as a result of hypoxia.  A decrease in 

O2 in the electron transport chain is predicted to result in an increased rate of 

electrons leaking from the mitochondria [34]. In addition, the enzyme xanthine 
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reductase is converted to xanthaine oxidase under hypoxic conditions and is 

able to produce ROS (Figure 1.3)[34] . Studies of hypoxia have identified 

biomarkers of oxidative stress including the upregulation of antioxidants 

across exposures in fish species[55–57].  

 

1.4.8 Mixed-pollutant effects 

 
Oxidative stress is a widespread phenomenon to pollutant exposures and 

changes in environmental conditions. Organisms will therefore be exposed to 

multiple inducers of oxidative-stress in field-realistic exposure scenarios with 

evidence that stress response processes are altered under mixture effects. 

Chemical exposures under hypoxia/temperature-change have shown differing 

responses depending on toxicant group. For example, the fold increase in the 

antioxidant proteins CAT, SOD and MT in zebrafish larvae exposed to 

cadmium was greater under higher temperatures [58] and hypoxia has been 

shown to decrease the toxicity of copper in zebrafish embryos[55]. In addition, 

ROS is widely associated with disease burden as a result of infection or as a 

pre-requisite to its acquisition. 
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Figure 1.3. Production of ROS from pollutants and environmental 

change. Metals ions catalyse Fenton and Haber-Weiss reactions[22]. Higher 

temperatures increase the levels of free electrons causing increases in O2- [3]. 

Xenobiotics can be metabolised by cyptochrome-p450s (CYP450s) to produce 

electrophilic compounds which can bind to GSH and reduce overall GSH:GSSG 

concentration[48]. Alternatively, xenobiotics are reduced by NADP to NADPH using 

NAD(P)H dehydrogenase (NQO1). Metabolism of xenobiotics releases O2
-
 , which is 

converted to H2O2 or reduced to O2 using superoxide (SOD) [48]. H2O2 is converted 

to 2H2O + O2 by catalase (CAT) or glutathione peroxidase (GPx) reduces GSH – 

GSSG to give H2O17. GSSG is returned back to GSH via glutathione reductase (GR), 

reducing NADP to NADPH17.  Figure created from literature sources cited.  
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1.5 Consequences of oxidative stress at the whole-organism and 

population level in fish 

 
Oxidative stress is widely regarded as being influential in life-history strategy 

and is hypothesised to be a driving force in evolution[59]. Often the responses 

identified in fish are widely conserved across vertebrates and include both 

behavioral and physiological outcomes.   

 

1.5.1 Development 

 
ROS act as a key signaling molecule in developmental processes with 

oxidised conditions associated with cell death and differentiation and reduced 

conditions associated with cell proliferation[60].  High levels of ROS are 

associated with the metabolic burden of development due to rapid increase in 

cell proliferation[59]. Basal GSH:GSSG levels have been shown to fluctuate 

throughout organogenesis in zebrafish, becoming oxidised from 2 hpf to 2 dpf 

before returning to reduced levels [61]. The role of ROS as a signaling 

molecule in developmental processes creates the possibility that early 

development is highly susceptible to ROS. In support of this, a large number 

of teratogens, chemicals that cause developmental defects, have been 

associated with initiating oxidative stress[62]. Life stage specific effects of 

oxidative stress with whole-organism and population level consequences are 

shown in Figure 1.4.  

 

1.5.2 Behaviour and neurodegenerative diseases  

 
Antioxidant-defence processes are key in preventing ROS-induced neuronal 

dysfunction where factors such as H2O2  can mediate apoptosis in nerve cells 

[63]. In humans, levels of peroxidase-induced reduction of the myelin sheath 

has been correlated with antioxidant levels in multiple sclerosis[64]. 

Downstream target genes associated with Parkinson’s disease have been 

shown to be  upregulated under H2O2 exposures in zebrafish embryos [65].  

At the individual level, exposures to metals and metal nanoparticles in 

zebrafish larvae caused the depletion of neuronal cells in the lateral 
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line[66,67] and olfactory bulb [68], a response elevated by the up-regulation of 

antioxidant defence processes[68],[43]. Damage to lateral line cells has been 

directly related to a decrease in the startle response[69]. In addition, the 

knockdown of the antioxidant gene sqstm1, has been shown to cause a 

decrease in locomotive activity in zebrafish larvae, again supporting the role 

of sensory systems as key target for oxidative-stress responses to metal 

exposures[70].  

 

Reductions in schooling and aggressive behavior as well as predator-

avoidance across fresh-water fish species, including rainbow trout, fathead 

minnow (Pimephales promelas), guppy (Poecilia reticulate) and Japanese 

medaka have been identified following exposure to metals [71].  

 

1.5.3 Fecundity 

 
ROS are significant in reproductive success for example NO- being necessary 

in spermatogenesis [59]. The allocation of resources to dimorphic features 

has been identified as resulting in ROS[59] and male stickleback with diets 

rich in antioxidants had a greater reproductive success compared to males 

with poorer diets[72]. Maternal resource allocation has been identified in 

brown trout where increased deposits of carotenoids in eggs was correlated 

with higher survival rates under microbial burden in developing offspring[73].  

The maternal deposits of antioxidants are also supported in zebrafish, where 

glutathione-s-transgerase- p (GSTp) has been identified as being maternally 

deposited [61].  

 

 

 

 

 
 
 



34 
 

 
 
 
 

Figure 1.4: Life stage specific effects of oxidative stress with whole-

organism and population level consequences. (images obtained from 

Kimmel et al. 1995). Developmental stages are under oxidative stress due to rapid 

cell proliferation events but have maternal deposits of antioxidants. Antioxidants can 

be derived from the diet at larval and adult stages. Larval stages have been identified 

as being susceptible to nerve damage in the lateral line. Male dimorphic traits and 

aggressive behavior leads to ROS production. Maternal deposits of antioxidants in 

embryos. 

 

1.6 Molecular initiating events in stress responses pathways 

 
Oxidative stress responses can have wide-ranging outcomes at both 

individual and population levels. Such outcomes are controlled by a series of 

stress-response pathways activated in MIE processes. This thesis focuses on 

some of the main targets of prooxidant chemical and environmental stressors 

of concern comprising of TFs belonging to the adaptive stress response 

pathways. These are activated in order to prevent or mitigate against cellular 

damage and maintain homeostasis [13].  Adaptive stress response factors are 

held in the nucleus by fast-acting response proteins with the exception of the 

Aryl hydrocarbon receptor (AhR) which is included due to its association with 

nuclear factor (erythroid-derived 2)-like 2 (Nrf2) as well as being targeted by 
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dioxins. In most cases, factors are named after the general responses they 

are associated with and comprise of Nrf2, nuclear factor kappa-light-chain-

enhancer of activated B cells (NFkB), hypoxia inducible factor 1 (HIF-1α), 

metal-transcription factor 1 (MTF1), heat shock factor 1 (HSF1), tumor protein 

p53 (p53) and the AhR. 

 

1.6.1 Overview of gene regulatory processes 

 
The initiation of gene transcription requires a coordinated response between 

multiple regulatory proteins and the underlying DNA-sequence to recruit RNA 

polymerase II to the transcription start site (TSS) [74]. At the fundamental 

level, general transcription factors (TFs) bind to a core promoter such as the 

TATA box and assemble with ribonuclear-polymerase II (RNAPII) to form a 

transcriptional complex [74]. General TFs are required for all transcriptional 

processes and produce a basal level of transcription[74].  

Inducible gene expression requires the association of TFs with unique 

sequences called transcription factor binding site (TFBS), traditionally viewed 

as being proximal to the gene coding region in promoters. These TFs can 

inhibit or enhance the levels of transcription and are themselves inhibited by 

receptors or binding proteins within the cell and released by specific 

inducers[13]. With some exceptions, the majority of stress-responsive factors 

fall into the latter case, which is considered to be a fast-acting response to 

stimuli compared to receptor-mediated inhibition[13]. 

On entering the nucleus, the accumulation of transcription factors increases 

the likelihood of binding to TFBS within the DNA sequence [75]. The number 

of TFs binding to DNA sequences influences the level of inducible gene 

transcription, which is correlated with the number of factors occupying TFBS 

[75]. In addition, functionally redundant TFBS can bind TFs, reducing the 

overall concentration of free TFs, suggested to act as a negative feedback 

mechanism [76]. The strength of association between TF and DNA can also 

influence the transcriptional rate and is dictated by the underlying DNA 

sequence[75]. TFs with a weak binding strength cause a lower transcriptional 

rate compared to those that are tightly associated with the DNA sequence[75].  
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In addition to regulatory regions in promoters, enhancers comprise of multiple 

regulatory elements and are considered to further increase the rate of 

transcription[77]. Enhancers can be located distal or proximal to the TSS as 

well as upstream, downstream or within the introns of target genes[77]. 

Shadow enhancers, duplicates of enhancer sequences, act even more 

remotely to the target gene and complement enhancer regions[78]. Although 

promoter and enhancers are traditionally viewed as being functionally distinct, 

the sequences have been shown to be interchangeable[77]. For the purpose 

of this thesis, the term regulatory regions will be used to define promoter and 

enhancer sequences.    

As the DNA double helix is three-dimensional, features that influence the 

structure are also essential for regulatory function. DNA is held in the nucleus 

through associations with histone proteins within nucleosomes, where 8 

histone proteins make one nucleosome[79]. TFs are not able to access DNA 

sequences that are tightly bound to nucleosomes whereas DNA that is not 

tightly associated can be bound by TFs[79]. The strength of DNA-nucleosome 

associations is dictated by the status of histone tails where methylation 

causes deactivation and acetylation, activation[79]. Sites that contain 

methylated regions are associated with CpG islands, areas that have a high 

GC% content in DNA sequences[80]. The influence of structural features on 

gene transcription is the basis of epigenetics where phenotypic outcomes 

cannot be explained by the underlying DNA-sequence alone[81].  

Both the DNA-sequence composition and structural features therefore 

influence the regulatory potential of gene transcription. However, due to 

experimental costs, the influence of both TF-binding and changes in 

chromatin composition under specific conditions is rarely known. This thesis 

bases its research focus on the concepts surrounding DNA sequence and 

protein binding rather than chromatin composition as an indicator of regulatory 

function, though both factors are essential for interpreting gene-regulatory 

processes from experimental data. In this case, DNA sequence analysis gives 

a broad overview of regulatory interactions given that the sequence is 

identical within every tissue of the organism.  
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1.6.2 Stress-responsive transcription factors share a common regulatory 

architecture.  

Due to the need to respond to rapid changes in internal cellular conditions, 

stress-response factors share a common regulatory architecture that at a 

basic level comprises of a sensor molecule, transcription factor and co-

activator. Sensor molecules are able to prevent TFs entering the nuclease 

under basal conditions, such as inhibitory proteins that target TFs for 

ubiquitin-proteasome pathway, but the interaction between the sensor-TF is 

rapidly disrupted under the presence of an inducer (Figure 1.5) [13]. The TF is 

then able to associate with co-activators, a process necessary to either to 

enter the nucleus or to bind to TFBS in regulatory regions themselves [13]. 

 

 

Figure 1.5: Schematic of the common architecture shared between 

stress-response TFs and TFBS. TFs are prevented from entering the nucleus by 

sensor molecules, inhibitory proteins that prevent TF activation by initiating 

processes such as the ubiquitin-proteasome pathway. Inducers disrupt the interaction 

between the TF and sensor molecule. TFs are then release and bind to co-activators 

that transport them into the nucleus to bind to TFBS.  
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1.6.3 Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) 

 

In 1991, Rushmore et al. [82] defined a conserved sequence which regulated 

the expression of the rat GSTya and NQO1 antioxidants. This consensus 

sequence of 5’ TGACnnnGC 3’ [82] was found to be evolutionarily 

conserved[83] and necessary for the expression of phase II detoxification 

enzymes [84] and over 200 antioxidant responsive genes including GST, 

GPx, heme oxygenase 1 (HMOX1) and NQO1 [85]. This conserved region 

was defined as the antioxidant response element (ARE) or electrophile 

response element (EpRE) and shown to be activated through binding of the 

transcription factor, Nrf2 [86] (Figure 5).  

 

Nrf2 is a member of the Cap ‘n’ Collar (CNC) basic leucine zipper protein 

(bZip) family and under basal conditions is held by its sensor molecule, the 

inhibitory protein Kelch-like ECH associated protein 1 (Keap1), which favors 

degradation of Nrf2 by ubiquiation [87]. In response to oxidative stress, H2O2 

and electrophiles, phosphorylation of cysteine molecules in Keap1 changes its 

conformational shape causing the release of Nrf2 in a hinge and latch 

mechanism [64,87] . The transcription factor then enters the nucleus where it 

accumulates and associates with its coactivators (small Maf proteins, an ARE-

binding protein and a C-binding protein) before being able to bind to EpRE 

sequences [88]. Nrf2 and its downstream targets are evolutionarily conserved 

in fish species[83]. Paralogs of Nrf2 have been identified in zebrafish with 

nrf2a and nrf2b having divergent functions in antioxidant regulation and …. 

Respectively [89].  

1.6.4 Nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB): 

 
Oxidative stress is just one factor acting on NFkB which is involved in 

regulation of immunity, inflammation and the cell cycle[90]. NFkB is a dimer 

formed from NFKB subunit 1/2 and proteins of the Rel family which have a 

Rel homology domain and include Rela, Relb and c-Rel [90]. Formation of the 

dimer allows binding to kB elements of target genes at the consensus 

sequence 5’ GGGRNWYYCC 3’ identified in mammals[90]. Activation of 
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NFkB can occur in a canonical or non-canonical response pathway (Figure 5). 

In the canonical response, which is fast acting, the IkB kinase (IKK) complex 

is activated acting as a sensor molecule and targets IkBa for phosphorylation, 

allowing the concentrations of NFkB dimers to increase and bind to kB 

elements on the DNA. In the non-canonical response, the NFkB-inducing 

kinase (NIK) phosphorylates p100 to p52, forming a dimer with RelB and 

binding to kB elements. NF-kB then triggers a ROS-induced inflammation 

response. Cell specific expression of NFkB has been recorded under H2O2, 

with responses dependent on cell type [91,92]. NFkB is conserved in 

zebrafish and shown to be essential for notochord development[93]. 

1.6.5 Heat shock factor 1 (HSF1) 

 
Under oxidative stress, heat shock proteins (Hsp) are activated by heat shock 

transcription factor-1 (HSF1) following stimulation from the oxidative stress 

detectors, Hsp33 and HMOX1[94]. Hsp33/HMOX1 act as sensor molecules, 

containing cysteine residues which are oxidised, releasing zinc and causing 

the formation of disulphide bonds which activate the protein [94] (Figure 1.5). 

During oxidative stress, an increased expression of HSP occurs and is termed 

the heat shock response (HSR) [94]. The heat shock element (HSE) is 

composed of inverted repeats of 5’ nGAAn 3’ and the arrangement of 

5’nGAAn 3’ influences the binding of HSF[95]. HSF1 is also activated by 

oxidised proteins or DNA by activating Hsp70/90 [94].  Once transcribed, Hsp 

can prevent the accumulation of damaged proteins. HSF1 is conserved in 

zebrafish and necessary for eye development [96].  

 

1.6.6 Metal transcription factor 1 (MTF1)  

 
The evolutionarily conserved metal response element binding transcription 

factor-1 (MTF1) activates gene expression though the metal responsive 

elements (MRE) which share a core consensus sequence of 5’ TGCRCNC 3’ 

[86] . MREs control gene expression of metallothioneins, heavy metal binding 

proteins which reduce both the damaging effects of metals and are 

scavengers of hydroxyl radicals [86] (Figure 1.5). MTF1 is activated by heavy 
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metals such as zinc [97], which can be released from MT through the 

oxidation of cysteine[98].  

 

MTF1 is also involved in the transcription of antioxidants such as glutamate 

cysteine ligase (GCL) [99]. MTs can act as zinc pools, releasing zinc under 

oxidative stress which leads to the binding of MTF1 to the MRE[99]. MTF1 is 

conserved in zebrafish where it is regulated through the release of zinc and 

binds to MRE sequences in MT gene promoters[100]. 

 

1.6.7 Hypoxia inducible factor 1 (HIF-1α) 

 
All aerobic organisms require the ability to sense when internal and external 

oxygen supply is reduced. Hypoxia inducible factors (HIFs) are evolutionary 

conserved TFs across metazoans, activating the transcription to downstream 

targets in low oxygen conditions[101]. Three subtypes of HIFα exist in 

mammals, HIF-1α, HIF-2α and HIF-3α, which all respond to hypoxia and act 

on distinct target genes[101]. The most well studied factor is HIF-1α, bound in 

the cytoplasm to von hippel Linau protein (VHLp) after undergoing proline-

degradation from the sensor molecules proyl-hydroxylase domain-containing 

proteins (PHDs) under basal conditions[101]. Hypoxia suppresses the action 

of PHDs allowing free HIF-1α to enter the nucleus, dimerise with the aryl 

hydrocarbon nuclear translocator  (ARNT also known as HIF-1β) and bind to 

hypoxia-response elements in promoter regions[101] (Figure 1.5).  

 

HIF-1α targets increase the oxygen supply and maintain energy production in 

affected tissues. Under hypoxia, HIF-1α regulates genes involved in 

increasing metabolic processes using glutamate for aerobic respiration as well 

as increasing glucose transport and mitochondrial turnover[102]. In addition, 

HIF-1α regulates the targets erythroprotien (EPO) and vascular endothelial 

growth factor (VEGF), which activate erythrocyte production and angiogenesis 

to increase the number of red blood cells and the oxygen supply to affected 

tissues respectively[102]. Divergent features of HIF-1α subtypes have been 

identified in zebrafish but both HIF-1αa and HIF-1αb were shown to be up 
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regulated throughout development [103]. In addition, in the atlantic killifish, 

lactase-dehydrogenase B was shown to be regulated through HREs, 

suggesting the transcription factor is conserved[103].   

1.6.8 Aryl–hydrocarbon receptor (AhR)  

 
The association with ligands including polyaromatic hydrocarbons (PAHs) and 

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) make the aryl-hydrocarbon 

receptor (AhR) a crucial regulator of dioxin toxicity[104]. In an inactive state, 

the AhR forms a protein complex with Hsp90 in the cytoplasm[105]. Ligand 

binding cause a conformational change within the protein complex leading to 

the exposure of the nuclear localization signal on the AhR[105]. Within the 

nucleus, the AhR dissociates from Hsp90 and dimerizes with the ARNT and 

binds to dioxin response elements/xenobiotic response elements 

(DREs/XREs) within target genes (Figure 1.5) [105].  The AhR is the principle 

mediator of the canonical pathway of enzyme detoxification, initiating 

transcription of the cytochrome P450 family which act to metabolize toxic 

chemicals through oxidation reactions[106]. Like Nrf2, the AhR upregulates 

expression of GSTs and NQO1 and is considered the activator of phase 1 

metabolism of xenobiotic-induced stressors[107].  

 

Fish species are particularly sensitive to the toxic effects of dioxin-like 

chemicals which are of environmental concern. As a result, the 

characterization of AhR protiens has been documented in a range of fish 

species including rainbow trout[108], killifish[109] and zebrafish[109]. These 

species have three copies to the mammalian AhR; paralogs ahr1a and ahr1b, 

as well as the ortholog ahr2 [109]. In this case, experimental evidence 

indicates that ahr1a has become functionally redundant over evolutionary time 

whereas ahr1b and ahr2 have retained the function of the AhR gene in 

mammals [109]. In addition, the differential expression of ahr2 target genes in 

the Arctic Charr (Salvelinus alpinus) has been associated with controlling 

phenotypes consisting of blunt snout and sub-terminal mouth of the benthic 

subspecies [110].  
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1.6.9 Tumor protein P53 (P53)  

Tumor protein P53 (P53) is associated with regulating both cell survival and 

apoptotic pathways, the ability of which is not yet fully understood. P53 is held 

in the cytoplasm by the sensor molecule, mouse double minute 2 homolog 

(MDM2), which targets the TF for the ubiquitin-proteasome pathway. Release 

of P53 requires the disruption of the MDM2-P53 interaction by  

phosphorylation of residues on either protein, signaled by events including 

DNA damage and hypoxia (Figure 1.9) [111]. P53 is then acetylated before 

binding to the regulatory sites of target genes at consensus 5’ 

RRRCWWGYYY 3’ elements [111].  The MDM2-P53 pathway has been 

identified as being conserved in zebrafish, with the TF existing as one copy 

and activated in response to DNA damage[112].  

    

1.6.10 Biomarkers of pathway activation.  

Genes which are known targets of TFs are widely regarded as biomarkers for 

the activation of specific pathways and are therefore indicators of MIEs. 

These are subsequently measured in whole-genome sequencing such as 

RNA-seq, and gene-targeted experimental methods such as Reverse 

Transcriptase-quantitative polymerase chain reaction (RT-qPCR).  Biomarker 

genes are associated with specific biological processes. Biomarkers for the 

adaptive stress response are shown in Table 1.3.  

 

TF Target Genes Process 

Nrf2 
GSTP, HMOX1, NQO1, 

GSTA, SOD1 
Phase 2 detoxification (Antioxidant 

Defence) 

AhR CYP450s 
Phase 1 detoxification (Xenobiotic 

metabolism) 

HSF1 HSP70, HSP90, HSP72 Heat Shock 

HIF-1α VEGF1, EPO, TIMP1 Angiogenesis, Erythropoiesis 

MTF1 MT1, MT2 Metallothioneins 

NFkB IL8, IL6, IL4, COX2, BCL-2 Immune Response.  

P53 BAX, BIM, APAF1, NIX Apoptosis, Cell survival 
 

Table 1.3 Downstream biomarkers and processes associated with 

stress-response factors.  
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Figure 1.6: Activation pathways of selected stress-responsive 

transcription factors. Schematic representation of stress-response pathways as 

focused on in this thesis. TFs, sensor molecules and coactivators are coloured in 

accordance to the regulatory architecture components as shown in Figure 1.5. 

Consensus TFBS are indicated with the IUPAC alphabet as shown in Table 1.4. P53 is 

bound by the sensor molecule mouse double minute 2 homolog (MDM2) and released 

by signals such as DNA damage. P53 binds to consensus response elements 

(5’RRRCWWGYYY3’). In the canonical pathway, the sensor molecule subunit NFkB 

kinase subunit beta (IKKb) is activated and phosphorylates IkBa leading to the 

translocation of the p65/p50 complex into the nucleus where it binds to NFkB response 

elements. In the non-canonical pathway, NFkB kinase subunit alpha (IKKa) becomes 

activated through the sensor molecule NFkB-inducing kinase (NIK), leading to the 

phosphorylation of p100. This allows p52 and RelB to heterodimerise, enter the 

nucleus and bind to NFkB regions. Nrf2 is released from its sensor molecule Keap1 

when electrophilic compounds react with cysteine residues on Keap1. Nrf2 enters the 

nucleus and binds to electrophile response elements (5’TGACNNNGC3’) to initate the 

transcription of antioxidant genes. The AhR is activated by dioxin-like chemicals and 

binds to the coactivator ARNT before binding to xenobiotic response elements 

(5’KNGCGTG3’) and initiating the transcription of CYP450s.  HIF-1α binds to the 

coactivator ARNT before binding to hypoxia response elements (5’RCGTG 3’) initiating 

genes involved in angiogenesis and erythropoiesis.  HSF1 is activated and released 

from the sensor molecule Hsp90 and binds to heat-shock elements (5’NGAAN3’) 

causing transcription of heat shock proteins. Metal transcription factor 1 (MTF1) is 

activated by the release of zinc and binds to metal response elements 

(5’TGCRCNCGC3’).  

 

1.7 Advances in ecotoxicology require the understanding of pathway 

connectivity 

 

Although stress-response target genes and their TFs have been widely 

established, it is currently challenging to establish complete AOPs from MIE to 

phenotypes, especially as multiple phenotypes have been established to be life-

stage and exposure specific. The identification of novel and shared target genes 

is a major factor influencing regulatory networks and multiple methods have 

been established to identify the downstream targets of specific TFs, largely 

through the identification of TFBS.   
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1.7.1 Transcription factor binding site identification 

 
TFBS are short and degenerate, meaning that TFs bind to multiple 

combinations of sequences and bases in binding site patterns are 

interchangeable[113].  The identification of functional binding sites requires the 

use of a combination of methods based on in vivo, in vitro and in silico 

techniques. The method(s) selected depend on the research question, broadly 

falling into those methods which identify TFBS at the whole-genome level 

(Table 1.2) and those at the gene-specific level (Table 1.3). In combination with 

the methods discussed, whole genome sequencing methods assessing 

regulatory features such as the methylation-status of CpGs islands using 

bisulfite sequencing[108] and chromatin conformation using chromatin 

conformation capture sequencing (Hi-C)[108] are being widely employed to 

identify regulatory regions by indicating regulatory status.  

 

1.7.2 Genome-specific methods 

 
Genomic methods aim to establish either the downstream targets or functional 

binding regions by focusing on associations of individual TFs with the DNA 

region (Table 1.4). Where the results of inducible expression of a TF is 

investigated, gene expression analysis such as through RNA-sequencing is 

used in combination with ChIP-Seq, ATAC-Seq or DNAase1-hypersensitivity to 

establish changes in regulatory expression in combination with protein-DNA 

binding events. 

 

1.7.3 Gene-specific identification  

 
Where the identification of regulatory proteins controlling the expression of a 

specific gene is necessary, identification methods can be used at a smaller 

scale for example, ChIP-PCR (Table 1.5). Methods such as morpholino (MO) 

analysis are used in combination with knock-outs (KOs) or knock-downs (KDs) 

to establish regulatory interactions [114]. However, these methods are unable to 
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determine direct binding events and affects can be due to gene expression 

changes resulting from KO/KDs upstream in the regulatory network.   

 

Method Technique Limitations 

RNA-seq Adapter molecules are bound to cDNA fragments 

and sequenced on a microplate. RNA-seq 

methods are integrated with ChIP-seq, ATAC-seq 

and DNAse-seq to identify TFs that are active 

under exposure conditions.  

Variations in 

mapping 

TSS[115].  

ChIP-Seq 

(Chromatin-

immunoprecipitation) 

Used with RNA-Seq for inducer-specific TFs.  

Active transcription factors are cross-linked to 

DNA, which is then sheared, and 

immunoprecipitated. Antibodies targeting the 

protein of interest are then used to isolate bound-

DNA regions that can then be sequenced[116].  

Requires the 

use of specific 

antibodies[116]. 

Functionally 

redundant 

binding of TFs.  

ATAC-Seq (assay for 

transposase-

accessible chormatin 

using sequencing) 

Used with RNA-Seq for inducer-specific TFs.  A 

highly sensitive transposase (Tn5) is used to cut 

DNA free of nucleosomes and preferentially 

enriched for proteins bound to DNA(open 

chromatin)[117]. The resulting regions are isolated 

and sequenced[117].  

Can cause non-

specific 

amplification of 

non-nuclear 

DNA.  

DNAse-Seq (Dnase- I 

hypsersensitvitiy 

sequencing) 

Used with RNA-Seq for inducer-specific TFs.  

Transcription factors are able to associate with 

DNA that is not bound by chromatin. DNAse 

fragments uncondensed regions and the resulting 

fragments can be compared to the background 

genome sequence to identify regulatory regions of 

DNA[118]. In silico regulatory analysis can then be 

used to determine associated transcription factors 

(open chromatin).  

Large amounts 

of DNA are 

needed and 

can cause 

cleavage bias 

leading to the 

mis-

identification of 

TFBS[119].   

FAIRE-Seq 

(formaldehyde 

assisted isolation of 

regulatory element 

sequencing) 

Chromatin is cross-linked onto DNA with 

formaldehyde (open chromatin). The remaining 

regions are isolated using phenol-chloroform and 

sequenced to identify regulatory regions of DNA. 

TFs are assigned based on DNA-sequences[120].  

 High levels of 

background in 

output 

data[119].  

SELEX (systematic 

evolution of ligands 

by exponential 

enrichment) 

Purified TF are incubated with DNA oligos. 

Degradation steps leave TF ligated to specific 

DNA oligo sequences[121]. DNA sequences are 

amplified and the process is repeated for 

increased specificity[121].  

Only high 

affinity binding 

sites are 

amplified[121]. 

 

Table 1.4: Genome-specific TFBS identification. Whole-genome sequencing 

techniques and limitations for identifying TFBS. RNA-Seq is used in combination with 

genome sequencing assays ChIP-Seq, ATAC-Seq and DNAse-Seq to correlate 

changes in gene expression under certain inducers with increases in TF-binding.  
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Method Technique Limitations 

ChIP-PCR Same assay as ChIP-Seq but antibodies are 
incubated with only the DNA sequence of a 
specific gene. Can be used to validate the 
efficiency of ChIP-Seq assays[116].  

 Limitations in 
available 
antibodies[116]. 

Reporter-gene 
assay  

Promoter attached to reporter gene (e.g. 
luciferase, green florescent protein (GFP). 
Promoter is truncated to identify functional 
binding sites. Can be used in vitro and in vivo 
to identify functional binding sites[28].  

Mosaic-effects in 
model organisms[28].  

Electrophoretic 
mobility shift 
assay (EMSA) 

Using electrophoresis, DNA sequences 
associated with proteins cause a band shift in 
comparison to the free-nucleic acid 
sequence[122]. 

 Samples are not at 
chemical equilibrium 
during 
electrophoresis and 
the exact DNA-
sequence bound is 
unknown[122].  

Morpholino 
analysis: 
Gene-specific 
knock-downs 
(KD) 

Morpholino oligos (MO) prevent the 
translation of target proteins by binding to the 
mRNA sequence of the gene.  For regulatory 
gene analysis, MOs can be used in 
combination with WISH and qPCR to identify 
any changes in gene induction of downstream 
targets in vitro[123].  

Off-target effects of 
MOs could alter the 
gene-response. The 
efficiency of MOs is 
reduced over time as 
the concentration is 
depleted[123].  

Gene-specific 
knock-outs 
(KO) 

Target TF is knocked-out through generation 
of mutant lines formed using techniques such 
as CRISPR-Cas9[124].  

Successful 
development of KO 
lines can require 
multiple generations 
depending on 
technique used. 

Whole mount 
in-situ 
hybirdisation: 
(WISH) 

Used in combination with MO/KOs in vivo. 
RNA probes generated using the mRNA 
sequence of target gene tagged to BM-purple 
dye[125].  

Does not identify 
direct binding events. 

RT-qPCR  Used in combination with MO/knock-outs in 
vivo. RNA extracted and amplified using 
gene-specific primers.  

 Does not identify 
direct binding events. 

 
Table 1.5: Gene-specific TFBS identification. Gene-specific methods for 

identifying binding sites used in vivo and in vitro. KO/KD methods are used in 

combination with RT-qPCR or WISH to correlate changes in gene expression with the 

presence/absence of a selected factor as an indicator of its role in gene-expression. 

However, this does not show direct binding events.  

1.7.4 In silico identification of TFBS 

 
In silico methods can be used to identify TFBS in combination with whole-

genome and gene-specific methods. TFBS generated from in vitro or in vivo 

data are aligned to create overall consensus binding sequence. These binding 
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sequences are defined by the International Union of Pure and Applied 

Chemistry (IUPAC) alphabet[126] which can be used to represent the 

occurrence of 2 or more bases in a single position within a sequence (Table 

1.6). Consensus motifs represent the binding sequence pattern but have no 

additional information such as the probability of a particular sequence occurring 

within the binding site. 

More complex motifs represent DNA binding sequences in the form of positional 

weight matrices (PWMs) [127]. These matrices incorporate the probability that a 

specific base occurs in each position in the pattern following from the multiple 

sequence alignments of validated binding sites[127]. The original alignment file 

produced is known as a positional factor matrix (PFM) and is formed of the 

counts of each base within each position from the available alignment 

data[127].  The counts shown in a PFM are then converted into a position 

probability matrix (PPM) with counts converted to probabilities; the sum of 

probabilities in each position is equal to 1. In this case, each probability score 

across every position is independent of the surrounding sequence. For 

example, if in position 1, the probability of base A is 0.5 and in position 2, the 

probability of base T is 0.25, these scores are independent of each other even if 

in all cases where 2 =T,  1 = A . 
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Nucleotide 
code Base 

A Adenine 

C Cytosine 

G Guanine 

T Thymine 

U Uracil 

R A or G 

Y C or T/U 

S G or C 

W A or T/U 

K G or T/U 

M A or C 

B C or G or T/U 

D A or G or T/U 

H A or C or T/U 

V A or C or G 

N any base 
 

Table 1.6: IUPAC alphabet (Johnson, 2010.[126]) 
 

TFBS identification is highly sensitive to nucleotide bias and the identification of 

binding sites has the potential to be an artifact of higher GC% in the predicted 

sequences against the background readings, particularly if enrichment is used 

as a filtering measure as discussed below. Models must incorporate the 

genomic background of the species of interest, taking into account the GC% 

across the genome[128]. The position frequency matrix (PFM) can then be 

determined by calculating the log-likelihood of occurrence based on the 

genomic DNA background sequence[128]. In silico searches only give putative 

predictions of binding sites and produce a large number of false positives due to 

the high likelihood of degenerate sequences occurring in the genome by 

chance[128]. 

 
 
 
Databases containing matrixes are widespread and include JASPAR and 

Transfac (Table 1.7). The JASPAR database is the most widely cited open-

source collection of TFBS, spanning six taxonomic groups from vertebrates to 

plants and regularly used in motif discovery methods in Table 1.7. It is 
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unsuprisng that the JASPAR database has increased since the development of 

sequencing-based technologies as shown in Figure 1.7 where it is widely used 

to characterise binding sites. Transfac remains the most extensively used 

database overall. 

 

Motif 
Database 

Description  Form Refs:  

JASPAR Open source binding site discovery for 

vertebrates, invertebrates, plants and 

fungi. DNA binding sequences based 

on experimental evidence collected 

from PAZAR. 

PFMs  [113] 

TRANSFAC Eukaryote transcriptional regulation. 

Identifies binding sites scores and PWM 

score. Uses tissue specific profiles.  

 PFMs  [129] 

Hocomoco Combines known TFBS models for 

each factor unless motifs associated 

with the same factor are significantly 

different. Based on Human, mouse, rat, 

fungi data. 

 PFMs  [130] 

Pazar Database of the annotations used to 

create PWMs in databases such as 

JASPAR from SELEX data.  

 PFMs  [131] 

 

Table 1.7: In silico databases methods for TFBS identification. Open source 

and subscription databases containing TFBS derived from SELEX and ChIP-seq in the 

format of positional-frequency matrixes (PFMs).  
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Figure 1.7: Citations by year of databases of TFBS motifs. Number of 

citations for JASPAR, TRANSFAC, PAZAR and HOCOMOCO databases by year 

according to web of science. Vertical lines indicate development of whole genome 

sequencing techniques for binding site identification as indicated.  

 

Multiple software tools have been developed to search PWM within sequence 

reads based on algorithms including hidden marcov models (HMMs).  The 

output comprises of a probability score and is often represented as the p-value, 

q-value or z-score to reflect the likelihood that the identified sequence is a true 

positive in relation to the background sequence composition[132]. The 

probability score is therefore used as a tool to reduce the number of false 

positive binding sequences and a stringent threshold measure is recommended 

to extract the top-scoring probabilities[132]. In the MEME suite, the most widely 

used search tool (Figure 1.8), a threshold q-value within the range of 0.01-0.05 

is regarded as being a good indicator of positive hits. 
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Motif Discovery Method Refs  

oPOSSUM Searches for TFBS clusters with species covering 

human, mouse, rat and fungi.  
[128

] 
Dcode within the 

ECR Browser. 

Comparative genomics using whole genome alignments 

and phylogenetic foot printing. Conservation is used as 

a filter. 

[133

] 

MatInspector Assigns quality range to searches that match similarity, 

position and gene id but only searches in the first 1 kb of 

the selected gene. 

[134

] 

ORCAtk Phylogenetic footprinting aligning orthologous 

sequences by pairwise alignment methods. Regions 

which are significantly similar are scanned for TFBS 

matrices. 

[135

] 

PhastCons Multiple alignments generated using UCSC. Alternative 

plots to identify regions under selective pressure in 

mammals vs non-mammals using a HMM model. 

Species cover reptiles, mammal, bird and fish clades. 

[136

] 

The MEME suite Comprising of MEME (multiple Em for motif excitation) 

CentriMo (local motif enrichemnt), FIMO (individual motif 

occurance), SpaMo (spaced motif analysis tool), Mcast 

(motif cluster alignment), GLAM2 (gapped local 

alignment of motifs), GoMo (gene ontology for motifs), 

Tomtom (motif comparison tool). Enriched nucleotide 

sequences determined by a custom significance 

threshold. PWM need to be converted into the MEME 

format. 

[137

] 

CENTIPEDE Predicts TFBS based on TSS proximity, conservation 

score, PWM score as well as from experimental 

observations of ChIP-seq and histone markers. 

Searches motifs from JASPAR and TRANSFAC. 

[138

] 

RAVEN 

(Regulatory analysis 

of variation in 

Enhancers) 

Identifies SNPs from potential TFBS from the Human 

genome and searches polymorphic sites for overlap with 

potential TFBS. 

[134

] 

TFBSshape Predictions made from DNA shape features are derived 

from core motif sequence files.  
[136

] 
ConTra All transcripts for a gene of interest are searched for 

user-selected PWMs across mammalian species. 

Results are aligned to indicate levels of conservation. 

[139

] 

HOMER 

(Hypergeometric 

Optimization of Motif 

EnRichment) 

De-novo motif discovery from sequencing data for motifs 

8-12 bps in length. Compares differential enrichment 

between two sequences. Uses JASPAR database as 

reference. 

[140

] 
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Table 1.8: In silico search programmes for TFBS identification. Open-source 

search tools used to identify putative TFBS in regulatory regions using additional 

information such as phylogenetic foot-printing, enrichment and DNA-shape features.  

Databases form the basis of a number of searching tools that use various 

parameters to reduce the occurrence of false positive hits (Table 1.6). In this 

case, evolutionary conservation[141], levels of enrichment [128] and DNA-

shape [136] have been shown to increase the predictive potential of TFBS 

searches. These parameters have informed on different search-based tools, the 

use of which depends on the target species and the type of sequencing data 

available (Table 1.6). Of these methods, MEME and HOMER programs are 

currently the most widely used TFBS search systems, both of which, as 

allowing for de-novo motif discovery, have increased in use with the 

development of ATAC-Seq and ChIP-Seq assays (Figure 1.8).  
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Figure 1.8: Citations by year of TFBS identification programmes. Citations 

from publications on search tools used to identify TFBS by year according to web of 

science. Vertical lines indicate development of whole genome sequencing techniques 

for binding site identification as indicated.  

1.7.5 Methods used in combination 

 
In silico methods are often used with genome-wide experimental methods by 

searching for the specific binding sequences of TFs of interest [137]. For ChIP-

Seq, binding peaks are searched for the related TFBS using software programs 

such as the MEME suite in combination with binding motifs derived from 

databases such as JASPAR[137]. For methods which identify open chromatin 

for example, DNAse-1 hypersensitivity assays and ATAC-Seq, returned 

sequences are compared to databases containing motif files to identify 

expected TFs [128,137]. In addition, in silico methods can be used to identify 

putative TFBS in RNA-Seq data, where the promoters of genes that have 

altered expression patterns following exposures are searched using matrix files 

[142]. This technique has been widely used in ecotoxicology to predict active 

TFs, especially as the genomic methods and suitable TF antibodies are not 
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always available for the selected species. In this case, there is a reliance on 

combined in silico and gene-specific identification methods. Experimental 

evidence can inform on more robust PWMs and in silico identification methods 

(Figure 1.8).  

 

 

Figure 1.9: Flow-diagram of TFBS identification. In vitro/in vivo methods inform 

on PFMs. In silico, PFMs identify putative TFBS in novel gene targets.  Predicted sites 

can then be validated in vitro/in vivo.  

 

1.8 Transcription factors act in gene regulatory networks.  

Identifying downstream targets of TFs allows for the development of gene 

regulatory networks (GRNs) which describe the molecular cascades leading to 

outcome processes. So far, regulatory networks have been used in a 

developmental context to establish the progression of cell-fate in sea-urchins, 

zebrafish and drosophila. The regulatory events that underpin biological 

responses to chemical perturbation at MIEs follow the same principles, where 

TFs act in a holistic framework to regulate genes involved in causing adverse 

outcomes.  

1.8.1 Network Motifs  

 
Motifs are regulatory circuits that underpin the structure of regulatory networks 

and include positive feedback, negative feedback, coherent and incoherent 

feedforward loops (Figure 1.9) [143]. Network motifs annotate the regulatory 

interactions and can be modeled to indicate the processes activated in a time 

and in more complex models, threshold specific context (Figure 1.9). Networks 

that are inferred from published data on interactions (prior knowledge networks) 

can identify key regulatory motifs which can be experimentally validated.   
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The timing of each process in the cascade is dependent on network motifs 

(Figure 1.10), the rate of transcription influenced by the number of accessible 

binding sequences and binding site composition. In addition, the availability of 

DNA polymerase, the rates of elongation and mRNA clearance all have roles in 

the final transcript abundance. 

 

 
 
Figure 1.10: Schematic of regulatory motifs created in Biotapestry [144]. A) 

Positive feedback loop where A activates the transcription of B and vice versa. B) 

Negative Feedback where C activates D but D inhibits C. C) Coherent Feed-forward 

where E activates F and G and F also activates G. D) Incoherent Feed-forward where 

H activates I but inhibits J but I activates J.  

 

1.8.2 Statistical Methods for modeling regulatory networks 

 
The interpretation of regulatory networks depends on the available experimental 

evidence explaining interactions for example, protein abundance and enzyme 

kinetics[145]. Often, the level of information is a limiting factor in creating 

biological models that can quantitatively predict outcome events.  As such, 

statistical methods used to describe networks are selected based on the 

available information for the system of interest and the number of nodes in the 

network (Table 1.9).  
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Method Explanation 

Boolean  

Qualitative models which explain gene expression 

in binary terms with activity described as being 

active (1) or inactive (0). Boolean models can exist 

as synchronous, asynchronous or probabilistic and 

define gene expression occurring over a set period 

of time[146]. 

Fuzzy Logic 

Incorporate the principles of Boolean logic but 

regulatory states can fall within a range of 1 or 0. 

Interaction levels are estimated from biological 

data[145]. 

Ordinary differential 

equations (ODEs) 

Produce quantitative outputs by incorporating the 

rate-dependant steps in regulation including the 

rate of transcription, mRNA degradation and 

enzyme kinetics[145]. 

Pharmacokinetics 

and 

Pharmacodynamics 

(PK-PD) 

Describe the actions of drugs on biological 

processes. PDs is the action of the body on a drug 

whereas PKs in the action of the drug on the 

body[147].  

 

Table 1.9 Statistical methods used to explain regulatory processes. 

Regulatory networks can be modeled simplistically using Boolean and fuzzy logic 

algorithms. More complex modeling platforms can be used where there is a greater 

amount of data available and include ordinary differential equations and 

pharmacokinetic and pharmacodynamics models.  

 

1.9 Thesis Aims and objectives: 

 
This thesis explores the potential for the use of a GRN approach to predict 

regulatory cascades in the adaptive stress-response which is activated by a 

range of pollutants and environmental stressors (Figure 1.7). To achieve this 

aim, the work in this thesis is separated into 3 main sections: 1.) the 

development of a mammalian GRN model, 2.) assessing the transferability of 

the generated mammalian GRN model to fish species through TFBS 

conservation and, 3.)  evaluating the modeling outcomes using the literature 

and experimental assays. By viewing pathway activation in a holistic framework 

rather than through independently activated molecular events, the model 

generated in this thesis identifies the potential biological processes initiated 
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under a range of chemical exposures and suggests a novel approach to 

identifying MIEs at the root of AOP and MoA frameworks.    

 

Objective 1 (Chapter 2): To establish a theoretical model of regulatory 

connections between stress-response pathways in vertebrates using 

experimental evidence from mammalian cell lines. 

 

Chapter 2 proposes a GRN model of the adaptive stress-response using 

compiled experimental evidence from studies using mammalian cell lines. This 

network identifies the regulatory links between Nrf2, NFkB, HIF-1α, HSF1, MTF, 

P53 and AhR pathways through shared downstream targets and protein-protein 

interactions. The GRN was modeled using Boolean logic (as described in 

section 1.8) to determine the regulatory cascades and activation of biological 

processes though the initiation of each TF in the network. Perturbation analysis 

was conducted in the model to identify the significance of TFs in the 

progression of response outcomes. Furthermore, interactions with the 

oestrogen receptor were included as a case-study for determining the influence 

of receptor-mediated interactions with the adaptive stress-response.  

 

 

 

Objective 2 (Chapter 3): Determine the evolutionary conservation of the 

mammalian stress-response GRN in fish species through assessing the 

conservation of TFBS. 

 

To establish the transferability of the mammalian GRN model (derived in 

Chapter 2) to fish, the ability for mammalian-derived binding site matrices to 

predict putative regulatory regions for known downstream target genes across 

sequenced fish species was investigated. Firstly, consensus-binding sequences 

derived from mammals were compared to experimentally validated binding sites 

in fish species. In cases where the consensus sequence did not match 

validated sites, the efficiency of mammalian PWMs to identify the downstream 

target genes in fish was conducted using random forest models. Experimentally 

validated binding sites in fish were aligned and used to generate PWMs. The 

identification of sites using the fish-specific PWMs in comparison to mammalian 
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PWMs was conducted for the target genes hmox1 and hsp70, which are known 

to be targeted by multiple stress-response transcription factors.  

 

Objective 3 (Chapter 4): To validate the GRN model proposed in Chapter 2 

through in-silico and literature derived studies.    

 

Validation of the GRN model presented in Chapter 2 was undertaken using 

modified Bradford-Hill considerations (Table 1.1) to establish concordance 

between gene-expression profiles from pollutant exposures in the literature with 

the outcomes of the GRN model. Further support was provided by in vivo 

exposures to the Nrf2 inducer, tert-butylhydroquinone (tBHQ) using RT-qPCR in 

zebrafish developmental stages. The expression of nrf2, mtf1, HIF-1α and nfkb 

was assessed at 2 and 4 dpf following 6 and 12 hr exposures respectively. 

Acradine orange staining was used as an indicator of apoptosis as an adverse 

outcome.  

 

An overview of the results addressing each objective, the implications for the 

field and necessary future research approaches are critically discussed in 

Chapter 5.  
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A gene regulatory network approach to investigating connectivity in 

vertebrate adaptive stress-response pathways. 
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2.1 Abstract 

 
Many pollutants in aquatic environments activate the adaptive stress-response 

driven by evolutionary conserved transcription factors traditionally associated 

with regulating distinct sets of target genes. However, research has identified 

that transcription factors are highly interconnected both in terms of their 

downstream targets and in their ability to regulate the transcriptional activity of 

one another through direct and indirect protein interactions. Despite growing 

evidence of cross-talk between pathways, there has been no thorough analysis 

of how factors in the adaptive stress-response act within an interconnected 

network and signaling pathways are still widely seen as operating through 

independent processes. In this study, a gene regulatory network (GRN) for 

adaptive stress-response factors which are common responders of toxicological 

insult was constructed using prior knowledge from previously published 

experimental evidence on protein-DNA and protein-protein binding events in 

mammalian cell lines.  The network was modeled using boolean logic and 

analysed following systematic perturbations to transcription factors to assess 

the level of pathway connectivity and its resulting influence on outcome 

processes. These results identified that the activation of the aryl-hydrocarbon 

receptor (AhR), hypoxia inducible factor 1 (HIF-1α), metal transcription factor 1 

(MTF1), heat shock factor 1 (HSF1) and nuclear factor erythroid-derived 2-like 2 

(Nrf2) resulted in the activation of the same adverse outcome processes. Nrf2 

and the AhR were shown to be essential mediators of stress-response 

processes, the absence of which lead to inflammatory responses caused by 

NFkB. Using oestrogen receptors as a case study, the model also 

demonstrated that receptor-mediated pathways were able to initiate adaptive-

stress response processes in a regulatory network setting. The GRN generated 

in this study provides an insight into the stress response as an integrated 

system and, providing validation, presents a novel method for establishing 

molecular initiating events and regulatory cascades activated by a range of 

toxicants. The model presents an approach for establishing molecular initiating 

events (MIEs) at the basis of adverse outcome pathway frameworks (AOPs), 

widely used in predictive toxicology.   
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2.2 Introduction 

 
The freshwater environment is a major sink for pollutant exposures and there is 

a growing need to generate reliable methods to predict adverse consequences 

in affected organisms. The adaptive stress response underpins a series of 

molecular processes that are activated under a broad range of pollutant groups 

including oestrogenic chemicals such as bisphenol-a (BPA)[1], fluorosurfactants 

such as perflourinated compounds (PFCs) [2], poly-aromatic hydrocarbons 

(PAHs) [3] and metals[4].  Endpoints, such as the upregulation of antioxidant 

defence genes, are widely regarded as being controlled by key transcription 

factors such as nuclear factor erythroid-like 2 (Nrf2), hypoxia-inducible factor 1 

alpha (HIF-1α), heat shock factor 1 (HSF1), metal transcription factor 1 (MTF1), 

nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) and tumor 

protein p53 (P53) which mediate the regulation of distinct sets of downstream 

target genes (Figure 1.6). At the molecular level, the induction of specific 

pathways leads to a range of outcomes from the protective antioxidant defense 

response and xenobiotic metabolism to DNA repair, cell proliferation and 

apoptosis [5]. Targets of stress-response pathways have become biomarkers 

indicative of both adverse outcomes (AOs) and molecular initiating events 

(MIEs). In the case of the latter for example, the up-regulation of antioxidant 

defense genes is commonly associated with the activation of the transcription 

factor (TF) Nrf2[6] (Table 1.2).  

 
However, it has been widely established that the initiation of gene expression is 

mediated by the binding of multiple TFs[7] as well as processes such as 

methylation status and chromatin composition [8]. It is therefore unsurprising 

that whilst adaptive stress-response TFs are seen as acting on discrete 

biological processes, there is increasing evidence that suggests connectivity 

exists between factors in terms of sharing downstream target genes and 

through protein-protein interactions. Advances in genomic technologies such as 

chromatin-immunoprecipitation sequencing (ChIP-Seq) and assay for 

transposase-accessible chromatin using sequencing (ATAC-seq) have 

identified that stress-response factors can regulate a broader range of biological 

processes than previously identified; for example, HSF1, the primary TF 

activated under heat-stress has been associated with apoptosis [9] and Nrf2, a 
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regulator of antioxidants, with glucose metabolism [10]. In addition, increasing 

evidence exists for adaptive-stress response factors sharing downstream 

targets, for example, both Nrf2 and NFkB, traditionally associated with the 

inflammatory response, have both been shown to regulate the antioxidant gene, 

glutathione-s -transferase pi (GSTP) [11].   

 

This creates a risk that assumptions based on the interpretation of gene-

expression data and in the use of biomarkers as indicators of specific pathways 

could be inherently biased in defining molecular processes initiated under 

chemical and pollutant exposures. It is increasingly necessary for the 

interpretation of gene expression datasets to be considered as a result of 

interactions between multiple regulatory factors rather than single processes 

alone. The suggestion that adaptive stress-response pathways act within an 

integrated network has broad implications for toxicity testing; shared 

downstream gene targets imply that compensatory or canalized response 

processes occur where regardless of the inducer, there exists the potential for 

the same outcome to be reached. Evidence for this has been suggested by 

connectivity mapping approaches (Cmap), which identify connections between 

transcriptomic profiles and adverse outcomes, showing correlations between 

gene expression under different chemical exposures in the Pimephales 

promelas (fathead minnow) [12]. Given that adverse outcome pathway (AOP) 

and mode of action (MoA) frameworks are becoming widely used to identify 

toxicity processes from molecular initiating events (MIEs) to adverse outcomes 

(AOs), it is essential that the regulatory cascades that drive toxicity processes 

are better understood[13]. In this regard, binary interactions between adaptive 

stress-response pathways have been extensively reviewed 16–19 but the analysis 

of the response as an integrated network at the DNA-binding and protein-

protein level is limited.  

 

One of the key interactions that has been studied in the stress-response 

pathway is that between Nrf2 and NFkB in the context of oxidative stress, a 

mediator of adaptive stress-response processes[14]. Oxidative stress is defined 

by redox status, the ratio of oxidised and reduced glutathione (GSSG:GSH) and 

results from multiple mechanisms including the metabolism of xenobiotics[15] 

(Figure 1.3). Low levels of oxidative stress are associated with the activation of 
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Nrf2 and antioxidant defense processes that neutralise free-radicals to maintain 

homeostasis[16]. At higher levels of OS, the Nrf2 response is considered to be 

“overwhelmed” leading to NFkB and later P53 mediated gene transcription, 

resulting in inflammation and apoptosis respectively[17]. Nrf2 is considered to 

suppress NFkB activity and it is predicted that the absence of Nrf2 would lead to 

the activation of NFkB under inducers of adaptive-stress response processes. 

However, although interactions between Nrf2 and NFkB with other stress-

response pathways are known, how this influences the response process has 

not been investigated.  

 

Gene regulatory networks (GRNs) define the interactions between transcription 

factors and their downstream target genes. Comprising of key regulatory motifs, 

(circuits connecting nodes in the network such as positive and negative 

feedback loops (Figure 1.9), GRNs can inform on the relationship between 

observed patterns in gene-expression and the regulatory cascades that control 

biological processes 9. Network inference in an ecotoxicology setting has largely 

been based on reverse engineering, considered a top-down approach where 

time-series omics data informs on the regulatory dynamics from the gene to 

metabolite level[18]. The method has been used to generate two models on the 

effects of oestrogenic chemicals on the hypothalamic-pituitary-gonadal axis in 

the fathead minnow[19] and Oncorhynchus mykiss (rainbow trout) [20].  

 

Bottom-up approaches to GRN formation where prior knowledge on gene-

regulatory interactions is collated from the literature to generate networks 

provide an alternative approach. This is an appropriate method where data on 

time-course interactions is limited or where the topography of underlying 

regulatory interactions between factors is not well defined. Whilst the a priori 

formation of GRNs has been widely adopted in medical and developmental 

biology, defining disease progression[21] and developmental patterning[22] 

respectively, the method has yet to be widely adopted in ecotoxicology. The call 

for reverse engineering approaches to inform on AOPs has been 

widespread[18] but GRNs based prior knowledge formed from robust 

experimental evidence on TF interactions would provide a novel platform for 

establishing networks at the basis of AOs.  
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Such analysis based on prior knowledge would be particularly beneficial for the 

adaptive stress-responses as chemical pollutants associated with targeting 

receptor mediated pathways at molecular initiating events (MIEs) are known to 

cause the upregulation of downstream targets of adaptive stress-response 

factors. For example, vertebrate exposures to pharmaceuticals which are 

specifically designed to act on individual pathways such as the oestrogenic 

chemical ethinyl-estradiol (EE2) and the estrogen receptor (ER), are widely 

shown to cause the upregulation of adaptive stress-response genes such as 

those involved in antioxidant defence[23]. Whilst the metabolism of chemical 

pollutants can initiate oxidative stress, the role of regulatory interactions 

between adaptive stress and receptor-mediated responses and the effect the 

activation of multiple pathways has on the course of adverse responses is 

unknown.   

 

GRN analysis benefits from the ability to identify the sequential changes in gene 

activation (termed the regulatory states) in a systems-wide setting using 

mathematical principles to generate network-based model. The complexity of 

the mathematical model depends on the information available on network 

components as well as the size of the network itself. Small networks, where 

factors such as protein concentration, the rate of transcription, translation and 

messenger RNA (mRNA) degradation are known, are modeled using ordinary 

differential equations (ODEs) to provide quantitative predictions of gene 

expression under different exposure thresholds[24]. Where only knowledge of 

gene-regulatory interactions exists, boolean modeling approaches provide a 

qualitative estimate of network dynamics by representing gene regulation as 

either active or inactive[25]. These models give a predictive overview of network 

dynamics as a series of activation states which lead to a final attractor, 

comprising of state(s) which are repeated and indicate the model has become 

stabilized[26]. Attractors are largely associated with the observed 

phenotype[26]. Boolean modeling is an appropriate method for generalised 

models where little is known about biochemical dynamics. For adaptive stress-

response pathways, boolean models of interactions between Nrf2 and the 

phosphoinositide 3-kinase (Pi3K) pathway, which regulates the cell cycle, have 

successfully predicted apoptotic responses, providing support for the adoption 

of this modeling technique in the context of the stress-response[25].  
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It has been widely demonstrated that adaptive stress-response pathways are 

evolutionary conserved across vertebrate groups with transcription factors and 

their downstream targets activated by the same chemical inducers across 

species[27,28]. Given that conserved regulatory interactions are widely 

demonstrated to be at the basis of robust regulatory networks[29], it is expected 

that the same systems controlling regulatory dynamics in mammals are likely to 

be conserved across distantly related species such as fish. Networks generated 

using mammalian data should therefore be transferable across vertebrate 

species, which is beneficial from an aquatic toxicology perspective where there 

is a lack of empirical data and limitations in genomic analysis that prevent the 

identification of species-specific regulatory networks. 

 

 This study employs a GRN approach to address how regulatory network 

connectivity between stress-response factors influences the response process 

through integrating the available knowledge on TF-DNA and protein-protein 

interactions in mammalian cell lines from the literature. DNA-binding events 

were included in the model if they were supported by direct validation of TF-

binding through luciferase assays, enzyme-linked-immunosorbent assays 

(EMSA) and ChIP-Seq. The resulting GRN was modeled using boolean logic to 

identify the cascades of regulatory events and downstream response processes 

that are initiated through the activation of each transcription factor in the 

network.  

 

The connectivity between oestrogenic pathways and the stress response was 

also explored as a case study to investigate the potential for receptor mediated 

pathways to activate adaptive stress-response processes. Simulations of the 

model identified that activation of Nrf2, AhR, MTF1, HIF-1α and HSF1 led to a 

canalized response with the same processes activated in attractor states. 

Knock-out analysis of Nrf2 and AhR caused the activation of NFkB and 

inflammatory response, largely predicted from the literature. Oestrogen 

pathways were able to activate stress-response processes in regulatory 

cascades.  
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2.3 Methods 

 

 
 
 
Figure 2.1: Method for identifying connectivity between stress-response 

pathways. The GRN was constructed based on evidence for TF DNA-binding and 

protein-protein interactions between adaptive stress response TFs (Figure 1.6) in 

mammalian cell lines based on the evidence from the literature (Table S2.2). The GRN 

was modeled using boolean logic with each stress-response TF activated 

independently in order to hypothesize which outcome processes and regulatory 

cascades would be reached under different exposure scenarios. Following this, 

perturbation analysis was conducted to identify the significance of each TF in 

regulating attractors by setting their activation to “0”. Finally, additional network links 

between adaptive stress-response TFs and the oestrogen receptor where derived from 

the literature to establish if receptor-mediated pathways could initiate an adaptive 

stress-response cascade.   
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2.3.1 Mammalian Stress Response Network: 

 

To create an accurate and inclusive GRN of the stress-response, interactions 

between Nrf2, AhR, HIF-1α, HSF1, MTF1, NFkB, P53 and downstream target 

genes were identified from a literature search of established direct DNA-binding 

and protein-protein interactions across mammalian cell lines (Table S2.2). The 

experimental evidence supporting DNA-binding events in the model was 

considered robust when the expression of the target gene was shown to be 

dependent on the specific TF in question binding to regulatory regions, largely 

identified through either; 

 
1. Reporter-gene assays, where promoter regions are truncated to identify 

functional TF binding sites.  
 
2. ChIP-PCR where an antibody-tagged TF is identified as interacting with 

DNA-sequences for the gene of interest.  
 

3. Enzyme-linked immunosorbent assays (EMSA) showing the association of 
TFs with DNA sequences.  

 
 
Protein-protein interactions were identified where experimental evidence 

strongly indicated interactions through ELISA or western-blot analysis between 

key regulatory factors (Table S2.2).  The experimental evidence for interactions 

that were considered robust given the above was collated in Table S2.2 with 

abbreviations for cell lines shown in Table S2.1 respectively. This experimental 

evidence was used to construct a mammalian cell adaptive stress-response 

network using the GRN program, BioTapestry V7.1. [30],  showing a graphical 

representation of the interactions between stress-response factors. 

Experimental evidence that was derived from whole-genome sequencing 

assays such as ChIP-Seq, ATAC-seq and DNAse 1 hypersensitivity and were 

not supported by direct gene-specific binding site analysis, were treated as 

putative. This acknowledges variations in quality between sequenced data 

interpretation and the potential that the identified sites may be functionally 

redundant [31].  
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2.3.2 Modeling the mammalian cell stress-response network:  

 
The mammalian cell stress-response network was modeled using boolean logic 

by importing the BioTapestry GRN into the BoolNet package in R.studio [26] 

(Figure 2.1). A boolean model defines each node (gene) as being ON (“1”) or 

OFF (“0”) depending on the previous activity of its input nodes (regulatory 

genes and TFs) in the network and is defined by a series of logic rules 

indicative of the type of regulatory interaction as shown in Table 2.1 .   

 

Rule Symbol Type 

OR | Activator 

AND & Both factors needed 

for activation 

NOT ! Inhibitor 

XOR ⊕ 
Exclusive or 

 

 

Table 2.1 Boolean logic rules. The activity of a gene is determined by a series of 

logic rules; OR (|), AND (&), NOT (!) and XOR (Gene A & !GeneB)| (GeneB & !GeneA). 

OR logic shows that a regulator is active independent of other factors. AND logic 

identifies that both factors are necessary. NOT identifies inhibitory activity. XOR 

identifies which inputs are required at a particular time point. OR logic statements are 

used to describe regulatory processes between the same factors whereas XOR logic 

statements are used where multiple activators or inhibitors are involved in regulating 

specific genes. 

 

In the GRN for the mammalian cell adaptive stress-response, the logic rules of 

interactions in the model were extrapolated from the literature and are defined 

in Figure S2.1.  TFs known to form heterodimers prior to binding are in AND 

logic. Any change in the activity of the genes in the network indicates a change 

in regulatory state. All transitions between states eventually lead to an attractor 

that represents the final stabilized outcome of the network. The transitions 

between states at the base of the network are called the basin of attraction [26]. 
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Attractor states can be single-point, containing only a single state or cyclic, 

whereby the attractor is composed of multiple states which occur in a cyclic 

pattern[26]. Prior to modeling, redundant network nodes (interactions which 

have no impact on the network model) were removed using the “simplify.model” 

command in BoolNet; this removed most protein-protein interactions that lack 

directionality and which have no regulatory impact in the analysis. 

2.3.4 Model simulations: 

The mammalian cell adaptive stress-response network models were run 

synchronously so that each discrete change in state would be included in the 

analysis. A SAT-exhaustive search was conducted where all combinations of 

nodes (genes) in the network are activated in the start state to determine all 

attractor states that can be reached by the model regardless of the input. 

Following this, the attractor states and basins of attraction for every stress-

responsive TF in the GRN was determined independently by activating each TF 

in the start state by setting its activation to “1” with all other nodes = “0”. 

Simulations were run till an attractor was reached and the output shows the 

start state, basin of attraction and attractor state for theoretical scenarios where 

a single TF is activated by a chemical pollutant at a MIE.  

2.3.4 Network perturbation analysis of TFs: 

 
To investigate the extent of crosstalk between pathways, the number of original 

attractors that could be returned from the model following the knock out (KO) of 

each TF independently was determined. A SAT-exhaustive search was 

conducted following the KO of each TF independently and the returned 

attractors were compared to the original model.  

 

2.3.5 Exploring Nrf2 and AhR knockdowns in modelling outcomes: 

 
To determine the role of Nrf2 and AhR in militating against the inflammatory 

response mediated in terms of NFkB and P53, the model was simulated in the 

absence of Nrf2 and AhR with their expression fixed to “0”. MTF1, HSF1, NFkB, 

P53 and HIF-1α were activated in the start state and the path to attractor and 

attractor state were recoded.  
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2.3.5 Oestrogen receptor interactions with the mammalian cell adaptive-stress 

response GRN:  

 
To assess the role of interactions between receptor mediated pathways and the 

adaptive stress-response, interactions between oestrogen receptor alpha (ERα) 

and oestrogen receptor beta (ERβ), responders to endocrine disrupting 

chemicals, were added to the GRN model (Table S2.2). Interactions between 

ERα and ERβ and adaptive stress-response pathways were established from 

experimental evidence in mammalian cell lines as described in a literature 

search (Section 2.3.1) and are shown in Table S2.2. A boolean model 

containing the new interactions with ERs was generated (Figure S2.2) and 

simulations of the model were conducted by activating each ER independently 

and together in the start state of the network following the same method as 

stated in section 2.3.3.  
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2.4 Results 

 

2.4.1 Mammalian cell adaptive stress-response networks:  

 
The literature search identified interactions between 59 nodes in the 

mammalian cell adaptive stress-response network (Table S2.1). The data was 

collated into a gene regulatory network (Figure 2.2) with key positive regulatory 

interactions between shared downstream target genes shown in Table 2.2.  

 

Downstream target genes linked with specific adverse or protective response 

outcome processes are grouped accordingly (Figure 2.2).  Pathways had 

differing levels of connectivity with Nrf2-AhR and HIF-1α-NFkB-P53 both 

enhancing the expression of shared downstream targets and were either 

directly or indirectly, able to activate one-another (Figure 2.2). Nrf2 and NFkB, 

which indirectly inhibited each other’s expression, shared downstream target 

genes including those involved in antioxidant defense process (glutathione-s-

transferase pi (GSTp), NAD(P)H dehydrogenase (NQO1) and sequestosome 1 

(SQSTM1) as well as the inflammatory response mediated by interleukin 6 (IL6) 

and interleukin 8 (IL8) (Table 2.2). The shared targets within this group were 

also able to initiate a cascade of processes through protein-protein interactions 

with additional stress-response factors (Figure 2.2). Heme-oxygenase 1 

(HMOX1) positively regulates the expression of HIF-1α by stabilizing the factor 

in a protein-protein interaction and therefore allowing the activation of 

downstream processes (Table S2.3). NQO1 positively regulated HSF1 through 

a similar mechanism (Table S2.3). SQSTM1 is a scaffold protein, able to 

positively regulate NFkB through phosphorylating IKKb [32] as well as being 

involved in a positive feedback mechanism with Nrf2, through competitively 

binding to Keap1 [33](Table S2.3) .  

 

Metal toxicity was identified as being regulated by multiple transcription factors 

including Nrf2 [34], MTF1 [35], HIF-1α [36] as well as the downstream target 

IL6[37]. Metallothioniens were found in positive feedback mechanisms with 

other nodes in the network k. In this case, metallothionein 1 (MT1) and 

metallothionein 2 (MT2) have been identified as being able to positively regulate 

NFkB by releasing zinc, a process necessary for NFkB binding [38]. The links 
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identified a mechanism in which positive feedback cascades can operate via 

metallothionein expression (Figure 2.2).  

 

In the literature analysis, vascular endothelial growth factor (VEGF), a common 

biomarker for HIF-1α, was also identified as being directly regulated by P53 [39] 

and NFkB as well as existing in an indirect positive feedback loop with Nrf2 [40]. 

As well as direct and indirect regulatory interactions, the literature analysis 

identified common responders between molecular chaperone proteins ARNT, 

heat-shock protein 70 (HSP70) and heat-shock protein 90 (HSP90) (Table 

S2.2). These proteins are able to bind to TFs in the cytoplasm to initiate the 

activation of pathways. Whilst the interaction between the ARNT and HIF-

1α/HSF1 has been widely reported [41], it has been established that HSPs are 

regulated by multiple TFs including, NFkB and Nrf2 [42] as well as HSF1 [43].  

 

Whilst the majority of downstream target genes had no regulatory influence on 

the network, some had regulatory roles on stress-responsive factors and are all 

considered biomarkers of antioxidant defense processes. These genes included 

HMOX1, SQSTM1 and NQO1, which interact with other factors at the protein-

protein level (Table S2.2). In addition, the co-activators ARNT and Hsp70 had 

multiple roles in stress response processes as chaperones for TFs identifying a 

potential for competitive protein-protein interactions between regulators.  
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Figure 2.2: Mammalian cell adaptive stress-response network. Network interactions between stress response pathways (Figure 1.6) 

with transcription factors at the top of the model and downstream targets, grouped into modules relating to response processes below. Each 

module contains key biomarkers of response processes that are widely used target genes in toxicity testing. All nodes that directly bind to 

promoter regions are established based on validated DNA-binding events in mammalian cell lines as shown in Table S2.3. The BioTapestry 

model symbolises TF binding interactions as inhibitory = + or activating = ↓with protein-protein interactions = ○. Indirect interactions are 

shown with a // through the interaction line and include evidence derived from whole-genome sequencing where the specificity of binding has 

yet to be validated further through direct protein-DNA binding analysis (Gene abbreviations are shown in Table S2.2).  
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Gene Marker Activating TFs/Genes 

Transcription Factors 

HIF-1Α Hypoxia NFKB, HMOX1 

MTF1 Metal tox. NFKB 

AHR Xenobiotics NRF2 

NRF2 Oxidative 
Stress 

AHR, VEGF1, SQSTM1 

NFKB Inflammation.  TRAF2, MT2,  

Antioxidants 

FTH1 NRF2 NRF2, NFKB 

HMOX1 NRF2 NRF2,NFKB, p53, 

GSTP NRF2 NRF2, AHR, NFKB,  

SOD1 NRF2 NRF2, NFKB 

NQO1 NRF2 NRF2, NFKB 

TXNRD2 NRF2 NRF2, MTF1 

Cell survival 

COX2 HIF1 HIF-1Α, NFKB, AHR-HIF-1Α 

BCL2 P53 P53, NFKB 

Cell-cycle arrest 

CDKN1A NFKB NFKB, P53 

Angiogenesis 

VEGF1 HIF1 NFKB, P53, AHR-HIF1 

IL8 NFKB NFKB, NRF2 

Metallothioneins 

MT1 MTF1 MTF1, NRF2, IL6 (NFKB) 

MT2 MTF1 MTF1, NRF2, IL6 (NFKB) 

Glycolytic Processes 

PIGF NRF2 NRF2, HIF-1Α 

Apoptosis 

MYC P53 P53, NFKB 

Heat-shock Chaperones 

HSP70 HSF1 HSF1, NRF2, AHR-HIF1 

HSP90 HSF1 HSF1, NRF2, NFKB 

HSP72 HSF1 HSF1, NFKB 

Xenobiotic metabolism  

CYP1A1 AhR NFKB 

 
 

Table 2.2: Cross-talk between transcription factors and downstream targets in 

the mammalian cell adaptive stress-response network. Positive regulatory 

interactions between transcription factors and downstream targets as shown from evidence 

collated from the literature search on mammalian cell lines (Table S2.2) and represented in 
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Figure 2.2. For regulatory interactions with AhR-HIF-1α, evidence suggests a heterodimer is 

formed so both factors need to be active to initiate gene transcription.  

 

2.4.2 The mammalian cell stress-response network produces four attractor states: 

 
Modeling of the mammalian cell stress-response network identified that four potential 

attractor states could be reached by activating any combination of genes (a SAT-

exhaustive search) in the start state of the model simulation. The four attractors 

comprised of two single point and two cyclic attractors as shown in Figure 2.3.  

 

Genes involved in all outcome processes were activated in attractor 1. All genes 

involved in apoptosis are activated but only one gene in the immune response, IL8, 

and in angiogenesis, VEGF, were active. Active TFs were Nrf2, AhR and P53. In 

attractor 2, TFs active include Nrf2, AhR and HIF1α. Downstream targets included 

those involved in antioxidant defense, xenobiotic response, heat-shock chaperones, 

angiogenesis, metal toxicity and glycolytic processes. Only interleukin 8 (IL8) was 

active under immune response processes and B-cell lymphoma 2 (BCL2) in 

apoptosis (Figure 2.3).  

 

Attractor 3 is a cyclic attractor comprising of two states (Figure 2.3). In state 1, Nrf2 

and HIF-1α were both activated whereas in state 2, AhR is the only active TF. 

Downstream targets active in state 1 of the attractor include those involved in 

xenobiotic metabolism and the BCL2 gene. In state 2, antioxidant defence 

processes, xenobiotic metabolism, heat shock chaperones, metallothioneins and 

genes involved in glycolytic processes were all active. IL8 was the only gene 

involved in inflammatory responses to be activated (Figure 2.3).  

 

Attractor 4 is a cyclic attractor comprising of three states. In state 1, NFKB, Nrf2 and 

the AhR were activated with metallothioneins, VEGF and the glycolytic gene, PIGF. 

In state 2, HIF1α and the AhR were active with downstream targets including 

antioxidant defence genes, xenobiotics, heat shock chaperones, immune response 

factors, cell-cycle arrest, metal toxicity and glycolytic processes. NIX involved in 

apoptosis was active as was Signal transducer and activator of transcription 6 
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 (STAT6). In the final state of attractor 4, HIF1α and MTF1 were activated. 

Downstream targets included xenobiotics, STAT6, BCL2, MT2 and PIGF.  

 

All genes in the antioxidant defense system, xenobiotic response processes and 

glycolytic gene pathways were activated in all attractor states. For antioxidant 

defense genes and xenobiotic responses, the activation of genes was state-

dependent in attractors 3 and 4, highlighting that these processes are not 

continuously active. This was also the case for glycolytic processes in attractor 3, but 

not attractor 4, where PIGF was activated in all states but not Glucose-6-Phosphate 

Dehydrogenase (G6PD) or Phosphoglyconate Dehydrogenase (PGD). Genes 

involved in angiogenesis were also activated in all attractors; VEGF was activated in 

all attractor states with the exception of attractor 3.   
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Figure 2.3: Attractors in the mammalian adaptive stress-response network. An exhaustive search of the mammalian stress-

response network identified four potential attractor states could be reached by activating any combination of genes in the start state. Attractors 
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1 and 2 are single-point and 3 and 4 are cyclic. Active genes are shown in red and inactive 

white. Gene names and processes are shown in the left-hand column.  

2.4.3 Simulations of transcription factor activation: 

 
The single point attractor 1 (as shown in Figure 2.3) was the most common outcome 

of the TF-specific network simulations, comprising of biomarkers activated in the 

xenobiotic response, antioxidant defense, metallothioniens, heat-shock chaperones, 

glucose metabolism and angiogenesis.  Simulations of the model with the AhR, HIF-

1α and MTF1 activated independently in the start state each reached attractor 1 

(Figure 2.5). Regulatory cascades initiated in the case of HIF-1α and MTF1 caused 

the initiation of the AhR receptor in state 2 from which the basin of attraction 

matched that of the AhR model until the attractor was reached (Figure 2.5).  

 

Nrf2, P53 and the AhR were stabilised to attractors after 3 state transitions in the 

basin of attraction and went on to each reach a different attractor state (Figure 2.4). 

For Nrf2, activation lead to the induction of the AhR in state 2, the first state of the 

cyclic attractor and HIF-1α in state 3 (Figure 2.5) where the simulation reached 

attractor 3 (Figure 2.4). The model simulation with HSF1 activated in the start state 

resulted in the same attractor as Nrf2 but with an additional state in the basin of 

attraction (Figure 2.5). Like with MTF1 and HIF-1α simulations, in the HSF1 

simulation, the AhR was activated in state 2. The activation of chaperone proteins 

(HSP72, HSP70, HSP90), in state 2 of the HSF1 simulation caused the network to 

reach the same attractor as Nrf2 and not the AhR despite all other active genes 

being the same as MTF1 and HIF-1α models.    

 

The NFkB simulation induced a different attractor state, the three-point cyclic 

attractor 4 (Figure 2.3).  Activation of NFkB in the start-state led to induction of HIF-

1α in states 2 and 3 as well as MTF1 in state 3. The attractor state differed from the 

basin of attraction and the TFs NFkB, Nrf2 and the AhR were all active in the first 

state of the cyclic attractor. This was followed by the activation of HIF-1α in the 

second and third state (Figure 2.4). Target genes active in the final attractor state 

consisted of those involved in angiogenesis, immune response and DNA-repair with 

the activation of the BCL2 gene. 
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The p53 model simulation was the only attractor where genes involved in cell cycle 

arrest were activated. The p53 simulation led to the downstream activation of Nrf2 

and the AhR, which were also active in the final state of the attractor where the 

simulation reached attractor 1.  

 

Simulations of the model where HSF1, HIF-1α and MTF1 were activated in the start 

state were not active TFs in final attractors. However, for each TF, their predicted 

downstream target genes (heat shock chaperones for HSF1, angiogenesis genes for 

HIF-1α and metallothioneins for MTF1) were all active in the attractor state(s). In all 

cases, TFs active in the basin of attraction were also active in attractor state(s).  
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Figure 2.4: Basin of attraction in the mammalian adaptive stress-response 

network where each TF is activated independently in the start state. A). The 

basin of attraction for model simulations where each TF is independently activated in the 

start state. State transitions are indicated (t = ), and colored boxes indicate genes are active. 

White boxes indicate inactive genes. Red arrows indicate the attractor state(s) with the 

columns after t = 0 showing the basin of attraction. Gene names and processes are shown 

in the left-hand column. B). Summary of the results shown in A with the attractors (Attr.) for 

each TF simulation based on the results presented in Figure 2.4. The TFs column in the 

table indicates the TFs that are active within the attractor state. In all cases, TFs active in the 

attractor state are also active in the basin of attraction and therefore essential components of 

the regulatory cascade initiated following the activation of the TF concerned.  
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2.4.6 Network perturbations on attractor state: 

 
Knockout analysis of each key transcription factor was conducted to determine their 

influence on the ability of the model to reach the four potential attractor states (as 

shown in Figure 2.3). In each simulation, a TF was knocked out (KO) of the model 

and the ability to reach the original attractors was determined (Figure 2.5). This 

showed that all attractor states were reliant on Nrf2 and the AhR to reach the end 

state. Attractor 1 required the addition of HIF-1α and p53. Only attractor 4 required 

NFkB and MTF1. HSF1 was not necessary for the model to reach any of the original 

attractor states.    

 

 

 

 

Figure 2.5: Effect of TF perturbations on attractor states in the mammalian 

adaptive stress response network.  Table representing the ability to reach the 4 

attractor states in the original network following knockouts (KO) of each of the factors in the 

network and a sat.exhaustive search of the model. Shaded boxes indicate attractor was not 

returned and white boxes show the attractor was returned following perturbations and 

comparisons of attractors to the original model results.  
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2.4.6 Network perturbations to Nrf2 and AHR activation: 

 
 
Considering that Nrf2 and the AHR were essential mediators of network models, the 

knockout of Nrf2 and AHR was conducted to determine how this changed the course 

of attractor. It is hypothesized that the removal of AhR and Nrf2, which are involved 

in phase 1 and phase 2 detoxification processes would lead to an increase in cell-

death and inflammatory responses. Knock outs of AhR and Nrf2 where HIF-1α, 

NFkB and MTF1 were activated in the start state independently lead to the same 

attractor state (Figure 2.6). This cyclic attractor is comprised of 4 states where genes 

involved in cell-cycle arrest, immune responses, angiogenesis and antioxidant 

defense processes were activated. For HSF1, no gene processes were activated in 

the attractor state.  
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Figure 2.6: Conserved attractor of KO of NRF2 and AHR following the 

activation of MTF1, HIF-1α and NFkB in model simulations. Cyclic attractor 

reached through the KO of AhR and Nrf2 from the mammalian cell stress-response network 

following simulations of MTF1, HIF-1α and NFkB in the start state. State transitions are 

indicated (t =), and colored boxes indicate genes are active. White boxes indicate inactive 

genes. Gene names and processes are shown in the left-hand column. The attractor 

comprises of the activation of NFkB, HIF-1α and MTF1. Downstream target genes are 

associated with processes include cell-cycle arrest, immune responses, angiogenesis and 

antioxidant defence.  
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2.4.6 Interactions between oestrogen receptors and stress-response network 

dynamics:  

 
The addition of oestrogenic regulatory interactions with adaptive stress-response 

pathways produced a network with 14 potential attractor states. Boolean modeling 

identified a divergence in ERα and ERβ in their ability to regulate distinct outcomes 

(Figure 2.7).  

 

Regulatory cascades initiated after the induction of ERα caused the activation of 

NFkB, AhR, HIF1α and MTF1 (Figure 2.6) and returned a novel attractor in 

comparison to Figure 2.3. No downstream target genes were activated until the 

attractor state. In state 1 of the attractor, antioxidant genes involved in xenobiotic 

metabolism, heat-shock chaperones, inflammatory genes, cell-cycle arrest and metal 

response processes were active. The glycolytic gene PIGF was active in all states. 

Targets active in state 2 comprised of only STAT6, Growth Arrest and DNA Damage 

Inducible Alpha (GADD45A), metal toxicity and angiogenesis.  State 3 of the 

attractor was composed of metal toxicity, angiogenesis, PIGF and the antioxidant 

Therodioxin Reductase 2 (TXNRD2). In contrast, ERβ activated a different regulatory 

cascade with Nrf2, AhR and HIF1α all being activated in the basin of attraction and 

the attractor state (Figure 2.7). The simulation reached the single-point attractor 2 of 

the original model shown in Figure 2.3, which was shared by the AhR, HIF-1α and 

MTF1. The simulation with both ERα and ERβ activated in the start state resulted in 

the same attractor as reached by the activation of ERα independently (Figure 2.7).  
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Figure 2.7: Path to attractor for the mammalian network following the addition of estrogen-receptor interactions. The basin 

of attraction for model simulations where ERα and ERβ are activated together and independently in the start state. State transitions are 

indicated (t = ), and colored boxes indicate genes are active. White boxes indicate inactive genes. Red arrows indicate the attractor state(s) 

with columns after t = 0 showing the basin of attraction. Gene names and processes are shown in the left-hand column.  
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2.5 Discussion 

 

The adaptive stress response comprises of an evolutionary conserved and 

highly interconnected series of molecular mechanisms that are rarely 

considered in a holistic system. This research sought to identify how 

connectivity in the regulatory landscape can inform predictions on potential 

adverse outcome processes for TFs that are widespread targets of 

environmental pollutants. Using a GRN approach, the boolean model 

presented in this study provides a theoretical framework for identifying 

outcomes following the activation of selected stress-response TFs based on 

characterised interactions at the DNA and protein level from mammalian 

studies.  

 

2.5.2 Identification of canalized response outcomes in adaptive stress 

response processes. 

 

Genetic canalization refers to a developmental biology concept proposed by 

Waddington that organisms develop the same phenotype despite 

environmental perturbations and therefore, regardless of the input, the same 

outcome can be reached58. The GRN of the mammalian cell-stress response 

network identified multiple levels of cross-talk between TFs and downstream 

target genes which indicated a level of canalization can occur in stress-

response processes.  

 

Model simulations of the mammalian cell stress-response network identified 

that the activation of the AhR, MTF1, HIF-1α, Nrf2, HSF1 and ERb caused the 

same processes to be activated despite TF pathways being traditionally 

associated with specific outcome events. Phase I and II detoxification, metal 

toxicity and glycolytic processes were all involved in the final attractors 

reached through model simulations with each factor activated in the start 

state. These processes related to sharing roles in detoxification and cellular 

homeostasis. The canalization of response processes was largely through the 

activation of the AhR in the basin of attraction initiating a positive feedback 
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loop with Nrf2, which has been shown to be conserved across vertebrate 

species [45,46–48]. KO analysis identified that the AhR and Nrf2 were 

essential for all final attractors in the model despite multiple factors having 

roles in regulating the antioxidant targets of Nrf2. This research suggests that 

AhR and Nrf2 are both keystone factors in stress-response processes and 

establishing their roles across chemical treatments could provide a vital 

indicator of pathway activation. 

 

As attractor states show the steady-state response in the network[25], the 

results from model simulations suggest that inducers of stress-response 

processes cause the same outcome events. Whilst it is currently difficult to 

extrapolate the response trajectories from the literature alone, correlations 

exist between the up-regulation of metallothioneins, xenobiotic responses, 

and antioxidant defense processes and exposures to metals[48], heat-stress 

[49] and hypoxia[41]. In addition, correlations between gene-expression 

outcomes have been identified for inducers of HIF-1α and MTF1 [36] but 

further research is necessary to identify if outcomes are conserved across 

other traditional inducers of stress-response pathways.  

2.5.2 Biomarkers of response pathways were activated in the absence of 

predicted TF regulators.  

 

Model simulations demonstrated that downstream targets associated with 

specific TF could be activated in the absence of their traditional regulator. This 

was the case for MTF1 and HIF-1α where downstream targets were activated 

in attractor states despite these TFs being inactive. Similarly, where Nrf2 was 

KO from model simulations, antioxidant genes were still activated, largely 

through the regulatory role of NFkB. This creates a risk of false positive 

associations being made between downstream target genes and MIEs. Such 

a result can be challenging to validate from experimental datasets where only 

HTS data exists in the absence of regulatory evidence (e.g. RNA-seq data 

alone) and this suggests that molecular activators may be falsely assumed in 

reverse engineering approaches.  
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However, the fact that responses to Nrf2, MTF1, AhR, HIF-1α and HSF1 were 

canalized to the same outcome processes creates the argument that it may 

not be necessary to know the specific MIE at the start of the regulatory 

cascade where an identical outcome is reached. However, the model 

presented in this research is simplistic, with no indication of dose response, 

which is likely to have an impact on adverse outcomes reached. Additional 

parameters in the mammalian cell stress-response network, such as sub-

setting the network by tissue-specific components, is likely to aid in the 

identification of response processes.  

 

2.5.3 KO analysis of Nrf2 and the AhR provide support for the mammalian 

cell-stress response GRN.   

 
NFkB and p53 are widely associated with higher levels of toxicity, initiating 

processes involved in the immune response, apoptosis and cell survival 

[50,51]. Model simulations with NFkB and p53 were the only simulations 

where cell-cycle arrest and cell-survival genes were activated. Oxidative 

stress, an inducer of adaptive stress-response pathways, is associated with 

activating Nrf2 at low and NFkB under high levels as indicated by internal 

GSH:GSSG, with regulatory responses changing as a factor of redox 

status[52]. Model simulations with HIF-1α  and MTF1 in the absence of Nrf2 

and AhR caused an attractor state comprising of NFkB activation and the 

expression of genes involved in angiogenesis, cell cycle arrest and the 

immune response. This provides support for the model and suggests that KOs 

of AhR and Nrf2 indicate an artificial insight into a dose-response. The 

literature provides some support of this outcome with the NFkB induction of 

pro-inflammatory responses induced by high-levels of zinc exposures 

identified in the rainbow trout [53]. However, in contrast, high levels of hypoxia 

have been shown to cause an increase in hsp70 in flounder (Platichthys 

flesus), a gene that was not regulated in the KO simulation[54].  
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2.5.5 Activation of oestrogen receptors initiated an adaptive stress-response 

cascade at a gene regulatory level.  

 

Exposures to oestrogenic chemicals are related to stress response process 

and the up-regulation of biomarkers correlating to antioxidant and xenobiotic 

response processes has been previously documented [55]. The literature 

analysis identified multiple connections between oestrogen receptors and 

stress response factors including P53 [56,57] and Nrf2[58]. Model simulations 

varied between ERa and ERb with ERa induction leading to inflammatory 

response processes in contrast with ERb which caused antioxidant defences.  

It has been widely demonstrated that the metabolism of oestrogenic 

chemicals causes the production of quinone containing compounds, potent 

activators of Nrf2 [59]. The activation of multiple pathways in the start state 

was not explored in this research as it is unknown whether the timing of such 

response processes, particularly when mediated by metabolites, would occur. 

Nevertheless, as the activation of antioxidant defense processes was not 

continuous in attractors under ERα/β expression alone, this suggests a 

mechanism whereby antioxidant defenses are activated under prolonged 

exposure periods. Therefore, whilst the adaptive stress response process is 

considered a general response to chemical exposure, the incorporation of 

additional network nodes is essential for predictions of AOPs.  

 

2.5.7 Model development and considerations for GRN use in an ecotoxicology 

setting 

 

The model presented provides an initial step in understanding the holistic 

response to stress-induced pathways from a bottom-up systems biology 

standpoint.  However, there are multiple considerations that need to be made 

when interpreting data of this type in a systems-wide setting. Firstly, the 

difficulty in distinguishing between primary and secondary response 

processes, representing the start state and secondary responses that 

correlated to changes in regulatory state, mean that correctly simulating 

models to mimic environmentally relevant exposure scenarios is challenging. 
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As is the case, where outcomes are known, activating multiple components of 

a model in the start state will be necessary to infer MIE based on observed 

outcomes. Where there is a lack of time-series data on gene-expression, it 

may only be possible to infer regulatory state transitions rather than attractors. 

Such analysis should be conducted alongside current reverse engineering 

processes to determine how the activation of combinations of pathways 

causes specific response profiles.  

 

As with all boolean models, the scientific plausibility of representing 

responses as binary factors needs to be considered. Where threshold 

responses have little influence on the network dynamics, it could be argued 

that modeling the response as a boolean system is sufficient to gain enough 

evidence to predict outcome processes. For stress-response pathways 

however, threshold responses where chemical dose impacts the level of gene 

expression, have been widely cited as having a significant influence on the 

response outcome. In this case, the internal levels of the redox regulator 

glutathione have been widely associated with the stress-response outcome 

and the ability of the cell to return to homeostatic conditions. The 

incorporation of glutathione-redox dynamics into a model of this type would 

greatly benefit the inference of AOP, particularly where the association of the 

levels of stress are linked to regulating key gene processes such as high 

levels of oxidative stress activating NFkB pathways whereas low, acute levels 

initiating Nrf2. The model presented here goes some way in interpreting this 

system by activating factors independently but requires clear knowledge of 

the MIE in relation to the level and duration of the inducer. Where the 

activation of pathways is less clear such as the dynamics of p53 outcomes, 

which can be apoptotic or protective, this would certainly add clarity to the 

modeling outcomes.  

 

Sub-setting networks by cell or tissue type have widely improved the 

outcomes of system-level models[60]. Downstream gene targets of the stress-

response have been shown to have tissue-restricted expression patterns, for 

example antioxidant genes in zebrafish [6], and the presence of key genes 

and factors within a cell will therefore influence the outcome. In addition, DNA-
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binding and protein-protein interactions only partially account for the 

mechanisms in which genes are regulated. The influence of methylation 

status, chromatin composition, the presence of co-factors in TF-binding and 

post-translational processes all have roles in gene-expression[61]. Efforts to 

understand the influences of these systems is increasing but are not as well 

documented as DNA-binding events.  Where shown to have a significant 

effect, data derived from these experimental systems should be incorporated 

into models of this type to help inform on outcome events.  

 

Finally, systems biology approaches undertaken for ecotoxicology purposes 

would clearly benefit from a collated database of transcription-factor binding 

events supported by robust experimental evidence derived from multiple 

sources and across distantly related species. Such gene-regulatory 

information could then be easily incorporated into boolean and other modeling 

systems, particularly where novel functions of TFs on biological processes 

have been defined. This would add an additional source of information to AOP 

knowledge base (AOP-KB)[62] to create in silico-based predictions. In 

addition, the further characterisation of species-specific gene ontogeny 

profiles, such as those currently available for zebrafish on the ZFIN site, could 

also be incorporated in tissue-specific models, informing on future in silico 

research efforts. 

 

2.5.1 Network interactions were established across multiple cell lines 

 

The network presented in this study was inferred from multiple human, mouse 

and rat cell lines that largely characterised protein-DNA binding events 

through LUC-reporter gene assays. Data was therefore integrated from 

biologically distinct environments, creating potential challenges in network 

inference due to the high probability that lines will exhibit differences in 

response to inducers. Aspects such as the cellular-specific presence of co-

factors, which impacts the ability of TFs to bind to their respective TFBS, can 

mediate these changes in cell-line specific responses [60]. The information on 

the cell lines selected is available in the supplementary information, providing 



 137 

the potential for networks to be compartmentalized by line-type as has been 

done previously [60].  

  

2.6 Conclusion 

 

The model presented in this chapter provides evidence for the possibility that 

the activation of different TFs in the adaptive stress-response can initiate the 

same outcome, identifying the potential for canalization of responses in a 

toxicology setting.  The model presented provides a simple, yet informative, 

qualitative assessment of connectivity between selected factors within the 

vertebrate adaptive stress-response network. It provides a platform for further 

rigorous and species-specific testing of the regulatory network motifs 

identified in this research and highlights a growing understanding of the 

integration of biological processes and outcome pathways. Whilst limited by a 

lack of empirical data on tissue-specificity, threshold concentrations and 

species specificity, it presents an analysis of potential interactions within 

biological systems based on the DNA-sequence and TF conservation. Further 

research into the conservation of regulatory regions across vertebrate species 

for adaptive stress-response factors is necessary to determine the extent of 

transferability of this model across species. In addition, validation of this 

model using data for exposures derived across vertebrates in accordance with 

the Bradford hill considerations[63] is necessary to determine the plausibility 

of using this model as a novel method for inferring regulatory cascades in 

AOPs.  

 

 

 

 

 

 

 

 

 

 

 

 



 138 

Chapter 2: A Boolean model of connectivity in vertebrate  
stress response pathways. 

 

2.7 Supplementary Information 

 

This supplementary information contains:  

 

Table S2.1: Cell-line abbreviations.  

Table S2.2: Gene abbreviations.  

Table S2.3: Chemical abbreviations. 

Table S2.4: Validated of mammalian interactions between TFs and DNA 

sequences. 

Figure S2.1: Network Logic Rules for BoolNet models. 

Figure S2.2: Network Logic Rules for BoolNet models with oestrogen receptor 

links.  
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Table S2.1: Cell line abbreviations. 

 

ABREV. CELL LINE NAMES 

 7-m12  Human prostate cell line.  

 a549  Human Lung 

 hek293  Human embryonic kidney cells 

 hmler  Human breast cancer cell line 

 jeg-3  Human choriocarcinoma cells (placental) 

 k562  Human Erythroleukemia cell line 

M3  Human recombinant Muscarinic Acetylcholine receptor 

 MDA-MB-435S  Human melanocytes 

 plb985  Human blood cells 

 PLF2  Proliferin-2 

 raw264.7  Mouse macrophage 

Hepa-1c1c7  Mouse hepatoma 

32d  Myeoblast-like cell line (mouse bone marrow) 

A431  Epidermoid carcinoma 

AGS  Human stomach gastric andenocarcinoma 

ASM-SC  Human melanoma cells 

beas-2b  Human bronchial epithelial cells 

HMEC  Human mammary epithelial cells 

cos-1  African green monkey kidney fibroblast 

cos-7  African green monkey kidney fibroblast 

dhl-4  Human diffuse large cell lymphoma  

fls  Fibroblast-like synoviocytes 

FS-4  Human fibroblast line 

h1299  Human P53 deficient lung-cancer cell line.  

NCI-H358  Human metastatic lung cells  

hacat  Human immortalised keratinocytes 

hct-116  human colon cells 

hela  Human cervix cells 

hela s3.  Human cervical carcinoma 

hep3b  Human liver 

hepa1  Hepatocytes 

hepg2  Human liver 

Hnmec-1  Human microvascular endothelial cells 

Hs-578t  Human breast cell carcinoma epithelial cells 

ht1080  Human fibrosarcoma cells 

Ht-29  Human adenocarcinoma colon epithelial cells 

huvec  Human umbilical vein endothelial cells 

jr1  Human rhabdomyosarcoma cell line 

jurkat  Human lymphocyte cells 

LCLs Human lymphoblastoid cell lines 

LS-180  Human Caucasian colon adenocarcinoma 
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Hep-2 m4  Human epithelial type-2 cells 

mc3t3-e1  Mouse osteoblastic cell line 

mcf-10  Human non tumourigenic epithelial cell line  

mcf-7  Human mammary cells 

MDA-MB-231  Human adenocarcinoma breast cells.  

Nih 3t3  Embryonic mouse fibroblast 

Pc-12  Rat Adrenal phoechromocytom 

Pc-3  Human prostatic adenocarcinoma.  

pnt1a  Normal prostate epithelium immortalized with SV40 

RASMCs  Rat aortic smooth muscle cells 

rko  Colon carcinoma cell line 

saos-2  Human bone cells (osteosarcoma) 

tk6  Human spleen hereditary spheroc 

u2os  Human bone cells 

u-937  Human monocytic (pre-macrophage line).  

Vm-10  Murine P53 temperature sensitive cells.  

WEHI-213  Mouse B-cell lymphoma 

wtk  Human P53-deficeint lymphoblastoma cell  

RAW 264.7 Mouse macrophage. 

HUVECS Human umbilical vein endothelial cells 

NIH/3T3 Mouse embryo fibroblast 

C127 Mouse mammary tumour cell line.  

BPLER Human tumorigenic breast cell lines 

JR8 Human cutaneous melanoma 

JR1 Human rhabdomyosarcoma cell line. 

RASMCs Rat aortic smooth muscle cells.  
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Table S2.2: Gene name abbreviations. 
 

ABREV. GENE NAME 

AHR ARYL HYDROCARBON RECEPTOR 

APAF1 APOPTOTIC PROTEASE ACTIVATING FACTOR 1 

ARNT 
ARYL HYDROCARBON RECEPTOR NUCLEAR 

TRANSLOCATOR 

BACH1 BTB DOMAIN AND CNC HOMOLOG 1 

BAX BCL-2-ASSOCIATED X PROTEIN  

BCL2 B-CELL LYMPHOMA 2 

BID BH3 INTERACTING-DOMAIN DEATH AGONIST 

BNIP3 BCL2 INTERACTING PROTEIN 3 

BRCA1  BREAST CANCER 1 

BRCA2  BREAST CANCER 2 

CCND1 CYCLIN D1 

CDKN1A CYCLIN DEPENDENT KINASE INHIBITOR 1A 

COX2 CYCLOOXYGENASE 

CTNNB1 CATENIN BETA 1 

CXCL12 C-X-C MOTIF CHEMOKINE LIGAND 12 

CXCL8 C-X-C MOTIF CHEMOKINE LIGAND 8 

CYP1A1 CYTOCHROME P450 FAMILY 1 SUBFAMILY A MEMBER 1 

CYP1A2 CYTOCHROME P450 FAMILY 1 SUBFAMILY A MEMBER 2 

CYP1B1 CYTOCHROME P450 FAMILY 1 SUBFAMILY B MEMBER 1 

CYP2E1 CYTOCHROME P450 FAMILY 2 SUBFAMILY E MEMBER 1 

CYP7B 25-HYDROXYCHOLESTEROL 7-ALPHA-HYDROXYLASE  

ELAVL1 ELAV LIKE RNA BINDING PROTEIN 1 

EPO ERYTHROPOIETIN 

ERA OESTROGEN RECEPTOR ALPHA 

ERB OESTROGEN RECEPTOR BETA 

FTH1 FERRITIN 1 

G6PD GLUTATHIONE PEROXIDASE 6  

GADD45A 
GROWTH ARREST AND DNA DAMAGE-INDUCIBLE PROTEIN 

GADD45 ALPHA 

GCLC GLUTAMATE-CYSTEINE LIGASE CATALYTIC SUBUNIT 

GSTP GLUTATHIONE-S-TRANSFERASE PI 

HIF1 HYPOXIA-INDUCIBLE FACTOR 1 

HMOX1 HEME-OXYGENASE 1 

HSF1 HEAT-SHOCK FACTOR 1 

HSP70 HEAT-SHOCK PROTIEN 70 

HSP72 HEAT SHOCK 70 KDA PROTEIN 1 
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HSP90 HEATSHOCK PROTEIN 90 

IKBA 
NUCLEAR FACTOR OF KAPPA LIGHT POLYPEPTIDE GENE 

ENHANCER IN B-CELLS INHIBITOR, ALPHA 

IKKB 
INHIBITOR OF NUCLEAR FACTOR KAPPA-B KINASE 

SUBUNIT BETA 

IL-12 INTRALUEKIN 12 

IL-4 INTRALUEKIN 4 

IL1B INTRALEUKIN 1B 

IL6 INTRALEUKIN 6 

IL8 INTRALEUKIN 8 

KEAP1 KELCH-LIKE ECH DOMAIN CONTAINING PROTEIN 1 

MT1 METALLOTHIONEIN 1 

MT2 METALLOTHIONEIN 2 

MTF1 METAL TRANSCRIPTION FACTOR 1 

MYC MYC PROTO-ONCOGENE PROTEIN 

NFKB NUCLEAR FACTOR KAPPA B SUBUNIT 1 

NIX BCL2 INTERACTING PROTEIN 3 LIKE 

NOS2 NITRIC OXIDE SYNTHASE 2A 

NQO1 NAD(P)H QUINONE DEHYDROGENASE 1  

NRF2 NUCLEAR FACTOR (ERYTHRIOD LIKE) 2 

P53 TUMOUR PROTEIN P53 

PGD 6-PHOSPHOGLUCONATE DEHYDROGENASE 

PIGF PLACENTAL GROWTH FACTOR 1 

PRDX1 PEROXIREDOXIN 1 

PUMA  P53 UPREGULATED MODULATOR OF APOPTOSIS  

RELA RELA PROTO-ONCOGENE, NF-KB SUBUNIT 

RELB RELB PROTO-ONCOGENE, NF-KB SUBUNIT 

SOD1 SUPEROXIDE DISMUTASE 

SQSTM1 SEQUESTOSOME 1 

STAT6 
SIGNAL TRANSDUCER AND ACTIVATOR OF 

TRANSCRIPTION 6 

TRAF3 TNF RECEPTOR ASSOCIATED FACTOR 3 

TXNRD1 THIOREDOXIN REDUCTASE 1 

TXNRD2 THIOREDOXIN REDUCTASE 2 

VEGF1 VASCULAR ENDOTHELIAL GROWTH FACTOR 

XPC 
XERODERMA PIGMENTOSUM, COMPLEMENTATION 

GROUP C 

ZIP8 ZINC TRANSPORTER ZIP8 
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Table S2.3: Chemical name abbreviations. 

 

ABREV. CHEMICAL NAME 

SFN Sulphurophane. 

TCDD 2,3,7,8 – Tetrachlorodibenzodioxin 

CEL Celestrol 

DEM Diethylmaleate 

E2 Ethinylestradiol 

min Minadione 

1-NP 1-Nonylphenol 

TAM Tamoxifen 

15D-PGJ2 15-Deoxy-Delta-12,13-prostagladin J2. 

TOC. Tocopherol 
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Table S2.4: Validated mammalian interactions between TFs and DNA 

sequences. DNA-binding interactions shown as direct. Protein-Protein 

interactions as stated. Indirect interactions are shown where the type of 

interaction is not known. Positive interactions (+), inhibitory interactions (-) and 

protein-protein interactions that have no directionality (~) are shown. Cell lines 

and experimental method is as indicated.  

 
 

REGULATOR Type  TARGET INDUCER 
SPECIE

S 
ASSAY 

TISSUE/ 
CELL LINE 

REF. 

NRF2 DIRECT + GSTP SFN human ChIP-Seq 
LCLS, 

beas-2b, 
A549 

[10] 

NRF2 DIRECT + GCLC SFN human ChIP-Seq 
LCLS, 

beas-2b, 
A549 

[10] 

NRF2 DIRECT + HMOX1 SFN human ChIP-Seq 
LCLS, 

beas-2b, 
A549 

[10] 

NRF2 DIRECT + FTH1 SFN human ChIP-Seq 
LCLS, 

beas-2b, 
A549 

[10] 

NRF2 DIRECT + PRDX1 SFN human ChIP-Seq 
LCLS, 

beas-2b, 
A549 

[10] 

NRF2 DIRECT + SQSTM1 SFN human 
ChIP-Seq, 

EMSA 

HELA, 
HEK293, 
P62 -/- 
MEFS 

[33] 

NRF2 DIRECT + NQO1 SFN human ChIP-Seq 
LCLS, 

beas-2b, 
A549 

[10] 

NRF2 DIRECT + SOD1 TCDD human Luc-assay HEPG2 [64] 

NRF2 DIRECT + HSP70 CEL. mouse 
Western-

Blot 
MEFS/H
EK293 

[65] 

NRF2 DIRECT + TXNRD1 
NRF2 
KO. 

mouse ChIP-Seq MEFS [10] 

NRF2 DIRECT + IL8 MG-132 human Luc-plasmid 

MESANG
IAL 

CELLS, 
HELA, 

HEK293 

[66] 

NRF2 DIRECT + BACH1 
SIRNA 
(NRF2), 
TBHQ, 

human 

Luc-assay, 
EMSA, 

ChIP-PCR 
HUVECs [67] 
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SFN, 
OA-NO2 

NRF2 DIRECT - IL6 
KEAP1 

KD, 
DEM 

mouse 

LUC-
ASSAY, 

ChIP-qPCR 

INVIVO, 
RAW264.

7 
[68] 

NRF2 DIRECT - IL1B DEM mouse 

LUC-
ASSAY, 

ChIP-qPCR 

RAW264.
7 

[67] 

NRF2 DIRECT + MT1 SFN human ChIP-Seq 
LCLS, 

beas-2b, 
A549 

[10] 

NRF2 DIRECT + MT2 
NRF2 

KO 
human ChIP-Seq 

LCLS, 
beas-2b, 

A549 
[10] 

NRF2 DIRECT + AHR 

AHR 
siRNA, 
CDDO-

IM 

mouse 

LUC-assay, 
ChIP-PCR, 

 
MEFS [47] 

NRF2 DIRECT + HIF1 
Min., 

sulphur
ophane 

human 
ChIP-seq, 
Nrf2 KO. 

HepG2, 
MCF7, 

Lymphobl
astiod 
cells 

[69] 

AHR DIRECT + NRF2 TCDD mouse 

Western 
blot, 

RT-qPCR, 
Luc-reporter 

Hepa-
1C1C7 

[45] 

AHR DIRECT + CYP1B1 TCDD human 

ChIP-Seq, 
ChIP-qPCR, 
LUC-assay. 

MCF-7 [70] 

AHR DIRECT + CYP1A1 TCDD human 
Immunoblot, 
Nothern blot 

MCF-7, 
JEG-3, 
A431, 
LS180 

[71] 

AHR DIRECT + CYP1A2 
TCDD, 

MC 
human 

Immunoblot, 
northern 

blot. 

MCF-7, 
JEG-3, 
A431, 
LS1 
80 

[71] 

ARNT O + AHR TCDD human 

ChIP-seq, 
ChIP-PCR, 
Luc-assay. 

MCF-7 [72] 

ARNT O + HIF1 Hypoxia human 
Gel-shift 
assay, 

HELA [73] 

ARNT O + ERB E2 human ChIP-PCR 
COS-7, 
HELA 

[74] 

ARNT O + ERA E2 human ChIP-PCR 
COS-7, 
HELA 

[74] 
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ERA DIRECT + HIF1 
hypoxia, 

E2, 
TAM. 

human 
ChIP-PCR, 
Luc-assay 

MCF-7, 
MDA-MB-

231 
[75] 

ERB 
INDIRE

CT 
- HIF1 

hypoxia, 
E2, 

TCDD, 
ERB 

siRNA 

human, 
rat 

ChIP-PCR, 
Western 
blot, Luc-

assay 

HEP3B, 
HEK293 

[76] 

ERB 
INDIRE

CT 
- ARNT 

hypoxia, 
E2, 

TCDD, 
ERB 

siRNA 

human, 
rat 

ChIP-assay, 
Western 
blot, Luc-

assay 

HEP3B, 
HEK293 

[76] 

RELA DIRECT + NQO1 
hypoxia, 
mitomyc

in C 

human 

EMSA, 
oligonucleoti
de labelling 

HT29/HE
PG2 

[77] 

RELA DIRECT + GSTP H2O2 human Cat-reporter 
HEPG2, 
MCF7, 
HELA 

[11] 

RELA DIRECT + HMOX1 TGF-1B human 
Luc-assay, 

EMSA 
A549 [76] 

RELA DIRECT + FTH1 TNF mouse 

EMSA,  
Mutation 
contructs 

NIH3T3 [78] 

RELA DIRECT + SOD1 H2O2 human 
Luc-assay, 

EMSA 
PC12, [79] 

RELA DIRECT + HSP90 
PMA, 
TNF-A 

human 

Luc-assay,  
EMSA, 

ChIP-PCR 
HEK293 [80] 

RELA DIRECT + IL8 
IG/HIV, 
NFKB 
KD. 

human 

ELISA, 
Mobility shift  

assay. 
u-937 [81] 

RELA DIRECT + IL6 

NFKB 
KD, 
LPS, 

TNF-A, 
PMA. 

human EMSA 
u-937, 
HELA 

[82] 

RELA DIRECT + IL1B 

PMA, 
POLY(R
I-RC), 

Sandrai 
virus. 

human Luc-assay 
U-937,  
plb985, 

JURKAT, 
[83] 

RELA 
INDIRE

CT 
- NRF2  human 

Luc-assay  
EMSA, RT-

qPCR 
HEK293 [84] 

AHR O + RELB 
TCDD, 
siRNA 

human 
EMSA, 

western blot 

MDA-MB 
436, 

MCF-7 
[85] 
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AHR-
RELB 

DIRECT + IL8 
TCDD, 
siRNA 

human 

EMSA, 
Western  

blot 

MDA-MB 
436, 

MCF-7 
[85] 

AHR- 
RELA 

DIRECT + IL6 
TCDD, 
siRNA 
NFKB. 

human 

EMSA, 
Western 

blot, CHIP-
assay, Luc-

reporter 

127 AD, 
beas-2b, 

[86] 

AHR-
RELA 

DIRECT + C-MYC 
Transfe
ction. 

human EMSA 
HS578T, 
MCF-10F 

[87] 

MTF1 DIRECT + MT1 CDSO4 mouse Luc-reporter 
Mouse 

egg 
[35] 

MTF1 DIRECT + MT2 CDSO4 mouse Luc-reporter 
Mouse 

egg 
[35] 

MTF1 DIRECT + TXNRD2 
MTF1 
KO, 

ZN++ 

mouse 

qPCR + 
Immunoprec

ipitation. 
MEFS [88] 

AHR-
RELA 

DIRECT - CXCL8 
1-NP, 1-

AP, 
siRNA 

human 
Luc-assay, 
ChIP-PCR 

beas-2b, [89] 

AHR DIRECT O RELA 
1-NP, 1-

AP, 
siRNA 

human 

Luc-
reporter, 

ChIP-PCR 
beas-2b, [89] 

HIF1 DIRECT + MT1 
Low O2, 
ZNCL2 

mouse 

Luc-
reporter, 

ChIP-PCR 
L CELLS [36] 

AHR DIRECT + SOD1 TCDD human 

Luc-
reporter, 
Mobility 

shift. 

HEPG2 [64] 

HIF1 DIRECT + IKKB 
ERB-
KO, 

Hypoxia 

human Luc-reporter PNT1A [90] 

HIF1 DIRECT + VEGF1 Hypoxia mouse 

Luc-
reporter, 
EMSA 

HEP3B, 
HEPA1 

[91] 

HIF1 DIRECT + HSP70 CoCl2 
human/
mouse 

Luc-
Reporter 

HepG2/M
CF-7 

[92] 

HIF1 DIRECT + PIGF EPO human 

Luc-
reporter, 

ChIP-PCR 
K562 [93] 

HSF1 DIRECT + SQSTM1 

siRNA 
transfec

tion 
(HSF1) 

human 

Luc-
reporter, 

Western blot 

RKO, 
A549, 
MCF-7 

[94] 

HSF1 DIRECT + HSP90 
Heat-
shock. 

human 
ChIP-seq, 
RNA-seq. 

MCF-7,  
HMLER, 
MCF10A 

[95] 
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HSF1 O + MTF1 ZNSO4 human 
EMSA, 

Immunoblot 
HELA [14] 

HMOX1 
INDIRE

CT 
+ HIF1 

15D-
PGJ2 

human 

siRNA 
(HMOX1), 
Western 

blot. 

MCF-7 [96] 

SQSTM
1 

PROTE
O 

- KEAP1 NA human 

Luc-
reporter, 
EMSA, 

RT-qPCR 

HEK293 [33] 

KEAP1 O - NRF2 NA. human 

Luc-
reporter, 
siRNA 

transfection. 

HEK293 [84] 

VEGF 
INDIRE

CT 
+ NRF2 VEGF mouse 

Western 
blot. 

BMEC [40] 

ERB 
INDIRE

CT 
+ NRF2 E2 human 

Western 
blot. 

MCF-7, 
T47D 

[97] 

ERA 
INDIRE

CT 
- NQO1 

E2, 
tBHQ 

human 

Western 
blot, Luc-
reporter 

MCF-7 [98] 

NFKB DIRECT + COX2 ?  

Luc- 
reporter, 
EMSA 

AGS [99] 

ERB O + NRF2 TNFA mouse 

Western 
blot, Luc-

assay, 
EMSA 

Mc3t3-e1 [97] 

ERB O  + NRF2 TAM. human 
Gel-Shift 

assay 
MCF-7 [58] 

HIF1 DIRECT + COX2 E2 human 

Western-
blot, Luc-
reporter 

COS-1 
[100

] 

CDKN1 O  + KEAP1 DMOG human CHIP-seq HEK293 
[100

] 

NQO1 O  + P53 
KO P21 
(siRNA),  

H2O2 

mouse 

Luc-
reporter, 

RT-qPCR, 
Immunoblot 

MEFS [58] 

HSF1 DIRECT + SQSTM1 H2O2 
human
mouse 

Immunoblot 
HCT116, 

7-M12 
[101

] 

HSF1 DIRECT + HSP70 

siRNA 
HSF1, 
Hsp90 
inhibitio

n 

human 

GFP-
reporter, 
Western 

blot, 
RT-qPCR 

RKO, 
A549, 
MCF-7 

[102
] 

ERb 
INDIRE

CT 
+ NFKB TNF-a rat ChIP-seq, RASMCs 

[103
] 
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P53 DIRECT + CDKN1 
Express

ion 
vector. 

human 
Western 

blot. 
HEK293, 

[104
] 

P53 DIRECT + 
GADD45

A 

Short 
hairpin 

RNA KD 

human 
ChIP-seq, 
RNA-seq 

MCF-7 
 

[104
] 

P53 
INDIRE

CT 
- VEGF 

Short 
hairpin 

RNA KD 

human 
ChIP-seq, 
RNA-seq 

MCF-7 
 

[105
] 

P53 
INDIRE

CT 
+ BRCA1 

DNA 
damage 

human, 
mouse 

Western 
blot, 

Northern 
blot 

hNMEC 

 
[106

] 

P53 DIRECT + XPC  human 
Luc-assay, 

Western blot 

MCF-7, 
MDA-

MB435 

[107
] 

P53 
INDIRE

CT 
- HIF1 

Quinacr
ane 

mouse 

RT-qPCR, 
Western 
blot, P53 

KO 

Cardiomy
ocytes 

[108
] 

P53 DIRECT + HMOX1 
COCL2, 
P53 KO 

mouse Western blot 
MCF-7, 
U-20S 

[109
] 

P53 DIRECT + APAF1 
Y-

Irradiati
on 

mouse, 
human 

EMSA, 
Western 

blot, 
ChIP-PCR 

MCF-7, 
U-20S. 

[110
] 

P53 DIRECT + BAX 

Ionizing 
radiatio

n,  
DOXOR
UBICIN 

human 

Microarray, 
EMSA, 

Western 
blot. 

TK6, 
WTK 

[108
] 

P53 DIRECT - BCL-2 KO. mouse 

ChIP-assay, 
Western 

blot. 
MEFS 

[109
] 

NFKB DIRECT + BCL-2 
P53-

vector. 
human 

Western-
blot, Luc-

assay. 

DHL-4, 
K562 

[111
] 

NRF2 DIRECT + PGD  human 

Luc-assay, 
EMSA, 
DNASE 

footprinting 

HELA S3, 
WEHI 

[112
] 

HSF1 DIRECT - BAX  human 
EMSA, 

ChIP-seq 
 [95] 

ELAVL1 O + HSF1 NA human ChIP-seq MCF7 
[113

] 

ELAVL1 O + HIF1 

Short 
hairpin 

RNA KD 
(ELAVL

1) 

human 

RT-qPCR, 
KD OF 
HSF1 

MCF7 [98] 
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HSF1 DIRECT + CXCL12 
Short 

hairpin 
RNA KD 

human 
Western 

blot. 
MDA-MB-

231 
[114

] 

HSF1 DIRECT - TRAF3 

Retro-
virus 

transfec
tion. 

mouse Immonublot 
MCF10A 

 
[114

] 

HSF1 DIRECT - IL NA human ChIP-seq 
MCF7, 
BPLER 

[115
] 

HSF1 
INDIRE

CT 
+ ELAVL1 NA human ChIP-seq 

MCF7/BP
LER 

[115
] 

NFKB 
(IKK) 

DIRECT + HIF1 
Short 

hairpin 
RNA KD 

human 
KD, 

RT- qPCR 
MDA-MB-

231 
[95] 

HIF1 DIRECT + BNIP3 
siRNA 

interfere
nce 

human 
ChIP-PCR, 
Luc-assay 

HEK293, 
U2OS 

[95] 

HIF1 DIRECT + COX-2 Hypoxia human 
Luc-assay, 

EMSA 
HEK293, 
MCF-7 

[115
] 

BCL2 O + HIF1 Hypoxia human 
ChIP-PCR, 
Luc-assay 

HT29 
[113

] 

ERA DIRECT + IKBA Hypoxia human 

Western-
blot, BCL-2 
overexpress

ion,  Luc-
reporter 

JR8, JR1, 
PLF2, 

ASM-SC 

[116
] 

RELA DIRECT + IKBA E2 rat ChIP ERB RASMCS 
[117

] 

HIF1 DIRECT + IKKB 
E2, 

DPN, 
THC 

rat ChIP P65 RASMCS 
[118

] 

HIF1 
INDIRE

CT 
+ P53 

KD-
HIF1, 

hypoxia 

human Luc-reporter 
PNT1A, 
PC3-M 

[103
] 

P53 
INDIRE

CT 
- C-MYC  

human, 
mouse 

Luc-assay, 
Immunoprec

ipitation. 

H1299, 
MEFS 

[103
] 

NFKB DIRECT + TRAF3 DOXO human 
Luc-assay, 
ChIP-assay 

HCT-116, 
MCF-7 

[90] 

P53 DIRECT + PUMA Doxyclin human 
Northern-

blot 
SAOS-2, 
H1299 

[119
] 

P53 DIRECT + BAX 
Actin 

Mycin-D 
human 

Northern-
blot, EMSA, 

flag-tag. 

SAOS-2, 
U2OS, 
H1299 

[120
] 

P53 DIRECT + BID 
P53 

transfec
tion. 

human 

EMSA, 
CAT-

reporter 
H358 

[121
] 
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ERA 
INDIRE

CT 
- NRF2 

Y-
irradiati

on 

human/ 
mouse 

EMSA, 
Western 

blot, in-situ 
hybridization 

Luc-
reporter, 

ChIP-assay 

VM10, 
MEFS, 

M3 
[59] 

ERRB 
INDIRE

CT 
- NRF2 E2 human 

Luc-
reporter,  

immunoprec
ipitation. 

COS-1 [58] 

IL4 
INDIRE

CT 
+ STAT6 TNF-a human 

Gel-shift 
assay 

HepG2 
[122

] 

COX2 
INDIRE

CT 
- NRF2 

15D-
PGJ2 

mouse 

RNA-blot, 
Immunohist
ochemistry 

MACROP
HAGE 

HEPATO
CYTES 

[123
] 

HSF1 DIRECT + HSP72 
17-B 

estradiol 
rat 

Western 
blot, EMSA, 
TF-decoy 

MYOCYT
ES 

[124
] 

NFKB DIRECT + HSP72 
17-B 

estradiol 
rat 

Western 
blot, EMSA, 
TF-decoy 

MYOCYT
ES 

[124
] 

NFKB DIRECT - CYP1A1 UVB human Luc-reporter HepG2 
[125

] 

NFKB 
INDIRE

CT 
+ IL-4 TNF-A Mouse 

EMSA, 
Immunoblot 

32D 
[126

] 

NFKB DIRECT + IL-12 TNF-A human 

Luc-
reporter, 
ELISA 

HEK293T 
[126

] 

NFKB DIRECT + ZIP8 TNF-A human 

Luc-
reporter, 

ChIP-PCR 
A549 

[127
] 

P53 DIRECT + NIX Hypoxia 
human/
mouse 

Luc-
reporter. 

U2OS/M
EFS 

[128
] 

HIF1 
INDIRE

CT 
+ NIX Cancer human 

Western-
blot. 

HT1080 
[129

] 

NFKB DIRECT + MYC IL1 human Luc-reporter FS-4 
[128

] 

HIF1 
INDIRE

CT 
- MYC Hypoxia NA NA NA 

[130
] 

P53 
INDIRE

CT 
+ P53  NA NA NA 

[104
] 

NFKB DIRECT + HSP70 TNF-α human Luc-assay HEK-293 [80] 

NQO1 
INDIRE

CT 
+ HIF1 Hypoxia human 

siRNA 
against 
NQO1 

MDA-MB-
231 

[131
] 

HSP70 O - HSF1 
Heat-
shock 

human 
EMSA, 

Western blot 
HELA 

[132
] 
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HSP90 O - HSF1 
Heat-
shock 

human 
EMSA, 

Western blot 
HELA 

[132
] 

HSP70 O + BCL2 H2O2 rat 
Western 

blot. 
BRL 

[133
] 

HMOX1 O - NFkB TOC. human 

EMSA, 
western 

blot, 
RT-qPCR 

PC3. 
 

[134
] 
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Figure S2.1: Network Logic Rules for BoolNet models.  Boolean modeling 

rules for adaptive-stress response network. Inhibitory results are set to AND/NOT as 

the presence of the factor will prevent gene expression (gene will not be expressed if 

inhibitor is present). Logic rules were selected based on the literature e.g. AND 

shows that binding is dependent on two factors e.g. MT1 needs MTF1 and HIF1.  

 

targets, factors  
NFKB, ( MT1 | MT2 | TRAF3 | SQSTM1) & !(ZIP8 | HMOX1 | AHR) 
P53, P53 
NRF2, (VEGF1 | AHR) & !(COX2 | NFKB) 
AHR, NRF2 | !(HSP90 | NFKB) 
HIF1, (HMOX1 | NFKB | NQO1) & !P53 
HSF1, NQO1 & !(HSP70 | HSP90) 
MTF1, ZIP8 
TRAF3, NFKB & !HSF1 
SOD1, NRF2 | NFKB  
GSTP, NRF2 | NFKB 
GCLC, NRF2 | NFKB 
PRDX1, NRF2  
HMOX1, NRF2 | P53 | NFKB 
FTH1, (NRF2 | NFKB)  
SQSTM1, NRF2  
NQO1, NRF2 | NFKB  
TXNRD2, NRF2 | MTF1 
BACH1, NRF2 
CYP1B1, AHR 
CYP1A1, AHR | NFKB 
CYP1A2, AHR 
HSP70, NRF2 | HSF1 
HSP90, NRF2 | HSF1 | NFKB 
HSP72, HSF1 | NFKB 
MYC, (P53 | NFKB) & !HIF1 
BID, P53 & !HIF1 
BIM, P53 
PUMA, P53 
APAF1, P53 
BAX, P53 & !HSF1 
NIX, (P53 | NFKB) & !HIF1 
IL6, NFKB & !NRF2 
STAT6, ( IL4 | NFKB) & !HSF1 
IL1, NFKB & !NRF2 
IL8, NRF2 | NFKB 
IL4, NFKB  
IL12, NFKB  
COX2, NFKB 
BCL_2, (P53 | HSP70 | NFKB) & !HSF1 
GADD45A, P53 
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BRCA1, P53 
XPC, P53 
CDKN1A, P53 | NFKB 
NOS_2, NFKB 
CYCLIN_D, NFKB 
IGFBP1, NFKB 
VEGF1, P53 | HIF1 | NFKB 
EPO, HIF1 
MT1, NRF2 | IL6 | MTF1| (MTF1 & HIF1) 
MT2, NRF2 | IL6 | MTF1 | HIF1 
ZIP8, NFKB 
G6PD, NRF2 
PIGF, NRF2 | HIF1 | MTF1 
PGD, NRF2 
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Figure S2.2: Network Logic Rules for BoolNet models with oestrogen 

receptor links.  Boolen logic rules for oestrogenic models. Inhibitory results are set 

to AND/NOT as the presence of the factor will prevent gene expression (gene will not 

be expressed if inhibitor is present). Rules were select in and when the literature 

shows that binding is dependent on two factors e.g. MT1 needs MTF1 and HIF-1α.  

 
NFKB, ( MT1 | MT2 | TRAF6 | TRAF3 | SQSTM1 | ERA) & !(ZIP8 | HMOX1 | AHR) 
NRF2, (VEGF1 | AHR) & !(COX2 | NFKB | ERA ) 
SOD1, NRF2 | NFKB  
MYC, (P53 | NFKB) & !HIF1 
BID, P53 & !HIF1 
BIM, P53 
PUMA, P53 
APAF1, P53 
BAX, P53 & !HSF1 
P53, P53 
HSP70, NRF2 | HSF1 | NFKB 
GSTP, NRF2 | NFKB 
HSF1, NQO1 & !(HSP70 | HSP90) 
COX2, NFKB 
BCL_2, (P53 | HSP70 | NFKB) & !HSF1 
GADD45A, P53 
TXNRD2, NRF2 | NFKB 
VEGF1, P53 | HIF1 | NFKB 
CDKN1A, P53 | NFKB 
BACH1, NRF2 
IL6, NFKB & !NRF2 
G6PD, NRF2 
PIGF, NRF2 | HIF1 
PGD, NRF2 
NOS_2, NFKB 
IGFBP1, NFKB 
CYCLIN_D, NFKB 
IL1B, NFKB & !NRF2 
MTF1, ZIP8 
BRCA1, P53 
XPC, P53 
MT1, NRF2 | IL6 | MTF1| (MTF1 & HIF1) 
MT2, NRF2 | IL6 | MTF1 | HIF1 
AHR, NRF2 | !(HSP90 | NFKB) 
HIF1, (HMOX1 | NFKB | NQO1| ERA) & !(P53 | ERB) 
EPO, HIF1 
HSP70, NRF2 | HSF1 
HSP90, NRF2 | HSF1 | NFKB 
HSP72, HSF1 | NFKB 
NIX, P53 | HIF1 
ZIP8, NFKB 
IL4, NFKB 
IL5, NFKB 
TRAF6, TRAF6 
IL8, NRF2 | NFKB 
GCLC, NRF2 | NFKB 
CYP1B1, AHR 
CYP1A1, AHR 
CYP1A2, AHR 
HMOX1, NRF2 | P53 | NFKB 
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FTH1, (NRF2 | NFKB)  
TRAF3, NFKB & !HSF1 
PRDX1, NRF2   
CYP2A1, AHR | NFKB 
CYP211, AHR | NFKB 
CYP7B, AHR | NFKB 
SQSTM1, NRF2  
NQO1, NRF2 | NFKB  
STAT6, ( IL4 | NFKB) & !HSF1 
ERA, ERA     
ERB, ERB 
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A critical analysis of in silico methods used for identifying 

transcription factor binding sites across fish species. 
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3.1 Abstract 

Transcription factor binding sites (TFBS) exhibit a high level of evolutionary 

conservation across distantly related species and in silico predictive methods 

have been widely used to inform on the identification of target genes for specific 

transcription factors (TFs). Currently, a number of databases exist that contain 

positional weight matrixes (PWMs), a form of DNA binding motif largely derived 

from mammalian cell lines. PWMs are used across vertebrate groups to predict 

downstream target genes for TFs of interest. Considering that multiple TFs can 

regulate the expression of a single gene, identifying functional binding sites 

across distantly related species can establish the conservation of regulatory 

interactions such as those at the basis of gene regulatory networks (GRNs). 

However, it is also necessary to establish the efficiency of binding-site 

identification tools in distantly related vertebrate species, such as fish, where 

there is the potential that sequence divergence could affect search efficiency. 

This analysis assessed the level of divergence in validated binding sites of the 

adaptive stress response transcription factors nuclear-factor erythroid 2-related 

factor 2 (Nrf2), aryl hydrocarbon receptor (AhR), metal transcription factor 1 

(MTF1) and hypoxia inducible factor-1α (HIF-1α) in fish species compared to 

mammalian-derived consensus sequences. Divergent sequences with a base 

change from the consensus were identified in Nrf2 and HIF-1α target genes 

suggesting that traditional motif-discovery tools would not identify functional 

binding sites. Using random forest models, the ability of mammalian Nrf2 and 

HIF-1α motifs derived from JASPAR and HOCOMOCO databases to predict 

downstream targets across selected teleost fish species was investigated. 

Whilst mammalian motifs for Nrf2 showed little difference in the ability to predict 

target genes across fish and mammals, for HIF-1α, random forest models were 

less efficient at predicting targets in positive and negative groups. The 

conservation of binding sites in target genes regulated by multiple adaptive 

stress response TFs was then investigated for heme-oxygenase 1 and heat 

shock protein 70 using both mammalian and fish-derived motifs.  This research 

showed that whilst mammalian PWMs provided putative predictions of binding 

sites across fish species, fish-specific motif files were also able to identify 

putative TFBS that differed from mammalian search results.   
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3.2 Introduction:  

Aquatic environments have experienced the largest decline in biodiversity of 

any ecosystem[1] and there is a clear need to generate methods that predict 

the potential effects of toxic pollution and environmental change. The 

activation of adaptive stress response transcription factors (TFs) is a 

fundamental outcome to toxicological insult, targeted by a wide range of 

pollutants of concern. These TFs include nuclear factor erthyriod-like 2 (Nrf2), 

metal transcription factor 1 (MTF1), the aryl hydrocarbon receptor (AhR), heat 

shock factor 1 (HSF1), tumour protein p53 (p53), nuclear factor kappa B 

(NFkB) and hypoxia inducible factor 1 alpha (HIF-1α) which have all been 

shown to be evolutionary conserved across aerobic organisms [2]. Each 

factor associates with specific DNA binding regions, termed transcription 

factor binding sites (TFBS) - short degenerate sequences that exhibit a high 

level of evolutionary conservation [3–6]- in order to control the regulation of 

target genes: Nrf2 binds to the Electrophile response element (EpRE), HIF-1α 

with hypoxia responsive elements (HREs) [7], AhR with dioxin response 

elements (DREs) [8]  and MTF1 with metal response elements (MREs) 

(Figure 1.6) [9]. Although historically associated with distinct response 

outcome processes, the identification of cross talk and shared downstream 

targets between TFs in mammalian cell lines suggests that similar stress-

response processes are activated under a range of inducers, such as 

antioxidant defence processes (Chapter 2). This underpins the adaptive 

stress response as a gene regulatory network (GRN) in mammals and has the 

potential to provide a novel approach in predictive toxicology by establishing 

the regulatory responses in vertebrates at high risk of pollutant exposures 

such as fish.  

 

The identification of TFBS in non-coding regions provides putative predictions 

of downstream target genes and can aid in determining the conservation of 

regulatory networks at the basis of adverse outcome pathways (AOPs)[10]. 

Currently, in silico searches for TFBS are largely based on sequence motifs in 

the form of positional weight matrices (PWMs), derived from multiple sequence 

alignments (MSAs) of experimentally validated sites [11,12]. Databases of 

vertebrate PWMs have become widely available and include Transfac [13], 
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JASPAR [14], HOCOMOCO[15] , the Transcription Factor encyclopedia (TFe) 

[16] and PAZAR [17], largely comprising of PWMs from systematic evolution of 

ligands by exponential enrichment (SELEX) experiments in mammalian cell 

lines.   

 

However, searches for PWMs produce a large number of false positive hits as 

the probability of a short DNA sequence occurring at random in the genome is 

high[18]. PWMs are therefore used as a means of establishing target genes in 

combination with experimental evidence. Identifying binding sequences in 

returned peaks in whole genome sequencing methods such as Chromatin 

Immunoprecipitation sequencing (ChIP-Seq) and Assay for Transposase-

Accessible Chromatin using sequencing (ATAC-seq) is reliant on PWM 

search systems [12]. Gene-specific binding site identification methods are 

also reliant on PWM searches; regulatory regions are searched for putative 

binding sites which are later validated experimentally using methods such as 

reporter constructs and TF knockouts [21–23]. Despite the chance of false 

positive hits, binding site predictions can be used to predict regulatory 

interactions from gene-expression datasets in the absence of direct TF-DNA 

binding evidence, a method widely used to identify GRNs [24]. Reducing the 

number of false-positive hits from PWM searches is therefore essential and 

functional binding sites have been associated with enrichment, position, 

distance from the transcription start site (TSS), orientation and evolutionary 

conservation[25–27]. Importantly, the similarity of the returned hits to the motif 

file used is widely associated with a greater probability that the identified 

sequence will be functional [14].  

 

From an aquatic toxicology setting, as the majority of PWMs are derived from 

mammals and there is, to current knowledge, only one ChIP-Seq study for 

adaptive-stress response TFs at the whole genome level (for HIF-1α as 

discussed below), the level of conservation of binding sites across distantly 

related vertebrates (mammals to teleost fish) is largely unknown. The lack of 

fish-specific PWMs is not necessarily seen as problematic in predicting 

regulatory regions because of the ability of TF proteins derived from fish to 

bind to mammalian TFBS and vice-versa as documented in Danio rerio 
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(zebrafish) for Nrf2 [28]. However, in the context of Nrf2, which has been 

shown to have a conserved function in regulating antioxidant genes across 

vertebrates [29], differences in the underlying binding sequence have been 

identified in validated sites in comparison to mammalian counterparts. Nrf2 

binds to the electrophile response element (EpRE) to initiate transcription of 

downstream target genes, including glutathione-s-transferase P (gstp1) [30]. 

Whilst few Nrf2 binding sites have been identified in fish species, a functional 

EpRE region in the gstp1 promoter in zebrafish differed from the consensus 

sequence with a base changed to a T [30]. This change in binding sequence 

prevents its identification using both conventional consensus sequences 

searches and with mammalian-derived EpRE PWMs, which are searched with 

high stringency settings. Similarly, a whole-genome ChIP-Seq study on HIF-1α 

in zebrafish using de novo motif discovery identified a binding sequence that 

showed some variation from the mammalian HIF-1α matrix [7]. The impact of 

species-specific TFBS matrices was shown for p53, where a PWM formed 

from validated binding sites in zebrafish was able to identify novel target genes 

that failed to be recovered using the mammalian matrix alone [21].  

 

Divergences in binding sequences between genes and across species can 

lead to variations in transcriptional responses. For example, specific binding 

sequences for NFkB have been associated with gene-specific response 

trajectories [31]. In addition, single nucleotide polymorphisms (SNPs) in TFBS 

are widely associated with an increased susceptibility to disease and cancer 

[32]. In fish species, divergences in TFBS identified across two species of 

cichilid fish were hypothesised to contribute to observed differences in opsin 

gene expression between species, suggesting the binding sequence was 

under an evolutionary pressure [33]. Differences in tissue-specific expression 

pattern have been reported in zebrafish transgenics where human and 

zebrafish-derived reporter constructs consisting of conserved non-coding 

elements (CNEs) have been compared [34]; here, divergences in transcription 

factor binding sites were shown to be correlated to the differences in 

expression pattern [34]. Biochemically, changes in sequence composition can 

alter the binding strength of the transcription factor-DNA interactions resulting 

in a change in the transcriptional output [35].  
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Changes in binding sequence from mammals to fish is problematic as gene-

expression datasets in fish toxicology studies are regularly searched for 

binding sites to predict the regulatory mechanisms behind response 

processes[36]. In silico, binding sites are predicted by searching non-coding 

DNA sequences for matches to the regulatory motifs of interest, returning a 

score (as the q-value, p-value or z-score depending on the statistical method), 

representing the similarity of the identified sequence to the motif file used. 

Transcription factor sequence divergence (TFSD) across fish species may  

cause PWMs derived from mammals to miss-identify regulatory sequences 

through in silico approaches, excluding functional sites from being validated 

and potentially limiting the identification of novel target genes. The 

development of transgenic models (in aquatic toxicology zebrafish and 

Oryzias latipes (medaka) are the most widely used fish model organisms[37]) 

is also reliant on the selection of sensitive binding sequences for transcription 

factors which are expected to be targeted by pollutants of concern, and this is 

supported by in silico-based sequence identification [38].  

 

This research investigated whether TFBS derived from mammals were 

sufficiently conserved for adaptive stress response TFs to accurately predict 

downstream target genes in the adaptive stress-response pathway in fish. A 

literature search highlighted TFBD in some but not all validated sites across 

fish species. Alignments of validated binding sequences in fish species were 

used to generate PWMs for fish-specific TFs for Nrf2, HIF-1α, MTF1 and the 

AhR. Teleost fish species were selected to cover both a broad evolutionary 

range (Figure S3.1) and as representatives of widely used species in 

ecotoxicology and included the zebrafish, stickleback (Gasterosteus 

aculeatus), tilapia (Orechromis niloticus), medaka and fugu (Takifugu rubripes) 

(Figure S3.1)[39]. Where TFBD was observed for Nrf2:EpRE and HIF-1α:HRE, 

the efficiency of mammalian motifs to identify target genes from a background 

gene set was conducted using random forest classification models to 

distinguish between known and unknown target genes. A random forest model 

of the efficiency of the fish-specific Nrf2:EpRE PWM searches was also 

conducted but showed a poor predictive performance using this motif. Finally, 

the conservation of shared interactions was identified in heme oxygenase 1 
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(hmox1) and heat shock protein 70 (hsp70), which are targeted by multiple 

adaptive stress response factors in mammals. Binding site analysis of 

promoter regions using mammalian motifs and the fish-specific motifs 

generated in this study was conducted and this showed variations in the ability 

to identify sites using motifs from different species. The results of this study 

show that whilst mammalian motifs on the whole work well for identifying 

putative binding sites for adaptive-stress response factors in fish species, 

novel TFBS targets can also be identified using fish-specific motifs.  
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3.3  Methods  

3.3.1 Identification of experimentally validated sites across fish species: 

A literature analysis identified experimentally validated binding sites across 

fish species for Nrf2, HIF-1α, MTF1, HSF1 and the AhR. Experimental 

validation was determined through either gene-reporter assays conducted in 

vitro or in vivo or through ChIP-Seq assays where appropriate. All sequences 

were compared to the consensus sequence for the factors of interest and 

against mammalian PWMs from the JASPAR database [44] (Figure S3.2) .  

3.3.2 Promoter sequence retrieval: 

The efficiency of PWMs derived from mammals for Nrf2 and HIF-1α to predict 

downstream targets in fish was conducted following the identification of 

divergent binding sites in the literature analysis. Twenty genes that are 

validated downstream targets for each factor were used as positive datasets 

and are shown in the Table S3.1 and Table S3.2, respectively. 1:1 orthologs 

were obtained against the human gene ids for the selected genes using a 

tree-based method in Ensembl Biomart [40]. For all genes, sequences were 

obtained from the Ensembl Biomart site with 3.5 kb and 5 kb of the upstream 

flank-coding region extracted for each species respectively[41]. 

Where paralog genes existed, all sequences were used in subsequent 

analysis. The genome assembly files for human (GRCh38.p10), mouse 

(GRCm38.p5), zebrafish (GRCzV9), medaka (HdrR), tilapia (Orenil1.0) and 

fugu (FUGU 4.0) were used in the analysis.  

3.3.3 Background gene-set generation: 

A list of eighty human gene names were generated using the Molbiotools 

software [42] and used as a background gene-set of unknown downstream 

targets (Table S3.3). These genes are not known to be regulated by HIF-1α or 

Nrf2 and all genes used in the analysis are annotated across all species. For 

each id, the orthologs were collected as described above for each species 

and the flank-coding region was extracted for 3.5 kb and 5 kb of each gene 

using Biomart.  
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3.3.4 Identification of binding sites using the MEME software: 

Binding sites were identified using the command line version of the Find 

Individual Motif Occurrences (FIMO) program  in the MEME suite 4.10.2. [43].  

FIMO provides the q-value and p-value score. The p-value represents the 

probability match to the PWM and the q-value is the p-value adjusted against 

the background genomic file generated from the whole genome GC% content 

to give a measure of the number of significant results that are incorrect. In this 

case, a q-value = 1 indicates that all matches that are significant are caused 

by chance whereas a value = 0.01-0.05 is widely regarded as a reliable 

threshold score for identifying positive binding sites[43].  

 

The results from the FIMO analysis are highly sensitive to background GC% 

content. For each species, the FIMO search was compared to a genomic 

background frequency file created from 3.5 kb and 5 kb of the flank-coding 

region of all genes extracted using the Ensembl Biomart [41] search tool for 

each species respectively. The GC% content was calculated using the fasta-

get-Markov command in the MEME suite to generate a 0-order Markov Model 

file as shown in Table S3.4).   

 

Transcription factor motifs obtained from JASPAR (2016) [44] and 

HOCOMOCO v10 [15] were converted into the MEME file format using the 

jaspar2meme command. Motif images were created using the cseq program 

in MEME [43]. Using FIMO, a matrix search was conducted on positive 

(known target genes) and background (unknown target genes) sequences by 

searching both DNA sequence strands using the species-specific genomic 

background frequencies.  

3.3.5 Variations in q-value  

For each species following the FIMO analysis, the distribution of top-scoring 

q-values for every gene in the known downstream target and unknown 

downstream target gene groups were compared. Differences in q-values 

between known and unknown target gene groups not meeting the 

assumptions of normality were calculated using the Mann-Whitney U test in R 

studio (version 3.4.2). Data normally distributed was analysed using a t-test.  
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3.3.6 Random forest classification models  

Classification models were built to determine the efficiency of mammalian-

derived motif files to categorize regulated genes against the background 

gene-sets across fish species using the information returned from the FIMO 

analysis. The top-scoring q-value, p-value, enrichment, matrix score and 

position were used as variables. Preliminary analysis identified random forest 

models as the best classifier using the caret package [41] in R studio (version 

3.4.2)  as shown in Table S3.5.   

 

Random forest models comprise of a series of decision trees which are 

constructed on information from variables in training data to classify unknown 

data points into their respective groups (e.g. known downstream 

target/unknown downstream target groups). Trees are trained on known 

subsets of observations before being used to predict unknown observations. 

Each decision tree votes on the classification category with the combined 

votes averaged to give an overall prediction of the classification group for the 

sample. The predictions of the model can therefore be improved by increasing 

the number of trees until improvements to classification performance become 

stabilized.  

 

In this research, positive (known target genes) and background (unknown 

target genes) datasets across mouse and humans were combined to create a 

mammalian training dataset. A fish-specific training dataset was also created 

by combining the data from the FIMO analysis for stickleback, zebrafish, 

medaka, tilapia and fugu. Training datasets consisted of a minimum of 20% 

positive and 80% background data in the case of the mammalian dataset.   

Two random forest models for each motif (for 3.5 kb and 5 kb search results) 

where constructed and trained on the mammalian dataset and fish-specific 

dataset respectively. To determine the model efficiency, models were used 

firstly to classify the training dataset (e.g. mammalian dataset for the 

mammalian-trained model) before being used to predict the classification of 

the unknown dataset (e.g. fish).  Successful random forest models where then 

used to classify species-specific datasets.  
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Model tuning parameters and optimal model selection was conducted using 

the inbuilt training features of the caret package in R studio. To avoid over-

fitting outcomes to the training data, models were generated using leave-out 

out cross-validation (LOOCV). LOOCV builds models on all data in the 

training set, leaving one sample out in each case, with its classification 

predicted based on the model generated from all other data. This process was 

repeated so all data were used for both training and prediction purposes. 

Training data predictions were pre-processed using the center and scale 

features and the number of trees was set to 1000. The final model in each 

case was selected based on the accuracy score. The accuracy score and 

number of decision trees for each model is shown in the supplementary 

information (Table S3.6 – S3.7).   
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Figure 3.1. Schematic of classification models: Random forest models were 

trained on either mammalian or fish-specific data containing the q-value, p-value, 

enrichment score and strand for each gene-set using leave on out cross-validation 

(LOOCV). Model performance was assessed by predicting the classification of the 

training data (e.g. mammalian model predicting mammalian data) before predicting 

classification of the test data (e.g. mammalian model predicting fish data).  

‘Background genes’ represent unknown downstream targets randomly generated 

from the Molbiotools software [42] whereas ‘Positive genes’ represent known targets 

identified from the literature.  
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3.3.7 Receiver Operator Characteristics (ROC) curves: 

The efficiency of each model to predict the classification categories of fish-

derived and mammalian-derived sequences can be represented in a 

confusion matrix as shown in Figure 3.2. This represents the performance of 

the model by showing if the data recalled is either correctly classified (e.g. as 

a true positive or true negative) or incorrectly classified (e.g. as a false 

positive or false negative).   

 

 

 

 

 

 

 

Figure 3.2. Confusion matrix of classification scores where T = True 

Positive, FP= False positive, FN= False negative, TN = True negative.  

 

Receiver operator characteristics (ROC) curves provide a visual 

representation of a model’s classification performance by plotting the 

sensitivity value against 1-specificty values across all data points. The 

sensitivity of the model is a measure of the number of correct classifications 

(true positive hits) against the number of total positive hits and is calculated 

as: 

TP

TP + TN
 

 

TP= True positive, TN = True negative.  

The specificity of the model predicts the likelihood that the results will be a 

true negative hit and is calculated as:  

TN

FN + FP
 

TN = True negative, FN= False negative, FP = False positive.  

TP FN 

FP TN 

Predicted class  

Actual 
class 



 186 

The area under the curve (AUC) for each ROC plot can be used as an 

indicator of model performance. A model that correctly predicts the 

classification of data points will have an AUC = 1.0 whereas a model that 

randomly classifies data points will have an AUC = 0.5. Therefore, AUC 

values in the range of 0.5- 0.7 = poor, 0.7- 0.8 = good and 0.8 – 1.0 = 

excellent.  

 

For each species, ROC curves were plotted using the pROC package [41] in 

R studio (version 3.4.2). The standard deviation for AUC values was 

calculated taking the square root of the variance value, derived from the 

var(roc.plot) command in pROC.   

3.3.8 Conserved binding motifs in shared downstream targets: 

Heme oxygenase 1 (hmox1) and heat shock protein 70 (hsp70) have both 

been identified as being regulated by multiple stress-responsive transcription 

factors with HMOX1 responding to NFkB [45], p53 [46] and Nrf2 [45] and 

Hsp70 to Nrf2 [47], P53 [48], HIF-1α [49] and HSF1[50]. For each gene, 

promoters were obtained from Ensembl (as described in section 3.3.2.) with 

3.5 kb of the promoter region was searched using the FIMO command line in 

the MEME suite [42]. Alignments of the fish-specific sequences derived from 

the literature search were used to create position-factor matrixes and these 

were converted to meme motifs using the jaspar2meme command in the 

meme suite. For p53, the fish-specific motif as described by Mandriani B.et al. 

2016 [21] was used to search promoter regions. The mammalian motifs for 

NFkB (MA0105.4, MA0778.1), p53 (MA0106.2), HSF1 (MA0486.1), Nrf2 

(MA0150.2), HIF-1α (MA1106.1) and AhR (MA0006.1) from the JASPAR 

database were also used and are shown in the supplementary information 

(Figure S3.2).  Putative sites were plotted based on position from transcription 

start site (TSS) and sites were aligned using the T-coffee multiple sequence 

alignment (MSA) tool [51].  
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3.4 Results 

3.4.1 Validated binding sites across teleost fish: 

 The literature search identified few occurrences of experimentally validated 

sequences across fish species for the EpRE (Figure 3.3). EpRE elements 

have been validated for the Oncorhynchus kisutch (Coho salmon) and 

zebrafish. TFSD was identified in the gstp1 gene in zebrafish, validated by a 

GFP-promoter assay using diethlymalate (DEM) as an inducer. EpRE 

elements identified in Coho Salmon matched the mammalian consensus 

sequence.  Alignments of validated sequences produced a PWM that strongly 

matched the consensus with the exception of the T in position 8, which is not 

present in mammalian motifs (as shown in Figure 3.5).  

 

For HIF-1α, ChIP-Seq analysis in zebrafish identified a binding region that 

diverged from the consensus sequence in the first two base pairs where R 

(A/G) was substituted for Y (A/G/C).  All other sequences across species 

matched the consensus except for in the lactate dehydrogenase B gene in 

Fundulus heteroclitus (Atlantic killifish) where the second position in the 

sequence did not match the consensus and was changed to a T (Figure 3.4). 

The aligned motif file was formed of a short sequence that matched the core 

GTG motif.  

 

Validated binding sites for the AhR:DRE showed no variation in sequence hit 

to the consensus (Figure 3.5) with sites validated across the zebrafish, 

medaka, rainbow trout and Atlantic killifish. Aligned sequence therefore 

matched the consensus strongly, which is similar to the mammalian AhR:DRE 

motif (Figure S3.5) as shown in the JASPAR database. 

 

There were a number of validated binding sites for MTF1 across fish species, 

each of which matched the consensus motif file (Figure 3.6). Multiple MRE 

were associated with each gene and validated in the promoter region. The 

alignment of MTF1 sequences produced a matrix file with little variation from 

the consensus. This differs from the mammalian motif, which comprises of a 



 188 

longer sequence (14 bp) though little variation around the core consensus 

(Figure S3.2).  

 

 

Figure 3.3. Nrf2:EpRE binding sites across teleost fish compared to the 

consensus sequence TGACnnnGC. A). Validated binding sites were identified 

in glutathione-s-transferase pi (gstp), heme-oxygenaase 1 (homx1), perodoxin 1 

(prdx1), glutamate-cysteine-ligase (gclc) in zebrafish and coho salmon). Divergences 

from the consensus sequence are shown in red. The zebrafish and Coho Salmon 

where the only teleost species identified which had experimentally validated EpRE 

regions. Position from TSS shown in base pairs (bps). B). Weblogo of validated 

Nrf2:EpRE binding sites in fish species.  
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Figure 3.4. Validated HIF-1α:HRE binding sites across teleost fish 

species compared to the consensus sequence RCGTG. A). Validated 

binding sites were identified in the whole genome and for insulin-like growth factor 

binding protein 1 (igfbp1) in zebrafish and erythroprotien (epo) in fugu and the 

atlantic killifish. Binding sites are shown by the IUPAC alphabet where V = A/C/G, R 

=A/G, H= A/C/T and Y = C/T . Variation in binding sites were identified in the 

zebrafish and atlantic killifish and are highlighted in red. B). Weblogo of validated 

HIF-1α:HRE binding sites in fish species.  
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Figure 3.5. Validated AhR:DRE across fish species compared to the 

consensus sequence TNGCGTG. A). Validated binding sites were identified in 

cytochrome 1a1 (cyp1a1) in zebrafish, cytochrome 1a in Atlantic killifish and 

cytrochrome 1a3 in rainbow trout. Validated binding sites for the AhR matched the 

consensus sequence for all species. For luciferase reporter assays, constructs where 

used invitro in human cell lines using the fish-regulatory sequence. Sequences are 

also shown matching the complimentary consensus (5’ CACGCNA 3’). B). Weblogo 

of validated AhR:DRE binding sites in fish species.  
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Figure 3.6. Validated binding sites across teleost fish species compared 

to the consensus MRE, TGCRCNC. Validated binding sites were identified in 

metallothionein (mt) genes in clusters.  Validated binding sites for the MRE matched 

the consensus sequence for all species and genes had multiple MRE sites. All 

sequences matched the consensus. 

 

3.4.2 Differences in q-value across species for Nrf2:EpRE models: 

 
For all random forest models for the Nrf2:EpRE motifs, the q-value provided 

the best predictor of classification. In all cases, q-values of known 

downstream target genes where significantly different from unknown targets 

as shown in Figure 3.7.  Known targets were lower scoring than unknown 

targets and the level of significance was greatest for the mouse, human, 

zebrafish and stickleback. The difference in q-value was lowest for the 

medaka which showed a reduced significance between gene-sets.  Q-values 

for returned hits for human and mouse where on average lower than across 

fish species. Only mammalian true positive hits fell within the 0.05 cut-off 

range across 3.5 kb promoter region (Figure 3.7a). Differences between the 

returned q-values between 3.5 kb and 5 kb searched sequences identified a 

reduced variability in the returned hits across all fugu and stickleback motifs. 

For zebrafish, q-values decreased for the MA0150.1 in 5 kb (Figure 3.7b) 

compared to 3.5 kb (Figure 3.7a).  
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Figure 3.7. Distribution of q-value scores for returned Nrf2:EpRE 

matrices across species. Distribution of top-scoring q-values for each gene at a) 

3.5 kb and b) 5 kb from TSS for the mouse, human, zebrafish, tilapia, fugu, 

stickleback and medaka following searches with NFE2L2, MA0150.1 and MA0150.2 

PWM files in FIMO. Number 1 indicates results from the positive gene list (known 

gene targets) whereas 2 indicate the background targets (unknown gene targets). 

Colours indicate matrix file used as shown.  Significance as calculated with either the 

Mann-Whitney U test or t-test where appropriate and indicated as 0.05*, 0.0001** 

and 0.00001***.   
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3.4.3 Random forest classification models for Nrf2:EpRE binding motifs: 

Random forest models were first created on combined data consisting of top 

scoring q-values across all genes for mammalian and fish datasets 

respectively. These models were used to predict the performance of first, the 

ability of the model to predict the classification of the data used to create the 

model (e.g. for the mammalian model to predict the classification of the 

mammalian dataset) and secondly, the ability of the model to predict the 

classification of the remaining dataset (e.g. for the mammalian model to 

predict the classification of the fish dataset). In all cases, the random forest 

models had high accuracy values and high kappa values following LOOCV 

during model optimization with the q-value the greatest predictor of 

classification group (Table S3.8).  

 

This research showed that overall, the models built on the mammalian 

datasets had a better classification performance across all motifs in 

comparison to those built using the fish dataset. For mammalian models, the 

classification score was high with an AUC score between 0.873 and 0.917 for 

mammalian predictions. The classification performance of the mammalian 

model predictions of the fish dataset where considerably lower with AUC 

scores between 0.701 and 0.768, identifying a reduced predictive 

performance across fish species (Figure 3.8a).  

 

For models built on the combined fish-specific data, models where better able 

to predict the classification of mammalian datasets compared to the fish-

specific datasets. In this case, the AUC values were between 0.813 - 0.843 

for mammalian predictions, considerably lower than the predictions produced 

from the mammalian-trained models (Figure 3.8a). Fish-specific models also 

had a decreased performance when predicting the classification of the fish 

datasets with an AUC score between 0.709 and 0.768 across motifs (Figure 

3.8b). In both cases, the NFE2L2 motif from HOCOMOCO was the least 

successful at predicting known-genes against unknown gene groups (Figure 

3.8b).  
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An analysis of the species-specific classification performance using the 

mammalian model was conducted, identifying differences in the classification 

performance between species as shown in Figure 3.8c. In all cases, the 

classification performance was better for the species-specific predictions 

compared to the predictions of the combined dataset.  The zebrafish dataset 

had the highest classification performance across all motifs with an AUC of 

0.985 to 0.99, highlighting that the mammalian model was able to successfully 

classify zebrafish datasets into the known downstream and unknown 

downstream target groups.  

 

The NFE2L2 motif had the lowest predictive performance across all species 

with the lowest AUC score of 0.796 for the tilapia. In all other cases, 

classification scores ranged from 0.92 to 0.98 across species and motifs, 

indicating that the models were reasonably successful at identifying gene 

groups. An exception to this was the medaka, which had an AUC score of 

0.86 for MA0150.1 and the lowest AUC score of 0.92 for the MA0150.2 motif 

(Figure 3.6d). For the 5 kb search parameters, there was an overall decrease 

in the AUC score for all motifs across species (Figure 3.8d). The NFE2L2 

motif had the lowest classification performance and the AUC score was 

lowest in the fugu at 0.62, which is close to a result for a random dataset. The 

zebrafish had high AUC scores across all motifs and models where 

successfully able to classify the dataset into known and unknown target gene 

groups. Overall, the MA0150.1 provided the most robust classification across 

the species-specific analysis, with AUC scores ranging from 0.92 to 1 (Figure 

3.8b).  
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Figure 3.8. Random forest model classification scores for Nrf2:EpRE 

datasets following FIMO motif analysis using PWM motifs from the 

Jaspar database (MA0150.1, MA0150.2) and HOCOMOCO database 

(NFE2L2). a). ROC curves of Nrf2:EpRE RF models trained using the combined 

mammalian data at 3.5 kb. Models were used to classify datasets into known targets 

or unknown target gene groups from searches at 3.5 kb. b). ROC curves of 

Nrf2:EpRE RF models trained using the combined mammalian data. Models were 

used to classify datasets into known targets or unknown target gene groups. c). Bar-

plot indicating the AUC values of the predictions using mammalian-trained models to 

classify species-specific gene sets at 3.5 kb. Error bars indicate the standard 

deviation. d). Bar-plot indicating the AUC values of the predictions using mammalian-

trained models to classify species-specific gene sets at 5 kb. Error bars indicate the 

standard deviation.  
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3.4.4 Differences in q-value across HIF-1α:HRE models 

 
Q-values for the returned highest scoring hits for HIF-1α showed instances 

where both the occurrence of hits in known targets and unknown targets was 

no different from random (Figure 3.9). This was the case for the MA01106.1 

motif in humans and was also the case in the tilapia for MA01106.1 and 

MA0259.1 motifs. For mouse, the q-values across the 3.5 kb search showed a 

significant difference between known and unknown target gene groups across 

all motifs. In zebrafish, there was a significant difference in q-value between 

known and unknown gene targets for the matrix MA1106.1 and MA0259.1 but 

in the case of the latter, unknown targets had lower scoring q-values than 

known for the 3.5 kb search.  

 

 In fugu and stickleback there was a significant difference in between all 

scores with HIF1_si showing the lowest q-value on average. Across fish 

species, the greatest difference in q-value was between HIF1_si scores 

across fugu, medaka and tilapia showing the clearest difference between 

positive and negative groups. There was little difference in returned highest q-

value scores between the 3.5 kb and 5 kb promoter regions across both 

groups.  
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Figure 3.9. Distribution of q-value scores for returned HIF1:HRE 

matrixes from JASPAR (MA1106.1, MA0259.1) and HOCOMOCO 

(HIF1_si) across  species. Q-value scores from A) 3.5 kb and B) 5 kb from 

TSS for the mouse, human, zebrafish, tilapia,  fugu,  stickleback and medaka 

following searches with MA1106.1, MA0259.1 and HIF1_si PWM files in 

FIMO. Number 1 indicates results from the positive gene list (known gene 

targets) whereas 2 indicates the q-value of background targets (unknown 

gene targets). Colours indicate the matrix file used as shown. Significance as 

calculated with either the Mann-Whitney U test or t-test where appropriate and 

indicated as 0.05*, 0.0001** and 0.00001***.   
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3.4.5 ROC curves of random forest classification models for HIF-1α binding 

motifs: 

 
Models built on both the combined mammalian dataset and fish-specific 

dataset at 3.5 kb had a low classification performance across all motifs for 

HIF-1α (Figure 3.10). The q-value was the greatest indicator of classification 

group across models.  In all instances, the AUC score was below 0.8 and in 

the case of HIF-1α_si, the AUC score of 0.59 to 0.69 for the mammalian-

trained model shows a random classification performance. For the 

MA01106.1 motif, the AUC scores for the fish-specific model were greater 

than the mammalian model, between 0.71 and 0.78 for fish and mammals 

respectively compared to AUC scores 0.45 and 0.43 for the mammalian 

trained model. The motif MA0259.1 provided the best classification 

performance of any mammalian trained model at predicting the mammalian 

classification performance.  

 

All models returned low kappa and accuracy values during model tuning in 

comparison to the Nrf2:EpRE models as shown in Table S3.6. In addition, as 

ROC curves identified low predictive performance across all mammalian 

trained models, species-specific analysis of predictive performance was not 

conducted in this case.  
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b.      Fish trained models  

A
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a. Mammalian trained models  
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Figure 3.10. Random forest model classification scores for HIF-1α:HRE 

datasets following FIMO motif analysis. a). ROC curves of HIF-1α:HRE RF 

models trained using the combined mammalian data. Models were used to classify 

mammalian and fish-specific datasets into known targets or unknown target gene 

groups with the AUC score as shown as a measure of classification accuracy. 

Motifs used left to right as MA01106.1, Ma0259.1 and HIF1_si. b). ROC curves for 

HIF-1α:HRE RF models trained using the combined fish-specific dataset. Models 

were used to classify mammalian and fish-specific datasets into known targets or 

unknown target gene groups with the AUC score as shown as a measure of 

classification accuracy. Motifs used left to right as MA01106.1, MA0259.1 and 

HIF1_si. 
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3.4.5 Hmox1 and hsp70 promoter binding site identification  

 
For hmox1, promoter regions were searched for Nrf2:EpRE, NFkB:kB and p53 

binding sites across each species. Putative binding sites were identified for 

every transcription factor across species (Figure 3.11A). The identified binding 

sites are aligned in the supplementary information and shown in Figure S3.3.  

 

There was little association with the functional binding sites and position across 

mammals to fish for the EpRE with TFBS identified near the TSS in mammals 

but were more distally located in fish (Figure 3.11A). Alignments of identified 

binding sites using the mammalian and fish-specific motifs showed that the 

majority matched the core consensus (TGACnnnGC) but there were some hits 

across both mammalian and fish species for the zebrafish-specific sequence 

(TGACnnnTC). The fish-specific motif identified hits in all fish species except 

stickleback where a sequence was identified using the mammalian motif (Figure 

S3.3). More hits were identified in humans, tilapia and fugu using the 

mammalian motif in comparison to the fish-specific motif. The same binding 

sites were identified for mammalian and fish searches in zebrafish and human 

regulatory regions.  

 

For p53 motifs in hmox1, more hits were identified using the fish-specific motif 

in comparison to the mammalian motif (Figure 3.11a). Using the latter, high 

scoring hits were identified in the human and tilapia (Figure S3.3). Putative 

binding sequences were identified in the medaka and fugu using the fish-

specific motif but not the mammalian motif and no sequences were identified in 

zebrafish (Figure 3.11A). Multiple NFkB sites were identified in all species 

except humans with the lowest scoring sequences identified in the fugu (Figure 

S3.3).  

 

For hsp70, the promoter region was searched for Nrf2:EpRE, P53:PDB, 

HSF1:HSE, HIF1:HRE and AhR:DRE binding sites. EpRE binding sites were 

identified across human, mouse, zebrafish, tilapia, medaka and fugu but were 

not identified in the stickleback using the mammalian motif (Figure 3.10). 

However, sites were identified in the stickleback using the fish-specific motif and 

this matched the consensus TGACnnnGC sequence (Figure S3.4). The 
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medaka had the greatest number of putative binding sites and included hits that 

had the lowest q-values for the mammalian motif but only 2 hits using the fish-

specific motif (Figure S3.4). The same binding sites were identified in medaka 

and tilapia using the mammalian and fish specific motifs (Figure 3.11B) 

 

In hsp70, p53 binding sites were located after -3 kb from the TSS in all species 

except in humans and stickleback (Figure 3.11B). Searches for p53 binding 

sites using the mammalian motif identified sequences across human, mouse, 

tilapia and stickleback. Alignments of binding regions showed the strongest 

correlation between the stickleback and human sequence across fish species 

(Figure S3.4). The zebrafish p53 motif identified a greater number of p53 

binding sites with hits in medaka and fugu. However, identified sequences in the 

human and mouse showed the greatest similarity to the motif file with q-values 

of 0.054 and 0.081 respectively (Figure S3.4).  

 

Despite validation in mammals, few HIF-1α binding sites were identified using 

the mammalian motif with single hits shown in the mouse, medaka and fugu. In 

contrast, AhR:DRE sites were not identified using the mammalian motif but hits 

were found using the fish specific motif in the zebrafish, medaka and tilapia 

(Figure 3.11B).  

 

hsp70 is traditionally associated with being regulated by HSF1 and multiple 

HSF1 binding sites were identified across all species investigated. All species 

had HSF1 binding sites between -3.5 and -5kb of the promoter regions and 

multiple sequences were identified in human, medaka, tilapia, zebrafish and 

stickleback. Alignments of binding sequences showed the most variation from 

the mammalian hits existed in the tilapia and these identified sequences 

subsequently had the lowest q-value score (Figure S3.5).  
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Figure 3.11. Promoter analysis for a). hmox1 and b). hsp70: Schematic 

representation of binding sites identified in the hmox1 and hsp70 promoter regions 

following 5 kb searches upstream of the transcription start site (TSS). Hmox1 was 

searched for binding sites for P53, Nrf2 and NFkB. Hsp70 was searched for sites for 

HIF-1α, P53, AhR, HSF1 and p53 in accordance with validated sites in mammalian 

studies. Promoter regions were searched using PWMs from JASPAR database. 

Overlap indicates sites that were shared between mammalian and fish-specific 

searches.    
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3.5 Discussion  

3.5.1 Validated binding sites across fish species: 

The literature search identified that validated binding sites across fish species 

matched the consensus sequence in the majority of cases. Sequences 

searches for AhR:DRE and MTF1:MRE showed no variation from the 

consensus sequence suggesting a strong evolutionary conservation of these 

sites across vertebrates. In addition, for MTF1, sites were shown to be 

necessary in clusters, a phenomenon conserved in mammals[63]. All identified 

sequences for these TFs were responsive to inducers under luciferase reporter 

assays [56-61], providing strong evidence that sequences matching the 

mammalian consensus were functional sites.  

 

Validated binding sequences differed from the consensus in Nrf2:EpRE and 

HIF-1α:HRE TFBS in zebrafish as well as in the epo gene in the Atlantic Killifish 

[55]. However, across other fish species, functional sites were identified 

matching the consensus mammalian sequence which suggests the motifs are 

widely conserved. However, as the evolutionary distance and diversity across 

teleost fish species is great, sharing an estimated ~350 million years of 

evolutionary history [39], and as TFBS evolve faster than TFs [64], there is a 

strong likelihood of species-specific divergences in TFBS composition. As 

whole genome studies for TF binding have yet to be widely performed across 

fish-species for adaptive stress response factors, the levels of species 

divergence in binding sites are not yet known. Identified variations in binding 

sequence were most prevalent in the zebrafish in this research but this may be 

biased as the zebrafish is the most widely used model fish species and there is 

therefore far more information available for this species in comparison to overs.  

 

In addition, as the identified studies for MTF1:MRE and AhR:DRE were 

searched using the consensus sequence, this could prevent any variations in 

binding motif from being identified [52]. PWMs alignments of the functional 

binding sites also showed little informational content in comparison to 

mammalian motifs with little variation from the consensus in validated sites. 

Information such as flanking regions to the consensus and the frequency of 

variations in base pairs can be identified from large amounts of information (e.g. 

10+ validated sites). Changes in frequency of base composition is important 
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considering that transcriptional output can be altered by the strength of TF-DNA 

interactions and therefore has evolutionary consequences[65].  

 

3.5.2 Threshold specificity altered across distantly related species: 

Given that there were no differences between validated sites and mammalian 

consensus for MTF1:MRE and AHR:DRE, further analysis of binding motifs 

focused on the Nrf2:EpRE and HIF-1α:HRE PWMs only. The results from the 

FIMO analysis showed that the threshold q-value, where an arbitrary threshold 

score between 0.01-0.05 is recommended [43], was too stringent to identify 

most known downstream target genes in fish species. 

 

Only scores for human and mouse hits for Nrf2:EpRE showed values of known 

downstream targets within this range, though this was not significantly different 

from the unknown target gene set. For fish species, there was an overall 

difference in the returned q-value between known and unknown downstream 

target genes across Nrf2:EpRE hits, with known targets on average having a 

lower q-value than their mammalian counterparts.  

Furthermore, no known downstream targets for HIF-1α:HRE genes had binding 

sites within 3.5 kb and 5 kb of the promoter region that were within the 0.01-

0.05 q-value threshold with the exception of the mouse MA1106.1 results at 5 

kb search, identifying that additional parameters are needed to identify true 

candidate sequences in the case of HIF-1α:HRE.  

 

However, it should be noted that the q-value only determines how well an 

identified sequence matches the matrix file; it is a measure of confidence but 

not necessarily of function. The difference in q-value between known and 

unknown targets reflects a difference in the overall sequence composition of 

identified binding sites and this suggests that there could be TFBD in distantly 

related species to mammals such as stickleback, where there was a reduced 

difference between q-value scores in known and unknown targets. However, 

incomplete genome annotations for the stickleback, tilapia and fugu may have 

caused a bias in the results; the q-value used in FIMO as a measure of 

accuracy is highly sensitive to the background GC% content and due to 

incomplete genomic information for these species, it is likely that not all gene 

promoters were compiled to make the background GC% files in this case.  
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3.5.3 Variation in classification performance across species: 

Random forest models were built to assess whether there was both a variation 

between motifs at predicting known downstream targets and a variation in 

classification performance across mammalian and fish species. For all random 

forest models, the q-value was the best predictor of whether a hit belonged to a 

downstream target or a gene in the background gene set. Parameters including 

enrichment, strand and p-value had a less significant effect on model 

performance, with predictions of true and false targets largely defined by the q-

value.  

 

For the Nrf2:EpRE datasets, all models constructed on the results from the 3.5 

kb FIMO analysis where able to successfully predict the classification of 

mammalian datasets with a high accuracy rate as shown by the AUC value. 

Likewise, all models were able to classify fish-specific gene sets but with a 

lower accuracy than for predictions using the mammalian dataset. Variation in 

the predictive scores and therefore the identified sequences is suggested 

across the known and unknown downstream target groups in fish, reflected by 

both a lower AUC value in the mammalian-trained models and a reduced 

classification score on fish-trained models. This research showed clear 

differences in the predictive performance of motif sequences, with MA0150.2 

having the highest AUC value across both mammals and fish when compared 

to the mammalian-trained model. The NFE2L2 motif, from the HOCOMOCO 

database, had the lowest performance despite being generated from multiple 

matrix files.  

 

Predicting the classification for unknown and known targets of the species-

specific datasets produced AUC values higher than for the combined fish-

dataset alone. However, the fact that fewer data points are used for this 

prediction could have caused some level of over-fitting of the test dataset to the 

training data but this is considered to be largely avoidable in random forest 

models, particularly where cross-validation techniques are used. In addition, as 

the q-value was the greatest predictor of performance across all models, 

variations in the q-value between species could have caused an overall reduced 

performance of the combined dataset.  

 



 209 

This analysis identified some variation in the species-specific predictive 

performance, notably for the medaka and stickleback at 3.5 kb search 

parameters and for fugu, tilapia and stickleback at 5 kb. Despite the variations 

in binding site composition identified in the zebrafish, Nrf2:EpRE motifs 

successfully classified the zebrafish dataset into known and unknown target 

gene groups. The zebrafish is the most evolutionary distinct of the teleost 

investigated (Figure S3.1), having the most distant common ancestor with the 

other teleost fish species studied, which may partly explain the differences in 

performance across the modelling results [66].   

 

In the case of HIF-1α, the absence of a difference between q-value across 

known downstream targets and unknown target gene groups affected the ability 

to build successful classification models for both mammalian and fish datasets. 

Random forest models were less able to characterise genes into known and 

unknown gene target groups with less significant differences in q-value returned 

in input sequences. This difference in classification performance may in part be 

due to the shorter sequence length compared the to EpRE motifs which could 

cause a higher frequency of negative hits within the genomic background. This 

research was based on the assumption that the binding sites for each factor 

would be located with 3.5 kb and 5 kb of the transcription start site (TSS) and 

whilst HIF-1α binding sites have been identified within this range [7], it is 

possible that in some gene targets, the regulatory binding sites are more distally 

located.  

 

Additional parameters used within the model, such as protein conservation, 

could further aid to the efficiency of the predictive platform. The study was also 

limited to the number of genes selected for the analysis and increasing the 

amount of information used within the model would significantly improve the 

accuracy of the results. In addition, this search only focused on the 3.5 kb and 5 

kb from the TSS, excluding distal and intragenic response elements that have 

roles in gene expression. Consequently, there is a chance that binding sites in 

known targets could be missed although most sites are within the same position 

as mammalian regions.  
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3.5.4 Putative binding sites were identified in shared downstream targets in the 

adaptive stress response pathway: 

 
Based on the results of this research, binding sites were identified in the target 

genes hmox1 and hsp70, which are regulated by multiple adaptive stress 

response factors in mammals. This analysis identified that sites were conserved 

across species using both mammalian and fish motifs.  

 

Hmox1 is a well-documented target of Nrf2 and had a large number of hits for 

EpRE regions across fish-species in this study using both mammalian and fish-

specific binding motifs. This fish-specific EpRE motif increased the number of 

identified sequences across fish species in combination with the mammalian 

motif but there were some cases of overlap between hits in the zebrafish and 

mouse.  As a good indicator of functional sites as shown in this study, being the 

main predictor of functional genes against background gene sets, the EpRE 

from the JASPAR database, MA0150.2, was used to search regulatory regions. 

For these hits, the q-value was low (<0.05) in identified hits across mammals 

and fish species using the mammalian motif. This shows that sites could be 

identified in traditional promoter analysis techniques if less stringent threshold 

scores, necessary to reduce false positive rates, are used. However, the fish 

EpRE motif did identify binding sequences in regions that were not found using 

the mammalian motif suggesting some sites could be missed based on 

mammalian motifs alone. This was also the case for fish specific p53 motif, 

which identified different sites in promoter regions and little overlap with 

mammalian motif search results.  

 

Hsp70 is targeted by multiple TFs. The AhR and HIF-1α have been 

demonstrated to form a binding complex [67] and variations were observed in 

the number of HIF-1α and AhR TFBS across each species. HIF-1α and AhR are 

thought to form a complex and the TFBS for these factors in mammals is similar 

(ending in GTG). Whilst there were few hits for AhR or HIF-1α sites using both 

mammalian and fish-specific matrices, there is a possibility that the dimer 

formed from AhR-HIF-1α interactions binds to a variation of this binding region. 

Hits for AhR and HIF-1α were few and low scoring (based on the q-value) and 
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this also suggests that binding regions could be outside of the 5 kb search 

parameters used in this analysis.  

 

Though the extent of conservation of NFkB sites was not researched in this 

study, kB sites were identified across species for hmox1 using mammalian 

motifs. Clusters of kB sites are associated with functional gene regulation with 

the number of occupied sites regulating the levels of gene expression [35]. 

NFkB sites were not identified in distinct clusters in this research across 

species. As a transgenic zebrafish model for NFkB showed predicted responses 

to inflammation caused by exposure to microbial colonization, suggesting a 

level of conservation with the mammalian motif [68].  

 

There are few validated sites for HSF1 across fish species, which has a short 

consensus sequence (nGAAn) but expected target genes have been shown to 

have putative binding regions in gene promoters [50,69]. Using the mammalian 

motif from the Jaspar database, HSE were enriched in the hsp70 gene 

promoters across species, often located distally between -4 and -5 kb. As hsp70 

is a well-known target of HSF1 in mammals and as heat-shock responses and 

HSF1 is conserved in fish species [50], this is a good indicator that atleast some 

of these sites are functional. 

 

The results from the hmox1 and hsp70 promoter analysis support the use of 

mammalian motifs, but with less stringent threshold scores. It should be noted 

that fish-specific motifs identified different numbers of TFBS in fish species 

compared to the mammalian motifs. However, as these are formed from only a 

limited number of binding sequences (<10 sites from the literature search) and 

were largely composed of the core consensus sequences, there is little 

informational content in the fish-specific PWM in comparison to the mammalian 

motifs. This includes limited information on flank coding regions as well as 

variations between bases which leads to altered levels in the q-value scores, as 

a measure of sequence comparison to the consensus. In addition, enriched 

motifs were only identified for HSE in hsp70 and for EpRE in Hmox1, which are 

the traditional regulators of these genes. Enrichment, largely associated with 

functional binding sites, did not improve the predictive performance of random 

forest models despite being a good indicator of functional sites. It is possible 
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that enrichment of TFBS is dependent on the TF in question as well as the 

length of the motif file and consensus sequence being searched.  

3.5.5 Further research: 

This research identified that whilst there are variations in TFBS across fish 

species, mammalian derived binding matrixes can provide good predictions of 

putative TFBS in distantly related species. However, there is still a need to 

validate binding regions across fish species to identify the levels and frequency 

of divergence across the genome. This would allow the ability to build more 

accurate identification models based on stronger species-specific empirical 

information and would indicate if there is a selective pressure on binding 

sequence composition between species.  The identification of robust TFBS is 

challenging in non-model organisms, particularly as ChIP-Seq/ATAC-seq are 

reliant on mammalian antibodies that do not always function effectively across 

vertebrates[70]. However, the results from this analysis, particularly for Nrf2 and 

HIF-1α, demonstrate the advantages of using fish-specific motifs in the context 

of identifying target genes across greater evolutionary ranges where divergence 

and informational content can change the likelihood of identifying target genes.  

 

The regulation of genes through distal enhancer elements where non-coding 

regions contain clusters of binding motifs associated with multiple factors[71] 

could increase the predictive performance of TFBS identification by combining 

motif searches for genes that are known to be shared targets for multiple 

factors. In addition, predictive models that consider the DNA-shape and TF 

binding have been shown to produce more accurate predictions of functional 

TFBS [72]. Models that incorporate data on chromatin composition along with 

PWM searches have also improved predictions in mammals[73]. Where the 

data is available, these methods should be combined with the current motif 

prediction techniques using PWM in a fish-specific context.  

 

In addition, although MTF1 had multiple binding sequences, the performance of 

this motif may be more obvious in comparison to mammalian PWMs. However, 

as few known target genes have been efficiently annotated across species to 

conduct this analysis, this was not conducted in this research. 
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3.6 Conclusion 

The initial analysis of binding regions showed some differences in fish-specific 

sequences. Using random forest models to assess binding site conservation 

showed that mammalian derived PWMs could classify downstream target genes 

across fish species but with a lower efincency than mammalian gene sets for 

Nrf2:EpRE. However, for HIF-1α, data provided from motif hits was insufficient 

to classify gene sets into known and unknown target gene groups. The research 

showed that whilst threshold parameters are a widely used in in silico 

identification methods, less-stringent values were necessary to identify putative 

regulatory regions in genes which are highly likely downstream targets of the 

TFs analyzed. Fish-specific binding motifs identified novel putative binding sites 

in comparison to mammalian models. This research highlights that different 

information can be obtained using fish-speciifc and mammalian motifs, though 

in general, binding sites show strong conservation with mammalian consensus 

sequences. More research is necessary to validated putative hits to establish 

the significance of these findings.  
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Chapter 3: A critical analysis of in silico methods used for identifying 

transcription factor binding sites across fish species 

 

3.7 Supplementary Information 

 
This supplementary information contains:  

 
Figure S3.1: Evolutionary Tree of relatedness between fish and mammalian 

species.  

Figure S3.2:  PWM for adaptive stress response factors. 

Table S3.1: Gene ids for validated Nrf2:EpRE targets.  

Table S3.2: Gene ids for known target genes of HIF-1α:HRE   

Table S3.3: Background ensemble gene ids comprising of unknown targets of       

Nrf2:EpRE and HIF-1α:HRE  

Table S3.4: 0-order Markov Model of whole genome promoter sequences.  

Table S3.5: Model selection results for 5kb mammalian datasets. 

Table S3.6: Random forest model parameter for Nrf2:EpRE models  

Table S3.7: Random forest model parameters for HIF-1α:HRE based models:  

Table S3.8: Variable importance in Nrf2:EpRE random forest models. 

Table S3.9: Variable importance in HIF-1α:HRE random forest models. 

Figure S3.3: Alignments of identified binding sites in the hmox1 promoter 

Figure S3.4: Alignments of identified binding sites in the hsp70 promoter for the 

EpRE and p53. 

Figure S3.5: Alignments of identified binding sites in the hsp70 promoter for the 

HSE.  
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Figure S3.1: Evolutionary trees of species relatedness and transcription 

factor conservation. A). Evolutionary tree of species relatedness as adapted 

from Volff. (2005) [39].  
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Figure S3.2: PWM for adaptive stress response factors. PWM from the 

JASPAR database for AhR:DRE, NFkB:kB, HSF1:HSE, p53 and MTF1. AhR, 

NFkB, HSF1 and p53 motifs were used to search promoter regions in hmox1 

and hsp70.  
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Table S3.1: Gene ids for validated Nrf2:EpRE targets: Downstream gene 

targets for Nrf2 were identified from the literature. In each case, ensemble gene 

ids were selected for humans and the gene orthologs were derived from the 

Ensembl database. Paralogs for all genes were used in the subsequent 

analysis.   

 
Gene 
Name 

Human Mouse Medaka Sticklebac
k 

Tilapia Zebrafish Fugu 

UGDH ENSG0000
0109814 

ENSMUSG00
000029201 

ENSORLG00
000005642 

ENSGACG00
000016178 

ENSONIG000
00008996 

ENSDARG000000
19838 

ENSTRUG00
000009509 

NFE2L2 ENSG0000
0116044 

ENSMUSG00
000015839 

ENSORLG00
000017568 

ENSGACG00
000004470 

ENSONIG000
00008604 

ENSDARG000000
42824 

ENSTRUG00
000017486 

PRDX1 ENSG0000
0117450 

ENSMUSG00
000028691 

ENSORLG00
000010533 

ENSGACG00
000016172 

ENSONIG000
00018611 

ENSDARG000000
58734 

ENSTRUG00
000012465 

SQSTM1 ENSG0000
0161011 

ENSMUSG00
000015837 

ENSORLG00
000020572 

ENSGACG00
000016271 

ENSONIG000
00000103 

ENSDARG000000
75014 

ENSTRUG00
000017345 

HMOX1 ENSG0000
0100292 

ENSMUSG00
000005413 

ENSORLG00
000010457 

ENSGACG00
000006771 

ENSONIG000
00018076 

ENSDARG000000
27529 

ENSTRUG00
000004710 

    ENSMUSG00
000005413 

  ENSGACG00
000019469 

ENSONIG000
00008232 

ENSDARG000000
42533 (gstm1) 

  

            ENSDARG000000
88116 (gstm3) 

  

GSTM1 ENSG0000
0134184 

ENSMUSG00
000058135 

ENSORLG00
000005927 

ENSGACG00
000007655 

ENSONIG000
00002477 

ENSDARG000000
29473 

ENSTRUG00
000006620 

      ENSORLG00
000005961 

ENSGACG00
000007674 

    ENSTRUG00
000001751 

SRXN1 ENSG0000
0271303 

ENSMUSG00
000032802 

ENSORLG00
000015074 

ENSGACG00
000011801 

ENSONIG000
00016757 

ENSDARG000000
79160 

ENSTRUG00
000007666 

GCLC ENSG0000
0001084 

ENSMUSG00
000032350 

ENSORLG00
000009800 

ENSGACG00
000006384 

ENSONIG000
00009700 

ENSDARG000000
13095 

ENSTRUG00
000015144 

ABCC2 ENSG0000
0023839 

ENSMUSG00
000025194 

ENSORLG00
000008249 

ENSGACG00
000007419 

ENSONIG000
00018322 

ENSDARG000000
14031 

ENSTRUG00
000009329 

          ENSONIG000
00009455 

    

GSTA1 ENSG0000
0243955 

ENSMUSG00
000057933 

ENSORLG00
000009674 

ENSGACG00
000006489 

ENSONIG000
00009685 

ENSDARG000000
39832 

ENSTRUG00
000014918 

    ENSMUSG00
000074183 

    ENSONIG000
00009676 

ENSDARG000000
90228 

  

    ENSMUSG00
000074179 

          

    ENSMUSG00
000111709 

          

AHR ENSG0000
0106546 

ENSMUSG00
000019256 

ENSORLG00
000000135 

ENSGACG00
000008466 

ENSONIG000
00012216 

ENSDARG000000
20046 

ENSTRUG00
000018462 

    ENSMUSG00
000019256 

ENSORLG00
000018196 

ENSGACG00
000015617 

ENSONIG000
00010232 

  ENSTRUG00
000009303 

              ENSTRUG00
000000070 

KEAP1 ENSG0000
0079999 

ENSMUSG00
000003308 

ENSORLG00
000003823 

ENSGACG00
000019479 

ENSONIG000
00018066 

ENSDARG000000
74634 

ENSTRUG00
000003855 

GCLM ENSG0000
0023909 

ENSMUSG00
000028124 

ENSORLG00
000017101 

ENSGACG00
000011182 

ENSONIG000
00002354 

ENSDARG000000
18953 

ENSTRUG00
000000742 

SOD1 ENSG0000
0142168 

ENSMUSG00
000022982 

ENSORLG00
000004389 

ENSGACG00
000020581 

ENSONIG000
00004690 

ENSDARG000000
43848 

ENSTRUG00
000008179 

FTH1 ENSG0000
0167996 

ENSMUSG00
000024661 

ENSORLG00
000006156 

ENSGACG00
000015484 

ENSONIG000
00002989 

ENSDARG000000
15551 

ENSTRUG00
000017266 

      ENSORLG00
000005872 

  ENSONIG000
00015578 

ENSDARG000000
07975 

  

NQO1 ENSG0000
0181019 

ENSMUSG00
000003849 

ENSORLG00
000017876 

ENSGACG00
000003764 

ENSONIG000
00015892 

  ENSTRUG00
000010839 

    ENSMUSG00
000003849 

ENSORLG00
000007464 

ENSGACG00
000003770 

ENSONIG000
00003376 

ENSDARG000000
10250 

ENSTRUG00
000011870 

        ENSGACG00
000003783 

      

        ENSGACG00
000003776 
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        ENSGACG00
000003788 

      

        ENSGACG00
000003762 

      

        ENSGACG00
000003754 

      

        ENSGACG00
000003769 

      

        ENSGACG00
000003752 

      

GAPDH ENSG0000
0111640 

ENSMUSG00
000098456 

ENSORLG00
000012224 

ENSGACG00
000010219 

ENSONIG000
00012916 

ENSDARG000000
43457 

ENSTRUG00
000003708 

    ENSMUSG00
000081607 

          

CAT ENSG0000
0121691 

ENSMUSG00
000027187 

ENSORLG00
000001746 

ENSGACG00
000003491 

ENSONIG000
00012865 

ENSDARG000001
04702 

ENSTRUG00
000016160 

GPX1 ENSG0000
0233276 

ENSMUSG00
000063856 

ENSORLG00
000000823 

ENSGACG00
000010455 

ENSONIG000
00019002 

ENSDARG000000
18146 

ENSTRUG00
000008247 

      ENSORLG00
000010182 

ENSGACG00
000000882 

  ENSDARG000000
06207 

ENSTRUG00
000004998 

MGST3 ENSG0000
0143198 

ENSMUSG00
000026688 

          ENSGACG00
000016252 

ENSONIG000
00018637 

ENSDARG000001
02744 

ENSTRUG00
000000749 
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Table S3.2: Gene ids for known target genes of HIF-1α:HRE: Downstream 

gene targets for HIF-1α were identified from the literature. In each case, 

ensemble gene ids were selected for humans and the gene orthologs were 

derived from the Ensembl database. Paralogs for all genes were used in the 

subsequent analysis.   

Gene 
Name 

Human Mouse Zebrafis
h 

Fugu Tilapia stickleba
ck 

Medaka 

EPO ENSG0000
0130427 

ENSMUSG000
00029711 

ENSDARG000
00055163 

ENSTRUG000
00003617 

ENSONIG000
00019900 

ENSGACG000
00019930 

ENSORLG000
00003612 

  ENSG0000
0112715 

ENSMUSG000
00023951 

ENSDARG000
00034700 

ENSTRUG000
00008580 

  ENSGACG000
00014012 

  

      ENSDARG000
00103542 

ENSTRUG000
00015230 

  ENSGACG000
00013374 

ENSORLG000
00016887 

EGF ENSG0000
0138798 

ENSMUSG000
00028017 

ENSDARG000
00052739 

ENSTRUG000
00015626 

ENSONIG000
00001112 

ENSGACG000
00016495 

ENSORLG000
00020598 

CHD2 ENSG0000
0173575 

ENSMUSG000
00020826 

ENSDARG000
00060687 

ENSTRUG000
00008842 

ENSONIG000
00015136 

ENSGACG000
00013246 

ENSORLG000
00008403 

SNAPC1 ENSG0000
0023608 

ENSMUSG000
00021113 

ENSDARG000
00029569 

ENSTRUG000
00010116 

ENSONIG000
00001477 

ENSGACG000
00010844 

ENSORLG000
00018054 

      ENSDARG000
00003827 

  ENSONIG000
00001765 

ENSGACG000
00016750 

ENSONIG000
00001765 

FOS ENSG0000
0170345 

ENSMUSG000
00021250 

ENSDARG000
00040135 

ENSTRUG000
00010431 

ENSONIG000
00015264 

ENSGACG000
00007617 

ENSORLG000
00017504 

      ENSDARG000
00031683 

ENSTRUG000
00018314 

ENSONIG000
00020185 

ENSGACG000
00010481 

ENSORLG000
00017504 

SLC2A3 ENSG0000
0059804 

ENSMUSG000
00003153 

ENSDARG000
00013295 

ENSTRUG000
00007710 

ENSONIG000
00012832 

ENSGACG000
00001994 

ENSORLG000
00011838 

        ENSTRUG000
00005156 

ENSONIG000
00007021 

ENSGACG000
00010483 

ENSORLG000
00006093 

                

NDRG1 ENSG0000
0104419 

  ENSDARG000
00032849 

ENSTRUG000
00010966 

ENSORLG000
00004785 

ENSGACG000
00005968 

ENSONIG000
00006850 

      ENSDARG000
00010420 

ENSTRUG000
00010413 

ENSORLG000
00003558 

ENSGACG000
00006984 

ENSONIG000
00002093 

PKM2 ENSG0000
0067225 

ENSMUSG000
00032294 

ENSDARG000
00099730 

ENSTRUG000
00004651 

ENSORLG000
00013279 

ENSGACG000
00016600 

ENSONIG000
00002725 

CGA ENSG0000
0135346 

ENSMUSG000
00028298 

ENSDARG000
00040479 

ENSTRUG000
00005818 

  ENSGACG000
00009153 

ENSORLG000
00014810 

GPI ENSG0000
0105220 

ENSMUSG000
00036427 

ENSDARG000
00012987 

ENSTRUG000
00015872 

ENSONIG000
00018246 

ENSGACG000
00007744 

ENSORLG000
00000249 

      ENSDARG000
00103826 

ENSTRUG000
00001879 

ENSONIG000
00002874 

ENSGACG000
00014922 

ENSORLG000
00014082 

        ENSTRUG000
00001618 

ENSONIG000
00007356 

    

BCL2L ENSG0000
0171791 

ENSMUSG000
00003190 

ENSDARG000
00008434 

ENSTRUG000
00005363 

ENSONIG000
00009766 

ENSGACG000
00013368 

ENSORLG000
00016791 

          ENSONIG000
00017372 

    

ZFAT1 ENSG0000
0066827 

ENSMUSG000
00022335 

  ENSTRUG000
00017967 

    ENSONIG000
00001807 

        ENSTRUG000
00010724 

ENSONIG000
00007011 

ENSGACG000
00006955 

ENSORLG000
00004805 

        ENSTRUG000
00012678 

ENSONIG000
00008419 

ENSGACG000
00006393 

ENSORLG000
00004943 

          ENSONIG000
00002725 

ENSGACG000
00016600 

  

NARF ENSG0000
0141562 

ENSMUSG000
00000056 

ENSDARG000
00024184 

ENSTRUG000
00008423 

ENSONIG000
00019672 

ENSGACG000
00005244 

ENSORLG000
00019873 

GPR37L1 ENSG0000
0170075 

ENSMUSG000
00026424 

ENSDARG000
00006079 

ENSTRUG000
00013954 

ENSONIG000
00014671 

ENSGACG000
00000278 

ENSORLG000
00002758 

        ENSTRUG000
00009206 

ENSONIG000
00000494 

ENSGACG000
00004094 

ENSORLG000
00018276 
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SEMA4B ENSG0000
0185033 

ENSMUSG000
00030539 

ENSDARG000
00074414 

ENSTRUG000
00002328 

ENSONIG000
00002592 

ENSGACG000
00010807 

ENSORLG000
00012629 

      ENSDARG000
00062352 

ENSTRUG000
00006523 

ENSONIG000
00015171 

ENSGACG000
00016484 

ENSORLG000
00008247 

PDK1 ENSG0000
0152256 

ENSMUSG000
00006494 

ENSDARG000
00013128 

ENSTRUG000
00017692 

ENSONIG000
00008703 

ENSGACG000
00004843 

ENSORLG000
00017416 

SCL2A ENSG0000
0117394 

ENSMUSG000
00028645 

ENSDARG000
00007412 

ENSTRUG000
00002051 

  ENSGACG000
00012574 

ENSORLG000
00019077 

      ENSDARG000
00001437 

ENSTRUG000
00002157 

  ENSGACG000
00004850 

ENSORLG000
00007473 

        ENSTRUG000
00001412 

      

MMP2 ENSG0000
0087245 

ENSMUSG000
00031740 

ENSDARG000
00017676 

ENSTRUG000
00010165 

ENSONIG000
00002793 

ENSGACG000
00016670 

ENSORLG000
00013688 

BNIP3 ENSG0000
0176171 

ENSMUSG000
00078566 

  ENSTRUG000
00006491 

  ENSGACG000
00009527 

ENSORLG000
00005914 

    ENSMUSG000
00078566 

ENSDARG000
00022832 

ENSTRUG000
00006491 

ENSONIG000
00000438 

ENSGACG000
00009527 

  

      ENSDARG000
00099961 

ENSTRUG000
00006491 

ENSONIG000
00000438 

ENSGACG000
00009527 

  

PIGF1 ENSG0000
0151665 

ENSMUSG000
00024145 

ENSDARG000
00032780 

ENSTRUG000
00004839 

ENSONIG000
00015903 

ENSGACG000
00002773 

ENSORLG000
00018733 
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Table S3.3: Background ensemble gene ids comprising of unknown 

targets of Nrf2:EpRE and HIF-1α:HRE. A list of 80 human gene names were 

randomly generated using molbiotools (http://www.molbiotools.com). Ensembl 

gene ids were then obtained for the genes in human, mouse, zebrafish, 

tilapia, stickleback, medaka and fugu suing the Ensembl Biomart database 

(as shown). Gene paralogs were excluded from this analysis so the final gene 

list comprises of 80 genes for each species.  

 

Trainin
g Set  Human 

Stickleba
ck 

Zebrafis
h Mouse Medaka Fugu Tilapia 

CRB1 
ENSG0000
0134376 

ENSGACG000
00009835 

ENSDARG000
00100506 

ENSMUSG00
000063681 

ENSORLG000
00009129 

ENSTRUG000
00009186 

ENSONIG000
00010727 

FOXJ3 
ENSG0000
0198815 

ENSGACG000
00007398 

ENSDARG000
00075774 

ENSMUSG00
000032998 

ENSORLG000
00004623 

ENSTRUG000
00014404 

ENSONIG000
00002167 

SUN1 
ENSG0000
0164828 

ENSGACG000
00011433 

ENSDARG000
00055350 

ENSMUSG00
000036817 

ENSORLG000
00008524 

ENSTRUG000
00003138 

ENSONIG000
00019101 

MTUS1 
ENSG0000
0129422 

ENSGACG000
00018595 

ENSDARG000
00071562 

ENSMUSG00
000045636 

ENSORLG000
00018633 

ENSTRUG000
00009546 

ENSONIG000
00006729 

KIAA121
7 

ENSG0000
0120549 

ENSGACG000
00003838 

ENSDARG000
00059333 

ENSMUSG00
000036617 

ENSORLG000
00010340 

ENSTRUG000
00017841 

ENSONIG000
00009695 

PTPN11 
ENSG0000
0179295 

ENSGACG000
00015575 

ENSDARG000
00020334 

ENSMUSG00
000043733 

ENSORLG000
00000470 

ENSTRUG000
00018529 

ENSONIG000
00015302 

SPRYD4 
ENSG0000
0176422 

ENSGACG000
00003092 

ENSDARG000
00023309 

ENSMUSG00
000051346 

ENSORLG000
00012455 

ENSTRUG000
00002839 

ENSONIG000
00017030 

GRXCR1 
ENSG0000
0215203 

ENSGACG000
00017551 

ENSDARG000
00069865 

ENSMUSG00
000068082 

ENSORLG000
00000654 

ENSTRUG000
00014150 

ENSONIG000
00002391 

PSG3 
ENSG0000
0221826 

ENSGACG000
00009412 

ENSDARG000
00105324 

ENSMUSG00
000074272 

ENSORLG000
00013389 

ENSTRUG000
00003595 

ENSONIG000
00013122 

RPL29 
ENSG0000
0162244 

ENSGACG000
00007041 

ENSDARG000
00077717 

ENSMUSG00
000048758 

ENSORLG000
00004752 

ENSTRUG000
00007770 

ENSONIG000
00014377 

SS18 
ENSG0000
0141380 

ENSGACG000
00013236 

ENSDARG000
00002970 

ENSMUSG00
000037013 

ENSORLG000
00016977 

ENSTRUG000
00008991 

ENSONIG000
00009737 

TRMT10
B 

ENSG0000
0165275 

ENSGACG000
00019076 

ENSDARG000
00060176 

ENSMUSG00
000035601 

ENSORLG000
00007862 

ENSTRUG000
00018087 

ENSONIG000
00012990 

CCAR1 
ENSG0000
0060339 

ENSGACG000
00007905 

ENSDARG000
00074759 

ENSMUSG00
000020074 

ENSORLG000
00007436 

ENSTRUG000
00013280 

ENSONIG000
00018419 

AVP 
ENSG0000
0101200 

ENSGACG000
00006569 

ENSDARG000
00042845 

ENSMUSG00
000037727 

ENSORLG000
00003907 

ENSTRUG000
00015631 

ENSONIG000
00015218 

RALGDS 
ENSG0000
0160271 

ENSGACG000
00014771 

ENSDARG000
00042409 

ENSMUSG00
000026821 

ENSORLG000
00020651 

ENSTRUG000
00007032 

ENSONIG000
00013950 

RBMY1E 
ENSG0000
0242389 

ENSGACG000
00017237 

ENSDARG000
00014244 

ENSMUSG00
000096520 

ENSORLG000
00001692 

ENSTRUG000
00006031 

ENSONIG000
00002700 

PITX1 
ENSG0000
0069011 

ENSGACG000
00016483 

ENSDARG000
00042785 

ENSMUSG00
000021506 

ENSORLG000
00000858 

ENSTRUG000
00009140 

ENSONIG000
00017304 

ARSB 
ENSG0000
0113273 

ENSGACG000
00015775 

ENSDARG000
00108788 

ENSMUSG00
000042082 

ENSORLG000
00002398 

ENSTRUG000
00003412 

ENSONIG000
00015486 

FGFR2 
ENSG0000
0066468 

ENSGACG000
00003443 

ENSDARG000
00058115 

ENSMUSG00
000030849 

ENSORLG000
00013277 

ENSTRUG000
00017610 

ENSONIG000
00010192 

DIEXF 
ENSG0000
0117597 

ENSGACG000
00012761 

ENSDARG000
00017696 

ENSMUSG00
000016181 

ENSORLG000
00019107 

ENSTRUG000
00011153 

ENSONIG000
00019525 

NSMCE4
A 

ENSG0000
0107672 

ENSGACG000
00005042 

ENSDARG000
00024311 

ENSMUSG00
000040331 

ENSORLG000
00011593 

ENSTRUG000
00015029 

ENSONIG000
00009943 

GOLGA6
L6 

ENSG0000
0277322 

ENSGACG000
00016644 

ENSDARG000
00063197 

ENSMUSG00
000002546 

ENSORLG000
00006984 

ENSTRUG000
00018651 

ENSONIG000
00002830 

SHE 
ENSG0000
0169291 

ENSGACG000
00004491 

ENSDARG000
00087956 

ENSMUSG00
000046280 

ENSORLG000
00009685 

ENSTRUG000
00005642 

ENSONIG000
00006285 

CDKN3 
ENSG0000
0100526 

ENSGACG000
00011791 

ENSDARG000
00039130 

ENSMUSG00
000037628 

ENSORLG000
00009158 

ENSTRUG000
00010247 

ENSONIG000
00019575 

FTCD 
ENSG0000
0160282 

ENSGACG000
00015411 

ENSDARG000
00007421 

ENSMUSG00
000001155 

ENSORLG000
00018636 

ENSTRUG000
00000589 

ENSONIG000
00009387 

LRWD1 
ENSG0000
0161036 

ENSGACG000
00020765 

ENSDARG000
00035147 

ENSMUSG00
000029703 

ENSORLG000
00014559 

ENSTRUG000
00012493 

ENSONIG000
00009466 

http://www.molbiotools.com/
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SLC25A2
9 

ENSG0000
0197119 

ENSGACG000
00012925 

ENSDARG000
00057352 

ENSMUSG00
000021265 

ENSORLG000
00017564 

ENSTRUG000
00009698 

ENSONIG000
00000788 

KLF7 
ENSG0000
0118263 

ENSGACG000
00002124 

ENSDARG000
00073857 

ENSMUSG00
000025959 

ENSORLG000
00010342 

ENSTRUG000
00008149 

ENSONIG000
00013381 

ADRB1 
ENSG0000
0043591 

ENSGACG000
00006578 

ENSDARG000
00007490 

ENSMUSG00
000035283 

ENSORLG000
00004803 

ENSTRUG000
00012396 

ENSONIG000
00020665 

STRBP 
ENSG0000
0165209 

ENSGACG000
00017377 

ENSDARG000
00021455 

ENSMUSG00
000026915 

ENSORLG000
00010162 

ENSTRUG000
00008384 

ENSONIG000
00013919 

SLC35B1 
ENSG0000
0121073 

ENSGACG000
00009684 

ENSDARG000
00038213 

ENSMUSG00
000020873 

ENSORLG000
00002514 

ENSTRUG000
00011550 

ENSONIG000
00000758 

PPAT 
ENSG0000
0128059 

ENSGACG000
00014340 

ENSDARG000
00004517 

ENSMUSG00
000029246 

ENSORLG000
00001965 

ENSTRUG000
00015737 

ENSONIG000
00002917 

HOXB1 
ENSG0000
0120094 

ENSGACG000
00003939 

ENSDARG000
00054033 

ENSMUSG00
000018973 

ENSORLG000
00012369 

ENSTRUG000
00010036 

ENSONIG000
00018209 

CD109 
ENSG0000
0156535 

ENSGACG000
00006787 

ENSDARG000
00060609 

ENSMUSG00
000046186 

ENSORLG000
00017286 

ENSTRUG000
00010621 

ENSONIG000
00008083 

HIBCH 
ENSG0000
0198130 

ENSGACG000
00002609 

ENSDARG000
00054867 

ENSMUSG00
000041426 

ENSORLG000
00015037 

ENSTRUG000
00012966 

ENSONIG000
00007161 

SPTLC2 
ENSG0000
0100596 

ENSGACG000
00005393 

ENSDARG000
00018976 

ENSMUSG00
000021036 

ENSORLG000
00010589 

ENSTRUG000
00018026 

ENSONIG000
00001084 

CYP2A7 
ENSG0000
0198077 

ENSGACG000
00012840 

ENSDARG000
00101423 

ENSMUSG00
000074254 

ENSORLG000
00001225 

ENSTRUG000
00015833 

ENSONIG000
00005899 

HSF4 
ENSG0000
0102878 

ENSGACG000
00013994 

ENSDARG000
00013251 

ENSMUSG00
000033249 

ENSORLG000
00013768 

ENSTRUG000
00000721 

ENSONIG000
00010204 

PARP10 
ENSG0000
0178685 

ENSGACG000
00008798 

ENSDARG000
00087145 

ENSMUSG00
000063268 

ENSORLG000
00013501 

ENSTRUG000
00013287 

ENSONIG000
00007669 

HINFP 
ENSG0000
0172273 

ENSGACG000
00020411 

ENSDARG000
00004851 

ENSMUSG00
000032119 

ENSORLG000
00007490 

ENSTRUG000
00016621 

ENSONIG000
00005379 

WDR19 
ENSG0000
0157796 

ENSGACG000
00016145 

ENSDARG000
00037406 

ENSMUSG00
000037890 

ENSORLG000
00005532 

ENSTRUG000
00008814 

ENSONIG000
00008982 

PDLIM1 
ENSG0000
0107438 

ENSGACG000
00003243 

ENSDARG000
00019845 

ENSMUSG00
000055044 

ENSORLG000
00014111 

ENSTRUG000
00017854 

ENSONIG000
00010331 

APBB1 
ENSG0000
0166313 

ENSGACG000
00011369 

ENSDARG000
00076560 

ENSMUSG00
000037032 

ENSORLG000
00004141 

ENSTRUG000
00006654 

ENSONIG000
00016866 

DUSP10 
ENSG0000
0143507 

ENSGACG000
00010062 

ENSDARG000
00052465 

ENSMUSG00
000039384 

ENSORLG000
00012052 

ENSTRUG000
00006678 

ENSONIG000
00005979 

ATAD3A 
ENSG0000
0197785 

ENSGACG000
00005036 

ENSDARG000
00086848 

ENSMUSG00
0000236 

ENSORLG000
00018296 

ENSTRUG000
00010114 

ENSONIG000
00018915 

LRRFIP1 
ENSG0000
0124831 

ENSGACG000
00001620 

ENSDARG000
00030012 

ENSMUSG00
000026305 

ENSORLG000
00008211 

ENSTRUG000
00008570 

ENSONIG000
00016777 

EVL 
ENSG0000
0196405 

ENSGACG000
00008613 

ENSDARG000
00099720 

ENSMUSG00
000021262 

ENSORLG000
00015624 

ENSTRUG000
00010357 

ENSONIG000
00020106 

MYBBP1
A 

ENSG0000
0132382 

ENSGACG000
00020754 

ENSDARG000
00078214 

ENSMUSG00
000040463 

ENSORLG000
00014339 

ENSTRUG000
00008378 

ENSONIG000
00017370 

IGF2 
ENSG0000
0167244 

ENSGACG000
00011125 

ENSDARG000
00033307 

ENSMUSG00
000048583 

ENSORLG000
00018930 

ENSTRUG000
00009557 

ENSONIG000
00014499 

IGF2 
ENSG0000
0167244 

ENSGACG000
00011125 

ENSDARG000
00018643 

ENSMUSG00
000048583 

ENSORLG000
00018930 

ENSTRUG000
00009557 

ENSONIG000
00014499 

UQCRH 
ENSG0000
0173660 

ENSGACG000
00015611 

ENSDARG000
00059128 

ENSMUSG00
000063882 

ENSORLG000
00008554 

ENSTRUG000
00007187 

ENSONIG000
00010536 

HCN4 
ENSG0000
0138622 

ENSGACG000
00016590 

ENSDARG000
00061685 

ENSMUSG00
000032338 

ENSORLG000
00013180 

ENSTRUG000
00005413 

ENSONIG000
00008418 

TPCN1 
ENSG0000
0186815 

ENSGACG000
00009537 

ENSDARG000
00062362 

ENSMUSG00
000032741 

ENSORLG000
00008165 

ENSTRUG000
00016229 

ENSONIG000
00013599 

SNORD1
18 

ENSG0000
0200463 

ENSGACG000
00022675 

ENSDARG000
00082850 

ENSMUSG00
000064899 

ENSORLG000
00021460 

ENSTRUG000
00019317 

ENSONIG000
00021946 

AGL 
ENSG0000
0162688 

ENSGACG000
00014614 

ENSDARG000
00106630 

ENSMUSG00
000033400 

ENSORLG000
00005432 

ENSTRUG000
00012741 

ENSONIG000
00001656 

MRPL32 
ENSG0000
0106591 

ENSGACG000
00005754 

ENSDARG000
00060489 

ENSMUSG00
000015672 

ENSORLG000
00006185 

ENSTRUG000
00014307 

ENSONIG000
00007276 

MGAT4A 
ENSG0000
0071073 

ENSGACG000
00002932 

ENSDARG000
00063330 

ENSMUSG00
000026110 

ENSORLG000
00012322 

ENSTRUG000
00014086 

ENSONIG000
00014241 

SLCO1C1 
ENSG0000
0139155 

ENSGACG000
00008749 

ENSDARG000
00016749 

ENSMUSG00
000030235 

ENSORLG000
00008279 

ENSTRUG000
00016998 

ENSONIG000
00008514 

WBP1 
ENSG0000
0239779 

ENSGACG000
00000318 

ENSDARG000
00092260 

ENSMUSG00
000030035 

ENSORLG000
00006422 

ENSTRUG000
00002699 

ENSONIG000
00017549 

FBXO4 
ENSG0000
0151876 

ENSGACG000
00006857 

ENSDARG000
00074170 

ENSMUSG00
000022184 

ENSORLG000
00004065 

ENSTRUG000
00015025 

ENSONIG000
00015180 

GLRB 
ENSG0000
0109738 

ENSGACG000
00016556 

ENSDARG000
00052782 

ENSMUSG00
000028020 

ENSORLG000
00014832 

ENSTRUG000
00015901 

ENSONIG000
00001184 

BCL2L13 
ENSG0000
0099968 

ENSGACG000
00013693 

ENSDARG000
00062370 

ENSMUSG00
000009112 

ENSORLG000
00015896 

ENSTRUG000
00003370 

ENSONIG000
00010327 



 223 

EPHB1 
ENSG0000
0154928 

ENSGACG000
00013951 

ENSDARG000
00076757 

ENSMUSG00
000032537 

ENSORLG000
00011003 

ENSTRUG000
00018413 

ENSONIG000
00010010 

TRIL 
ENSG0000
0255690 

ENSGACG000
00007203 

ENSDARG000
00100791 

ENSMUSG00
000043496 

ENSORLG000
00005131 

ENSTRUG000
00018191 

ENSONIG000
00021346 

DUOX1 
ENSG0000
0137857 

ENSGACG000
00006163 

ENSDARG000
00062632 

ENSMUSG00
000033268 

ENSORLG000
00005268 

ENSTRUG000
00009066 

ENSONIG000
00008359 

CRBN 
ENSG0000
0113851 

ENSGACG000
00000750 

ENSDARG000
00054250 

ENSMUSG00
000005362 

ENSORLG000
00001509 

ENSTRUG000
00011346 

ENSONIG000
00019050 

DGCR6 
ENSG0000
0183628 

ENSGACG000
00011927 

ENSDARG000
00005500 

ENSMUSG00
000003531 

ENSORLG000
00013085 

ENSTRUG000
00006563 

ENSONIG000
00010855 

NOM1 
ENSG0000
0146909 

ENSGACG000
00003920 

ENSDARG000
00060027 

ENSMUSG00
000001569 

ENSORLG000
00010541 

ENSTRUG000
00010239 

ENSONIG000
00005958 

GDE1 
ENSG0000
0006007 

ENSGACG000
00018741 

ENSDARG000
00055108 

ENSMUSG00
000033917 

ENSORLG000
00015102 

ENSTRUG000
00004050 

ENSONIG000
00005169 

NRDC 
ENSG0000
0078618 

ENSGACG000
00003577 

ENSDARG000
00019596 

ENSMUSG00
000053510 

ENSORLG000
00003474 

ENSTRUG000
00015775 

ENSONIG000
00004642 

ECI1 
ENSG0000
0167969 

ENSGACG000
00005907 

ENSDARG000
00018002 

ENSMUSG00
000024132 

ENSORLG000
00016704 

ENSTRUG000
00014501 

ENSONIG000
00006534 

NPR3 
ENSG0000
0113389 

ENSGACG000
00003906 

ENSDARG000
00035253 

ENSMUSG00
000022206 

ENSORLG000
00017232 

ENSTRUG000
00013730 

ENSONIG000
00013952 

PLIN1 
ENSG0000
0166819 

ENSGACG000
00017870 

ENSDARG000
00054048 

ENSMUSG00
000030546 

ENSORLG000
00006290 

ENSTRUG000
00001733 

ENSONIG000
00014533 

ABCB6 
ENSG0000
0115657 

ENSGACG000
00008399 

ENSDARG000
00074254 

ENSMUSG00
000026198 

ENSORLG000
00005333 

ENSTRUG000
00009019 

ENSONIG000
00012196 

NHEJ1 
ENSG0000
0187736 

ENSGACG000
00015560 

ENSDARG000
00058893 

ENSMUSG00
000026162 

ENSORLG000
00001663 

ENSTRUG000
00012232 

ENSONIG000
00012157 

CYP2U1 
ENSG0000
0155016 

ENSGACG000
00017462 

ENSDARG000
00026548 

ENSMUSG00
000027983 

ENSORLG000
00006861 

ENSTRUG000
00008392 

ENSONIG000
00017505 

CALML4 
ENSG0000
0129007 

ENSGACG000
00016957 

ENSDARG000
00075800 

ENSMUSG00
000032246 

ENSORLG000
00001729 

ENSTRUG000
00016707 

ENSONIG000
00005694 

DYRK2 
ENSG0000
0127334 

ENSGACG000
00000712 

ENSDARG000
00094646 

ENSMUSG00
000028630 

ENSORLG000
00017348 

ENSTRUG000
00006772 

ENSONIG000
00018022 

COL9A2 
ENSG0000
0049089 

ENSGACG000
00007343 

ENSDARG000
00024492 

ENSMUSG00
000028626 

ENSORLG000
00005372 

ENSTRUG000
00015261 

ENSONIG000
00004658 

DDC 
ENSG0000
0132437 

ENSGACG000
00006397 

ENSDARG000
00016494 

ENSMUSG00
000020182 

ENSORLG000
00005340 

ENSTRUG000
00009415 

ENSONIG000
00007162 
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Table S3.4: 0-order Markov Model of whole genome promoter sequences. 

0-order Markov Model for the whole genome for the human, mouse, zebrafish, 

tilapia, stickleback, medaka and fugu. 3.5 kb and 5 kb of the upstream flank 

coding region was extracted for every gene in the genome for each species 

using the ensemble biomart tool.  

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Species Human Mouse Zebrafish Tilipia Stickleback Medaka Fugu 

A 2.624 2.718 0.3222 2.999 2.802 3.029 0.2785 

C 2.376 2.282 1.778 2.001 2.198 1.971 0.2215 

G 2.376 2.282 1.778 2.001 2.198 1.971 0.2215 

T 2.624 2.718 3.222 2.999 2.802 3.029 0.2785 
 

  
 

    
        
Species Human Mouse Zebrafish Tilipia Stickleback Medaka Fugu 

A 2.656 2.737 3.213 2.996 2.792 3.02 0.2796 

C 2.344 2.263 1.787 2.004 2.208 1.98 0.2231 

G 2.344 2.263 1.787 2.004 2.208 1.98 0.2231 

T 2.656 2.737 3.213 2.996 2.792 3.02 0.2796 
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Table S3.5: Model selection results for 5kb mammalian datasets. Model 

selection results for 5kb datasets for HIF-1α and Nrf2 matrix files. Learning 

vector quantization (LVQ), stochastic gradient boosting (GBM), support vector 

machine (SVM) and Random Forest (RF) models were built on the mammalian 

dataset using the q-value, p-value, enrichment and position as parameters to 

predict positive and negative gene sets. Random forest models performed best 

for all matrix files and were selected for subsequent analysis.  

 
  hif1_si MA0259.1 MA1106.1 

  Accuracy  Kappa Accuracy  Kappa Accuracy  Kappa 

LVQ 0.824 0 0.774 0 0.877 0.746 

GBM 0.904 0.63 0.76 0.02 0.888 0.715 

SVM 0.88 0.42 0.845 0.378 0.818 0.396 

RF 0.982 0.93 0.887 0.58 0.865 0.643 

  NFE2L2 MA0150.1 MA0150.2 

  Accuracy  Kappa Accuracy  Kappa Accuracy  Kappa 

LVQ 0.81 0 0.816 0 0.804 0 

GBM 0.984 0.942 0.984 0.942 0.985 0.949 

SVM 0.96 0.859 0.96 0.859 0.985 0.949 

RF 0.99 0.962 0.99 0.962 0.981 0.94 
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Table S3.6: Random forest model parameter for Nrf2:EpRE models. 

Random Forest model training parameters showing the final model accuracy 

and kappa score following leave-one-out cross validation using the mammalian 

dataset (combined human and mouse top-scoring q-value result for each gene 

in the positive and background datasets).  

 
 

Mammalian kB mtry Accuracy Kappa 

Ma0150.1 3.5 5 0.98 0.97  
5 3 0.99 0.96 

MA0150.2 3.5 2 0.98 0.95  
5 3 0.99 0.95 

HOCOMOCO 3.5 5 0.98 0.93  
5 5 1.0 0.98 

Fish     

Ma0150.1 3.5 3 0.98 0.95 

 5 2 0.97 0.92 

MA0150.2 3.5 4 0.99 0.97 

 5 3 0.98 0.95 

HOCOMOCO 3.5 5 0.93 0.85 

 5 5 0.97 0.91 
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Table S3.7: Random forest model results for HIF-1α:HRE based models: 

Random Forest model training parameters showing the final model accuracy 

and kappa score following leave-one-out cross validation using the mammalian 

dataset (combined human and mouse top-scoring q-value result for each gene 

in the positive and background datasets).  

 
 

Mammalian kb mtry Accuracy Kappa 

Hifa_si 3.5 5 0.99 0.96 

MA0259.1 3.5 5 0.96 0.86 

MA1106.1 3.5 3 0.88 0.63 

Fish     

Hifa_si 3.5 2 0.92 0.76 

MA0259.1 3.5 2 0.94 0.80 

MA1106.1 3.5 2 0.94 0.80 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 228 

Table S3.8: Variable importance in Nrf2:EpRE random forest models. Plots 

of the variable importance for each random forest model in a) mammals and b) 

fish for 3.5kb and 5kb respectively using the q.value, p-value, z-score and 

strand as input variables.  

 

3.5 kb 

  NFE2L2 MA0150.1 MA0150.2 

  Fish Mams.  Fish Mams Fish Mams.  

q.value 100 100 100 100 100 100 

p.value 57.61 21.99 66.47 27.97 60.66 17.18 

freq 1.23 1.43 3.56 1.2 5.03 4.747 

strand 0 0 0 0 0 0 

5 kb 

q.value 100 100 100 100 100 100 

p.value 61.98 9.47 57.49 74.43 37.4 16.26 

freq 3.09 0.06 2.61 2.18 3.7 0.812 

strand 0 0 0 0 0 0 
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Table S3.9: Variable importance in HIF-1α:HRE random forest models. 

Plots of the variable importance for each random forest model in a) mammals 

and b) fish for 3.5kb and 5kb respectively using the q.value, p-value, z-score 

and strand as input variables. 

 

3.5 kb 

  HIF1_si MA01106.1 MA0259.1 

  Fish Mams.  Fish Mams Fish Mams.  

q.value 100 100 100 100 100 100 

p.value 32.62 25.62 35.161 72.4 35.24 28.45 

freq 24.22 3.034 4.2 12.86 37.84 5.8 

strand 0 0 0 0 0 0 

5 kb 

q.value 100 100 100 100 100 100 

p.value 42.94 34.52 48.08 90.44 43.77 21.3 

freq 3.56 6.83 3.18 1.65 3.5 2.47 

strand 0 0 0 0 0 0 
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Figure S3.3 Alignments of identified TFBS in the hmox1 promoter. 

Alignments and q-values of identified binding sequences using T-Coffee for A). 

the mammalian and fish EpRE motifs and B). the mammalian and fish p53 

motifs in the hmox1 promoter.  
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Figure S3.4 Alignments of EpRE and p53 identified TFBS in the hsp70 

promoter. Alignments and q-values of identified binding sequences using T-

Coffee for A). the mammalian and fish EpRE motifs and B). the mammalian and 

fish p53 motifs in the hsp70 promoter.  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 232 

Figure S3.5 Alignments of identified TFBS in the hsp70 promoter. 

Alignments and q-values of identified binding sequences using T-Coffee for A) 

HSE search in hsp70, C) fish-sepcific HRE search in hsp70 E) AhR search in 

hsp70.

 

 

 

 

 

 

 

 

 

 

 

 

 

A. 
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Chapter 4 

Identifying the conservation of adaptive-stress responses in 

vertebrates based on experimental evidence from in vitro and in vivo 

studies. 
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4.1 Abstract 

Despite growing evidence for shared downstream target genes and regulatory 

interactions between transcription factors, environmental pollutants with 

prooxidant effects are widely considered to act through distinct molecular 

pathways.  The adaptive stress-response transcription factor (TF) nuclear factor 

(erythroid-derived)- like 2 (Nrf2) is considered a central mediator of antioxidant 

defence processes but its interactions with other regulatory factors remains 

largely unexplored. A boolean model of regulatory connectivity between 

adaptive stress response factors in mammals suggested that responses to 

inducers can be conserved and hypothesized that activation of Nrf2 results in 

coherent responses with other TF pathways. These include hypoxia inducible 

factor 1 –alpha (HIF1a), heat shock factor 1 (HSF1), aryl hydrocarbon receptor 

(AhR) and metal transcription factor 1 (MTF1) which are predicted to lead to 

canalised response processes. This research aimed to validate this hypothesis 

through a comparative analysis on gene expression signatures across fish 

species exposed to pollutants. To explore connectivity between pathways in 

greater depth, the zebrafish was used as a model to identify potential 

interactions between Nrf2 and the transcription factors metal transcription factor 

1 (mtf1), hypoxia inducible factor 1 (hif1a) and nuclear factor kappa b (nfkb1) at 

2 and 4 dpf and throughout early development. Exposures to the inducer tert-

butyl hydroquinone (tBHQ) identified that the antioxidant genes sequestosome-

1 (sqstm1) and glutathione-s-transferase pi (gstp1) had a greater level of 

inducible expression at 4 dpf compared to 2 dpf. Further analysis identified that 

both mtf1 and nfkb1 were upregulated following 12 hr exposures to tBHQ in 

comparison to 6 hrs, suggesting interactions between regulatory cascades 

following Nrf2 induction. In addition, acridine orange staining identified 

increases in the number of pre-apoptotic cells in the gill, jaw and hindbrain in a 

concentration dependant manner after 6 hrs tBHQ exposures at 4 dpf, 

suggesting these are likely target tissues of tBHQ. This research indicated 

some similarities in gene-expression responses across inducers in fish specific 

exposures, providing some support for the modelling outcomes presented in 

chapter 2. tBHQ exposures altered levels of nfkb1 and mtf1, suggesting some 

level of connectivity with Nrf2 activation. Further research is necessary to 

establish if regulatory connectivity between these pathways is Nrf2 dependent.  
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4.2 Introduction 

The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) – Kelch-like ECH 

associated protein 1 (Keap1) pathway is evolutionary conserved across 

vertebrate groups and widely regarded as being a “master regulator” of the 

oxidative stress response (OSR), initiating the transcription of antioxidant 

defence genes and phase II detoxification enzymes [1],[2].  As such, the Nrf2-

Keap1 pathway is of particular interest from both medical and environmental 

perspectives where its induction by a range of electrophilic compounds and by 

cellular redox imbalance has been identified as preventing the progression of a 

number of neurological disorders[3] and diseases such as cancer [4]. Under 

basal conditions, Nrf2 is held in the cytoplasm by the inhibitory protein Keap1 

and is degraded by the Cul3 ubiquitination ligase complex[5]. Electrophilic 

compounds, which contain molecules that are electron deficient, modify 

cysteine (Cys) residues on the surface of Keap1 causing a conformational 

change and the release of Nrf2. The transcription factor then accumulates in the 

nuclease and forms a heterodimer with small maf proteins before binding to 

electrophile response elements (EpREs) within promoter regions[5]. The 

inducible expression of genes such as glutathione-s-transferase Pi (GSTP), 

NAD(P)H quinone dehydrogenase (NQO1) and superoxide dismutase (SOD1) 

which have roles in detoxification processes, have all been attributed to the 

binding of Nrf2 in promoters[1],[6] .  

 

However, although the Nrf2-Keap1 pathway is widely regarded as being 

responsible for the expression of antioxidant defence processes, the roles of 

multiple transcription factors in regulating shared downstream targets is 

becoming increasingly well documented. Redox-associated transcription factors 

including the aryl hydrocarbon receptor (AhR), hypoxia-inducible factor 1-alpha 

(HIF-1α), heat shock factor 1 (HSF1), nuclear-factor kappa-light-chain-enhancer 

of B cells (NFkB) and metal-transcription factor 1 (MTF1) have all been 

attributed to either sharing downstream target genes with Nrf2 or being involved 

in direct protein-protein interactions, identifying that the adaptive stress 

response acts in a gene regulatory network (GRN) (Chapter 2). The research 

presented in Chapter 2 of this thesis suggests that the activation of adaptive-

stress response pathways through MTF1, AhR, HSF1 and HIF1-a at molecular 

initiating events (MIEs) can lead to similar outcome processes as Nrf2; this 
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suggests canalised responses can be reached where the same outcome is 

produced regardless of the inducer (Chapter 2). This hypothesis has 

implications for risk assessment methods in predictive toxicology by proposing 

outcomes to chemical toxicants based on transcription factor interactions.  Such 

predictions are of a particular benefit to ecotoxicology where aquatic vertebrates 

are at high risk from pollutant exposures to toxicants predicted to act through 

adaptive-stress response pathways at molecular initiating events (MIEs).  

 

The regulatory interactions that form the basis of the adaptive stress response 

GRN have seen little validation in vivo, where model organisms such as the 

Danio rerio (zebrafish) provide a means of establishing the transferability of the 

model across vertebrate groups and during embryonic development[7].  An 

exception is the AhR, traditionally associated with inducing phase I 

detoxification enzymes in the presence of dioxin-like chemicals such as poly-

aromatic hydrocarbons (PAHs) by binding to xenobiotic response elements 

(XREs) in regulatory regions. In this case, chemicals that are able to activate 

both the release of Nrf2 from Keap1 and the binding of the AhR to the Aryl-

hydrocarbon nuclear translocator (ARNT), are termed bifunctional inducers and 

up-regulate phase I and phase II detoxification processes [8]. Positive feedback 

interactions between the two factors have been established in mouse 

embryonic fibroblast (MEFs) and mouse hepatoma 1c1c7 (Hepa-1c1c7) cell 

lines where functional EpRE binding sites have been identified in the promoter 

of the AhR[8] and of XREs in Nrf2[9] respectively. Exposures in mice to the AhR 

inducer TCDD caused an upregulation and nuclear accumulation of Nrf2[10] . 

Evidence suggests this mechanism is conserved across vertebrate groups with 

zebrafish eleutheroembryos exposed to PCB-126 showing an upregulation of 

both nrf2a/b and AhR subtypes, the expression of which was removed in an 

nrf2a mutant line[11].   

 

Validation of the outcomes of cross-talk between adaptive-stress response 

factors requires the level of concordance between responses to the inducers of 

seemingly different pathways to be assessed. This will lead to a better 

understanding of how inducers of adaptive stress-response pathways - in 

particular, chemical pollutants that are a significant exposure risk to aquatic 

vertebrates - can lead to adverse effects. To this end, prototypic inducers, 
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agonists of specific TFs, can be used to identify cross-talk between 

pathways[12] and have established the evolutionary conservation of Nrf2 across 

vertebrate species[12,13]; the Nrf2 agonists, diethylmaleate  (DEM) and tert-

butyl-1,4-hydroquinone (tBHQ), induce comparable gene expression responses 

across mammalian systems and zebrafish exposure scenarios[12]. These 

inducers initiate the release of Nrf2 through associating with Cys151 on Keap1[5] 

. The mechanism for this is well documented for tBHQ, which is oxidised to tert-

butylquinone (tBQ) by Cu2+ releasing superoxide and Cu+. O2
- is converted to 

hydrogen peroxide (H2O2) by Cu+ releasing Cu2+ (Figure 4.1) [14]. Both tBQ and 

H2O2 can act on Keap1 to cause the release of Nrf2[15].  The upregulation of 

gstp1 after 6-hour exposure to 30 µM tBHQ in 4 days post fertilisation (dpf) 

zebrafish larvae [2] has become a standard exposure time-period to measure 

Nrf2-mediated OSR, regardless of developmental stage. Differential expression 

patterns of antioxidant genes have since been established at 2, 4, 5, 6 and 7 

dpf under a range of doses from 3 – 30 µM tBHQ [2,12].  

.  

 

 

 

Figure 4.1. The activation of Nrf2 by tert-butylhydroquine (tBHQ). tBHQ is 

converted to tert-butyl-1,4-bezoquinone (tBQ) and superoxide. tBQ activates the 

release of Nrf2 from Keap1 by associating with Cys151.   O2
- is converted to 

H2O2, which can also act on Cys151 releasing Nrf2. 

 

This study aimed to validate the hypothesis that canalised responses occur 

following the induction of Nr2, AhR, HIF1a, MTF1 and HSF1 pathways under 

chemical induction across vertebrate species. Similarities in response outcomes 
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were determined across literature-derived studies based on exposures in fish 

species to a range of inducers of the selected adaptive stress-response factors. 

Furthermore, considering that Nrf2 is a central mediator in the adaptive stress 

response (Chapter 2), understanding its function as either an initiator or inhibitor 

of other response pathways will provide fundamental insights into the roles of 

redox-sensitive transcription factors within an integrated system. In addition, as 

Nrf2 is neither maternally deposited[16] nor essential for the function of normal 

development, comparing the developmental expression of redox-factors gives 

an indication of the capacity to mount an antioxidant response in the absence of 

Nrf2 in early development. Using the zebrafish as a model, the expression 

dynamics of mtf1, hif1a and nfkb1 were examined in the context of nrf2 

expression during embryogenesis, where vertebrates are suggested to be 

highly vulnerable to oxidative insult. In addition, the expression dynamics of 

these factors under the model Nrf2-inducer tBHQ was conducted as a factor of 

dose and time. 

 

This study identified some similarities across exposures in fish species to a 

variety of inducers and the predicted modelling outcomes presented in Chapter 

2. Further support for the modelling outcomes was provided through RT-qPCR 

analysis in zebrafish. This showed that nrf2a had the lowest level of detectable 

expression when compared to the expression of hif1a, nfkb1 and mtf1 in pre- 5 

dpf zebrafish embryos. Zebrafish exposures to tBHQ at 2 dpf and 4 dpf showed 

different levels of the antioxidants gstp1 and sqstm1 suggesting variations in 

susceptibility between life stages. At 4 dpf, exposures identified responses to 

tBHQ for mtf1 and nfkb1 as a factor of dose and time. Differential expression 

between keap1a/b and nrf2a/b identified that the divergent function of these 

paralogs equates to variations in expression as a factor of chemical insult. The 

changes in gene expression profiles were correlated with increased pre-

apoptotic cells in zebrafish larvae across exposure concentrations.  
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4.3 Materials and Methods 

 
To validate the hypothesis that adaptive-stress response factors HIF-1α, HSF1, 

MTF, AhR and Nrf2 can lead to similar response outcomes. Firstly, validation 

for the outcomes was established in mammalian cell lines. Secondly, evidence 

for pathway activation in fish was determined from the literature. Through 

laboratory studies the developmental expression of,hif1a, mtf1, nfkb1 and nrf2, 

was determined over embryogenesis using RT-qPCR. To identify the 

appropriate life-stage for transcript expression under the Nrf2 inducer, tBHQ, 

the downstream targets, sqstm1 and gstp1 were subsequently quantified at 2 

and 4 dpf. Following this, the most responsive stage was selected to measure 

the expression of hif1a, mtf1, nfk1b, nrf2a, nrf2b, keap1a and keap1b over time 

and exposure concentrations. An apoptosis assay was conducted as a measure 

of adverse outcome. The experimental methods are shown in Figure 4.2.  

 

 4.3.1. Evidence of shared responses in fish-specific exposures.  

To validate the results of Boolean model presented in chapter 2, the literature 

was searched for fish studies where gene expression had been measured 

under exposures to either prototypic inducers or environmental contaminants 

known to activate AhR MTF1, ER, Nrf2, HIF-1α and HSF1 pathways.  Data was 

collated from both targeted (RT-qPCR/ WISH) and non-targeted approaches 

(RNA-seq/microarray) for recording gene expression and downstream target 

genes involved in the adaptive stress pathway (Figure 2.4) were searched. The 

expression profiles were compared to the results of the Boolean model 

presented in Chapter 2 and shown in the supplementary information (Figure 

2.4).  

 4.3.1. Fish maintenance 

Breeding stocks of WIK strain zebrafish were maintained at 28 ± 0.5 °C with a 

12 hr light: dark cycle including a 30 min dawn-dusk transition period. Zebrafish 

were fed artemia twice daily. Embryos were collected from multiple tanks 

immediately following spawning washed with ISO water and mixed to avoid 

potential inter-tank effects. Following examination under a stereomicroscope, 

unfertilized embryos were removed prior to sorting into groups of 30. Embryos 

were maintained in petri-dishes with 50 ml of ISO water with full water changes 

conducted on a daily basis. 
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4.3.2. Developmental time series 

Embryos were maintained in petri-dishes with 50 ml of ISO water and complete 

water changes were conducted on 24 hr basis. At each sampling time point, 3 

pools of 15 embryos were harvested from dishes containing 30 embryos with 

four experimental replicates (n=12). Samples were immediately snap-frozen in 

liquid nitrogen and stored at -80 °C until RNA extraction.  

 

4.3.3. Chemical exposures  

tBHQ (97% purity) and analytical-grade dimethyl sulfoxide (DMSO) were 

purchased from Sigma-Aldrich Chemical co (Gillingham, UK).  A stock solution 

was prepared by dissolving tBHQ in DMSO at a concentration of 300 mM and 

stored at 4 °C. Working stocks were made on the morning of each exposure in 

ISO water to give a final DMSO concentration of 0.01%.  For RT-qPCR 

analysis, 30 larvae per concentration and time point were exposed in 50 ml of 

solution in glass cylindrical dishes. All experiments were carried out in triplicate 

and repeated 3 times.  

 

At 2 and 4 dpf embryos/larvae were exposed in groups of 30 for 6 and 12 hrs to 

ISO water, 0.01% DMSO, 3 µM, 10 µM and 30 µM tBHQ. Samples were snap-

frozen in liquid nitrogen and subsequently stored at -80 °C prior to RNA 

extraction.  

 

For apoptosis analysis, acridine orange staining was conducted following 

exposures of 4 dpf larvae for 6 hrs in 10 ml of each concentration (ISO water, 

0.01% DMSO, 3 µM, 10 µM and 30 µM tBHQ) within a 20 ml glass-beaker 

which was replicated three times (n = 9 pooled from 10 larvae per group).  

 

4.3.4. Quantification of gene expression  

Real-time quantitative PCR (RT-qPCR) was conducted to determine the relative 

expression of selected regulatory proteins involved in stress response pathways 

and downstream target genes. Primer sequences were sourced from the 

literature where possible (Table 4.1) or designed using Beacon Designer 7.0 

software (Premier Biosoft Internations, Paulo Alto, CA) using zebrafish NCBI 
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RefSeq sequences for selected target genes. All primers were purchased from 

Eurofins Genomics (Ebersberg. Germany) and diluted to a working stock of 10 

µM.  

 

Annealing temperatures (Ta) were optimised using a temperature gradient and 

the specificity of each primer was confirmed by observing a single amplification 

product of expected size and Tm. RT-qPCR was run at 95°C for 15 minutes 

followed by 40 cycles of 95°C for 10 seconds and Ta 30 seconds. The primer 

specificity, detection range and amplification efficiency were established using a 

serial dilution of zebrafish cDNA at 4 dpf followed by melt-curve analysis.  Over 

the detection range, the linear correlation (R2) between mean cycle threshold 

(Ct) with the logarithm of the cDNA dilution >0.99.  

 

Target 
Gene 

Forward Primer (5'-3') Reverse Primer (5'-3') 
Ta 

(ᵒC) 

PCR 
efficienc

y 

rpl8* CCGAGACCAAGAAATCCAGAG CCAGCAACAACACCAACAAC 59.5 104.20% 

gstp1 ACGACAGTGAGGCTTCC GAGGTGGTTGGGCAGAT 59.5 110.60% 

sqstm1 GGCGTAAGATGAGACACT GAGGCAGTAGCACCATT 59.5 109.01% 

nrf2a CGAGATGAGAACGGAAAGG GAAGGAGGAAGGACAAAGC 57.5 107.30% 

nrf2b* 
GGCAGAGGGAGGAGGAGACC

AT 
AAACAGCAGGGCAGACAACAA

GG 
65 106.50% 

keap1a TACACCTTCGCACCAGAG TCGCAGAGCACCTTCAG 59.5 93.80% 

keap1b
* 

ACGGAGTGTAAGGCGGAG ACCTGGCTGAAGTTCATG 61.5 90.40% 

mtf1 GGATGAGGAAGGAGAAGA ATGGTGTGGTGGATGTA 59.5 93.10% 

nfkb1* AGAGAGCGCTTGCGTCCTT TTGCCTTTGGTTTTTCGGTAA 61 101.40% 

hif1a AACAACGCAAACAAATCCT GTCACCTCAACCTCCTC 60 93.20% 

 

Table 4.1. Forward and reverse primer sequences for regulatory proteins 

and downstream targets in zebrafish used in RT-qPCR analysis. Annealing 

temperatures (Ta), product size (base pairs), efficiency values and accession 

numbers. rpl8 , nfkb1[17], nrf2b[18], keap1b[19] primer sequence was derived 

from the literature.  

 

Total RNA was extracted from whole homogenised zebrafish samples using TRI 

reagent following the manufacturer’s guidelines with quality and concentration 

assessed using the NanoDrop ND -1000 Spectrophotometer (NanoDrop 
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Technologies, Wilmington, USA). 0.2 µg and 1 µg of total RNA from the 

developmental time series and exposure samples, respectively, were treated 

with RQ1 RNase-free DNase (Promega, Southampton, UK). The higher overall 

RNA yields in the exposure samples allowed to input more RNA. 

Complementary DNA (cDNA) was synthesised with M-MLV reverse 

transcriptase (Promega, Southampton, UK) and random hexamers (Eurofins 

Genomics) according to the manufacturer’s instructions. cDNA was diluted 1:2 

in HPLC water and stored at -20 °C.  

 

Samples were run in triplicate using SYBR green chemistry (Bio-Rad 

Laboratories, Hercules, CA, USA) and an iCycler iQ Real-time Detection 

System (Bio-Rad, Hercules, CA, USA).  A negative control was run on each 

plate to confirm the absence of cDNA contamination. 

 

The housekeeping gene, ribosomal protein 8 (rpl8), was selected as the PCR 

reference target based on previously reported stable expression patterns 

throughout development and under both silver and oestrogenic exposure in 

zebrafish[20,21]. Relative transcriptional levels were determined as follows: 

 

RE = (E Ref) Ct Ref/ (E Target)Ct Target 

RE : Relative gene expression, Ref = Housekeeping gene, target = Gene of 

interest, E = PCR amplification efficiency 

 

4.3.5. Acridine Orange (AO) staining as an indicator of apoptosis: 

 

Acridine orange-hemi(zinc chloride) salt was purchased from Sigma Aldrich. An 

AO stock solution was made at a concentration of 1 mg/ml in milliQ water and 

stored at 4°C in the dark. On the day of the exposure, a working stock of AO 

was made at 1:100 dilution in ISO water. 10 larvae from each treatment were 

incubated for 45 min in 5 ml of AO in a 12 well-plate in the dark to avoid 

fluorescence quenching.  Larvae were washed thoroughly with ISO water three 

times before being anesthetised with 0.4% tricaine and mounted on glass 

bottom dish in 0.07% low melting point agarose. Whole embryo images were 

taken using an ANDOR Zyla SCMDs camera on a light microscope (Olympus 

SZX16) with a Lumen 200 fluorescence illumination system under GFP and 
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RFP excitation. Images were analysed for fluorescence intensity using the 

ImageJ software.  To quantitatively assess fluorescence intensity, average pixel 

brightness was measured within a standardised area for each identified target 

tissue (the hindbrain, gill, jaw and whole body).  For each image, normalised 

intensity measures were determined through subtracting an average image 

background reading from five measurements.   

 

4.3.6. Statistical Analysis: 

Statistical analysis for all datasets was conducted using R studio (version 

3.3.42). For all qPCR datasets, outliers were removed following Chauvenet’s 

criterion[22] prior to further analysis. All data was tested for normality and 

homogeneity of variance before selection of parametric or non-parametric tests 

as appropriate.  

 

Data that did not fit the standards of normality were transformed using Box-Cox 

transformations identifying the best dependant power transformation using the 

value of lambda. The stability of rpl8 expression between control conditions and 

tBHQ exposure and over developmental time was assessed using a one-way 

ANOVA. For time series and acridine orange results, normalised datasets were 

assessed with a one-way ANOVA or Kruskal-wallis test where appropriate. 

Post-hoc tests on data that met the significance level in an ANOVA were 

conducted using pairwise-t-test using Bonferroni-holm p-adjustment correction. 

Non-parameteric tests were conducted using a Wilcoxon-signed rank test.  

For chemical exposures, generalized linear models using a gamma family and 

log link function were used to determine the effect of concentration, exposure 

time and when appropriate day, across experimental sampling points. Minimum-

adequate model testing was carried out to select the final model. For all data, 

significant effects are determined where p < 0.05 and are represented 

graphically as the mean ± SEM. 

 

 



 252 

 

 

 

 

Figure 4.2. Schematic of experimental design. A) In the first instance developmental expression of nrf2a, nfkb1, hif1a and 

mtf1 was determined through RT-qPCR. B). The most responsive life-stage was selected following targeted exposures at 2 and 

4 dpf. The acridine orange assay that indicates pre-apoptotic and apoptotic cells was used as an indicator of adverse effects of 

the exposures. 
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4.4 Results 

 

4.3.1. Evidence of shared gene response pathways under exposures to 

selected pollutants in fish 

 
The literature search compiled representative experimental studies that 

reported gene-expression responses across fish species under traditional 

inducers of AhR, HSF1, HIF-1α, MTF1, Nrf2 and ER pathways. The majority of 

studies were from laboratory strains of zebrafish (Table 4.2).   

 

The literature search investigated two chemical pollutants that are predicted to 

act through AhR pathways at MIEs (Table 4.2). These represented an acute 

exposure to 2,3,7,8- Tetrachlorodibenzodoxin (TCDD) and a chronic exposure 

to Benzo(a)pyrene (BaP), where the progeny of adult zebrafish exposed to the 

chemical were investigated. Both studies showed significant fold increases in 

cyp genes, nrf2a and nrf2b, although this was development stage dependant; 

nrf2a and nrf2b were elevated in the 2 and 5 dpf treatments in TCDD[13] but at 4 

dpf under BaP treatment[23]. This was coupled with an increase in expression of 

antioxidants for the BaP exposure but not for TCDD, where, in contrast to the 

Boolean model predictions (Figure 2.4), there was no increase in expression of 

the genes for the selected antioxidant targets[23],[13]. No other genes identified in 

the Boolean model (Figure 2.4) were differentially expressed in the RNA seq 

dataset for BaP exposure, but nos1, which acts similarly to nos2 - a target in the 

Boolean model, and involved in cell-cycle arrest - was downregulated under 

exposure conditions[23].  

 

Experimental evidence from hypoxia representing HIF1 activation were taken 

from exposures in adult flounder, zebrafish and ruffe (Table 4.2).  These 

showed tissue-specific gene expression profiles for antioxidant defence genes.  

For example, in the Platichthys flesus (flounder), there was a significant 

increase in hsp70 and sod2 in the gills, as predicted from the model (Figure 2.4) 

but a decrease in hsp70 in the heart[24]. Transcriptomic analysis of zebrafish 

exposures showed differential expression of bcl2, mt2, gstp and mt genes but a 

down-regulation of glycolytic processes with increasing levels of hypoxia, 
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therefore only partly supporting the modelling results for HIF1 activation (Figure 

2.4).  

 

For heat-stress, representing the activation of HSF1, studies were taken across 

zebrafish larval and adult exposures (Table 4.2). In adult exposures, there was 

no significant increase in antioxidant defence genes but an increase in hsp70 in 

adult liver tissues after 7 day exposures to 32 degrees [25]. In larveal zebrafish, 

48 hrs of cold stress initiated an increase in redox sensitive genes, 

metallothioneins and heat-shock chaperones, in keeping with the predicted 

modelling results in Figure 2.4. However, this contrasted with heat-stress where 

higher temperatures led to an increase in immune responses and cell death, 

which more closely resembles the response to p53 and NFkB activation (Figure 

2.4) [25].  

 

Representative studies for MTF1 activation covered a range of metals including 

cadmium, silver ions and silver nanoparticles (Table 4.2). Transgenic zebrafish 

containing a reporter construct for the heat shock element upstream of green 

fluorescent protein (GFP) showed an increased expression under exposures to 

CuSO4 [26], indicating binding to the heat shock element under exposure 

conditions. Cadmium exposure induced a significant increase in sod1, cat, hsf2 

and mtf1 at 2.5ug/l, in keeping with the predictions from the model (Figure 2.4), 

but a decrease in nrf2 [27]. However, under 5ug/l Cd, there was no significant 

difference in the levels of gene expression compared to the control with the 

exception of mt, which was decreased[27].  

 

RNA sequencing of exposures to Silver ions, bulk and NP contrasted with the 

model predictions (Figure 2.4) showing a general decrease in the levels of 

antioxidant genes that were differentially expressed from the control 

conditions[28]. This was the case for gsta1 expression under NP and bulk 

exposures and for fth1, hsp90, hif1a, sod1 and mt2 under ions at 24 hpf[28]. At 

48 hpf, fth1 expression was significantly decreased under bulk and ion 

exposures but the levels of gsta1 were significantly increased[28]. These results 

differed from acute exposures in zebrafish embryos which supported the model 

(Figure 2.4) and showed increases in gstp, mt2 and gstm1 expression at 24 and 

48 hpf under citrate covered AgNPs[28].  
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The effects of the Nrf2 inducers diethyl malonate (DEM) and tBHQ were similar 

in zebrafish larvae and adults [13]. Increases in all targeted genes involved in 

antioxidant defence processes were observed under all exposures, the 

expression of which was significantly reduced in exposures using both Nrf2 

morpholino (MO) and Nrf2 mutant lines [13,35] .  

 

Adaptive stress response factors were predicted to be activated in regulatory 

cascades initiated by oestrogen receptor agonists (Figure 2.6). For pollutants 

known to cause endocrine disruption, selected studies covered chronic 

exposures in adult zebrafish and acute exposures in zebrafish larvae. Roundup 

and its active ingredient, glyphosate, which has been shown to activate ER-

alpha [29], resulted in differences in gene expression of selected adaptive-

stress response targets in the gonads of males and females[30]. In testis, there 

were significant differences in the expression of sod1 and cat between 

treatment groups and these genes were down-regulated at 0.5 mg/l but 

upregulated in 0.05 and 10 mg/l roundup and 10 mg/l glyphosate exposures[30]. 

Their expression dynamics appeared to match those of cytochrome genes 

cyp17a1 and cyp11a1, though this was not statistically significant. In the 

ovaries, there was no significant difference in expression of selected targets 

across the exposure range. Again, although not significant, there was an 

apparent increase in gstp from 0.05 – 10 mg/l in roundup treatments and in 

glyphosate at 10 mg/l[30]. This was coupled with an increase in sod1 expression 

at 0.01-0.05 mg/l but a decrease in expression at 10mg/l under roundup[30]. 

There was a decrease in cyp17a1 and cyp11a1 in the ovary but an increase in 

cyp19a1 in comparison to the control at 10mg/l roundup[30].  

 

Acute larvae exposures to bisphenol-A (BPA) in zebrafish embryos between 48 

hpf to 120 hpf showed concentration -dependent increases in cyp1a1, gstp1, 

gstp2, cyp25b1, gstm.3 and gstr but a decrease in genes involved in glycolytic 

processes[31], therefore again only partly supporting modelling results (Figure 

2.6). Exposures of fathead minnows to BPA, Bis(2-ethylhexyl) phthalate (DEHP) 

and Nonylephenol (NP) showed significant increases in cyp1a1 and gsta under 

all exposures after 21 days with significant enrichment in the gene expression 

associated with the AhR pathways. These results from studies on endocrine 
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disrupting chemicals showed that induction was both dose and time dependent, 

with apparent hermetic response trajectories shown in the testis for antioxidant 

response genes. However, given that the model presented in Figure 2.6 shows 

a cyclic attractor, this means that gene expression is stabilised in a dynamic 

state; genes are not continuously activated in the attractor state for cascades 

initiated by oestrogen receptor alpha (ERa) and Era  + oestrogen receptor beta 

(ERb) activation. The results from estrogen exposures therefore show some 

coherence with the modelling results.  

 

Mixture exposures focused on the effect of metals under heat stress and 

hypoxia as well as mixtures of pharmaceutical compounds. Heat stress caused 

significant decreases in the expression of sod1, hsf1 and hsf2 at 36 degrees 

and a decrease in nrf2 under cadmium exposures[27]. In the absence of heat 

stress, cadmium induced an increase in mt gene expression and the expression 

of mtf1 and hsp70 at higher concentrations[27].  

 

The combination of hypoxia and copper caused a general level of decrease in 

the levels of antioxidants expressed under mixtures compared to copper 

alone[32]. Similarly, there were marked differences in Tributylitin (TBT) and BaP 

with a decrease in expression of AOs under mixtures compared to control 

conditions[33].  

 

According to the Bradford Hill criteria [34], these results showed a moderate  

level of confidence in the model generated in Chapter 2 according to the 

guidance for assessing confidence in overall AOPs. The empirical evidence 

demonstrated expected changes in gene expression responses in most cases 

with some evidence inconsistent with predictions.  
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Weight of evidence for canalisation  

 Chemical Hyp. MIE Exposure conditions Species Tissue Target Genes Effects Ref. 

P
A

H
s 

TCDD AhR 
2 nM at  1 ,2, 3, 4, 5 and 6 dpf 

for 6 hrs 
Zebrafish (TL line) 

Whole body 
(larvae) 

gstp, gclc, sod1, 
cyp1a, nqo1, 
nrf2a, hsp70, 

gadd45a 

Significant ↑ cyp1a at all time points 
and nrf2a at 2 and 5 dpf. 

[13] 

Benzopyrene (BaP) AHR, ER 

Adults exposed to 50ug/l BaP for 
7 days. Collected embryos 
exposed to 50ug/l BaP or 

control conditions and sampled 
at 3.3 and 96 hpf 

Zebrafish (AB line) 
Whole body 

(larvae) 
RNA-seq 

96 hpf ↑: cyp1c1, cyp1c2, gpx1b, 
gsta1, gdtp1, hsp70, hsp90, nrf2a, 

nrf2b, prdx1, mt2, sqstm1  96 hpf ↓: 
nos1 

[23] 

e
n

d
o

cr
in

e
 d

is
ru

p
ti

o
n

 

Glyphosate 
(Roundup) 

unknown 
Adult exposures to 0.01, 0.5, 10 

mg/l Roundup for 21 days. 
Zebrafish (WIK line) Ovary/Testis 

cat, gstp1, sod1, 
gpx1a, cyp19a, 

cyp17a1, cyp11a1, 
esr2a, esr2b, esr1a 

No significant difference in levels of 
antioxidants but gstp↑ under 10 mg/l 

roundup. ↓ in esr1a (Ovary). In the 
testis,↑ in cat and sod1 at high levels 

of R. 

[30] 

Bisphenol- A (BPA), 
Di(2-ethylhexyl) 

phthalate (DEHP), 4-
nonylphenol (NP) 

ER 
Adult exposures to 100ug/l of 

each chemical for 21 days. 
Fathead minnow 

(pimephales promelas) 
Liver (male) 

Microarray + RT-
qPCR 

↑ gsta1 and cyp1a1  (RT-qPCR) under 
all exposure conditions 

[35] 

Bisphenol- A (BPA) ER 
Exposures to control, 0.1, 1 and 

4mg/l from 48 -120 dpf 
Zebrafish 

Whole body 
(larvae) 

RNA-seq 

↑  from low to high expression: 
cyp1a1, gstp1, gstp2, cyp26b1, gstm.3, 

gstr. ↓ from low to high expression: 
gpid, pkr, pkmb, aldoaa, pdha1a, pgk1 

(glycolytic processes) 

 
 

[31] 
  

H
yp

o
xi

a
 

Hypoxia HIF1A 
mild (5.2 mg/l), moderate (3.6 

mg/l), servere (1.5 mg/l)* 
(Laboratory and field) 

Ruffe 
 (Gymnocephalus cernua) 

Gills, brain, 
heart 

hif1a, hsp70, sod2, 
gpx 

↑ hsp70 and sod2 in the gills.  ↓hif1a 
and hsp70 under severe hypoxia in the 

brain. In the field, ↓ hsp70 under 
moderate hypoxia in the gills but ↑ in 

the heart. Sod2 ↓ in the heart. 

[24]  
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Hypoxia HIF1A 
mild (5.2 mg/l), moderate (3.6 

mg/l), servere (1.5 mg/l)*  (field) 
Flounder  

(Platichthys flesus).  
Gills, brain, 

heart 
hif1a, hsp70, sod2, 

gpx 

↓ hif1a and sod2 in the gills. ↓ in 
hif2a in the brain and hsp70 in the 

heart 
[24]  

Hypoxia HIF1A 
Adult exposure from 40% to 

10% air saturation for 25 days. 
Zebrafish Heart Microarray 

↑  in bcl2, mt2, gst and mt ↓ 
metabolic processes (downregualtion 

of g6pd). [25]  

H
e

at
 s

tr
e

ss
 

heat stress HSF1 
Adults exposed to 26°C and 36°C 

for 7 days.  
Zebrafish (AB line) Liver 

nrf2, sod, cat, hsf1, 
hsf2, hsp70, mtf1, 

mt, IL-6, il-1b, 
nfkb, 

hsp70 ↑ 26°C to 36°C but there was 
no signficant change in expression of 

any other genes. [27]  

heat stress HSF1 
Larvea exposed to temperature 

stress at 96 hpf (16°C, 28°C, 
34°C) for 2 – 24hrs.  

Zebrafish (AB line) 
Whole body 

(larvae) 
Microarray 

↑  16°C at 48 hpf: redox homeostasis, 
metal ion processes, response to heat. 
↑ 34°C  at 48 hpf: immune response, 
cell death, response to heat.  ↓ 34°C 

at 48 hpf: DNA replication, DNA 
damage. [36] 

m
e

ta
ls

/ 
m

e
ta

l N
P

s 

CuSo4 MTF1 250nm at 72 hpf for 3 hrs. 
Zebrafish (hsp70 promoter 

- TG) 
Somites hsp70 

Increase in gfp indicating increase in 
hsp70 gene expression . 

[26] 

Cd MTF1 
Adult exposures at 28 degrees 

to 2.5ug/l and 5 ug/l Cd +  for 10 
weeks. 

Zebrafish (AB line) Liver 

nrf2, sod, cat, hsf1, 
hsf2, hsp70, mtf1, 

mt, IL-6, il-1b, 
nfkb, 

↓ nrf2a at 2.5ug/l.  ↑  sod1, cat, hsf2 
and mtf1 at 2.5ug/l. ↓  in mt 
expression from 2.5 - 5ug/l 

[27] 

Ag NP MTF1 
24 and 48 hpf (10nM AgNP and 

Ag bulk (0.6-1.6um) 
Zebrafish (WiK line) 

Whole body 
(larvae) 

RNA-seq 
↑ 24 hrs : gpx4a, fth1a, hif1a1 ↓ 24 
hrs:  gstal,   ↑ 48 hrs : hsbp1 ↓ 48 

hrs:  gsta1 

[20] 
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AgNO3 MTF1 
24 and 48 hpf (10nM AgNP and 

Ag bulk (0.6-1.6um) 
Zebrafish (WiK line) 

Whole body 
(larvae) 

RNA-seq 

↓24 hrs: hsp90, fth1, cdkn1a, gadph, 
hif1a1, hsbp1, prdx1, mt2, sod1, 

gpx1a, cdkn3, hif1a ↑ 48 hrs: hspb1 
↓ 48 hrs: fth1a 

[20] 

AgB MTF1 
24 and 48 hpf (10nM AgNP and 

Ag bulk (0.6-1.6um) 
Zebrafish (WiK line) 

Whole body 
(larvae) 

RNA-seq 
↑ 24 hrs: hsp70 ↓ 24 hrs: gsta1, 

cyp1b ↑ 48 hrs: hsbp1, gpx4a, gsta1, 
hsp47 ↓ 48 hrs: fth1a 

[20] 

AgNPCi, AgBCi, 
AgNO3 

MTF1 
Exposure to AgNPCi (500ug/l), 

AgBCi (500ug/l)and AgNO3  
(20ug/l) at 24, 48, 72, 120 hpf 

Zebrafish (WiK line) 
Whole body 

(larvae) 
gstp, fth1, hmox1, 

gstm1, mt2 

All genes  ↑ yolk sac at 24 hpf except 
hmox1 and fth1. mt2 and gstp1  ↑ in 
the head under AgNP at 48 hpf and at 
96 hpf. gstm1  ↑ in the head at 96 hpf 
under all treatments. gstm1 and fth1 
↓ at 120 hpf in the head but  ↑  in 

the yolk sac. 

[28] 

el
ec

tr
o

p
h

ile
s 

tert-butyl 
hydroquinone (tBHQ) 

Nrf2 
10 uM at 1 ,2, 3, 4, 5 and 6 dpf 

for 6 hrs 
Zebrafish (TL line) 

Whole body 
(larvae) 

gstp, gclc, sod1, 
cyp1a, nqo1, 
nrf2a, hsp70, 

gadd45a 

↑ in gstp (8 & 10 fold) at 1 and 2 dpf, 
gclc at 1, 2 and 4 , nrf2a at 1 and 2, 

hsp70 (fold increase >200) and 
gadd45a (fold increase >10) at all time 

points 

[13] 

H2O2 Nrf2 1mM H2O2 for 6 hrs at 5 dpf 
Zebrafish (AB strain + Nrf2 

mutant line) 
Whole body 

(larvae) 
sod1, prdx1, txn1, 

gpx1b 

Exposure to H2O2 in wild-type and 
mutant lines. Under H2O2, ↑ prdx1, 

txrn1, gclc and gpx1 under all 
conditions with lower increases in nrf2 

mutant compared to Wt. [37] 

diethylmaleate 
(DEM) 

Nrf2 100uM DEM Zebrafish (AB line) 
Whole body 

(larvae) 

gstp, gsta, mgst3b, 
prdx1, frrsc1, gclc, 

gclm, hmox1, 
txnrd1, 

All genes ↑ under DEM  exposures 
but this was prevented in an Nrf2 MO. 

[38] 



 261 

M
ix

tu
re

s 

Cd + heat stress MTF1 

Adult zebrafish exposed to 
2.5ug/l, 5ug/l of Cd under 

normal (26°C)  (for 10 weeks) 
prior to heat-stressed (36°C) 

conditions for 7 days. 

Zebrafish (AB line) Liver 

nrf2, sod, cat, hsf1, 
hsf2, hsp70, mtf1, 

mt, IL-6, il-1b, 
nfkb, 

↓ 36°C at 2.5ug/l : nrf2, sod1, hsf1, 
hsf2   ↓ 36°C at 5ug/l : nrf2 ↑ 26°C at 
2.5 ug/l: mt  ↑ 26°C at 5 ug/l : hsp70, 

mtf1 .  

[27] 

Hypoxia + Cu2+ HIF1a, MTF1 

embryo exposures at 4-28, 28-
52, 52-76 and 76-100 hpf to 

0.024 mg Cu/L under hypoxia 
(43.2% 0.55 air sat.) or 

Normoxia (98.9% 0.22 air sat). 

Zebrafish (WIK line) 
Whole body 

(larvae) 
mt2, cat, sod1, 

gstp1, gsta1, gpx1a 

↑ 28-52 hrs normoxia: gstp1 ↓ 28-52 
hrs: cat Sig. ↑ mt2 and gstp1 between 

normoxia and hypoxia. ↑normoxia: 
gpx1aa, gsta1 and gstp.   Hypoxia ↓ 
sig. expression under Cu2+ exposure 

compared to normoxia. 

[32] 

tributylin (TBT) and 
benzo[a]pyrene 

(BaP). 
ER, AhR 

500ug/l BaP, 10ng/l TBT or 0.03 
nM TBT + 2uM BaP from 0-0.5 

hpf to 72 hpf. 
Zebrafish (TU line) 

Whole body 
(larvae) 

gstp1, cyp1a, 
cyp1c, gpx1b, 

gpx1a. 

↑ gstp1, cyp1c and  cyp1a in BaP but 
not TBT. ↑ gstp1 in BaP + TBT but this 

was lower than in BaP alone. 
[33] 

* mg/l O2.** gene expression measurements by whole mount in situ hybridisation (WISH).  

Table 4.2. Gene expression profiles across teleost fish species under adaptive-stress response inducers. Evidence from teleost fish 

exposures to stress-response inducers hypothesised to act through AhR, ER, HIF1a, HSF1, MTF1 and NRF2 at molecular initiating events. Results are through RT-

qPCR, RNA-seq, microarrays or Whole-mount in situ hybridisation (WISH) as indicated.  
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4.4.1. Expression of stress-responsive transcription factors over developmental 

time: 

To establish the ontogeny of expression of mtf1, hif1a and nfkb1 in comparison 

with nrf2 in zebrafish RT-qPCR was conducted at 2, 6, 12, 24, 48, 72 and 96 

hours post fertilisation (hpf). The transcript level of nrf2b was below the level of 

detection in the ontogeny analysis. For all genes, the lowest expression levels 

recorded were between 12 and 24 hpf (statistically different to all other time-

points for mtf1; Figure 4.3).  

 

Transcript levels of nrf2a decreased from 2 to 12 hpf before increasing to 96 hpf 

(Figure 4.3). Expression of hif1a, initially increased from 2 to 6 hpf and relative 

levels were significantly lower at 12 hrs (Figure 4.3). hif1a was expressed at a 

higher level between 24 to 96 hpf, with the greatest change in expression 

between 72 and 96 hpf. There was no significant difference in expression levels 

for nfkb1 throughout time points with a large variability in the data (Figure 4.3). 

mtf1 was expressed at the highest level at 2 hpf, and decreased between 2 to 

24 hpf and remained low at 96 hpf. The expression of mtf1 was significantly 

reduced at 6 hpf compared to 2 hpf and showed a relatively steady state of 

expression from 48 hpf onwards (Figure 4.3A). 

 

At 2 hpf, transcript levels were higher for nfkb1 and mtf1 than hif1a and nrf2a. 

The expression of hif1a was comparatively higher than nrf2a and mtf1 at 96 hpf. 

Transcript levels of nfkb1 were higher than nrf2a, hif1a and mtf1 for all time 

points studied whereas nrf2a had the lowest transcript levels (Figure 4.3B).  
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Figure 4.3. Developmental expression of nrf2a, hif1a, nfkb1 and mtf1. 

Zebrafish embryos were sampled in pools of 15 at 2, 6, 12, 24, 48, 72 and 96 hpf (n = 8 

-12). RT-QPCR analysis of gene expression was conducted and relative mRNA 
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expression was calculated by normalising expression to rpl8. A). To accurately assess 

gene expression ontogeny throughout developmental stages, relative transcript 

abundance was determined and the results were normalised to highest relative 

transcript level, i). nrf2a was normalised to the expression of nrf2a at 96 hpf. Ii). nfkb1 

was normalised to the expression of nfkb1 at 96 hpf. Iii). hif1a was normalised to the 

expression of hf1a at 96 hpf. Iv). mtf1 was normalised to the expression of mtf1 at 2 

hpf.  Error bars represent  ± SEM with letters indicating significant differences between 

treatment groups where shared letters show no significant difference (p < 0.05). B). 

Transcript abundance for all genes relative to rpl8 across time points at i). 2-12 hpf and 

ii). 2-96 hpf, respectively.   

4.4.2. Expression of gstp1 and sqstm1 between 2 and 4 dpf under tBHQ 

exposure: 

Both gstp1 and sqstm1 showed a concentration-dependent increase in 

transcript levels over tBHQ exposure concentrations (Figure 4.4). The fold 

change in gstp1 expression was greatest after 12 hrs exposure at both 2 dpf 

and at 4 dpf. There was no significant response in gstp expression under 

exposure to 3 µM tBHQ and DMSO at all time points with the exception of the 6 

hr exposure at 2 dpf where there was a 2-fold increase in expression 

(statistically significant). gstp1 expression was the highest at 4 dpf where gstp1 

mRNA levels were between 8- and 20-fold higher than in DMSO exposures 

(Table S4.2).  

 

For sqstm1, the highest levels of expression were at 6 hrs post exposure for the 

4 dpf life stage, which was 11-fold higher than DMSO. There was no significant 

difference in the levels of sqstm1 expression between the lowest  (3 µM) tBHQ 

exposure concentration and DMSO control with the exceptionn of the 12 hr 

exposure period of the 4 dpf life stage (Table S4.2). 

 

The fold-change in expression was lower at 10 µM exposures for gstp1 than for 

sqstm1 in comparison to control conditions for all exposures tested. There was 

a significant effect of developmental stage of gene expression for both gstp1 

and sqstm1.  
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Figure 4.4. Relative expression of nrf2 target genes gstp1 and sqstm1 

following 6 and 12 hr exposures to tBHQ at 2 dpf and 4 dpf. Effects of tBHQ 

treatment at 3, 10 and 30 µM on the gene expression of gstp1 and sqstm1 measured 

using RT-qPCR and normalised to the house keeping gene rpl8. Graphs show the 

mean fold-change relative to the solvent control (DMSO 0.01%) with error bars as ± 

SEM  and significance recorded at 0.05 *, 0.001 ** and 0.0001***.  Pooled samples of 

30 embryos were exposed in triplicate to each concentration with 3 experimental 

replicates (n = 5 – 9).  
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4.4.3. Concentration-dependent expression of stress-responsive transcription 

factors under tBHQ. 

 

Following the findings on the (relative) transcript levels of sqstm1 and gstp1 

illustrated in Figure 4, the 4 dpf life-stage was selected for further analysis of 

stress-responsive transcription factor expression following 6 and 12 hr 

exposures to tBHQ (Figure 4.5).  

 

Keap1a was the only regulatory protein to show a concentration-dependent 

response at both time points. Following the 6 hr exposure, there was a 

significant difference in expression of keap1a for exposure to 10 µM and 30 µM 

tBHQ relative to the control (Figure 4.5A). Gene-transcription of keap1a was 

upregulated between 6 and 12 hr exposures for the 3 µM tBHQ treatment.  For 

the 10 µM and 30 µM tBHQ exposure groups, whilst the average fold change 

across exposures did not differ significantly, there was a reduced variability 

across samples between 6 hr and 12 hr time points. 

 

Keap1b showed a variable expression pattern across concentration and time 

with no significant difference in expression recorded compared to DMSO across 

all time points (Table S4.3).  

 

Nrf2a showed no significant difference in expression across concentrations 

following the 6 hr tBHQ exposure. However, the expression of nrf2a increased 

after 12 hr exposure times across all concentrations (Figure 4.5A). For nrf2b, 

there was a high level of variation in expression at 6 hrs with the greatest 

recorded change at the lowest level (3 µM) of tBHQ exposure in comparison to 

10 µM tBHQ, the latter which was not significantly different from DMSO control. 

After12 hr exposure there was no difference in expression between 

concentration groups (Table S4.3).   

 

Mtf1 had a significantly lower level of expression after a 6hr exposure to 10 µM 

and 30 µM tBHQ compared to DMSO. Whilst there was no significant difference 

in expression of mtf1 after 6 hr exposure to 3 µM tBHQ compared to DMSO this 

contrasted with the exposure to 3 µM tBHQ at the 12 hr time point where the 

highest fold change in gene expression was seen compared with all groups 
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(Figure 4.5B). Similarly, whilst transcript levels for mtf1 were downregulated for 

exposure to 10 µM tBHQ, at 12 hrs there was an upregulation of mtf1 compared 

with the DMSO control (Table S4.3).   

 

The gene expression of hif1a was higher at 3 µM tBHQ compared with that for  

10 µM tBHQ after the 6 hr exposure but not significantly different from DMSO. 

The variability in expression of hif1a was highest in the 30 µM tBHQ exposure 

after the 6 hr exposurs. After 12 hrs, there was no change in the transcript 

levels of hif1a compared to the control for both the 3 µM and 10 µM tBHQ 

exposures (Figure 4.5B). The down-regulation of hif1a under 30 µM tBHQ was 

not significant compared to the DMSO control (Table S4.1).  

 

There was no change in expression of nfkb1 across the different exposure 

concentrations following 6 hr exposures to tBHQ. However, after 12 hrs, there 

was a significant difference in expression for the exposure at 30 µM tBHQ 

(Figure 4.5B), which was also significantly higher than DMSO control, 3 µM and 

10 µM tBHQ exposure groups for this time-point (Table S4.3).  
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Figure 4.6: Relative expression of genes encoding for oxidative stress 

associated regulatory proteins after 6 and 12 hr exposures to tBHQ at 4 

dpf.  A). Effects of tBHQ treatment at 3 µM, 10 µM and 30 µM on the gene expression 

of keap1a, keap1b, nrf2a, nrf2b, mtf1, hif1a and nfkb1 measured using RT-QPCR and 

normalised to the housekeeping gene rpl8. Pooled samples of 30 embryos were 

exposed in triplicate to each concentration with 3 experimental replicates (n = 5-9). 

Graphs show the mean fold-change relative to the solvent control (DMSO 0.01%) with 

error bars as ± SEM  and significance recorded at 0.05 *, 0.001 ** and 0.0001***.  All 

statistical tests were conducted using generalized linear models B) Heatmap of RT-

qPCR results of the expression of genes encoding for oxidative stress associated 

regulatory proteins as a factor of concentration and time under tBHQ exposure. The 

mean relative expression of biological replicates (7-9) are indicated as normalized 

values to DMSO and asterisks indicate significant differences between time points 

(p<0.05).  

 

4.4.4. Detection of pre-apoptotic and apoptotic cells following tBHQ exposure: 

AO staining indicating the level of pre-apoptotic cells showed a concentration-

dependent increase following exposure to tBHQ (Figure 4.6).  These responses 

appeared to be concentration dependent for the exposures between 3 and 30 

µM tBHQ with the jaw, hindbrain and gills identified as target tissues. Pre-

apoptotic cells were identified in the jaw after exposure to 3 µM, 10 µM and 30 

µM tBHQ. In the 10 µM tBHQ exposure, the occurrence of pre-apoptotic cells 

increased in the gills and hindbrain. At 30 µM tBHQ exposure, whole body 

fluorescence intensity indicating apoptosis was significantly different from the 

control conditions. The expression of apoptotic cells in the gill was significantly 

higher in embryos exposed to 10 µM and 30 µM tBHQ.  
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Figure 4.7: Acridine orange staining as an indication of apoptosis in 4 dpf zebrafish eleutheroembryos following 6 hr exposure 

to tBHQ. A) tissue-specific fluorescence intensity in i) DMSO, ii) 3 µM iii) 10 µM and iv) 30 µM. Fluorescence indicated with an arrow with HB = 

hindbrain, J = Jaw and GA = gill arches. B) Mean fluorescence intensity of tissue specific and whole-body acridine orange 
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staining with background readings subtracted (n = 15 for all concentrations except 

DMSO where n = 10) for i) hindbrain, ii) jaw iii) gill arches iv) whole-body fluorescence. 

Error bars indicate ±SEM and significance is recorded at 0.05 *, 0.001 **.  
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4.5 Discussion: 

This research sort to identify the level of confidence in the GRN produced in 

Chapter 2 by compiling representative evidence of gene-expression responses 

across exposures to traditional inducers of adaptive-stress response pathways.  

Despite the importance of Nrf2 from both human health and environmental 

perspectives, little is currently known about the interactions it shares with other 

regulatory proteins in response to oxidative insult or throughout developmental 

time. This research provides an ontological expression analysis of key 

transcription factors that are involved in regulating stress response pathways: 

mtf1, hif1a and nfkb1 in the zebrafish. In addition, the inducible expression of 

these factors under the Nrf2 inducer tBHQ was investigated to indicate potential 

regulatory interactions between factors at the transcriptional level.  

 

4.5.1. Validation of modelling outcomes across exposure studies in teleost fish: 

 

The attractor reached by AhR, HIF1a, HSF1, MTF1 and Nrf2 in the boolean 

model is characterised by the activation of Nrf2, AhR and HIF1a transcription 

factors and target genes involved in xenobiotic metabolism, antioxidant defence 

processes, heat-shock chaperones and angiogenesis. The comparisons of 

gene-expression responses across exposures to chemical toxicants in fish 

species showed antioxidant and cytochrome p450 genes as widespread 

biomarkers in targeted gene expression analysis. The expression of genes such 

as gstp1, hsp70 and cyp1b, which were recorded under exposure scenarios to 

activators of Nrf2, HIF1a, HSF1 and MTF1, supports the results of the model 

generated in Chapter 2 and therefore provides evidence of the connectivity 

between stress-response pathways being conserved in fish species. However, 

given that not all the presented data conformed to the outcomes of model 

simulations, this indicates the complexity of stress response pathways with 

responses showing a dependence on tissue, life-stage and exposure 

concentration. 

 

The results highlight clear differences in tissue-specific expression patterns of 

antioxidant defence genes when measured under the same exposure scenarios 

for tissues such as the gills, liver, heart and brain (Table 4.2). For example, 

while the target gene hsp70, regulated by multiple stress-response factors, was 
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upregulated in the gills under hypoxia, it was downregulated in the heart. In 

addition, whole-mount in situ hybridisation (WISH) experiments identified tissue-

restricted expression patterns of antioxidant defence genes in zebrafish larvae 

under DEM exposures. Given that antioxidant defence genes have specific 

functions in mitigating against oxidative stress, this outcome reflects that fact 

that tissues have different basal levels of antioxidants. As it has also been 

shown that Nrf2 has tissue restricted expression patterns [38], this could result 

in different susceptibility to toxicants between tissues, therefore reflecting 

changes in the regulatory architecture. Additional information, such as the levels 

of TFs within tissues, should be integrated into the model generated in Chapter 

2 in order to provide predictions on specific tissue-level affects.  

 

This result highlights the difficulty in establishing complexities in response 

processes from whole-organism sequencing methods, where changes in gene 

expression within individual tissues may not be identified in whole-body 

samples. The expression of antioxidants was gene-specific in the literature 

analysis and whilst some targets were upregulated, not all of the predicted 

targets were differentially regulated.   

 

The representative studies showed differential expression of TFs for BaP, Cd 

and AgNP exposures where increases in transcript levels of nrf2a, nrf2b, mtf1, 

hsf1 and hif1a were shown. Interestingly, the downregulation of hif1a under Ag 

bulk at 24 hrs in zebrafish exposures was coupled with a downregulation in fth1, 

mt2 and sod- all target genes in the boolean model attractor which are predicted 

to be activated (therefore upregulated) at the same timepoint. This differs from 

exposures to cadmium where nrf2 was downregulated but targets sod1 and cat 

were upregulated along with hsf2 and mtf1. Given that the burden of TFs is 

different between tissues, this could result in changes in the levels of mRNA 

transcripts, which do not reflect the level of protein and therefore, the degree of 

TF activity. In addition, the model does not show an increased regulation of mtf1 

under the predicted simulations with metals and this suggests additional 

regulatory links are missing.  

 

The most support for the boolean model was provided in responses to cold-

stress in zebrafish larvae which showed gene expression responses in 
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accordance with the modelling outcomes for HSF1 (Figure 2.4). However, gene-

expression profiles reached under heat-stress were more similar to the NFkB 

attractor in chapter 2, showing activation of immune response processes and 

cell death. Given that the wider literate supports higher levels of stress with 

NFkB and p53 activation [39], this could suggest that heat stress caused more 

severe stress-response processes than cold stress. These results show a good 

level of confidence in the model outcomes.  

 

Of the studies assessed in this chapter, there are marked differences in the 

levels of gene expression in mixtures compared to single exposures; the results 

were inconsistent with the modelling outcomes. Under mixtures exposure 

scenarios, where the MIEs activated are not clearly defined, decreases in the 

expression of adaptive stress response factors was observed compared to 

single exposures.  

 

This highlights a key issue when validating the model in Chapter 2; it is difficult 

to assess similarities in gene-expression profiles across chemical exposures as 

each pollutant exerts different severities of response depending on dose. There 

therefore needs to be a continuous measure across exposures such as 

glutathione (GSH) as a comparative indicator of redox status, which could aid in 

validating the Boolean model results by setting a standard to which outcomes 

can be compared with more confidence. In addition, this analysis assumes the 

MIEs of inducers based on traditional associations - it is not known if the 

selected chemicals and stressors activate additional TFs upon exposure, which 

could also account for some of the inconsistencies in the reported results in this 

chapter and the model outcomes.  

 
 

4.5.3. Variation exists in the developmental expression of redox related 

transcription factors nrf2a, mtf1, nfkb1 and hif1: 

 
To begin to understand the roles of redox-sensitive transcription factors during 

early life development, the expression patterns of nrf2a, hif1a, mtf1 and nfkb1 

were established during embryogenesis in zebrafish via RT-qPCR. At 2 hpf, a 

development stage that is transcriptionally silent and thus a period when the 

embryo is reliant on the translation of maternally deposited mRNA[16,40], all 
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transcription factors had higher relative expression levels compared to nrf2a . 

The high transcript abundances of hif1a, mtf1 and nfkb1 suggests these genes 

were maternally deposited and this is supported by previous findings for these 

factors. For mtf1, high relative transcript levels pre-gastrulation have been 

shown using whole-mount in situ hybridisation (WISH) with an oscillating 

expression pattern from the envelope layer at 2 hpf to the sphere stage[40]. The 

results of this study showed that nfkb1 had a high level of expression prior to 24 

hpf whereas hif1a fluctuated between a high transcript abundance at 2 hpf and 

a low level at 72 hpf both of which are supported by the results of previous 

studies [41].  

 

The finding of expression of nrf2a only after 24 hpf in this study is again 

supported by previous reports which show an increasing expression pattern 

from 24 hpf to 96 hpf [18]. The strong agreement between the results recorded 

in the study reported here and of those in the literature would indicate little 

difference between the wild-type strain used in this study with other zebrafish 

strains (AB and Tupfel/Long fin mutation (TL) strains respectively) in the 

developmental expression of the selected stress responsive transcription 

factors.  

 

This study identified significant variation in the mRNA levels between 

transcription factors relative to rpl8 over developmental time. Firstly, the levels 

of nrf2a transcripts were low in comparison to all other transcription factors 

throughout the developmental windows investigated. No developmental role of 

nrf2a has so far been established whereas all other factors have been 

associated with regulating genes involved in morphogenesis. MTF1 -/- mice are 

embryonically lethal suggesting the factor is essential in vertebrate 

development. hif1a has been shown to be essential for neural crest migration 

zebrafish [42] which occurs during somatogenesis, 13-14 hpf [43]. For the NFkB 

family of transcription factors, essential roles in inhibiting apoptotic process 

during gastrulation[44], where cell-turnover rates are high, have been shown in 

addition to regulating targets involved in notochord development[45]. Whilst the 

levels of nfkb1 fluctuated, there was no significant difference in expression 

pattern and a large level of variation between samples within time-points.   
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Whilst the ability to mount an OSR pre-24 hpf was not assessed, the finding that 

nfkb1 and hif1a, both of which are able to regulate antioxidant genes in 

mammals, suggests a potential mechanism for the upregulation of antioxidants 

under chemical insult when the expression of nrf2a is low. The susceptibility to 

oxidative stress is high in early embryos which develop from reduced to 

oxidised states between 3 hpf and 48 hpf [46].  This correlates with the 

requirement for reactive oxygen species (ROS) which act as signalling 

molecules in early developmental processes[7] but also leads to an increased 

susceptibility to oxidative stress during early life stages. In this case, gstp1 has 

been shown to be maternally deposited but becomes depleted in embryos after 

6 hpf where its expression is inhibited by the extra-cellular-signal-related kinase 

(Erk) – cAMP response element binding protein (Creb) pathway[47].  Both HIF-

1α and NFkB pathways can regulate GSTP1, suggesting potential mechanisms 

to counteract inhibitory affects during early development. However, it is also 

possible that only low levels of nrf2a are necessary to bind to EpRE regions to 

initiate transcription, providing transcriptional regulation even in early 

development.  

 

Further research is needed to identify if these redox-associated factors are 

involved in regulating antioxidant defence genes in embryos prior to the 24 hpf 

stage. However, it should also be considered that the role of a factor might 

change over developmental time especially if there is a dependence on specific 

accessory proteins to regulate the expression of individual genes.   

 

4.5.2. The level of inducible expression of gstp1 and sqstm1 is dependent on 

developmental stage: 

The inducible expression of the Nrf2 targets, gstp1 and sqstm1 under tBHQ 

exposure were analysed as indicators of Nrf2 activation at both 2 dpf and 4 dpf. 

In both cases, there was a positive correlation between the fold change in gstp1 

and sqstm1 expression and increasing tBHQ concentration following both 6 hr 

and 12 hr exposure conditions.  This showed the greatest increase in the 

upregulation of gstp1 in comparison to DMSO at the 4 dpf period compared to 2 

dpf, as well as the highest expression of sqstm1 following 6 hr exposures in 4 

dpf embryos (Figure 4.4). These results are in keeping with the GRN predictions 

in Chapter 2 (Figure 2.4). 
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The increase in inducible expression of these antioxidants could be related to 

total GSH concentration which has been shown to decrease in embryos treated 

with low-levels of tBHQ at 4 dpf but not at 2 dpf [48] . gstp1 has been identified 

as having the highest binding efficiency to GSH compared to other members of 

the gst family in zebrafish[49] which could therefore result in a greater redox 

imbalance at 4 dpf compared to 2 dpf where there was a lower fold change 

between both sqstm1 and gstp1.  

 

The results reported in this study contrast with previous findings which identified 

that lower doses of tBHQ resulted in a significant induction of gstp1 expression 

at 2 dpf and 4 dpf[5].  The reduced expression observed in this study indicates 

potential variations in AB and WIK strain susceptibility to tBHQ and potentially, 

oxidative stress, between zebrafish lines.  

 

4.5.3. Paralogs in the nrf2-keap1 pathway under tBHQ had divergent 

expression patterns: 

 

The inducible expression of Nrf2 and Keap1 paralogs was investigated under 

tBHQ exposure to establish any changes in the transcriptional regulation of the 

pathway. This research showed comparatively different expression dynamics of 

keap1a and keap1b over both time and increasing concentrations to tBHQ. 

Whilst keap1a showed a concentration-dependent increase in expression at 6 

hrs post-exposure, this differed for keap1b, which had a stochastic expression 

pattern (Figure 4.5). This is conflicting with other data reporting that both genes 

are transcribed at the same level under xenobiotic exposure scenarios [11], 

[50]. However, each factor has been shown to have divergent functional roles 

and this could relate to the results in Figure 4.4; keap1a, but not keap1b, is 

targeted by tBHQ, which could cause a reduction in protein abundance.  

 

Increasing concentrations of tBHQ were coupled with a higher fold change in 

keap1a expression (Figure 4.5) suggesting an inhibitory mechanism for nrf2a 

release under increasing levels of oxidative stress. In support of this, whilst Nrf2 

has been identified as being self-regulating[51], this study established no 
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significant change in expression of nrf2a or nrf2b at both 6 and 12 hr exposure 

time periods (Figure 4.5).  

 

As this research showed keap1a is upregulated during exposures to tBHQ, this 

suggests depletion in the levels of free Nrf2 proteins within the organism. 

However, if this was the case, it was not reflected by decreased levels of the 

antioxidants sqstm1 and gstp1 which both showed a concentration-dependent 

change in gene expression (Figure 4.4). However, the levels of Nrf2 protein 

required to initiate a regulatory response under biological stress are unknown 

and it is possible that small-fluctuations in nrf2a induction are sufficient to 

regulate gene transcription but would not be identified in RT-qPCR of whole-

body samples.  

 

 

4.5.4. Transcript levels of stress-response transcription factors mtf1 and nfkb1, 

but not hif1a, were affected by tBHQ exposures: 

 
The expression of mtf1, hif1a and nfkb1 under tBHQ exposure was assessed as 

an indicator of regulatory connectivity between Nrf2 proteins. Of these factors, 

mtf1 was upregulated at 3 μM and 10 μM tBHQ after a 12 hr exposure period 

(Figure 4.5). Whilst the mechanisms for the regulation of mtf1 transcription have 

not been established, the higher expression levels after a prolonged exposure 

suggest an increase in the transcription of downstream target genes. These 

targets include metallothioneins, which are also regulated by Nrf2 transcription 

factors and have roles in detoxification processes. Given that an upregulation of 

mtf1 was also shown in the literature analysis (Table 4.2), this also indicates 

additional regulatory processes are involved in the expression of mtf1 that are 

not included in the model presented in Chapter 2. As mtf1 was not upregulated 

under 30 µM for any time point analysed, this suggests that mtf1 regulation 

could be influenced by the internal GSH:GSSG concentrations, which would be 

specific to the time-period and exposure concentration.  

 

This study also identified a greater expression of nfkb1 following 12 hr 

exposures at 30 μM tBHQ (Figure 4.5).  Interactions between NFkB and Nrf2 

have been identified at the protein-level and not at the gene-transcription 
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level[52], suggesting a downstream mechanism is involved in the upregulation 

of nfkb1 at the 4 dpf developmental period. However, as sqstm1 transcription 

was upregulated under increasing concentrations of tBHQ, this suggests a 

mechanism for initiating the NFkB pathway during shorter exposure periods. It 

is important to highlight that this study only investigated the expression of one 

NFkB transcription factor and changes in the regulation of other components, 

including NFkB2, Rela and Relb, in the pathway may occur under tBHQ 

exposure, leading to changes in the transcriptional regulation of downstream 

targets regulated by NFkB dimers. The upregulation of NFkB at higher 

concentrations suggests NFkB activation, and therefore the initiation of a 

different regulatory cascade to Nrf2 as predicted by Chapter 2 (Figure 2.4). 

Whole-genome sequencing would indicate if the outcome processes regulated 

by NFkB (e.g. immune response processes) are activated at higher levels of 

tBHQ exposure.  

 

There was no significant change in the levels of hif1a in the exposure conditions 

analysed. Increases in hif1a transcription have been widely documented under 

hypoxic conditions across vertebrates in vivo [41] which suggests that neither 

hif1a activation or hypoxic conditions occurred under tBHQ exposure. From the 

modelling results presented in Chapter 2, it is predicted that HIF1a would be 

initiated in the downstream regulatory processes caused by Nrf2 activation. As 

changes in hif1a expression where not seen, this does not necessarily indicate 

that HIF1a was not activated under exposure conditions. It is possible that the 

levels of hif1a transcription caused by tBHQ exposure are low and therefore not 

identifiable in whole-body samples.  

 

 

4.5.5. Increases in pre-apoptotic cells following tBHQ exposure: 

 
Pre-apoptotic cells, as indicated by increases in fluorescence intensity, were 

observed under AO staining in the jaw, hindbrain and gill arches correlating to 

tissues where genes involved in antioxidant defence and phase II metabolism 

are expressed in zebrafish embryos. In this case, gstp1, and the antioxidant, 

ferritin 1 (fth1), have been shown to be expressed in the gills[38] and 

hindbrain[28] respectively and these tissues had a significant increase in 



 279 

fluorescence intensity compared to control conditions in this research. This is 

supported by the increases in gstp1 expression under tBHQ exposures as 

shown in the RT-qPCR analysis. In addition, an increase in fluorescence 

intensity was observed in the jaw at 10 μM and 30 μM tBHQ, which is a major 

target tissue for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposures during 

development.  TCDD is a prototypic inducer of the aryl hydrocarbon receptor 

which has been established as interacting in a positive feedback loop with Nrf2 

in zebrafish[11]. This therefore suggests the induction of antioxidant defence 

processes occurred within these tissues.  

 

However, fluorescence following AO staining is an indicator of pre-apoptotic 

cells, indicating that antioxidant defence processes were overwhelmed in the 

identified tissues.  In this case, the induction of apoptosis is pre-empted by the 

upregulation of inflammatory genes, a process mediated by NFkB. Although this 

research showed no significant change in nfkb1 expression until 12 hr 

exposures at the highest concentration of tBHQ, there was a significant 

increase in sqstm1 across all concentrations which is a known induce or the 

NFkB pathway[53]. This suggests that the protein-protein interaction whereby 

sqstm1 activates NFkB signalling pathways through interacting with TNF 

receptor associated factor (TRAF6) [52] , is not supported by significant 

changes in the basal transcript levels of the nfkb1. These findings indicate that 

that the NFkB pathway was active at lower exposure concentrations where the 

fluorescence observed in the gills was not correlated with a change in the 

expression of nfkb1. Given that AO staining indicates pre-apoptotic cells, this is 

also in line with the outcomes of model simulations with p53 initiated in the start 

state (Figure 2.4) which was the only regulatory cascade to result in the 

activation of cell-death response genes.  

 

4.5.6. Further research:  

This study established that changes in gene expression of the transcription 

factors nfkb1 and mtf1 occurred under prolonged exposures to the Nrf2 inducer, 

tBHQ, indicating potential cross-talk with the Nrf2 pathway. In addition, 

considering that antioxidant genes have been identified to be shared targets in 

mammals, the higher transcript levels of hif1a and nfkb1 prior to the expression 

of nrf2a at 24 hpf identified in this study indicates a potential mechanism 
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whereby antioxidant genes could be regulated under oxidative insult in early 

development. Further research is necessary to fully establish these regulatory 

links firstly through repeating the chemical exposures and image analysis 

conducted in this study using an Nrf2 mutant line, as has been developed by 

Mukaigasa et al [37]. This would establish if the expression of mtf1, nfkb1 or 

hif1a under chemical induction is altered at 4 dpf in a Nrf2 knock-out, 

suggesting if compensatory mechanisms for detoxification processes have 

occurred. WISH analysis could also be used to support the identification of 

target tissues, allowing greater precision in gene-expression analysis by 

targeting specific tissues.   

 

The findings reported in this chapter could be further supported by conducting 

RNA sequencing across selected time-points following the initial induction of 

Nrf2 to establish changes in transcript expression, and identify progression in 

regulatory cascades. The Assay for Transposase Accessible Chromatin using 

sequencing (ATAC-seq), which identifies regulatory regions by indicating areas 

of open chromatin in the DNA sequence, would further support the 

establishment of regulatory processes. This technique can identify the 

regulatory activity of multiple transcription factors by searching the returned 

DNA for transcription factor binding sites, giving an overall view of the 

transcriptional regulation at the time-point analysed.  
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Figure 4.8: Schematic of experimental results summarising changes in 

transcript expression under tBHQ exposures over time.  Changes in 

transcript expression of selected regulatory targets where red indicates prolonged 

exposure time periods and higher exposure concentrations.  

 

 

4.6 Conclusion: 

 
This chapter identified evidence of coherence between stress-response factors 

and the outcome processes that are reached following induction from a range of 

inducers in fish exposures. However, there was also a need for more clarity in 

the modelling results, particularly considering differences in the tissue-

expression of target genes. The identification that TF targets such as mtf1 were 

upregulated under exposures in the literature suggests additional regulatory 

interactions have not yet been defined in the adaptive stress response. This 

was supported by the in vivo analysis that showed that the expression of nfkb1 

and mtf1 are elevated in response to tBHQ after prolonged exposure periods.  

The observation of pre-apoptotic cells in the jaw, gill arches and hindbrain 

suggest these as likely target tissues for tBHQ response processes. Further 

research is necessary to fully establish the regulatory connectivity between 

pathways. These studies should seek to identify if compensatory responses, 

leading to the upregulation of transcription factors, occur in the absence of Nrf2, 

and to establish protein-DNA binding events using whole genome sequencing 

techniques.  
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Chapter 4: Identifying the expression dynamics of redox-sensitive 

transcription factors and downstream target genes under the Nrf2-

inducer, tBHQ. 

 

4.7 Supplementary information: 

 

This supplementary information contains: 

Table S4.1: Generalised linear model for the relationship between chemical 

treatment, exposure duration and life-stage (dpf) between RT-qPCR transcript 

expression. 

Table S4.2: Generalised linear model for the relationship between chemical 

treatment and exposure duration between RT-qPCR transcript expression after 

6 hr and 12 hr exposures to tBHQ 
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Table S4.1: Generalised linear model for the relationship between 

chemical treatment, exposure duration and life-stage (dpf) between RT-

qPCR transcript expression. Transcript expression of sqstm1 and gstp1 after 

6 and 12 hr exposures to tBHQ (3 uM, 10 uM and 30 uM) at 2 dpf and 4 dpf. 

normalised to DMSO (0.01%). Minimum adequate models (F-value) is shown 

with significant codes *p<0.05, **p<0.001, ***p<0.0001. NS= Not significant.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gene 
Concentratio
n 

Concentration
: 
Time 

Concentration
: 
Day 

Concentration 
:Time 
:Day 

gstp1  

3 0.095 0.1163 0.1314 

10 0.3219          0.2396 0.10221 

30 0.3243 0.2698    0.00249** 

sqstm1 

3 0.16313 0.08614 0.04480* 

10 0.65861 0.375 0.63395 

30 0.00458 0.0019   0.00463** 
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Table S4.2: Generalised linear model for the relationship between 

chemical treatment and exposure duration between RT-qPCR transcript 

expression after 6 and 12 hr exposures to tBHQ. tBHQ exposures at 3 uM, 

10 uM and 30 uM at 4 dpf. Coefficient of the minimum adequate model (F-

value) is shown with significant codes *p<0.05, **p<0.001, ***p<0.0001. NS = 

Not significant.  

 

Gene 
Concentration 

6 hrs 12 hrs 
Concentration 

/Time 

keap1a 

3 0.375 0.375 NS 

10 0.76* 0.76* NS 

30 1.24*** 1.24*** NS 

keap1b 

3 0.33 0.63 0.13* 

10 -0.85 0.82 0.04* 

30 0.04 0.27 NS 

nrf2a 

3 -0.07 0.5 0.51* 

10 -0.3 3.54* 0.65* 

30 -0.18 0.45* 0.75*** 

nrf2b 

3 0.25 0.053 NS 

10 -0.33 0.82 NS 

30 -0.0054 0.0053 NS 

hif1a 

3 0.18 0.0012 NS 

10 -0.43 0.048 NS 

30 0.42 0.42 NS 

mtf1 

3 0.02 0.93 0.019* 

10 -0.76 0.73 -1.48*** 

30 -0.57 0.44 0.02* 

nfkb1 

3 -0.12 0.19 NS 

10 0.1 0.16 NS 

30 -0.23 0.95*** -0.82*** 
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5.1 Introduction 

 

Adaptive stress-response pathways were reviewed collectively for the first time 

in 2009 [1]. Since then, sequencing technologies such as Chromatin 

Immunoprecipitation (ChIP) and ATAC-seq have significantly advanced our 

understanding of TF-DNA associations (Figure 1.6) and in doing so, enabled 

the characterisation of gene regulatory networks (GRNs) that control biological 

processes. This thesis demonstrates a novel approach for predicting gene-

expression outcomes resulting from the activation of adaptive stress-responses 

by generating and modelling a GRN of interactions between pathways. Chapter 

2 of this thesis combined the available knowledge on mammalian adaptive-

stress response transcription factor (TF) interactions from experimental 

evidence. Simulations of this model identified that the nuclear factor (erythroid-

derived 2)-like 2 (Nrf2), aryl hydrocarbon receptor (AhR), heat shock factor 1 

(HSF1), hypoxia inducible factor 1 alpha (HIF-1α) and metal-transcription factor 

1 (MTF1) led to the same outcome processes whereas nuclear factor kappa-

light-chain-enhancer of activated -B cells (NFkB) and tumor protein p53 (p53) 

caused distinct responses (Figure 2.4). The efficiency of transcription factor 

binding site (TFBS) predictions to identify target genes using mammalian-

derived motifs was assessed in Chapter 3 as an indicator of the level of network 

conservation across teleost fish species. This demonstrated that whilst 

mammalian-based matrices were able to predict binding sites in expected target 

genes, fish-specific binding motifs identified putative sequences that were 

distinct from mammalian predictions. Chapter 4 set out to validate the outcomes 

of the GRN model generated in Chapter 2 across teleost fish through comparing 

gene-expression profiles from different exposure scenarios and through in vivo 

exposures to the Nrf2 agonist, tert-butylhydroquinone (tBHQ) in zebrafish early 

life stages.  

 

This thesis advances the current knowledge of the adaptive stress response in 

toxicology by: 

 

a) Predicting that Nrf2, MTF1, AhR, HSF1 and HIF-1α activate the same 

outcome processes through molecular interactions.  
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b) Identifying that target genes where transcription factor binding sites (TFBS) 

have diverged in fish-species can be predicted using mammalian motifs. 

c) Supporting the GRN generated in Chapter 2 by identifying analogous gene-

expression responses across chemical inducers in fish species and 

providing evidence of interactions between Nrf2 and adaptive stress 

response factors in zebrafish early life-stages.  

 

This discussion explores how the key findings of this thesis expand our current 

knowledge of the adaptive-stress response across vertebrates and chemical 

exposures. In doing so, this thesis highlights the need to re-evaluate the 

approaches taken when analysing gene-expression datasets from toxicology 

studies with the aim of integrating this knowledge into adverse outcome 

pathway frameworks (AOPs).   

 

5.2 False-positive associations could be widespread in adaptive-stress 

response pathways.   

 

Chemical compounds and physiological stressors are historically associated 

with activating distinct molecular pathways and causing the regulation of 

discriminant sets of target genes. This has led to an approach in risk 

assessment that emphasises a need to identify MIEs from which chemicals are 

compiled into separate classes based on the TF, and therefore the pathway(s), 

they activate [2]. Associations are then made from these classes connecting the 

defined molecular initiating events (MIEs) with observed adverse effects across 

different levels of biological organisation, such as the tissue and whole 

organism level. The thesis questions the reliability of this approach by showing 

that the activation of Nrf2, AhR, HIF1a, HSF1 and MTF1 can cause the same 

outcome processes to be regulated through molecular interactions (Chapter 2). 

It also showed that the oestrogen receptor pathway can activate adaptive stress 

response processes at the molecular level, therefore causing the regulation of 

genes not traditionally associated with oestrogenic responses as highlighted in 

the model in Chapter 2 and the experimental evidence presented in Chapter 4.  

 

Risk assessment methods therefore need to adopt an approach that moves 

away from placing chemical toxicity in the context of a single molecular 



 295 

pathway, instead viewing toxicity as acting through a broader molecular 

regulatory network.  

 

In showing this, the study provides evidence that MIEs in adaptive stress 

response pathways can be incorrectly inferred from gene expression datasets. 

For example, considering that the activation of antioxidant defence and 

xenobiotic genes was shown to be a shared outcome in Chapter 2, the AhR and 

Nrf2—traditional TF regulators for these outcome processes —could be 

incorrectly defined as the MIEs for specific chemical inducers. This is 

particularly likely considering that antioxidant defence and xenobiotic response 

genes were common biomarkers in targeted gene-expression assays collated in 

the literature, often in the absence of target genes for other outcome processes 

(Chapter 4). Such a result is perhaps more problematic for p53 and NFkB 

mediated response processes, where antioxidant defence and xenobiotic genes 

are active along with outcomes associated with higher levels of stress, such as 

cell-death and inflammatory responses (Figure 2.4).  

 

The results from the model simulations also highlighted that more information 

can be gained from establishing regulatory cascades rather than just MIEs 

independently. Considering that TFs can control the expression of multiple 

target genes, it is difficult to establish which processes will be activated 

following chemical exposures. This is particularly the case for TFs such as 

NFkB where gene expression profiles can be defined as early, middle or late[3]. 

By modelling interactions within a GRN, this method allows for predictions to be 

made across gene expression profiles based on time and on interactions with 

other regulatory factors which are likely to influence the responses of target 

genes such as through sharing targets between TFs as shown in Chapter 2.  

 

As it is likely that not all regulatory interactions between factors have been 

characterised for the GRN generated in Chapter 2 particularly for MTF1, which 

showed unpredicted expression patterns in the in vivo tBHQ exposure and 

experimental evidence in Chapter 4, additional interactions could impact the 

regulatory cascades shown in model simulations.  The GRN generated in 

Chapter 2 is likely to only be a partial representation of the interactions between 

stress response processes. Using GRN approaches at the basis of AOPs must 
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therefore allow for networks to be updated in order for processes and 

interactions to be better understood. For example, as demonstrated for 

oestrogen receptors in Chapter 2, additional regulatory interactions with 

receptor-mediated pathways can exist which can initiate the adaptive stress 

response network at the molecular level.  

 

5.3 Regulatory cascades in toxicology need to be better integrated into risk 

assessment methods.  

 

AOPs provide only qualitative predictions of toxicity based on observed 

responses from molecular, tissue, whole organism and population levels. In 

doing so, this leaves knowledge gaps in how MIEs can lead to specific adverse 

effects with little integration of regulatory cascades in AOP frameworks. The 

GRN model generated in this thesis provides a means of establishing which 

genes are activated within a regulatory cascade therefore identifying the links 

between MIEs and key events, an essential part of generating and 

understanding AOPs.   

 

However, validating the model in Chapter 2 according to the Bradford Hill 

criteria, which provides confidence levels to AOPs based on the weight-of-

evidence (WOE), presented a challenge in Chapter 4. This was in part due to a 

lack of consistency between sampling and exposure time points. The compiled 

evidence in Chapter 4 demonstrated that gene-expression responses are 

reported over varying time-points under acute exposures resulting in different 

reported outcomes across target genes. Early responses to chemical toxicants 

are dynamic and this information can be lost through only using a single 

sampling time point. In some cases, experimental aims set out to identify the 

first responders to exposures yet there is little consistency in the time frames 

that are considered suitable for this analysis. For example, in zebrafish early life 

stages, acute exposure times ranged between 3 to 24 hours (Chapter 4), a 

window that leads to considerable differences in gene expression profiles as 

demonstrated when responses differed to tBHQ exposure following 6 and 12 

hrs exposures (Chapter 4).  
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This is problematic as the rate of transcriptional regulation and the associated 

changes in gene expression are time dependent, and therefore observed 

changes in gene expression can form either the primary responses to chemical 

inducers or the latter outcomes of the regulatory cascade.  This created a 

challenge when trying to use pre-existing data to validate the model presented 

in Chapter 2 in terms of validating the predicted changes in regulatory state. 

This is important as the stages prior to and including the gene expression 

responses (the regulatory cascade), which causes an adverse effect in an 

organism at the tissue level, need to be determined to predict responses 

computationally across chemical exposures.  

 

5.4 The adaptive stress response GRN in an evolutionary and developmental 

context 

 

Developmental toxicology is complex with organisms undergoing rapid changes 

in cellular conditions that increase susceptibility to chemical toxicants [4]. The 

approach taken in this thesis was based on techniques adopted in 

developmental biology context, where GRNs are established from prior to 

knowledge to identify the regulatory factors controlling morphogenesis[5]. GRNs 

that control early patterning processes are highly conserved, with the same TFs 

controlling organogenesis across phyla [4]. This section discusses the 

application of the results from this thesis with the aims set out by the review by 

Leung et al. 2017, which calls for a need to combine evolutionary and 

developmental biology to determine toxicity responses across species[4]. 

 

The GRN generated in this thesis is not specific to a tissue or cellular condition 

and this therefore allows its integration with developmental networks, where 

adaptive stress response TFs are necessary for developmental processes[4]. In 

fact, NFkB and Bcl2 TFs are considered consensual cell-cell signaling pathways 

in morphogenesis [4].  Perturbations to developmental GRNs make some 

tissues at risk from damage if targeted by chemical compounds that activate 

TFs that are involved in developmental patterning. For example, TCDD, an AhR 

agonist, can cause jaw deformities in developing zebrafish, which results from 

AhR regulating the expression of sox9b under basal conditions [6]. Given the 

results in Chapter 2, there is also the indication, for example, that chemicals 
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that are not AhR agonists can cause the same affect through downstream 

response trajectories leading to AhR activation. In addition, as the expression of 

TFs nrf2a, mtf1, hif1a and nfkb1 in Chapter 4 were significantly different 

throughout development there is the potential that levels of TF activators could 

affect the inducible gene expression responses across early life stages. 

 

However, it is necessary to consider how much the model generated in Chapter 

2 can be used to predict responses to chemicals across species. Adaptive 

stress response pathways are highly conserved, evolving prior to the 

divergence of proteasomes and deuterostomes[4], and much like 

developmental GRNs, from this alone it can be predicted that the GRN 

generated in this thesis will be conserved across vertebrates. However, 

differences in toxicity profiles have been observed from a developmental 

context for chemicals such as the oestrogen receptor agonist bisphenol A 

(BPA), something that is predicted to be explained through evolutionary history 

[4].  

 

With this in mind, it was unsurprising in Chapter 3 that divergences existed in 

TFBS across fish species compared to mammalian counterparts. Although this 

did not affect the ability to identify target genes significantly using mammalian 

motifs, fish-specific TFBS did identify novel sites (Chapter 3). Given the vast 

evolutionary distribution of fish species, it should also not be assumed that all 

species will share the same responses to toxicants and validation of the 

identified TFBS in the analysis in Chapter 3 may provide a means of 

establishing differences in toxicity response profiles. However, the results from 

Chapter 4 did show moderate confidence in the model results in terms of 

biological plausibility and the empirical evidence [2], with few results not 

supporting the model outcomes. This suggests the network was reasonably 

conserved from mammals to fish but more explicit evidence is needed at the 

TF-DNA binding level to confirm this result.  

 

The GRN generated in Chapter 2 goes further in identifying the toxicity 

responses from an evolutionary context. For example, despite the same 

adverse outcome being reached, different MIEs are predicted to be activated 

across distantly related species as a result of developmental drift [4]. 
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Considering that the model in this thesis showed that the activation of different 

TFs at MIEs could lead to the same outcome processes, the GRN provides a 

potential mechanism for defining how the activation of different pathways can 

lead to these responses at the molecular level [4]. As such, the results of 

Chapter 2 identify canalisation; a theory originally proposed in developmental 

biology that shows that despite differences in genotype the same phenotype 

can be reached [7]. Canalisation is a measure of evolutionary robustness [7] 

and considering the early evolutionary development of adaptive-stress response 

pathway and the evidence provided in this thesis, this provides strong evidence 

that the concept can be applied in a toxicology setting. At the time of writing, 

this is the first known application of this theory to an adaptive stress response 

and toxicology setting.  

 

5.5 Future Research:  

 

Considering the concept of canalisation, evolutionary conservation and a need 

to further validate the model presented in Chapter 2, this suggests that data 

from mammalian cell lines can be used to inform on predictions to chemical 

toxicants in an adaptive stress response context in fish species. A significant 

majority of toxicology studies conducted on fish in vivo that use gene 

expression datasets or RT-qPCR as biomarkers do not start with an 

overarching aim of producing datasets to inform on or be integrated into a 

computational modelling frameworks. However, this information does exist for 

exposures (often to pharmaceutical compounds) in mammalian cell lines and 

databases such as Cmap [8] and TG-GATES [9] provide time-course data 

across exposure concentrations. However, these datasets are often from 

exposures conducted in cancer cell lines that have different molecular 

components to normal cells, such as altered expression levels of p53 [10], 

which may affect the dynamics of network responses. Despite this, further 

support for the modelling results presented in this thesis should certainly include 

a comprehensive analysis of the similarities in gene-expression profiles from the 

available mammalian cell line datasets. The results from this analysis could 

then be compared to exposures in fish species as a means of establishing the 

conservation of adverse outcomes and molecular cascades across inducers. 
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As discussed in Chapter 4, there is a need to use a general marker for the level 

of stress, such as the GSH:GSSG content to indicate the redox status, to 

provide an indicator of the cellular state at the time of sampling. This could then 

be directly associated with the TFs and gene expression profiles that are active 

to better determine if responses are analogous across chemical exposures and 

species as predicted by the model and the literature.  

 

Future research into the adaptive-stress response GRN should be primarily 

aimed at validating the key links within the network, particularly establishing the 

influence of dose, time, tissue and life-stage on how responses progress 

through regulatory cascades. One key step in this will be in advancing the 

model from a boolean setting to one which is based on ordinary differential 

equations and therefore able to provide quantitative predictions on gene 

response outcomes. This is a particularly clear step considering the results of 

chapter 4 where tissue restricted expression of antioxidants and of Nrf2 were 

observed.  

 

The generation of an ODE model requires more experimental information than 

is currently unavailable including TF abundance and rates of transcription, 

translation and degradation which all influence the levels of gene expression 

[11]. It is also necessary to establish where TFs are activated within an 

organism over exposure times and this can be shown through high-throughput 

screening methods in transgenic zebrafish for the TFs of interest in the adaptive 

stress response.   

 

5.6 Conclusion 

The seminal report “Toxicity testing in the 21st century” by the EPA provided a 

key step in moving toxicology away from laboratory settings and into 

computational modelling frameworks [12]. While progress has been made in 

this context, such as the development of the AOP knowledge base, there are 

still vast gaps in generating robust predictive toxicology tools. This thesis shows 

that the GRN for the adaptive stress response can be applicable to AOP 

development, with pathways and TFBS highly conserved across vertebrate 

groups.  
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This thesis identified a number of factors that were analogous between 

developmental concepts and toxicology analysis. The concept of canalisation, 

where the same phenotype is shown regardless of the genotype, was predicted 

for responses controlled by stress response factors in Chapter 2. The model 

identified common responses and cohesion between outcome processes under 

adaptive stress response factors, identifying the need to place MIEs in the 

context of regulatory networks in order to understand responses across 

inducers and across evolutionary history. In doing so, this thesis identifies a 

need for using GRN approaches as evidence to support the development of 

AOPs across species.  
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