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ABSTRACT
In optimiser analysis and design it is informative to visualise how a

search point/population moves through the design space over time.

Visualisable distance-based many-objective optimisation problems

have been developed whose design space is in two-dimensions with

arbitrarily many objective dimensions. Previous work has shown

how disconnected Pareto sets may be formed, how problems can

be projected to and from arbitrarily many design dimensions, and

how dominance resistant regions of design space may be defined.

Most recently, a test suite has been proposed using distances to lines

rather than points. However, active use of visualisable problems has

been limited. This may be because the type of problem characteris-

tics available has been relatively limited compared tomany practical

problems (and non-visualisable problem suites). Here we introduce

the mechanisms required to embed several widely seen problem

characteristics in the existing problem framework. These include

variable density of solutions in objective space, landscape discon-

tinuities, varying objective ranges, neutrality, and non-identical

disconnected Pareto set regions. Furthermore, we provide an auto-

matic problem generator (as opposed to hand-tuned problem defi-

nitions). The flexibility of the problem generator is demonstrated

by analysing the performance of popular optimisers on a range of

sampled instances.

CCS CONCEPTS
•Human-centered computing→Visualization;Visualization
design and evaluationmethods; •Applied computing→Multi-
criterion optimization and decision-making; • Mathematics
of computing → Evolutionary algorithms;

∗
Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO ’19, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6111-8/19/07. . . $15.00

https://doi.org/10.1145/3321707.3321727

KEYWORDS
multi-objective test problems; evolutionary optimisation; bench-

marking; test suite; visualisation

ACM Reference Format:
Jonathan E. Fieldsend, Tinkle Chugh, Richard Allmendinger, and Kaisa Mi-

ettinen. 2019. A Feature Rich Distance-Based Many-Objective Visualisable

Test Problem Generator. In Genetic and Evolutionary Computation Confer-
ence (GECCO ’19), July 13–17, 2019, Prague, Czech Republic. ACM, New York,

NY, USA, 10 pages. https://doi.org/10.1145/3321707.3321727

1 INTRODUCTION
The ability to see how a multi/many-objective optimisation algo-

rithm is progressing is often a vital aspect of algorithm design and

analysis. In terms of progress quality, this may be from a conver-

gence plot to some indicator (e.g. hypervolume [42] or inverted

generational distance [4]). However, visualising how the search

population moves/converges to the Pareto set and other attractors,

in order to understand e.g. search bias, is more difficult.

Parallel coordinate plots and heatmap visualisations coupled

with and without dimensionality reduction methods (e.g. principal

component analysis) are widely used to show the distribution of so-

lutions, but as the number of dimensions (in either space) increases,

picking out relationships quickly is more difficult. The set of alter-

native solutions to compare also tends to grow with the number of

objectives K . Specialised scatterplot visualisation approaches are

lossy in general due their data compression from a higher num-

ber of dimensions into two or three dimensions used to visualise

the data [9, 21, 33]. Alternatively, if pair-wise plots are used, then

the number of plots required becomes rapidly overwhelming (as

(K2 − K)/2 plots are needed).
The evolutionary multi-objective optimisation (EMO) commu-

nity has proposed a range of test problems over the years to validate

an algorithm’s ability to deal with different problem characteristics.

For instance, prominent representatives of discrete problems in-

clude multi-objective knapsack [42] and NK-landscapes [1], while

commonly used permutation problems include the multi-objective

travelling salesman problem [5] and flowshop scheduling [18]. Ar-

guably, the largest number of test problems have been proposed for

the continuous domain including test suites such as DTLZ [7] and

WFG [11], and, more recently, many-objective test problems [3, 30]

https://doi.org/10.1145/3321707.3321727
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and the BBOB problems [32]. Although these multi/many-objective

problems allow the user to adjust various problem features, such

as the dimension of the decision and/or the objective space and

aspects of the Pareto front shape, the issue of being unable to visu-

alise the movement of the search population in its native domain

remains, as also pointed out in a recent review of existing scalable

multi-objective test suites [38].

Distance-based multi- and many-objective optimisation prob-

lems, which were initially popularised in [19, 20] for visualisation,

sidestep these issues by creating problems that are themselves in-
herently visualisable. They formulate problems which can have

arbitrarily many objectives, but whose design space natively lives

in two-dimensions, where the Pareto set is easy to identify by eye.

Subsequent work extended these to include (i) arbitrarily large de-

cision spaces that could be projected back to the 2D visualisation

space [26], (ii) disconnected Pareto sets of the same [14] or differ-

ent shapes [12], (iii) non-identical disconnected Pareto sets [12],

(iv) dominance resistance regions [8], and (v) local fronts [25].

Distance-based problems have been used in a number of empirical

studies (e.g. [13, 14, 24, 31]) in order to visualise the distribution
of candidate solutions maintained by multi- and many-objective

optimisers during their search, and their effectiveness/bias in locat-

ing the Pareto set of solutions. A line-based-distance test suite was

introduced in [22, 23], though most work remains on point-based

formulations, which we are concerned with here (the extension of

line-based distance test problems with the problem features pro-

posed here is part of future research).

In the distance-based formulation (also referred to as a Pareto-

box formulation), a putative solution is a point in the plane, and its

performance on each objective is calculated as its distance to a point

in that space. Here we use the acronym DBMOPP as shorthand

for distance-based multi/many-objective point problems. Broadly

speaking, this work advances the current state-of-the-art in DB-

MOPP in terms of additional problem characteristics and develop-

ing an automatic problem instance generator for creating problem

instances with the existing and new characteristics. The specific

contributions are:

(1) The ability to vary the density of solutions that lie in different

regions of the Pareto set — thus varying the density across

the Pareto front.

(2) An alternative approach to create disconnected Pareto sets

which map to different regions of the Pareto front.

(3) The ability to have discontinuities in the objective functions.

(4) The ability to have the objectives on markedly different

scales, with different minimum values.

(5) A generator to supply well-formed problem instances with

arbitrarily many objectives, design variables, local fronts, dis-

connected fronts, dominance resistance regions and varying

projection densities — all visualisable in the plane.

(6) Demonstration of the test problem generator by visualising

and analysing the performance of some popular optimis-

ers on a sampled set of problem instances (provided by the

proposed generator).

The rest of this work proceeds as follows. The next section pro-

vides a formal definition of multi/many-objective optimisation prob-

lems and recaps the concepts of Pareto optimality and dominance

followed by a description of existing features in the DBMOPP lit-

erature. Section 3 extends the existing DBMOPP framework by

introducing a set of tunable new problem characteristics. Section 4

then introduces a problem generator capable of automatically creat-

ing DBMOPP problem instances that feature desired (existing and

newly proposed) characteristics. Results of numerical experiments

on a sampled set of problem instances with different characteristics

are presented in Section 5. Finally, we conclude and discuss future

research directions in Section 6.

2 EXISTING VISUALISABLE
DISTANCE-BASED TEST PROBLEMS

2.1 Problem definition
Before outlining test problem properties, it is useful to formally

define Pareto optimality and dominance. For multi/many-objective

optimisation problems, without loss of generality, we seek to simul-

taneously minimise K objectives: fk (x), k = 1, . . . ,K , where each
objective depends upon a vector x = (x1, . . . , xN ) of N design or

decision variables. The variables may also be subject to equality and

inequality constraints. Such constraints define X ⊆ RN , a feasible

design space. Related to this is Y, the objective space image of X

(the feasible objective space). When there is more than one objec-

tive to be minimised, solutions may exist for which performance on

one objective cannot be improved without reducing performance

on at least one other. Such solutions are said to be Pareto optimal.
The set of all Pareto optimal solutions is said to form the Pareto
set P, whose image in the objective space is known as the Pareto
front F . Identifying such solutions relies on Pareto dominance. A
feasible decision vector x is said to dominate another x′ iff

fk (x) ≤ fk (x
′) for all k = 1, . . . ,K and f(x) , f(x′). (1)

This is often simply denoted as x ≺ x′ rather than f(x) ≺ f(x′).
In standard visualisable distance-based test problems, we have

X ⊆ R2. For point-based formulations in this domain, there are

K sets of vectors defined, where the kth set, Vk = {v1, . . . , vmk },

determines the quality of a putative design vector x ∈ X, on the

kth objective. This is typically calculated as

fk (x) = min

v∈Vk
(dist(x, v)).

Note as mk is the number of elements of Vk , which depends on

k , it is legal for |Vi | , |Vj |, but |Vi | ≥ 1 for all i . The function

dist(x, v) typically returns the Euclidean distance between x and

v. An alternative distance metric, not considered in this paper, is

the Manhattan distance [37, 40].

Let us consider the simplest distance-based problem formulation

using points, where |Vk | = 1 for all k . This means that there is

a single connected Pareto set, and no additional locally Pareto

optimal regions, as illustrated in Figure 1. We could directly set

the elements of Vk , meaning 2 × K parameters to fix to define

a problem. A more attractive representation however is to use a

centre (2 coordinate values), a circle radius (r ), and an angle for each
objective minimising vector, making 3 + K parameters to fix when

initialising a test problem. This has the advantage of having the

same or fewer parameters for all problems with K > 2 objectives

compared to directly choosing the point coordinates. Additionally,

the polygon defined by the points generated in this fashion will
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Figure 1: A problem with three objectives,Vk = {vk ,i }, |Vk | =
1. Left: The three locations in X, which lie on the circum-
ference of the black circle, determine the objective value
minima. They describe a three-sided polygonal Pareto set
(coloured grey).Right: Samples on the corresponding Pareto
front generated by Monte Carlo sampling the Pareto set.

always result in a well-formed Pareto set (a convex hull formed

from them will have every element on its perimeter). We use this

convention here in our generator to illustrate how we achieve the

various feature additions to the DBMOPP framework.

2.2 Test problem sampling
Work up until now has hand-tuned DBMOPP problems. One of

our contributions here is the introduction of a generator to auto-

matically construct DBMOPPs with a range of properties, allowing

empirical analysis based on test problem sampling, supporting the

assessment of generalisable results, rather than those tuned to a par-

ticular suite of problems (see e.g. [2]). This is a valuable provision

alongside those other generators available for different problem

forms (e.g. multi-modal problems [29], multi-objective NK land-

scapes [36] and discrete optimisation problems [34]).

2.3 Existing features in the DBMOPP literature
Here we briefly describe the existing features enabled in DBMOPP

from the literature.

2.3.1 Disconnected Pareto sets. Where |Vk | > 1 for all k , one can
generate a disconnected Pareto set of solutions (as long as the

relative positions of the groups of points defining each Pareto set

are kept the same) [14]. We denote the jth region containing Pareto

optimal designs as Rj . This is relatively easy to achieve given the

proposed representation, as the angles and radii can be replicated

across all regions, and only the centres need varying. One must

ensure that the distance between the centres is always sufficient to

prevent Pareto set locations being formed between different point

groupings. A minimum centre distance of > 4r will always ensure
this, even if the regions Rj are rotated with respect to each other.

This is illustrated in Figure 2. For c disconnected set regions, this

results in 1 + K + c × 2 parameters to fix. See Figure 3 for an

illustrations of problem instances with K = 3 and K = 7 objectives.

2.3.2 Arbitrarily large design spaces. The original 2D design space

can be projected into arbitrarily many dimensions via two orthog-

onal vectors forming a basis [26], generating a new design space
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Figure 2: Requirement of 4r separation. Two Pareto sets
(grey lines) defined by centres c1 and c2. If the centres were
≤ 4r apart, the Pareto set would be induced between the two
regions, as v1,1 would be closer to v2,2 than v2,1.
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Figure 3: Illustrations of disconnected Pareto sets. Left: A
K = 3 problem with three disconnected regions Rj . Right:
A K = 7 problem with 10 disconnected regions Rj .

Z ∈ RN , N > 2. Designs z from this larger space can be mapped

to a corresponding x using the orthogonal projection vectors, the

basis (π1,π2). Subsequently, x can be evaluated and visualised:

x =
(z · π1)

| |π1 | |

(
1

0

)
+
(z · π2)

| |π2 | |

(
0

1

)
.

It is possible to have a single 2D space with multiple regions Rj
projected via two orthogonal vectors, but it is also possible to have

multiple different 2D spaces, projected with different orthogonal
vector pairs of the same dimension and evaluate z using each of

these projections. This allows the different regionsRj to be oriented

differently in Z (and be more distant than in the single projection

case) [26].

2.3.3 Non-identical disconnected Pareto sets. It is illustrated in [12]

how non-identical Pareto set regions may be formed via position-

ing points to describe identical convex polygons, but swapping

positions of points minimising each objective in each. This does,

however, have the effect that the Pareto set is potentially a non-

convex sub-region of the polygon. Another disconnected Pareto

set is illustrated via a map based problem in [12], with multiple

locations (railway stations, schools, etc.) defining the minimising

locations. This is an excellent example of a real-world problem of

the same form, but for arbitrary test problem designs it is less advan-

tageous. Here we would like to control a number of other problem
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Figure 4: Illustrations of dominance resistance regions
(coloured blue) in DBMOPP instances. Left: A problem with
K = 3 and two disconnected regions Rj and one dominance
resistance region.Right: A problemwithK = 7, three discon-
nected regions Rj and seven dominance resistance regions.

properties when automatically generating problem instances, en-

sure that instances are viable, and Pareto sets are easy to identify a
priori. We detail the approach we use in our generator in Section

3.2.

2.3.4 Dominance resistance regions. The usual generation of a DB-

MOPP results in all solutions which minimise any individual ob-
jective fk also being Pareto optimal. In [8], region constructions

were introduced which could overcome this limitation and supply

designs which were dominance resistant [10] (i.e. dominated but

weakly Pareto optimal [27] when compared to Pareto set members).

These regions had points whose relative positions matched those in

the Pareto set, but which are described by at mostK−1 of the points

used to define a region Rj , meaning each solution in a dominance

resistance region is dominated by at least one member of the Pareto

set. Illustrations are provided in Figure 4. Such a formulation means

there are (many) locations in X whose quality may be optimal un-

der one or more fk , but when evaluated under f are still located
very far from F — unlike in the standard formulation where all

x∗ = argminx∈X fk (x) are in P, ∀k .

2.3.5 Local fronts. Local fronts in multi-objective problems act

much like local optima in uni-objective problems — generating

basins of attraction which compete with the Pareto set. These may

be easily generated in our framework by using the angles selected

for the placement of the objective minima points around the centre

in the Pareto set, but applying a larger radius when distributing

attractor points for local regions
1
. An illustration is provided in

the left panel of Figure 5, with the corresponding local dominance
landscape shown in the right panel (generated through sampling

on a 500 × 500 grid).

The black regions in the local dominance landscape are com-

prised of cells in the discretised space, where all eight immediate

neighbouring locations (the Moore neighbourhood) are mutually

non-dominating with the centre cell (denoting dominance-neutral

local optima regions). Thesemay be identified by point-based Pareto

hill-climbing [35], but note that a contiguous region of such local

optima is not guaranteed to be composed entirely of members that

1
Note, for computational reasons a problem instance generator must pre-calculate the

maximum local front radius.
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Figure 5: Illustration of local fronts. Left: A problem with
K = 4, one global Pareto set and nine local Pareto fronts (in
green). Right: Local dominance landscape approximated by
sampling X on a 500 × 500 grid.

are mutually non-dominating (a local Pareto set), as construction

of these relies on a set-based rather than point-based hill-climb (see

e.g. [28]). Instead, the black regions describe a locally dominance-

neutral region, where all local moves are incomparable from a

dominance perspective. Grey regions in the plot are made up of

cells which have at least one dominating neighbour (i.e. lie on a

dominance hill-climb path, rather than the end of a path), and all

dominating movement paths from neighbours in grey regions lead

to the same local optima region. As such, the grey regions denote

those basin components which lead to the same dominance-neutral

attractor. White regions are comprised of cells whose neighbours

lead to multiple different attractor regions (and therefore denote

boundary regions/saddle-points).

Note the complex interactions in the landscape in the right panel

of Figure 5. The local dominance-neutral regions include the Pareto

set and the regions denoting specified local fronts from the left

panel, but also additional dominance-neutral regions lying between

these have been induced by the attractor points. These generally

have much smaller basins (and in some cases no basin at all). As

noted, the dominance-neutral regions may be larger than the cor-

responding region illustrated in the left panel of Figure 5 — this is

because the dominance-neutrality is local to the neighbourhood

of each cell, rather than calculated with respect to every member

of the region (denoting the landscape observed by a local greedy

dominance-based hill-climber).

2.3.6 Pareto front shape. It is worth noting that due to their con-

struction, the front shape of DBMOPP problems result in a F whose

members at most minimise a single objective. For example, in k = 3

problems F has an ‘inverted triangle’ shape. Recent work has high-

lighted that such shapes can cause particular problems for both

decomposition-based algorithms [17] and hypervolume-based algo-

rithms [15], and can also cause issues selecting an reference point

for the hypervolume calculation [16].

3 NEWAND ENHANCED DBMOPP FEATURES
We now describe new features (in the case of non-identical dis-

connected Pareto sets, an enhanced feature) we have added to the

existing DBMOPP framework and which we have implemented as

a problem instance generator alongside those previously described.
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Figure 6: Penalty locations and their effect on an objective
landscape. Left: A problemwithK = 4 and 10 penalty regions
(shown with filled red circles). Right: f1 quality landscape.

3.1 Discontinuous objective surfaces
The use of setsV in DBMOPP construction results in smooth objec-

tive landscapes. We propose here the introduction of discontinuities.

They can be introduced via penalty regions centred on a penalty

location p. These may be used to apply a fixed or varying non-zero

penalty to one or more objective values for all locations within

the region. This induces a discontinuity in the landscape of those

objectives affected by the penalty at all locations that lie on the

perimeter of the penalty region, illustrated in Figure 6.

Here we use circular penalty regions defined by a centre (loca-

tion) and radius. However, arbitrary polygonal shapes to define

the penalty regions could also be used (at the cost of additional

parameters and interior checking). Where a penalty region inter-

sects a region Rj or lies entirely within one, additional features are

induced, which we now detail.

3.2 Non-identical disconnected Pareto sets
Under most current DBMOPP formulations, the image of each

region Rj in X under f describes the entire Pareto front. However,

if we place penalty regions which intersect with a region Rj (or

which lie entirely within Rj ), whose penalty is sufficient to make

points within the penalty region dominated by elements of X, we

can effectively ‘cut-out’ a chunk of that region Rj .

Furthermore, if penalty regions are placed in different Rj asym-

metrically, then each Rj will map to different parts of the Pareto

front (depending on construction, these may be partially overlap-

ping, or non-intersecting). An illustration if this is provided in

Figure 7. Given the penalty locations, some objective combinations

are only available in one of the regions Rj (e.g. the right-hand

edge of F in the middle — as this area is removed from two of the

three regions Rj ) and some in different pairs of Rj (i.e. the corner

regions, where one of the three regions Rj each have a penalty

centred). Some optimal objective combinations reside in all three

disconnected sets (i.e. the central portion of the front).

3.3 Varying solution density in Pareto sets
Varying the relative lengths of the orthogonal projection vectors

used to generate arbitrarily large design spaces allows us to vary

the density of the solutions mapped back to the 2D representation
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Figure 7: Illustrations of penalty locations generating non-
identical disconnected Pareto sets. Left: Penalty regions in-
tersect the three regions Ri in different areas. Right: X is
sampled and evaluated under f , the non-dominated subset
is shown, with the three colours represented in the three dif-
ferent regions Rj responsible for the front members.

in X. This can in turn make some regions Rj and regions of the

Pareto front more difficult to attain than others.
2

3.4 Varying objective scales
In standard formulations of DBMOPP, the range of each objective

does not vary greatly, and theminimum of all objectives is 0. We can,

however, shift the objective ranges to be arbitrarily wide/narrow,

with arbitrary maxima and minima via a multiplication and shift

term f r escaledk (x) = ak + bk × fk (x).

3.5 Neutrality
Neutral (flat) regions of the objective/domination landscape can be

generated using the penalty region approach detailed in Section

3.1, where instead of an additive/multiplicative penalty on the ob-

jective(s) associated with designs in the region, a constant value is

used to replace objective values. This has the effect of making all

design vectors in the region express identical objective values for

the set of objectives affected. Neutrality is common in combinato-

rial spaces, but can also exist in continuous spaces, for instance the

labour cost/time of manufacture may not change at all between
similar engineering designs.

4 PROBLEM INSTANCE GENERATOR
Given the wealth of features described above extending the existing

DBMOPP framework, which can be incorporated in a DBMOPP

test problem instance, the question is how to generate a problem

automatically and correctly, ensuring the desired properties are all

present (and to the correct degree). We solve this here by observing

that X may be partitioned into areas concerned with providing

examples of each of the various properties desired. These are largely

determined by sets of points defining the different region types

(Pareto sets, dominance resistance regions, penalty regions, non-

identical disconnected Pareto sets including penalty regions, local

fronts, etc.). Algorithm 1 outlines the procedure at a high-level.
3

2
A non-linear transform to the fk value could also be applied (i.e. taking the natural

logarithm) to vary the density of mapping from the design space to the objective space.

3
A Matlab implementation of the generator and supporting functions to plot the

regions in 2D, plot dominance landscape, and create the set of TikZ commands in
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Algorithm 1 DPMOPP-generator

1: function generator(K,nR,nl ,nd ,nr r ,non_identical,
vary_scales, random_seed)

2: set_seed(random_seed) ▷ Ensure instance reproducability
3: Vk := ∅ ∀k ▷ Empty set of objective minima coordinates

4: (Pk ,Rk ) := (∅, ∅)∀k ▷ Empty penalty locations and radii

5: C := ∅ ▷ Empty set of region centres

6: n := nR + nl + nd ▷ Total number of centred regions

7: rmax
:= U(0, 1/(1 + ⌈2

√
(n)⌉)) ▷ Draw rmax

8: rPareto := rmax ▷ Default radius of Pareto set regions

9: a := [0]K×1 ▷ Additive constants for objective rescaling

10: b := [1]K×1 ▷ Multiplicative constants for rescaling

11: if nl > 0 then ▷ If local fronts are generated

12: (V ,C, rPareto ) := place_local_fronts(V ,C,nl , r
max )

13: end if
14: (V ,C) := place_Pareto_set(V ,C,nR, r

Pareto )

15: if nr r > 0 then ▷ If dominance resistance regions needed

16: (V ,C) := place_dom_resistance(V ,C,nr r , r
Pareto )

17: end if
18: if non_identical = true then ▷ |Ri | vary

19: (P,R) := modfiy_regions_with_assym_pen(V ,C, P,R)
20: end if
21: if nd > 0 then ▷ If discontinuities outside of Ri
22: (P,R,C) := place_discontinuities(V ,C,nl , r

max )

23: end if
24: if vary_scales = true then ▷ Modify objectives ranges

25: (a, b) := sample_scaling_constants(K)
26: end if
27: return (V , P,R, a, b) ▷ (Points, penalties, penalty radii,

objectives rescaling)

28: end function

The properties of problems generated by Algorithm 1 are directly

verifiable. For instance, finely discretising the space and commenc-

ing a Pareto Local Search [28] from a single location in each of the

local front sets will verify their existence and location matches that

described in the problem state variables (i.e. V , P,R, a and b). The
existence of dominance resistance regions can be verified by simply

sampling from each corresponding region and observing there are

solutions with minimal fk (x) which are dominated, etc.

4.1 Randomly placing region centres
We allocate the centres defining each of the regions at random, but

subject to lying at least 4r from the closest next region for all attrac-

tor regions. Here, r is the largest radius employed by any individual

region. Additionally, all region centres must be at least r from the

domain boundary. We employ a Monte Carlo circle placement with

rejection sampling for this. For non-attractor regions, i.e. penalty

regions forming discontinuities or neutral regions in the objective

landscapes, these may be placed immediately adjacent to attractor

regions, as they cannot induce Pareto optimal regions if placed too

close (unlike the other region types).

LATEX to generate illustrations (as in many of the subplots here) are available at https:

//github.com/fieldsend.

The region radius r cannot be set arbitrarily as, depending on

the number of circles being fit into a bounded X, legal placement

for all may be impossible. Given n attractor regions and n′ non-
attractor regions to be placed, and our domain boundaries (−1,+1),

we can calculate the maximum possible value this could take, rmax
,

a priori. This corresponds to packing in all n+n′ regions of the two
distinct types in the bounded area in a regular grid (with four non-

attractor regions having the same minimum area requirements as

one attractor region). As such, we have rmax = 1/(2+ ⌈
√
(n+ n′

4
)⌉),

and for a particular problem instance r ∼ U(0, rmax ).

In reality, the legal Monte Carlo allocation of all n + n′ cen-
tres with r = rmax

is vanishingly small, as it essentially requires

the random generation of n + n′ points on a regular grid. Subse-

quently, for each instance, r is drawn from the uniform distribution

U(0, rmax ), but if a legal set of centres is not drawn via Monte

Carlo sampling sufficiently quickly, a shrinkage factor of 0.95 is

recursively multiplied to r until a legal set can be generated.
4

5 ILLUSTRATION ON SOME POPULAR
OPTIMISERS

In this section, we illustrate the search behaviour of three different

optimisers on problems with different features from our DBMOPP

generator. We used NSGA-II [6], MOEA/D [39] and IBEA [41] as

a dominance, decomposition and indicator based EMO algorithm,

respectively. In the experiments, a broad range of dimensions and

other features of the problems tested were covered:

Problem characteristics:

(1) Number of objectives: 2, 4 and 10.

(2) Number of design variables: 2, 5 and 100.
5

(3) Number of disconnected Pareto sets: 1 and 5.

(4) Number of local fronts: 0, 5 and 10.

(5) Number of dominance resistance regions: 0, 5 and 10.

(6) Varying objectives scales.
6

Optimiser characteristics:

(1) Population size: 100 for two objectives, 120 for four objectives

and 275 for 10 objectives.

(2) Crossover: Simulated binary with distribution index of 20

and probability of 0.8.

(3) Mutation: Polynomial with distribution index of 20 and prob-

ability of 1/number of design variables.

(4) Number of independent runs: 21.

(5) Maximum number of generations: 500.

We also used a random search algorithm as a baseline to compare

against the three optimisers. Trace generation plots (or evolution

of solutions with generations) of different optimisers from the run

with median hypervolume values are shown in Figure 8. In the

figure, rows represent the features of different problems from the

DBMOPP generator, which are detailed in parentheses on the left

in the figure in the order [number of objectives, number of design

4
In practise, we found that for all r < 0.7rmax

we could find a legal set immediately,

without recourse to shrinkage.

5
Here we generate orthogonal vectors with elements exclusively ones or zeros, and

use the same orthogonal pair for all region mappings.

6
Here an shift changing each minima for each objective function generated is draw

randomly from the range [−100, 100], and the objective range itself is rescaled by a

multiplier randomly drawn from the range [1, 1000].

https://github.com/fieldsend
https://github.com/fieldsend


A Distance-Based Many-Objective Visualisable Problem Generator GECCO ’19, July 13–17, 2019, Prague, Czech Republic

DBMOPP instance NSGA-II MOEA/D IBEA Random Dominance landscape

[
2
,2
,5
,0
,0
]

[
2
,5
,1
,1
0
,0
]

[
4
,2
,1
,0
,1
0
]

[
4
,5
,5
,5
,5
]

[
1
0
,2
,5
,5
,5
]

[
1
0
,1
0
0
,1
,1
0
,1
0
]

Colourmap for columns 2-5, early to late optimisation stage:

Figure 8: Trace generation plots of solutionswith different optimisers of the runwithmedianhypervolume value. The features
of different problems are mentioned in parentheses in the order [number of objectives, number of design variables, number
of disconnected Pareto sets, number of local fronts and number of dominance resistance regions].

variables, number of disconnected Pareto sets, number of local

fronts and number of dominance resistance regions].

In Figure 8, for each row, the first column represents the problem

features. The second, third and fourth columns represent the trace

generation plots of the three EMO algorithms: NSGA-II, MOEA/D

and IBEA, respectively. The fifth column corresponds to random

search, and the sixth is the local dominance landscape. In the first

column, attractor locations are represented by points, and coloured

according to the objective they minimise. Points associated with a

Pareto optimal region are plotted on the circumference of a black

circle with a black symbol in the centre, allowing the region Rj to
be identified. Where there is no black circle, points are associated
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Figure 9: Hypervolume values with number of generations of problems corresponding to rows 1, 2, 5 and 6 in Figure 8.

with local fronts or dominance resistance regions. Red circles (e.g.

in the top left panel of Figure 8) denote penalty regions.

In the trace generation plots, the shading transitions from blue to

yellow as the optimisation advances. The black regions (in columns

2-5) represent the final non-dominated solutions obtained after 500

generations. The axes are the first and the second element of the

design vector, respectively. A design vector with more than two

elements (rows 3-6) is projected to two dimensions using formula in

Section 2.3.2. The corresponding normalized hypervolume plots as

a function of the generation counter (abscissa) are shown in Figure

9. In the figure, the box plots are shown at different numbers of

generations (0, 100, 200, 300, 400 and 500). For ease of readability, a

small gap is added between the boxplots of the different optimisers

in each of the hypervolume plots.

The trace generation and hypervolume plots clearly show the

effect of different problems features. For a low dimensional problem

in the design space with many disconnected Pareto sets as in row

1, all three optimisers failed to find all disconnected Pareto sets. On

the other hand, random search found four out of five disconnected

Pareto sets. This is because all three optimisers could not preserve

diversity in the design space and converged to few disconnected

Pareto sets (while random search inherently generates diverse solu-

tions). In the second row, where the problem has many local Pareto

fronts and no disconnected Pareto sets, all three optimisers (and

random search) failed to converge to global solutions (located in the

top right corner of the design space), getting stuck at a local optima.

In row 3, the problem has many dominance resistance regions and

four objectives, all optimisers including random search converged

to the global optima. This is because the problem is relatively easy

possessing a fully connected Pareto set and no local fronts.

In row 4, where the problem has many disconnected Pareto sets,

local fronts and dominance resistance regions, all optimisers except

MOEA/D performed well and found all disconnected Pareto subsets

(NSGA-II found four out of five). MOEA/D relies on the reference

vectors (or weight vectors) to find a good distribution of solutions in

the objective space and decomposes the problem into sub-problems.

In DBMOPP problems as in row 4, the global front is deceptively

multi-modal [11], which poses a difficulty for MOEA/D in escaping

local optima when solving sub-problems. Compared to row 4, in

row 5 we have more objectives but fewer design variables. Here, all

optimisers (including random search) except MOEA/D found the

global optima. This is because there were few design variables and

NSGA-II and IBEAwere able to generate a diverse set of solutions. In

row 6, with 10 objectives and 100 design variables, no disconnected

Pareto subsets, 10 local fronts and 10 dominance resistance regions,

none of the optimisers nor random search found the global optimum.

This was the most difficult problem used in this test setting with all

of the optimisers failing to generate sufficiently diverse solutions;

this pattern for large scale problems was also observed in [26]. Note

that the solutions in row 6 are not distributed well in the design

space (even for random search) because of the projection of the

originally 100-dimensional design space to 2 dimensions.

The behaviour of different optimisers can also be seen in the

hypervolume plots in Figure 9. As we observed from the trace

generation plots, most of the optimisers could not find the global

optima in many instances and in the hypervolume plots, most of

the optimisers converged very fast. This implies that in many of

the cases, the optimisers converged to local optima and failed to

get out of them. Another interesting observation is that random

search performed better or equivalent to the optimisers on the low

dimensional problems (first two plots from the top) and worse in

high dimensional problems (plots three and four from the top).

The rather poor performance of MOEA/D, which we observed and

discussed above, is confirmed in the hypervolume plots.
7

6 CONCLUSIONS
We have presented a number of extensions to the existing DBMOPP

framework, providing a rich feature set comparable in range to

existing (non-visualisable) problem suites. We have developed a

problem instance generator for this class of problem, and illustrated

the performance of a few widely used optimisers on some example

instances generated by it.

In future work, we intend to develop and integrate additional

features into the generator, including (i) more complex penalty

geometries, allowing more complicated front surfaces (arbitrary

polygons); (ii) disconnected Pareto fronts and (iii) dynamic problem

variants.We also intend to undertake a rigorous testing and analysis

of popular optimisers on a range of problem instances.
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