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S1 Solving the model analytically at constant temperature

The model can be solved analytically at equilibrium at a constant environmental
temperature T0, when the population distribution in the phase space defined by
Topt is approximately Gaussian. At equilibrium, the governing equation becomes
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)2](
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)
− 1

)
+ Λ

∂2ν
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. (S1)

For simplicity, the axes can be translated by setting x = T0 − Topt, and grouping
constants by defining C = Gmax(1−Ntot). The governing equation becomes
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∂x2
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2T 2
w
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. (S2)

Assuming the solution is a Gaussian, then it can be written in the form νg =

A√
2πσ2

e−
x2

2σ2 , where A and σ are constants. The second order derivative of νg
is

d2νg
dx2

=
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− 1

σ2
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x2

σ4

)
νg. (S3)

The constant σ can be found by correlating the coefficients of the independent
variables in the function multiplying ν and νg on the right-hand side of the two
governing equations, S2 and S3.

Matching the x2 coefficients gives

σ2 =

√
2ΛT 2

ω

C
. (S4)

Matching the constant coefficients gives

σ2 =
Λ

C − 1
. (S5)

σ2 can be found by setting equations S4 and S5 equal to each other. Rearranging
gives Λ in terms of C:

Λ =
2T 2

ω(C − 1)2

C
. (S6)

Finding C in terms of Λ gives

C = 1 +
Λ±

√
8ΛT 2

ω + Λ2

4T 2
ω

. (S7)
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Substituting this into equation S5 gives

σ2 =
4T 2

ω

1 +

√
8T 2
ω

Λ + 1
. (S8)

We take the positive root so that the variance is positive. A can be chosen so
that the integral of the solution covers the correct total area, A = Ntot. Using
Ntot = 1− C

Gmax
and equation S5 to eliminate C,

A =
σ2(Gmax − 1)− Λ

σ2Gmax
. (S9)

Therefore, the approximate analytical solution is given by

ν(Topt) =

(
σ2(Gmax − 1)− Λ

σ3Gmax
√

2π

)
exp

[
− (T0 − Topt)2

2σ2

]
. (S10)

S2 Solving the model analytically for a linear temperature change

An analytical approximation to the solution can be found for a linear temperature
change of the form T = T0 + εt. The population distribution in the phase space
defined by Topt remains close to Gaussian for a low rate of temperature change, i.e.
when ε is small. Therefore, an analytical solution can be found by approximating
the distribution as a Gaussian travelling wave. This solution holds for the dynamic
equilibrium found after the initial stages of change seen in figure 2.

For a linear temperature change, the governing equation is
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For simplicity, constants can be grouped by defining C = Gmax(1 − Ntot), and
the independent variable can be grouped by defining y(t, Topt = T0 + εt − Topt),
leading to a simplified governing equation,

∂2ν

∂T 2
opt

− 1

Λ
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2T 2
w
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. (S12)

Assuming the solution is a Gaussian travelling wave, then it can be written in the

form νg = A√
2πσ2

e−
(y−b)2

2σ2 , where A, b and σ are constants. This solution can
be substituted into the simplified governing equation to find the constants. The
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derivatives of νg are ∂νg
∂t = −εy−b

σ2 νg and ∂2νg
∂T 2

opt
= (− 1

σ2 + (y−b)2
σ4 )νg. Substituting

this into the left-hand side of equation S12 gives
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∂T 2
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Λ
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]
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1
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)
. (S13)

The constants b and σ can then be found by correlating the coefficients of the
independent variables in the function multiplying ν and νg on the right-hand side
of the two governing equations, S12 and S13.

Matching the y2 coefficients gives

σ2 =

√
2ΛT 2

ω

C
. (S14)

Matching the y coefficients gives

b =
εσ2

2Λ
. (S15)

Matching the constant coefficients gives

C − 1

Λ
− 1

σ2

(
ε

Λ
b+ 1

)
+
b2

σ4
= 0. (S16)

Use equations S14 and S15 to substitute expressions for b and σ in equation S16:

C − 1

Λ
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√
C

2ΛT 2
ω

+
ε2
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(
1

4
− 1

2

)
= 0. (S17)

This is a polynomial in C
1
2 . Finding C

1
2 in terms of Λ gives

C
1
2 =

√
Λ

8T 2
ω

±

√
Λ

8T 2
ω

+
ε2

4Λ
+ 1. (S18)

Substituting this into equation S14 gives a variance

σ2 =
4T 2

ω

1±
√

1 + 2T 2
ωε

2

Λ2 + 8T 2
ω

Λ

. (S19)

We take the positive root so that the variance is consistent with the form found for
a constant environmental temperature. A can be chosen so that the integral of the
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solution covers the correct total area, A = Ntot. Using Ntot = 1 − C
Gmax

and
equations S16 and S15 to eliminate C and b,

A = 1− 1

Gmax

(
ε2

4Λ
+

Λ

σ2
+ 1

)
. (S20)

Therefore, the approximate analytical solution is given by

ν(Topt) =
1
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√
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− Λ
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)
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]
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(S21)

S3 Solving the model numerically

To solve the model numerically, the governing equation, equation 2, must first be
discretised. The model can be discretised along the trait axis, by dividing the axis
up and sampling at n points. The second order derivative can then be written using
a centred in space scheme. The governing equation for the ith point is therefore

∂νi
∂t

= νi

(
gi(Topt,i)

(
1− h

n∑
i=0

νi︸ ︷︷ ︸
Ntot

)
− γ
)

+
λ

h2

((
νi+1 − νi

)
−
(
νi − νi−1

))
,

(S22)
where h is the spacing between Topt of adjacent sampling points. A full solution
can then be found using the Runge-Kutta 4th order algorithm.
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