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ABSTRACT 

The structure and connectivity of infrastructure systems such as water distribution networks 

(WDNs) affect their reliability, efficiency and resilience. Suitable techniques are required to 

understand the potential impacts of system failure(s), which can result from internal (e.g. water 

hammer) or external (e.g. natural hazards) threats. This paper aims to compare two such 

techniques: Graph Theory (GT) and Global Resilience Analysis (GRA). These are applied to a 

real network – L’Aquila (central Italy) – and two benchmark networks – D-Town and EXNET. 

GT-based metrics focus on the topology of WDNs, while GRA provides a performance-based 

measure of a system’s resilience to a given system failure mode. Both methods provide 

information on the response of WDNs to pipe failure, but have different data requirements and 

thus different computational costs and precision. The results show that although GT measures 

provide considerable insight with respect to global WDN behavior and characteristics, 

performance-based analyses such as GRA (which provide detailed information on supply 

failure duration and magnitude) are crucial to better understand the local response of WDNs to 

pipe failure. Indeed, particularly for complex networks, topological characteristics may not be 

fully representative of hydraulic performances and pipe failure impacts. 

 

Keywords: resilience assessment, water distribution networks, Global Resilience Analysis, 

Graph-Theory metrics. 

 



1. INTRODUCTION  1 

The functioning of water supply infrastructure is crucial for the safety and well-being of communities, 2 

but it is threatened by an increasing number of both human actions and natural disasters, which are 3 

often unusual, unforeseeable and unavoidable (Meng et al. 2018, Pagano et al. 2018a). Consolidated 4 

risk management tools are often of limited use as they are unable to address unpredictable threats. A 5 

shift from risk to resilience management is therefore emerging, since a resilient system is capable of 6 

coping with unexpected, not-forecasted hazards (for instance, extreme weather events) (Meng et al. 7 

2018). 8 

Resilience can be defined as “the degree to which the system minimizes level of service failure 9 

magnitude and duration over its design life when subject to exceptional conditions” (Butler et al. 10 

2016). A comprehensive resilience assessment of a water distribution network (WDN), therefore, 11 

requires knowledge of the level of service failure magnitude and duration when faced with threats. 12 

Available approaches for assessing WDN resilience (e.g. Shin et al. 2018) can be broadly classified 13 

as either ‘property-based’ or ‘performance-based’.  14 

‘Property-based’ approaches investigate the susceptibility of WDNs to failure, focusing on the link 15 

between system performance and inherent structural properties such as robustness, diversity, 16 

connectivity and redundancy (Yazdani and Jeffrey 2012, Butler et al. 2016). One such approach 17 

considers the WDN as a set of multiple interconnected and interacting nodes (e.g. demand points, 18 

tanks and reservoirs) and edges (e.g. pipes, pumps and valves) and uses Graph Theory (GT) to 19 

explicitly analyze key properties, thus providing an intuitively robust and quantitative evaluation 20 

(Yazdani and Jeffrey 2011). The use of GT-based metrics found wide and early acceptance in WDN 21 

research applications (e.g. Jacobs and Goulter 1989, Walski 1993). Many researchers employed such 22 

methodologies for reliability analysis (e.g. Ostfeld 2005, Yazdani and Jeffrey 2012) and to investigate 23 

failure conditions due to several phenomena (e.g. random failures, deterioration, catastrophic events, 24 

targeted attacks). GT may also provide simplified information on system resilience by enabling 25 

identification of structural vulnerabilities and points of failure (Yazdani et al. 2013) and analyzing 26 



the disruption caused by the failure of individual components (Yazdani and Jeffrey 2012, Meng et al. 1 

2018). Both ‘network-level’ and ‘local’ GT metrics are used for such purposes (Yazdani et al. 2011, 2 

Yazdani and Jeffrey 2012, Pagano et al. 2018a). The former employs simple graph metrics to analyze 3 

global network features. The latter is based on the removal of components (either random or targeted) 4 

to assess different failure scenarios (Yazdani et al. 2013). Although some studies have identified a 5 

direct correlation between GT metrics and network performance (e.g. Meng et al. 2018), an explicit 6 

focus on the role and potentiality of GT representations of pipe networks for WDN hydraulic 7 

performance analysis is still lacking (Torres et al. 2016). In fact, whilst specific properties may 8 

provide resilient performance, this cannot be guaranteed (Butler et al. 2016). Particularly, the 9 

increasing level of complexity and interconnection in water systems is a challenge since any change 10 

in the network characteristics has consequences on hydraulic function (Yazdani et al. 2013).  11 

‘Performance-based’ approaches require modelling of performance (i.e. the ability of a network to 12 

maintain supply under failure conditions) under multiple system failure scenarios, using hydraulic 13 

models. Both single component failure analysis and global resilience analysis (GRA) can be used 14 

(Diao et al. 2016). GRA focuses on level of service provision under any possible magnitude of a 15 

given system failure mode, irrespective of the threat that may cause this failure (Diao et al. 2016). 16 

For example, in a WDN, the effects of any pipe failure magnitude (e.g. number of pipes failed at the 17 

same time) on supply could be captured using GRA. This method overcomes the challenge faced in 18 

conventional top-down approaches of identifying all the possible threats (e.g. the causes of pipe 19 

failure), and instead focuses on the system failure modes as these are easier to identify and 20 

characterize (Butler et al. 2016). GRA results in the generation of response curves (system 21 

performance in terms of both supply failure magnitude and duration as a function of system failure 22 

magnitude), the area under which provides an indication of how resilient the level of service provision 23 

is to a given system failure mode. A reduction in the area under the response curve, therefore, 24 

represents an increase in resilience. This is a highly flexible approach and has been applied previously 25 

to water distribution systems in several case studies (e.g. Diao et al. 2016). These studies have 26 



demonstrated that, in addition to providing a performance-based measure of resilience, GRA can be 1 

used to identify scenarios that result in the greatest loss of service, therefore acting as a diagnostic 2 

framework and aiding the development of interventions (Diao et al. 2016). 3 

Table 1 provides a comparative summary of the main characteristics of GRA and GT. 4 

Table 1. Comparison of the key features of GRA and GT 5 

 GRA GT 

Type of approach  ‘Performance-based’ ‘Property-based’ 

Rationale 
Modelling of performance under multiple 

system failure scenarios 

Analysis of topological network 

properties (e.g. robustness, 

connectivity, redundancy)  

Information required Hydraulic model Topological information 

Information provided 

Response curves, i.e. system 

performance (supply failure magnitude 

and duration) as a function of system 

failure magnitude 

Degree of interconnectedness, 

topological redundancy, identification 

of critical components, response to 

perturbations 

Main scope/application 

Resilience assessment based on the 

characterization of level of service 

provision under any possible magnitude 

of a given system failure mode 

Classification and comparison among 

WDNs, identification of structural 

vulnerabilities and points of failure, 

simplified resilience assessment 

Key advantages 

The potential effects of all threats (even 

unknown) that could result in a specific 

system failure mode are captured in a 

single analysis. 

The analysis can be performed without 

considering hydraulic information, 

although this can be included using 

weights if available. 

Potential limitations 

The analysis may be not feasible for big 

networks, with a high number of 

elements 

The results may be not fully 

representative for networks with 

complex hydraulic behavior 

Data and computational 

requirements 

More data-dependent and 

computationally intensive 

Less data-dependent and 

computationally intensive 

 6 

The relationship between property- and performance-based measures of resilience has received 7 

limited attention to date. No comprehensive studies relate resilience with topological attributes of 8 

WDNs, and the appropriateness of topological metrics for resilience assessment is unknown (Meng 9 

et al. 2018). These knowledge gaps need to be addressed in order to define effective frameworks for 10 

assessing and enhancing resilience in practice.  11 

This research aims to provide a greater understanding of the extent to which an assessment framework 12 

based only on the characterization of topological and connectivity properties may be a surrogate for 13 

more detailed simulation-based models. Three different WDNs (detailed in Section 2) are analyzed 14 

for this purpose: L’Aquila (a real network), D-Town (a benchmark) and EXNET (a benchmark). 15 

Based on the available literature, a set of network-level GT-based measures is first used to perform a 16 



preliminary classification of the structure of each network (Section 3.1); second, a specific local GT-1 

measure is introduced to evaluate and rank the impact of single pipe failures (Section 3.2). Levels of 2 

service failure magnitude and duration resulting from any single pipe failure are then obtained as part 3 

of a GRA (Section 3.3) and the pipe rankings compared with those derived from the developed GT-4 

based measure (Section 4). Comparison of the results obtained for three highly different WDNs 5 

supports the understanding of specific potentialities and limitations of the use of both approaches, 6 

and also provides suggestions for future research (Section 5). 7 

2. CASE STUDY NETWORKS 8 

In order to provide a detailed comparative analysis of the performances of GRA and GT in different 9 

conditions, three networks (illustrated in Figure 1) are analyzed: L’Aquila (a real network), EXNET 10 

and D-Town (benchmark networks). Basic hydraulic information, both under ordinary conditions and 11 

under ‘failure’ was derived from EPANET models. Key characteristics of the case study networks 12 

are provided below. 13 

14 

Fig. 1 Case study networks 15 

 16 

2.1 L’Aquila 17 

L’Aquila city (central Italy) was struck by a severe earthquake (6.3 magnitude) on April 6th 2009 and 18 

the WDN was significantly impacted. Effective resilience assessment methodologies would be of 19 

great support to the WDN reconstruction process, since the previous network showed serious 20 



limitations in adaptive capacity (e.g. Pagano et al. 2017, Pagano et al. 2018b). This analysis focuses 1 

on the new WDN underlying the historical city center, presented in Figure 1a, which consists of 539 2 

junctions, 808 pipes and a single tank (798 m above sea level, 2000 m3 capacity). As the 3 

reconstruction process is still ongoing, significant uncertainties exist over hydraulic operation, and 4 

investigation into the potential use of property-based analyses is highly relevant. 5 

2.2 D-Town 6 

D-Town (Figure 1b) is a benchmark WDN consisting of five district metered areas. In total, it contains 7 

399 junctions, 7 storage tanks, 443 pipes, 11 pumps, 5 valves and a single reservoir. D-Town is highly 8 

relevant to this study since it is characterized by complex hydraulic operation, despite the limited 9 

number of elements. 10 

2.3 EXNET 11 

EXNET (Figure 1c) has been set up by the University of Exeter as a realistic and challenging problem. 12 

The network consists of relatively small pipes and few transmission mains, with a large head-loss 13 

range at the extremities of the system, making it highly sensitive to demand increases. EXNET 14 

contains 1893 junctions (5 of which receive water from adjacent systems), 2462 pipes, 8 valves and 15 

2 reservoirs. This benchmark is of particular interest since it is characterized by complex hydraulic 16 

operation and by a high number of elements. 17 

 18 

3. METHODOLOGY 19 

3.1 Network-level GT metrics 20 

A graph 𝐺 = 𝐺(𝑛, 𝑚) consists of n nodes and m edges. A WDN can be specifically modelled as a 21 

graph with nodes/vertices connected by links/edges, and a set of data attributed to them (e.g. nodal 22 

demand, edge capacity, flow direction, energy losses) (Meng et al. 2018). The key characteristic of a 23 

WDN is that every node should be connected, by at least one path, to one or more source node(s) (e.g. 24 

a tank). The structure of a graph could be expressed, mathematically, as an adjacency matrix A, i.e. a 25 

0-1 matrix representing the pairwise relations between nodes (Aij = Aji = 1 if there is a link connecting 26 



node i and node j). The adjacency matrix is the basis for the calculation of topological metrics. 1 

Table 2 identifies a set of network-level GT metrics that are widely used for WDN analysis. They are 2 

mathematical attributes related to the main topological properties of networks, which can be related 3 

to system resilience (Meng et al. 2018). Using a multi-metric approach, based on multiple attributes, 4 

helps identify and compare relevant network properties (Hwang and Landsey 2017).  5 

Table 2 Set of network-level GT metrics used. 6 

Metric Formula Description 

Average 

node degree, 

k 

𝑘 =
2𝑚

𝑛
   (1) 

A basic measure of connectivity. It reflects the overall topological 

similarity of the network to perfect grids or lattice-like structures 

(Yazdani et al. 2011; Yazdani and Jeffrey 2012; Yazdani et al. 2013, 

Zeng et al. 2017, Hwang and Linsey, 2017). Higher values suggest higher 

redundancy and the existence of multiple paths (Hwang and Linsey 

2017).  

Average path 

length, 

lT 

𝑙𝑇 =
1

𝑛(𝑛−1)
∙ ∑ 𝑑(𝑣𝑖 , 𝑣𝑗)𝑖,𝑗  (2) 

The value of the average distance d along the shortest paths between any 

two pairs of nodes (vi, vj), compared to all possible pairs of network nodes 

(Yazdani et al. 2011; Yazdani and Jeffrey 2012; Yazdani et al. 2013; 

Porse and Lund 2016). 

Clustering 

coefficient, 

Cc  

𝐶𝑐 =
3𝑛∆

𝑛3
   (3) 

Based on the ratio of the number of triangles nΔ to the number of 

connected triples n3. It provides a measure of redundancy by quantifying 

the density of triangular loops. It is usually smaller in grid-like structures. 

Higher values indicate a more clustered network (Yazdani et al. 2011; 

Porse and Lund 2016). It describes the tightness of connected 

communities (Hwang and Linsey 2017). 

Critical 

breakdown 

ratio, fc 

𝑓𝑐 =
1

𝑘2

𝑘
−1

   (4) 

Provides a theoretical value for the critical fraction of nodes which need 

to be removed for a network to lose its large scale connectivity. The value 

thus depends on the average node degree, k (Yazdani et al. 2011; Yazdani 

et al. 2013).  

Central point 

dominance, 

Cb 

𝐶𝑏 =
1

𝑛−1
∑ (𝑏𝑣𝑚 − 𝑏𝑣𝑖)𝑖    (5) 

Measures the concentration of the network topology around a central 

location. Its calculation is based on the betweenness centrality of each 

network node, bvi, and of the most central node, bvm. The value is limited 

by the two extremes: Cb=1 for star topology and Cb =0 for regular 

networks. (Yazdani et al. 2011; Yazdani et al. 2013; Porse and Lund 

2016). 

Density of 

bridges, Dbr 
𝐷𝑏𝑟 =

𝑁𝑏𝑟

𝑚
   (6) 

Estimates the ratio of the total number of bridges (Nbr, i.e. the edges 

whose failure may potentially isolate a part of the network) over all edges, 

m (Yazdani et al. 2011).  

Graph 

Diameter, 

D(G) 

𝐷(𝐺) = 𝑚𝑎𝑥{𝑑(𝑣𝑖𝑣𝑗)}   (7) 

The maximum geodesic distance between any two nodes. It captures the 

maximum eccentricity of nodes in the network and provides a basic 

measure of topological and geographical spread of the network (Yazdani 

et al. 2011, Torres et al. 2016, Zeng et al. 2017). 

Link density, 

q 
𝑞 =

2𝑚

𝑛(𝑛−1)
   (8) 

The fraction between the maximum number of possible edges and those 

which are actually present (Yazdani et al. 2011, Torres et al. 2016, Zeng 

et al. 2017, Hwang and Linsey 2017). A higher q indicates a more 

connected network. 

Spectral gap, 

Δλ 
Δ𝜆 

The difference between the first and second eigen values of the adjacency 

matrix. A small spectral gap would probably indicate the presence of 

articulation points or bridges (Yazdani et al. 2011; Yazdani et al. 2013).  

Algebraic 

connectivity, 

λ2 
𝜆2 

The second smallest eigenvalue of the normalized Laplacian matrix of 

the network. It quantifies the network’s structural robustness and fault 

tolerance. A larger value of algebraic connectivity indicates enhanced 

fault tolerance and robustness against efforts to cut the network into 



isolated parts (Yazdani et al. 2011; Yazdani and Jeffrey 2012; Yazdani et 

al. 2013). 

Meshedness 

coefficient, 

Rm 

𝑅𝑚 =
𝑚−𝑛+1

2𝑛−5
   (9) 

The fraction between the actual and the possible number of independent 

loops in planar graph. It ranges between 0 for tree-like and 1 for grid-like 

networks. (Yazdani et al. 2011; Yazdani and Jeffrey 2012; Torres et al. 

2016; Porse and Lund 2016). A larger Rm corresponds to a more 

connected network (Hwang and Linsey, 2017). 

 1 

Physical and operational attributes of nodes and edges can be used to compute network-level GT 2 

metrics in a weighted and directed form (Yazdani and Jeffrey 2012, Porse and Lund 2016). For the 3 

purposes of this study, network-level metrics are all computed as undirected and unweighted, since 4 

WDN operating conditions (e.g. flow direction) may change under failure conditions. 5 

3.2 Local GT measures for pipe ranking 6 

The proposed local GT-based analysis framework aims to identify and rank the most crucial elements 7 

for system operation in case of failures, relying on topological features only. Specifically, the 8 

methodology focuses on potential changes in connection between demand nodes and supply sources 9 

caused by single-pipe failures. Since multiple connections often exist between a source and a node, 10 

identifying all routes would be computationally expensive. However, limiting the analysis to the 11 

‘shortest path’ is an appropriate assumption (e.g. Yazdani et al. 2013).  12 

Following Herrera et al. (2016), a surrogate measure of the energy losses is a hydraulically relevant 13 

– and easy to quantify – measure of how well a node is connected to the available source(s). Using 14 

purely topological characteristics, the energy losses on the edges are proportional to 𝑓 ∙ 𝐿 𝐷⁄ , where 15 

f is the friction factor [-] and L and D are the length [m] and diameter [m] of the edge respectively. 16 

The shortest path is thus the one with the lowest value of total energy loss. 17 

The first step of the edge ranking procedure requires identification of the source nodes (S), and 18 

computation of the shortest path (SP) from each source to all other nodes of the network (s) under 19 

ordinary conditions (𝑆𝑃𝑠,𝑖,0). The Dijkstra shortest-paths algorithm is used for this purpose (Dijkstra 20 

1959). Each SP is characterized through a sequence of K-1 nodes and K edges and weighted according 21 

to the total energy loss (𝑤𝑒𝑖𝑔ℎ𝑡 = ∑ 𝑓(𝑘) ∙ 𝐿𝑘 𝐷𝑘⁄𝐾
𝑘=1 ). The second step of the analysis consists of 22 

the iterative removal of every edge (j) and subsequent re-computation of all the weighted shortest 23 



paths (𝑆𝑃𝑠,𝑖,𝑗). Comparison between 𝑆𝑃𝑠,𝑖,0 and 𝑆𝑃𝑠,𝑖,𝑗 then allows the change in connectivity between 1 

nodes and sources as a consequence of the failure of the edge j, to be assessed. Potential scenarios 2 

are: 1) the shortest paths do not change; 2) the 𝑆𝑃𝑠,𝑖,𝑗 returns infinity, meaning that the demand nodes 3 

on that path become disconnected from the source s, and that the edge j is a bridge; 3) the shortest 4 

paths between the source s and one or more nodes increase. These three cases are represented 5 

graphically in Figure 2. 6 

In case (1), the role of edge j in the global operation of the WDN can be considered negligible. In 7 

case (2), the total nodal demand that becomes disconnected from all sources once edge j is removed 8 

(DDj [l/s]) is computed according to Eq. 10: 9 

𝐷𝐷𝑗 = ∑ ∑ 𝑄𝑘

𝐾−1

𝑘=1

𝑆

𝑠=1

 (10) 

Edges with a positive DDj value are thus ranked accordingly. Particularly in simple networks with a 10 

single source, this analysis may identify specific parts of the network completely cut off from the 11 

water supply. 12 

In case (3), the impact of edge failure is estimated by computing the shortest path change (𝑆𝑃𝐶𝑠,𝑖,𝑗, 13 

Eq. 11) between all n nodes and S sources, and the cumulate value (Eq. 12): 14 

𝑆𝑃𝐶𝑠,𝑖,𝑗 = (𝑆𝑃𝑠,𝑖,𝑗 − 𝑆𝑃𝑠,𝑖,0)      (11) 15 

𝑆𝑃𝐶𝑗 = ∑ ∑ 𝑆𝑃𝐶𝑠,𝑖,𝑗
𝑛
𝑖=1

𝑆
𝑠=1       (12) 16 

Edges with a positive value of SPCj can be thus ranked accordingly. Two subsets of edges may be 17 

therefore identified, and particular attention should be given to those having the highest values of 18 

either DDj or SPCj. 19 



 1 

Fig. 2. Graphical representation of the potential impact of edge removal on WDN connectivity: case 2 

1) no changes occurred in the SP between the source s1 and the node 1 after the removal of edge 1; 3 

case 2) the removal of the edge 2 results in the disconnection between the source s1 and the node 2; 4 

case 3) the removal of the edge 3 results in the increase of the shortest path between the source s1 and 5 

the node 3. 6 

 7 



3.3 Global resilience analysis 1 

A detailed description of the GRA methodology is provided by Diao et al. (2016). Key steps are as 2 

follows: 3 

1. Identify the system failure mode(s) for analysis and an appropriate measure of magnitude. 4 

2. Identify the required level(s) of service and appropriate measure(s). 5 

3. Calculate the required level of service measure(s) under every system failure magnitude. 6 

Where multiple scenarios are possible for each system failure magnitude (e.g. for failure of 7 

1% of pipes in the system), sampling and targeted scenario development are used, as detailed 8 

by Diao et al. (2016). 9 

4. Plot each level of service measure as a function of system failure magnitude   10 

Further information on the system failure mode, level of services measures and network simulations 11 

in this study are given in the following sections. 12 

3.3.1 System failure mode 13 

Multiple system failure modes exist; to enable comparison of GRA and GT, this study considers pipe 14 

failure. The percentage of pipes in the network failed represents the system failure magnitude and 15 

values in the range 0-100% are evaluated (note that ‘magnitude’ is used here to address the quantity 16 

of pipes failed, not the frequency of pipe failure). Pipe failures are modelled in EPANET by setting 17 

the corresponding pipe statuses to 'closed'. They are applied at 10 A.M. so as to capture the effects of 18 

peak demand, and maintained to the end of a 24 hour simulation.  19 

Random pipe failure samples are generated at every failure magnitude and, additionally, pipe failure 20 

combinations resulting in the minimum and maximum response at each pipe failure magnitude are 21 

carried forward for targeted failure scenario development, as described by Diao et al. (2016). This 22 

approach is found to provide a good estimation of the minimum, mean and maximum response curves 23 

whilst maintaining a manageable computation time. 24 

3.3.2 Level of service 25 

Chosen measures of level of service failure are: a) Supply failure duration, and b) Supply failure 26 



magnitude. Given that EPANET is demand driven and supply is not directly calculated, supply at 1 

each time step and node is estimated using Eq. 13: 2 

if Pj,i ≤ 0    :    Sj,i = 0 

𝑖𝑓 0 < 𝑃𝑗,𝑖 < 𝑃𝑙𝑖𝑚    ∶      𝑆𝑗,𝑖 = 𝐷𝑗,𝑖 ∙ √𝑃𝑗,𝑖 𝑃𝑙𝑖𝑚⁄  

if Pj,i ≥ Plim    :    Sj,i = Dj,i 

(13) 

Where: Pj,i = pressure at node j at time I [m]; Sj,i = supply at node j at time I [l/s]; Plim = required 3 

minimum pressure, set to 15m [m]; Dj,i = demand at node j at time I [l/s]. 4 

Supply failure duration is calculated using Eq. 14; this gives a (unitless) value normalized with respect 5 

to the system (pipe) failure duration. 6 

𝑆𝑢𝑝𝑝𝑙𝑦 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
∑ (𝐹𝑖 ∙ 𝑡𝑖)𝑖=𝑇

0

𝐹𝑃
 (14) 

Where: Fi = System supply failure state at time step i (0 if Si = Di, 1 if Si < Di) [-]; FP = total pipe 7 

failure duration [hr]. 8 

Supply failure magnitude is calculated using Eq. 15, which gives the fraction of network demand not 9 

supplied during the pressure failure period. 10 

𝑆𝑢𝑝𝑝𝑙𝑦 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 =
∑ (∑ (𝐷𝑗,𝑖 − 𝑆𝑗,𝑖)

𝑗=𝑛
0 )𝑖=𝑇

0

∑ (∑ 𝐷𝑗,𝑖
𝑗=𝑛
0 )𝑖=𝑇

0

 (15) 

Where: n = number of nodes; T = number of time steps; ti = Duration of time step i. 11 

4. RESULTS 12 

4.1 WDN characterization based on network-level GT metrics 13 

The values of metrics described in the Table 2 are summarized in Table 3 and their significance with 14 

respect to network performance is discussed in the present section. As stated previously, these 15 

network-level metrics are computed in unweighted and undirected form. 16 



Table 3 Network-level GT metrics for the case study WDNs 1 

GT metrics L'AQUILA D-TOWN EXNET 

Nodes, n 539 407 1893 

Sources, S 1 8 9 

Edges, m 808 459 2467 

k 2.998 2.256 2.606 

q 5.6 E-03 5.6 E-03 1.4 E-03 

D(G) 26 66 54 

Cb 0.412 0.54 0.282 

lT 13.45 26.38 20.61 

fc 50.05% 79.65% 62.25% 

Rm 0.25 0.07 0.15 

Cc 0.041 0.019 0.04 

Nbr 41 190 490 

Dbr 0.05 0.41 0.20 

Δλ 2.10 E-03 6.78 E-04 1.49 E-03 

λ2 2.70 E-03 6.47 E-04 1.02 E-03 

 2 

The average node degree (k) and link density (q) are key structural measures, representative of 3 

network connectivity. Higher k and q values suggest higher network connection, and thus a better 4 

resistance to failures (e.g. Zeng et al. 2017).  5 

Higher values of the central point dominance (Cb) suggest that D-Town and L’Aquila are more 6 

centralized networks than EXNET, i.e. they tend to a ‘star’ topology with a significant concentration 7 

around central locations. The values of the clustering coefficient Cc suggest that L’Aquila and 8 

EXNET are more tightly connected and have better performance in terms of network efficiency and 9 

redundancy. The meshedness coefficient Rm confirms the higher redundancy of L’Aquila network. 10 

The density of bridges Dbr denotes the different presence of elements whose removal may isolate 11 

parts of the network. 12 

Among the investigated networks, D-Town is the smallest (considering n and m), but has the highest 13 

diameter D(G), which suggests a higher spread. This result is also confirmed by the high value of the 14 

lT, which provides a view of network reachability and efficiency in water transport: shorter paths 15 

indicate more efficient networks, and systems with shorter water travel time.  16 



The critical breakdown ratio fc indicates topology robustness. Larger values, as for D-Town, might 1 

indicate higher resistance to random failures of components and lower vulnerability.  2 

Referring to the spectral properties, higher values of the normalized spectral gap Δλ (as for L’Aquila) 3 

indicate a better optimized connectivity layout and a better robustness. The algebraic connectivity λ2 4 

of L’Aquila is also significantly higher, suggesting enhanced fault tolerance and robustness against 5 

efforts to bisect the network, and thus to isolate its parts (Zeng et al. 2017). D-Town has the lowest 6 

values for both parameters. 7 

4.2 Global resilience analysis 8 

The supply failure magnitude and duration response to pipe failure magnitudes of up to 100% in the 9 

case study networks are shown in Figure 3. Figure 3a shows the maximum (solid line), the mean 10 

(dashed line) and the minimum (dotted line) pressure failure duration in L’Aquila. The mean supply 11 

failure duration increases rapidly as the number of pipes failed increases. When considering the 12 

system as a whole, failure of 18.1% of pipes (equivalent to 146 pipes) will typically result in supply 13 

failure during the entire pipe failure period. Supply failure duration responses are only plotted for 14 

L’Aquila, as pressures below 15m (and hence supply failures) are present in D-Town and EXNET at 15 

all times, irrespective of the number of pipe failures. Note that, due to the large number of pipes in 16 

EXNET and the high computational demand of GRA, it is not feasible to evaluate all pipe failure 17 

magnitudes for this system. Figures 3 b-d, therefore, show the response to up to 300 simultaneous 18 

pipe failures (12.2%) in this system. This number of pipe failures results in mean and maximum 19 

supply failure magnitudes of 94% and 100% respectively, and thus consideration of higher pipe 20 

failure magnitudes would yield little further information of interest. Based on the multiple random 21 

and targeted pipe failure scenarios evaluated at each pipe failure magnitude, three sets of curves are 22 

shown: the minimum (Figure 3b), the mean (Figure 3c) and the maximum (Figure 3d) response.  23 



1 

Fig. 3 Service failure duration and magnitude response to pipe failure.  2 

 3 

Analysis of the minimum response curves in Figures 3a and 3b show that the L’Aquila network is 4 

capable of maintaining full supply with up to 41.1% pipe failure (331 pipes). However, the mean 5 

supply failure magnitude for this number of pipe failures is 97.5%. On average, at least 99% of global 6 

network demand will be met with up to 0.7% of pipes failed (i.e. fewer than 7 pipe failures). On 7 

average, 7 pipe failures result in a 50.6% supply failure in D-Town and a 73% supply failure in 8 

EXNET, as these networks have a significant volume of demand affected by unsatisfactory pressure 9 

even when no pipe failures are present. The minimum response curve for EXNET, however, does 10 

show an initial drop under small pipe failure magnitudes, indicating that there are one or more pipes 11 

which, if closed, actually reduce the presence of unsatisfactory pressure in the network. 12 



The maximum supply failure magnitude response curves show that complete loss of supply may occur 1 

in L’Aquila with failure of just 4 pipes (0.5% of pipes); however, this can occur in D-Town and 2 

EXNET with a single pipe failure. A summary of the mean and maximum supply failure magnitude 3 

responses to up to 4 simultaneous pipe failures in the three case study WDNs is given in Table 4. 4 

These results suggest that L’Aquila is the most resilient of the three case studies (with respect to pipe 5 

failure). To aid identification of critical components and reveal potential focus areas for further 6 

improvement, specific pipe failures which result in the maximum supply losses are identified. 7 

Table 4 Summary of supply failure magnitudes (percentage of network demand during pressure 8 

failure period not supplied) resulting from up to four simultaneous pipe failures and identification of 9 

pipes resulting in maximum supply failure magnitude 10 

Number 

of pipes 

failed 

L-Aquila D-Town EXNET 

Mean Max Pipe ID(s) Mean Max Pipe ID(s) Mean Max Pipe ID(s) 

1 0.1 16.6 902 33.9 100.0 P310 or P316 72.8 100.0 3244 

2 0.4 88.0 281, 477 39.7 100.0 * 73.4 100.0 * 

3 0.4 99.8 281, 477, 770 44.4 100.0 * 73.9 100.0 * 

4 0.6 100.0 * 45.7 100.0 * 71.5 100.0 * 

* Multiple combinations including the above pipe(s) 

 11 

4.3 Comparison between GRA and local GT-based measures based on pipe rankings 12 

This section compares the supply failure magnitude response to single pipe failure scenarios, derived 13 

as part of the GRA process, with rankings obtained from the proposed local GT-based measure. The 14 

aim is to provide an understanding of the extent to which WDN resilience to pipe failure can be 15 

estimated based on topological and connectivity characteristics only, given the assumption that 16 

EPANET provides an accurate measure of hydraulic performance under single pipe failure conditions 17 

in the GRA. In order to limit the analysis to the most relevant elements, only the top-ranked pipes are 18 

taken into account.  19 

L’Aquila represents the simplest network in terms of hydraulic operation and identification of bridges 20 



is crucial for this kind of network, since their failure could cause the disconnection of wide areas from 1 

the water source. The results of single pipe failure scenarios in the GRA suggest that, individually, 2 

only 28 (out of 808) pipes have an impact on network performance if they fail individually. The GT 3 

analysis suggests that all these pipes are bridges for the WDN. Table S1 in the Supplemental Data 4 

lists the highest ranked pipes, based on DDj value and supply failure magnitude resulting from their 5 

individual failure (derived from GRA).  6 

The results summarized in Table S1 show that the top 28 pipes as identified by GT are all ranked in 7 

the top 28 in the performance-based analysis as well. Only one minor difference is present in the 8 

ranking, which is a remarkably good result. The performance assessment in case of failure is instead 9 

conditioned by the hydraulic regime, which is explicitly included in GRA. The relevance of topology 10 

and connectivity to the performance of L’Aquila WDN is particularly high due to the simple structure 11 

of the network (i.e. it is supplied by a single source and characterized by a regular, grid-like structure). 12 

Therefore, for this network, the GT-based analysis is highly representative of the actual network 13 

operation.  14 

Both D-Town and EXNET have a complex structure characterized by multiple sources which affect 15 

hydraulic operation. EXNET, in particular, is a highly complex WDN and provides a demanding test 16 

for the proposed GT-based approach. In both cases, the consistency of results obtained from the two 17 

methodologies was assessed by focusing on pipes ranked in the top 10% according to GRA, and 18 

checking how many edges were also identified in the top 10% when ranked by the local GT-based 19 

measures.  20 

Focusing on D-Town, the methodology provides remarkably good results, as shown in the Table S2 21 

of the Supplementary Material. 95% of the pipes ranked in the top 10% according to GRA (38 out of 22 

40), for example, are also in the top 10% according to the GT-based measures. More specifically, the 23 

top 10 ranked pipes according to the values of both DDj and SPCj (highlighted in grey in the Table 24 

S2) fall within the top 40 as identified by GRA.  25 

In EXNET, agreement between the methodologies reduces to 62%, since only 151 out of the top 245 26 



high-ranked pipes according to GRA are in the top 10% of pipes according to the GT-based rank. 1 

Going further into details, only 50% of the top 10 ranked pipes according to the local GT-based 2 

measures (in grey in the Table S3) fall within the top 10% of pipes according to GRA ranking. Full 3 

results for all WDNs, are provided in the Supplementary Information. 4 

In order to understand the rationale behind such discrepancies, two EXNET pipe failure scenarios 5 

with the greatest difference between their rankings were identified and their hydraulic behavior 6 

analyzed. These pipes are physically close to each other and connected at one node: Pipe 3048 (D = 7 

1073 mm) and Pipe 3474 (D = 900 mm). The location of these pipes is shown in Figure 4. Both pipes 8 

are high-ranked according to the GT approach (ranks 12 and 15 respectively based on SPC), whereas 9 

only one (pipe 3474) is high-ranked according to GRA and the other (pipe 3048) is among the lowest 10 

ranked (ranks 3 and 2462 respectively). The hydraulic operation of the system was investigated 11 

considering the impact of single pipe failure on system operation, as shown in Figure 4, which 12 

includes: a) identification of the nodes with unsatisfactory pressure due to the failure of pipe 3474; 13 

b) identification of the nodes with unsatisfactory pressure due to the failure of pipe 3048; c) the flow 14 

rate in pipes connected to 3474 after its failure; d) the flow rate in pipes connected to 3048 after its 15 

failure. 16 

 17 



1 

Fig. 4 Comparative analysis of the impact of single pipe failure of edges 3474 and 3048. 2 

 3 

Based on the pressures and flow rates shown in Figure 4, it can be seen that the impact of pipe 3474 4 

or 3048 failing individually is highly different, mainly due to the role of pipe 3367: analysis of 5 

ordinary operation and failure conditions suggests that when pipe 3048 fails, pipe 3367 is subjected 6 

to a change in the flow direction which supports the operation of pipe 3474. This means that the 7 

impact of pipe failure can be partially absorbed by the system, which is resilient enough to adapt to a 8 

change in hydraulic conditions. When pipe 3474 fails, pipe 3367 does not support system adaptation, 9 

and this results in a wider area of the WDN with pressure below an acceptable value. 10 

 11 



5. DISCUSSION AND CONCLUSIONS 1 

Both performance- and property- based approaches are used for investigating the behavior of WDNs 2 

and supporting resilience assessment, but no comprehensive comparative analysis has previously 3 

been performed. In particular, additional efforts are needed in order to support a deeper understanding 4 

of their limits and potential, thus facilitating the selection of the most suitable one, considering both 5 

the purpose of the analysis to be performed and the WDN characteristics (Shin et al. 2018). This paper 6 

presents a critical comparison between two different methodologies belonging to the aforementioned 7 

categories, i.e GRA and GT-based metrics. GRA can be used as comprehensive diagnostic framework 8 

linking system attributes (e.g. connectivity and capacity) to performance (e.g. level of service), and 9 

can be adopted to illustrate the complex dynamic responses of systems to various failure modes. GT-10 

based approaches are highly relevant with a twofold perspective: (1) to propose a ‘network-level’ 11 

classification of different WDNs and provide a better understanding of the influence of key properties 12 

(e.g. connectivity, robustness, redundancy) on system resilience, with a relatively fast and 13 

inexpensive computation; (2) with the implementation of specific ‘local’ measures, to determine a 14 

pipe ranking defining the impact of single pipe failure on system connectivity. 15 

The comparison of results based on the local GT-based measures and GRA for three highly different 16 

WDNs enables conclusions to be drawn regarding the potential and applicability of these 17 

methodologies for resilience assessment also in other networks. Firstly, network-level topological 18 

and connectivity aspects are certainly useful to characterize a WDN, since the interconnectedness of 19 

the system is relevant for its operation both in ordinary conditions and under failure. Particularly, the 20 

selection of a set of network-level GT-based metrics could be highly useful in order to describe 21 

network-level system structure and characteristics. Network-level topological properties can be 22 

useful as surrogate measures of global system resilience. Secondly, a deeper understanding and 23 

modeling of WDN response to stress requires the development and computation of local GT metrics, 24 

which explicitly account for the connectivity of the system with water sources, along with the role 25 

that single pipes might have on system operation. Indeed, a comprehensive metric of the impact of 26 



pipe failure in terms of network connectivity should take into account both the possibility of isolation 1 

for specific parts of the network, and the increase of the shortest paths between source(s) and demand 2 

nodes, which may cause a substantial reduction of pressure. Nevertheless, the appropriateness and 3 

effectiveness of such methods may vary significantly with network complexity and according to the 4 

specific operating conditions, and additional research is needed in this direction. The analyses 5 

summarized in the present paper suggest that the effectiveness and reliability of GT-based metrics is 6 

significantly higher for WDNs with a basic structure (e.g. single source, regular structure, limited 7 

size) and simple operating conditions. In such cases (e.g. L’Aquila), GT could support the effective 8 

preliminary identification of the most critical pipes, thus helping to avoid the computational effort 9 

associated with other methods. For more complex networks (e.g. EXNET), the topology of the 10 

network is only partially representative of system operation, since the hydraulic conditions may 11 

significantly change as a consequence of pipe failure and result in local effects which are hard to 12 

predict without hydraulic modelling. Additional efforts are needed to support a more effective and 13 

reliable implementation of property-based approaches in case of failure (Hwang and Lansey 2017, 14 

Shin et al. 2018). As the GRA implementation suggests, evaluation of hydraulic system performance 15 

is essential for comprehensive resilience analysis of complex WDNs and can provide additional 16 

information with respect to the effects of multiple pipe failures. Future research activities should be 17 

also oriented towards a comprehensive comparison of multiple different resilience assessment 18 

measures in a wider set of WDNs. 19 
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Supplementary Information. Water Distribution Networks 2 

resilience analysis: a comparison between Graph Theory-based 3 

approaches and Global Resilience Analysis 4 

The following Tables include full details on the comparison performed on the analyzed networks 5 

using both GT-based local measures and GRA. Concerning L’Aquila WDN the comparison is limited 6 

to the 28 pipes which are high-ranked according to GRA. For D-Town and EXNET, instead, the 7 

comparison is focused on the top 10% of high-ranked pipes according to GRA (‘GRA rank’).  8 

As far as the GT rank is concerned, it is based on either DDj or SPCj values (‘GT rank – DDj’ and 9 

‘GT rank – SPCj’), in case the effect of edge removal is a disconnection of demand node(s) or an 10 

increase in the shortest path between source and nodes, respectively. No values are reported in case 11 

the removal of the edge has no effects on the shortest paths between the source and the nodes. The 12 

top 10 pipes according to both GT-based measures are highlighted in grey.  13 

Table S1. Comparison of pipe rankings derived from GT and GRA for L’Aquila Case.  14 

Pipe ID GRA rank 
GT rank 

DDj SPCj 

902 1 1  

579 2 2  

569 3 3  

1063 4 4  

992 5 5  

1041 6 6  

646 7 7  

512 8 8  

695 9 9  

923 10 10  

484 11 11  

66 12 12  

911 13 13  

67 14 15  

73 15 16  

421 16 17  

473 17 18  

901 18 19  

502 19 14  

13 20 20  

826 21 21  



184 22 22  

481 23 23  

24 24 24  

107 25 25  

108 26 26  

109 27 27  

436 28 28  

  1 



Table S2. Comparison of pipe rankings derived from GT and GRA for D-Town 1 

Pipe ID GRA rank 
GT rank 

DDj SPCj 

P310 1 18  

P316 2 19  

P98 3 17  

P83 4 15  

P97 5 16  

P22 6 13  

P100 7 14  

P23 8 12  

P25 9 10  

P34 10 9  

P102 11 8  

P24 12 
 26 

P110 13 
 24 

P99 14 
 19 

P17 15 
 21 

P18 16 
 20 

P19 17 1  

P20 18 18  

P468 19 11  

P297 20 
 17 

P21 21 
 39 

P892 22 2  

P96 23 3  

P467 24 5  

P445 25 4  

P465 26 
  

P237 27 
 2 

P379 28 
 1 

P308 29 
 7 

P256 30 
 9 

P252 31 
 8 

P238 32 
 3 

P292 33 
 4 

P933 34 
 10 

P934 35 
 11 

P293 36 
 5 

P996 37 6  

P291 38 
 6 

P397 39 7  

P319 40   

2 



Table S3 Comparison of pipe rankings derived from GT and GRA for EXNET 3 

Pipe ID GRA rank 
GT rank 

DDj SPCj 

3244 1  
 

2369 2  8 

3474 3  15 

3860 4  221 

3487 5  17 

2381 6  16 

3434 7  18 

2104 8  239 

5257 9  42 

3814 10  205 

3982 11  177 

3939 12  187 

2512 13  131 

5066 14  112 

2096 15  42 

5165 16  37 

3473 16  38 

3419 18  209 

5162 19  50 

3847 20 2  

2087 21  132 

3338 22   

3967 23  28 

3490 24  113 

5034 24  117 

2077 26  219 

5221 27 7  

4908 28  81 

4154 29  66 

3924 30   

2282 31  41 

2320 32   

3353 33   

4168 34  88 

2357 35  20 

3538 36  96 

3958 37  21 

3988 38   

3273 39  40 

2719 40  13 

2790 41  14 



2667 42  55 

2139 42  56 

2456 44  31 

3019 44  32 

3339 44  29 

2073 44  30 

2292 48   

5063 49  49 

4070 50  212 

3740 51   

2599 52  125 

3528 53  102 

5212 54  185 

2546 55  136 

3547 56  105 

2176 57  107 

4004 58   

3046 59  82 

2451 60  74 

3713 61   

2355 62  216 

3418 63  71 

3047 64  61 

3422 65   

2619 66   

3438 67  94 

3783 68  147 

2297 69  171 

4173 70  
 

3249 71 4  

3379 72 5  

5132 73 6  

3269 74  
 

4174 74  
 

3274 76  
9 

4186 77  
 

2380 78  
 

3716 79  
 

4854 80  
 

2465 81  
 

5161 82  22 

3443 83  
 

2393 84  
 

2454 85  
 



5041 86  
23 

3410 87  
 

4141 88  
191 

4165 88  
167 

5047 90 1  

3026 91  
 

2509 92  
 

3917 93  
36 

2319 94  
 

2231 95  
 

3307 96  
215 

2419 97  
 

3970 98  
 

3090 99  
118 

5237 100  
 

4052 101  
 

4077 102 30  

2122 103 29  

4072 104  44 

4060 105  46 

2927 106  138 

3920 107  51 

2407 108  48 

4115 109  148 

3499 110  123 

5120 111  43 

3937 112  52 

3494 113 35  

5153 113 36  

3476 115 37  

3452 115 38  

3500 115 39  

2348 118 40  

2397 118 41  

3449 120 44  

2116 121  62 

3593 121  59 

5102 123   

3388 123   

4132 125  24 

2285 126  149 

2462 126  165 

2111 128  245 

3643 129   



2651 130   

3823 131  45 

3689 132  
 

4057 133  
 

3055 133  
 

5243 135  
 

5195 136  
 

3253 136  
 

4003 138  
 

5199 139  
 

5009 140  
 

2100 141  
 

3993 141  
 

3393 143  
 

3389 144 58  

2557 145  
 

5220 146 49  

2300 146 50  

2579 148  
 

5159 149  109 

2418 150  180 

2406 151 61  

3372 151 62  

4011 153 51  

3639 154  
 

2409 155  240 

3457 156   

3439 157  137 

3411 157  176 

3792 159  54 

3625 160  114 

3049 161   

2331 161   

5177 163   

2809 164  63 

3682 165  122 

2948 166   

2264 167  160 

3357 168 8  

2759 169  
65 

2939 170 64  

2674 171  
 

2466 172  119 

2394 172  144 



2368 174   

2051 175   

2124 176  120 

4076 177  
 

2427 178 66  

2410 179  
 

3974 180  
 

3782 181  
 

3446 182  233 

2260 183   

4088 184   

2539 185  228 

2220 186  201 

2171 187  193 

3692 188  70 

2430 189  226 

2365 190   

2201 191  225 

2986 192  133 

5215 192  146 

3849 194   

3871 194   

4036 196   

4008 197   

5198 198   

3834 199  72 

5261 200   

3876 201   

4847 202  161 

4878 202  140 

4018 204   

3414 205   

2389 206   

2963 207  76 

2311 208  
 

3798 209 73  

4041 210  
 

4043 211  
 

3004 212  
 

2591 213  
 

2681 214  
168 

2995 215  
 

5074 216  
 

3981 217  
 



3995 218 23  

5076 219  
 

3636 220  
 

2617 221  
 

2714 222  
 

4050 223  87 

2677 223  93 

3317 225   

2473 226  204 

3938 227  
 

5145 228 78  

4144 229  
 

2938 230  86 

3909 231   

5239 232  11 

3712 232  10 

3690 234  77 

2426 235 26  

5085 236  
 

3390 237  
 

5072 238  73 

5219 239  141 

5305 240  78 

3709 241 16  

3373 242 81  

2429 243 27  

2424 243 28  

3263 245 17  
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