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Extreme downside risk and market turbulence 

We investigate the dynamics of the relationship between returns and extreme downside risk 

in different states of the market by combining the framework of Bali, Demirtas, and Levy 

(2009) with a Markov switching mechanism. We show that the risk-return relationship 

identified by Bali, Demirtas, and Levy (2009) is highly significant in the low volatility state 

but disappears during periods of market turbulence. This is puzzling since it is during such 

periods that downside risk should be most prominent. We show that the absence of the risk-

return relationship in the high volatility state is due to leverage and volatility feedback effects 

arising from increased persistence in volatility. To better filter out these effects, we propose a 

simple modification that yields a positive tail risk-return relationship in all states of market 

volatility. 	

Keywords: Downside risk; Tail risk; Markov switching; Value-at-Risk; Leverage effect; 

Volatility feedback effect 

JEL classification: C13, C14, C53, G10, G12 

1. Introduction 

The notion of tail risk, or extreme downside risk, has become increasingly prominent in the 

asset pricing literature. In particular, in contrast with the assumptions of the standard CAPM 

of Sharpe (1964) and Lintner (1965), in which portfolio risk is fully captured by the variance 

of the portfolio return distribution, asset returns display significant negative skewness and 

excess kurtosis, both of which increase the likelihood of extreme negative returns. A number 

of studies have examined the importance of these higher moments for asset pricing. Kraus 

and Litzenberger (1976) develop a three-moment CAPM, in which expected returns are 

determined, in part, by co-skewness with the market portfolio. This finding is supported by 

Harvey and Siddique (2000), who consider the role of co-skewness in a conditional asset 

pricing framework. Lamperiere et al. (2016) find evidence that skewness is a significant 

determinant of the risk premium using both international and cross-asset data. Dittmar (2002) 
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develops a non-linear pricing kernel with an endogenously determined risk factor and shows 

that co-kurtosis is also priced. Using moments of the return distribution implied by option 

prices, Conrad et al. (2013) show that the risk-neutral skewness and kurtosis of individual 

securities are strongly related to their future returns. Ang et al. (2006) find that co-moment 

risks are still significant even after general downside risk is taken into account through a 

downside beta measure.  

Other studies focus directly on the likelihood of extreme returns, rather than indirectly on 

the moments of the return distribution. For example, Chabi-Yo et al. (2018) use a copula-

based approach to construct a systematic tail risk measure and show that stocks with high 

crash sensitivity, measured by lower tail dependence with the market, are associated with 

higher returns that cannot be explained by traditional risk factors, downside beta, co-

skewness or co-kurtosis. Relatedly, Huang et al. (2012) propose a measure of idiosyncratic 

extreme downside risk based on the tail index of the generalised extreme value distribution, 

and show that it is associated with a premium in cross-section stock returns, even after 

controlling for market, size, value, momentum, and liquidity effects. Bali et al. (2014) note 

the difficulties in constructing robust measures of both systematic and idiosyncratic tail risk. 

They introduce a hybrid tail risk measure that incorporates both market-wide and firm-

specific components and show that this yields a robust and significantly positive tail risk 

premium. Todorov and Bollerslev (2010) decompose the systematic risk of individual stocks 

into its continuous (diffusion) and discontinuous (jump) components and find that in most 

cases, jump betas are, on average, larger than diffusion betas. Moreover, jump betas display 

significant variation through time.  

The studies described above examine the variation in expected returns caused by 

differences in tail risk across individual stocks. An alternative strand of the literature is 
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concerned with the variation in tail risk over time, and its impact on aggregate equity returns. 

This is a more challenging objective owing to potential endogeneity in the measure of tail 

risk that serves to obscure the risk-return relation that would be predicted by asset pricing 

theory. For example, since investors prefer positive skewness, an investment with higher 

skewness should correspond to lower expected returns. However, skewness is, by 

construction, associated with large positive returns and so there will be a tendency for 

skewness to be positively related to returns. Additionally, owing to leverage and volatility 

feedback effects, high volatility tends to be associated with lower contemporaneous returns 

(see, for example, Black, 1976; Campbell and Hentschel, 1992). As a result, market tail risk 

measures such as Value-at-Risk (VaR) and Expected Tail Loss, which are positive functions 

of return volatility, will tend to have a negative relation with returns. Recognising this 

difficulty, Kelly and Jiang (2014) develop a measure of aggregate market tail risk that is 

based on the common component of the tail risk of individual stocks. They show that this tail 

risk measure is highly correlated with the tail risk implied by equity options, and that it has 

significant predictive power for aggregate market returns. Similarly, Allen et al. (2012) 

construct an aggregate systemic tail risk measure for the financial and banking system from 

the returns of financial firms and show that it can robustly predict economic downturns in the 

U.S., European and Asian markets.  

Other studies, instead of extracting information from the cross section of individual 

stocks, investigate the impact of market tail risk on returns though the decomposition of 

variance or the variance risk premium into diffusion and jump components (see, for example, 

Bollerslev and Todorov, 2011; Bollerslev et al., 2015; Guo et al., 2014; Bandi and Reno, 

2016, among others). Many of these studies specifically emphasize the impact of negative 

jumps on future returns and variance. For example, Guo et al. (2014) find evidence of a 

positive and significant equity premium attributable to negative jumps, while the premium for 



5 
 

positive jumps is negative and insignificant. Bollerslev et al. (2015) show that left jump 

variation significantly predicts future returns at different horizons. More importantly, it 

accounts for most of the return predictability of the variance risk premium. Patton and 

Sheppard (2015) develop the framework of Barndorff-Nielsen et al. (2010) and show that the 

sign of jumps also affect future volatility. 

A more direct approach to examining the intertemporal relation between stock market 

returns and tail risk is introduced in Bali et al. (2009) (hereafter BDL). In order to circumvent 

the inherent endogeneity of empirical measures of tail risk discussed above, they measure tail 

risk by the previous month’s one-month ahead expectation of the VaR of the market return. 

Using monthly data over the period July 1962 to December 2005, they show that there is a 

statistically and economically significant positive relation between market returns and tail 

risk. Moreover, the relationship between returns and tail risk is stronger than between returns 

and conditional volatility, and is robust to different VaR measurement methods, different 

VaR confidence levels, alternative measures of tail risk, different measures of the market 

return and the inclusion of macroeconomic control variables to control for business cycle 

effects. 

In this paper, we investigate the nature of the relation between returns and tail risk under 

different market conditions. This is motivated by empirical evidence that other, closely 

related risks, such as volatility and co-skewness risk, affect returns differently in alternative 

states of the world (see, for example, Friend and Westerfield, 1980; Guidolin and 

Timmermann, 2008). Feunou et al. (2013) show in an equilibrium consumption-based model 

that the price of risk is time variant and is a function of conditional skewness. Similarly, Li 

and Li (2015) develop a consumption CAPM within a jump-diffusion economy and show that 

the jump risk premium is time-varying and dependent on the jump times of aggregate 
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consumption. Bekaert and Engstrom (2017) develop the Bad Environment-Good 

Environment (BEGE) model based on Campbell and Cochrane’s (1999) habit formation 

framework and show that the risk premium associated with the bad environment is larger than 

that associated with the good environment. The cornerstone of the BEGE model is the 

introduction of a good shock and a bad shock simultaneously into the stochastic process for 

consumption growth. In other words, the consumption growth process is always the 

combination of these two simultaneous shocks, and the dominance of either shock at any time 

creates the good or bad environment. This idea is consistent with a two-state Markov 

switching process for the market, where the market condition at any time is the probability 

combination of a good state and a bad state. Motivated by this model, in order to model the 

state-dependent relation between tail risk and returns, we incorporate the BDL model into a 

two-state Markov switching framework.  

We estimate the Markov switching model using an extended sample that covers the 

period July 1962 to December 2016, and which includes the last financial crisis. The two 

states in the estimated Markov switching model comprise a relatively infrequent high 

volatility state and a relatively frequent low volatility state. We find that the positive tail risk-

return relation documented by BDL holds in the low volatility state, but disappears in the 

high volatility state. This result is consistent with Ghysels, Guerin and Marcellino (2014) 

who investigate the state-dependent relationship between returns and conditional volatility 

and find that the risk-return trade-off is positive in the good regime, but negative in the 

‘flight-to-quality’ regime. We offer an explanation for this phenomenon, which is equally 

applicable to both volatility and tail risk.  

The failure of the BDL model to capture the risk-return relationship in the turbulent state 

is counter-intuitive since tail risk is expected to be more relevant during such periods. In 
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order to account for possible omitted variable bias, we expand the set of state variables that 

are included in the original BDL model to control for business cycle effects. This 

significantly improves the goodness of fit of the models as well as the implied Cochrane 

(1999) maximum unconditional Sharpe ratios, but the absence of a significantly positive tail 

risk-return relationship in the turbulent period remains. We also consider the possibility that 

the results are driven by the non-iid nature of the return generating process, and hence 

compute tail risk measures using returns that are standardised by time-varying conditional 

mean and volatility. This generates a positive risk-return relation in the turbulent period, but 

it is not statistically significant in any model. 

The BDL model critically depends on the assumption that leverage and volatility 

feedback effects dissipate within one month so that the one-month ahead expectation of VaR, 

lagged by one month, can be considered pre-determined. We show, however, that leverage 

and volatility feedback effects take longer to dissipate during periods of high volatility and so 

the one-month ahead expectation of VaR is endogenous, even when lagged by one month. In 

order to circumvent the endogeneity of the tail risk measures in the high volatility state, we 

consider longer horizon expectations of market VaR at correspondingly longer lags. We show 

that using the two-month ahead expectation of VaR, lagged by two months, there is a 

statistically significant and positive relation between market returns and tail risk in both 

states. 

This modification works consistently well with all the VaR-based tail risk measures that 

we consider, from the simple non-parametric measures to the more sophisticated non-iid 

parametric measures. It is also robust to the use of other systematic tail risk measures 

proposed in the literature, such as the Expected Tail Loss, the Left Jump Variation of 

Bollerslev et al. (2015) and the risk-neutral Expected Shortfall of Almeida et al. (2017). 
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Moreover, the modified measures are significant even after controlling for the conditional 

variance of returns in the regression model, implying that tail risk contains incremental 

information beyond that contained in dispersion risk. Exploiting the return predictability of 

the modified measures we construct an investment strategy using state-dependent tail risk to 

predict future returns and find that this strategy performs well, even in out-of-sample 

analysis. 

Finally, we investigate the term structure of the tail risk-return trade-off in different states 

of the market by estimating the Markov switching predictive regression for future returns at 

different horizons. We find a consistent and significant positive tail risk premium in the calm 

state across all horizons, while the premium varies significantly from positive to negative 

across different horizons in the turbulent state. This result, again, emphasises the importance 

of market state information in shaping investment decisions, especially for those based on the 

tail risk premium.  

The remainder of the paper is organised as follows. Section 2 describes the methodology 

and the data used in the empirical analysis. Sections 3 and 4 report the empirical results. 

Section 5 examines the robustness of our findings, while Section 6 examines the out-of-

sample performance of the predictive regression. Section 7 presents the term structure of the 

tail risk-return trade-off. Section 8 provides a summary and offers some concluding remarks. 

2. Methodology and data 

2.1. Methodology 

2.1.1. The BDL framework. In order to examine the dynamics of the relationship between 

tail risk and return, we utilise the framework of BDL, which we briefly summarise in this 
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section. BDL measure tail risk by VaR, which, for a given cumulative distribution function of 

returns !! and confidence level α, is defined as 

VaR = −!!!!(1− α)      (1) 

The impact of tail risk on returns is captured by regressing the value-weighted excess market 

return in month ! + 1, !!!!, on the month !  forecast of VaR in month ! + 1, !! !"#!!! ,† 

and a set of control variables !!: 

 !!!! = ! + !!! !"#!!! + !!! + !!!!   (2) 

The control variables, !!, include macroeconomic variables to proxy for business cycle 

fluctuations, the lagged excess market return and a dummy variable for the October 1987 

crash. The risk-return relationship is reflected in the sign, magnitude, and significance of the 

coefficient !. When the market is in equilibrium, the realised future return for an asset equals 

its expected return. Thus, the BDL predictive regression framework essentially captures the 

expected risk-expected return relationship. As we show in Section 4, this is a simple but 

effective method to mitigate the large and confounding impact of the leverage and volatility 

feedback effects governing the negative relationship between realised risk and realised 

returns.  

BDL measure VaR both parametrically and non-parametrically, using a rolling sample of 

daily returns over the most recent one to six months. Parametric VaR is obtained by fitting 

the Skewed Student-t distribution of Hansen (1994) to the rolling sample and calculating the 

																																																													

†	Strictly speaking, !! !"#!!!  is the conditional expectation of !"#!!!, which is not observed, and 
the forecast of !"#!!! is the estimated conditional expectation. However, we retain this notation for 
the sake of simplicity.	
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corresponding quantile. Non-parametric VaR is measured as the quantile of the empirical 

distribution of returns over the rolling sample. For example, BDL use the lowest return over 

the last one month, which corresponds to a VaR confidence level of 95.24%, assuming that 

there are 21 trading days each month.† 

BDL estimate the conditional expectation of VaR using two approaches. First, they 

assume that !! !"#!!! = !"#!, which would be equal to the true conditional expectation if 

VaR follows a martingale-difference sequence. Second, they assume that VaR is mean-

reverting and estimate an AR(4) model: 

 !"#! = !! + !!!"#!!! + !!!
!!!     (3) 

The forecast of VaR in month ! + 1 is then given by !(!"#!!!) = !! + !!!"#!!!!!!
!!! . 

We refer to these two measures as random walk (RW) VaR and AR4 VaR, respectively. BDL 

estimate the regression given by (2) using monthly data over the period July 1962 to 

December 2005, and show that there is a statistically and economically significant positive 

relation between market returns and tail risk. Moreover, the relationship between returns and 

tail risk is stronger than between returns and conditional volatility, and is robust to the 

different VaR measurement frameworks, different VaR confidence levels, alternative 

measures of tail risk and different measures of the market return. 

An important aspect of the BDL approach is that they use the estimate of the conditional 

expectation of the risk measure, rather than its realisation, in order to offset the leverage and 

																																																													

† While using the lowest return of the month could introduce considerable downward bias in the VaR 
estimation, the use of this over-simplified non-parametric measure is simply to highlight the 
prominence of the risk-return relationship that we investigate. The parametric Skewed Student-t VaR 
is used as an alternative in the analysis and produces quantitatively similar results 	
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volatility feedback effects in returns. The use of the one-month ahead expectation, lagged by 

one month, implicitly assumes that these leverage and volatility feedback effects are short 

lived, lasting no longer than a month. This subtle but important observation is the basis of our 

modification of the BDL framework, as detailed in Section 4. 

2.1.2. Tail risk in different market states: the Markov switching model. In order to 

examine the state-dependent dynamics of the tail risk-return relationship, we incorporate the 

BDL model in a Markov switching framework. The Markov switching framework has been 

applied in a number of different contexts to model changes in the behaviour of a time series 

with respect to different states of some underlying variable (see, among others, Hamilton, 

1989; Hamilton, 1990; Gray, 1996; Nikolsko-Rzhevskyy and Prodan, 2012). Indeed, many 

studies have employed the Markov switching framework to examine the time-varying impact 

of volatility. For example, Turner et al. (1989) employ a Markov switching model to examine 

how the expectation of market volatility affects excess returns in different market conditions. 

Similarly, Chang-Jin et al. (2004) use Markov switching to directly model volatility feedback 

effect on returns. Given the large number of control variables in the BDL model, we choose 

the simplest setting with a first-order Markov process and two regimes. This is perhaps the 

most widely used variant of the Markov switching model in empirical studies (see, for 

example, Bansal and Hao, 2002; Guidolin and Timmermann, 2006; Bekaert et al., 2015). The 

Markov switching BDL (hereafter MS-BDL) model is given by: 

!!!! = !!!!! + !!!!!!! !"#!!! + !!!!!!! + !!!!!      (4) 

where     !!!~! 0,!!!!  and  !! =
1, !" !"#"$ 1 !""#$% !" !"#$ !
2, !" !"#"$ 2 !""#$% !" !"#$ !  . 
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Our framework captures the dynamic risk-return relationship through the coefficient ! in the 

low volatility state (!!! = !!) and the high volatility state (!!! = !!).  

2.2. Data 

Following BDL, we use the value weighted index from the Center for Research in Security 

Prices (CRSP), which includes all stocks in the major US stock exchanges, to represent the 

return of the market.† The excess market return is computed as the difference between the 

market return and the one-month T-bill rate obtained from Kenneth French’s website.‡ Our 

sample period is July 1962 to December 2016, covering the original period of July 1962 to 

December 2005 studied by BDL, as well as the subsequent period that includes the financial 

crisis of 2007-08. In Table 1 we provide summary statistics (Panel A) and correlations (Panel 

B) for monthly excess returns and a range of realised risk measures, computed using daily 

returns within each month, over the full sample. The risk measures are standard deviation, 

mean absolute deviation, skewness, kurtosis, and maximum loss (which is the non-parametric 

estimate of VaR used by BDL). In Panel C, we report the estimated coefficients and 

corresponding t-statistics for the !" 4  models of these risk measures. 

[Table 1] 

From Panel B of Table 1, it is clear that none of the commonly used realised risk 

measures can explain returns in a way that could be considered consistent with asset pricing 

theory. In particular, skewness is positively related to returns while the other measures are 

negatively related to returns. In unreported results, we show that these relationships hold even 

after controlling for state variables in a regression framework. The signs of the coefficients 
																																																													

† Available through the Wharton Research Data Services https://wrds-web.wharton.upenn.edu/wrds/  
‡ Available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html  
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are not surprising: skewness is, by construction, associated with large positive returns, while 

the other risk measures are closely related to volatility, which is significantly negatively 

correlated with concurrent returns due to leverage and volatility feedback effects. It is these 

observations that motivate the use of expected risk measures, rather than realised risk 

measures, in the BDL framework. The estimated coefficients of the !"(4) model shown in 

Panel C also support the use of this model in estimating expected VaR. The coefficients of 

the first, second, and third lags are highly significant, while that of the fourth lag is 

marginally significant.  

In the regression analysis, we control for a range of state variables. The variables used by 

BDL are the detrended risk free rate (RFD), the change in the term structure risk premium 

(DTRP), the change in the credit risk premium (DCRP), and the dividend yield (DY). We 

construct these variables using exactly the same method and data sources as in BDL. To 

examine the robustness of our results, we also consider some additional macroeconomic 

variables that have been shown in the literature to be important determinants of aggregate 

equity returns, namely growth in industrial production (IPG), growth in the monetary base 

(MBG), the change in the inflation rate (DIF) and the change in the oil price (DO) (see, for 

example, Chen et al., 1986; Kaul, 1990; Anoruo, 2011; Aburachis and Taylor, 2012). These 

variables are constructed as follows. We use the monthly growth rate in industrial production, 

the monthly growth rate of M2, the monthly change in inflation, and the monthly change in 

the oil price. The industrial production and money supply data are obtained from the Board of 

Governors of the Federal Reserve System database, while the inflation rate and oil price 

(series WPU0561) are obtained from the Bureau of Labor Statistics database.  
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3. The relationship between tail risk and returns in different states of the market 

We first examine the tail risk-return relationship in different states of the market using the 

MS-BDL model given by (4). Table 2 presents the estimated coefficients and Newey-West 

(1987) HAC t-statistics for each of the states, the variance in each state and the duration of 

each state, using the four estimates of VaR employed by BDL: RW non-parametric VaR, RW 

Skewed Student-t VaR, AR4 non-parametric VaR and AR4 Skewed Student-t VaR. 

Parametric VaRs are calculated with 99% confidence level. We present the results of 

robustness checks in Section 5 using different VaR confidence levels. All measures are 

estimated using daily returns over the previous one month. We also estimate the model using 

a longer estimation sample for VaR ranging from two to six months, as in BDL. This yields 

very similar results to those reported here. It is clear that we can identify two distinct states of 

the market: a relatively frequent calm state of low volatility and a relatively infrequent 

turbulent state of high volatility. The variance in the turbulent state is about three times that 

in the calm state. This is consistent with the finding in Bekaert and Engstrom (2017) that the 

scale parameter of the Bad Environment is about three times that of the Good Environment in 

their BEGE model. The expected duration of the calm state is more than double that of the 

turbulent state.  

We present in Figure 1 the smoothed probability of the turbulent state and the 

corresponding estimated state transitions in Panel A and Panel B, respectively, for the MS-

BDL model using the RW Skew Student-t VaR tail risk measure. The state probabilities and 

transitions for the other models are very similar. It is clear that the turbulent state covers a 

number of periods of market distress, including the 1973-1974 oil crisis, the October 1987 

crash, the burst of the dot-com bubble in the early 2000s, and the last financial crisis. We also 

show in Panel C the RW Skewed Student-t VaR measure and the Economic Policy 
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Uncertainty Index used in Amengual and Xiu (2017) and Baker et al. (2016).† This figure 

confirms the economic interpretation of VaR as a systematic risk measure since it tends to be 

higher when the market is in a turbulent state and when economic uncertainty is high. The 

correlation between VaR and the smoothed probability of state 2 is about 0.44, while its 

correlation with the uncertainty index is 0.41.  

For all models, the coefficient on tail risk is positive and highly significant in the low 

volatility state. Thus, it appears that in periods of relatively calm market, there is a strong 

relationship between returns and tail risk, as implied by asset pricing theory. This is 

consistent with the results reported by BDL. However, in the high volatility state, the 

coefficient on VaR is negative for all VaR measures. In other words, in turbulent states of the 

market, it would appear that an increase in tail risk leads to lower returns in expectation. ‡  

[Table 2] 

[Figure 1] 

One possible explanation for the failure of the tail risk-return relation to hold across all 

market states is that it reflects a bias arising from the omission of state variables that are 

correlated with the tail risk measure. BDL include four control variables (the detrended risk 

free rate, the change in the term structure risk premium, the change in the credit risk premium 

and the dividend yield), but it could be argued that these may be insufficient to capture the 
																																																													

† This data is available from January 1985 at www.PolicyUncertainty.com 
‡	 To shed further light on these results, we estimate the original BDL model (without Markov 
switching) using three samples: the original sample used by BDL (July 1962 to December 2005), the 
new sample (January 2006 to December 2016) and the full sample (July 1962 – December 2016). 
With the original BDL sample, we obtain results that are very close to those reported by BDL. In 
particular, in all cases, the estimated coefficient on the tail risk measure is significantly positive, 
suggesting that high tail risk is associated with high returns. However, for the new sample, the 
coefficient on tail risk is, in all cases, insignificantly positive, or even negative, suggesting a 
breakdown in the tail risk-return relation. As a result, using the full sample, the coefficient on tail risk 
is not significant using any of the four measures. To preserve space, we do not report these results.	
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full dynamics of the economic cycle during crisis periods. Indeed, we observe that half of the 

BDL control variables become insignificant in the new sample of the non-switching BDL 

regression. We therefore expand the set of state variables used by BDL to include four 

additional macro-variables that are commonly used in the asset pricing literature: growth in 

industrial production, growth in the monetary base, inflation and the change in the oil price.  

In Table 3, we report the results of estimating the Markov switching BDL model with the 

expanded set of state variables. It is clear that the extended set of variables does not restore 

the positive risk-return relationship in the turbulent period. The negative or insignificant 

relationship between returns and tail risk in the high volatility state persists in most of the 

models. Additionally, we note that the inclusion of the additional state variables leads to a 

reduction in the estimated state variances (i.e., !!!!  in equation 4), especially in the second 

state. This reduction in the variance of the error term suggests that the additional state 

variables improve the overall goodness of fit of the Markov switching model. This is also 

confirmed by the reduction in the Akaike Information Criterion.† In the remaining empirical 

analysis, we therefore use the expanded set of state variables. 

[Table 3] 

A second possible explanation for the failure of the risk-return relation to hold in both 

market states is that the estimators of tail risk employed by BDL are based on the 

																																																													

† We also conduct non-switching BDL regressions in the three sub-samples. The tail risk coefficient 
remains insignificant in most cases in both the full sample and the new sample. Nevertheless, the 
additional state variables clearly improve the overall fit of the BDL model. In particular, the adjusted 
R-squared coefficient increases by a factor of four in the new sample, and by a factor of two in the full 
sample. We also compute the Cochrane (1999) maximum unconditional Sharpe ratio of the predictive 
regression to show the improved economic significance of the extended set of regressors. The 
extended set of regressors helps to increase the Sharpe ratio by 0.2 in the full sample, and by as much 
as 0.7 in the new sample. To preserve space, we do not report these results. 
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unconditional distribution of returns, and therefore implicitly assume that returns are iid. 

Ignoring the characteristics of the true dependence structure in returns, such as 

autocorrelation and volatility clustering, is likely to reduce the power of the regression-based 

tests used to identify the risk-return relation. We therefore relax the iid assumption and 

estimate tail risk using a location-scale VaR model, in which VaR is estimated using the 

standardised residuals of a location-scale filtering model for daily market returns. In the 

literature, this method has been extensively demonstrated to deliver superior VaR estimates 

(see, for example, Berkowitz and O’Brien, 2002; Kuester et al., 2006). We use the AR(1)-

GJR GARCH(1,1) model for the location-scale filtering, which not only accounts for 

autocorrelation and time-varying volatility, but also captures leverage effects in volatility. 

These are important features that must be captured in a good volatility model, as argued by 

Engle and Patton (2001). Specifically, to estimate market VaR for day !, we first estimate the 

location-scale model using information up to day ! − 1  as: 

!! = !! + !! = !! + !!!!,    !!~!"#$#% !"#$%&" − ! 0,1, !, !    (5) 

!! = !! + !!!!!!                   (6) 

   !!! = !! + !!!!!!! + !!!!!!! +!!! !!!! < 0 !!!!!                (7) 

where !! is the market return on day ! with expected return !! and variance !!!; !! is the 

residual term on day !; and ! !!!! < 0  is the indicator function which takes value of 1 if 

!!!! < 0 and 0 otherwise; ! and ! are the degree of freedom and skew parameters of the 

Hansen (1994) Skewed Student-t distribution. The quantile of the standardised residuals 

!! = !!/!!  is transformed into an estimate of VaR using the one-step ahead forecast of the 

mean and volatility of returns for day d. After obtaining VaR estimates for each day, we take 
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the average of these within a month to be the RW non-iid risk measure. This corresponds to 

the RW VaRs in the original BDL model as their measure is essentially the estimated daily 

tail risk every month. We apply an AR(4) process to these RW non-iid measures to estimate 

the corresponding AR4 non-iid measures.  

We estimate the AR(1)-GJR GARCH(1,1) model using a five-year rolling window (1260 

daily observations), and employ the Skewed Student-t distributions for the residuals. The use 

of non-Gaussian error term is motivated by Gerlach and Wang (2016), who show that 

incorporating the Student-t error in the GARCH framework increases the accuracy of 

volatility and tail risk forecasts. Since we must specify a distribution for the error term in the 

location-scale estimation, we are not able to compute a non-iid version of the non-parametric 

VaR measure. The results of estimating the Markov switching BDL model using the non-iid 

VaR measures are reported in Table 4. The dependence structure of returns in the estimation 

of VaR does not explain the breakdown of the risk-return relationship in the high volatility 

state. In particular, the coefficient on tail risk, although consistently positive, is still 

insignificant for both the RW and AR4 VaR measures.† 

 [Table 4] 

4. A modified measure of expected tail risk 

The preceding results show that the inclusion of additional state variables in the BDL model 

and the use of VaR measures that explicitly allow for the dependence structure in returns 

serve to improve the fit of the model, but are not able to rescue the relationship between 

returns and tail risk in the high volatility state. In this section, we investigate the role of 

																																																													

† We obtain similar results for the sub-sample BDL regression. To preserve space, we do not report 
these results. 
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leverage and volatility feedback effects, which lead to endogeneity in realised measures of 

tail risk. In particular, while asset pricing theory predicts a positive relationship between 

returns and tail risk, realised tail risk is, by construction, associated with negative returns 

because high volatility (and hence high tail risk) is associated with negative returns through 

leverage and feedback effects. It is this endogeneity that motivates the use of lagged rather 

than concurrent measures of tail risk in the BDL framework. However, BDL construct 

expected tail risk in month ! by conditioning on the information set in month ! − 1, and so 

implicitly assume that the leverage and feedback effects dissipate within one month. While 

this may be a reasonable assumption in low volatility periods, it is less likely to hold in high 

volatility periods. This is because high volatility is associated with higher persistence in 

volatility, and so leverage and volatility feedback effects take longer to dissipate. In this case, 

the expected risk measure used in the BDL framework will be endogenous, thus obscuring 

the true relation between returns and tail risk in the high volatility state.  

To investigate this idea, in Table 5 we regress the lag-one autocorrelation of the three 

consecutive variance values from month ! to month ! + 2 (which measures variance 

persistence) on the variance of the market return in month !, with and without the full set of 

control variables. Following BDL, we use the French et al. (1987) measure of realised 

variance: 

 !!! = !!!!
!!! + 2 !!!

!!! !!!!    (8) 

where !!! is the realised variance of month !, ! is the number of trading days in the month 

(assumed to be 21), and !! is the return of the market on day !. The coefficient on the market 

variance in month ! is positive and highly significant in all specifications, implying that high 

variance is indeed associated with high persistence in variance. As leverage and volatility 
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feedback effects are associated with high variance, this implies that these effects will also 

persist for multiple periods. We will therefore observe successive periods of high tail risk and 

low returns. As a result, the expected tail risk measures used by BDL will still be endogenous 

and negatively correlated to returns.  

 [Table 5] 

These results suggest a simple modification of the BDL framework to account for the 

persistence of leverage and volatility feedback effects. In particular, we construct the 

following modified tail risk measure: 

  !! !"#!!! = !! + !!!!!! !"#! + !!!"#!!!!
!!!    (9) 

where !! (! = 0,… ,4) are the estimated coefficients of an AR(4) model of the VaR series and 

!!!! !"#! = !! + !!!"#!!!!!!
!!! . This is similar to the AR(4) measure used by BDL, 

and differs only in that the first term on the right hand side, !"#!, is replaced by its time 

! − 1 forecast value. In Table 6, we report the results of estimating the MS-BDL model using 

this modified measure of expected tail risk. The estimated relationship between returns and 

tail risk is positive and, in contrast with the results in Tables 3 and 4, highly significant in 

both states of the market. It is important to note that the significant positive tail risk-return 

trade-off is observed for all modified VaR measures, regardless of whether they are estimated 

parametrically or non-parametrically, and whether or not the non-iid features of returns are 

accounted for. Although not reported, we also observe an improvement in the log likelihood 

and AIC statistics of models using the modified expected tail risk measure relative to those 
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obtained using the RW and AR4 measures.† Our results are consistent with the findings of 

Drechsler and Yaron (2011) who show that the variance risk premium at time ! − 1 performs 

better than the variance risk premium at time ! in predicting returns at time ! + 1.  

[Table 6] 

5. Robustness checks 

The framework used in the previous sections is based on VaR as the tail risk measure for the 

market. Although VaR is the most popular tail risk measure in practice, it does have a number 

of shortcomings. Firstly, it does not contain information about the severity of the tail event 

given that the loss has exceeded the VaR level. Secondly, it is not a coherent measure of risk 

(see Artzner et al., 1999). In this section, we examine the robustness of our results and 

inferences to the use of alternative risk measures.  

5.1. Expected tail loss 

Both of the shortcomings of VaR described above are addressed by Expected Tail Loss 

(ETL), a measure closely related to VaR. Specifically, ETL is the expected value of the loss 

given that it has exceeded the VaR level. Therefore, ETL contains information about the 

severity of the tail event. Moreover, Artzner et al. (1999) demonstrate that ETL is, in contrast 

with VaR, a coherent risk measure. Here, we use a simple Gaussian ETL as the tail measure. 

Under the assumption of Normally distributed daily market returns,  !!~Ν !! ,!!! , the ETL 

at the 100! percent confidence level is given by: 

																																																													

† We also find that in sub-sample non-switching BDL regressions, the use of the modified expected 
tail risk measure yields a positive and statistically significant relation between returns and risk in all 
cases. 
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 !"#! = !
!!!! Φ!! 1− ! !! − !!    (10) 

where ! is the Standard Normal probability density function and Φ!! 1− !  is the (1− !)  

quantile. Analogous to the iid and non-iid VaR-based measures of tail risk, we construct the 

RW, AR4, and modified ETL, under both the iid and non-iid return assumption. Table 7 

presents the results of estimating the MS-BDL model with these six ETL-based measures. 

The conclusions are similar to those obtained using the corresponding VaR-based measures. 

In particular, the RW and AR4 measures are only positive and statistically significant in the 

low volatility state, while the modified measures are positive and statistically significant in 

the both states. These results are consistent with BDL, who show that VaR-based and ETL-

based measures of tail risk produce similar results.  

[Table 7] 

5.2. Alternative VaR significance levels 

An alternative way of accounting for information in the tail of returns beyond VaR is to vary 

the VaR significance level. In the analysis above, parametric VaR is estimated using the 99 

percent confidence level. As a robustness check, we use alternative confidence levels of 97.5 

percent and 95 percent, and obtain qualitatively similar results to those reported above. As 

shown in Table 8, the original VaR measures have a positive relationship with returns in the 

low volatility state, but in the high volatility state, the relationship is insignificant or even 

negative. In contrast, the modified measures yield a significantly positive tail risk-return 

relationship in both states of the market.†  

																																																													

† To preserve space, we report the results only for 95% VaR. 
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[Table 8] 

5.3. Other systematic tail risk measures  

In this section, we examine the performance of some alternative tail risk measures available 

in the literature. First, we examine the risk-neutral Expected Shortfall (ES) proposed by 

Almeida et al. (2017). Since it is calculated from the risk-neutral probability density of stock 

returns, this measure takes into account economic conditions as well as investors’ risk 

aversion and preferences. It is shown to predict future market returns at different (primarily 

short-run) horizons as well as future economic conditions. The estimation of the measure 

does not require the use of options data and instead can be estimated non-parametrically 

using only stock return data. This measure is therefore applicable to all markets with a 

reasonably long history of data. Almeida et al. (2017) verify that their measure is highly 

correlated with other risk-neutral tail risk measures estimated from options data in the 

literature. Second, since we use VaR as the primary risk measure in our analysis, we also 

examine the performance of risk-neutral VaR which we estimate using the same method as 

risk-neutral ES.†  

For each of these alternative measures, we estimate the corresponding AR4 measure and 

modified measure in the same manner as the AR4 and modified VaR measures. The original 

measures are referred to as RW risk-neutral ES and RW risk-neutral VaR. Their 

corresponding AR4 and modified measures are referred to as AR4 risk-neutral ES, AR4 risk-

neutral VaR, modified risk-neutral ES, and modified risk-neutral VaR, respectively. We 

report the results of the analysis using these measures in Table 9. Results for the risk-neutral 
																																																													

†	We also examine the Left Jump Variation (LJV) developed by Bollerslev, Todorov and Xu (2015). 
LJV represents the part of the variance risk premium that is due to the left tail jump, which can be 
estimated non-parametrically from data in the options and futures markets. These results show that 
using LJV yields the same conclusions. To preserve space, we do not report them.	
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ES and VaR measures are reported in Panels A and B, respectively. The data for these 

measures cover the period from July 1962 to April 2014. We again find that the relationship 

between tail risk and returns in the high volatility state breaks down. The coefficient on the 

tail risk measure in this state is positive, but not significant in the case of the RW and AR4 

measures. However, using the corresponding modified measures, there is again a significantly 

positive tail risk-return relationship in both states of the market. 

[Table 9] 

5.4. Accounting for volatility 

Finally, we investigate the incremental information content of our modified measures of 

expected tail risk after controlling for volatility. Similarly to BDL, we include the realised 

variance calculated using equation (8) in the MS-BDL regression. The results from 

estimating the MS-BDL model including both the tail risk measure and the variance are 

reported in Table 10. Consistent with the results reported by BDL, there is no statistically 

significant positive relationship between returns and variance. This is consistent with 

evidence of a weak relationship between variance and short-term future returns reported in 

many other studies in the literature (see, for example, Bandi and Perron, 2008; Bollerslev et 

al., 2009; among others). Moreover, the coefficient of variance is always positive in the calm 

state and negative in the turbulent state. This further supports our finding that the leverage 

and feedback effects are more persistent during turbulent periods. Meanwhile, the 

coefficients of the modified measures are positive and significant in both states in all cases. 

Thus, our results suggest that tail risk contains incremental price-determining information and 

may even be more important than variance, as documented by Bollerslev et al. (2015). 

[Table 10] 
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6. Out-of-sample analysis 

Our in-sample analysis has shown that using a modified tail risk measure yields a 

significantly positive tail risk-return relationship in all states of the market. However, it is 

important to determine whether investors can obtain improved return predictability using the 

modified method to estimate tail risk, conditional on information available to them at any 

point in time. We therefore examine the out-of-sample predictive performance of the 

modified measures. The in-sample analysis suggests that in the calm state, the previous 

month’s expectation of tail risk predicts returns, while in the turbulent state, predictability 

arises from the expectation two months before. We therefore construct a strategy based on the 

combination of the AR4 measure and the modified measure using the out-of-sample 

estimated probability of each state to be realised in the future to predict returns out-of-

sample.† At the beginning of every month, an investor estimates a Markov switching model 

for the monthly excess returns of the market using the macroeconomic variables available at 

that date. The probability of the realisation of each state in the next month is then calculated 

from the product of the estimated smoothed probabilities in the last period of the available 

sample and the probability transition matrix. These probabilities are used to combine the AR4 

measure and the modified measure to create a new Hybrid measure: 

 !"#$%& !"# = !! ×!"4 !"# +  !! ×!"#$%$&# !"#   (11) 

where !! is the estimated probability of state ! to be realised in the next month. As this 

analysis is performed out-of-sample, the AR4 measure and the modified measure are both 
																																																													

† We use the modified measure to capture the tail risk-return relationship in both states throughout our 
analysis. However, in this section, the aim is to propose a good predictive measure rather than to 
demonstrate the risk-return relationship. We argue that the AR4 measure should be a better predictor 
in the calm state since it contains the most recent information and its impact on returns is not 
undermined by the leverage and feedback effects. Therefore, the Hybrid measure combines the AR4 
measure with the modified measure based on the probability of the subsequent state of the market. 



26 
 

estimated using data available only up to that date. We restrict the minimum sample length 

for each Markov switching estimation to be 60 months. Therefore, the first estimated future 

state probability is available in July 1967, and thereafter we use an expanding estimation 

window. Since the results of the in-sample analysis are consistent across different VaR 

measures, we only report the out-of-sample results for the AR4 measure and the modified 

measure based on the simple non-parametric VaR. We obtain qualitatively similar results for 

iid Skewed Student-t VaR and non-iid Skewed Student-t VaR. The results of the out-of-

sample analysis are reported in Table 11. 

Table 11 shows that the Hybrid measure has a consistent relationship with future returns 

in both market states. It has significant predictive power for one month ahead returns in both 

the full sample covering the period from July 1967 to December 2016 and the new sample 

covering the period from January 2006 to December 2016. Its coefficient is also consistently 

positive in both states of the market in the MS-BDL regression. Moreover, we obtain a 

smaller sum of squared forecast errors for the predictive regression using the Hybrid measure 

than the regression using the AR4 measure. We also calculate the Diebold and Mariano 

(1995) test statistic to compare the predictive performance of the AR4 measure and the 

Hybrid measure. The value of the statistic is 0.96, which is not significant at the 10 percent 

significance level. However, given that a part of the information contained in the Hybrid 

measure is from the AR4 measure, and that the tail risk measure is only one predictive 

variable among a number of additional macroeconomic variables used in the predictive 

regression, the improvement in the predictive performance of the Hybrid measure relative to 

that of AR4 measure is not trivial. 

[Table 11] 
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7. The term structure of the tail risk-return trade-off in different market states 

In this section, we examine the pattern of the term structure of the predictability of tail risk 

with respect to future returns using the Markov switching framework. Since investors have 

different investment horizons, understanding the implication of tail risk on returns over 

different horizons is important for shaping their investment strategies. To conduct this 

investigation, we regress future excess returns of one to twelve months on last month’s tail 

risk measures and other state variables in the MS-BDL framework. Specifically, the 

predictive Markov switching regression is given by: 

!!,!!! = !!!,!!!! + !!!,!!!! !"#! + !!!,!!!! !! + !!!,!!!   (12) 

where !!,!!! is the next h month excess return, ℎ = 1,2,… , 12,  !!!,!!!~! 0,!!!,!!!!  and 

!!,!!! =
1 given next ℎ month return is in state 1
2 given next ℎ month return is in state 2  . 

For this analysis, both parametric and non-parametric VaR, which are estimated with either 

iid or non-iid returns assumption, can be used as the tail risk measure. Table 12 shows the 

estimated coefficients of these tail risk measures in explaining future returns of one to twelve 

month horizons. Similar to Ang et al. (2006) and Bollerslev et al. (2015), we use Newey-

West (1987) standard errors in evaluating the significance of the estimated coefficients to 

account for the fact that the dependent variable is overlapping. To visualise the term structure 

of the tail risk-return relationship, we plot the estimated values of the tail risk coefficient in 

Figure 2. 

Some interesting findings are clear from Table 12 and Figure 2. Firstly, given that the 

market is in the calm state, tail risk significantly positively predicts returns at all horizons. 
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The impact is most prominent for mid-term horizons from 4 to 8 months. However, in the 

turbulent state, tail risk significantly positively predicts future returns at the two-month 

horizon only. Tail risk has a negative relationship with returns at the one-month horizon. This 

supports the rationale underlying our modified measure. Interestingly, the tail risk impact 

starts to decline and eventually becomes progressively more negative for horizons longer than 

two months. A possible explanation for this finding is that given the high level of uncertainty 

in a turbulent market, tail risk cannot reliably predict medium and long-term returns.  

 [Table 12] 

[Figure 2] 

8. Conclusion 

In this paper, we implement a Markov switching model to estimate the relationship between 

returns and tail risk documented by Bali et al. (2009), in different states of the market. We 

show that the relationship breaks down in the high volatility state that covers a number of 

crises. This is surprising since it is under such conditions that tail risk is expected to be most 

important. We show that this result is robust to a range of features of the model, including 

expansion of the set of control variables, and the use of tail risk measures that accounts for 

the non-iid nature of market returns.  

We show that the underlying reason for this finding is the heightened leverage and 

volatility feedback effects during crisis periods that arise as a result of increased persistence 

in volatility during such times. We propose a modified tail risk measure that better filters out 

these effects, and show that it yields a positive relation between returns and tail risk in both 

the low volatility and high volatility states. Moreover, this relation is robust to the use of 
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different VaR confidence levels, alternative measures of tail risk, and after controlling for 

volatility. It would be interesting to consider the implications of our findings at the individual 

stock level. In particular, accounting for leverage and volatility feedback effects in the 

construction of tail risk measures for individual stocks could help to strengthen the evidence 

in support of a systematic tail risk premium. 
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Panel A: Smoothed probability of turbulent state  

 

Panel B: Markov switching state timing 

 

Panel C: VaR and Economic Uncertainty Index 

 

Figure 1: Tail risk measure and estimated states over time. Panel A and B show the smoothed 
probability of the turbulent state and the corresponding estimated state transitions using a 
threshold probability of 0.5, for the estimated MS-BDL model using the RW Skewed 
Student-t tail risk measure. Panel C shows the over time evolution of this tail risk (solid line), 
as well as that of the Economic Policy Uncertainty Index developed by Baker et al. (2016) 
(dashed line). 
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Figure 2: Predictability term structure of tail risk in different market states. This figure shows 
the estimated coefficients of different tail risk measures in predicting future returns at 
different horizons. The solid lines show the estimated coefficients in the calm state of the 
market, while the dashed lines show those in the turbulent state. 
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Table 1. The table reports summary statistics for the CRSP value weighted monthly excess 
return, and the realised standard deviation, mean absolute deviation (MAD), skewness, 
kurtosis and non-parametric VaR. The realised risk measures are calculated using daily 

returns over one month. t-statistics are reported in parentheses. The sample period is July 
1962 to December 2016. 

 
Monthly 

Excess 
return 

Standard 
deviation MAD Skewness Kurtosis 

Non- 
parametric 

VaR 

Panel A: Basic statistics 

Mean 0.52 0.83 0.64 -0.05 3.06 1.62 
Median 0.87 0.69 0.53 -0.04 2.82 1.36 
Standard deviation 4.42 0.51 0.39 0.58 1.13 1.24 
Minimum -23.14 0.18 0.14 -2.97 1.63 0.18 

Maximum 16.05 4.96 3.79 2.51 12.48 17.13 

Panel B: Cross correlation 

Monthly Excess return 1.00 -0.32 -0.30 0.08 -0.03 -0.45 
Standard deviation -0.32 1.00 0.99 0.03 0.05 0.89 
MAD -0.30 0.99 1.00 0.06 -0.05 0.84 
Skewness 0.08 0.03 0.06 1.00 -0.18 -0.25 
Kurtosis -0.03 0.05 -0.05 -0.18 1.00 0.24 

Non-parametric VaR -0.45 0.89 0.84 -0.25 0.24 1.00 

Panel C: Lags' coefficients in AR(4) 

Lag 1 0.08 0.55 0.59 0.07 0.00 0.30 
(t-statistic) (2.231) (33.872) (30.247) (1.865) (-0.035) (13.516) 
Lag 2 -0.05 0.12 0.13 0.08 0.00 0.17 
(t-statistic) (-1.328) (3.241) (4.005) (2.104) (-0.027) (5.403) 
Lag 3 0.02 0.12 0.04 0.13 0.11 0.22 
(t-statistic) (0.754) (2.382) (1.030) (3.776) (2.986) (4.903) 
Lag 4 0.02 -0.03 0.01 0.04 0.00 -0.06 

(t-statistic) (0.479) (-0.840) (0.371) (0.861) (-0.052) (-1.505) 
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Table 2. The table reports the results of estimating the MS-BDL model using different 
measures of extreme downside risk. The risk measures are calculated using daily returns over 
the last month. The monthly market excess return at time t+1 is regressed on !! !"#!!!  and 
the following control variables measured at time t: lagged market excess return, October 1987 
dummy, detrended risk free rate (RFD), change in the term structure risk premium (DTRP), 

change in the credit risk premium (DCRP), dividend yield (DY). For each regression, the first 
line shows the estimated regression coefficients, while the second line shows the 

corresponding HAC t-statistics (in parentheses). The Skewed Student-t VaR is estimated at 
the 99% confidence level. The sample period is July 1962 to December 2016. 

State Const !!(!"#!!!) Dummy 
Lagged 

return RFD DTRP DCRP DY 
State 

variance 
Expected 
Duration 

RW Non-parametric VaR 

1 0.282 1.019 -24.449 -0.024 -0.531 0.058 2.167 -0.077 8.957 10.736 

 
(0.243) (3.799) (-4.705) (-0.326) (-2.404) (0.181) (0.997) (-0.256) 

  2 -2.190 -0.862 3.681 -0.030 -0.382 -1.986 5.562 0.705 28.566 4.919 

 
(-1.676) (-0.886) (0.267) (-0.287) (-0.740) (-2.759) (1.520) (1.881) 

  RW Skewed Student-t VaR 
1 0.114 1.014 -21.870 -0.028 -0.523 0.086 2.338 -0.087 8.590 7.924 

 
(0.028) (1.395) (-3.664) (-0.222) (-0.652) (0.053) (0.883) (-0.103) 

  2 -2.424 -0.846 1.712 -0.015 -0.441 -2.007 5.755 0.815 26.760 3.757 

 
(-1.930) (-1.414) (0.093) (-0.124) (-0.912) (-2.537) (3.005) (2.276) 

  AR4 Non-parametric VaR 

1 -1.386 2.059 -19.575 -0.083 -0.590 -0.023 2.678 -0.059 8.788 13.147 

 
(-1.368) (4.167) (-7.560) (-2.104) (-2.556) (-0.215) (1.681) (-0.340) 

  2 -3.157 -0.353 -6.331 0.051 -0.322 -1.917 3.555 0.766 30.274 5.993 

 
(-0.944) (-0.189) (-0.807) (0.761) (-1.056) (-3.141) (1.445) (2.593) 

  AR4 Skewed Student-t VaR 
1 -1.330 1.752 -18.084 -0.083 -0.573 -0.004 2.536 -0.053 8.441 9.338 

 
(-1.571) (5.091) (-7.321) (-1.524) (-2.109) (-0.441) (1.580) (-0.317) 

  2 -2.399 -0.785 -4.384 0.043 -0.401 -1.961 4.365 0.779 28.453 4.389 

 
(-1.342) (-0.538) (-0.479) (0.745) (-0.707) (-2.965) (1.784) (2.182) 
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Table 3. The table reports the results of estimating the MS-BDL model using the expanded set of state variables. The risk measures are 
calculated using daily returns over one month. The monthly market excess return at time t+1 is regressed on !! !"#!!!  and the following 
control variables measured at time t: lagged market excess return, October 1987 dummy, detrended risk free rate (RFD), change in the term 
structure risk premium (DTRP), change in the credit risk premium (DCRP), dividend yield (DY), growth in the industrial production (IPG), 

growth in the monetary base M2 (MGB), change in the inflation rate (DIF), change in the oil price (DO). For each regression, the first line shows 
the estimated regression coefficients, while the second line shows the corresponding HAC t-statistics (in parentheses). The Skewed Student-t 

VaR is estimated at the 99% confidence level. The sample period is July 1962 to December 2016. 

Measure State Const !!(!"#!!!) Dummy 
Lagged 
Return RFD DTRP DCRP DY IPG MBG DIF DO 

State 
variance 

Expected 
Duration 

RW 
Nonparam 

1 0.741 0.955 -23.809 -0.055 -0.534 -0.077 1.919 -0.131 -64.284 6.655 -1.632 0.017 8.799 11.352 

 
(0.801) (4.558) (-6.636) (-1.071) (-1.691) (-0.108) (1.063) (-0.536) (-1.534) (0.087) (-1.906) (0.769) 

  2 -3.553 -0.170 -7.818 -0.022 -0.352 -1.775 7.978 0.771 113.440 -43.731 -0.278 0.097 25.685 5.541 

 
(-2.805) (-0.365) (-1.324) (-0.197) (-0.903) (-1.812) (2.211) (2.697) (0.679) (-0.331) (-0.052) (1.852) 

  

RW 
 Skewed 
Student-t 

1 0.626 0.914 -20.794 -0.054 -0.552 -0.084 2.155 -0.146 -62.533 5.891 -1.503 0.016 8.643 10.683 

 
(0.870) (5.047) (-6.936) (-0.816) (-1.801) (-0.184) (0.755) (-0.645) (-1.173) (0.111) (-1.322) (0.340) 

  2 -3.841 -0.055 -9.357 -0.005 -0.366 -1.745 7.762 0.824 118.861 -55.201 -0.239 0.097 25.409 5.308 

 
(-1.601) (-0.082) (-1.019) (-0.159) (-0.666) (-1.544) (1.907) (1.601) (0.766) (-0.104) (-0.083) (3.681) 

  

AR4 
Nonparam 

1 -0.929 1.962 -19.254 -0.103 -0.582 -0.150 2.453 -0.119 -61.070 19.298 -1.207 0.010 8.676 13.697 

 
(-0.794) (3.880) (-6.499) (-2.462) (-2.428) (-0.401) (1.642) (-0.618) (-1.719) (0.414) (-0.988) (0.490) 

  2 -7.080 1.599 -17.159 0.022 -0.266 -1.698 5.958 1.023 134.157 -93.692 -0.690 0.119 26.133 6.593 

 
(-3.857) (2.081) (-4.603) (0.445) (-0.712) (-2.346) (2.006) (3.764) (1.447) (-0.777) (-0.307) (3.632) 

  

AR4 
Skewed 

Student-t 

1 -0.819 1.638 -17.532 -0.098 -0.593 -0.164 2.439 -0.123 -59.333 16.596 -1.150 0.010 8.597 12.844 

 
(-0.594) (1.990) (-5.900) (-0.765) (-0.581) (-0.065) (0.455) (-0.263) (-1.037) (0.061) (-0.117) (0.033) 

  2 -6.417 1.041 -14.358 0.026 -0.267 -1.692 6.197 0.984 136.146 -88.540 -0.563 0.117 25.828 6.189 

 
(-2.132) (0.776) (-4.570) (0.073) (-0.136) (-0.411) (0.284) (2.102) (0.426) (-0.444) (-0.021) (0.720) 
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Table 4. The table reports the results of estimating the MS-BDL model using the non-iid risk measures. The risk measures are calculated using 
average daily VaR over a month. The monthly market excess return at time t+1 is regressed on !! !"#!!!  and the following control variables 

measured at time t: lagged market excess return, October 1987 dummy, detrended risk free rate (RFD), change in the term structure risk 
premium (DTRP), change in the credit risk premium (DCRP), dividend yield (DY), growth in the industrial production (IPG), growth in the 

monetary base M2 (MGB), change in the inflation rate (DIF), change in the oil price (DO). For each regression, the first line shows the estimated 
regression coefficients, while the second line shows the corresponding HAC t-statistics (in parentheses). Skewed Student-t VaR is estimated at 

the 99% confidence level. The sample period is July 1962 to December 2016. 

Measure State Const !!(!"#!!!) Dummy 
Lagged 
Return RFD DTRP DCRP DY IPG MBG DIF DO 

State 
variance 

Expected 
Duration 

RW 
Skewed 

Student-t 

1 -0.150 1.076 -15.151 -0.084 -0.577 0.008 2.849 -0.098 -37.840 16.386 -0.537 0.007 8.568 13.283 

 
(-0.070) (2.549) (-5.573) (-1.979) (-1.667) (0.117) (1.462) (-0.273) (-0.874) (0.069) (-0.417) (0.141) 

  2 -6.244 0.761 -13.187 0.037 -0.397 -1.997 3.611 1.153 83.015 -118.829 -2.115 0.134 26.866 6.365 

 
(-2.248) (0.803) (-3.238) (0.218) (-1.061) (-2.660) (0.617) (2.555) (0.897) (-0.668) (-0.681) (3.362) 

  

AR4 
Skewed 

Student-t 

1 -0.625 1.304 -15.157 -0.083 -0.578 0.032 3.101 -0.099 -35.464 14.610 -0.500 0.007 8.500 12.911 

 
(-0.588) (5.223) (-8.933) (-2.162) (-2.581) (0.193) (1.847) (-0.267) (-1.072) (0.139) (-0.246) (0.181) 

  2 -6.177 0.824 -12.908 0.035 -0.409 -2.007 3.862 1.104 80.323 -113.748 -2.297 0.131 26.950 6.339 

 
(-2.626) (1.341) (-4.290) (0.658) (-0.622) (-2.485) (0.639) (2.618) (1.239) (-0.907) (-0.573) (3.301) 
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Table 5. The table reports the results of estimating the regression of the lag-one autocorrelation of the three variance values from month t to 
month t+2 on the realised variance in month t, with and without the following state variables: market excess return, October 1987 dummy, 

detrended risk free rate (RFD), change in the term structure risk premium (DTRP), change in the credit risk premium (DCRP), dividend yield 
(DY), growth in the industrial production (IPG), growth in the monetary base M2 (MGB), change in the inflation rate (DIF), change in the oil 

price (DO). For each regression, the first line shows the estimated regression coefficients, while the second line shows the corresponding HAC t-
statistics (in parentheses). The sample period is July 1962 to December 2016. 

  Const 
Realised 
variance 

Market 
return Dummy RFD DTRP DCRP DY IPG MBG DIF DO 

Adjusted 
R^2 

with no  
state variable 

-31.708 0.052                     0.67% 
(-35.218) (3.880)                       

with state 
variables at t 

-36.349 0.108 0.337 -47.209 1.283 1.037 -5.845 1.161 -7.682 -35.931 -1.906 0.095 0.41% 
(-13.124) (4.307) (1.566) (-2.967) (1.556) (0.843) (-0.637) (1.481) (-0.061) (-0.159) (-0.480) (1.071)   

with state 
variables at t+1 

-33.884 0.071 0.239 -33.271 1.214 -0.003 -19.408 0.946 -30.787 -194.666 0.000 -0.066 1.01% 
(-12.749) (3.527) (1.042) (-5.611) (1.451) (-0.002) (-2.452) (1.197) (-0.248) (-0.748) (-0.000) (-0.621)   

with state 
variables at t+2 

-35.833 0.062 -0.568 -1.544 1.428 0.593 0.716 0.388 47.977 533.619 -2.320 -0.048 1.53% 
(-13.174) (3.554) (-2.725) (-0.280) (1.546) (0.465) (0.099) (0.483) (0.438) (2.295) (-0.605) (-0.470)   
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Table 6. The table reports the results of estimating the MS-BDL model using the modified risk measures. The iid measures are RW measures 
calculated using daily returns over one month. The non-iid measures are RW measures calculated using the daily VaR over one month. These 

RW measures are used to estimate the corresponding modified measures according to formula (9). The monthly market excess return at time t+1 
is regressed on !! !"#!!!  and the following control variables measured at time t: lagged market excess return, October 1987 dummy, 

detrended risk free rate (RFD), change in the term structure risk premium (DTRP), change in the credit risk premium (DCRP), dividend yield 
(DY), growth in the industrial production (IPG), growth in the monetary base M2 (MGB), change in the inflation rate (DIF), change in the oil 

price (DO). For each regression, the first line shows the estimated regression coefficients, while the second line shows the corresponding HAC t-
statistics (in parentheses). Skewed Student-t VaRs are estimated at the 99% confidence level. The sample period is July 1962 to December 2016.  

Measure State Const !!(!"#!!!) Dummy 
Lagged 
Return RFD DTRP DCRP DY IPG MBG DIF DO 

State 
variance 

Expected 
Duration 

iid 1 -2.329 2.934 -11.906 -0.185 -0.710 -0.230 3.435 -0.081 -54.472 8.959 -0.458 0.000 8.327 11.748 
Nonparam 

 
(-1.505) (3.984) (-8.392) (-4.470) (-2.880) (-0.881) (2.428) (-0.350) (-1.973) (0.175) (-0.471) (0.367) 

  
 

2 -8.949 2.476 -11.229 -0.051 -0.211 -1.542 4.480 1.085 141.533 -60.086 -1.994 0.124 24.165 6.315 

  
(-4.938) (4.680) (-7.071) (-0.954) (-0.607) (-2.960) (1.487) (3.679) (2.779) (-0.588) (-0.800) (4.239) 

  iid 1 -0.729 1.673 -11.323 -0.165 -0.681 -0.197 2.930 -0.153 -63.205 13.773 -0.542 0.004 8.641 12.088 
Parametric 

 
(-0.500) (2.737) (-7.450) (-3.594) (-2.543) (-0.587) (1.721) (-0.719) (-2.049) (0.288) (-0.541) (0.251) 

  Skewed 2 -8.829 1.982 -11.157 -0.028 -0.270 -1.773 4.148 1.132 146.047 -77.576 -2.251 0.127 24.888 5.861 

Student-t 
 

(-4.171) (3.193) (-6.420) (-0.406) (-0.663) (-2.632) (1.185) (3.499) (2.104) (-0.812) (-0.872) (3.811) 
  Non- iid 1 -1.052 1.522 -11.040 -0.152 -0.626 -0.095 3.296 -0.107 -45.056 23.087 -0.468 0.002 8.551 13.067 

Parametric 
 

(-0.995) (5.511) (-7.115) (-2.732) (-2.779) (-0.244) (1.980) (-0.449) (-0.678) (0.424) (-0.629) (0.105) 
  Skewed 2 -9.093 1.649 -11.363 -0.031 -0.275 -1.976 4.606 1.308 135.082 -86.474 -2.771 0.131 25.373 6.106 

Student-t 
 

(-3.980) (2.974) (-4.105) (-0.275) (-0.746) (-1.933) (1.205) (3.472) (0.835) (-0.773) (-1.022) (3.582) 
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Table 7. The table reports the results of estimating the MS-BDL model using the Gaussian-ETL tail risk measures. The iid measures are 
calculated using daily returns over one month. The non-iid measures are calculated using daily ETL over one month. The monthly market excess 
return at time t+1 is regressed on !! !"#!!!  and the following control variables measured at time t: lagged market excess return, October 1987 
dummy, detrended risk free rate (RFD), change in the term structure risk premium (DTRP), change in the credit risk premium (DCRP), dividend 
yield (DY), growth in the industrial production (IPG), growth in the monetary base M2 (MGB), change in the inflation rate (DIF), change in the 

oil price (DO). For each regression, the first line shows the estimated regression coefficients, while the second line shows the corresponding 
HAC t-statistics (in parentheses). Parametric ETLs are estimated at the 99% confidence level. The sample period is July 1962 to December 2016. 

Measure State Const !!(!"#!!!) Dummy 
Lagged 
Return RFD DTRP DCRP DY IPG MBG DIF DO 

State 
variance 

Expected 
Duration 

Panel A: iid measures 

 
1 0.322 1.003 -21.025 -0.045 -0.522 0.033 1.918 -0.142 -47.039 -2.447 -1.102 0.011 8.360 11.041 

RW iid 
 

(0.414) (5.147) (-6.390) (-0.691) (-1.831) (0.154) (1.067) (-0.611) (-0.633) (-0.084) (-0.670) (0.562) 
  

 
2 -3.551 -0.066 -9.547 -0.016 -0.390 -1.855 7.392 0.798 96.792 -60.260 -0.685 0.100 26.028 5.695 

  
(-1.510) (-0.059) (-0.792) (-0.205) (-1.036) (-1.729) (1.028) (1.503) (0.570) (-0.261) (-0.147) (1.503) 

  

 
1 -0.732 1.491 -19.676 -0.074 -0.525 -0.009 2.217 -0.125 -46.976 1.557 -0.991 0.009 8.324 11.642 

AR4 
 

(-0.819) (6.472) (-9.682) (-1.604) (-2.300) (-0.139) (1.360) (-0.557) (-1.004) (0.049) (-0.741) (0.469) 
  iid 2 -4.517 0.263 -11.616 0.007 -0.385 -1.804 6.604 0.877 109.005 -76.167 -0.824 0.107 26.120 5.904 

  
(-2.841) (0.571) (-2.883) (0.151) (-1.196) (-2.339) (1.944) (2.597) (0.913) (-0.617) (-0.345) (3.591) 

  
 

1 -1.423 1.787 -11.897 -0.169 -0.615 -0.180 2.951 -0.103 -48.752 7.706 -0.490 0.003 8.548 13.283 
Modified 

 
(-1.059) (4.015) (-7.937) (-4.060) (-2.545) (-0.576) (1.933) (-0.364) (-1.671) (0.245) (-0.446) (0.267) 

  iid 2 -9.791 1.972 -11.542 -0.032 -0.295 -1.839 3.835 1.264 158.901 -84.344 -2.452 0.135 24.954 6.085 

  
(-4.838) (3.894) (-8.021) (-0.706) (-0.658) (-2.487) (1.114) (3.920) (2.316) (-0.866) (-0.882) (3.895) 

  (Continued) 
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Table 7. Continued 

Measure State Const !!(!"#!!!) Dummy 
Lagged 
Return RFD DTRP DCRP DY IPG MBG DIF DO 

State 
variance 

Expected 
Duration 

Panel B: non-iid measures 

 
1 -0.252 1.112 -17.097 -0.085 -0.587 -0.046 2.900 -0.117 -41.372 21.084 -0.541 0.007 8.717 14.004 

RW 
 

(-0.076) (1.434) (-3.054) (-1.458) (-2.686) (-0.173) (1.607) (-0.156) (-1.095) (0.174) (-0.489) (0.136) 
  non-iid 2 -6.584 0.894 -14.900 0.050 -0.411 -1.954 3.313 1.142 91.914 -124.484 -2.087 0.136 26.910 6.513 

  
(-1.991) (0.855) (-4.674) (0.180) (-0.400) (-2.228) (0.618) (2.685) (0.975) (-0.926) (-0.517) (2.746) 

  

 
1 -0.864 1.388 -16.911 -0.086 -0.587 -0.016 3.200 -0.117 -37.798 20.996 -0.460 0.006 8.639 13.893 

AR4 
 

(-0.597) (5.332) (-7.586) (-2.087) (-2.458) (-0.138) (1.739) (-0.522) (-1.085) (0.168) (-0.469) (0.165) 
  non-iid 2 -6.945 1.111 -14.797 0.049 -0.428 -1.977 3.231 1.130 87.596 -124.842 -2.483 0.136 27.072 6.615 

  
(-2.295) (0.970) (-3.928) (0.263) (-1.226) (-2.820) (0.559) (3.044) (0.995) (-1.046) (-0.905) (3.330) 

  

 
1 -1.276 1.604 -11.300 -0.157 -0.641 -0.164 3.225 -0.123 -49.339 24.977 -0.501 0.004 8.720 13.150 

Modified 
 

(-0.863) (4.292) (-8.666) (-3.863) (-2.028) (-0.362) (1.977) (-0.482) (-1.272) (0.394) (-0.500) (0.099) 
  non-iid 2 -9.443 1.793 -11.450 -0.032 -0.283 -1.899 4.857 1.249 152.520 -84.318 -2.695 0.130 25.186 5.935 

  
(-4.024) (3.092) (-4.581) (-0.356) (-0.350) (-2.066) (1.523) (2.848) (1.752) (-0.543) (-1.023) (4.241) 
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Table 8. The table reports the results of estimating the MS-BDL model using the 95% VaR tail risk measures. The iid measures are calculated 
using daily returns over one month. The non-iid measures are calculated using daily VaR over one month. The monthly market excess return at 

time t+1 is regressed on !! !"#!!!  and the following control variables measured at time t: lagged market excess return, October 1987 dummy, 
detrended risk free rate (RFD), change in the term structure risk premium (DTRP), change in the credit risk premium (DCRP), dividend yield 
(DY), growth in the industrial production (IPG), growth in the monetary base M2 (MGB), change in the inflation rate (DIF), change in the oil 

price (DO). For each regression, the first line shows the estimated regression coefficients, while the second line shows the corresponding HAC t-
statistics (in parentheses). The sample period is July 1962 to December 2016. 

Measure State Const !! !"#!!!  Dummy 
Lagged 
Return RFD DTRP DCRP DY IPG MBG DIF DO 

State 
variance 

Expected 
Duration 

Panel A: iid measures 

 
1 0.487 1.530 -17.676 -0.023 -0.521 -0.030 2.032 -0.149 -58.629 2.062 -1.306 0.014 8.461 10.158 

RW iid 
 

(0.252) (2.968) (-3.439) (-0.062) (-0.994) (-0.029) (0.693) (-0.621) (-0.529) (0.064) (-0.814) (0.359) 
  

 
2 -3.812 -0.092 -9.592 -0.008 -0.400 -1.771 7.612 0.829 117.711 -56.481 -0.381 0.097 25.264 5.177 

  
(-0.737) (-0.024) (-0.387) (-0.121) (-0.165) (-1.867) (1.094) (1.013) (0.492) (-0.094) (-0.041) (0.406)     

  1 -0.735 2.446 -16.453 -0.059 -0.544 -0.075 2.284 -0.128 -52.130 8.972 -1.076 0.010 8.395 12.047 
AR4 

 
(-0.587) (5.267) (-7.682) (-0.835) (-2.049) (-0.150) (1.528) (-0.517) (-0.902) (0.159) (-0.917) (0.473) 

  iid 2 -5.265 0.842 -11.974 0.025 -0.340 -1.758 6.484 0.933 119.920 -81.806 -0.673 0.112 25.981 6.002 
    (-2.764) (0.763) (-3.780) (0.250) (-0.811) (-1.842) (1.935) (2.227) (0.956) (-0.577) (-0.330) (3.429)     

 
1 -0.949 2.674 -11.672 -0.168 -0.654 -0.176 2.766 -0.126 -54.667 8.450 -0.480 0.003 8.496 12.364 

Modified 
 

(-0.841) (4.909) (-9.052) (-4.062) (-2.572) (-0.723) (1.816) (-0.477) (-1.739) (0.297) (-0.688) (0.110) 
  iid 2 -8.669 2.753 -11.174 -0.026 -0.321 -1.833 3.941 1.170 144.801 -85.620 -2.278 0.129 25.106 5.929 

    (-3.993) (2.995) (-6.948) (-0.476) (-0.831) (-2.730) (1.301) (3.708) (1.963) (-0.865) (-1.026) (4.153)     
(Continued) 
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Table 8. Continued 

Measure State Const !! !"#!!!  Dummy 
Lagged 
Return RFD DTRP DCRP DY IPG MBG DIF DO 

State 
variance 

Expected 
Duration 

Panel B: non-iid measures 
  1 -0.223 1.800 -15.223 -0.118 -0.578 -0.040 2.812 -0.078 -33.579 5.025 -0.520 0.004 8.504 13.320 
RW 

 
(-0.138) (4.036) (-9.552) (-2.419) (-1.455) (-0.057) (1.407) (-0.243) (-0.700) (0.039) (-0.245) (0.115) 

  non-iid 2 -6.108 1.121 -12.495 0.021 -0.399 -1.992 3.931 1.113 86.566 -110.200 -2.159 0.134 26.918 6.200 
    (-3.090) (1.393) (-5.065) (0.175) (-0.789) (-2.155) (0.755) (3.108) (0.938) (-0.913) (-0.477) (2.745)     
  1 -0.573 2.065 -15.386 -0.111 -0.579 -0.013 2.994 -0.080 -31.337 1.820 -0.493 0.005 8.489 13.068 
AR4 

 
(-0.616) (6.948) (-9.529) (-2.817) (-2.734) (-0.118) (1.869) (-0.369) (-1.136) (0.106) (-0.419) (0.247) 

  non-iid 2 -5.874 1.112 -12.230 0.022 -0.406 -2.002 4.253 1.060 79.419 -105.540 -2.179 0.130 27.085 6.167 
    (-3.130) (1.458) (-5.333) (0.310) (-1.149) (-2.922) (1.087) (3.240) (1.193) (-0.948) (-0.812) (3.741)     
  1 -0.751 2.262 -11.467 -0.166 -0.635 -0.131 3.616 -0.104 -47.242 10.415 -0.536 0.001 8.632 12.296 
Modified 

 
(-0.856) (6.527) (-9.458) (-4.515) (-2.797) (-0.574) (2.287) (-0.483) (-1.623) (0.195) (-0.538) (0.151) 

  non-iid 2 -8.321 2.273 -11.080 -0.014 -0.289 -1.939 5.146 1.199 148.904 -82.935 -2.429 0.129 25.236 5.622 
    (-3.880) (2.793) (-3.970) (-0.119) (-0.912) (-2.615) (1.560) (3.714) (1.894) (-0.681) (-0.934) (4.098)     
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Table 9. The table reports the results of estimating the MS-BDL model using alternative tail risk measures, including risk-neutral ES, and risk-
neutral VaR. The RW measures are the original measures of risk-neutral ES and risk-neutral VaR. The AR4 and modified measures are one and 

two period ahead expected value, lagged by one and two months, correspondingly, from the AR(4) model of the RW measures. The monthly 
market excess return at time t+1 is regressed on a tail measure and the following control variables measured at time t: lagged market excess 
return, October 1987 dummy, detrended risk free rate (RFD), change in the term structure risk premium (DTRP), change in the credit risk 
premium (DCRP), dividend yield (DY), growth in the industrial production (IPG), growth in the monetary base M2 (MGB), change in the 

inflation rate (DIF), change in the oil price (DO). For each regression, the first line shows the estimated regression coefficients, while the second 
line shows the corresponding HAC t-statistics (in parentheses). 

 

Measure State Const 
Tail 

measure Dummy 
Lagged 
Return RFD DTRP DCRP DY IPG MBG DIF DO 

State 
variance 

Expected 
Duration 

Panel A: risk-neutral ES 

 
1 -0.239 1.277 -14.241 -0.047 -0.584 -0.070 2.261 -0.107 -48.730 18.498 -0.647 0.003 8.711 12.205 

RW 
 

(-0.260) (6.527) (-8.836) (-0.922) (-2.140) (-0.203) (1.171) (-0.499) (-1.252) (0.415) (-0.502) (0.258) 
  

 
2 -4.539 0.137 -10.637 -0.001 -0.469 -2.002 6.558 1.011 91.355 -95.816 -1.220 0.108 27.346 5.855 

  
(-2.171) (0.304) (-5.209) (-0.047) (-1.047) (-2.276) (1.889) (2.240) (1.026) (-0.791) (-0.442) (2.905) 

  

 
1 -0.916 1.573 -13.684 -0.081 -0.554 -0.027 2.723 -0.065 -42.307 14.757 -0.370 -0.005 8.554 11.025 

AR4 
 

(-0.853) (6.519) (-7.807) (-1.653) (-2.075) (-0.077) (1.380) (-0.232) (-1.028) (0.148) (-0.430) (-0.250) 
  

 
2 -6.251 0.630 -11.310 0.018 -0.574 -2.101 5.358 1.237 99.687 -117.929 -2.197 0.124 26.721 5.237 

  
(-1.921) (0.765) (-4.485) (0.103) (-1.341) (-2.641) (1.715) (2.560) (0.888) (-0.716) (-0.930) (3.133) 

  

 
1 -0.740 1.552 -11.289 -0.172 -0.612 -0.121 3.288 -0.063 -54.139 8.593 -0.428 -0.011 8.554 9.719 

Modified 
 

(-0.874) (6.925) (-8.833) (-4.312) (-2.400) (-0.332) (1.935) (-0.272) (-1.754) (0.213) (-0.550) (-0.542) 
  

 
2 -9.228 1.499 -10.076 -0.002 -0.579 -2.039 5.634 1.475 165.733 -108.162 -2.403 0.134 24.298 4.494 

  
(-3.919) (2.739) (-7.523) (-0.175) (-1.202) (-2.962) (2.090) (3.459) (2.447) (-1.013) (-1.335) (4.768) 

  (Continued) 
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Table 9. Continued 

Measure State Const 
Tail 

measure Dummy 
Lagged 
Return RFD DTRP DCRP DY IPG MBG DIF DO 

State 
variance 

Expected 
Duration 

Panel B: risk-neutral VaR 

 
1 -0.215 1.301 -14.061 -0.048 -0.589 -0.061 2.264 -0.109 -48.750 17.336 -0.640 0.003 8.682 11.927 

RW 
 

(-0.064) (1.304) (-5.397) (-0.266) (-0.365) (-0.015) (0.397) (-0.224) (-0.313) (0.298) (-0.061) (0.009) 
  

 
2 -4.524 0.132 -10.605 -0.001 -0.472 -2.017 6.549 1.013 90.593 -96.391 -1.241 0.107 27.263 5.759 

  
(-1.618) (0.271) (-4.948) (-0.191) (-0.260) (-0.461) (0.792) (1.086) (0.258) (-0.643) (-0.058) (0.559) 

  

 
1 -0.908 1.608 -13.559 -0.082 -0.557 -0.025 2.709 -0.064 -42.748 14.305 -0.378 -0.005 8.539 10.888 

AR4 
 

(-0.869) (6.614) (-8.047) (-1.568) (-1.549) (-0.065) (1.522) (-0.348) (-1.134) (0.257) (-0.856) (-0.246) 
  

 
2 -6.232 0.634 -11.228 0.018 -0.575 -2.102 5.379 1.237 100.258 -118.443 -2.171 0.124 26.647 5.188 

  
(-2.921) (1.385) (-2.825) (0.089) (-0.874) (-2.806) (1.718) (2.806) (1.026) (-0.639) (-1.167) (3.183) 

  

 
1 -0.755 1.592 -11.291 -0.172 -0.612 -0.123 3.265 -0.059 -54.075 8.430 -0.432 -0.011 8.553 9.713 

Modified 
 

(-0.440) (4.897) (-7.157) (-4.025) (-2.650) (-0.379) (2.096) (-0.143) (-1.544) (0.288) (-0.529) (-0.645) 
  

 
2 -9.158 1.505 -10.080 -0.002 -0.580 -2.038 5.651 1.469 165.923 -107.831 -2.390 0.134 24.293 4.493 

  
(-3.869) (2.695) (-7.108) (-0.190) (-1.180) (-2.897) (2.168) (3.485) (2.341) (-0.950) (-1.358) (4.700) 
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Table 10. The table reports the results of estimating the MS-BDL model using both the modified measures and the realised variance. The iid 
measures are calculated using daily returns over one month. The non-iid measures are calculated using daily VaR over one month. The monthly 
market excess return at time t+1 is regressed on !! !"#!!! , and the following control variables measured at time t: realised variance, lagged 
market excess return, October 1987 dummy, detrended risk free rate (RFD), change in the term structure risk premium (DTRP), change in the 

credit risk premium (DCRP), dividend yield (DY), growth in the industrial production (IPG), growth in the monetary base M2 (MGB), change in 
the inflation rate (DIF), change in the oil price (DO). For each regression, the first line shows the estimated regression coefficients, while the 

second line shows the corresponding HAC t-statistics (in parentheses). Skewed Student-t VaRs are estimated at the 99% confidence level. The 
sample period is July 1962 to December 2016. 

Measure State Const !!(!"#!!!) Variance Dummy 
Lagged 
Return RFD DTRP DCRP DY IPG MBG DIF DO 

State 
variance 

Expected 
Duration 

iid 1 0.028 1.229 0.029 -29.594 -0.135 -0.539 -0.059 1.929 -0.198 -64.505 10.833 -0.682 0.007 8.527 12.636 
Nonparam 

 
(0.191) (2.777) (1.393) (-2.187) (-2.811) (-1.255) (-0.186) (0.842) (-0.981) (-2.405) (0.108) (-0.381) (0.126) 

  
 

2 -10.494 3.313 -0.006 -8.038 -0.063 -0.255 -1.758 5.233 1.157 157.441 -53.009 -2.063 0.124 24.859 6.205 

  
(-2.974) (2.643) (-0.613) (-1.287) (-1.051) (-0.188) (-1.712) (1.080) (2.509) (2.243) (-0.205) (-0.416) (2.097) 

  iid 1 -0.032 1.106 0.026 -27.631 -0.138 -0.560 -0.103 1.922 -0.189 -63.148 11.764 -0.859 0.008 8.470 12.376 
Skewed 

 
(-0.306) (3.267) (1.380) (-2.311) (-2.811) (-1.999) (-0.394) (1.020) (-1.337) (-2.535) (0.382) (-0.378) (0.218) 

  Student-t 2 -8.414 1.924 -0.004 -8.971 -0.044 -0.260 -1.662 5.625 1.073 153.699 -78.881 -1.389 0.116 25.174 6.148 

  
(-3.835) (3.314) (-0.276) (-1.138) (-0.594) (-0.472) (-2.236) (1.222) (2.842) (2.473) (-0.705) (-0.342) (2.443) 

  Non-iid 1 -0.280 1.053 0.021 -24.434 -0.141 -0.513 -0.032 2.528 -0.144 -52.858 14.019 -0.652 0.004 8.435 11.908 
Skewed 

 
(-0.209) (2.474) (1.001) (-1.833) (-3.235) (-1.866) (-0.147) (1.106) (-0.388) (-1.522) (0.199) (-0.333) (0.170) 

  Student-t 2 -8.509 1.519 -0.005 -8.012 -0.039 -0.303 -1.834 6.457 1.239 159.095 -84.907 -2.104 0.120 25.078 5.694 

  
(-3.007) (2.291) (-0.510) (-1.351) (-0.603) (-0.638) (-2.294) (1.229) (3.185) (1.931) (-0.661) (-0.364) (2.448) 

   

  



49 
 

Table 11. The table reports the results of estimating the BDL and MS-BDL models using the out-of-sample Hybrid VaR measure. The monthly 
market excess return at time t+1 is regressed on the Hybrid VaR measure and the following control variables measured at time t: lagged market 

excess return, October 1987 dummy, detrended risk free rate (RFD), change in the term structure risk premium (DTRP), change in the credit risk 
premium (DCRP), dividend yield (DY), growth in the industrial production (IPG), growth in the monetary base M2 (MGB), change in the 

inflation rate (DIF), change in the oil price (DO). For each regression, the first line shows the estimated regression coefficients, while the second 
line shows the corresponding HAC t-statistics (in parentheses). 

 
Const 

Hybrid 
VaR Dummy 

Lagged 
Return RFD DTRP DCRP DY IPG MBG DIF DO 

Adj R2 & 
Sharpe 

 
Panel A: New period January 2006 - December 2016 

 
-7.693 2.740 

 
-0.017 1.439 -0.822 -3.436 1.912 122.371 -131.506 -2.577 0.070 23.78% 

 
(-2.461) (3.454) 

 
(-0.219) (2.438) (-0.927) (-1.840) (1.828) (1.349) (-0.855) (-1.993) (2.402) 2.32 

 
Panel B: Full period July 1967 - December 2016 

 
-2.322 1.260 -12.089 0.052 -0.392 -0.709 1.278 0.392 48.183 -73.766 -1.160 0.059 4.55% 

 
(-2.519) (3.332) (-6.978) (1.229) (-2.081) (-2.285) (0.888) (2.290) (1.270) (-1.421) (-1.464) (2.243) 1.04 

Markov switching estimation 

State Const 
Hybrid 

VaR Dummy 
Lagged 
Return RFD DTRP DCRP DY IPG MBG DIF DO 

State 
variance 

Expected 
Duration 

1 -1.860 2.522 -18.364 -0.120 -0.623 -0.071 3.346 0.011 -52.540 -3.864 -0.394 -0.002 9.097 13.077 

 
(-1.662) (3.495) (-5.818) (-2.464) (-2.615) (-0.242) (2.053) (0.096) (-1.196) (-0.102) (-0.433) (-0.095) 

  2 -8.667 2.508 -18.841 -0.008 -0.238 -1.846 5.311 1.187 134.707 -118.339 -1.804 0.124 26.091 6.490 

 
(-3.766) (2.765) (-4.785) (-0.169) (-0.718) (-2.641) (1.506) (3.480) (1.357) (-1.143) (-0.728) (3.507) 
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Table 12. The table reports the estimated coefficients of the tail risk measures in predicting future excess returns of different horizon. Each 
column shows the results of the regression where the horizon of the returns used as the dependent variable is given on the top of the column. The 
regressions also control for other state variables in the MS-BDL framework which are not reported here due to space scarcity. The iid measures 

are calculated using daily returns over one month. The non-iid measures are calculated using daily VaR over one month. The future market 
excess return is regressed on !"#! and the following control variables measured at time t: lagged market excess return, October 1987 dummy, 
detrended risk free rate (RFD), change in the term structure risk premium (DTRP), change in the credit risk premium (DCRP), dividend yield 
(DY), growth in the industrial production (IPG), growth in the monetary base M2 (MGB), change in the inflation rate (DIF), change in the oil 

price (DO). Coefficients with * are the ones which are significant at 10 percent significant level or less, using HAC standard error. Skewed 
Student-t VaRs are estimated at the 99% confidence level. The sample period is July 1962 to December 2016. 

Measure State 1 2 3 4 5 6 7 8 9 10 11 12 

iid 1 0.955* 1.608* 2.070* 2.574* 2.959* 2.614* 2.897* 3.061* 2.827* 3.376* 2.681* 2.743* 

Non-parametric 2 -0.170 0.814* 0.545 0.216 0.417 -0.445 0.102 -0.798 -1.077 -1.067 -2.324* -2.475* 
iid 1 0.914* 1.465* 1.901* 2.345* 2.744* 2.540* 2.466* 2.255* 2.113* 2.206* 2.343* 2.198* 

Skew Student-t 2 -0.055 0.643 0.637 0.079 0.363 0.101 0.006 -1.299 -1.635 -2.227* -2.699* -3.193* 

Non-iid 1 1.076* 2.111* 2.398* 3.028* 3.394* 3.504* 3.746* 3.947* 3.818* 3.094* 2.964* 2.925* 

Skewed Student-t 2 0.761* 1.383* 1.076 0.769 1.150 1.173 1.169 1.102 0.375 -1.711* -1.393 -1.327 
 


