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Abstract

One of the current main goals of artificial intelligence and robotics research is the

creation of an artificial assistant which can have flexible, human like behavior, in

order to accomplish everyday tasks. A lot of what is context-independent task

knowledge to the human is what enables this flexibility at multiple levels of cog-

nition.

In this scope the author analyzes how to acquire, represent anddisambiguate sym-

bolic knowledge representing context-independent task knowledge, abstracted

from multiple instances: this thesis elaborates the incurred problems, implemen-

tation constraints, current state-of-the-art practices and ultimately the solutions

newly introduced in this scope.

The author specifically discusses acquisition of context-independent task knowl-

edge from large amounts of human-written texts and their reusability in the robotics

domain; the acquisition of knowledge on human musculoskeletal dependencies

constrainingmotionwhich allows a better higher level representation of observed

trajectories; themeans of verbalization of partial contextual and instructionknowl-

edge, increasing interaction possibilities with the human as well as contextual

adaptation. All the aforementioned points are supported by evaluation in hetero-

geneous setups, to bring a view on how to make optimal use of statistical & sym-

bolic applications (i.e. neurosymbolic reasoning) in cognitive robotics. This work

has been performed to enable context-adaptable artificial assistants, by bringing

together knowledgeonwhat is usually regardedas context-independent taskknowl-

edge.
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Chapter 1

Introduction

1.1 Context of the thesis

This bodyofwork encompasses four years ofwork, thoughts andobsessions on the

question "how to confer human context-independent task knowledge to robotic as-

sistants". The research contained in this thesis started in Munich, Germany, both

in an independent after-master effort, as well as within the "Technical University

of Munich’s International Graduate School of Science and Engineering" as part

of the "Robotic light touch support during locomotion in balance impaired hu-

mans (ROLITOS)" project. The latter was a joint DFG-funded effort of the Chair

of HumanMovement Science and the Dynamic Human-Robot-Interaction for Au-

tomation Systems group of the Technical University of Munich, in which I therein

investigatedmathematical models of humanmotion representation. The environ-

ment brought together psychologists, humanmovement scientists, and roboticists,

to provide a holistic approach to such cognitive problem. Duringmymaster and in

my after-master work, I performed research on representations based on loosely-

coupled inspirations of the humanmind, while in the graduate school I attempted

to get closer to the neuroscientific theories, such as Berstein’s and Latash’s. These
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different perspectives, in terms of i) different level of abstraction, and ii) differ-

ent degree of coupling with domain knowledge, in the form of publications, have

been assembled in this thesis’ scope and described by their common denomina-

tor: the generation, representation and disambiguation of symbolic knowledge,

describingwhat is context-independent task knowledge to a human, for statistical

decision making in artificial assistants (a high level overview bringing these con-

cepts together is presented in Figure 1.1). This thesis for evaluation of the "Master

of Philosophy by publication" in Computer Science at the University of Exeter is

divided into chapters: i) the first chapter defines the rationale of the work and its

scientific context (Chapter 1), ii) the second chapter provides an in-depth state-of-

the-art analysis (Chapter 2), while the iii) third chapter aggregates the portfolio

of the published work, the details of each publication venue, the details of the

author’s contributions, as well as a description of why the thesis constitutes a co-

herent body of work which satisfies the criteria set by the university (Chapter 3);

iv) a final chapter provides the conclusions (Chapter 4), which comprises a set of

concluding statements on the body of the portfolio of submitted work as well as

future work possibilities.

1.2 Work rationale

Artificial intelligence as afieldbeganwith the intent of reproducingflexible, human-

like intelligent decision making. After the creation of the first mainframes run-

ning procedural software, new paradigms were sought after for the reproduction

of basic reasoning patterns. As these tasks were very knowledge intensive, the

first technical focus was to reduce the workload of computers to compute already

known decision making algorithms, i.e. to make these computationally feasible

(Russell et al. 1995). The infeasibility was (and often is still today) laying in the ex-

cessive request of memory and execution time (Arora and Barak 2009), known as
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Figure 1.1: High level overview of the symbol acquisition, representation and disambiguation
process presented in this thesis.

computational space and time complexity, respectively. Multiple means of reduction

were therefore implemented in the form of compression (i.e. data dimensionality

reduction via lossy and lossless processes) and heuristic means (i.e. implementa-

tion decisions which improve the average execution time by making assumptions

on the statistically average input): these were suboptimal as they did not return

accurate results nor provide guarantees for this, but they allowed to reduce aver-

age execution time. Inmore contemporary embedded-oriented research, a further

more conceptual focus of artificial intelligence theory was and is to map percepts

(i.e. inputs from sensory components) to executable actions (Russell et al. 1995),

in view of service robots to autonomously acquire new skills and adapt existing

ones to new tasks and environments. Robotic assistants must decide on how to

perform a particular activity at runtime, which requires them to infer the appro-

priate actions to be executed on the appropriate objects in an appropriate way.

They have to performwhat is commonly referred to as everyday activity, which has

been proven to be a very knowledge-intensive task (Anderson and Evans 1996).

Timely knowledge processing is still a major limitation to accurate human-like deci-

sion making.
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1.2.1 Why Neurosymbolic Reasoning

As knowledge processing is still a limitation, the acquired and represented infor-

mationwithin cognitive frameworks of artificial assistants is in the formof symbols,

i.e. fragments of information which are necessary and sufficient for the reproduc-

tion of an action: they capture salient information and disregard what is redun-

dant. For this line of reasoning, it follows that it is paramount to have an extensive

framework for timely acquisition, usage and disambiguation of symbols to enable

various extents of embodied intelligence.

As known in literature, we make use of the term "neuro-symbolic reasoning" to dis-

cuss the family of technologieswhich enable the aforementioned symbolic format,

bringing together statistical learning principles with logic formalisms: the most

discussed of which isMarkov Logic Networks (MLN) (Richardson andDomingos

2006), which is explained more in depth in the following pages (Section 1.3). In

practical terms, this knowledge representation is able to describe well a "problem

with structure" (logical structure), defining relationships among entities (such as

is-a, part-of), however considering also the statistical confidence attributed to such

relations. This helps us to both represent knowledge and reason upon such knowledge.

1.2.2 Why Contextual Independence

Within this thesis scopewewill discusshowourhumannotionof context-independence

is in fact a criteria for how segmentation of symbols should occur, i.e. to define

what information should be registered and which should be disregarded. It fol-

lows that general, abstracted knowledge is derived frommultiple instance-bound

contexts: the result of such knowledge induction has therefore to be context-

independent (Lemaignan et al. 2010), which can later be grounded to a specific

instance when this occurs, during the execution of an action.
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1.3 Background notions

When implementing embodied intelligence to any extent, we are confronted with

the question: "what data is essential to represent a given movement, and enable its repro-

duction?". Much of such essential data is actually common to many movements

and contexts, and therefore independent from such individual contexts. Such concepts

which for humans are often of common sense in everyday activities are often re-

ferred to as the notion of appropriateness, in other words, the ability to execute at

runtime, by deciding the appropriate actions on the appropriate objects in the appropri-

ate way (Nyga and Beetz 2012). For such representation, we need to store such

"appropriateness" relationships for a given action which is likely to be executed

or recognized. For instance, to create a hot beverage for a human, an artificial

assistant requires the knowledge of what associations are likely, unlikely and in-

appropriate: this in view of enabling flexibility. What would happen if one object

ismissing from the context, or the spatial constraints block the execution of a given

action? To exemplify, consider that for instanceCoffee is requested but not present

in context. Tea could be the closest semantic equivalent available in context. Other

possible surrogates, such as Liquid_Soap however, should be excluded from the

action candidates as it is not edible. The latter exemplification shows the need

for constraints on semantic representations, as well as for contextual information

inducted frommultiple sources. Whendealingwith symbol generation, represen-

tation and disambiguation, we have to ask ourselves what is an optimal policy for

recreating appropriateness, and thus not relating entities which are not appropri-

ate. The technical background to reach such goal achieves context-independence.

For explanatory purposes we can define an abstract representation of a semantic

relation as follows:

< entit y1, relationship , entit y2 >
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Within the robotics domain, the entit y type can be of any abstract nature, i.e. can

be an object or an action. An example can be entit y1:=Apple and entit y2:=Fruit.

The relationship is the corresponding semantic relation among the described en-

tities, for instance, taxonomy, i.e. defining that Apple is a type of Fruit.

What comes to mind is that representation (in terms of amount, type and logical

expressiveness of the relations therein) is fundamental for the full exploitation of

such semantic capabilities. How canwe represent the aforementioned appropriate-

ness? we require the representation of constructs which can verify, among others,

that one entity is of a given class which is appropriate for a given relationship. In

other words, does the instance entit y3:=Liquid_Soap satisfy the logical predicate

is_edible(entit y)? To reply to this question, artificial intelligence has made use

of more complex logical representations, one mentionable one of which is first or-

der logic, which allows expression over existence and universality of complex (i.e.

combined) predicates. For an in-depth understanding of this within the robotics

context, the reader should refer to previous literature (Russell et al. 2003).

When talking about representation, one fundamental assumption in the applied

context is that sensors have an intrinsic statistical error, which makes estimation

models stochastic. It follows that logical inference based on such estimates should

also take statistical error into account: hence the creation of "soft" inference ap-

proaches. This is performed thanks to neurosymbolic systems, i.e. a set of logico-

statistical relations in the form of logical clauses with statistical weighting ap-

pended. The reasons for using the latter are manifold, in terms of practical ex-

pressiveness during use, one of which is the enabling uncertain inference, often

useful given the partial availability of evidence ofmanydeduction applications. In

termsof representation in this scopewewill discuss solelyMarkovLogicNetworks

(MLN) (Richardson and Domingos 2006), as this is a proven, widely adopted for-

malism, which is the basis of the majority of published papers provided within
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this thesis as well as in many pieces of research in cognitive robotics (Tenorth and

Beetz 2009). MLN provided weighted satisfiability and inference over first order

logic clauses. More formally, in MLN a world belief is expressed as:

Pr (X � x) � 1
Z

exp ©­«
∑

j

w j f j (x)
ª®¬ (1.1)

In this (1.1), the model defines a probability over a given world x as a log-linear

model inwhichwehave an exponentiated sumofweights w j of a binary feature f j ,

and the partition function Z. For a more in depth explanation, the reader should

refer to (Richardson and Domingos 2006) for the formalism definition and (Kok

and Domingos 2005) for the applications.

In this thesis the author now provides first a literature-based state of the art anal-

ysis to show what has been achieved in symbolic reasoning in recent years (with

regards to symbol segmentation, disambiguation and usage) (Chapter 2), to then

discuss the list the contributions to the field of the submitted portfolio (Chapter

3).
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Chapter 2

How the work forms a coherent

whole

2.1 Contributions to neurosymbolic reasoning

We now describe the specific areas the presented portfolio of papers contributes

to, by providing a brief description of the immediate background as related work,

as well as an explanation of the present limitations and the author’s contributions

to the field.

2.1.1 Generation

To assemble a large set of semantic concepts and relations, e.g. what objects are

likely related in a task execution, in what role, as well as what associations are

inappropriate, we require a great amount of information. Assumptions on the

likelihood of association, also non-trivial ones, can be inferred by performing

frequency-based analysis on large amounts of data, specifically text. This concept,
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known as distributional hypothesis, was first introduced in computational linguis-

tics for semantic characterization on the basis ofword co-occurrence (Harris 1954),

and furthered inmore abstract artificial intelligence tasks such asmachine transla-

tion (Mikolov et al. 2013). When fully constructed, a semantic knowledge base en-

ables decision making and execution on the basis of partial sensory data, or more

formally described, this aids the grounding of action predicates with anchored

entities (Coradeschi and Saffiotti 2003), to then translate a higher level response

to specific sensorimotor commands (Wächter et al. 2013; Kraft et al. 2008; Krüger

et al. 2011).

An immediate question a reader might have is how to retrieve and construct such

large set of humanknowledge inmachine-readable format: It has been empirically

proven that we can assume that some common latent semantics exist betweenmo-

tion observations and written words (Takano and Nakamura 2008). It is therefore

fundamental to exploit the large sources of notions such as long texts, minimizing

manual annotation work made by the human. Limitations of the current approaches:

As per generation of concept representations based on text mining, the described

systems have not been used within the robotics context.

The author’s contribution: the use of text as source of frequency of co-

existence analysis of abstract entities, within the robotics context, is novel. The

work focuses on how to achieve scalable affordance mining from human-written

texts, where an affordance is the set of possible actions an object can be subject

to, or that an object can actively execute (for example, an apple has passive affor-

dances such as is_edible and is_boilable, while any human has active affordances

such as can_eat and can_boil). The presented contributions from the author (Kirk

2014, Bhalla and Kirk 2016) provide a prototype and an evaluation of vector space

semantics for the use of affordance mining for use in robotics. These semantic

spaces can be used as a knowledge base (KB) when inferring the likelihood of in-



16 CHAPTER 2. HOW THE WORK FORMS A COHERENT WHOLE

coming actions, given contextual information. In the author’s view, constructing

a large affordance database is the first cornerstone to achieve context-independent

reasoning on everyday activities.

2.1.2 Representation

In terms of symbol representation, past work has focused on dimensionality re-

duction, such as neural auto-encoding approaches on numerical values (Hinton

and Salakhutdinov 2006), or other symbol-level attempts (Kaltenbacher et al. 2015,

Cangelosi et al. 2000). Other mentionable work has instead focused on less com-

pact representations which enable expressive (first-order logic level) logical in-

ference (Richardson and Domingos 2006, Sutton and McCallum 2006), thereby

defining an optimal relational formalism for problems with structure. This work has

enabled well engineered research infrastructures with real-time application capa-

bilities in embodied contexts (Tenorth and Beetz 2009; Beetz et al. 2015a; Beetz et

al. 2015b), often enabling interactionwith the human, both linguistically andphys-

ically (Cangelosi et al. 2006). Whendebatingmore trajectory-level representations,

symbols are less abstract in nature as they have little to no parametrization, and

are discussed as motion primitives. These have been widely debated with respect

to usage of various latent estimation methods (Kulic et al. 2008; Kulic et al. 2009).

Other work focuses on partial body representations of human movement (Ficu-

ciello et al. 2018).

Limitations of the current approaches: With regards to motor primitives, past work

has focused on the extent to which different latent parameter estimations (such

as Hidden Markov Model estimation) can classify actions based on training per-

formed on a diverse data set, but provided excessive focus on empirical-based

model estimates rather than on sound assumptions of human movement.
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Theauthor’s contribution: Adimensionally compact representationofmove-

ment, based on human motor coordination principles, has been developed and

evaluated for thepurposeof action recognitionand representation (Falco et al. 2017).

The scientific introduction by the author is to exploit the notion, well-known in

neuromechanics (Latash et al. 2007), that humans move their joints in a coordi-

nated fashion. The neuromechanical community, in fact, has widely accepted that

humanmovement is a coordination of muskulo-skeletal features with various de-

grees of intentional stability and control (Latash 2010). The highly influential theo-

ries of motor primitives andmovement synergies assume that the various degrees

of freedomof amotor systemare not controlled independently, but insteadpresent

couplings and dependencies. This is also known in the Leading Joint Hypothesis

(LJH) (Dounskaia 2005). One of the main contributions of the author’s contribu-

tion is to exploit such correlation among joints to increase the performance of ac-

tion recognition in terms of accuracy and scalability. The presented contribution,

in addition to the high level classification rate on well known datasets of move-

ment such as HDM05 (Müller et al. 2007), provides a representation of movement

with very low computational complexity, useful for practical real-time applica-

tions of movement representation or recognition. The novelty mainly lies in the

usage of neuroscientifically sound assumptions, namely the motor couplings in-

herently used by the central nervous system of humans. The author, externally

from this thesis, also contributed to the community with a formalism at a higher

level of abstraction, making use of statistical relational learning, which combines

both semantic memory and sequence modeling for more accurate prediction of

actions (Kirk et al. 2015).
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2.1.3 Disambiguation

In this scope we identify the disambiguation problem as the issue arising when

there is the need to identify the action to be performed from partially known in-

struction data. The disambiguation problem will always be present, given: 1) the

always probabilistic nature of sensory perceptions, and 2) the intrinsically under-

specified nature of natural language instructions provided by humans (Nyga and

Beetz 2012). For this, research has focused on mathematical inference possibili-

ties to improve decision making estimates (Nyga and Beetz 2012, Magnanimo et

al. 2014).

Limitations of the current approaches: While somework has focused on human-robot

interaction for intention disambiguation on a visual-motor level (Saveriano 2017),

and other has worked with language association (Cangelosi et al. 2006, Nyga and

Beetz 2012), previous work lacks linguistic disambiguation, i.e. the possibility of

the robotic assistant to reply to the human asking specific fragments of informa-

tion which are not available with a sufficiently high confidence interval.

The author’s contribution: In the presented research (Kirk et al. 2014), to-

gether with a mean for verbalizing doubts, where doubts are intended as frag-

ments of information which are to some degree uncertain, the author’s work pro-

vides an output in both a machine- and human-readable format known in com-

putational linguistics, i.e. Controlled Natural Languages (CNL). Such verbaliza-

tion formalization is compatible with both first order logic inference and natural

language interaction, allowing in the contributed research the implementation of

"turn taking" of questions& answers between the robotic assistant and the human,

for disambiguation of non-inferrable, underspecified natural language instruc-

tions. Verbal disambiguation of symbols is a fairly unexplored area of human-

robot interaction (Thomaz et al. 2016). While already proven as powerful formal-
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ism of representation and reasoning for the semantic web (Schwitter and Tilbrook

2004; Schwitter 2010), the presented claim is that novel uses of CNL are possible

for robotic assistants, specifically as robot-human interface.
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Chapter 3

Author’s Contributions

3.1 Portfolio

The portfolio submitted for consideration of the degree of MPhil by publication

comprises the following publications:

• Kirk, Nicholas Hubert, Daniel Nyga, and Michael Beetz. 2014. ‘Con-

trolled Natural Languages for Language Generation in Artificial Cogni-

tion.’ In 2014 IEEE International Conference on Robotics andAutomation

(ICRA), Hong Kong, China, 6667–6672.

Authorship statement: The author, given an initial problem statement and

given supervision, performed all research, implementation and validation,

and wrote the majority of the paper.

• Falco, Pietro,MatteoSaveriano, EkaGibranHasany,NicholasHubertKirk,

and Dongheui Lee. 2017. ‘A Human Action Descriptor Based on Motion

Coordination.’ In IEEE Robotics and Automation Letters 2 (2): 811–818.

Authorship statement: The author contributed to the paper specifically by i)

suggesting the exploitation of joint variance in this context, ii) suggesting the
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exploitation of joint correlation in this context, iii) researching the relevant

human movement science literature (e.g. LJH, Bernstein, Latash) to justify

the neuromechanical hypothesis, and iv) co-wrote minor parts of the text.

• Kirk, NicholasHubert. 2014. ‘Towards LearningObjectAffordance Priors

from Technical Texts.’ In "Active Learning in Robotics" Workshop, 2014

IEEE-RAS International Conference on Humanoid Robots.

• Bhalla, Vishal A, and Nicholas Hubert Kirk. 2016. ‘Prior Affordance Un-

derstanding with Relational Learning for Human Safe Action Planning.’

In "AI for Long-TermAutonomy"Workshop, 2016 IEEE InternationalCon-

ference on Robotics and Automation (ICRA), Stockholm, Sweden.

Authorship statement: The author made a first joint authorship contribution,

i) providing the initial idea, ii) providing the research boundaries and hy-

pothesis definition, as well as iii) giving the definition of the experiment for

validation and iv) co-writing the text.

The submitted research intends to highlight the importance of symbolic informa-

tion for achieving context-awareness and representation: semantic information

allows for generalization of multiple different instances, allowing context abstrac-

tion. Particular focus is on i) the retrieval of symbols from heterogeneous sources

(such as motion trajectories (Falco et al. 2017), or text corpora (Bhalla and Kirk

2016)), ii) the suitable mathematical and human-like representation (and the con-

sequences in terms of tractability of the algorithmswhich perform inference oper-

ations on such symbols) (Kirk et al. 2014), and iii) the disambiguation of symbolic

information within a human-robot interaction setting (Kirk et al. 2014).
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3.2 Fulfillment of the MPhil assessment criteria

To provide a reply to the fulfillment of the university conditions stated in "5.1 Reg-

ulations Governing Academic Programmes "1, the author states that the current

submitted portfolio of work has been internationally peer-reviewed in IEEE con-

ferences andworkshops. Precisely, (Kirk et al. 2014) and (Falco et al. 2017) are con-

sidered to be the highest level of conference impact within the field (specifically

ICRA), while (Bhalla and Kirk 2016) and (Kirk 2014) have been presented dur-

ing workshops in the aforementioned ICRA conference and in the HUMANOIDS

conference: this constitutes proof of extension of knowledge.

1. https://www.exeter.ac.uk/staff/policies/calendar/part1/regulations/r2-1/ - last accessed
28th August 2018
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Abstract— In this paper we discuss, within the context of
artificial assistants performing everyday activities, a resolution
method to disambiguate missing or not satisfactorily inferred
action-specific information via explicit clarification. While argu-
ing the lack of preexisting robot to human linguistic interaction
methods, we introduce a novel use of Controlled Natural
Languages (CNL) as means of output language and sentence
construction for doubt verbalization. We additionally provide
implemented working scenarios, state future possibilities and
problems related to verbalization of technical cognition when
making use of Controlled Natural Languages.

I. INTRODUCTION

In everyday routine activities, robotic assistants and co-
workers will have to perform a variety of tasks for which
they cannot be pre-programmed because they are not known
at production time. Research in the field of cognitive robotics
envisions service robots that autonomously acquire new skills
and adapt existing ones to new tasks and environments.
They must decide on how to perform a particular activity at
runtime, which requires them to infer the appropriate actions
to be executed on the appropriate objects in an appropriate
way. They have to perform what is commonly referred to
as everyday activity, which has been proven to be a very
knowledge-intensive task [1], [2]. It requires context aware-
ness and flexibility in action parametrization when operating
in real world settings with partially available information,
which is referred to as the “open world challenge”.

Recent research in the field of cognitive robotics aims to
make knowledge sources available for robots, which have
been created by humans and are intended for human use. For
some domains such as daily household tasks (e.g. cooking,
cleaning up), step-by-step plans and recipes from web pages
like wikihow.com have been successfully used for feeding
such common sense knowledge about actions and objects
into knowledge bases of mobile robotic platforms and for
transforming such recipes into executable robot plans [3].

However, as these recipes are presented in natural lan-
guage, severe ambiguity, vagueness and underspecification
have been identified as major challenges in translating such
specifications into plans, since many missing key pieces
of information are generally considered common sense to
the human. As an example, consider the natural-language
instruction “Flip the pancake”, taken from a recipe for
making pancakes: In order to perform the action successfully,
a robot needs for instance to decide which utensil to use

Flip the pancake around.

Flip it with a spatula.

There is a spatula. 
There is a tongs.
What flips a pancake?

Fig. 1. Representation of a disambiguation interaction

(e.g. a spatula), where to hold it (e.g. at its handle) and what
part of it to put underneath the pancake (e.g. the blade),
and where to flip it from (e.g. the burner). Current research
in cognitive robotics [4] aims to build action verb-specific
knowledge bases that fill these knowledge gaps and enables
a robot to infer the information which is needed in order
to perform a particular activity, based on what is given in a
naturalistic action specification.

However, such inference might be insufficient to formulate
action specification and require the robot to fall back on
human assistance. As an example, consider a situation where
the robot is asked to flip a pancake, but the knowledge base
does not contain sufficient information about what instrument
is to be used (e.g. it has no strong preference for a spatula
over barbecue tongs). In such a case, the robot has to
explicitly ask a human for instrument clarification. Fig. 1
illustrates such a situation. Taxonomical and compositional
relationships or object role understanding are only some of
the missing elements that could potentially require clarifica-
tion.

In this work, we present an implementation of a novel
approach to autonomously identify and verbalize such absent
information in a knowledge base, in order to enable a robot
to actively enhance its knowledge about actions and objects
by stepping into dialog with humans.

The contribution of this paper, within the artificial cogni-



tion domain, is the making use of CNL as mean of language
generation: we use CNL as output language of our doubt
verbalization procedure, where doubt is intended as the
non autonomously removable uncertainty related to objects
involved in the action. Such situation then requires human
intervention for appropriate translation to action plans. Our
contribution lies in the conceptualization and implementation
of the doubt case classification, the discourse abstraction of
the robot reply and the verbalization procedure of the latter.

The remainder of this paper presents a description of the
adopted technologies (PRAC, ACE, DRS); an explanation
of how the claims are related to the state of the art; an
explanation of the implemented language generation module;
a system evaluation and an ending summary comprising
results, current limitations and future perspectives.

II. ADOPTED TECHNOLOGIES

Before explaining the details of the dialog-based disam-
biguation, we now describe the adopted technologies we
make use of as source of inferred information (PRAC), and
the human-readable target formalization (ACE), used also as
support to the verbalization procedure itself (ACE and DRS).

A. Probabilistic Robot Action Cores

Nyga et al. [2] introduced the concept of Probabilistic
Robot Action Cores (PRAC), which can be thought as
abstract, generic event patterns representing sets of inter- and
intra- conceptual relations that constitute an abstract event
type, assigning an action role to each entity that is affected
by the respective action verb. Formally, a PRAC is defined
as a conditional probability distribution:

P (R×A× C | v, �) . (1)

R is the set of all action roles
A is the set of all action verbs
C is the set of all class concepts
v is a taxonomy relation over C
� is a mereological relation over C

For terminology explanations we refer to [2]. As opposed
to most approaches towards understanding natural-language
instructions, which merely seek to understand what is given
by an instruction [5] [6], the PRAC concept is also able
to infer what is missing. It combines action-specific and
ontological world knowledge in a joint probabilistic first-
order representation, which allows to automatically find
generalizations from concrete event occurrences at an ap-
propriate level of abstraction. Specifically, PRAC models
are represented as a set of action roles (action parameters
defining relations among entities involved in an action) and
Markov Logic Networks (MLN), a knowledge representation
formalism that combines first-order logic and probability
theory [7]. Fig. 2 provides an example of the PRAC model
for the action core ’flipping’.

• Action Core: Flipping
• Definition: An Agent causes a Theme to move with

respect to a FixedLocation, generally with a certain
Periodicity, without undergoing unbounded trans-
lational motion or significant alteration of configu-
ration/shape.

• Action Roles:
– Theme: A physical entity that is participating in

non-translational motion.
– Instrument: An entity that is used to perform

the flipping action.

Fig. 2. “Flipping” Action Core, and an enumeration of its Action Role
definitions (partially adopted from FrameNet [8]). MLN formulas are not
listed for readability.

A PRAC defines a joint probability distribution over the
action roles according to Eq. 1, such that arbitrary parameter
slots, which are not given in an NL instruction, can be
inferred based on what has been stated explicitly in such
instruction.

B. Attempto Controlled English & Discourse Representation
Structures

Fuchs et al. [9] presented Attempto Controlled English
(ACE), a general purpose Controlled Natural Language
(CNL), i.e. a subset of standard English with restricted
lexicon, syntax and semantics, formally described by a small
set of construction rules and a controlled vocabulary. This
allows a text in CNL to be read naturally by any person that
knows the natural language it stemmed from, even if unaware
of the underlying formalizations, and is more readable than
other traditional formal languages [10].

Being a formal language, CNL can be proved by automatic
theorem proving software, translated into First Order Logic
or OWL ontology representations and also be paraphrased
into paratactic noun sentences. ACE provides linguistic
constructs that are usually present in natural languages,
such as countable nouns (e.g. ’robot’, ’pancake’), proper
names (’John’); universal, existential, generalized quanti-
fiers (’all’,’a’,’at least 2’); indefinite pronouns (’somebody’);
intransitive, mono- and di-transitive verbs (’sleep’, ’like’,
’give’); anaphoric references to noun phrases through definite
noun phrases and pronouns; composite sentences as com-
pounds of coordination, subordination, quantification, and
negation phrases. Fig. 3 provides an example of some of such
constructs in an ACE sentence, and also the ’paraphrased
understanding’, i.e. the breakdown of the latter into paratactic
noun phrases, making use of cross-sentence references (i.e.
X1, X2 in the example).

ACE: ”A robot who does not understand
asks a human that knows.”

There is a robot X1. There is a human X2. The human X2 knows. The
robot X1 asks the human X2. It is false that the robot X1 understands.

Fig. 3. example sentence in Attempto Controlled English, followed by the
’paraphrased understanding’ of such sentence via the use of ACE parser



These paraphrase-obtained noun phrases have a two-way
relationship with Discourse Representation Structures (DRS)
[11], a format to encode information of multiple sentences,
preserving anaphoric references (i.e. discourse referents).
Fig. 4 provides an example of cross-sentence referencing and
universal quantification within the DRS formalism.

”Every robot is made by a human.”

X
robots(X)

x
x ∈ X

every
x

y,z
y = x

human(z)
z make y

Fig. 4. explanatory ACE sentence & related DRS example describing
cross-sentence references and universal quantification

III. RELATED WORK

In reference to filling missing information such as objects
or actions in verb-oriented formalizations, a large amount
of research has been done in order to provide databases of
conceptualizations of actions [8], [12], [13]. However, these
projects do not provide computational models for inference
and learning, and they do not address the problem of au-
tonomously identifying and closing such gaps of knowledge.

Regarding verbalization, ACE recently has been exploited
for uses such as Semantic Web Ontologies [14] and Mul-
tilingual semantic wikis [15], while this paper focuses on
the contributions of ACE in the artificial cognition domain.
Formalisms in artificial cognition oriented towards natural
language understanding do exploit grounding of words to
abstract objects [16], but do not comprise means of verbal
interaction for disambiguation purposes. According to what
is known to the authors to date, the ACE verbalization func-
tionality itself [14] has been used uniquely for verbalizing
OWL ontologies. While using the same means (i.e. ACE and
the DRS verbalizer, the latter being an intermediate phase
of the OWL-to-ACE verbalizer) we exploit the system for
verbalizing questions and ambiguity statements, in order to
verbalize a probabilistic knowledge formalism.

IV. CNL FOR TASK QUERYING

Given a Natural Language Instruction (NLI), the PRAC
system caters for action verb and roles understanding, infer-
ring missing candidate objects involved in the action. Unfor-
tunately, this operation can be partially satisfactory and some
residual doubt might require explicit verbal clarification, in
order to avoid that partially inferred information is translated
into action planning.

Fig. 5 represents the interaction that can occur until the
robotic assistant reaches a sufficient level of understanding.
Taxonomical, temporal, substitution, impossibility clarifica-
tions are only some of the disambiguation cases in which
an explicit verbal task querying is necessary from the robot

Human
Instruction

Select
Action

Infer Action
Roles

Roles
missing?

Translate to
Action Plan

classify
doubt

ask doubt
Human
Reply

no

yes

Fig. 5. A high-level flow chart of the dialog-based action role disambigua-
tion procedure.

to the human. The generation of natural-like language is
non-trivial given the scalability issues of linguistic factors
of the sentence construction (e.g. anaphora resolution, num-
ber/gender/particle concordance, subordinate sentence han-
dling, punctuation, verb conjugation). The latter requirements
have proven to be fulfilled by Attempto Controlled English
(ACE), now used as means of sentence construction. To do
so, we make use of the ACE system’s verbalization functions,
used to generate ACE sentences from ontological knowledge.
Specifically for an action-oriented representation, we present
our cognitive verbalization procedure, operated for each non-
assigned action role:

1) identification of the disambiguation cases (i.e. type of
doubt)

2) articulation of such doubt in a statement encapsulating
what was inferred, and an interrogative sentence

3) integration of the reply, assigning the previously miss-
ing action roles

A. Implementation

We now describe the implementation of the system
by defining a pseudocode (Algorithm 1) that incorporates
references for the sub-functions hereafter described (i.e.
C0,C1,C2,C3,C4,C5).

a) action role inference (C0,C1): C0 operates an in-
stantiation of the action template slots with the most likely
class concepts, derived from the joint probability distribution
of Eq. 1, while C1 retrieves the full enumeration of slots for



Algorithm 1: Action Role Disambiguation via H-R
dialog

Data:
• PRAC, the joint probability distribution over all

used class concepts given ontology knowledge,
formally P (R×A× C | v, �) .

• ActionDB, a template database with all
ActionRoles for each ActionVerb

Result: satisfactory assignment of all the ActionRoles
required by the template for successful
translation into action planning.

begin
wait for NLI

C0 K ←− pracInference(NLI)
t←− sentence verb from K

C1 T ←− retrieveTemplateRoles(t, ActionDB)
U ←− T \K
while U 6= ∅ do

remove item u from list of U with minimum
syntactic relationship arity (known in template)

C2 doubtCase ←− doubtCaseIdentification(u)
C3 queryType ←− retrieve the grammatical type

related to the missing role u
sDrsT ←− pullDrsCase(doubtCase)
qDrsT ←− pullDrsCase(queryType)
sParam, qParam ←− inferred or known
contextual information necessary for the
grounding of specific templates of statement
and question
sDrsGnd,qDrsGnd ←− grounding of
sDrsT and qDrsT , via syntactic substitution
of sParam and qParam, respectively.

C4 aceS ←− verbalizeDRStoACE(sDrsGnd)
aceQ ←− verbalizeDRStoACE(qDrsGnd)
output aceS
output aceQ
wait for reply

C5 N ←− pracInference(reply)
K ←− K ∪N
U ←− T \K

comparison reasons. A lack of assignment to an action role
by C0 can be due to the impossibility of defining a likely
candidate (all probability assignments are below a threshold),
the presence of manifold candidates (probability assignments
are too close), or the optimal candidate is not available in
context. For a more formal and in-depth description of such
process we refer to [2].

b) case identification (C2): is operated when a role slot
stated in our action core template has not yet been assigned
for the previously described reasons. Case identification is
performed via threshold evaluation of probability values of
the most likely concept candidates for the missing role.

More formally, let fstLikely be:

argmaxP (neededRole | knownRoles,KB (v,�)). (2)

We then can describe our selection procedure as:

if P (fstLikely) < possibilityThreshold then
return “Impossibility”

if P (fstLikely) < P (sndLikely) − proxThreshold
then

return ”Two-choices”
...
return ”None”

Such abstract cases are represented in Discourse Rep-
resentation Structure (DRS) templates that also comprise
explanatory information.

TWO-CHOICES:
query case: doubt between two plausible objects
ACE template: There is a X1, there is a X2.
drs: drs([A,B],[object(A,X1,countable,na,eq,1)-1/4,
object(B,X2,countable,na,eq,1)-1/9])
dependencies: PARAM1-ext, PARAM2-ext; X1, X2

Fig. 6. DRS template of a twofold doubt choice for a role assignment

Fig. 6 provides an example for such template. The expla-
nation of the various fields is the following:

• query case is a high-level descriptive sentence of the
case

• ACE template present only for explanatory reasons, is a
sentence in ACE that represents, still in a template form,
what the output would look like after verbalization

• drs is the uninstantiated discourse representation of
ACE template: the markers (in the example, X1, X2)
will be syntactically substituted with PRAC inferred
information upon template grounding

• dependencies defines for retrieval and substitution pur-
poses, the type of parameters that are needed to perform
grounding, and their corresponding marker in the tem-
plate. Such parameters have syntactic relationships with
other roles involved in the action (described in C3)
c) typed dependency parsing (C3): Together with a

statement of the doubt case identification that encapsulates
contextual information, a specific object query will also be
verbalized in the form of a question. All template action roles
have a 2-way relationship with a grammatical type within the
scope of the action. These types are abstracted in DRS cases
(same as to the DRS modeling described in C2, e.g. in Fig.
8), that need to be retrievable given the missing action role.

The knowledge regarding the association between the
action roles and the grammatical type is provided by a con-
trolled template, an ACE sentence that comprises all unin-
stantiated action roles in a possible syntactic configuration,
built upon PRAC template model construction (an abstraction



for all instances of that action verb, e.g. ’flipping’). Fig. 7
provides an example of such modeling.

The INSTRUMENT

det

nsubj

FLIPS

dobj

prep from

the
det
THEME from FIXEDLOCATION.

Fig. 7. Controlled template example for ActionVerb ’flipping’ (in red), and
the typed dependencies among the words of such sentence (in grey)

The grammatical relationships in such a CNL sentence
provide a formal understanding of the language-explicit
relationships between the entities involved in the action.
The relationships and the type of the dependencies from the
latter are obtained by processing the sentence with a typed
dependency parser (for our implementation, the Stanford
Parser [17], for which we also refer to for type clarification).

INSTRUMENTAL:
query case: preposition of instrument
template: What X1 the X2?
drs: drs([],[question(drs([A,B,C],[query(A,what)-1/1,
object(C,X2,countable,na,eq,1)-1/4,
predicate(B,X1,A,C)-1/2]))])
dependencies: NSUBJ-left, NSUBJ-right; X1, X2

Fig. 8. DRS template of an ’instrument’ object query

d) sentence construction (C4): is to provide a grammat-
ical structure for the grounded discourse abstractions of the
case identification statement and the object query question.
This is implemented by using the ACE verbalizer functions,
providing grounded DRS instances as a formal parameter.

The approach of verbalization of two phrases, namely
doubt statement and object question, has been chosen to
provide the human with a better understanding of both the
uncertainty (e.g. what instrument should be used) and of what
has been inferred (e.g. spatula and tongs are the most likely
candidates).

e) reply integration (C5): is performed by making use
of the previously described action role inference routine on
the natural language reply. After retrieving the new action
role assignments, we will substitute in the main instance
only the newly identified action roles that were previously
missing. The pipeline of reasoning is shown with an example
in Fig. 9.

V. EVALUATION

As performance measures we take into consideration the
natural likeness, the morphosyntactic correctness and the
ability to convey the wanted meaning of the CNL output
of our verbalizer system.

We operated our evaluation based on two action cores
(i.e. Flipping, Filling) that comprised full trained models for

P (isa(i, Spatula) | action_role(p, Theme),

                             isa(p, Pancake),

                             action_role(i, Instrument)) = 0.5

P (isa(i, Tongs)    | action_role(p, Theme),

                             isa(p, Pancake),

                             action_role(i, Instrument)) = 0.5

Flip

       

Flip

"Flip the pancake."
action_core(Flipping)

action_role(p, Theme)

isa(p, Pancake)
PRAC

Ambiguity between two plausible objects:

Clarification needed

PRAC

DRS

"There is a spatula.

There is a tongs.

What flips the pancake?"

"Use a spatula." PRAC

action_core(Flipping)

action_role(p, Theme)

isa(p, Pancake)

action_role(i, Instrument)

isa(i, Spatula)

Fig. 9. Reasoning pipeline of a possible instance of disambiguation
interaction

PRAC inference in order to verify full pipeline evaluation
(example in Fig. 9), and we made use of various other
arbitrary NLI sentences to verify correct typed dependency
parsing, assignment and grounding of the doubt discourse
representations. For the tested domain, the disambiguation
verbalization outputs were intelligible and conveyed the
meaning, but were not perfectly natural given the lack of the
use of modal verbs (i.e. ”what flips the pancake?” instead
of ”what can flip the pancake?”). An evaluated test instance
and the related pipeline information is illustrated in Fig. 9.

Given that the verbalizer system is purely a PRAC and
DRS based syntactical manipulator, we can assume scal-
ability of our system within the running assumptions and
performance bounds of the underlying systems [2] [18].

According to our evaluation, orthography of wording
remains intact from NLI to ACE output (the latter partially
exploits the same wording), as long as the verbalizer makes
use of words that are part of the running ACE system’s
vocabulary (that can be modified dynamically), otherwise the
ACE system will add explicit syntactic tags to highlight the
nature of the Part-Of-Speech of such words.

No difference has been observed when making use of
action cores based on intransitive, mono- and di-transitive
verbs, since the DRS disambiguation cases parameters tar-
get typed dependencies that differentiate among direct and
indirect objects [17]. Regarding the natural likeness of such
sentences, readability studies of ACE have already been
undertaken [10].

Regarding the potential ability of conveying the meaning
of the doubt given the PRAC abstraction, it is up to who
manually constructs the DRS templates, aligned to an ACE
output, to be able to exploit the expressiveness of the ACE
rules, and will also be constrained by the latter.

VI. OTHER USES OF CNL
Future work can exploit CNL in the artificial cognition

context differently, namely by using CNL as serialization of
the action oriented formalism, but with the use of semanti-
cally unambiguous nouns, therefore with fully deterministic
denotations.



Specifically for the formalization of a PRAC model,
be it grounded or abstract, we require a format that can
serialize an instance or generate the PRAC model template:
that will comprise all generative information, namely all
roles involved in the action, and data that can create the
MLN formulas that evaluate the probability of all possible
grammatical types the action roles can be involved in.

We hypothesize that this can be achieved by defining the
action roles as nouns in a Controlled Natural Language state-
ment, for human-readability and for preserving grammatical
relationships between objects; furthermore we add explicit
semantic tags to maintain information regarding semantic
disambiguation of objects. An implementation is potentially
possible via the use of ACE and semantic tags from WordNet
[19]. Fig. 10 provides an example. Any proof of concept of
such hypothesis is left as future work.

The AGENT.n.06 FLIPS.v.08 the THEME.n.01 from
LOCATION.n.01 with an INSTRUMENT.n.01.

Fig. 10. example of a Controlled Natural Language statement, comprising
nouns with semantic tags for action-oriented formalism serialization

VII. RESULTS, DISCUSSIONS AND CONCLUSIONS

This paper brings attention to possible uses of Controlled
Natural Languages (CNL) in the artificial cognition domain.
While already proven as powerful formalism of representa-
tion and reasoning for the semantic web [14], our claim is
that novel uses of CNL are possible for robotic assistants,
specifically as robot-human interface. We have proven via a
formalization and a practical implementation that CNL can
be exploited as means for sentence construction and target
language of verbalization procedures.

However, even if discourse representation is an easier
instrument for achieving knowledge engineering, CNL con-
struction is not always straightforward [20]. In fact, the DRS
construction of the disambiguation cases has to account for
the ACE construction rules (that can present expressiveness
limitations) and the asymmetry of what is accepted as
correct ACE statement and what can be verbalized (e.g.
modals). The verbalizer system, being purely a DRS and
PRAC based syntactical manipulator, is constrained by the
current implemented features of these and presents similar
limitations. This is visible since the verbalization outputs are
readable but not perfectly natural-like sentences, and can
present scalability issues given by improper PRAC object
inference. With the expansion of the expressiveness set of
ACE and DRS, future work will aim towards understanding
how to make use of such abstractions in order to provide
robotic assistants with more language constructs and modal-
ities of speech. Further research will be dedicated to the
consolidation of the presented proof of concept, and will
focus on the interaction dialogue in order to enable further
learning via human-robot verbal interaction capabilities.
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A Human Action Descriptor based on Motion Coordination

Pietro Falco1, Matteo Saveriano1, Eka Gibran Hasany2, Nicholas H. Kirk1 and Dongheui Lee1

Abstract— In this paper, we present a descriptor for human
whole-body actions based on motion coordination. We exploit
the principle, well-known in neuromechanics, that humans
move their joints in a coordinated fashion. Our coordination-
based descriptor (CODE) is computed by two main steps.
The first step is to identify the most informative joints which
characterize the motion. The second step enriches the descriptor
considering minimum and maximum joint velocities and the
correlations between the most informative joints. In order to
compute the distances between action descriptors, we propose
a novel correlation-based similarity measure. The performance
of CODE is tested on two public datasets, namely HDM05
and Berkeley MHAD, and compared with state-of-the-art ap-
proaches, showing promising recognition results.

I. INTRODUCTION

In the last two decades, encoding and classifying human
actions has been a key topic in computer vision and hu-
man movement science. Recently, motion interpretation has
become a topic of great interest also within the robotic
community. One of the challenges in modern robotics is to
bring robots out of the structured industrial environments and
let them work in close cooperation with humans. Robots will
execute tasks in environments dwelled by humans and in
direct contact with them. In order for robots to successfully
interact with human beings, a necessary step is representing
and classifying actions performed by humans.

In robotic applications, motion descriptors need to fulfill
specific requirements of computational complexity and scal-
ability in addition to accuracy. Modern autonomous robots
have complex software architectures and very demanding
planning and control algorithms. In order to make these
systems usable in real world scenarios, it is essential to keep
as low as possible the computational complexity, both for
sake of time and energy consumption. Scalability is also
an important issue, since in robotic applications the total
number of actions and the duration of each action cannot be
accurately predicted.

In order to take a step in matching these requirements, we
propose a COordination-based action DEscriptor (CODE).
CODE is characterized by a low time and space complexity,
and achieves good scalability and classification accuracy.
The concept of the proposed approach is shown in Fig.
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Action classification with
Correlation-based Similarity Measure (CSM) - Sec. III.D 

Human Actions Dataset

Most Informative Joints

.  .  . 
SubsetSSubset1

COordination-based action DEscriptor (CODE) - Sec. III.B 

Action
Descriptors

Fig. 1. Overview of the proposed approach for action representation and
recognition. Intuitively, we can say that selecting the most informative joints
splits the dataset into several action subsets. The actions within each subset
have similar most informative joints. Neuromechanically-sound features are
then added to make action descriptors more distinctive. Finally, action
classification is performed using the proposed CSM metric.

1. CODE leverages the property of human motion, well-
known in neuromechanics, that humans move their joints in
a coordinated fashion [1]–[4] and that the various degrees
of freedom present couplings and dependencies [2], [3].
One of the main contributions of this work is to exploit
such correlation among joints to increase the performance
of action recognition in terms of accuracy and scalability.

In CODE, therefore, information about correlation is a key
tool to characterize motion. In order to reduce the computa-
tional complexity, CODE analyzes the correlation properties
of a subset of joints, called most informative joints [5].
Roughly speaking, the most informative joints are the joints
which mostly contribute to the execution of a certain action.
CODE selects the most informative joints on the basis of the
signal variances. In the literature concerning motion analysis,
this assumption has been proven to be valid [5] for classi-
fication applications. To increase the discriminativeness of
each action, we enrich the descriptor with information about
motion coordination (correlation between joint pairs), and
information about velocities to discriminate the directionality
of motion. Moreover, we propose a novel similarity measure,
called Correlation-based Similarity Measure (CSM), which
performs better than the classical Euclidean and Manhattan
distances with a reduced number of informative joints.

The rest of the paper is organized as follows. Section II
presents the related work. Section III describes the proposed



action descriptor and similarity measure. Experiments on
two human action datasets, namely Hochschule Der Medien
2005 (HDM05) [6] and Berkeley Multimodal Human Action
Database (MHAD) [7], and a comparison with state-of-
the-art approaches are shown in Sec. IV. Section V states
conclusions and proposes future extensions.

II. RELATED WORK

In the literature, there are diverse works on motion recog-
nition, which are based on different types of input data.
Two common representations of human motion are based on
normalized joint positions and on joint angles. In Cartesian-
based representations, motion is described with the positions
of the joints in the 3D space expressed in a reference frame
fixed to the human torso. As a consequence, a precise skeletal
model is required for this representation. Representations
based on joint angles, instead, are natively independent from
the used reference frame [5]. Joint angles can be computed
by inverse kinematics of a skeleton model or measured by
wearable sensors such as inertial measurement units [8], [9].
This representation is potentially more interesting in robotics,
since it does not implicitly assume the knowledge of the
skeletal model and it does not require a normalization step.
CODE is designed for angle-based representations, since the
neuromechanical properties of human motion coordination
have been proven for joint angles [1], [2].

Methods based on Joint Cartesian Positions: Cartesian
trajectories are strongly affected by the choice of the refer-
ence frame and the link lengths, which reduces the discrimi-
native power of Cartesian descriptors [10]–[12]. To alleviate
this problem, a normalization procedure is performed [10],
which expresses the joint positions in a frame fixed to the
torso and normalizes the length of the bones. The method is
defined skeleton-based (or model-based) because it requires
the knowledge of the skeletal model of the performer to
obtain a user-independent normalized representation. Using
this skeleton-based representation, in [10] a deep neural
network is proposed to classify motion capture sequences.
In [13], a hierarchical recurrent neural network is proposed
for action classification. A template-based approach to rec-
ognize actions [14] uses a small set of a-priori known
actions called templates. To align observed actions with the
templates, the dynamic time warping [15] is adopted. In
[16], a local skeleton descriptor is proposed that encodes the
relative position of joint quadruples. The input data are joint
Cartesian coordinates. The approach in [17] exploits learned
models to represent each action and to capture the intra-class
variance. The method shows promising results in dealing
with data from depth cameras. The work in [18] describes
a representation based on pairwise joint-to-joint distances in
the skeletal model and principal component analysis is used
to reduce the dimensionality.

Methods based on Joint Angles: In [19], an online seg-
mentation and recognition of manipulation task, based on
singular value decomposition, is proposed. An unsupervised
approach that exploits hidden Markov models to segment and
recognize actions is presented in [20]. The work presented in

[21] leverages the properties of human motion in frequency
domain to derive a compact action descriptor. Linear Dy-
namical Systems (LDS) are used in [22] to recognize human
gaits, and the methodology can be applied also to recognition
of whole-body actions. In [5], the authors propose three
descriptors ranking the most informative joints involved in
an action, i.e. the joints which have highest variance during
the motion. The descriptors are called Sequence of the Most
Informative Joints (SMIJ), Histograms of Most Informative
Joints (HMIJ) and Histogram of Motion Words (HMW),
respectively. This approach is particularly significant for our
work, since it proposes descriptors effective in discriminate
actions but also simple and computationally efficient. This
philosophy is also used in CODE as well as the concept of
choosing the most informative joints based on the variance.
There are two main differences between SMIJ [5] and
CODE. First, CODE computes the variance of the overall
motion trajectory (global descriptor) and has a constant size,
while SMIJ requires to split each action into several segments
(local descriptor). Second, we explicitly take into account
motion coordination and propose a novel Correlation-based
Similarity Measure (CSM) to compute the similarity between
action descriptors. Recognition performance of LDS, HMW,
SMIJ, HMIJ and CODE are compared in Sec. IV-D.

Aforementioned angle-based representations present two
important open points. First, they are tested only on a limited
set of classes (10-15 classes) and, therefore the scalabil-
ity is not investigated. Second, the complexity analysis is
usually neglected, even though it is an important theoretical
foundation for real applicability. CODE, on the other hand,
offers a good balance between accuracy, scalability, and
computational complexity. CODE performs well not only on
a typical datasets of 10-15 classes, but also on the whole
HDM05 dataset, constituted by 80 classes and 2337 actions.

III. PROPOSED APPROACH

This section discusses three problems related to action
classification: i) which raw data from tracking systems are
better suited for action representation, ii) which features can
be extracted from sensory data to reduce the dimensionality
and increase the discriminativeness, and iii) how the similar-
ity between actions can be measured.

A. Whole-body action representation

Modern motion tracking systems adopt a kinematic model
of the human body, the so-called skeletal model, consisting
of a certain number of links connected by joints. The raw
information available from the tracking system is a time
series of skeletal poses sampled at different time instants. A
possible way to represent whole-body actions is to collect a
set of 3D joint positions sampled at different times, i.e. a set
of Cartesian trajectories. As discussed in Sec. II, Cartesian
trajectories depend on the reference frame in which the mo-
tion is expressed and on the length of human limbs. On the
other hand, joint angles between two connected links in the
skeletal model are naturally invariant to roto-translations and
scaling factors. Hence, in this work, we represent an action
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Fig. 2. Joint angle variances as a function of joint index and repetition number. (a) clap1Reps and squat1Reps have different sets of most informative
joints. This kind of actions can be correctly classified considering only the relevant joints. (b) clap1Reps and clapAboveHead1Reps have similar sets of
most informative joints. For this kind of actions misclassification may occur if only the most informative joints are considered as features.

as a set of joint angles trajectories, i.e. as the J × T matrix
A = [a1, . . . ,aJ ], where aj = {atj}Tt=1 is the trajectory of
the j-th joint angle, J is the number of joints and T is the
number of time frames. One possibility is to directly use the
raw time series A for action classification. Alternatively, as
in this work, one can extract from A a feature vector (action
descriptor) whose objective is to reduce the size of the input
data and increase their discriminativeness.

B. Coordination-based action descriptor

The proposed action descriptor is based on two assump-
tions. The first assumption is that, while each subject can
perform the same action in different manners generating
different joint trajectories, all the subjects tend to activate
the same set of joints [5]. For example, in a clapping action
the arm joints are the most informative, while the rest are
practically unused. The second assumption is that humans
move the joints in a coordinated fashion [1], and, therefore,
motion coordination is discriminative for motion recognition.

Building upon these assumptions, we define the CODE
action descriptor A as the 5-tuple

A , (Im, σ̂, v̂max, v̂min, c) (1)

where Im contains the indexes of the Jm most informative
joints (MIJ), σ̂ ∈ RJm , v̂max ∈ RJm and v̂min ∈ RJm are
respectively the normalized variances, maximum and mini-
mum velocities of the MIJ. The vector c is the correlation
between each pair of MIJ and has Jm(Jm−1)/2 components.
In more detail, the vector c is obtained by concatenating
the correlation coefficients cij , where (i, j) is a couple of
most informative joints of an action A. If an action has Jm
most informative joints, we will have Jm(Jm−1)/2 pairwise
combination. With the symbols A we denote a finite ordered
list of elements (a tuple). Each element of this tuple is a
vector. For implementation purposes, the elements of the 5-
tuple A are stacked into an array of NC = Jm(Jm + 7)/2.
components. Hence, the number of MIJ Jm determines the
size of the descriptor and it has to be chosen in order
to guarantee a good compromise between dimensionality

(computation time) and recognition performance. Details
about the action descriptor in (1) are provided in the rest
of this Section.

1) Selecting the most informative joints: During the exe-
cution of an action, not all the joints contribute in the same
manner. Hence, a possible way to represent a motion is to
find which joints contribute the most to the whole motion,
i.e. which are the most informative joints (MIJ). The variance
σj , j = 1, . . . , J of each joint angle trajectory is used to
identify the Jm ≤ J most informative joints, considering
that the higher the variance, the higher the contribution of
that joint to the whole-body motion [5].

For a given action A = [a1, . . . ,aJ ], the variance is
computed for all the J columns of A, obtaining the vector
σa = [σa

1 , . . . , σ
a
J ]T . The elements of σa are sorted as

(σs, Is) = sort (σa) ,

σs = [σs
1, σ

s
2, . . . , σ

s
Jm
, . . . , σs

J ]T ,

Is = {is1, is2, . . . , isJm
, . . . , isJ}

(2)

where the function sort (u) sorts the elements of u in
descending order and returns the sorted indexes Is. The
vector of normalized variances σ̂ of the Jm MIJ is computed
as

Im = {is1, is2, . . . , isJm
},

σ = [σs
1, σ

s
2, . . . , σ

s
Jm

]T ,

σ̂ =
σ

∑Jm

j=1 σ
s
j

= [σ̂1, σ̂2, . . . , σ̂Jm
]T

(3)

The last expression in (3) guarantees that
∑Jm

j=1 σ̂j = 1.
It is worth noticing that taking the variance of the MIJ σ̂
as action descriptor significantly reduces the amount of data.
Indeed, as discussed in Sec. III-A, raw sensory data are T×J
matrices, where T is usually bigger than J , while σ̂ is a
vector with Jm ≤ J components. In this work, we set Jm =
20, as motivated in Sec. IV-B.

The colormaps in Fig. 2 represent the normalized joint
angle variances σ̂a = σa/

∑J
j σ

a
j as a function of the

joint angle index. Three action classes are considered from



the HDM05 database: clap1Reps, clapAboveHead1Reps and
squat1Reps. Each action is repeated 5 times, and each repeti-
tion is associated to a repetition number. Let us firstly focus
on a single action class, e.g. squat1Reps in Fig. 2(a). Each
row of the colormap represents a repetition of squat1Reps.
We can see that only a small subset of joints have not
negligible variance and all the repetition have a common
set of informative joints. Moreover, in Fig. 2, the class
clap1Reps is compared, in terms of joint angle variances,
with squat1Reps in Fig. 2(a) and with clapAboveHead1Reps
in Fig. 2(b). Looking at the figure, it is evident how actions
that use different MIJ, such as squat1Reps and clap1Reps,
present a different joint variance pattern (see Fig. 2(a)).
On the other hand, classes like clapAboveHead1Reps and
clap1Reps, which have similar MIJ, present a similar vari-
ance pattern, as shown in Fig. 2(b).

MIJ can easily discriminate actions executed with differ-
ent joints. Nevertheless, when dealing with large datasets,
different classes with similar MIJ can become very common.
To increase the discriminativeness, we enrich our descriptor
with velocities and pairwise correlations between the MIJ.

2) Maximum and minimum velocity of the MIJ: The
variance captures information on joint angular motion with-
out considering the direction of the motion. Distinguishing
between positive and negative joint rotations increases the
informativeness of the descriptor and improves the recogni-
tion performance. The normalized maximum and minimum
MIJ velocities

v̂max =
vmax∑Jm

j=1 |vmax,j |
, v̂min =

vmin∑Jm

j=1 |vmin,j |
(4)

are also considered in our descriptor. By construction, v̂max

and v̂min are vectors with Jm components.
3) Pairwise correlation of the MIJ: Neuromechanical

evidences show a certain degree of correlation between
the most informative joints (or a subset of MIJ) [1], [2].
To exploit such a correlation, we enrich the descriptor
with the vector c of pairwise correlations of the Jm most
informative joints. In particular, given a MIJ trajectory
Am = [a1, . . . ,aJm ] ∈ RT×Jm , one can compute the
pairwise correlation matrix

C =




1 c1,2 · · · c1,Jm

c2,1 1 · · · c2,Jm

...
...

. . .
...

cJm,1 cJm,2 · · · 1


 (5)

where the element −1 ≤ cij ≤ 1 represents the linear
correlation between the joint i and j and it is computed as

cij =

∑T
t=1(ati − āi)(atj − āj)√

σs
i

√
σs
j

=
cov(ai,aj)√
σs
i

√
σs
j

(6)

The quantities āi and āj in (6) are the mean values of ai and
aj respectively, while the variances σs

i and σs
j are defined

as in (3). The numerator of (6) represents the covariance
between ai and aj . By construction, the correlation matrix
C in (5) is symmetric with unitary diagonal elements. The

Jm(Jm − 1)/2 different entries in C are stacked into the
correlation vector c and used to augment our descriptor. The
procedure to compute CODE is summarized in Algorithm 1.

Algorithm 1 CODE Descriptor
input: Action matrix A, MIJ number Jm

1: Compute normalized variance and MIJ indexes
σa = variance (A)
(σs, Is) = sort (σa)
σ = [σs

1, σ
s
2, . . . , σ

s
Jm

]T

Im = {is1, is2, . . . , isJm
}

σ̂ = σ/
∑Jm

j=1 σ
s
j

2: Compute normalized velocities
v̂max = vmax/

∑Jm

j=1 vmax,j

v̂min = vmin/
∑Jm

j=1 vmin,j

3: Compute correlation vector
C = {cij}i=Jm,j=Jm

i=1,j=1 , where cij = cov(ai,aj)/(
√
σs
i

√
σs
j )

stack the upper (or lower) triangular part of C into the vector c
4: return [Im, σ̂, v̂max, v̂min, c]

C. Analysis of Space and Time Complexity

We report in Table I the (computational) time and space
complexity of the CODE descriptor as a function of the
number of most informative joints Jm and the number of
action time frames T . As described previously in this section,
CODE has Jm(Jm +7)/2 components. Hence, using the big
O notation [23], its space complexity is O(J2

m). The space
complexity is O(1), since the size of CODE is independent
from the number of time frames T . Regarding the time
complexity as a function of Jm, the most time-complex
operation in Algorithm 1 is step 3, i.e., computation of
the correlation vector. The computation of the correlation
coefficient is performed as in (6) for each pair of MIJ. Since
there are Jm(Jm − 1)/2 combinations of MIJ pairs, the
time complexity as a function of Jm is O(J2

m). The time
complexity as a function of the number of time frames is
O(T ), since the computation of variances in (3), the compu-
tation of normalized velocities in (4), and the computation
of the correlation vector in (6) have O(T ) time complexity.
Overall, CODE has O(J2

mT ) time complexity and O(J2
m)

space complexity.

Time Complexity Space Complexity
MIJ number (Jm) O(J2

m) O(J2
m)

Frames (T ) O(T ) O(1)
Overall (Jm, T ) O(J2

mT ) O(J2
m)

TABLE I
TIME AND SPACE COMPLEXITY OF CODE AS A FUNCTION OF THE

NUMBER OF MIJ Jm AND THE NUMBER OF FRAMES T .

D. Correlation-based similarity measure

As described in Sec. III-B, CODE represents an action
with a vector of dimension NC . To measure the similarity



among actions, we propose a novel similarity measure called
Correlation-based Similarity Measure (CSM).

Consider the two action descriptors Aa and Ab where
Au = (Ium, σ̂

u, v̂umax, v̂
u
min, c

u), u = a, b. Let us define
the set S = {(i, j) ∈ Iam∩Ibm|i 6= j}. In practice, S contains
the pairs of MIJ that are common to Aa and Ab. The CSM
between two action descriptors Aa and Ab is defined as

CSM(Aa,Ab) =
∑

i,j∈S
wij [(σ̂

a
i + σ̂a

j + σ̂b
i + σ̂b

j) +

+ (v̂amax,i + v̂amax,j + v̂bmax,i + v̂bmax,j)

+ (v̂amin,i + v̂amin,j + v̂bmin,i + v̂bmin,j)]
(7)

where the weight wij = 1 − 0.5|caij − cbij | is maximum
(wij = 1) when the action a and b have the same correlation
between the common most informative joints i and j. The
weight wij is minimum (wij = 0) if the common MIJ
i and j are perfectly correlated in action a (caij = 1)
and anti-correlated in action b (cbij = −1), or viceversa
(caij = −1 and cbij = 1). The correlation-based similarity
measure in (7) is a summation of variances and velocities
of common MIJ weighted by the differences in pairwise
correlations between the two actions. Hence, two actions
which use the same MIJ, but are characterized by a different
correlation pattern, will have a low CSM score. High values
of CMS indicate a high similarity between two actions. CSM
is zero if two actions have no common MIJ or if all the
MIJ are anti-correlated. Moreover, the joints that present
a higher variance, maximum and minimum velocities give
more contribution to the evaluation of similarity CSM than
joint with low variance, and velocities. Figure 3 shows the
value of the weight wij for two actions a and b as a function
of the difference in correlation between two common most
informative joints i and j.

1

0-2 2

Fig. 3. Value of the weight wij as a function of caij − cbij .

IV. EXPERIMENTAL RESULTS

In order to prove the effectiveness of our approach, we per-
form three types of experiments on the public motion datasets
HDM05 [6] and MHAD [7]. In the first type of experiments,
we evaluate the accuracy on the whole HDM05 dataset as
a function of the number of most informative joints with
different features and different similarity measures. In the
second set of experiments, we evaluate accuracy, precision

and recall of CODE. The third class of experiments consists
in a comparison with other descriptors in the literature. In
order to reduce high-frequency noise, we apply a butterworth
filter with cut-off frequency of 10 Hz.

A. Dataset description

We use three different datasets for our experiments: (i)
HDM05, (ii) Reduced HDM05 and (iii) MHAD. The main
characteristics of each dataset are summarized in Table II.

The HDM05 dataset contains 2337 actions split into 130
classes, and the actions are performed by 5 subjects. We
consider 80 classes obtained by merging the motion record-
ings that contain multiple executions of the same action. For
example, clap one repetition and clap five repetitions have
been considered to be in the same class.

The Reduced HDM05 (R-HDM05) dataset is a sub-
set of HDM05 composed by 401 action sequences split
into the 16 classes: “emphdepositFloorR (1), elbow-
ToKnee1RepsLelbowStart (2), grabHighR (3), hopBoth-
Legs1hops (4), jogOnPlaceStartAir2StepsLStart (5), jump-
Down (6), jumpingJack1Reps (7), kickLFront1Reps (8),
lieDownFloor (9), rotateArmsBothBackward1Reps (10), sit-
DownChair (11), sneak2StepsLStart (12), squat1Reps (13),
standUpKneelToStand (14), throwBasketball (15), throwFarR
(16)”. The numbers in brackets are the class labels used in
Fig. 6. These are the action classes chosen in [5], which we
adopt to perform comparisons.

MHAD is constituted by 11 classes:“jumping (1), jumping
jacks (2), bending (3), punching (4), waving two hands (5),
waving one hand (6), clapping (7), throwing (8), sit down (9),
stand up (10), sit down/stand up (11)”. The numbers in
brackets are class labels used in Fig. 7. Each action is
performed by 12 subjects 5 times, yielding a total of 659
actions (1 erroneous action was removed from the database).

B. Number of most informative joints

The goal of this experiment is two-fold. First, it shows the
contribution of the different CODE components in Sec. III-B.
Second, it investigates how to choose an efficient number of
most informative joints. To guarantee a statistical relevance,
we tried CODE on a large set of actions and classes, i.e.,
the 80 classes and 2337 actions of HDM05. The accuracy
of CODE, evaluated as a function of the Most Informative
Joints (MIJ) number Jm, is shown in Fig. 4(a). The accuracy
is computed as the ratio between the number of total test
inputs correctly classified and the number of test inputs. In
the figure, CODE with the proposed CSM is compared with
descriptors based (i) only on variance of MIJ, (ii) on variance

Dataset Subjects (#) Classes (#) Actions (#) Frame Rate (Hz)

HDM05 5 80 2337 120

R-HDM05 5 16 401 120

MHAD 12 11 659 480

TABLE II
DATASETS CHARACTERISTICS.
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Fig. 4. Results on the HDM05 dataset (2337 actions and 80 classes). (a) Recognition results for different values of Jm and different features vectors.
(b) Motion descriptors that consider only variance or variance and velocity as features grow linearly with Jm, while CODE grows quadratically. CODE
with CSM offers a good compromise between recognition rate (80.0%) and descriptor dimension (270 components with Jm = 20).

and joint angular velocities of MIJ, (iii) on variance, velocity,
and correlation of MIJ. The results show that all CODE
features contribute to improve the recognition rate.

The continuous lines in Fig. 4(a) denote the use of
Manhattan distance, while the dashed lines denote Euclidean
distance to evaluate the similarity between actions. In case of
CODE+CSM, we use our proposed metrics to evaluate the
similarity. We can see that, in general, Manhattan distance
performs better than Euclidean, and CSM performs better
than Manhattan distance for Jm ≥ 5. An advantage of
the proposed Correlation-based Similarity Measure is that
CODE+CSM performs better with less MIJ with respect
to Euclidean and Manhattan distances. For example, with
Jm = 20, CODE+CSM achieves 80.0% of accuracy, while
CODE+Manhattan achieves 78.6% of accuracy. When in-
creasing the number of MIJ (Jm ≥ 20), the difference
between the metrics becomes smaller. For example, with
Jm = 30, CODE+CSM achieves 80.7% of accuracy, while
CODE+Manhattan achieves 80.1% of accuracy. We can con-
clude that CSM achieves better performance than Euclidean
and Manhattan distances with a reduced number of MIJ.
Figure 4(b) shows the dimension of CODE as a function
of the number of most informative joints. The dimension of
CODE increases quadratically with Jm. This is an expected
result considering the spatial complexity analysis in Sec. III-
C. Using only variance and variance+velocities, the size of
the descriptor increases linearly. The price paid for a more
precise characterization of the motion is an increase in the
descriptor dimensionality. Considering the accuracy in Fig.
4(a) (80.0% with Jm = 20 and 80.7% with Jm = 30) and the
descriptor size in Fig. 4(b) (270 components with Jm = 20
and 555 components with Jm = 30), we can conclude that
CODE+CSM with Jm = 20 offers a good compromise
between recognition rate and size of the descriptor.

C. Performance Evaluation

Using 10-fold cross-validation, accuracy, precision, and
recall of CODE have been evaluated on three datasets:
HMD05, R-HMD05, and MHAD. Precision is obtained
as the ratio between true positives and the sum of true
positives and false positives. Recall is obtained as the ratio
between true positives and the sum of true positives and
false negatives. Also, we report the time to compute CODE
for all the actions of each dataset. The computer used for
the evaluation has an Intel R© CoreTM i7− 4790 K - 4 Cores
CPU, and 16 GB of memory. CODE is implemented in
Matlab R© 2014b. The results, summarized in Table III, are
obtained using CODE with CSM, Jm = 20 and 1-NN
classification. The average accuracy of CODE on HDM05
is 80.0%, precision is 73.7% and recall is 73.0%. The time
to compute the CODE for all the actions of HDM05 is 3.84 s
with our unoptimized Matlab implementation. For the R-
HDM05 dataset, we achieve the average accuracy of 96.0%,
the average precision of 94.5%, and the average recall of
95.6%. The time to compute the descriptor for all action
of R-HDM05 is 0.64 s. In the experiments on the MHAD
dataset accuracy, precision, and recall are 96.4%, 96.7% and
96.8%, respectively, while the time to compute CODE for
all the actions is 9.54 s. In Fig. 5, the robustness of CODE
in presence of Additive Gaussian White Noise (AGWN) is
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Fig. 5. Accuracy of CODE for different values of the AGWN standard
deviation, evaluated on HDM05, R-HDM05, and MHAD.



Dataset Accuracy (%) Precision (%) Recall (%) Time (s)
(mean±std) (mean±std) (mean±std) (mean±std)

MHAD 96.4 ± 2.9 96.7 ± 3.3 96.8 ± 2.5 9.54 ± 0.61

R-HDM05 96.0 ± 2.7 94.5 ± 3.5 95.6 ± 3.8 0.64 ± 0.02

HDM05 80.0 ± 2.9 73.7 ± 2.6 73.0 ± 2.7 3.84 ± 0.1

TABLE III
CROSS-VALIDATED (10-FOLD) RESULTS WITH CODE+CSM.

Descriptor Classification Accuracy (%)

CODE + CSM 1-NN 98.4

SMIJ [5] 1-NN 91.5

HMIJ [5] 1-NN 73.5

HMW [5] 1-NN 77.4

LDSP [5], [22] 1-NN 67.8

TABLE IV
CLASSIFICATION RESULTS FOR THE R-HDM05 DATASET.

evaluated. We corrupted the joint angle signals with AGWN
of standard deviation in the range [0, 5] deg. For R-HDM05,
with a standard deviation of 5 deg the accuracy is 93.8%, for
MHAD is 93.3%, while for HMD05 the accuracy is 77.5%.
Roughly, we loose about 3% accuracy corrupting the signals
with additional AGWN of 5 deg standard deviation.

D. Comparison with angle-based approaches

We compare the recognition performance of CODE with
the state-of-the-art descriptors in [5], [16], [22]. The compar-
ison is carried out on both the R-HDM05 and the MHAD
datasets. As in the previous experiments, we use CSM to
measure the similarity between the CODE descriptors of
different actions and Jm = 20 most informative joints.

1 1
2 1
3 1
4 1
5 1
6 .13 .87
7 1
8 .08 .92
9 .1 .9

10 1
11 1
12 1
13 1
14 1
15 1
16 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 6. Confusion matrix for 1-NN classification of the R-HDM05 dataset.

R-HDM05: For a fair comparison, we adopt the same 16
classes (see Sec. IV-A) and the same cross-subject validation
protocol used in [5]. In particular, we consider 3 subjects
(219 action sequences) for training and the remaining 2
subjects (182 action sequences) for testing. Cross-subject val-
idation is particularly interesting to demonstrate the general-
ization capabilities of CODE across different users. Addition-
ally, we compare CODE with Histograms of Most Informa-
tive Joints (HMIJ) [5], Histogram-of-Motion Words (HMW)
[5], and Linear Dynamical System Parameter (LDSP) [22].

The results of this comparison are shown in Table IV. We
can see that the best results are achieved by CODE, with an
accuracy of 98.4%. The confusion matrix relative to this case
study in presented in Fig. 6. The actions that do not achieve
100.0% accuracy are jumpDown (6), kickLFront1Reps (8),
lieDownFloor (9). The action jumpDown has 87.0% accu-
racy and is confused with hopBothLegs1hops (4) in 13.0%
of cases. The accuracy for kickLFront1Reps (8) is 92.0%
and it is confused with jumpDown (6). lieDownFloor (9),
which presents an accuracy of 90.0%, is confused with
jumpDown (6) in the 10.0% of cases.

MHAD: The comparison between CODE, SMIJ, HMIJ,
and LDSP on the classes of the MHAD database is reported
in Table V. In this case, CODE achieves 98.5% accuracy
and the second best is SMIJ that achieves 94.5%. In this
experiment, 7 subjects are chosen for training (384 action
sequences) and 5 (275 action sequences) for testing, accord-
ing to the cross-subject validation protocol adopted in [5].
The confusion matrix is shown in Fig. 7. We can see that
the accuracy of CODE is 100.0% for the majority of the
classes, except for three classes: jumping (1), sit down (10),
sit down and stand up (11). The accuracy is 96.0% for the
action jumping (1), which has been confused in 4.0% of cases
with the action jumping jacks (2). Moreover, the action sit
down (10) presents a recognition rate of 92.0%, since it is
confused in 4.0% of cases with stand up (9), and in 4.0% of
cases with sit down and stand up (11). The action sit down
and stand up achieves 96.0% accuracy and it is confused
with sit down in 4.0% of cases.

Descriptor Classification Accuracy (%)
CODE + CSM 1-NN 98.5

SMIJ [5] 1-NN 94.5
HMIJ [5] 1-NN 80.3
HMW [5] 1-NN 77.7

LDSP [5], [22] 1-NN 84.9

TABLE V
CLASSIFICATION RESULTS FOR THE MHAD DATASET.

1 .96 .04
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1

10 .04 .92 .04
11 .04 .96

1 2 3 4 5 6 7 8 9 10 11

Fig. 7. Confusion matrix for 1-NN classification of the MHAD dataset.

E. Comparison with position-based approaches
In addition to the comparison with angle-based methods,

we compare CODE also with approaches that use joint
Cartesian positions. The two representations work with dif-
ferent input data, i.e. joint angles and 3D joint positions,



respectively. Since the recognition performance strongly de-
pends on the type of input data, the comparisons in terms
of accuracy are merely indicative. However, the scope of
this section is to discuss basic differences between CODE
and most successful position-based recognition approaches.
First, we compared CODE with the skeleton quad descriptor
presented in [16]. This approach obtains 93.89% on a subset
(11 classes) of the R-HDM05 dataset. On the same subset,
CODE achieves 100% accuracy. The second comparison is
with the template-based approach (TBA) presented in [14].
It adopts DTW [15] to align the training trajectories with
the test trajectories and has been tested with 9 classes [14]
of HDM05 dataset, achieving 98.0% accuracy. On the same
classes CODE achieves 98.3% accuracy. In terms of accu-
racy, the performance of TBA and CODE are similar on the
tested classes. However, TBA has a O(T ) spatial complexity
(to store the entire joint position trajectories) and O(T 2) time
complexity (to align training and test trajectories with DTW),
while CODE has O(1) spatial complexity and O(T ) time
complexity (see Table I). The third comparison is with the
skeleton-based approach (SKA) in [10]. It uses a deep neural
network and a frame-by-frame classification to recognize
motion capture sequences. The experiments are performed
on 2337 actions of HDM05 split in 65 classes, achieving
95.6% accuracy. On the same action set CODE achieves
87.7% accuracy. In terms of accuracy SKA performs better
than CODE. However, SKA uses a more complex descriptor
with 33×T elements, where T is the number of time frames.
The space complexity is therefore O(T ), while CODE has
a fixed size of 270 × 1 elements. Moreover, SKA adopts
a classification algorithm based on deep learning, which
requires a relatively long training time, while in this work
we use a 1-NN classifier to keep the system simple and fast,
according to the requirements typical of robotic systems.

V. CONCLUSIONS AND FUTURE WORK

In this work, we presented CODE, a COordination-based
action DEscriptor. CODE is based on the assumption, ac-
cepted in neuromechanics, that humans move in a coordi-
nated fashion. CODE encodes the coordination properties
of human motion by computing the pairwise correlations
between the most informative joints. With experiments on
two different datasets containing a large set of actions, we
have shown that, including information about correlation and
about joint velocities, the recognition performance improves
significantly. The size of CODE is independent from the ac-
tion duration and increases quadratically with the number of
most informative joints. The comparisons showed that CODE
outperforms several approaches for action recognition.

Future work will consist in evaluating CODE on represen-
tations based on Cartesian joint positions. Most renowned
works in neuromechanics, in fact, discuss human motion
correlation at a joint angle level. Therefore, the possibility to
encode joint Cartesian positions with CODE-like descriptors
requires further investigation. In order to segment streams of
data before the classification, CODE can be combined with
a state-of-the-art segmentation method such as [24]. A future

work direction will consist in applying the basic concept of
CODE also to the segmentation problem.
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Towards Learning Object Affordance Priors from Technical Texts

Nicholas H. Kirk1

Abstract— Everyday activities performed by artificial assis-
tants can potentially be executed naı̈vely and dangerously given
their lack of common sense knowledge. This paper presents
conceptual work towards obtaining prior knowledge on the
usual modality (passive or active) of any given entity, and
their affordance estimates, by extracting high-confidence ability
modality semantic relations (X can Y relationship) from non-
figurative texts, by analyzing co-occurrence of grammatical
instances of subjects and verbs, and verbs and objects. The
discussion includes an outline of the concept, potential and lim-
itations, and possible feature and learning framework adoption.

I. CONCEPT

In the domain of autonomous robot control, artificial
assistants require to know what actions can be executed on
a given set of objects. Such information, defined as object
affordances, is usually obtained online by reinforcement or
active learning during the execution of actions by processing
percepts [1]. However, for safe human-robot interaction, we
require the robot to have, from initialization, an under-
standing of what actions an object can execute, and what
actions an object can be subject to. In this scope, we claim
human-written technical texts can be an informative source
to construct such initial world estimate. Such probability
distribution over action-object relationships from natural
language text can be performed thanks to the co-occurence
understanding of verb-noun pairs: this analysis is known in
computational linguistic literature as the use of distributional
information of text to characterize lexical semantics, by
considering statistical co-occurrence of neighbouring words
[2]. However, the majority of current approaches make use
of shallow syntactic features, which meaningfulness is debat-
able for semantic characterization [3]. We therefore make use
of grammatical features, for partial semantic characterization
of object affordances. While other semantic relationships
employed in engineering are not easily prone to confident,
automatic extraction and knowledge engineers have to recur
to manual ontology insertion [4], the author’s claim is that
potentiality relationships can be robustly extracted from
grammar relationships of Subject-Verb-Object (SVO) co-
occurrences. The choice of the ability modality relation-
ship calls for the assumption that the training corpus from
which we derive data has to have reliable, non-figurative
subject-verb-object co-occurrence tuples. More formally, co-
occurrence of every noun s1 ∈ S with a verb v1 ∈ V
entails the ability of s1 to perform such action v1 on the co-
occurring object o1 ∈ O. In simpler terms, we assume the
instance ”a robot builds a desk” implies ”a robot can build”
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Fig. 1: Hypothetical representation of a dual active/passive 3-
dimensional modality space (with predicates as dimensions)
representing instances of kitchen scenario objects.

and ”a desk is buildable”, which the author does not consider
a restrictive assumption that requires controlled authoring.

We therefore model our symbolic knowledge on potential-
ity as the joint probability distribution of all SVO occurrences
in our training source, obtained via learning on typed depen-
dency analysis output features of such source (see Equation
1).

Modality(W ) = P (S × V ×O) (1)

S = {∀s ∈ N | grammar type(s, subject)}
V = {∀v ∈ N | grammar type(v, verb)}
O = {∀o ∈ N | grammar type(o, object)}

From Equation 1 we derive two dual joint probability
distributions, which encapsulate knowledge of active and
passive noun roles (Eq. 2 and Eq. 3) and can induce two
distinct vector spaces, representing passive and active role
information (example in Figure 1).

Modalityactive(W ) = P (S × V ) (2)
Modalitypassive(W ) = P (V ×O) (3)

II. IMPLEMENTATION

In order to learn our distribution in Equation 1, a possible
approach is to exploit Markov Logic Networks (MLN) [5] on
a set of previously extracted Stanford typed dependencies [6].
The latter are a labeled, directed grammar relationship among
pairs of words, which capture word order and relationship
type (Figure 2): when considering ’nsubj’ (subject of an
action) and ’dobj’ (object of an action) labels, these can
be seen as grounded action-object predicates.



The robot builds a desk.

root

det nsubj det

dobj

Fig. 2: Example of words that compose a sentence instance
and their typed dependencies (illustrated as labeled directed
edges).

We can then perform learning on such grounded models
thanks to MLN, which is a knowledge representation for-
malism that enables probabilistic learning and inference via
the combined use of first order logic and probabilistic undi-
rected graphical models (i.e. Markov Random Fields). More
formally, MLN theory defines a probability over the world
x as a log-linear model in which we have an exponentiated
sum of weights wj of a binary feature fj , and the partition
function Z (see Equation 4).

P (X = x) =
1

Z
∗ exp


∑

j

wjfj (x)


 (4)

In our case, we consider the binary formula fj(x) as an
evaluation of a logic formula representing grammar relations
as predicates, and we substitute such term with nj(x), where
the latter is number of true groundings of such formula fj
in xj . The MLN formalism aims to learn the stationary dis-
tribution of the true groundings nj(x), possibly a sufficient
heuristic condition for scalability.

III. DISCUSSION

a) Related Work: Systems which focus on the initializa-
tion parameters from ontologies (i.e. aggregates of semantic
relationships and entities) do not debate how such source was
populated [7]. Some previous literature does value mappings
between language constructs and affordances, but analyze
the opposite problem [8]. Closer work which adopts MLN
and grammar features has been proven successful for mining
natural language instructions for the robotics domain [9], but
does not focus on affordance understanding and concentrates
on inferring likely action roles, while other literature does
make use of MLN but does not employ grammar feature
analysis [10]. Closer work does consider typed dependency
extraction for semantic characterization, but does not focus
on SVO tuple analysis [11], [12].

b) Evaluation: As the system can process a high num-
ber of noun-action relationships, we require an equally well
populated ontology representing ground truth references. For
activity and passivity labels, the scope might require manual
annotation.

c) Potential: Other than fulfilling the requirement of
providing an initial affordance world estimate, it can provide
understanding of hidden or partially observable affordances
[13], particularly useful when objects are not in full reach of
the perception array. The vector space induction enables the

use high-dimensional tensor computations for semantic char-
acterization adopted in linguistics (such as compositionality
and retrieval of neighbouring entries [14]), to a yet unknown
extent of effectiveness within the context.

d) Limitations: Although we assume the text is con-
fined to a technical domain, the authors of the source might
make use of partly figurative wordings. As a result, the word
frequency distribution would present bias or outliers (i.e.
presence of erroneous co-occurrences of analyzed nouns or
figurative nouns unrelated to known entities). Furthermore,
also the independent word frequency of occurrence does not
provide information regarding entity existence, and would
require a form of normalization.

e) Conclusions: The linguistic and computational ob-
stacles towards model effectiveness are manifold, and surely
require the development of processes such as bias removal
and outlier detection. However, this concept paper highlights
the usage of technical text mining for affordancies acquisi-
tion, and mainly points to the potential of induced vector
spaces for retrieving objects with similar affordance, or the
affordance of aggregates, and above all its practical use as
initial world affordance estimate.
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Prior Affordance Understanding with Relational Learning for
Human Safe Action Planning

Vishal A. Bhalla†1 and Nicholas H. Kirk†2

Abstract— This paper discusses how to achieve scalable af-
fordance mining from human-written texts. Relational learning
performed on Subject-Verb-Object (SVO) tuples, generated
from grammar analysis, provides artificial assistants with object
affordances, and therefore with common sense knowledge
regarding action executability. Experiments were performed on
web crawled data from the database www.wikihow.com with
the Markov Logic Network (MLN) framework Tuffy, for use
in the daily household tasks domain. We showed the success
of the approach by comparing results to annotated videos of
the CAD120 dataset, demonstrating that affordance priors are
extracted effectively.

I. INTRODUCTION

Research in cognitive robotics envisages to impart knowl-
edge to robots from information sources created and used
by humans, so that they can get the know-how to perform
daily activities. In this paper, we concern ourselves with
high-level, affordance information [1] which consider active
and passive labels of an entity, helping the understanding
of how a particular object can be acted upon [2]. Human-
written texts are a rich source for gathering an initial esti-
mate of such action-object relations by using a probability
distribution over natural language verb-noun pairs. In this
work, we provide means to understand if given an entity is
more likely to be in an active or passive role by mining
subject-verb and object-verb relationships extracted from
text, by means of logico-statistical analysis via Markov Logic
Networks (MLN). As affordances are usually obtained by
sensorimotor exploration with reinforcement learning, the
presented approach is more safe in human robot interaction
terms, because such probabilistic distribution over objects is
known at initialization time.

For example, consider the text crawled from a website
like wikihow.com as shown in Fig. 1. The website contains
text with a set of instructions as performed by humans, for
example describing the daily task of cleaning a floor. This
text is parsed to extract grammar relationships, i.e. depen-
dencies in each sentence. Consider the sentence ”Follow
up dusting by cleaning the floor.” The dependencies parsed
from it would include dobj(cleaning-5, floor-7), among other
relations, which clarifies that there is a semantic text relation-
ship between ”floor” (i.e. the direct object), and ”cleaning”
(i.e. the executed action). In particular, in this paper we
are interested only in the Subject-Verb-Object dependencies
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k-frequent terms)

Prediction

Clean the floors as a final step. Follow 
up dusting by cleaning the floor. 
Otherwise, all the dust lays there from 
the furniture and ornaments you dusted.

…
det(dust-5, the-4)

…
root(ROOT-0, lays-6)
advmod(lays-6, there-7)
…

nsubj(verb,subject)
dobj(verb,object)
nsubj(v, +s)
dobj(v, +o)

...
Person can dust

Floor is cleanable
Dust can lay

...

WikiHow Crawling
Grammar

Depedency Extraction Relational Learning
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cleaning floor

dust lays

person dusts

-1.27839  dobj(v,Floor)
-1.50507  nsubj(v,Dust)

-0.5362  nsubj(v,Person)

(Generative weight learning)

v ∈ V = {cleaning, …, 
dusting, laying}

(Learning Predicate Rules)

Fig. 1. System’s pipeline for affordance mining from general texts: web-
crawled data is parsed for subject and object grammar dependencies, which
are used in a statistical relational learning framework to understand what
action can be executed by or executed on a given object.

as they define the ability modality in each sentence [3]:
We filter out only NSUBJ (noun subject) and DOBJ (direct
object) type of dependencies, e.g. dobj(cleaning-5, floor-7)
and nusbj(you-13, dusts-14), from all the grammar relations.
By gathering such tuples for all the web crawled text we
can statically learn two distributions over action-entity pairs
which represent the passive or active nature of the entity.
In this work, via statistical relational learning we learn
weights that help to infer probabilities representing each
tuple occurrence, which then can be used to estimate the
most likely action over an object. For example, the robot may
acquire the knowledge that ”Person can dust” and ”Floor
is cleanable”, useful for anchoring high-level entities to
actions, as discussed in previous literature [4]. An illustration
of the described pipeline is presented in Fig. 1.

This paper discusses in detail the approach and implemen-
tation within the artificial cognition domain, for acquiring
probabilities on object affordance at large scales for each
action, in view of supplying these as prior knowledge for
action planning.

II. RELATED WORK

The known literature making use of mappings between
affordances and language constructs solves the opposite
problem at hand, i.e., uses the mapping to derive language
constructs like nouns and adjectives from affordance labels



[5]. Another paper highlights an ontology-based affordance
concept for ubiquitous robots [6], aggregating semantic
relationships and entities as parameters from ontologies.
However, it does not debate on how the source was pop-
ulated, i.e. the focus of this contribution. Previous linguistic
work oriented towards semantic characterization and typed
dependency analysis create abstract textual representations
(e.g. vector spaces) [7], [8], but do not focus on verb-
noun tuple analysis for mining affordances, and do not
apply it to the robotics domain. There is other literature
which combines logical and distributional representations
of natural language by transforming distributional similarity
judgments into weighted inference rules using MLN [9],
however without grammar feature analysis.

Another paper [10] highlights the structured nature of
affordances, and suggests probabilistic ontologies based on
MLN to model and infer object-action relationships, but
focuses on inference of missing affordances and does not
consider population from grammar tuples. A previous con-
cept paper [3] highlights the possible use of technical text
mining for affordance acquisition, but this work nor others
discuss large scale statistical relational learning, nor its
evaluation for affordance mining. The closest work focusing
on MLN, language and artificial cognition together uses text
to infer action roles for action plan disambiguation [11].
However, such work does not focus on the scale of the text
mining, nor on the application of affordances, nor on the
informativeness analysis per se. In comparison to this, our
work achieves scalability by reducing the logical learning
rule set and by using the scalable system Tuffy [12], which
scales up weight learning and statistical inference in MLN by
using a Relational DataBase Management System (RDBMS).

III. MODEL

We now present the theoretical foundations of the main
two technologies we adopt: Stanford typed Dependencies
(SD) for the grammatical analysis, and the statistical rela-
tional framework of Markov Logic Networks (MLN), which
in our scope learns the probabilistic distributions over gram-
mar instances.

A. Stanford Typed Dependencies

This paper makes use of the Stanford typed dependencies
(SD) representation, which was designed to provide a
straightforward description of grammatical relations for any
user who could benefit from automatic text understanding
[13]. SDs have a simple design that provides semantically
meaningful information as well as an automatic procedure
to extract the relations. The SD representation for the
example sentence [14] ”Bell, based in Los Angeles, makes
and distributes electronic, computer and building products.”
is as follows:
nsubj(makes-8, Bell-1)
nsubj(distributes-10, Bell-1)
vmod(Bell-1, based-3)
nn(Angeles-6, Los-5)
prep in(based-3, Angeles-6)
root(ROOT-0, makes-8)
conj and(makes-8, distributes-10)

amod(products-16, electronic-11)
conj and(electronic-11, computer-13)
amod(products-16, computer-13)
conj and(electronic-11, building-15)
amod(products-16, building-15)
dobj(makes-8, products-16)
dobj(distributes-10, products-16)

The format specifies the type of the relation, and the
formal arguments of such predicate with ordinal numbers
for co-referencing. Out of the many SD types, we select
only NSUBJ and DOBJ for our proposed solution as they
reliably represent activity and passivity of an entity, and
present lower parsing error rates compared to other more
complex grammatical structures.

B. Markov Logic Networks (MLN)

A Markov logic network MLN makes use of a probability
distribution function of undirected graphical models (i.e.
Markov Random Fields) and first order logic as knowl-
edge representation formalism. MLNs combine statistical
and logical reasoning, and are now emerging as a powerful
framework which is being used in many data intensive
problems including information extraction, entity resolution,
and text mining. First Order Logic (FO) is defined by a set
of predicates quantified by existence or universality, and is
the level of logical abstraction that MLN makes use of.

More precisely, MLN theory defines a probability over
the world x as a log-linear model in which we have an
exponentiated sum of weights wj of a binary feature fj ,
and the partition function Z (see Eq. 1).

P (X = x) =
1

Z
exp


∑

j

wjfj(x)


 (1)

In our case, we consider the binary formula fj(x) as an
evaluation of a logic formula representing grammar relations
as predicates, and we substitute such term with nj(x), where
the latter is number of true groundings of such formula fj
in xj . The MLN formalism aims to learn the stationary
distribution (i.e. learn stationary weight values wj) of the true
groundings nj(x), possibly a sufficient heuristic condition
for scalability. Inference involves finding the most probable
state of a grounded MLN given some evidence, and is thus an
instance of weighted satisfiability. The reader might debate
why MLN, a framework with higher computational complex-
ity compared to other learning formalisms, is adopted in this
work. Naive Bayes methods on grammatical relationships (as
implemented in [15]), for example, do not directly model the
underlying semantic structure of grammatical relationships,
and does not enable inference, which MLN caters for.

Current implementations of MLNs do not scale to large
real-world data sets, which is preventing their widespread
adoption. For this reason we use Tuffy [12], that achieves
scalability via three novel contributions:

1) Maximum use of the relational optimizer using a
bottom-up approach to grounding,

2) a novel hybrid architecture that uses an RDBMS for
queries, and



3) Builds novel partitioning, loading, and parallel algo-
rithms that improve the efficiency of the stochastic
local search.

IV. SYSTEM FLOW
The system takes as input human-written text, to then

i) first parse it to obtain grammatical tuples. The parser
is built using grammar rules on SD and extracts semantic
dependencies in the text. However, as we are interested only
in SVO tuples, we ii) make use of a custom filter component.
The filter strips the position numbers for each word and
selects only those verb-noun pairs which will help us make
an informed decision regarding affordances (i.e. Subject-
Verb (NSUBJ) and Object-Verb (DOBJ) tuples). These filtered
tuples are then used to construct potentiality relationships
by iii) supplying such evidence as training data to the MLN
framework. We now provide further information regarding
the logical rules we adopt for the learning and inference
phase.

A. Implementation
In our MLN setting, we learn the frequency distribution

for each tuple occurrence for specified predicate rules, which
expand and ground (i.e. instantiate) only the entity (subject
or object). More precisely:
dobj(ve,+obj)
nsubj(ve,+subj)
The '+' operator indicates that the formula is expanded with
respect to its corresponding evidence values. As example,
for the formula used in our domain, +subj indicates that a
rule for each subject entity will be created in the database.
Conversely after training (i.e. weight learning), we used an
empty database and marginal inference (which employs MC-
SAT, an MCMC inference algorithm) to estimate and infer
the marginal probabilities. A full description of our imple-
mented pipeline is described in Algorithm 1, and exemplified
in Figure 1.

Algorithm 1 Object Affordance Learning
1: procedure AFFORDANCELEARNING()
2: Web Crawling:
3: for each URL in URLList do
4: text← text + WebCrawlText(URL)
5: // Web crawl text from the given link
6: Dependency Parsing:
7: for each sentence in text do
8: URL← StanfordDependencyParsing(sentence)
9: // Parse text to get semantic relations

10: Filter:
11: for each tuple in grammartuples do
12: SVOtuple← FilterSVOTuples(tuple)
13: // Filter out only nsubj and dobj SD
14: formatTuple← FormatSVOTuples(SVOtuple)
15: // Remove position labels
16: // Perform stemming & lemmatization on words
17: Ability Modality Processing:
18: learnwts← MLNWeightLearning(rules, evidence, query)
19: // Learn weights from the frequency distribution
20: of all tuples as evidence
21: inferProb← MLNInference(learnwts, noEvidence, query)
22: // Infer a probabilistic estimate of the SV & VO tuples

V. EVALUATION CRITERIA

Given the now explained pipeline procedure (exemplified
in Figure 1), we proceed to evaluate by comparing the priors
obtained with our system, with ground truths we obtained by
manually annotating the videos from the everyday activity
dataset CAD 120 [16], on a i5@2.4GHz 64-bit machine
with 4 GB of process-dedicated RAM.

A. Training Phase

We require precise potentiality relationships which can be
extracted from instruction manual-like text. In order to ensure
maximum word coverage, we pick how-to descriptions from
assorted domains ranging from kitchen utensils to furniture
building, from the WikiHow repository (www.wikihow.com).
WikiHow is an optimal source for instruction based text. We
performed text crawling on 100 different instructions and
processed them with the presented pipeline. As dependencies
(SD) are sentence bound, this text is iteratively parsed
sentence by sentence to get all relationships. In quantitative
terms, for 46 links, the total number of nsubj and dobj tuples
in this crawled text were 1007 and 950, respectively.

B. Testing Phase

As ground truth evaluation we use the CAD-120 dataset
[16] comprising of RGB-D video sequences of daily human
activities. We are interested in using the 10 high-level activ-
ities: MAKING CEREAL, TAKING MEDICINE, STACKING OBJECTS,
UNSTACKING OBJECTS, MICROWAVING FOOD, PICKING OBJECTS,
CLEANING OBJECTS, TAKING FOOD, ARRANGING OBJECTS AND

HAVING A MEAL. The annotated video labels give us the
precise information on the SVO tuples in consideration.

We represent these interactions in the form of nsubj(verb,
noun1) and dobj(verb, noun2) where the common 'verb' is
the action from a subject 'noun1' to an object 'noun2'. As for
the pipeline itself, the filter component processes the ground
truth to perform stemming using Porter’s Algorithm [17].
Also, word lemmatization is done on each tuple [18] to get
its root forms with verb or noun as appropriate contexts. This
widely used technique for normalizing words helps to get

Link # Word # nsubj # dobj # CC % MC % OoV %
1 550 34 32 6 2 92
2 736 46 47 8 4 88
3 1333 83 91 16 0 84
5 1277 87 78 14 0 86
10 3157 204 208 30 2 68
15 4619 312 293 44 6 50
20 6613 454 420 46 8 46
30 9853 658 640 40 18 42
46 15078 1007 950 50 20 30

100 31212 2087 1986 80 0 20

TABLE I
RESULTS OF THE SYSTEM’S EVALUATION FOR DIFFERENT AMOUNTS OF

LINKS SHOWING WORD, SUBJECT AND OBJECT CARDINALITY, AS WELL

AS CLASSIFICATION RESULTS AGAINST THE ANNOTATED CAD120
DATASET (CC FOR CORRECTLY CLASSIFIED, MC FOR MISCLASSIFIED,

AND OOV FOR OUT OF VOCABULARY).



Fig. 2. Evaluation in terms of classification rates for the different orders of word magnitudes of the crawled dataset.

inflected forms of all words to their root forms and facilitates
comparison.

For the the CAD-120 test corpora we have in total 1806
distinct constructed nsubj and dobj predicates. The total
number of distinct objects in test set is 10.

A conceptual evaluation is, that we do not attribute as
insecure something that is safe, nor the inverse, which can
be evaluated in terms of object-subject misclassification.
Another useful interpretation of the capability of this system
is in terms of scalability, which can be evaluated in terms
of amount of processed text. As such, a largely scaled
system should ensure maximum word coverage, so that out-
of-vocabulary exceptions are minimized, i.e. the affordance
database would be more complete and useful in uncommon
scenarios. We performed evaluation by randomly selecting
subsets of 1,2,3,5,10,15,20,30 from 46 WikiHow links (with
exception for the 46 and 100-link entries), and averaging
results over 5 different iterations. In Fig. 2 and Tab. I
we provide the values processed by our pipeline in terms
of predicate evidence quantity and subsequent classification
results. The system shows optimal convergence rates of entity
coverage and acceptable classification rates for a relatively
small dataset.

VI. CONCLUSIONS

In this work, we implemented a scalable system to ex-
tract object affordance priors from human-written texts for
safe human robot interaction. The basic assumption is that
subject-verb-object (SVO) tuples extracted from WikiHow
instructions have the information to model potentiality rela-
tionships over entities. Currently implemented with Stanford
Typed Dependencies and Markov Logic Networks (MLN),
this system can be easily scaled to incorporate a larger
word corpus (we successfully tested 100 links). An extensive
evaluation against an annotated version of the CAD120
dataset showed the success of the proof of concept. Future
investigations will concentrate on efficiency comparison with
naive Bayes methods, as well as increasing classification
rates by increasing the ruleset, which would exploit better
the underlying semantic structure of texts.
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Chapter 4

Conclusions

4.1 Concluding remarks

Artificial embodied assistants, in order to rationally act, infer inductively the nec-

essary information for action on the basis of their sensory perception. Such in-

formation is simultaneously available in large amount but always insufficient in

qualitative terms, so there is the need to i) understand what data is redundant

when recognizing or storing an action abstraction, ii) infer the unknown partial

knowledgenecessary for decisionmaking. The creation of symbolic data (i.e. frag-

ments of generalized knowledge) and its parametrization is often dependent on

external "common sense" knowledge, usually referring to context or frequently

occurring associations. The present thesis for consideration of the "MPhil by pub-

lication" provides a contribution in such area of neurosymbolic reasoning, by de-

bating the source of symbols and their manipulation (i.e. from natural language or

from observation), their representation (i.e. action symbols based on human mo-

tor coordination principles), as well as their disambiguation, for instance when a

natural language instruction from a human is excessively underspecified. The

contributions here presented provided independent results published in different
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venues, andwere brought together in a single scope of symbolic reasoning applied

to context analysis and generalization, to achieve context-independence.

4.2 Future work

On the road towards technical cognitive systems, prospection, i.e. the act of internal

simulation and evaluation of possible future events, is of paramount importance to

implement decisionmaking, where a decision is the choice of the incoming action

to execute given the past executions and local knowledge. These two problems are

usually enacted with two different theoretical frameworks: the first is known in

artificial intelligence theory as induction (Solomonoff 1964), where the prediction

system forecast considers the history of executed actions and the complexity of the

action hypotheses (Solomonoff 1964; Li and Vitányi 2013), while the second is the

use of partial knowledge for inference problems to deduce the most likely world.

To extend the logico-statistical representation systems presented in this thesis, fu-

ture work will explore computable Bayesian induction models, enabling i) the in-

trinsic complexity selection of the "automatic Occam’s Razor" (Jefferys and Berger

1992; Rasmussen and Ghahramani 2001), combining also ii) inference from par-

tial evidence, to exploit information from sensor and memory models. This can

be seen as the prediction of action-object pairs (such as Object-Action Complexes (OAC),

(Kraft et al. 2008)) within a sequence, on the basis of sensory information, adapt-

ing the likelihood distribution over time on the basis of the context. This, in the

view of the author, is a major necessary contribution towards autonomy: Given

the possibility of uniquely associating a perception component feed to a reliability

estimate, the author believes that the reliability of these can be modeled via rein-

forcement learning, enabling the learning of higher-level behavior policies. An

example of this is, for instance, is to take a decision based on multiple likelihood
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contributors (as in Kirk et al. 2015), and understanding over time, in an online

fashion, which of these sources are higher contributors to the decision making

than others, on the basis of context. While previous systems understand the im-

portance of Bayesian inference in cognitive decisionmaking (e.g. many important

neuroscientific pieces of work Knill and Richards 1996; Rao 2004), and of (voted)

classifier aggregation (Cho andKim1995; Kittler 1998), theydonot performonline

learning of the weight of the contribution to the decision making. In other terms,

none of the known previous works performs classifier fusion for online reasoning in

object-action perception-execution contexts. Current state-of-the-art systems, given

the "narrowness" of today’s neural and reasoning applications, therefore require

a predictor aggregation schema. The author claims that such reliability estimates

canmodel the degree towhich the present contextual informationmay present ev-

idence towards a fortiori reasoning, e.g. evidencewhich implies a strong argument,

which in turn provides information towards minor arguments. The simultaneous

learning of multiple reliability estimates which contribute to a given decision, are

key to different hypothetico-deductive reasoning capabilities, and allegedlymany

other higher-cognitive reasoning capabilities. This will be subject of future thor-

ough investigation by modeling reinforcement policies.
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