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Abstract—Time delay handling is a major challenge in 

dominant pole placement design due to variable number of poles 

and zeros arising from the approximation of the delay term. We 

propose a new theory for continuous time PID controller design 

using dominant pole placement method mapped on to the 

discrete time domain with an appropriate choice of the sampling 

time to convert the delays in to finite number of poles. The 

method is developed to handle linear systems, represented by 

second order plus time delay (SOPTD) transfer function models. 

The proposed method does not contain finite term 

approximations like various orders of Pade, for handling the time 

delays which may affect the number and orientation of the 

resulting poles/zeros. Effectiveness of the proposed method have 

been shown using numerical simulations on nine SOPTD test-

bench processes and another six challenging processes including 

single, double integrators and process with zero damping.  

 

Index Terms—dominant pole placement, PID controller, 

SOPTD process, pole-zero matching, Euler’s discretization 

I. INTRODUCTION 

MONGST various methodologies of PID controller 

design, the dominant pole placement is quite popular for 

delay-free systems [1]. Because in this method, the 

control designers can choose their desired performance (e.g. 

closed-loop time-constant/frequency, damping ratio) in both 

continuous [2] and discrete time [3]. However, these methods 

are difficult to extend for time-delay systems as mentioned in 

[1], due to having high number of poles and zeros resulting 

from the Pade approximation of the time delay term (
Lse−

). 

Other contemporary researchers have proposed methods to 

find regions of closed-loop pole locations inside the unit circle 

by designing stabilizing discrete-time state-feedback controller 

using LMI approach [4], [5], [6]. These methods used either 

with state augmentation [5] or without it [6]. Whereas, only 

few attempts e.g. [7], [8] have been made to design dominant 

pole placement PID controller for time delay systems in 

discrete time. In [7], root locus and modified Nyquist plot 
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have been used to design guaranteed dominant pole placement 

based PID controller. In [7], the PID controller parameters

 ,i dK K are calculated depending on pK  which is obtained 

from Nyquist plot, thus does not have the flexibility of 

choosing the three controller gains independently. In [9], a 

matrix method has been used to obtain the sufficient condition 

for finding dominant pole locations of the discrete-time 

delayed system, considering parametric uncertainty. 

This paper reports the dominant pole placement PID 

controller design methodology for controlling continuous time 

SOPTD systems while extending earlier concepts for delay-

free systems in [2]. Many process industries involve control 

problems with both sluggish and oscillatory open loop 

dynamics as well as different lag to delay ratio and can be 

modeled using the SOPTD template which makes it a natural 

choice for considering as a template for a self-regulating 

process with delay [10]. It is quite challenging to apply the 

pole placement based PID controller tuning method directly to 

the SOPTD systems because in the presence of time delay, the 

corresponding order of the closed loop system becomes 

infinite under an infinite term Maclaurin series expansion of 

the exponential term ( Lse− ) [11]. The presence of time delays 

in the characteristic polynomial makes it a quasi-polynomial 

[12], [13] and thus makes it harder for not only guaranteeing 

stability but also satisfying user-defined specifications. Under 

a scenario of truncated series or Pade approximation of the 

delay term with a chosen order, the number of poles and zeros 

in the complex s-plane may be arbitrary. To eliminate this 

increased order problem and handling them with just two PID 

controller zeros, Wang et al. [8] have suggested to map the 

time delay term in to the discrete time domain, as an integer 

multiple of the sampling time (Ts) such that the time delay 

term ( Lse− ) becomes multiple concurrent poles at the center 

of the complex z-plane. In practice, the choice of the sampling 

time should be sufficiently small unlike the recommendations 

like sT L as in [8]. Our proposed method does not impose 

such restrictions and can easily be extended for large delay 

systems, because ideally the sampling time should be much 

smaller than both the system’s open loop time constant and 

delays i.e.  ,sT L  . 

In this paper, we relax the restriction in [8] on the choice of 

sampling time i.e. sT L , but rather choose Ts such that the 

delay to sampling time ratio becomes a positive integer i.e. 

,sL T n n +=  . This allows one to get a fixed number of 

poles to handle in the complex z-plane for pole placement 

based PID controller design [14], rather than a variable or 

Delay Handling Method in Dominant Pole 

Placement based PID Controller Design 

Saptarshi Das, Member, IEEE, Kaushik Halder, and Amitava Gupta 

A 



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 2 

even infinite number of poles due to high order Pade 

approximations [11]. Thus, mapping of the dominant pole 

placement design in discrete time, transforms the quasi-

polynomial in s-domain to a finite term rational polynomial in 

z-domain [15], [8], which can easily accommodate user’s 

specifications using a coefficient matching method. Therefore, 

the dominant poles can now be individually mapped between 

the complex s z domain after their locations are determined 

from the continuous time domain specifications, set by the 

control designer.  

Here, the continuous time PID controller is discretized by 

using the Euler’s method with a choice of sampling time (Ts). 

The continuous time PID controller cannot be discretized by 

pole-zero matching method because at s = 0 the dc-gain of the 

PID controller becomes infinite. Next, the coefficient 

matching method [16], [17] is used to determine PID 

controller gains  , ,p i dK K K for the SOPTD process, by 

satisfying the user’s specifications. The discrete time PID 

controller which is equivalent to its continuous time version 

for sufficiently small sampling time, can then be used to 

control the continuous time SOPTD process. Following the 

method discussed in [8], our method uses the discretization 

step to map the time delays as a finite number of poles in the 

complex z-plane to allow a mapped dominant pole-placement 

in discrete time. After the controller gains and the pole 

placement parameters are determined in discrete time domain, 

they can be brought back to the continuous time domain as 

such the whole design method was carried out for continuous 

time SOPTD processes. 

II. THEORETICAL FORMULATION 

A. Dominant Pole Placement Design in Discrete Time 

To design dominant pole placement based discrete PID 

controller for a SOPTD system as shown in Figure 1, the 

following steps are to be followed to discretize the continuous 

time SOPTD processes as in [14]: 

Step 1: Transform the poles and zeros form continuous time to 

discrete time using ssT
z e= and a chosen sampling time Ts such 

that the time delay 
Ls ne z− −= where, ,sL T n n +=  . 

Step2: Zeros/poles at s = −  is mapped at 0z =  and 

zeros/poles at 0s =  is mapped at 1z = .  

Step 3: The dc-gain of the open loop system between s z

domain needs to be matched as: 

( ) ( )
0 1s z

K G s G z
= =

= = .                                 (1) 

Now, let us consider the open loop SOPTD system in 

continuous time as 

( )2 2( ) 2 1Ls

olG s Ke s s  −= + + ,                    (2) 

where,  , , , olK L    represents the dc gain, time delay, time 

constant and damping ratio of the open loop SOPTD system 

(2) respectively.  

The corresponding PID controller in continuous time can be 

represented as: 

( ) p i dC s K K s K s= + + ,                            (3) 

where,  , ,p i dK K K  represent the proportional and integro-

differential gains of continuous time PID controller.  

It is seen that the delay-free part of the SOPTD system (2) has 

two open loop poles in continuous time, located at:  

( ) ( ) 2

1,2 1ol ols j   = −  − .                               (4) 

Again (4) can be rewritten using the natural frequency (

1/ol = ) instead of the time constant as: 

2

1,2 1ol ol ol ols j   = −  − .                               (5) 

 
Figure 1: Schematic diagram of the PID controlled SOPTD system. 

B. Discretized SOPTD System using Pole-zero Matching  

First, we map the continuous-time poles in (5) on to the 

discrete-time domain with a chosen sampling interval sT  as in 

[14] which yields: 
1 2

1 2,s ss T s T
z e z e= = .                                (6) 

Using (6) and poles arising from the time delay term in step 1 

of the previous sub-section i.e. 
Ls ne z− −= , the corresponding 

discretized open loop transfer function can be represented as:  

( )( )( )1 2( ) nG z K z z z z z= − − ,                           (7) 

where, K  is the equivalent static gain of the open loop 

discrete time process in continuous time. The value of K can 

be obtained following the method in [14] as: 

( )( )2 2

1 20 1
2 1

Ls

n

ol s z

K K
e

s s z z z z z  

−

= =

=
+ + − −

,                   (8) 

which implies,   

( )( )1 21 1K K z z= − − .                            (9) 

C. Discrete PID Controller Design using Euler’s Method  

Here, the continuous time PID controller is transformed into 

the discretized form by using the Euler’s discretization or the 

backward difference formula given by: 

( )11 ss z T−→ − .                    (10) 

Substituting (10) in (3), the corresponding discrete time PID 

controller can be represented as: 

( )
( ) ( )

( )

2 2

2

2i s p s d p s d d

s

K T K T K z K T K z K
C z

T z z

+ + + − − +
=

−
.  (11) 
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Therefore, the characteristic polynomial for discretized 

SOPTD  process (7) controlled by the discrete PID controller 

(11) in closed loop can be represented as: 

( ) ( )1 0C z G z+ = ,                   (12) 

which implies, 

( )( )( )

( )

( )

( )( )( )

2

1 2

2 2

2

1 2

2
0

n

s

i s p s d

p s d d

n

s

z z z z z z z T

K T K T K z
K

K T K z K

z z z z z z z T

  − − − +
  

  + +
  
   + − − +

  
=

− − −
.                   (13) 

This yields the following expression: 

( )( )( )

( ) ( )

2

1 2

2 2 2 0

n

s

i s p s d p s d d

z z z z z z z T

K K T K T K z K T K z K

 − − − +
 

 + + + − − + =
 

.  (14) 

It is evident that (14) has (n+4) number of roots. In fact, the 

number and orientation of the zeros and poles of the closed 

loop system can be modulated by a proper choice of the PID 

controller gains  , ,p i dK K K and sampling time ( sT ). Now, 

the PID controller gains  , ,p i dK K K can be obtained from the 

unique expressions in the ( )4
th

n + order polynomial (14). 

From the closed loop characteristic polynomial (14), it is 

interesting to note that the PID controller gains  , ,p i dK K K

are connected only with the terms z0 to z2 i.e. the expression 

with the coefficient K  and rest of the coefficients i.e. for z3 to 

zn+4 do not contain any PID controller parameters. Therefore, 

in order to obtain the PID controller gains  , ,d p iK K K using 

the coefficient matching method, only the last three 

coefficients of the expanded polynomial equation i.e.

( )0 1 2, ,z z z
 

in (14) needs to be compared with the same 

coefficient of the desired closed loop characteristic 

polynomial. To allow dominant pole placement by coefficient 

matching, we choose the desired closed-loop characteristic 

polynomial of (n+4)th order considering two specified 

dominant poles and rest being non-dominant in nature. Here, 

the non-dominant poles are considered to have three different 

characteristics i.e. all real, all complex conjugates where the 

dominant pole placement parameter (m) being connected with 

either the real or both real/imaginary parts of the non-

dominant poles. In order to obtain the dominant pole 

placement based PID controller, the coefficient matching 

method has been adopted as in [16], [17], and the results are 

given next. 

D. Expressions for Stabilizing PID Controller Gains  

Now, expressions for the discrete PID controller gains 

 , ,p i dK K K  are obtained using coefficient matching between 

the characteristic polynomial of the closed loop system with 

the given set of open loop process parameters  , , , ,ol olK L     

vs. the desired characteristic polynomial with the user-defined 

closed loop specifications , ,cl clm   , representing the pole-

placement parameter, closed loop damping ratio and 

frequency respectively [2]. Now, in order to obtain the 

expressions for the PID controller gains, the desired closed 

loop characteristic equation should contain two dominant 

poles satisfying the user’s specifications apart from the finite 

number of non-dominant poles. The number of non-dominant 

poles in z-domain will depend on the sampling time and hence 

order of the closed loop system. With a proper selection of the 

user’s specifications , ,cl clm   and utilizing the analytical 

expressions, obtained from the coefficient matching for the 

characteristic polynomial in z-domain, one can find out the 

PID controller gains  , ,p i dK K K that not only stabilizes the 

closed loop system but also minimizes certain time-domain 

objective function. The detailed derivations for these cases to 

obtain the PID controller gains are shown next.  

III. DOMINANT POLE PLACEMENT BASED PID CONTROLLER 

DESIGN IN DISCRETE TIME DOMAIN  

The discrete time PID controller structure (11) is used to 

find out the gains using dominant pole placement method via 

the coefficient matching method to handle the discrete time 

system (7), originally obtained from the SOPTD model. The 

analytical expressions for PID controller gains differs due to 

the nature (i.e. real/imaginary) and whether the pole-

placement parameter m is present in the real/imaginary parts 

of the non-dominant poles. Derivations for these three cases 

are given in the next sub-sections.  

A. All Non-Dominant Real Poles 

In order to ensure dominant pole placement with the 

discrete PID controller gains  , ,p i dK K K , the dominant 

complex conjugate poles (
1,2

ds ) and the non-dominant ( 3

nds ) 

real poles of the desired closed loop characteristic polynomial 

in continuous time are considered as: 

( )2

1,2 31 ,d nd

cl cl cl cl cl cls j s m     = −  − = − .                 (15) 

Now, after mapping of the poles in (15) with sampling time Ts, 

the z-plane locations of the closed loop dominant and non-

dominant poles are: 

1 2 3

1 2 3, ,
d d nd

s s ss T s T s Td d ndz e z e z e= = = .                  (16) 

Then using (16), the ( )4
th

n +  order discretized desired 

characteristic polynomial while considering two dominant and 

rest of all non-dominant real poles can be represented as:  

( ) ( )( )( )
2

1 1 2 3 0
n

d d ndz z z z z z z
+

 = − − − = .                      (17) 

Now using the binomial expansion for the polynomial term in 

(17) containing the non-dominant poles yields:  
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( )

( ) ( )( )

0
4

3

1 0
3

3 1 2 3

2

0

2 2

1 0

n nd

n nd d d nd

n
z z

n n
z z z z z

+

+

 +  
− +  

  

 + +    
− − + − + +    

    

 

 

( )

( ) ( )

( )

2

3

1
2

3 1 2

3 1 2

2

2

2

1

2

n
nd

n
nd d d

n
nd d d

n
z

n

n
z z z z

n

n
z z z

n

+

+

 +  
−  

+  
 + 
 − − + + 

+  
 

+  + −    

  

( ) ( )

( )

2

3 1 2

1

1

3 1 2

2

2

2

1

n
nd d d

n
nd d d

n
z z z

n
z

n
z z z

n

+

+

 +  
− − +  

+   +
 + 
 + − 

+   

 

( )
2

0

3 1 2

2
0

2

n
nd d d

n
z z z z

n

+ +  
− =  

+  
,                     (18) 

where, 
( )

!

! !

n

k

n n
C

k k n k

 
= = 

− 
is the binomial coefficient.   

Now, matching the coefficient of the 0 1 2, and zz z  terms of 

both the equations (14) and (18) yields the corresponding PID 

controller gains as: 

( )
2

0

3 1 2

2
:

2

n
nd d d

d

n
z K z z z K

n

+ + 
= −  

+  
  

( ) ( )

( )

2

3 1 2

1

1

3 1 2

2

2 2
:

2

1

n
nd d d

d
p s

n snd d d

n
z z z

n K
z K KT

Tn
z z z

n

+

+

  + 
− − +   

+   
= − −  +   + −   +   

  

( )

( ) ( )

( )

2

3

1
2 2

3 1 2 2

3 1 2

2

2

2
:

1

2

n
nd

n pnd d d d
i s

s s

n
nd d d

n
z

n

Kn K
z K z z z KT

n T T

n
z z z

n

+

+

  + 
−   

+   
  +   = − − + − − 
  + 
  

+   
+ −   

   

. (19) 

B. All Non-Dominant Complex Conjugate Poles with m in 

Both Real and Imaginary Parts  

In this section, within the dominant pole placement method, 

all the non-dominant poles are considered as complex 

conjugates. It is possible only when the order of the 

discretized closed loop characteristic polynomial (14) is even 

i.e. ( )2n + . In this case, the non-dominant complex 

conjugate poles can further be described of two types i.e. the 

pole placement parameter (m) connected with both the real 

and imaginary part of the complex conjugate non-dominant 

closed loop pole and the other case being m connected with 

the real part only which is described in the next sub-section. In 

the first case, the non-dominant pole locations are: 

( )2

4,5 1nd

cl cl cl cls m j   = −  − .                    (20) 

Then discrete time equivalent of (20) can be represented as: 

 4 5

4 5,
nd nd

s ss T s Tnd ndz e z e= = .                  (21)

Now using (16) and (21) and also for complex conjugate non-

dominant poles, the desired closed loop characteristic 

polynomial can be represented as: 

( ) ( )( )( ) ( )
2 2

2 2
2 1 2 4 5 0

n n
d d nd ndz z z z z z z z z

+ +

 = − − − − = .       (22) 

Using binomial expansion, equation (22) yields: 

( ) ( )

2

0 0
4

4 5

2

2

0

n nd nd

n

z z z+

 + 
   − − +      

 

( )

( ) ( )

( ) ( )

2

1 2

0 1
3

4 5

1 0

4 5

2

2

0

2 2

2 2

0 1

2 2

2 2

1 0

d d

n nd nd

nd nd

n

z z

n n

z z z

n n

z z

+

 + 
  − +     
 

+ +   
   + − − + +
     
   

 + +  
   + − −         

 

( ) ( ) ( ) ( )

( ) ( )

( )

( ) ( )

1 2

2 2 2 2

2 2 2 2
4 5 4 5

2

2 2
1 2 4 5
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2 2
4 5 4

2 2

2 2
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2 2

2

2

2

2 2

2 2

2

2 2

d d

n n n n
nd nd nd nd

n n
d d nd nd

d d

n n
nd nd n

n n

z z
n n

z z z z

n

z z z z
n

z
n n

z z
n n

z z z

− + + −

+

+ +  
  
  

− +  
  
  

 
 − − + − − 

 

+ 
 

+ − − 
 
 
 

+ +  
  

− +  
+  

  
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 − − + −( ) ( )
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2 2
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2

2
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 
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 
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 
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 
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 
 
 
  
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  
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.       (23) 

The coefficients (  , 4, 3, ,2,1,0jA j n n= + + ) of this 

characteristic polynomial can easily be calculated from 

the open loop system parameters , , , ,ol olK L    and the 

user-defined specifications , ,cl clm   which yields: 

( ) 4 3 2 1 0

2 4 3 2 1 0 0n n

n nz A z A z A z A z A z+ +

+ + = + + + + + = . (24) 

Now matching the coefficient of (14) and (24), the 

corresponding PID controller gains are obtained as: 

0

0: dz K A K=   

( )( ) ( )( )1

1: 2p s d sz K A KT K T= − −   

( )( ) ( ) ( )2 2 2

2: i s p s d sz K A KT K T K T= − − .                    (25) 

C. All Non-Dominant Complex Conjugate Poles with m Only 

in the Real Part 

Similar to the treatment in the above sub-sections, here the 

non-dominant complex conjugate closed loop poles in 

continuous time can be described as: 

2

6,7 1nd

cl cl cl cls m j   = −  − .                   (26) 

In (26), only real part of the non-dominant complex conjugate 

pole is dependent on the pole placement parameter (m). Now, 

its discrete time equivalent poles can be obtained as:   

6 7

6 7,
nd nd

s ss T s Tnd ndz e z e= = .                  (27) 

Now using (16) and (27), the desired closed loop characteristic 

polynomial can be represented as: 

( ) ( )( )( ) ( )
2 2

2 2
3 1 2 6 7 0

n n
d d nd ndz z z z z z z z z

+ +

 = − − − − = .       (28) 

This expression for the characteristic equation is exactly the 

same as in the previous case (22), although the non-dominant 

poles are now chosen using (26), instead of (20) which alters 

only the real part instead of both the real/imaginary parts. This 

modifies the coefficients of the characteristic equation (28) 

although the open-loop and desired closed-loop parameters 

may have the same value which is represented as: 

( ) 4 3 2 1 0

3 4 3 2 1 0 0n n

n nz A z A z A z A z A z+ +

+ + = + + + + + = . (29) 

Now using the coefficient matching method similar to the 

previous case one gets the controller gains as: 
0

0: dz K A K=   

( )( ) ( )1
1: 2p s d sz K A KT K T= − −   

( )( ) ( ) ( )2 2 2
2: i s p s d sz K A KT K T K T= − − .                    (30)              

IV. RESULTS AND DISCUSSIONS 

A. Optimization Based Specification and Controller Design  

In this section, we use nine test-bench processes to show the 

effectiveness of the proposed methodology while using 

various expressions for the PID controller gains. Each of the 

nine test bench processes under consideration has different 

open-loop characteristics viz. lag-dominant (G1-G3), balanced 

(G4-G6) and delay dominant (G7-G9) with different L/T ratio 

i.e. ( ) , , 1L T  =  , which are further divided in three different 

damping scenarios for representing different open-loop 

oscillation levels i.e. under-damped, critically-damped, over-

damped ( , , 1ol  =  ) respectively [18]. Table 1 describes 

these realistic process models along with their open-loop 

parameters e.g. process G9 represents an HVAC system model 

between fan speed to the supply air pressure control loop [19]. 

Now the three different expressions (19), (25) and (30) can be 

used for obtaining the PID controller gains for a chosen 

sampling time Ts = 0.01 sec for each test-bench process. 

However, the choice of the closed loop parameters can vary 

widely and for certain demanded specifications, it might not 

be possible to get any feasible solution at all [20], [21]. 

Therefore, we choose the three closed loop performance 

parameters , ,cl clm   simultaneously using a random search 

and optimization method, in particular the particle swarm 

optimization (PSO) algorithm due to its well-known capability 

to quickly search a large parameter space even for complex 

cost function landscape. This can often be advantageous than 

employing a rejection sampling algorithm like [18] to filter out 

only the stabilizing set of specifications and the corresponding 

controller gains. We use here the integral of squared error 

(ISE) criteria (31) for the PSO based search of the optimum 

specification  , ,opt cl clm  = and each feasible point in the 

search space can also be mapped on to the corresponding PID 

controller parameter space using the respective analytical 

expressions given above. Here, the ISE cost function has been 

considered for a step-change in the set-point and the 

corresponding responses vary with random selection of the 

three design parameters within a chosen interval of the search 

domain: 

( ) ( ) ( )( )
2

0

arg min ,

T

opt J J r y dt


   


= = − .                  (31) 
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The PSO algorithm was run in the Matlab environment with a 

swarm size of Nparticle = 300. The self and social adjustment 

weights were chosen as 1.49p g = =  with an adaptive inertia 

 0.1,1.1W  chosen in the PSO update equation [22]: 

( ) ( )   ( ), , 0,1p p g g p gv wv r p x r g x r r

x x v

 = + − + − 

 +

.    (32) 

 
Figure 2: Run-time distribution of the search algorithm on 1-12 core CPU. 

 

TABLE 1: 
TEST-BENCH SOPTD PROCESSES AND THE OPEN LOOP PARAMETERS 

Process Model K L ζol τ L/τ 

G1=e-s/(9s2+2.4s+1) [18] 1.00 1 0.40 3.00 0.33 

G2=e-0.8s/(s2+2s+1) [18] 1.00 0.8 1.00 1.00 0.80 

G3=e-2s/(1+10s)(1+4s) [18] 1.00 2 1.11 6.32 0.32 

G4=0.5e-s/(s2+1.2s+1) [18] 0.50 1 0.60 1.00 1.00 

G5=e-s/(1+s)2 [18] 1.00 1 1.00 1.00 1.00 

G6=e-3s/(9s2+24s+1) [18] 1.00 3 4.00 3.00 1.00 

G7=e-10s/(s2+0.5s+1) [23] 1.00 10 0.25 1.00 10.00 

G8=e-10s/(s+1)2 [18] 1.00 10 1.00 1.00 10.00 

G9=e-2s/(0.12s2+1.33s+1.24) [19] 0.81 2 1.72 0.31 6.43 

 

The simulations were run on a 64-bit Windows PC with 64 

GB memory and an AMD Ryzen 7, 3.6 GHz processor where 

simulations on a single core takes 302 sec ≈ 5 min time on an 

average and the same setup running on 12 parallel cores takes 

an average run time of 64 sec ≈ 1 min. The search ranges for 

(31) are taken as       0,20 , 0,5 , 0,20cl clm   =    . To 

avoid search in the infeasible and unstable regions of the 

parameter space and for highly oscillatory closed loop 

responses, the penalty method has been adopted where such 

worse solutions are penalized with a large value of
6ISE 10 . 

The adopted stability check includes calculating the real part 

of closed loop poles without the delay for a randomly guessed 

specification and PID controller set and lying in the negative 

half of the s-plane. The scalability of the PSO based parallel 

search algorithm on 1 to 12 CPU cores have been shown in 

Figure 2. Such a randomized search not only yields the 

optimum set of design parameters but also the optimum PID 

controller gains corresponding to the minimum ISE criteria 

(31) and has been reported in the supplementary material 

along with the number of objective function calls (Nfeval).  

B. Control Performance of the Test-bench SOPTD Processes  

As shown in Figure 1, for different inputs the following 

nine transfer functions play a significant role in guaranteeing 

internal stability and also for evaluating different performance 

measures of the feedback control loop [24]: 

1

2

3

1 1
1

1
1

1

x e G r

x u d C C d
GC

x y n GC G n

− −       
       

= + = −
       +
       +       

.                (33) 

Amongst these nine, the four transfer functions play a major 

role to characterize the control system performances [21], 

[24], [25], i.e. sensitivity ( )eS s , complementary sensitivity 

( )T s , disturbance sensitivity ( )dS s  and control sensitivity

( )uS s as follows: 

( ) ( )( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( )

2 3

3

3

2

1 1 ,

1 , 1,

1 ,

1 .

e ol re dx nx

ol ol rx e

d ol dx

u ol rx

S s G s G G G

T s G s G s G S s T s

S s G s G s G

S s C s G s G

= + = = =

= + = + =

= + =

= + =

   (34) 

However, for standard PID controller structure without a 

derivative filter, the control sensitivity becomes improper 

transfer function with more zeros than poles which forbids 

direct calculation using step command in Matlab. As an 

alternative approach, the control signal can be computed with 

an impulse input to transfer function uS s  if the control 

sensitivity is improper, as in the present case. Rest of the 

responses in the manipulated (u) and control variables (y) for 

unit change in the set-point (r) and disturbance inputs (d) can 

be calculated as:  

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

1

1 1

1

1 1

1

2 1 2

1

1 1

, ,

, ,

, ,

, .

r

d d

r u

d e

y t d s T s d s H s

y t d s S s d s H s

u t d s d s S s d s s

u t d s S s d s H s



−

−

−

−

= =

= =

= =

= =

                   (35) 

Here, ( ) 1H s s= and ( ) 1s = represent the Heaviside step 

function and the Dirac delta function respectively and ( )1− 

represent the inverse Laplace transform operator.  

Figure 3-Figure 4 show the time responses of the controlled 

variable (y) due to a step changes in set-point and disturbance 

input respectively. The corresponding manipulated variables 

are shown in Figure 5-Figure 6 respectively, with the three 

different non-dominant pole types for the nine test-bench 

processes. These time-domain responses remain almost 

unchanged when the natures of non-dominant poles are all real 

and all complex conjugate with m being present in the real part 

only as shown in Figure 3-Figure 6. More oscillatory time 

responses are obtained when all non-dominant poles are of 

complex conjugates type where m is attached with both real 

and complex parts.  
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Figure 3: Controlled variable due to step change in set-point for the nine test-

bench processes G1-G9. 

 
Figure 4: Controlled variable due to step change in disturbance input for the 

nine test-bench processes G1-G9. 

 
Figure 5: Manipulated variable due to step change in set-point for the nine 

test-bench processes G1-G9. 

 
Figure 6: Manipulated variable due to step change in disturbance input for the 
nine test-bench processes G1-G9.    

 

The magnitude plots of sensitivity ( )eS j  and 

complementary sensitivity ( )T j  trade-offs [21] can be 

seen in Figure 7. The sensitivity has high-pass and co-

sensitivity has got low-pass characteristics, as expected. It is 

evident that for the case of m in real/imaginary part has a 

better sensitivity response. Conversely, the all real case has 

better complementary sensitivity response, implying better 

noise rejection characteristics. Also, the pole type with best 

sensitivity response has the worst complementary sensitivity 

response due to their inherent design conflicts [21].  

 
Figure 7: Sensitivity and complementary sensitivity functions using various 

non-dominant pole types for the nine test-bench processes G1-G9. 

 
Figure 8: Stability region obtained by PSO based sampling in the three-design 

parameter space {m, ζcl, ωcl} for the nine test-bench processes G1-G9. 

 
Figure 9: Stability region obtained by PSO based sampling in the 3D space of 

PID controller parameters {Kp, Ki, Kd} for the 9 test-bench processes G1-G9. 

 

It is worth noting that although the specifications {m, ζcl, 

ωcl} are different after the optimization as shown in the 

supplementary material, some of the closed loop performances 

are quite similar, despite the fact the controller gains are 

derived from completely different mathematical expressions. 

During the search process by the PSO algorithm, it explores 

the entire 3D design parameter space and the feasible solutions 

are shown in Figure 8 for the three different pole types. Each 

feasible sampled data-point in the design parameter space can 

also be mapped on to the corresponding 3D space of PID 

controller gains as shown in Figure 9, which are widely 

studied as the stability regions in [12], [13]. It is worth noting 

that here they take a form of straight line or a plane which can 

be justified from the expressions for PID gains. Also, 

depending on the process characteristics and the desired 
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closed loop specifications, it is possible to get a relatively low 

value for the derivative and proportional gains compared to 

the integral gain as observed from Figure 9. For the three 

expressions of non-dominant pole types and nine test-bench 

processes, the distribution of the feasible sampled points or the 

stability region can also be viewed in terms of the ISE values 

in the joint parameter spaces as shown in Figure 10-Figure 12, 

where the colorbar represent the ISE value. 

 
Figure 10: Distributions of ISE as functions of {m, ζcl} for G1-G9. 

 
Figure 11: Distributions of ISE as functions of {m, ωcl} for G1-G9. 

 
Figure 12: Distributions of ISE as functions of {ζcl, ωcl} for G1-G9. 

 
TABLE 2: 

TEST-BENCH OF DIFFICULT PROCESSES AND THE OPEN LOOP PARAMETERS 

Process Model K L ζol τ L/τ 

IPD: G10=e-s/s [26] 104 1 5×103 1 1 

I2PD: G11=e-s/s2 [26] 108 1 1 104 10-4 

Only delay: G12=e-s [26] 1 1 1 10-4 104 

FOLIPD: G13=e-s/s(s+1) [27] 104 1 50.005 100 0.01 

FOPTD: G14=e-s/(1+s) [28]  1 1 50.005 0.01 100 

Undamped: G15=e-s/(s2+1) [29] 1 1 10-4 1 1 

C. Restrictions on the SOPTD Process Parameters 

Although the method is generic for any SOPTD processes, 

there is some restrictions on the choice of τ vs. ζol as shown in 

Figure 13, showing that out of the four quadrants, two 

parameters needs to be both positive or negative which does 

not include open loop unstable processes. In order to verify 

this the following few nodes are chosen in the stable region of 

Figure 13 which also indicates some special cases of the 

generalized SOPTD template in terms of nearly zero values (ε) 

and unit squares on both the system parameters:    

1) P, P*, S, S*: represent process with only delay (G12), 

2) Q, Q*: represent critically damped SOPTD process with 

repeated poles (G2, G5, G8), 

3) R, R*: undamped system with delay (G15). 

 
Figure 13: Stable regions in the τ vs. ζol plane for the controller design. 

D. Extending the Design for Other Difficult Processes 

Although the methodology was developed to stabilize 

SOPTD processes, it is explored in this section that certain 

classes of difficult processes can also be cast into the SOPTD 

template (at least asymptotically) for which the same 

stabilization process can be applied. This typical include 

several classes of processes with integrators. In order to show 

the generalization capability of the proposed method, the 

second test-bench of processes are shown in Table 2.  

 
Figure 14: Controlled variable due to step change in set-point for the six-
complex test-bench processes G10-G15. 

 

Now using only real poles, the SOPTD process in (2) can 

also be expressed as: 

 
( )( )

( )1 2

1 21 2

1 1
( ) .

1 1

Ls
LsKe

G s K e s s
s s

 
  

−
−

   
= = + +    + +    

 

 (36) 

Therefore, the denominator of (36) becomes: 

( )( ) ( )2

1 2 1 2 1 21 1 1s s s s     + + = + + + .  (37) 

Comparing (37) with the standard form ( )2 2 2 1ols s  + + : 

( ) ( )

2
1 2

1 2

1 2 1 2 1 2

,,

2 2ol ol

    

        

==  
 

+ = = + 

,  (38) 
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where, the DC gain of ( )G s  in (36) is 
1 2K K =  which 

transforms it in the SOPTD template in (2). For
1 2 1K K = = , 

we get 
1 21K  = . Now with suitable choice of 

1 2,  we can 

extend the design to accommodate more difficult processes as 

follows:  

1) Integrator Plus Time Delay (IPD): ( ) LsG s Ke s−= ,  (39) 

with 
1 2, 0 →  → . For implementation purpose one can 

assume 
4 4

1 210 , 10  −= = which yields: 

( ) ( )1 2 1

1

1
( ) 1 , 1 .

Ls
Ls Ke

G s K e s s K K
s

  


−
−

  
= + + = = =   

  

                        (40) 

2) Double Integrator Plus Time Delay (I2PD): 
2( ) LsG s Ke s−= ,                 (41) 

with 
1 2, →  →  . For implementation purpose one can 

assume 
4 4

1 210 , 10 = =  in (36) which yields the I2PD 

process (41) with 
1 21 .K K  = =   

3) Only Delay: ( ) LsG s Ke−=             (42) 

where, 
1 20, 0 → → . For implementation purpose one can 

assume 
4 4

1 210 , 10 − −= =  in (36) which yields the only delay 

process (42) with 1 .K K= =  

4) First Order Lag with Integral Plus Delay (FOLIPD): 

( )( )( ) 1LsG s Ke s s−= +              (43) 

where, 
1 2,  →  → . For implementation purpose one can 

assume 
4

1 210 ,  = =  in (40) which yields the FOLIPD 

system (43) with 
11 .K K = =    

5) First Order Plus Time Delay (FOPTD): 

( )( ) 1LsG s Ke s−= +              (44) 

where, 
1 20,  → → . For implementation purpose one can 

assume 
4

1 210 ,  −= =  in (36) which yields the FOPTD 

system (44) with 1 .K K= =   

6) Undamped System with Delay:  

( )2 2( ) 1LsG s Ke s−= +              (45) 

where, 0ol → . In this case, one can assume 
410ol −=  in (2) 

which yields the undamped system with delay (45) with 

1 .K K= =   

A similar method has been applied to design PID controllers 

using three pole types and PSO based sampling and the 

optimal controller parameters are given in the supplementary 

material. The time domain responses for set-point tracking, 

disturbance rejection, the control signals are shown in Figure 

14-Figure 17 respectively for the six test-bench processes in 

Table 2. The sensitivity and complementary sensitivity plots 

are compared in Figure 18 which also shows the superiority of 

the all real pole-based design compared to the other two for 

this test-bench of difficult processes with integrators.   

 
Figure 15: Controlled variable due to step change in disturbance input for the 

six-complex test-bench processes G10-G15. 

 
Figure 16: Manipulated variable due to step change in set-point for the six-

complex test-bench processes G10-G15. 

 
Figure 17: Manipulated variable due to step change in disturbance input for 

the six-complex test-bench processes G10-G15.   

  
Figure 18: Sensitivity and complementary sensitivity functions using various 

non-dominant pole types for the nine test-bench processes G10-G15. 
 

The associated stability regions in the 3D design parameter 

space and the PID controller space are shown in Figure 19 and 
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Figure 20 respectively which indicates the stability regions lie 

in different areas of the parameters space and form different 

patterns, depending on the type of nondominant poles. Also, 

convergence of the PSO algorithm has been shown in terms of 

variation in the ISE objective function as three bivariate 

design parameters for different nondominant pole types. The 

patterns are found to be more sensitive with respect to the 

process types compared to the pole types as evident from 

Figure 21-Figure 23. 

 
Figure 19: Stability region obtained by PSO based sampling in the three-

design parameter space {m, ζcl, ωcl} for the test-bench processes G10-G15. 

 
Figure 20: Stability region obtained by PSO based sampling in the three PID 

controller parameter space {Kp, Ki, Kd} for processes G10-G15. 

V. NOVELTY OVER EXISTING METHODS OF DELAY HANDLING  

To overcome the infinite dimensionality problem of the 

closed loop system for designing dominant pole placement 

PID controllers in continuous time domain, this paper first 

converts the continuous time delay term (e-Ls) to its equivalent 

discrete time domain (z-n) using a small sampling time 

(Ts=0.01s). Then it uses the pole-zero matching method to 

transform the continuous time delay system to its equivalent 

higher order rational discrete time system. Wang et al. [8] 

have used an approximate pole placement method for infinite 

dimensional closed loop system in continuous time domain 

where an empirical equation (consisting of time constant, 

delay and desired closed loop damping ratio) has been adopted 

for selecting the sampling time (Ts) and the value of sampling 

time is greater than the time constant. Therefore, the desired 

closed loop poles may not be the same as the actual closed 

loop poles due to the use of large sampling time. Also, the 

actual closed loop dynamics may be affected by other non-

dominant poles in continuous time domain and the first 

method in [8] does not ensure dominant pole placement with 

the requirement of finding the relative pole assignment error 

and the relative dominance. 

 
Figure 21: Distributions of ISE as functions of {m, ζcl} for G10-G15. 

 
Figure 22: Distributions of ISE as functions of {m, ωcl} for G10-G15. 

 
Figure 23: Distributions of ISE as functions of {ζcl, ωcl} for G10-G15. 

 

Also, the stability regions should vary with the process 

characteristics. We have chosen a significantly wide parameter 

range and the PSO based sampling approach identifies feasible 

solution space within this domain by rejecting the unstable 

solutions while drawing more samples and gradually 

converging towards a region with optimum closed loop 

performance. This PSO based rejection sampling approach is 

an alternative to the stability boundary approaches in [13]. The 

novelty here is to extend the idea in Wang et al. [8] by 

properly selecting the sampling time to map the delay term as 

finite number of poles in discrete time, so that an analogous 

pole placement can be achieved in the discrete time domain. 

Then the resulting controller can be mapped back to the 

continuous time domain. This technique does not need any 

approximation for the delay term e.g. 3rd order Pade during the 

pole placement design as reported in Das et al. [18]. We also 

compare the effect of different non-dominant pole types and 

stability regions obtained from a sampling approach using 

PSO optimizer with the ISE performance criteria. 
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A semi-automated pole placement based state feedback 

controller has been designed by a continuous pole placement 

method for handling retarded and neutral type delay systems 

in [30] and [31]. This method has used shifting the rightmost 

root of the closed loop system to the far possible left-hand side 

of the s-plane in quasi-continuous (iterative) way. However, 

these methods are used for only monitoring the real part of the 

roots. Michiels et al. [32] have proposed another method by 

combining direct pole placement and minimization of the 

spectral abscissa for determining controller parameters in 

retarded time-delay systems. This method also ensures 

specified control performance where the closed loop system 

dynamics is considered as nonlinear eigenvalue problem. In 

[33], [34], dominant pole placement PID controller for time 

delay systems have been proposed to place three dominant 

poles for tuning the control loop. This method models the 

generalized dimensionless representation for PID control 

loops with delays and uses integral absolute error (IAE) 

criterion to ensure the control performance.     

However, the motivation of this paper is to use the 

dominant pole placement concept while optimizing for the 

design specifications with minimum ISE criterion for the 

SOPTD system. Here, the PSO optimizer is used to efficiently 

explore the feasible solutions or the stability region within a 

chosen closed loop parameter space by which one can obtain 

the three PID controller parameters from the three analytical 

expressions of different non-dominant pole types. This method 

is based on the concept of dominant pole placement but may 

have influence of zero dynamics and other non-dominant 

poles since only two dominant poles can be specified for 

controlling a higher order delayed system whose order varies 

with the sampling time. 

VI. CONCLUSION 

This paper extends the concept of dominant pole placement 

based PID controller design to handle time delay processes by 

mapping the whole design in the discrete time domain. We 

primarily derive different analytical expressions to control the 

SOPTD processes using three different non-dominant pole 

types which are further tested on nine test-bench processes 

with different relative dead-time and damping characteristics. 

The proposed method does not employ Pade like finite-term 

approximations to make the quasi-polynomial characteristic 

equation in a rational polynomial form to satisfy the design 

specifications. Using the derived expressions, a random search 

and optimization using PSO algorithm has been shown to 

reveal an approximate structure of the feasible parameter 

space as well as the set of stabilizing PID controller gains. 

Credible numerical simulations show the efficacy of the 

proposed design. The proposed method has been tested on a 

test-bench of SOPTD process models and also more difficult 

processes that can be asymptotically cast as SOPTD processes, 

especially with integrators. However, for integrating processes 

the results are not very optimal, since the mathematical 

framework does not explicitly consider integrators in to the 

design. In future, the effect of other discretization methods, 

performance indices and system/controller pairs may be 

explored in the context of delay handling within the 

generalized dominant pole placement framework. 

APPENDIX 

High-resolution images for the simulation results and 

additional tables are provided in the supplementary material.  
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