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Grey seal (Halichoerus grypus) pup surrounded by plastic pollution in the Firth 

of Forth, Scotland (Photo: Matt Carter). 
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Abstract 

Over the last sixty years, the development of synthetic and durable materials, 

namely plastic, coupled with a growing human population, has resulted in a rapid 

increase in the levels of anthropogenic debris in rivers, along coastlines and in 

the wider marine ecosystem. Currently, an estimated 4.8 to 12.7 million tons of 

plastic enter the oceans every year but this is expected to increase to between 

9.6 and 25.4 million tons by 2025. As such, it is one of the most widely recognised 

pollution issues facing the planet due to its wide-ranging ecological and socio-

economic implications. The main aims of this thesis were to i) examine citizen-

science beach clean data to better understand the composition of anthropogenic 

litter deposited on British beaches by determining the most common items, 

materials, sources and pathways, and exploring the data for spatial patterns and 

temporal trends in litter density; ii) investigate an indirect pathway (trophic 

transfer) of microplastic (<5mm in size) ingestion in marine top predators by 

analysing scat (faeces) from captive grey seals (Halichoerus grypus) and the 

wild-caught fish they were fed upon; iii) explore the extent to which wild marine 

mammals ingest microplastics and consider the potential implications by 

examining the digestive tracts of 50 marine mammals from 10 species that 

stranded around the British coast; iv) develop a method of investigating dietary 

exposure of marine mammal top predators to microplastics, by combining scat-

based molecular techniques (metabarcoding) with a microplastic isolation 

method. The research carried out for this thesis reveals that i) plastic is the main 

constituent of marine litter on British beaches and the majority of traceable items 

originate from land-based activities, such as public littering. The coasts of the 

southwest England and south Wales have the highest litter levels and certain 

items - small plastic fragments, plastic food packaging, wet wipes, polystyrene 

foam, balloons and large fishing net – are increasing; ii) trophic transfer is an 

indirect and under-studied, but potentially major, route of microplastic ingestion 

for marine top predators; iii) microplastics are ubiquitous within the digestive 

tracts of wild marine mammals stranded around the British coast but the overall 

low abundance suggests they may be egested; iv) the rate of microplastic 

ingestion by marine top predators may be related to the type of prey they 

consume but further work is needed to assess the impacts of this omnipresent 

pollutant. 
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General Introduction 

 

Marine anthropogenic litter  

Increasing human reliance on global marine environments for resources and 

space is exerting significant and expanding detrimental impacts upon species 

and habitats (Crain et al., 2008; Halpern et al., 2015). Anthropogenic stressors 

such as climate change, over-exploitation and pollution have led to widespread 

habitat degradation and biodiversity loss (Halpern et al., 2015; Parsons et al., 

2014). Marine anthropogenic litter - defined as ‘any persistent, manufactured or 

processed material discarded, disposed of or abandoned in the marine and 

coastal environment’ – has become one of the most well-known pollution issues 

facing the world’s waterways and oceans (Lippiatt et al., 2013). It is a complex, 

trans-boundary and cross-sectoral issue with wide-ranging economic, social and 

ecological implications (Hastings and Potts, 2013; Kuhn et al., 2015; Newman et 

al., 2015; UNEP, 2016; Wyles et al., 2015). Over the last sixty years, the 

development of synthetic and durable materials, namely plastic, coupled with a 

growing human population, has resulted in a rapid increase in the levels of debris 

in rivers, along coastlines and in the wider marine ecosystem.   

Between 4.8 and 12.7 million metric tons of plastic are estimated to enter the 

oceans every year (Jambeck et al., 2015), via a variety of pathways, including 

public littering, fly-tipping, sewage and poor waste management (Duckett et al., 

2015; Galgani et al., 2013; Poeta et al., 2014), as well as direct input from 

maritime industries, such as fishing and shipping (Galgani et al., 2013; Hastings 

and Potts, 2013; Moriarty et al., 2016; Nelms et al., 2017). Since plastic does not 

biodegrade and persists for an unknown amount of time, the amount 

accumulating in marine ecosystems is increasing exponentially (Barnes et al., 

2009). Plastic does, however, degrade and fragment into microplastics (<5 mm 

in size), as a result of solar ultraviolet (UV) radiation, wave action and physical 

abrasion (Andrady, 2011; Barnes et al., 2009). Additional sources of 

microplastics include pre-production pellets (nurdles) spilled during transportation 

and fabrication, outflow of wastewater containing microbeads from cosmetics and 

fibres from the washing of synthetic textiles, as well as road-run-off containing 

fragments of vehicle tyres and road marking paint (Andrady, 2011; Barnes et al., 

2009; Boucher and Friot, 2017; Browne et al., 2011; Napper et al., 2015; Napper 

and Thompson, 2016; UNEP, 2009). 
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Plastic pollution and marine megafauna 

Due to its omnipresence within the world’s ocean, interactions between plastic 

and marine megafauna are prevalent. For example, all (100%) of the seven sea 

turtle species, 53% of the 346 seabird species and 41% of the 128 marine 

mammal species are known to be affected (Nelms et al., 2016; Senko et al., In 

review; see Appendix 2). The three main ecological impacts are entanglement, 

ingestion and habitat degradation. Entanglement in anthropogenic items, such as 

derelict fishing gear, sheet plastic and strapping can cause amputation of limbs, 

strangulation, increased drag and the associated energetic costs, a reduced 

ability to avoid predators or forage, starvation and drowning (Duncan et al., 2017; 

Votier et al., 2011; Senko et al., In review). Ingestion of macroplastics (> 5 mm) 

may lead to blockages and impaction of the digestive tract, laceration of the 

stomach and intestinal walls by hard/ sharp plastic, dietary dilution due to a false 

sense of satiation, dehydration and starvation (Nelms et al., 2016). The extent of 

damage caused by plastic pollution to sensitive habitats, such as coral reefs, 

mangroves and sea grass beds, is not well understood but impacts include 

smothering, sedimentation, coral breakages and increased vulnerability to 

disease (Gregory, 2009; Lamb et al., 2018). 

 

Microplastic ingestion in marine mammals 

Due to their small size, microplastics are highly bioavailable to a wide variety of 

marine biota from zooplankton, such as copepods, other invertebrates  (including 

shellfish), both juvenile and adult fish, seabirds and marine megafauna 

(Amélineau et al., 2016; Besseling et al., 2015; Cole et al., 2013; Desforges et 

al., 2015; Farrell and Nelson, 2013; Lusher et al., 2015, 2013; Steer et al., 2017; 

Watts et al., 2014). Microplastic ingestion in low trophic level organisms, such as 

zooplankton, molluscs, polychaete worms and fish, can cause a reduction in 

feeding capacity, energy reserves and reproductive output as well as detrimental 

alterations to intestinal function (Cole et al., 2015; Pedà et al., 2016; Sussarellu 

et al., 2016; Wright et al., 2013a). Yet, there is a need to better understand the 

extent to which microplastics are ingested by high trophic-level taxa, for example 

marine mammals, and whether any health implications occur as a result. 

Marine mammals, such as whales, dolphins and seals, are often considered 

sentinels for marine ecosystem health, particularly in relation to pollution 

(Bossart, 2011; Mössner and Ballschmiter, 1997). The high-trophic level status 
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and long life-span of some species leave them susceptible to bioaccumulation 

and biomagnification of aquatic chemical contaminants, which have been shown 

to cause population-level effects (Jepson et al., 2016; Murphy et al., 2015; Pierce 

et al., 2008).  As a result of this, and other anthropogenic stressors, many species 

of this taxonomic group are of conservation concern (Parsons et al., 2015). 

Ingestion of anthropogenic litter by marine mammals has been documented in a 

variety of species (Kuhn et al., 2015), yet the number of studies (which use 

appropriate methods of extraction and contamination control) investigating the 

physical presence of microplastics in the digestive tracts of wild cetaceans and 

pinnipeds, although growing, is still low (Besseling et al., 2015; Hernandez-

Gonzalez et al., 2018; Lusher et al., 2015, 2018; Nelms et al., 2019; Xiong et al., 

2018). Microplastics may be ingested directly due to accidental consumption, for 

example as a result of indiscriminate feeding strategies, such as filter-feeding  

(e.g. mysticete whales; Besseling et al., 2015) or indirectly as a result of trophic 

transfer, whereby predators consume prey items containing microplastics (Farrell 

and Nelson, 2013), for example, during raptorial feeding  (e.g. most seals and 

dolphins; Hocking et al., 2017).  Little is known about the extent of microplastic 

ingestion, and the mechanisms that cause it, in marine mammals. 

 

In this thesis, ‘Marine litter, microplastics and marine megafauna’, throughout 

four chapters written as independent units, I explore the suitability of citizen-

science data for assessing the distribution and abundance of anthropogenic litter 

in coastal environments, and investigate the mechanisms and extent of plastic 

ingestion, specifically microplastics, in marine mammal top predators.  

In Chapter 1, ‘Marine anthropogenic litter on British beaches: A 10-year 

nationwide assessment using citizen science data’, I examine the 

composition of litter deposited on beaches by item type, material, source and 

pathway, and explore the data for spatial patterns and temporal trends in litter 

density. The results reveal that plastic is the main constituent of marine litter on 

British beaches and the majority of traceable items originate from land-based 

sources, such as public littering. The coast of the southwest England and south 

Wales is identified as having the highest litter levels. Increasing trends over the 

10-year time period were detected for a number of individual item categories, yet 

no statistically significant change in overall litter was detected. The limitations of 

the dataset are discussed and I make recommendations for future work.  
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In Chapter 2, ‘Investigating microplastic trophic transfer in a marine top 

predator’, I overcome the logistical and ethical constraints of investigating the 

transfer of microplastics from prey to marine top predator by analysing scat 

(faeces) from captive grey seals (Halichoerus grypus) and the wild-caught fish 

they are fed upon. I found that approximately half of the scats and a third of fish 

contained between one and four microplastics and ethylene propylene was the 

most frequently detected polymer type in both. This result suggests that trophic 

transfer represents an indirect, yet potentially major, pathway of microplastic 

ingestion for marine top predators. This microplastic ingestion pathway was 

further investigated in Chapter 4, ‘What goes in, must come out: combining 

scat-based molecular diet analysis and quantification of ingested 

microplastics in a marine top predator, the grey seal (Halichoerus grypus)’. 

Here I develop a novel and effective methodology pipeline to investigate dietary 

exposure of wild top predators (grey seals) to microplastics. To do so, I employ 

DNA metabarcoding, a rapid method of biodiversity assessment, to garner 

detailed information on prey composition from scats, and investigated the 

potential relationship between diet and microplastic burden. Outcomes of the 

method development process and results of both diet composition from 

metabarcoding analysis and detection of microplastics are presented. 

Importantly, the pipeline performed well and initial results suggest the frequency 

of microplastics detected in seal scats may be related to the type of prey 

consumed.  

In Chapter 3, ‘Microplastics in marine mammals stranded around the British 

coast: ubiquitous but transitory?’, I perform a comprehensive assessment of 

microplastic ingestion in wild marine mammals by examining the whole digestive 

tracts of 50 individuals from 10 species that stranded around the coastline of 

Britain. I found at least one microplastic in every animal I examined. The relatively 

low number per animal (mean = 5.5), however, suggests these particles are 

transitory. Even so, stomachs were found to contain a greater number than 

intestines, indicating a potential site of temporary retention. A possible 

relationship was found between the cause of death category and microplastic 

abundance, indicating that animals that died due to infectious diseases had a 

slightly higher number of particles than those that died of trauma and other drivers 

of mortality. I discuss possible reasons for, and implications of, microplastic 

ingestion by these animals.  
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In addition to the chapters listed above, I have contributed to two reviews outlining 

the impacts of plastic pollution on marine megafauna as an aside to this thesis – 

‘Plastic and marine turtles: a review and call for research’ (lead author; published) 

and ‘Global impacts of plastic pollution on air-breathing marine megafauna: A 

review with emerging research priorities’ (second author; in review), which I 

include as appendices (Appendix 1 and 2 respectively). 
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Chapter 1: Marine anthropogenic litter on British beaches: a 10-

year nationwide assessment using citizen science data 

 

Abstract 

Growing evidence suggests that anthropogenic litter, particularly plastic, 

represents a highly pervasive and persistent threat to global marine ecosystems. 

Multinational research is progressing to characterise its sources, distribution and 

abundance so that interventions aimed at reducing future inputs and clearing 

extant litter can be developed. Citizen science projects, whereby members of the 

public gather information, offer a low-cost method of collecting large volumes of 

data with considerable temporal and spatial coverage. Furthermore, such 

projects raise awareness of environmental issues and can lead to positive 

changes in behaviours and attitudes. We present data collected over a decade 

(2005-2014 inclusive) by Marine Conservation Society (MCS) volunteers during 

beach litter surveys carried out along the British coastline, with the aim of 

increasing knowledge on the composition, spatial distribution and temporal trends 

of coastal debris. Unlike many citizen science projects, the MCS beach litter 

survey programme gathers information on the number of volunteers, duration of 

surveys and distances covered. This comprehensive information provides an 

opportunity to standardise data for variation in sampling effort among surveys, 

enhancing the value of outputs and robustness of findings. We found that plastic 

is the main constituent of anthropogenic litter on British beaches and the majority 

of traceable items originate from land-based sources, such as public littering. We 

identify the coast of the Western English Channel and Celtic Sea as experiencing 

the highest relative litter levels. Increasing trends over the 10-year time period 

were detected for a number of individual item categories, yet no statistically 

significant change in total (effort-corrected) litter was detected. We discuss the 

This chapter is a reformatted copy of my publication: Nelms SE, Coombes C, 

Foster LC, Galloway TS, Godley BJ, Lindeque PK, Witt MJ (2017). Marine 

litter on British beaches: a 10-year nationwide assessment using citizen 

science data. Science of the Total Environment. 579: 1399-1409. I conducted 

all of the analysis and was lead author on this work; MW guided the 

development of the analysis and writing; CC and LCF provided the data; all 

authors provided comments and edits to help shape the final manuscript.  

Impact: Citations – 54; Altmetric score - 386 
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limitations of the dataset and make recommendations for future work. The study 

demonstrates the value of citizen science data in providing insights that would 

otherwise not be possible due to logistical and financial constraints of running 

government-funded sampling programmes on such large scales.  

 

Introduction 

Pollution of the marine environment by anthropogenic litter is now widely 

acknowledged as a significant global environmental issue requiring mitigation 

(Cole et al., 2011; Derraik, 2002; Vegter et al., 2014). Defined as ‘any persistent, 

manufactured or processed material discarded, disposed of or abandoned in the 

marine and coastal environment’, anthropogenic litter is a complex, trans-

boundary and cross-sectoral concern (Hastings and Potts, 2013; UNEP, 2009). 

Originating from both marine- and land-based activities, the sources of debris are 

numerous and extensive (UNEP, 2016). Inputs from maritime activities, such as 

commercial and recreational fisheries and shipping, include items such as ropes, 

cages, nets, fishing line, plastic fish boxes, floats and buoys (Galgani et al., 2013; 

Moriarty et al., 2016). Items from land-based sources originate from domestic, 

industrial and agricultural activities (UNEP, 2009) and may enter the marine 

environment via a variety of pathways, including public littering, fly-tipping and 

poor waste management (Hastings and Potts, 2013; UNEP, 2009), transported 

to the sea by rivers, sewage outflows and wind (Duckett et al., 2015; Galgani et 

al., 2013; Poeta et al., 2014; Rech et al., 2014). Anthropogenic factors, such as 

proximity to areas of high population density, degree of fishing effort and 

concentration of shipping traffic, are likely to affect the abundance and distribution 

of debris (Duckett et al., 2015; Hoellein et al., 2015; Moriarty et al., 2016; Ribic et 

al., 2012). Furthermore, environmental factors, such as wind, tides, currents and 

coastal morphology, are influential in the distribution and accumulation of marine 

anthropogenic litter (Critchell et al., 2015), but are complex and their precise 

effects are difficult to disentangle (Browne et al., 2015). 

In most cases, plastic is the main constituent of marine anthropogenic litter 

(Barnes et al., 2009; Derraik, 2002; Poeta et al., 2014; Schulz et al., 2015; UNEP, 

2009). This is due partly to its expanding popularity as a consumer product, and 

its high durability and persistence within the marine environment (Andrady, 2015; 

Barnes et al., 2009; Jambeck et al., 2015). This synthetic material does not 

biodegrade but only fragments into smaller pieces (Sigler, 2014). Whilst near the 
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sea-surface or on a beach, plastic is photo-degraded by solar ultraviolet (UV) 

radiation (Andrady, 2015). Once weakened, larger macro-plastics are fragmented 

by wave action and physical abrasion, eventually becoming micro-plastics 

(typically defined as items <5 mm in size; Andrady, 2011; Barnes et al., 2009). 

Additionally, some plastics that are produced specifically to be of a small size, 

such as pre-production pellets (nurdles) and polystyrene beads, microbeads from 

cosmetics and microfibers released during the washing of textiles, enter the 

marine environment directly through spills or sewerage systems (Browne et al., 

2011; Cole et al., 2011; UNEP, 2009). Due to their low-density, many types of 

plastic are buoyant, which enables transport around global oceans via wind and 

current driven surface circulation, dispersing them over large distances far from 

their site of origin. This makes it challenging to identify their sources and 

implement focused management activities (Barnes et al., 2009).    

Persistent marine debris, including plastics, has a range of environmental, 

economic and social impacts (UNEP, 2016). For biodiversity, detrimental effects 

include ingestion of both macro- and micro-debris (Cole et al., 2013; Lusher et 

al., 2015; Nelms et al., 2016; Vegter et al., 2014); entanglement in netting, sheet 

plastic and packing materials (Bentivegna, 1995; Chatto, 1995; Votier et al., 

2011); habitat degradation and alteration by smothering (Carson et al., 2011; 

Richards and Beger, 2011) and transport of invasive species (Kiessling et al., 

2015). Furthermore, plastics are susceptible to the adsorption of hydrophobic 

contaminants (Teuten et al., 2007), such as heavy metals and polychlorinated 

biphenyls (PCBs), from the surrounding seawater (Endo et al., 2005; Rochman 

et al., 2014). If ingested, these toxic compounds, and others incorporated during 

production (such as plasticizers), may be released into biological tissue, 

potentially causing cryptic, sub-lethal effects for the organism (Batel et al., 2016; 

Laing et al., 2016). 

Marine and coastal ecosystems are important economically, through industries 

such as fisheries and tourism, and socially, i.e. benefits to health and well-being 

(Martínez et al., 2007; White et al., 2014). The presence of anthropogenic litter, 

however, can diminish these returns. For example, in the United Kingdom (UK), 

the economic cost to fisheries is estimated at £10 million per year (e.g. repair of 

gear damaged by debris, time lost due to removal and repairs) and local 

authorities spend approximately £15 million annually on the removal of beach 

litter (Hastings and Potts, 2013; Mouat et al., 2010; Newman et al., 2015). The 
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aesthetic impact of anthropogenic litter has implications for tourism and human 

well-being. For example, 85% of 1000 residents and tourists said they would not 

visit a beach with an excess of two litter items per metre (Ballance et al., 2000; 

Hastings and Potts, 2013), and Tudor and Williams (2006) reported that beach 

choice was more strongly determined by clean, litter-free sand and seawater than 

by safety. Wyles et al. (2015) found that the restorative psychological benefits 

ordinarily experienced by people visiting the coast were undermined by the 

presence of litter.  

To understand the scale of the marine anthropogenic litter problem and inform 

the development of effective management strategies, it is necessary to conduct 

monitoring programmes that follow trends in levels of pollution as well as identify 

pathways and sources (Critchell and Lambrechts, 2016; Rosevelt et al., 2013; 

Schulz et al., 2015). In the European Union (EU), such monitoring is required of 

member states by the Marine Strategy Framework Directive which aims to 

achieve Good Environmental Status (GES) of EU marine waters by 2020 

(Moriarty et al., 2016; MSFD GES Technical Subgroup on Marine Litter, 2011). 

Beach litter surveys are a well-known technique for gathering information on the 

status of anthropogenic litter, both for the beaches themselves, and as an 

indicator for the wider marine environment (Ribic et al., 2012). OSPAR (The 

Convention for the Protection of the Marine Environment of the North-East 

Atlantic) has been monitoring 50 indicator beaches (located within six OSPAR 

regions in the North-East Atlantic) using a standardised protocol since 1998. 

These beaches are surveyed four times a year (at three month intervals) and the 

number of litter items per 100 m of coastline recorded (OSPAR, 2010). Such 

endeavours, however, require considerable time and resources to collect 

meaningful and robust data. Volunteers are often recruited to carry out beach 

litter surveys and their involvement as citizen scientists can be instrumental in the 

generation of large, long-term datasets which may otherwise not be feasible due 

to logistical or financial constraints (Duckett et al., 2015; Hidalgo-Ruz and Thiel, 

2015, 2013). The inclusion of people of all ages from a broad social spectrum 

reduces the time and cost of sampling, raises awareness of environmental issues 

within the wider community and may lead to positive changes in behaviours and 

attitudes (Wyles et al., 2016). The information generated can be used to develop 

practical solutions at local, regional and potentially even global scales (Browne 

et al., 2015; Munari et al., 2015; Ribic et al., 2012; Rosevelt et al., 2013; van der 
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Velde et al., 2016). The results of very few (non-research focussed) beach litter 

programmes reach peer-reviewed scientific journals (Browne et al., 2015). This 

may be due to logistical or administrative constraints but is also likely related to 

limitations in some citizen science projects, such as lack of information on survey 

effort, the absence of standard methods to ensure comparability among surveys 

and lack of links between non-governmental organisations (NGOs) and academic 

institutions (Duckett et al., 2015; Hidalgo-Ruz and Thiel, 2015). With 

appropriately designed sampling protocols (for example, prior standardisation of 

survey effort) and rigorous analyses it becomes possible to ameliorate some of 

these concerns (Duckett et al., 2015; Hidalgo-Ruz and Thiel, 2015; van der Velde 

et al., 2016).  

Each year, the Marine Conservation Society (MCS) – a UK-based charity focused 

on improving marine stewardship and public engagement – runs a national 

volunteer beach litter surveying programme around the British coastline. In this 

study we analysed 10 years of beach litter data collected during the period 2005-

2014 (inclusive). The aims of this study were to: 1) determine composition of litter 

(by item category, material, pathway and origin); 2) investigate spatial patterns 

(on a regional scale) 3) explore temporal trends in abundance of overall litter and 

individual item categories and 4) based on findings, produce recommendations 

for future work with the aim of enhancing the field of marine litter research and 

public engagement. 

 

Materials and methods 

Study region 

Along the eastern and southern borders of Britain are the North Sea and the 

English Channel. The former is a semi-enclosed shelf-sea, surrounded by seven 

countries (Britain, France, Belgium, Netherlands, Germany, Denmark and 

Norway) and connected to the Atlantic Ocean through the English Channel to the 

south and the Norwegian sea to the north (Huthnance, 1991). Along the western 

border are the Celtic Seas, which fringe the western coastlines of Scotland and 

England and the entirety of Wales. This region contains oceanic water from the 

North Atlantic which enters from the south and west and predominantly moves 

northwards (http://www.ospar.org/convention/the-north-east-atlantic/iii; last 

accessed 8 August 2016). The prevailing wind direction is from the south-west, 

with considerable seasonal and regional variability in speed and direction.  
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Beach litter surveys 

Data on marine anthropogenic litter were collected by MCS volunteers between 

January 2005 and December 2014 (inclusive) from 736 beaches located 

throughout Britain, in England, Scotland and Wales (see Fig. 1). For the purposes 

of regional analysis, beaches were assigned to one of seven Regional Seas 

areas, as designated by the Joint Nature Conservation Committee (JNCC; UK) 

based on biogeographical characteristics (http://jncc.defra.gov.uk/page-1612; 

last accessed 8 August 2016). These are; Northern North Sea (NNS), Southern 

North Sea (SNS), Eastern English Channel (EEC), Western English Channel and 

Celtic Sea (WECCS), Irish Sea (IS), Minches and West Scotland (MWS), Scottish 

Continental Shelf (SCS; Fig. 1).  

Fig. 1. Distribution of survey beaches – dashed line indicates Regional Sea 

boundary and coloured symbols correspond to relevant designation (green; NNS 

= Northern North Sea, blue; SNS = Southern North Sea, purple; EEC = Eastern 

English Channel, pink; WECCS = Western English Channel and Celtic Sea, coral; 

IS = Irish Sea, orange; MWS = Minches and West Scotland, yellow; SCS = 

Scottish Continental Shelf). 
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The number of beach litter surveys fluctuated annually and per month (recorded 

as counts of beaches surveyed per year from 2005-2014 and per month 

respectively; Fig. 2a and Fig. S1) and among regions (recorded as counts of 

surveys per Regional Sea across study period; Fig. 2b). The number of volunteer 

participants and duration of surveys also varied among years (recorded as counts 

of volunteers and hours spent surveying respectively per year from 2005-2014; 

Fig. 2c and d), as did the frequency of surveys per beach and intervals between 

surveys.  

 

Fig. 2. Plots showing a) Number of beaches surveyed for litter per year between 

2005 and 2014 (of n = 736 investigated); b) Proportion of effort (number of 

surveys) per Regional Sea (WECCS = Western English Channel and Celtic Sea, 

34%; SNS = Southern North Sea, 20%;  NNS = Northern North Sea, 17%; EEC 

= Eastern English Channel, 15%; IS = Irish Sea, 11%; MWS = Minches and West 

Scotland, 2%; SCS = Scottish Continental Shelf, 1%) c) Number of volunteer 

participants per year between 2005 and 2014; d) Number of volunteer hours 

spent surveying per year between 2005 and 2014.  

a) 

c) d) 

b) 
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Survey best practice instructions indicated that a 100 m survey should be 

undertaken. Given the nature of the project, however, and the desire for 

volunteers to survey and clear longer stretches of beaches, surveys were 

frequently longer in distance. In addition, there was no prior standardisation of 

the number of volunteers or time spent searching (duration). These factors were 

recorded, however, allowing for the variation in effort among surveys to be 

calculated and subsequently used to standardise data gathered. The number of 

participants was variable (range: 1 - 945 people per survey, mean ± SD = 12.3 ± 

22.4 people , median = 8 people, inter-quartile range (IQR) = 3 - 15 people) as 

was survey duration (range: 10 min – 8 hrs, mean ± SD = 1.71 ± 0.95 hrs, median 

= 1.5 hrs, IQR = 1 - 2 hrs) and survey distance covered (range: 1 m - 7.5 km, 

mean ± SD = 432 ± 662 m, median = 140 m, IQR = 100 - 500 m; see 

Supplemental Material Fig. S2.). Various methods of outlier removal were 

investigated but it was preferred that all data collected were utilised. 

To collect the data, volunteers would walk between the back of the beach and 

the strand-line, loosely adhering to a linear transect (parallel to the strand-line), 

searching for litter. Litter identification guides were provided to ensure accurate 

recording of items by volunteers. In addition, face to face training was offered to 

beach survey organisers, enabling them to support the volunteers in following the 

protocol. Gathered items of litter were assigned to one of 101 item categories that 

could be further classified into 12 material groups (plastic, polystyrene, rubber, 

cloth, metal, medical, sanitary, faeces, paper, wood, glass, pottery/ ceramic; see 

Supplemental Material Table S1). These classifications were pre-determined by 

MCS. Upon completion of a survey, all anthropogenic litter items recorded were 

summed, validated by a survey coordinator and subjected to further quality 

control by MCS. All collected litter items were removed from the beach. 

 

Data preparation and effort correction 

Significant linear relationships were determined between the number of litter 

items surveyed and three variables relating to effort (linear model(s): distance (F1, 

3058 = 8.6491, p=0.003); duration (F1, 3058 = 165, p=< 0.001); number of volunteers 

(F1, 3058 = 634, p=< 0.001)). Data (i.e. counts of items) were standardised to 

account for variations in effort among beach litter surveys using Eq. 1; where C 
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= total count (no. items); L = survey linear distance (m); D = survey duration 

(mins); V = number of volunteers (people): 

Eq. 1.  𝐴 =
𝐶

𝐿(𝐷𝑉)
 

The unit of the adjusted count (A) was items collected per metre per minute per 

person (number of items m-1 min-1 person-1). It was therefore possible to 

investigate differences in litter density among beaches irrespective of varying 

volunteer effort.  

 

Descriptive statistics 

Using our standardised counts (number of items m-1 min-1 person-1), the 

proportion (as number of items independent of mass or volume) of each litter item 

category (n = 101) and material group (n = 12) was calculated for all survey 

events and for each Regional Sea area.  Where possible, items were attributed 

to a pathway (non-sourced, public litter, fishing, sewage, shipping, fly-tipped, 

medical) based on MCS classifications (see Supplemental Material Table S2) 

and, where possible, assigned as originating from either land- or marine-based 

activities (see Supplemental Material Table S3). Where litter items could not be 

assigned to either of these origin groups they were deemed non-sourced. 

 

Spatial analyses  

For each beach and Regional Sea area, the mean number of items m-1 min-1 

person-1 across the study period (2005-2014) was calculated for total litter and 

three types of litter of interest - food and drink packaging, fishing gear and wet 

wipes, chosen as they represent the three major pathways – public littering, 

fishing and sewage respectively. The former two types are assemblages of 

related items, whereas wet wipes are a stand-alone individual item category (see 

Supplemental Material Table S4). Beaches and regions were then ranked based 

on their mean standardised count values, from high to low. Annual mean 

estimates of standardised counts (for total litter) were also subject to spatial 

analysis using Moran’s I clustering in ArcMap 10.2.2 (ESRI, 2014) – a technique 

which identifies statistically significant areas of litter presence and absence. 

 

 

 



31 
 

Temporal analyses 

Generalised Linear Mixed Models (GLMMs) were used to examine temporal 

patterns in the abundance of total litter (standardised counts for all beaches), 

individual item categories (20 most common plus three additional item categories 

of interest). Analyses were undertaken in the statistical computing software, R 

(GLMM; ‘lme4’ package for R; R Development Core Team, 2015). Beach-specific 

identification numbers were used as a random effect in the model to account for 

the variation in survey frequency among beaches. Season and region were 

incorporated within the GLMM as fixed effects in addition to year. The normality 

of the dependent variable was assessed using a Q-Q plot and determined to be 

non-normal. As such, the data were log-transformed (log10) and further assessed 

using a second Q-Q, which confirmed a satisfactory transformation (‘car’ and 

‘MASS’ packages for R; R development Core Team, 2015). Statistical 

significance was set at a probability level (α) of 0.05. To deal with multiple testing 

of individual item categories (n = 23), a Bonferroni correction was applied and the 

probability threshold adjusted to < 0.0021 (α/n). Seasons were defined as; spring 

(March, April, May), summer (June, July, August), autumn (September, October, 

November), winter (December, January, February).  

 

Results  

Descriptive statistics  

Anthropogenic litter was recorded during all beach litter surveys (n = 3245) and 

a total of 2,376,541 items were collected from 1,402 km of cumulative surveyed 

coastline, with volunteers contributing 73,167 hours (equivalent to ~25 years of 

continuous surveying (365 days a year) by a single person working eight hours 

per day). Mean abundance across all beaches was 0.0085 items m-1 min-1 

person-1, with a maximum of 0.3297 items m-1 min-1 person-1. This is equivalent 

to 51 items and 1978 items respectively, based on a survey carried out over 100 

m for one hour by one volunteer. Large plastic fragments (>25 mm) was the most 

frequently recorded item category, representing 13% of all litter items, followed 

by small plastic fragments (<25 mm) at 10% (Table 1 for 20 most common item 

categories).  

 

 

 



32 
 

Table 1. Twenty (of n = 101) most common litter item categories recorded on 

British beaches (2005 – 2014 inclusive), by proportion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Item category Proportion 

Plastic fragments (large; >2.5cm) 0.13 

Plastic fragments (small; <2.5cm) 0.10 

Plastic caps 0.07 

Polystyrene (small; <50cm) 0.07 

Crisp packets 0.06 

Fishing net (small; <50cm) 0.05 

Plastic string 0.05 

Plastic drinks bottles 0.04 

Cotton buds 0.03 

Fishing line 0.03 

Cigarette stubs 0.03 

Plastic cutlery 0.02 

Glass fragments 0.02 

Cloth pieces 0.02 

Plastic bags 0.02 

Polystyrene foam 0.02 

Metal Drinks can 0.02 

Plastic rope 0.01 

Fishing net (large; >50cm) 0.01 

Wood pieces 0.01 
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Of the 12 material groups, plastic was the most dominant (66%), with expanded 

polystyrene and sanitary items representing 10% and 5% respectively (Fig. 3a).  

 

Fig. 3 Composition of marine anthropogenic litter across all beaches surveyed as 

proportions by a) material (plastic; 66%, polystyrene; 10%, sanitary; 5%, medical; 

4%, paper; 4%, glass; 3%, cloth; 3%, rubber; 2%, wood; 2%, faeces; 1%, pottery; 

0.4% and medical; 0.2%) and b) pathway (non-sourced; 39.7%, public litter; 

36.1%, fishing; 15.0%, sewage; 4.9%, shipping; 3.4%, fly tipped; 0.7% and 

medical; 0.2%). 

 

The Scottish Continental Shelf (SCS) exhibited the highest proportion of plastic 

(83%) in beach litter surveys while the neighbouring region of Minches and West 

Scotland (MWS) exhibited the lowest (52%; Fig. 4a). The Northern North Sea 

(NNS) experienced the highest proportion of polystyrene (14%) and sanitary 

items (7%; Fig. 4b and c). In contrast, the Scottish Continental Shelf region 

reported the lowest proportions for both (3% and 0.2% respectively; Fig. 4b and 

c).  

 

 

 

 

 

 

 

 

a) b) 
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Fig. 4. Regional proportions of three most collected materials a) Plastic b) 

Polystyrene c) Sanitary. NNS = Northern North Sea; SNS = Southern North Sea; 

EEC = Eastern English Channel; WECCS = Western English Channel and Celtic 

Sea; IS = Irish Sea; MWS = Minches and West Scotland; SCS = Scottish 

Continental Shelf. 

 

After non-sourced items (40%), public littering represented the most common 

pathway (36%), followed by fishing (15%), sewage (5%), shipping (3%), fly-

tipping (0.7%) and medical (0.2%; Fig. 3b). Of items that could be attributed to an 

origin, 42% derived from land-based sources, such as littering (e.g. food 

packaging) and sewage (e.g. sanitary items), and 18% from marine-based 

activities, such as fishing and shipping. The remaining 40% consisted of items 

that could not be definitively assigned to either source category (e.g. fragments 

of various materials and generic items whose origin could either be from land- or 

marine-based sources). The Southern North Sea, Northern North Sea and Irish 

Sea encountered the highest proportion of litter from land-based activities (50%) 

and the Scottish Continental Shelf the lowest (20%; Fig. 5a.). This region (SCS) 

experienced the greatest proportion of litter attributed to marine-based activities 

(40%; Fig. 5b). There was little variation in the proportion of non-sourced items 

among the regions (35-40%; Fig. 5c). 

a) b) c) 
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Fig. 5. Distribution-maps showing regional proportions (red = 0.5, orange = 0.4, 

gold = 0.3, yellow = 0.2, light green = 0.1, dark green = 0.0) of litter from a) land-

based activities b) marine-based activities and c) non-sourced items.  

 

Spatial analyses 

The five most affected beaches (mean number of items m-1 min-1 person-1 > 0.1) 

were heterogeneously distributed across Britain within four of the seven Regional 

Seas. Clustering analysis (Moran’s I) revealed five areas where adjacent 

beaches share similar high levels of litter abundance, in Kent, Hampshire, 

Cornwall and the Bristol Channel (Lundy Island; Supplemental Material Fig. S3). 

Variations in regional mean abundances were evident, indicating significant 

differences among the Regional Seas (one-way ANOVA, F6, 3238 = 37.95, 

p<0.001; Fig. 6).  

 

 

 

 

a) b) c) 
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Fig. 6. Regional differences in log corrected litter abundance (WECCS = Western 

English Channel and Celtic Sea; IS = Irish Sea; EEC = Eastern English Channel; 

SNS = Southern North Sea; NNS = Northern North Sea; MWS = Minches and 

West Scotland; SCS = Scottish Continental Shelf). The thick black lines inside 

the notches (95% confidence interval of median) represent median values, grey 

boxes depict first and third quartiles and the whiskers illustrate the minimum and 

maximum values. 

 

The Western English Channel and Celtic Sea exhibited the greatest mean 

abundance of 0.012 items m-1 min-1 person-1 while the Scottish Continental Shelf 

exhibited the smallest of 0.002 items m-1 min-1 person-1 (Fig. 7a). The Western 

English Channel and Celtic Sea exhibited the highest mean abundance of both 

food and drink packaging and fishing gear (0.0027 and 0.0015 and items m-1 min-

1 person-1 respectively; Fig 7b and c). The Southern North Sea exhibited the 

highest mean abundance of wet wipes (0.0001 items m-1 min-1 person-1; Fig. 7d) 
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Fig. 7. Distribution-maps of regional mean number of items m-1 min-1 person-1 

(dark green to red = low to high) for a) all litter items b) food and drink packaging 

c) fishing gear d) wet wipes. 

 

Temporal analyses  

Seasonal variation 

The overall abundance of litter was not significantly affected by season (one-way 

ANOVA, F3, 3241 = 1.21, p=>0.05). Nor was there a significant seasonal effect on 

a) b) 

c) d) 
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the abundance of litter from land-based sources (one-way ANOVA, F3, 3241 = 0.13, 

p=>0.05) or marine-based sources (one-way ANOVA, F3, 3241 = 1.13, p=>0.05). 

 

Long-term trends 

Analysis of the long-term trends using GLMMs indicated that the standardised 

litter abundance (number items m-1 min-1 person-1) did not change significantly 

over the study period (2005-2014); removing Year from the model had no 

significant effect, p-value = 0.39. This analysis was repeated to investigate long-

term trends in abundance of the 20 most common item categories as well as 

balloons, wet wipes and plastic food packaging due to concerns for their 

environmental impact. Six of these items experienced a significant increase - 

small plastic fragments (2.3 fold; i.e. from 0.00011 to 0.00037 number items m-1 

min-1 person-1 over 10 years); plastic food packaging (1.0 fold); wet wipes (0.9 

fold); polystyrene foam (0.7 fold); balloons (0.6 fold); large fishing net (0.5 fold) - 

while the remaining items exhibited no significant temporal trend (Table 2).  

 

Table 2. Results of long-term trend analysis using Generalised Linear Mixed 

Models (GLMMs)  for top 20 (by proportion) individual litter items plus balloons, 

wet wipes and plastic food packaging based on mean across all surveys. 

 

Item 
p-value 

(α) 

Standard 

Error 

t 

value 

p-value accepted following 

Bonferroni adjustment to 

significance threshold 

Fold 

Change 

Plastic fragments (large; >2.5cm) 0.0048 -- -- N -- 

Plastic fragments (small; 

<2.5cm) 

<0.001 0.005581 10.37

3 

Y + 2.3 

Plastic caps 0.9472 -- -- N -- 

Polystyrene (small; <50cm) 0.5235 -- -- N -- 

Crisp packets 0.7782 -- -- N -- 

Fishing net (small; <50cm) 0.8307 -- -- N -- 

Plastic string 0.5947 -- -- N -- 

Plastic drinks bottles 0.1279   N -- 

Cotton bud sticks 0.0781 -- -- N -- 

Fishing line 0.3836 -- -- N -- 

Cigarette stubs 0.0507 -- -- N -- 

Plastic cutlery 0.1959 -- -- N -- 

Glass fragments 0.0800 -- -- N -- 

Cloth pieces 0.0027 -- -- N -- 

Plastic bags 0.5031 -- -- N -- 

Polystyrene foam 0.0002 0.005993 3.703 Y + 0.7 

Metal Drinks can 0.6405 -- -- N -- 

Plastic rope 0.3550 -- -- N -- 

Fishing net (large; >50cm) 0.0019 0.007563 3.097 Y + 0.5 

Wood pieces 0.4704 -- -- N -- 

Balloons 0.0005 0.005942 3.460 Y + 0.6 

Wet wipes 0.0001 0.008088 3.819 Y + 0.9 

Plastic food packaging <0.001 0.005856 5.545 Y + 1.0 



39 
 

Discussion 

Descriptive statistics  

Given their durability, it is perhaps unsurprising that items made from synthetic 

materials comprise a large proportion of anthropogenic litter. Large and small 

plastic fragments are generated by the degradation of larger items, and so they 

represent the accumulated remains of many years of waste. They will be broken 

down further by UV photo-degradation and wave action until they become micro-

plastics, small synthetic particles that can be ingested by a range of organisms, 

including zooplankton, commercial fish species and other sea foods consumed 

by humans, and marine megafauna (Besseling et al., 2015; Cole et al., 2013; 

Neves et al., 2015; Rochman et al., 2015). The Scottish Continental Shelf 

experienced the highest proportion of plastic whilst its neighbouring region, 

Minches and West Scotland exhibited the lowest. Due to its remote location, it is 

likely that the former is exposed to inputs from fairly uniform sources, mainly 

fisheries and floating debris from other countries within the north Atlantic. This is 

further highlighted by the fact that the region (SCS) also exhibited the greatest 

proportion of litter attributed to marine-based activities. Over a third of total litter 

originates from public littering, indicating that land-based inputs are likely key 

sources of marine anthropogenic litter. These results correspond with those from 

previous studies in other areas, such as the Mediterranean Sea, the Great Lakes 

(USA) and the SE Pacific, though the proportions vary (Bravo et al., 2009; 

Hidalgo-Ruz and Thiel, 2013; Hoellein et al., 2015; Munari et al., 2015; Topçu et 

al., 2013).  

 

Spatial patterns  

Although the most affected beaches were heterogeneously distributed across 

Britain, there were strong differences among the regions and the Western English 

Channel and Celtic Sea exhibited the highest mean abundance of litter from both 

land and sea. This may be due to a number of reasons, such as the presence of 

large cities and discharging rivers (Swansea, Cardiff, Newport, Bristol, Plymouth; 

River Severn), high levels of fishing effort (Lee et al., 2010; Witt and Godley, 

2007), the world’s third busiest shipping route - the English Channel - and input 

from the wider Atlantic Ocean (wind and currents). In addition, this region 

represents a popular tourist destination, particularly during the summer months. 

The south west of England attracts the highest number of domestic tourists of all 
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UK regions (Smith, 2010) and it is estimated that approximately five million visits 

are made to Cornwall alone each year (South West Research Company, 2010). 

This high density of beach-users likely contributes to the observed levels of 

anthropogenic litter.  

 

Temporal trends  

There was an absence of a temporal trend in the overall abundance of marine 

anthropogenic litter through the 10-year dataset. This lack of change may be due 

to a number of reasons. Firstly, the amount of litter may have indeed changed 

little over the 10-year period. Secondly, it may be that the time-period is 

insufficient to statistically reveal small changes within a variable system. For 

example, one study surmised that some sampling regimes are unlikely to detect 

a ≤ 30% change within 25 years but a 40% - 50% change may be detected in 10 

- 15 years (Moriarty et al., 2016). Thirdly, it is possible that the methodological 

constraints, such as the need for effort correction, and variability within the 

system (due to the multitude of inputs and extensive transportation of debris by 

currents and wind) dilute the statistical signal (Ryan et al., 2009; Schulz et al., 

2015). Finally, the extent of litter removal by volunteers and local authorities may 

be large enough to limit the accumulation of debris and effectively prevent its 

escalation (Hoellein et al., 2015), but insufficient to make detectable 

improvements.  Further work is required to better understand these factors. 

Temporal trends for some individual items were identified. The more than two-

fold observed increase in small plastic fragments is likely a result of the perpetual 

break-down of larger plastic items by UV photo-degradation and wave action. As 

a result, the number of small plastic pieces is likely to rise exponentially into the 

future, especially given the current and predicted levels of plastic litter input to 

the marine environment. The increase in both balloons and large fishing net 

abundance is of concern due to the threat they pose to biodiversity, particularly 

seabirds, marine mammals and marine turtles, through ingestion and 

entanglement (Allen et al., 2012; da Silva Mendes et al., 2015; Plotkin et al., 

1993). Though fishing gear is usually lost accidentally, balloons are often actively 

released en masse at public events and our results show a significant increase 

in the number recorded during surveys. Balloons are not currently defined as 

‘litter’ under the UK Environmental Protection Act (EPA) 1990 whereby it is an 

offence to drop “or otherwise deposit” litter in a public place (Parliament of the 
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United Kingdom, 1990). Some local authorities, however, do recognise the threat 

posed by balloons and have voluntarily banned releases on their property. It 

would seem judicious that revisions are made to the EPA that reflect these 

concerns and legislatively prevent such mass littering events from occurring. Wet 

wipes may enter the marine environment via waste water from domestic sources. 

Many contain plastic and so persist indefinitely, often leading to blockages within 

sewerage systems. It is estimated that approximately £88 million is spent in the 

UK annually as a result (Water UK, pers. comm., 2016). The increase reflected 

in our results demonstrates an urgent need for mitigation. The observed 

increases in other items, such as polystyrene foam and plastic food packaging, 

illustrates the need for a reduction in their inappropriate disposal as well as 

biodegradable alternatives to such materials, e.g. cardboard. 

 

Recommendations for future work 

Citizen science projects are valuable in terms of their ability to generate large-

scale data on the distribution and abundance of marine anthropogenic litter 

(Hidalgo-Ruz and Thiel, 2015, 2013). Yet, we acknowledge a number of 

constraints that are worthy of discussion and make recommendations for future 

work based on our findings. We recognise that implementing all of the 

recommended measures may not be logistically feasible for some beach litter 

programmes (due to factors such as, volunteer availability, health and safety, time 

and resources) but outline a series of measures based on a best-case scenario; 

Site selection: Survey beaches were chosen by local volunteers and so it 

is possible that those perceived as ‘dirty’ or iconic, or of special environmental 

value (such as Sites of Special Scientific Interest; SSSIs) may be preferentially 

selected above other sites which have little or no debris (Browne et al., 2015). 

Logistical factors, such as beach accessibility and therefore ease of litter removal, 

may also be a selection factor. This inherent bias could be eliminated by 

employing a random sampling approach but would likely be constrained by 

volunteer availability, willingness of volunteers to visit less desirable sites and 

health and safety considerations at certain locations.  

Survey protocol: Though data adjustment is a useful method of 

retrospectively correcting for variation in survey effort, the use of standardised 

survey protocol based on OSPAR’s Guidelines is optimal (OSPAR, 2010) .In 

particular, efforts should be made to use the same sampling unit (repeated 
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sampling of same 100 m section of beach) for each survey as this would likely 

reduce variation within dataset. We also recommend that a standard number of 

volunteers (e.g. 2) survey the 100 m section for a set amount of time to ensure 

the degree of effort is consistent across surveys. Following this, any remaining 

litter may be removed using a non-standardised method. In addition, as some 

litter items may be less numerous but larger in size (i.e. fishing nets) it may 

advantageous to record item mass as well as frequency where possible. This 

would also enhance the potential to compare survey results with those of similar 

studies (Ryan et al., 2009) but likely be constrained by availability of resources.  

Area surveyed: Although it was possible to adjust the data to account for 

variation in survey distance, the effective width of the transects was not always 

recorded and so the total area covered was unknown. Such information would 

enhance the reliability of abundance estimates and make comparisons among 

surveys more feasible. de Araújo et al., (2006) found that the diversity of item 

categories detected was related to sampling transect area and the number of 

categories significantly increased with transect width but stabilised from 15-20m 

onwards. As such, it would seem pertinent to standardise width or at the very 

least, record it so that retrospective adjustment can be applied. 

Disparities among volunteers: Statistically, survey participants were 

treated uniformly, but in reality they likely differed in their personal effort and 

ability to search for, collect and categorise litter. These disparities may be 

affected by factors, such as age.  For example, young children may present 

difficulties when distinguishing among the various material types, particularly for 

smaller items (Hidalgo-Ruz and Thiel, 2013). Illustrative guides are a useful tool 

for minimising this potential source of error (Eastman et al., 2014; Hidalgo-Ruz 

and Thiel, 2013). Further investigation is required to better understand how 

factors, such as age and gender, affect the types and amount of litter gathered 

and recorded. In addition, we recommend that survey leaders, where possible, 

undergo training prior to the event taking place as in Hoellein et al., (2015). 

Sightability bias: Volunteers may be more or less likely to detect, gather 

and record certain items of litter due to known or subconscious preference. For 

example, items with a recognisable purpose, such as a plastic drinks bottle, may 

be more likely to be seen than generic items, such as fragments of plastic or 

pieces of glass. Quantitative methods, such as detectability trials whereby beach 

litter composition before and after cleaning is compared, are required to 
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investigate the presence of detectability bias and correct for it if necessary. In 

addition, marine anthropogenic litter items not easily detectable by the naked eye, 

such as microplastics, may be under-recorded. 

Accumulation rates and long-term trends: The intervals between beach 

cleans, carried out either by NGOs or local authorities, were not standardised and 

so litter removal varied temporally (Hoellein et al., 2015). For example, depending 

on ownership, bathing beaches may be subjected to regular (daily or weekly) 

cleaning during the tourist season but receive little litter management during the 

winter months. As a result, it is likely that the detectability of re-accumulation 

rates, and therefore trends in overall abundance within our dataset, was 

diminished (Smith and Markic, 2013). For this reason, OSPAR (2010) guidelines 

state that monitoring beaches should ‘ideally not be subject to any other litter 

collection activities’.  Although frequent sampling of all beaches to monitor 

accumulation rates would not be feasible due to the considerable amount of effort 

and resources required, a sub-sample of indicator beaches could be rigorously 

examined to infer patterns within the wider system. This would involve an initial 

beach clean to remove all litter followed by regular sampling (e.g. once a month) 

to record and remove any new items, as suggested by Ryan et al. (2009). This 

type of fine-scale sampling can provide insights in to local patterns and cycles. 

For a more broad-scale impression, some beach litter survey programmes, such 

as the MCS Great British Beach Clean, opt to survey at the same time each year. 

This method enhances inter-annual comparability and would be more sensitive 

in generating insights into long-term trends. Information on the rates of litter 

removal by local authorities and other bodies would further enhance 

understanding of re-accumulation. 

Origins and pathways: In our study we were able to broadly assign litter 

items to originating from either land- or marine-derived sources based on their 

perceived original purpose. To better understand how litter arrives on beaches, it 

would be useful to differentiate between items that have previously entered the 

marine environment and re-stranded, and those directly deposited from land-

based sources, for example, poor waste management or littering (Smith and 

Markic, 2013). Quantitative information on the various pathways could inform 

management recommendations and facilitate the development of measures to 

restrict the amount of litter entering the marine environment. For example, 

beaches that experience high levels of tourism, may also experience high 
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concentrations of items attributable to direct public littering. In such cases, efforts 

to increase awareness and provide appropriate and convenient waste disposal 

facilities may provide a suitable solution. Conversely, beaches with high use may 

experience lower levels of litter due to more frequent cleaning (Bravo et al., 2009). 

For monitoring purposes, we recommend that beach litter recording forms include 

the facility to document which pathway - directly deposited or re-stranded having 

spent time at sea – each item has taken. Pictorial guidance notes may assist 

volunteers in allocating items to the appropriate pathway. This may be 

constrained by the willingness of volunteers to undertake surveys once they 

reach a certain level of complexity and effort, as well as the ability to offer training 

to maintain consistency of recording of pathways. 

 

Value of citizen science 

The data analysed in this study were collected by volunteers of varying age and 

background, including school children and community groups. Their involvement 

as citizen-scientists is of considerable value; firstly, it enabled the removal of over 

two million (2,376,541) items of anthropogenic litter from British beaches. 

Second, it greatly reduced the cost of sampling. For example, if every volunteer 

hour (total=73,167) was charged at National Living Wage (£7.20 as of 1 April 

2016; UK), data collection would have cost ~ £500,000 in salaries. Thirdly, 

activities such as beach cleans and litter surveys can enhance public appreciation 

of environmental issues, potentially leading to positive changes in behaviours and 

attitudes (Wyles et al., 2016). This is particularly important given that social 

viewpoints have a significant impact on littering behaviour and the acceptance of 

measures to reduce it (UNEP, 2016). Beach cleans are also associated with 

higher levels of marine awareness, demonstrating their educational value (Wyles 

et al., 2016). Lastly and crucially, citizen science programmes can also be 

instrumental in the generation of large, insightful datasets with broad temporal 

and spatial coverage - we analysed data collected by MCS volunteers during 

beach litter surveys in every month of the year for 10 years, around much of the 

British coastline.  

 

Conclusion 

In summary, our results demonstrate how organised citizen science programmes 

that adopt a defined sampling approach and record effort can be effective for 
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monitoring marine anthropogenic litter. Volunteer-led beach cleans and litter 

surveys facilitate the removal of large quantities of litter from marine and coastal 

environments, reduce the cost of sampling, enhance public awareness of 

environmental issues and generate insightful data, all of which are necessary for 

addressing the complex problem of marine anthropogenic litter pollution. 

Ultimately though, the most efficacious and economic solution is to minimise and 

eventually prevent the release of anthropogenic waste into the marine 

environment by reducing our consumption and inappropriate disposal of synthetic 

and persistent materials, such as plastic. 
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Supplemental Information 

Fig. S1 Number of surveys per month that took place during the sampling 

period (2005 – 2014 inclusive; total n = 3245). Colour of bars indicate seasons 

– winter (blue), spring (green), summer (yellow), autumn (orange). 
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Fig. S2 Frequency histograms of a) number of volunteers (range: 1 - 945 

people per survey) taking part in a litter survey event b) number of hours 

(range: 10 min – 8 hrs) invested in a litter survey c) distance (m; range: 1 – 

7500 m) covered for a litter survey.
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Fig. S3. Moran’s I clustering revealed four main groups of localised high (red 

points) litter abundance ‘hotspots’ - in Kent, Hampshire, Cornwall and the Bristol 

Channel (Lundy Island). 
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Table  S1. MCS recording form - Gathered items of litter were assigned to one 

of 101 categories that could be further classified into 12 material groups (plastic, 

polystyrene, rubber, cloth, metal, medical, sanitary, faeces, paper, wood, glass, 

pottery/ ceramic).
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Table S2. Items attributed to each Pathway (non-sourced, public litter, fishing, sewage, shipping, fly-tipped and medical) 

Pathway 

Non-sourced Public litter Fishing Sewage Shipping Fly-tipped Medical 

Cloth: Cloth Cloth: Clothing Metal: Fishing San: Buds Glass: Bulbs Cloth: Furnishings Med: Inhalers 
Cloth: Other Faeces: In_bags Metal: Lobsterpots San: Condoms Metal: Aerosol Metal: Batteries Med: Other 
Cloth: Sacking Faeces: Not_bags Plastic: Fishboxes San: Nappies Metal: Food Metal: Car Med: Plasters 
Metal: Other Glass: Bottles Plastic: Fishing_line San: Other Metal: Oil Metal: Scrap Med: Syringes 
Metal: Wire Glass: Glass Plastic: Fishing_net_large San: Tampons Paper: Purepak Plastic: Cones  
Paper: Cardboard Metal: Bbqs Plastic: Fishing_net_small San: Toilet Plastic: Cleaner Pottery: Ceramic  
Paper: Other Metal: Caps Plastic: Floats San: Towels Plastic: Foreign Rubber: Tyres  
Plastic: Other Metal: Drink Plastic: Lobsterpots San: Wipes Plastic: Industrial   
Plastic: Plastic_large Metal: Foil Plastic: String  Plastic: Meshbags   
Plastic: Plastic_small Paper: Bags Poly: Buoys  Plastic: Oil   
Poly: Fibreglass Paper: Cig_packets Poly: Fishboxes  Plastic: Rope   
Poly: Foam Paper: Cig_stubs Rubber: Boots  Plastic: Strapping   
Poly: Other Paper: Cups Rubber: Gloves_heavy  Wood: Pallets   
Poly: Packaging Paper: Newspapers Rubber: Tyres_holes     
Poly: Poly_small Paper: Tetrapak Wood: Lobsterpots     
Rubber: Gloves_light Plastic: Bags      
Rubber: Other Plastic: Caps      
Rubber: Rubber_small Plastic: 

Cigarettelighters 

     
Wood: Brushes Plastic: Combs      
Wood: Other Plastic: Crisp      
Wood: Wood Plastic: Cutlery      
 Plastic: Drinks      
 Plastic: Food      
 Plastic: Pens      
 Plastic: Shoes      
 Plastic: Shotgun      
 Plastic: Toiletries      
 Plastic: Toys      
 Plastic: Yokes_      
 Poly: Food      
 Rubber: Balloons      
 Wood: Corks      
 Wood: Lolly      
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Table S3. Items attributed to originating from either land- or marine-based 

activities (or non-sourced). 

Origin 
Land Marine Non-sourced 

Cloth: Clothing Glass: Bulbs Cloth: Cloth 
Cloth: Furnishings Metal: Aerosol Cloth: Other 
Faeces: In_bags Metal: Fishing Cloth: Sacking 
Faeces: Not_bags Metal: Food Metal: Other 
Glass: Bottles Metal: Lobsterpots Metal: Wire 
Glass: Glass Metal: Oil Paper: Cardboard 
Med: Inhalers Paper: Purepak Paper: Other 
Med: Other Plastic: Cleaner_ Plastic: Other 
Med: Plasters Plastic: Fishboxes Plastic: Plastic_large 
Med: Syringes Plastic: Fishing_line Plastic: Plastic_small 
Metal: Batteries Plastic: 

Fishing_net_large 

Poly: Fibreglass 
Metal: Bbqs Plastic: 

Fishing_net_small 

Poly: Foam 
Metal: Caps Plastic: Floats Poly: Other 
Metal: Car Plastic: Foreign Poly: Packaging 
Metal: Drink Plastic: Industrial Poly: Poly_small 
Metal: Foil Plastic: Lobsterpots Rubber: Gloves_light 
Metal: Scrap Plastic: Meshbags Rubber: Other 
Paper: Bags Plastic: Oil_ Rubber: Rubber_small 
Paper: Cig_packets Plastic: Rope Wood: Brushes 
Paper: Cig_stubs Plastic: Strapping Wood: Other 
Paper: Cups Plastic: String Wood: Wood 
Paper: Newspapers Poly: Buoys  
Paper: Tetrapak Poly: Fishboxes  
Plastic: Bags_ Rubber: Boots  
Plastic: Caps_ Rubber: Gloves_heavy  
Plastic: 

Cigarettelighters 

Rubber: Tyres_holes  
Plastic: Combs_ Wood: Lobsterpots  
Plastic: Cones Wood: Pallets  
Plastic: Crisp_   
Plastic: Cutlery   
Plastic: Drinks_   
Plastic: Food_   
Plastic: Pens   
Plastic: Shoes   
Plastic: Shotgun   
Plastic: Toiletries   
Plastic: Toys   
Plastic: Yokes_   
Poly: Food   
Pottery: Ceramic   
Rubber: Balloons   
Rubber: Tyres   
San: Buds   
San: Condoms   
San: Nappies   
San: Other   
San: Tampons   
San: Toilet   
San: Towels   
San: Wipes   
Wood: Corks   
Wood: Lolly   
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Table S4. Items attributed to Food & Drink packaging, Fishing Gear and Wet 

Wipes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Type 
Food & drink 

packaging 

Fishing gear Wet wipes 
Plastic: Drinks Plastic: Fishboxes San: Wipes 
Plastic: Food Plastic: Fishing_line 

 

Plastic: Caps Plastic: Fishing_net_small 
 

Plastic: Crisp Plastic: Fishing_net_large 
 

Plastic: Cutlery Plastic: Lobsterpots 
 

Poly: Food Metal: Fishing 
 

Metal: Bbqs Metal: Lobsterpots 
 

Metal: Drink Wood: Lobsterpots 
 

Metal: Food 
  

Paper: Purepak 
  

Paper: Tetrapak 
  

Paper: Cups 
  

Wood: Lolly 
  

Glass: Bottles 
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Chapter 2: Investigating microplastic trophic transfer in marine 

top predators 

 

Abstract 

Microplastics are highly bioavailable to marine organisms, either through direct 

ingestion, or indirectly by trophic transfer from contaminated prey. The latter has 

been observed for low-trophic level organisms in laboratory conditions, yet 

empirical evidence in high trophic-level taxa is lacking. In natura studies face 

difficulties when dealing with contamination and differentiating between directly 

and indirectly ingested microplastics. The ethical constraints of subjecting large 

organisms, such as marine mammals, to laboratory investigations hinder the 

resolution of these limitations. Here, these issues were resolved by analysing 

sub-samples of scat from captive grey seals (Halichoerus grypus) and whole 

digestive tracts of the wild-caught Atlantic mackerel (Scomber scombrus) they 

are fed upon. An enzymatic digestion protocol was employed to remove excess 

organic material and facilitate visual detection of synthetic particles without 

damaging them. Polymer type was confirmed using Fourier-Transform Infrared 

(FTIR) spectroscopy. Extensive contamination control measures were 

implemented throughout. Approximately half of scat subsamples (48%; n = 15) 

and a third of fish (32%; n = 10) contained 1 - 4 microplastics. Particles were 

mainly black, clear, red and blue in colour. Mean lengths were 1.5 mm and 2 mm 

in scats and fish respectively. Ethylene propylene was the most frequently 

detected polymer type in both. Our findings suggest trophic transfer represents 

an indirect, yet potentially major, pathway of microplastic ingestion for any 

species whose feeding ecology involves the consumption of whole prey, including 

humans.  

 

 

This chapter is a reformatted copy of my publication: Nelms SE, Galloway TS, 

Godley BJ, Jarvis DS, Lindeque PK (2018). Investigating microplastic trophic 

transfer in marine top predators. Environmental Pollution. 238: 999-1007. I 

conducted all of the sample processing and analysis and was lead author on 

this work; DJ provided the samples; PKL guided the development of the project; 

all authors provided comments and edits to help shape the final manuscript. 

Impact: Citations – 50; Altmetric score - 508 
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Introduction 

Microplastics (< 5 mm in size) are ubiquitous in a wide range of marine habitats 

(GESAMP, 2015) and research interest is growing to better understand their 

impacts on the health of the marine environment and the organisms within it.  

These synthetic and persistent particles originate from a variety of sources, which 

include the fragmentation of larger macro-plastics (e.g. fishing gear, packaging) 

by UV photo-degradation, wave action and physical abrasion; shipping spills of 

pre-production pellets (nurdles) and polystyrene beads; the discharge of waste 

water containing microbeads used in cosmetics and microfibers released during 

the washing of textiles; and run-off from land containing road marking paint and 

vehicle tyre fragments (Andrady, 2011; Barnes et al., 2009; Boucher and Friot, 

2017; Browne et al., 2011; Napper and Thompson, 2016; UNEP, 2009). Their 

small size means that microplastics are bioavailable to ingestion by a variety of 

taxa including zooplankton, marine invertebrates, fish, seabirds, and marine 

mammals (Amélineau et al., 2016; Cole et al., 2013; Lusher et al., 2015, 2013). 

Reasons for direct ingestion include accidental consumption of particles through 

indiscriminate feeding strategies (e.g. filter-feeders; Besseling et al., 2015; Cole 

et al., 2013); or active selection due to misidentification of microplastics for food 

(de Sá et al., 2015; Hall et al., 2015; Neves et al., 2015), based on sensory 

signals, such as visual or olfactory cues (Hoarau et al., 2014; Savoca et al., 

2016). Once ingested, microplastics can cause a reduction in feeding capacity, 

energy reserves and reproductive output as well as detrimental alterations to 

intestinal function as shown in a number of low trophic level organisms (Cole et 

al., 2015; Pedà et al., 2016; Sussarellu et al., 2016; Wright et al., 2013a). 

Microplastics may also be ingested indirectly as a result of trophic transfer, 

whereby contaminated prey items are consumed by predators (Farrell and 

Nelson, 2013).  

To date, empirical studies have demonstrated that trophic transfer occurs under 

laboratory conditions for low trophic level organisms, such as crabs (Batel et al., 

2016; Farrell and Nelson, 2013; Setälä et al., 2014; Watts et al., 2014), but the 

extent to which this occurs in the wild and in higher trophic level organisms, is as 

yet unknown. Studies have recorded microplastic particles within the gastro-

intestinal tracts (GIT) of various wild-caught fish species (Lusher et al., 2013; 

Neves et al., 2015; Rummel et al., 2016), highlighting the potential for transfer to 
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predators to occur. Marine mammals that employ a raptorial feeding strategy, 

where prey is captured using the jaws and teeth alone,  may be more likely to 

experience trophic transfer as primary route of microplastic ingestion than 

through direct intake (Hocking et al., 2017). For example, Lusher et al., (2016) 

found that 11% of mesopelagic fish investigated contained microplastics and 

calculated that ~463 million microplastics could be ingested by one striped 

dolphin (Stenella coeruleoalba) through the consumption of contaminated prey. 

This, however, remains to be demonstrated by empirical research. In seabirds, 

pellets (regurgitate) from great skuas (Stercorarius skua) containing remains of 

Northern fulmars (Fulmarus glacialis) exhibited the highest plastic prevalence, 

leading the authors to surmise that plastic burden is related to prey type and is 

therefore a result of trophic transfer (Hammer et al., 2016). Eriksson and Burton 

(2003) found that scats (faeces) collected from an Antarctic fur seal 

(Arctocephalus tropicalis and/ or A. gazella) colony contained plastic particles, 

ranging from 2 to 5 mm (<0.5 mm were not included in the analysis). The authors 

suggest that, as the fur seals are unlikely to have ingested plastic of this size 

directly, the observed microplastic presence could be explained by a ‘plastics 

concentrating stage’, whereby a species of fish (Electrona subaspera)  consume 

plastic particles from the water column and are in turn predated upon by the fur 

seals (Eriksson and Burton, 2003). Similar inferences were made for 

observations recorded for Hooker’s sea lions (Phocarctos hookeri ; Goldsworthy 

et al., 1997; McMahon et al., 1999).  Another study analysed stomachs, intestines 

and scats of harbour seals (Phoca vitulina) and found the incidence of plastic to 

be 11%, 1% and 0% respectively (Bravo Rebolledo et al., 2013). The methods 

used to locate and identify plastic particles, were not appropriate for microplastics 

and the authors acknowledge the risk of losing ‘small and poorly visible’ particles 

and overlooking small particles (0.12 - 0.3 mm) during microscopic sorting. 

Though deemed unlikely by Eriksson and Burton (2003), the possibility that 

microplastics found in scat is a result of direct plastic consumption (either 

accidentally or through naivety) cannot be excluded. For example, twelve of 32 

seal species have been documented to ingest marine debris (Kuhn et al., 2015; 

Ryan et al., 2016) and Hoarau et al. (2014)  inferred that small plastic pieces 

found within marine turtles resulted from fragmentation of larger plastic pieces 

within the GIT. This indicates that microplastics detected in GITs may have 
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originally been directly ingested as macro-plastics. Furthermore, external 

contamination of the scats in situ, cannot be discounted. The ethical constraints 

of subjecting large organisms, such as marine mammals, to laboratory 

investigations, hinder the resolution of practical issues, such as contamination, 

experienced by in natura studies. Here, we analysed scats from captive seals 

(residents of a rehabilitation centre) and the wild-caught fish they are fed upon. 

As a result, the issue of contamination and the likelihood of direct plastic 

consumption were significantly lessened. The aims of this study were to; a) 

assess the abundance of microplastics in both scats and fish prey and 

characterise them by type (fragment or fibre), colour, size and polymer b) 

evaluate the efficacy of the methods utilised to isolate and identify microplastic 

particles and c) determine whether microplastic presence can be attributed to 

trophic transfer. 

 

Materials and methods 

Sample collection 

Seal scats and fish 

Seal scats were collected from an outdoor enclosure at the Cornish Seal 

Sanctuary in Gweek, Cornwall (United Kingdom) containing four resident adult 

grey seal males. The animals, which are of wild origin, have been residing at the 

Seal Sanctuary for at least four years and are not exposed to anthropogenic litter 

items, which may be encountered by wild animals. A plastic enrichment toy, 

however, is provided. As such, samples were taken from the toy to compare with 

any particles found in the scats. Two scat samples (approx. 100 ml) were 

collected per week for 16 weeks, approximately three or four days apart (n = 31). 

To examine the trophic link and possible transfer of microplastics, fish usually fed 

to the seals (n = 31) were retained. These were mackerel (mean weight ± SD = 

130 ± 22 g; mean length ± SD = 23 ± 2 cm) obtained from a local supplier, caught 

within the local region (Celtic Sea/English Channel/Western Approaches).   

 

Water samples 

Water for the enclosure pool is pumped from the Helford River via a sediment 

trap, and though filtered, is a potential source of microplastic contamination. To 

control for this, water samples (50 ml; n = 31) were collected alongside the scats. 
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All samples were stored at -20°C prior to further examination. 

 

Sample preparation: Fish prey items  

Gastro-intestinal tract and content extraction 

Whole mackerel were thawed at room temperature. An incision was made at the 

anus, along the ventral side of the fish to the gill covers to expose the internal 

organs. The gastro-intestinal tract (oesophagus, stomach, pyloric ceca and 

intestines) was located, removed and rinsed with Milli-Q water (ultrapure and 

filtered). A syringe was used to flush approximately 50 ml of Milli-Q water through 

the GIT from the entrance of the oesophagus and the resulting fluid was collected. 

On a clean metal surface, an incision was made along the length of the GIT. Milli-

Q water and a metal spatula were used to extract the GIT content which was 

collected and contained with the flushed fluid from the previous step.  The 

resulting liquid was then passed through a 40 µm mesh disc using a vacuum 

pump. The mesh disc was placed inside a Petri dish and dried. 

 

Sample preparation: Seal scats  

Sieving  

Scats were thawed at room temperature before being passed through a stack of 

fractionating sieves (mesh sizes: 2000 µm, 1000 µm, 500 µm and 200 µm) using 

Milli-Q water and a metal spatula. The material was collected at each level, 

including 50 ml of liquid contained in the beaker in which the sieves were held, to 

ensure particles of <200 µm in size were also captured.  The collected material 

was dried at 60˚C until no moisture remained to optimise concentrations of 

solutions used during enzymatic digestion.  

 

Enzymatic digestion 

Microplastics present in environmental samples may be masked by biological 

material. Some methods of removing this material, such as the use of strong 

oxidizing agents (e.g. acids) can damage or degrade the microplastic particles  

(Lusher et al., 2017). The use of enzymes, however, is considered a more 

appropriate method as it does not alter the properties of plastic (Lusher et al., 

2017). As such, an enzymatic digestion protocol developed by Lindeque and 

Smerdon (2003) and adapted by Cole et al., (2014), was further adapted for 
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application to seal scats. A 3 g subsample (50% ± 15% SD of total scat sample 

dry weight) of the desiccated material was digested. 15 ml of homogenizing 

solution (400 ml Tris-HCI buffer, 120 ml ethylenediaminetetraacetic acid (EDTA), 

30 ml sodium chloride (NaCl), 100 ml Sodium Dodecyl Sulphate (SDS), 350 ml 

Milli-Q water) per gram of dried scat was added to a clean (acid washed and 

rinsed with Milli-Q water) Duran bottle. Samples were physically homogenized by 

stirring rapidly with a metal spatula for 30 s and incubated at 50˚C for 30 mins. 

750 µl of 20 mg mL-1 Proteinase-K was added to each gram of dried scat and 

incubated for up to 24 hours at 50˚C. Following this, 3 ml 5 M sodium perchlorate 

(NaClO4) was added per gram of dried scat and samples shaken at 20˚C (room 

temperature) for >30 mins.  Samples were again physically homogenized for a 

longer period of 1 min and then incubated a final time at 60˚C for 30 mins. Each 

sample was then split across three 40 µm mesh discs using a vacuum pump and 

subsequently left to dry. 

 

Microplastic identification 

The physical characteristics of microplastics can facilitate an understanding of 

their possible sources and reasons for ingestion. As such, material retained on 

the mesh discs (for fish GITs and seal scats) was visually inspected under a 

microscope (Olympus SZX16) and any potential plastic particles were classified 

(type - fragment or fibre; colour; size and description), photographed (using a 

microscope mounted Canon EOS 550D DSLR camera) and retained separately 

for further analysis using Fourier-Transform Infrared (FTIR) spectroscopy (Agilent 

Cary 630 FTIR spectrometer; Agilent FTIR Spectral Library – Poly 8). Microplastic 

colour was determined by eye. 

When interpreting FTIR output, only readings with confidence levels of 70% or 

greater (Lusher et al., 2013) and those considered to have reliable spectra 

matches (after visual inspection) were accepted. Only these particles were 

included for further analysis. All confirmed synthetic polymer particles were 

included in our results. 

 

Contamination and microplastic loss prevention  

Contamination of samples by microplastics present on equipment and within the 

atmosphere risks producing inaccurate results and should therefore be 
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minimised. In addition, their small size means that microplastics present within 

the samples may be lost during processing. A number of measures, listed below, 

were implemented to limit these risks and control for any contamination that did 

occur.  

 

Sample collection 

Sample collection pots were thoroughly rinsed with Milli-Q water in a clean 

environment. Scat collection was carried out using a metal scraping instrument 

and sample pot caps were removed for as limited time as possible.   

 

Sample preparation 

Throughout the sample preparation process, a cotton lab coat and gloves were 

worn. All work surfaces were wiped down with 70% ethanol prior to any work 

commencing and all equipment was thoroughly rinsed with Milli-Q water. 

 

Sieving 

Work was carried out inside a positive pressure laminar flow hood. Prior to use 

and between scats, the sieves were scrubbed using a natural fibre brush and 

veterinary detergent and then rinsed thoroughly with Milli-Q water. Damp filter 

paper in a Petri dish was used to control for any air-borne contamination inside 

the flow hood where the work was carried out. In addition, a procedural blank (20 

ml Milli-Q water) was run through the sieves and filtered using a mesh disc to 

control for any contamination at this stage of processing. Both the mesh disc and 

filter paper were inspected under a microscope for any particles at the beginning 

and end of this step respectively. 

 

Enzymatic digestion 

Prior to any work, all equipment was rinsed with Milli-Q and all pipettes and 

syringes were flushed with Milli-Q. Lids were removed from Duran bottles for as 

limited time as possible. Scats were weighed in an enclosed balance. After 

homogenizing, the metal spatula was rinsed with homogenizing solution to avoid 

loss of particles from samples. The vacuum pumping process was carried out 

inside the laminar flow hood. Prior to vacuum pumping all mesh discs were 

visually inspected for contamination under a microscope and any particles 
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removed. A procedural blank was run through the vacuum pump and the mesh 

disc inspected before samples were filtered. If contamination was found, the 

vacuum pump and mesh disc were cleaned until no particles were detected.  

 

Results 

Microplastic presence in fish prey  

Of the individual fish examined (n = 31), 10 (32%) contained 18 confirmed 

microplastic particles (Table 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

61 
 

Table 1. Physical characteristics and Fourier-Transform Infrared (FTIR) spectroscopy 

output for plastic particles found in fish and seal scats. 

Sample Type Colour Size (µm) Polymer FTIR 

confidence 

Spectra 

match 

Fish 

Fibre Blue 5000 x 30 NBR 0.808 Reliable 

Fibre Black 4200 x 50 Polyacrylamide 0.888 Reliable 

Fibre Red 2000 x 30 Neoprene 0.845 Reliable 

Fibre Orange 2500 x 30 Polyethylene 

terephtalate 

0.893 Reliable 

Fragment Red 700 x 200 Aramid woven fabric 0.702 Reliable 

Fragment Red 300 x 100 Polyethylene  0.849 Reliable 

Fibre Red 2000 x 100 Polyethylene  0.834 Reliable 

Fragment Orange 100 x 100 EPDM 0.865 Reliable 

Fragment Green 100 x 100 Polyethylene  0.823 Reliable 

Fibre Red 700 x 50 Ethylene Propylene 0.832 Reliable 

Fibre Black 4000 x 30 Poly (butylene terephthalate)  0.814 Reliable 

Fibre Blue 50 x 50 Neoprene 0.874 Reliable 

Fibre Black 1200 x 30 Polyethylene  0.851 Reliable 

Fibre Black 2500 x 30 Ethylene propylene 0.768 Reliable 

Fibre Blue 6000 x 30 Ethylene Propylene 0.881 Reliable 

Fibre Blue 3300 x 50 Ethylene propylene 0.838 Reliable 

Fibre Blue 1800 x 50 Ethylene Propylene 0.859 Reliable 

Fragment Green 200 x 150 Polypropylene 0.875 Reliable 

Seal 

scats 

Fragment Red 500 x  500 Polypropylene 0.81 Reliable 

Fragment Clear 2600 x 400 Polypropylene 0.81 Reliable 

Fragment Clear 800 x 600 Polypropylene 0.93 Reliable 

Fibre Black 600 x 50 Ethylene propylene 0.88 Reliable 

Fragment Red 1000 x 400 Polyethylene 0.91 Reliable 

Fibre Black 1200 x 50 Ethylene propylene 0.88 Reliable 

Fibre Black 2100 x 10 Ethylene propylene 0.89 Reliable 

Fibre Black 1300 x 10 Ethylene propylene 0.92 Reliable 

Fragment Red 1200 x 900 Polyethylene 0.77 Reliable 

Fibre Black 600 x 50 Ethylene propylene 0.95 Reliable 

Fragment Black 2500 x 100 Polyacrylamide 0.84 Reliable 

Fragment Red 500 x 600 Polyurethane 0.83 Reliable 

Fragment Clear 5500 x 400 Polypropylene 0.71 Reliable 

Fragment Blue 400 x 300 Ethylene propylene 0.84 Reliable 

Fragment Orange 1800 x 1200 Ethylene propylene 0.85 Reliable 

Fragment Black 700 x 100 Polyaramid Kevlar 0.77 Reliable 

Fragment Orange 3500 x 2300 EPDM  0.87 Reliable 

Fragment Red 600 x 300 Polypropylene 0.89 Reliable 

Fibre Clear 3500 x 100 Polyethylene 0.84 Reliable 

Fibre Blue 600 x 500 Styrene butadiene rubber 0.83 Reliable 

Fragment Clear 2300 x 1500 Neoprene 0.86 Reliable 

Fragment Blue 1000 x 800 Styrene butadiene rubber 0.88 Reliable 

Fibre Red 2300 x 50 Polypropylene 0.82 Reliable 

Fragment Clear 20 x 800 NBR 0.78 Reliable 

Fragment Orange 1100 x 700 Polyacrylamide 0.86 Reliable 

Fragment Blue 500 x 400 Polypropylene 0.86 Reliable 
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The number per fish ranged from 0 – 4 (mean ± SD = 0.58 ± 1.05 particles; Fig. 

1a). The majority were fibres (n = 13; 72%) and the remaining 28% comprised of 

fragments (n = 5). The most prevalent colours were red and blue (both 28%), 

black (22%), orange and green (both 11%; Fig. 1c).  

Fig. 1. a) Frequency histogram showing number of plastic particles per fish; b) 

Frequency histogram showing number of particles per scat subsample; c) Barplot 

showing percentage of particles for each colour in fish (blue) and scats (grey); d) 

Barplot showing percentage of particles per polymer type for fish (blue) and scats 

(grey; AWF = aramid woven fabric; EP = ethylene propylene; EPDM = ethylene 

propylene diene monomer (M-class) rubber; NBR = nitrile butadiene rubber; NP 

= neoprene; PA = polyacrylamide; PAK = polyaramid Kevlar; PBT = poly 

(butylene terephthalate); PE = polyethylene; PP = polypropylene; PU = 

polyurethane; SBR = styrene butadiene rubber). 
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Fibres ranged from 0.5 to 6.0 mm in length. The largest fragment found was 0.7 

x 0.2 mm and the smallest 0.1 x 0.1 mm in diameter. The mean particle length 

was 2.0 mm (± SD = 1.8 mm).  The most prevalent polymer types as confirmed 

by FTIR were ethylene propylene and polyethylene (both 28%) followed by 

neoprene (11%), polypropylene, ethylene propylene diene monomer (EPDM), 

nitrile butadiene rubber (NBR), aramid woven fabric, poly (butylene 

terephthalate), polyacrylamide (all 6%; Fig. 1d). See Fig. 2a for photographic 

examples of microplastics found in fish. 

Fig. 2 Photographic examples of particles found in a) fish (from l-r: aramid woven 

fabric, polyethylene, ethylene propylene, polyacrylamide) and b) scat 

subsamples (from l-r: polyethylene, polyaramid Kevlar®, polypropylene, 

polyacrylamide). Scale bars represent 500 µm. 

 

Microplastic presence in scats 

Of the 31 scat subsamples analysed, 15 (48%) contained a total of 26 confirmed 

microplastic particles (Table 1). The number of particles per scat ranged from 0 

– 4 (mean ± SD = 0.87 ± 1.09 particles; Fig. 1b). Of these, 18 were fragments 

(69%) and eight were fibres (31%). Black particles were most commonly found 

(27%) followed by clear (transparent) and red (both 23%), blue (15%) and orange 

(12%; Fig. 1c). Particle size varied with fragments ranging from 0.4 x 0.3 mm to 

5.5 x 0.4 mm. Fibres ranged from 0.6 to 3.5 mm in length. The mean particle 

length was 1.5 mm (± SD = 1.2 mm). The most common polymer types identified 

by FTIR were ethylene propylene and polypropylene (both 27%) followed by 

polyethylene (12%), polyacrylamide and styrene butadiene rubber (both 8%), 
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neoprene, EPDM, NBR, polyaramid Kevlar, polyurethane (all 4%; Fig. 1d).  These 

results are from scat sub-sample representing ~50% of total dry weight. See Fig. 

2b for photographic examples of microplastics found in scats.  

 

Contamination levels 

Water samples and enrichment toy 

Black ethylene propylene fibres (n = 4) were detected in water samples taken 

from the enclosure pool but as these were also found in the fish GITs, those 

detected in the scats were included within the results. It is likely that the seals 

defecated in the pool and so introduced the particles themselves. No particles 

matching the enrichment toy were detected. 

 

Sample preparation 

No evidence of contamination was found in any of the procedural controls or 

blanks. Blue polypropylene fragments (n = 5) matching FTIR output for the bottle 

lids used during sample preparation were found in two of the samples. These 

were excluded from the results as these were considered to be a possible result 

of contamination. Aluminium foil lids were used for the remaining samples to 

avoid any further possibility of contamination.  

 

Discussion 

This study is the first to investigate and demonstrate empirical evidence for the 

trophic transfer of microplastics from fish to a marine top predator. Studies on 

microplastics and pinnipeds are scarce (Bravo Rebolledo et al., 2013), making it 

challenging to draw comparisons with our results. A wild study found the number 

of particles per scat ranged from 0 - 4  and the majority of those containing 

microplastics had one particle (Eriksson and Burton, 2003). It is not clear whether 

the whole scat or a subsample was examined, or what methods were employed 

to do so. In this study black, clear and red were the most frequently found colour 

particles in scats which differs from Eriksson and Burton (2003) where white, 

brown, blue, green and yellow were most common. Additionally, the mean particle 

length was 4.1 mm which differs from our result (1.5 mm; Eriksson and Burton, 

2003). It is possible that methodological techniques employed in our study 

allowed for smaller particles to be detected. Though not discussed explicitly, it 
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seems that all particles found were fragments, which is similar to the results of 

our study, though some fibres were identified.  

Ingestion rates of microplastics by fish prey could not be accurately assessed in 

this study because samples were obtained from the fishing industry and not 

collected using the necessary sampling protocols. This is important because 

some species of fish are known to regurgitate stomach contents during capture 

as a result of handling stress which may result in the loss of microplastics and so 

bias the results of any analysis (Bromley, 1994; Lusher et al., 2017). Conversely, 

during capture, fish may ingest microplastics that accumulate in the net, or 

originate from the net itself (Lusher et al., 2013). Nevertheless, Neves (2015) 

found that 31% Atlantic mackerel sampled had ingested microplastics, with a 

mean of 0.46 (±0.78) microplastics per individual. This corresponds with the 

results of this study, whereby 32% of mackerel contained microplastics with mean 

of 0.58 particles per fish. Our finding that fibres were more commonly detected 

(72%) than fragments corresponds with findings from other research on 

environmental microplastic concentrations (Claessens et al., 2011; Lusher et al., 

2013; Neves et al., 2015; Wright et al., 2013b) and two studies investigating fish 

found approximately 66% and 68% of microplastics were fibres (Lusher et al., 

2013; Neves et al., 2015). One study reported particles of various colours with 

the black being the most common at 45% (Lusher et al., 2013). We found black 

to be the third most common colour (22%) after red and blue. Neves (2015)  found 

the size of particles generally ranged from 0.217 to 4.81 mm (mean 2.11 ±1.67 

mm) and Lusher (2013) reported a larger range of 0.13 - 14.3 mm the most 

common size class to be 1–2 mm. The mean particle length detected in fish in 

our study was 2 mm.  

In total, 12 polymer types were detected in the fish and scats analysed in this 

study. The most common for both was ethylene propylene, indicating a clear link 

between the seals and the fish they consumed. The particles detected in scats 

by Eriksson and Burton (2003) comprised five major polymer groups; 

polyethylene (93%), polypropylene (4%), poly(1-Cl-1-butenylene) 

polychloroprene (2%), melamine-urea (phenol) (formaldehyde) resin (0.5%) and 

cellulose (0.5%). The polymer types detected in the scats of our study were more 

varied (10 polymer types), which may be as a result of diversity within the marine 

environment. The animals investigated by Eriksson and Burton (2003)  were 
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located on Macquarie Island, a remote island in the southwest Pacific Ocean. As 

such, they are likely exposed to different microplastic inputs from those in our 

study, which are fed on fish from the north-east Atlantic, caught near the British 

coast. The two most common polymers detected in fish by Neves (2015), 

polypropylene and polyethylene, were also commonly detected in the scat and 

fish analysed in this study. 

Our findings indicate some disparities between the type, colour and size of 

microplastics detected in fish compared with those found in scats. For example, 

the majority of particles detected in scats were fragments while the reverse is true 

for the fish with fibres being most common.  Though black, red and blue particles 

featured prominently in both fish and scats, and they contained the same 

proportion of orange particles, the latter also contained a high proportion of clear 

particles which were not detected in fish. A range of sizes of fragments and fibres 

were detected. These variations may be due to several reasons; 

Diversity within the system: The fish examined for microplastics may not 

have been caught concurrently with those fed to (and excreted by) the seals. As 

a result of the considerable diversity in microplastic abundance, type (fragment/ 

fibre), size, colour and polymer observed not only among fish (individuals, 

populations and species (Lusher et al., 2013; Neves et al., 2015; Rummel et al., 

2016) but within the marine environment generally (Amélineau et al., 2016; Cózar 

et al., 2015; Woodall et al., 2014), we would not expect to see a complete match 

between the particles found in the scats and the fish.  

Methodological constraints: The differing methods of microplastic 

extraction and isolation from fish GITs and scat may have contributed to some of 

the observed variation. For example, though efforts were made to minimise 

microplastic loss, it is possible that the protracted processing involved in 

enzymatic digestion of the scats, increased the risk of losing some particles. In 

addition, microplastic detection relies on human ability so it is likely that particles 

that are ‘natural’ in colour (i.e. brown, beige) are under reported in some cases. 

The colour of background substrate may influence which colours are more likely 

to be detected. For example, clear/ transparent particles are less obvious in fish 

than scat because the substrate is translucent. The relatively small sample sizes 

are also likely to have contributed to some of the observed variation. 
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Biological implications: One study found more plastic in the stomachs of 

harbour seals (Phoca vitulina) than elsewhere in the GIT or scat (Bravo Rebolledo 

et al., 2013). This suggests that the stomach may act as a trap for non-food items, 

such as microplastics. To investigate this further, it would be necessary to 

examine the GITs of dead animals, preferably those known to have died as a 

result of physical trauma, such as by-catch, whereby normal feeding behaviour 

prior to death can be assumed.  

It has been suggested that atmospheric microplastics may be a source of 

particles found in the gut content/ faeces of marine mammals (Lusher et al., 

2017). Though this is possible in some cases, it is unlikely in this study for a 

number of reasons. Firstly,  most atmospheric microplastics are fibres (Dris et al., 

2016) and the majority of particles found in the scats were fragments. Secondly, 

the animals investigated in this study reside in a rural area, with very low levels 

of air pollution (www.uk-air.defra.gov.uk/air-pollution; last accessed 16 October 

2017). Lastly, the strong correlation between polymer type in both fish and seal 

scats indicates that the microplastics found in scats were a consequence of 

ingestion as opposed to inhalation or contamination. It is unknown to what extent 

wild animals are exposed to atmospheric microplastics but examination of the 

lungs and airways of stranded animals could be a worthy aspect for future 

research efforts, alongside the monitoring of atmospheric microplastic levels at 

sea. 

The methods of microplastic extraction and contamination control used in this 

study were effective for determining the presence and characteristics of 

microplastic particles in fish and scat. In addition, the use of captive seals 

significantly reduced the possibility of direct plastic consumption. As such, we 

attribute the presence of microplastic particles in seal scats to the occurrence of 

trophic transfer from prey to a marine top predator. Whether these particles were 

directly consumed by the fish or underwent trophic transfer from ingestion of 

contaminated zooplankton is not known. Mackerel in the north east Atlantic, 

though opportunistic, feed primarily on calanoid copepods (Bachiller et al., 2016), 

which are approximately 2 mm in length (Lindeque et al., 2006). Zooplankton can 

consume microplastic particles of 0.4−30.6 μm in size (Cole et al., 2013) but all 

microplastics found in the fish were considerably larger than this (>100 μm) with 

a mean size of 2 mm. This indicates that microplastics found within the mackerel 
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were most likely consumed directly from the water column, possibly because they 

were mistaken for prey items. Similarly, Amberstripe scad (Decapterus muroadsi) 

have been shown to readily ingest microplastics resembling their copepod prey 

in colour and size (Ory et al., 2017). The authors surmise that planktivorous fish 

are more likely to consume microplastics directly because of their feeding ecology 

as visual predators (Ory et al., 2017).   Further investigation is needed to 

understand selectivity and its impacts on trophic transfer. 

The occurrence of microplastic trophic transfer may have a number of impacts 

for top predators; 

Physiological implications: Microplastic ingestion has been shown to 

cause a number of detrimental physiological impacts resulting in a reduction in 

feeding capacity, energy reserves and reproductive output for smaller low-trophic 

level organisms (Cole et al., 2013; Sussarellu et al., 2016; Wright et al., 2013a). 

It is not yet known whether this occurs in larger animals, such as marine 

mammals. Furthermore, very little information exists regarding the retention time 

of microplastics in marine mammal GITs. A study investigating the prey passage 

time of grey seals found that the majority of fish otoliths (ear bones) could be 

recovered from scats ~88 hours after consumption (Grellier and Hammond, 2006; 

Lusher et al., 2016). The feeding trial also found that all polystyrene beads (3 

mm) were recovered after 6 days. This suggests that, although they may take 

longer, microplastics are egested alongside indigestible dietary items (Lusher et 

al., 2016). It is not known, however, what effect this partial retention has on 

digestive processes and whether fibres behave differently within the digestive 

tract to the beads used by Grellier and Hammond (2006).  

Prey availability: The known impacts for low trophic level organisms may 

have secondary implications for predators in the form of reduced food availability, 

i.e.  Increased mortality of prey species as a result of microplastic ingestion. 

Further research is needed to assess whether this is the case. 

Microplastics and chemical contaminants: Biomagnification and 

bioaccumulation of chemical contaminants, such as polychlorinated biphenyls 

(PCBs) and organochlorine pesticides (OCPs), are known to occur at higher 

trophic levels, particularly affecting marine top predators (Jepson et al., 2016; 

Tsygankov et al., 2015).  Whether a similar mechanism occurs for microplastics 

is unknown. For example, does the abundance of microplastic particles increase 
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through and up marine food webs, and with the age of the animal? Further 

research is needed to investigate whether animals at higher trophic levels 

experience higher plastic loads than those at lower levels and whether older 

animals experience higher abundances than younger ones of the same species/ 

population. In addition, microplastics may act as a vector for transporting 

chemicals, both trophically (Teuten et al., 2007) and spatially. For example, 

population declines in some marine mammal species have been linked to 

elevated burdens of OCs as a result of their presence within the marine 

environment (Murphy et al., 2015). The  large surface area to volume ratio of 

microplastics can lead to the adsorption and concentration of such hydrophobic 

toxicants (Teuten et al., 2007). If consumed, they may desorb into biological 

tissues, potentially leading to detrimental endocrine and/ or immune system 

effects with implications for reproductive success (Jepson et al., 2016; Murphy et 

al., 2015; Teuten et al., 2009). The ingestion of microplastics may represent an 

additional pathway by which these chemicals enter marine mammals, aside from 

the usual dietary input.  

Human health: Our finding that microplastics can be transferred from fish 

to top predators has implications for human health. For instance, seafood that is 

consumed whole (i.e. including the GIT), such as shellfish, has been found to 

contain microplastics (Murray and Cowie, 2011; Rochman et al., 2015; Van 

Cauwenberghe and Janssen, 2014). Further work is required to better 

understand the extent of exposure to and impacts of microplastic ingestion on 

humans. 

 

Conclusion 

We present empirical evidence that microplastic particles can be transferred 

across trophic levels, from fish to a marine mammal top predator. Our findings 

suggest that trophic transfer represents an indirect, yet potentially major, pathway 

of microplastic ingestion for any species whose feeding ecology involves the 

consumption of whole prey.  
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Chapter 3: Microplastics in marine mammals stranded around 

the British coast: ubiquitous but transitory? 

 

Abstract 

Plastic pollution represents a pervasive and increasing threat to marine 

ecosystems worldwide and there is a need to better understand the extent to 

which microplastics (<5 mm) are ingested by high trophic-level taxa, such as 

marine mammals. Here, we perform a comprehensive assessment by examining 

whole digestive tracts of 50 individuals from 10 species whilst operating strict 

contamination controls. Microplastics were ubiquitous with particles detected in 

every animal examined. The relatively low number per animal (mean = 5.5) 

suggests these particles are transitory. Stomachs, however, were found to 

contain a greater number than intestines, indicating a potential site of temporary 

retention. The majority of particles were fibres (84%) while the remaining 16% 

was fragments. Particles were mainly blue and black (42.5% and 26.4%) in colour 

and Nylon was the most prevalent (60%) polymer type.  A possible relationship 

was found between the cause of death category and microplastic abundance, 

indicating that animals that died due to infectious diseases had a slightly higher 

number of particles than those that died of trauma and other drivers of mortality. 

It is not possible, however, to draw any firm conclusions on the potential biological 

significance of this observation and further research is required to better 

understand the potential chronic effects of microplastic exposure on animal 

health, particularly as marine mammals are widely considered important sentinels 

for the implications of pollution for the marine environment.  
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Introduction  

Marine mammals, such as whales, dolphins and seals, are often considered 

important indicators of marine ecosystem health, particularly in relation to 

pollution (Bossart, 2011; Mössner and Ballschmiter, 1997). The high-trophic level 

status and long life-span of some species leaves them susceptible to 

bioaccumulation and biomagnification of aquatic chemical contaminants, which 

have been shown to cause population-level effects (Jepson et al., 2016; Murphy 

et al., 2015; Pierce et al., 2008).  As a result of this and other anthropogenic 

stressors, many species of this taxonomic group are of conservation concern 

(Parsons et al., 2015). Ingestion of anthropogenic litter by marine mammals has 

been documented in a number of species (n = 123; Kuhn et al., 2015), yet the 

number of studies (which use appropriate methods of extraction and 

contamination control) investigating the physical presence of microplastics (<5 

mm in size) in the digestive tracts of cetaceans is extremely low (n = 4; totalling 

57 animals of 8 species from Ireland, the Netherlands and Spain (Besseling et 

al., 2015; Hernandez-Gonzalez et al., 2018; Lusher et al., 2015, 2018); polymer 

information has been presented for two animals only (Besseling et al., 2015; 

Lusher et al., 2015) and there are no studies whereby the digestive tracts of wild 

pinnipeds have been examined.  

Microplastics in the marine environment originate from a variety of sources, 

including fragmentation of larger macro-plastic debris, pre-production pellets 

(nurdles) spilled during transportation and fabrication, outflow of wastewater 

containing microbeads from cosmetics and fibres from the washing of synthetic 

textiles, as well as road-run-off containing fragments of vehicle tyres and marking 

paint (Andrady, 2011; Barnes et al., 2009; Boucher and Friot, 2017; Browne et 

al., 2011; Cole et al., 2011; UNEP, 2009). Their small size makes them highly 

bioavailable to ingestion by a wide variety of marine biota from zooplankton, such 

as copepods, other invertebrates (including shellfish), both juvenile and adult fish, 

seabirds and marine megafauna (Amélineau et al., 2016; Besseling et al., 2015; 

Cole et al., 2013; Desforges et al., 2015; Farrell and Nelson, 2013; Lusher et al., 

2013, 2015; Steer et al., 2017; Watts et al., 2014). 

Microplastics may be ingested directly through accidental consumption, for 

example as a result of indiscriminate feeding strategies, such as filter-feeding 

(e.g. mysticete whales; Besseling et al., 2015) or indirectly as a result of trophic 
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transfer, whereby predators consume prey items contaminated with microplastics 

(Farrell and Nelson, 2013), for example, during raptorial feeding (e.g. most seals 

and dolphins; Hocking et al., 2017).  Though little is known about the extent to 

which trophic transfer occurs in the wild, the presence of microplastics in scats of 

captive grey seals (Halichoerus grypus) has been attributed to trophic transfer 

from the wild-caught mackerel (Scomber scombrus) they were fed upon (Nelms 

et al., 2018). 

Due to the difficulties of investigating the occurrence and effects of microplastics 

in the field, many studies are limited to low-trophic level organisms in a laboratory 

setting. In such cases, ingestion of microplastics has been shown to cause a 

reduction in feeding and energy reserves as well as impacts on reproductive 

output and damage to brain and intestinal function in invertebrates and fish (Cole 

et al., 2013; Lei et al., 2018; Mattsson et al., 2017; Sussarellu et al., 2016; Wright 

et al., 2013a). In addition, the hydrophobic properties of plastics means that 

organic chemical contaminants present within seawater, such as polychlorinated 

biphenyls (PCBs), have a tendency to adsorb to their surface (Teuten et al., 

2009). These, and other chemicals added during production, such as plasticisers, 

can desorb into biological tissue if ingested and cause detrimental effects for 

organism health, such as oxidative and hepatic stress (Browne et al., 2013; 

Rochman et al., 2013). 

In this study we sought to investigate the extent of microplastic ingestion in wild 

marine mammals by examining the digestive tracts of a large sample (n = 50) of 

individuals from 10 species (cetacean n = 43, 8 species; pinniped n = 7, 2 

species) that stranded around the coast of Britain. We sought to not only 

determine the general abundance of microplastics ingested and polymers 

involved, but also to determine whether microplastics are egested or retained 

within the digestive tract. 

 

Results 

Microplastic abundance 

Every animal was found to contain at least one synthetic particle (See Fig. 1a for 

photographic examples). In total, 273 particles were detected and 261 of these 

were less than 5mm in size (mean ± SD = 5.5 ± 2.7 particles per animal; range 

1-12 particles). Only one animal was found to contain macroplastics; green 



 
 

73 
 

netting in the forestomach of a juvenile short-beaked common dolphin (Delphinus 

delphis). 

The majority of particles were fibres (84%; n = 229) while the remaining 16% (n 

= 44) was fragments. Particles were mainly blue and black (42.5% and 26.4%, 

respectively) followed by clear (12.8%), red (11%), green (2.9%), orange and 

yellow (both 1.5%) and white and multi-coloured (both 0.7%; Fig. 1b.) Fibres 

ranged in size from 2 cm in length to 0.1 mm (100 µm) with a mean length of 2 

mm (± 2.3 mm; Fig.1c).  Fragments were between 4 x 2 mm and 100 x 100 µm 

in size (mean length = 0.9 mm ± 1.1). All (100%; n = 50; one per animal) of the 

particles successfully tested using Fourier Transform Infrared (FTIR) 

spectroscopy were synthetic, with Nylon the most prevalent (60%; n = 30) 

followed by polyethylene terephthalate (PET) and polyester (all 10%; n = 5), 

phenoxy resin, polyethylene, polypropylene and rayon (all 4%; n = 2), polyamide 

resin and LDPE (both 2%; n = 1; Fig. 1d).  

Fig. 1 a) Photographic examples of microplastics found in marine mammal 

digestive tracts (i) Nylon; ii) Polyethylene; iii) Polyethylene terephthalate (PET); 

iv) Phenoxy resin b) proportion of particle colours found in all animals (blue; 

42.5%, black; 26.4%, clear; 12.8%, red; 11%, green; 2.9%, orange and yellow; 
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both 1.5%, white and multi-coloured; both 0.7%)  c) size ranges (0 - > 5000 µm) 

of plastic particles found in all animals. Note: a small proportion of fibres were 

larger than 5mm but were not macroscopically visible and are included here.  d) 

the proportion of polymer types found (Nylon; 60%, polyethylene terephthalate 

(PET) and polyester; both 10%, phenoxy resin, polyethylene, polypropylene and 

rayon; all 4%, polyamide resin and LDPE; both 2%).  

 

Factors affecting microplastic abundance 

When we investigated factors that may affect microplastic burden (taxon, age-

class, sex, length, cause of death), model simplification indicated that cause of 

death was the only significant predictor of microplastic abundance (p = 0.01; 

Supplemental Table S1 and S2) and the mean number of microplastics was 

significantly different among the three cause of death categories (one-way 

ANOVA, F2, 47 = 4.31, p < 0.05; Fig. 2). Animals presenting infectious diseases 

contained slightly higher mean (± SD) microplastics abundances (7.0 ± 2.7), 

followed by trauma (4.7 ± 2.1) and other (4.6 ± 3.2). This was also the case when 

we only analysed species (harbour porpoise and common dolphin) with sample 

size greater than 16 individuals. See Supplemental Table S3 and S4 for further 

detail. 

 

Fig. 2 Box plot showing the number of microplastics in relation to cause of death 

category (infectious disease (7.0 ± 2.7), trauma (4.7 ± 2.1), other (4.6 ± 3.2)). The 
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horizontal black lines represent median values, the boxes depict the first and third 

quartiles and the whiskers illustrate the minimum and maximum values.  

 

Distribution of microplastics within the digestive tract 

Of the GIT sections, stomach(s) showed a significantly higher abundance of 

microplastics (mean ± SD = 3.8 particles ±2.5) than intestines (1.7 ±1.4; one-way 

ANOVA, F1, 98 = 27.69, p < 0.001; Fig. 3.). There was no significant difference 

among the compartments of cetacean stomachs (fore, fundic and pyloric; 

ANOVA, F2, 77 = 0.6472, p = 0.5).  

 

 

Fig. 3 Box plot showing the number of microplastics detected in the gastro-

intestinal tract (GIT) sections stomach(s) and intestines (mean ± SD = 3.8 

particles ±2.5 and 1.7 ±1.4 respectively). The horizontal black lines represent 

median values, the boxes depict the first and third quartiles and the whiskers 

illustrate the minimum and maximum values. 

 

Contamination 

No particles matching the contamination controls were found in any of the 

samples and all procedural blanks were clear, demonstrating that the measures 

implemented to minimise contamination were 100% effective. 
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Discussion 

Our study is the first to assess the presence of microplastics in the digestive tracts 

of multiple individuals from a range of both cetacean and pinniped species. At 

least one microplastic, which was confirmed using FTIR, was discovered in every 

animal with an average of 5.5 particles per animal. There are few studies 

available for comparison but two studies examined the stomach contents of 35 

common dolphins and digestive tracts of 21 cetaceans (of various species)  and 

found a total of 411 and 598 small debris items respectively (Hernandez-

Gonzalez et al., 2018; Lusher et al., 2018). Neither study, however, presented 

FTIR data confirming polymer type. Sixteen confirmed microplastics were found 

in an unknown volume of gut content from a humpback whale (Megaptera 

novaeangliae; Besseling et al., 2015).   

All animals examined in the current study were raptorial feeders, using their jaws 

and teeth alone to catch prey (Hocking et al., 2017). As raptorial feeders expel 

seawater through their teeth so as not to ingest it, we presume they are less likely 

to consume microplastics directly and more likely to indirectly consume them 

through trophic transfer from contaminated prey (Nelms et al., 2018). However, 

given that approximately 11-30% of fish contain microplastics (Lusher et al., 

2013; Neves et al., 2015) a greater number could perhaps be expected in the 

digestive tracts of marine mammals than demonstrated here. There are at least 

three possible explanations for the observed low abundances of microplastics. 

Firstly, microplastics are egested along with other dietary waste, such as fish 

bones, otoliths and squid beaks, as shown by their presence in seal scats and 

the intestines of both cetaceans and seals (Eriksson and Burton, 2003; Lusher et 

al., 2015; Nelms et al., 2018). A feeding trial examining the passage time of prey 

in grey seals found the majority of otoliths were passed within four days of 

consumption and all polystyrene balls (3 mm) fed to the animals were recovered 

within six days, demonstrating that, although microplastics have a slower 

passage time, they are egested in the faeces (Grellier and Hammond, 2006; 

Lusher et al., 2016) . Our finding of higher microplastic abundances in the 

stomach(s) than intestines, may explain this delay in passage time - the 

stomach(s) acts as an entrapment site within the digestive tract, partially retaining 

the microplastics. In addition to egestion, cetaceans, particularly odontocetes 

(toothed whales) are known to regurgitate foreign objects from the forestomach 
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(Levine et al., 2014; Mintzer et al., 2008), although very little information exists 

on the regurgitation rates of wild odontocetes (Mintzer et al., 2008). Furthermore, 

a study on low trophic level organisms found microplastics transferred up food 

webs but were not present within predators after 10 days without exposure 

(Santana et al., 2017). Secondly, the levels of microplastics in fish and other prey 

species may have been over-estimated due to poor contamination control in 

some studies (Hermsen et al., 2017). For example, a study of North Sea fish 

found that 0.25% (1 out of 400) contained microplastics when, as undertaken in 

our study, strict quality assurance criteria were employed (Hermsen et al., 2017). 

Lastly, the number of microplastics detected in this study possibly represents a 

proportion of what is actually present within the marine mammal GITs at the time 

of death as some may have been lost during the extraction process.  

The majority of particles detected in our study were fibres, which corresponds 

with observations of environmental microplastic concentrations (Claessens et al., 

2011; Woodall et al., 2014; Wright et al., 2013b) as well as those found in other 

studies on cetaceans, turtles and fish (Duncan et al., 2019; Lusher et al., 2013, 

2015, 2018; Neves et al., 2015). Similarly, blue and black, the most common 

colours detected in the marine mammal digestive tracts, frequently dominate 

composition of particles ingested by turtles, fish and zooplankton (Desforges et 

al., 2015; Duncan et al., 2019; Lusher et al., 2013; Steer et al., 2017). The mean 

length of fibres detected in the intestines of a True’s beaked whale was 2.16 mm 

which, again, corresponds closely with the mean length of fibres found in our 

study (2 mm; Lusher et al., 2015). It is likely that, in our study and others, particles 

<500 µm in size are under-represented, due to detectability and size of mesh (35 

µm) used for vacuum pumping. 

In terms of polymer, previous studies found Nylon, polyethylene, polypropylene 

and polyethylene terephthalate which were also detected in our samples 

(Besseling et al., 2015; Lusher et al., 2015).  

Although a statistical relationship with a modest effect size was found between 

the cause-of-death category and microplastic abundance, it is not yet possible to 

draw firm conclusions on the potential biological significance of this observation. 

More research is required to better understand the potential chronic effects of 

microplastic exposure on marine mammal health. Sub-lethal effects, from the 

microplastics themselves or the chemical contaminants present on or within them 
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are unlikely to be attributable to plastic ingestion at the low levels recorded here. 

It is not yet known to what extent microplastics act as a vector for transporting 

these toxicants from the aquatic environment into the tissues of marine mammals. 

It has been surmised that phthalates could act as a tracer for microplastic 

ingestion by Mediterranean fin whales (Balaenoptera physalus) because high 

concentrations of these plasticizers were detected in areas that corresponded 

with the spatial distribution of the whales (Fossi et al., 2012). To date, there is 

little empirical evidence to demonstrate a direct causal link between chemical 

contaminant load and microplastic ingestion in marine mammals. Potential health 

effects, such as depressed immune system function or increased vulnerability to 

diseases (Desforges et al., 2017; Hall et al., 2006), may not develop until after 

the microplastics have passed through the body. As a result, a causal relationship 

between microplastics and sub-lethal effects cannot be ruled out, especially 

where chronic exposure may lead to the bioaccumulation of toxicants. 

Additionally, inhalation of atmospheric microplastics (Dris et al., 2016) by marine 

mammals may be a non-dietary source (Lusher et al., 2018), but the extent to 

which this occurs is currently unknown.  Monitoring of at-sea atmospheric 

microplastic levels and examination of airways and lungs from stranded animals 

is needed. 

In conclusion, we have shown that at least 10 of the 26 marine mammal species 

inhabiting or transiting through UK waters are exposed to microplastics through 

ingestion, though the potential for detrimental impacts is not known. Further 

examination of larger sample sizes, including investigation of animals of varying 

feeding strategies (e.g. lunge and suction feeders, such as baleen and beaked 

whales) in a greater variety of locations is required for comparison. Global 

hotspots for both large marine vertebrates and plastic pollution, such as the north-

west Pacific Ocean (Block et al., 2011; van Sebille et al., 2015), may reveal 

clearer trends. In addition, investigation into the influence of oceanographic 

variables, such as currents, on both marine mammal strandings and marine litter 

may assist our understanding of their spatial relationship.   

The methods employed in this study can be applied to a wide range of settings. 

Here, we were able to set baselines for geographical and temporal comparisons 

of microplastic ingestion within and across taxa. Exposure to microplastics is 

likely to be chronic, cumulative and persistent.  Although the snapshot provided 



 
 

79 
 

by this study cannot yet assess this risk, it does suggest that impacts of 

microplastic ingestion could manifest in these apex species, and hence further 

work is needed. 

 

Methods 

Sample collection 

Post-mortem examinations of 50 stranded marine mammals (Fig. 4, 

Supplementary Table S5) were carried out by the Scottish Marine Animal 

Strandings Scheme (SMASS) and the Cetacean Stranding Investigation 

Programme (CSIP, at the Institute of Zoology and University of Exeter, Penryn 

campus), during which the gastro-intestinal tracts were extracted and retained for 

further investigation at Plymouth Marine Laboratory, UK. All post-mortem 

investigations were conducted using standard procedures(Deaville and Jepson, 

2011; Kuiken and Garcia Hartmann, 1991) by experienced marine mammal 

pathologists in a necropsy facility rated to biosafety level 2. Samples were 

collected under contract to Defra and the Devolved Governments of Scotland and 

Wales. All samples were stored at -20°C or below. 
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Fig. 4. Distribution of marine mammal strandings around the coast of Britain. The 

coloured points correspond to the marine mammal species (Atlantic white-sided 

dolphin; Lagenorhynchus acutus, bottlenose dolphin; Tursiops truncatus, 

common dolphin; Delphinus delphis, grey seal; Halichoerus grypus, harbour 

porpoise; Phocoena phocoena, harbour seal; Phoca vitulina, pygmy sperm 

whale; Kogia breviceps, Risso’s dolphin; Grampus griseus, striped dolphin; 

Stenella coeruleoalba and white-beaked dolphin; Lagenorhynchus albirostris) 

and sample size as displayed in the legend. Further details are included in 

Supplemental Table S5. Map generated using ArcMap 10.3.1. 

 

 

Gut content extraction 

The GITs were thawed at room temperature before being rinsed with Milli-Q 

(ultra-pure, filtered) water to remove any unwanted particles (e.g. sand) adhering 
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to the external surfaces. In a clean metal tray, each GIT section – intestines and 

stomach (stomach compartments for cetaceans) - were cut open separately and 

the inside rinsed with Milli-Q water. The resulting solution was retained in glass 

beakers. Due to the relatively low amount of organic material present within some 

stomach compartments (obvious bony parts and otoliths (ear bones) of fish and 

squid beaks were picked out), it was possible, using a vacuum pump, to pass the 

content through 35µm mesh discs for later inspection. The intestines (and fore-

stomachs of some animals) contained a greater amount of material which could 

obscure microplastic particles upon visual inspection. Therefore, this material 

was digested using an enzymatic protocol (see below) to remove organic material 

whilst retaining inorganic and anthropogenic material for inspection (adapted 

from Lindeque and Smerdon, (2003)).  

 

Enzymatic digestion 

Once extracted, the content of the intestines or fore-stomach was placed in a 

drying oven until the water added during the extraction process evaporated. The 

dry weight was calculated and the following digestion solution volumes were 

applied to each 1 g of dried content, the total for each animal varied between 4.5 

and 203.5 g. Homogenizing solution (2.2 mL; 400 mM Tris-HCI buffer, 60 mM 

EDTA, 105 mM NaCl, 1% SDS) was added to the gut content in a clean glass 

bottle and incubated at 55˚C for 24 hours. A metal spatula was used to physically 

homogenize the GIT content for 30 seconds, 40 µL of 20 mg mL-1 Proteinase K 

was added and the samples incubated at 55˚C for a further 24 hours. Following 

this, 400 µL of 5 M sodium perchlorate (NaCLO4) was added and the content 

physically homogenized for 1 min. Finally, the samples were incubated for 72 

hours at 55˚C. Each sample was passed through 35 µm mesh discs (number 

dependent on amount of material remaining) using a vacuum pump and left to 

dry at room temperature in a sealed Petri dish. 

 

Contamination and microplastic loss avoidance 

Extensive measures were implemented throughout to limit the risk of 

contamination of samples by microplastics present on equipment and air-borne 

particles within in the atmosphere, see below. As a result, no microplastics were 

found in the procedural blanks and all controls were clear. 
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Gut content extraction 

For health and safety purposes, nitrile gloves and low-density polyethylene 

(LDPE) fluid protection gowns were worn over a cotton lab coat. Samples of the 

gloves and gowns were retained to control for any contamination that may have 

occurred from these sources. Post-mortem examinations were conducted in an 

ultra-clean facility and the gut content extraction step was performed inside a 

positive pressure laminar flow hood with the aim of preventing airborne 

microplastics from settling on the samples. A damp filter paper in a Petri dish was 

placed within the hood to catch any such particles, allowing for the efficacy of this 

measure to be assessed. All equipment was thoroughly rinsed with Milli-Q water 

and all surfaces were wiped down with 70% ethanol prior to any work 

commencing. All equipment was rinsed with Milli-Q water again between each 

GIT section. A procedural blank (50 mL Milli-Q water) was run through the 

process to control for any contamination at this stage.  

 

Enzymatic digestion 

As above, all equipment was rinsed with Milli-Q and all pipettes and syringes 

were flushed with Milli-Q prior to use. A procedural blank was run at this stage.  

Foil lids were used instead of plastic bottle caps as these were previously 

observed to cause contamination. The metal spatula was rinsed with 

homogenizing solution (deemed contamination-free after testing) after the 

homogenising step to avoid loss of particles from samples.  

 

Vacuum pumping 

Prior to filtering, all mesh discs were visually inspected for potential contamination 

under a microscope and any particles removed. Milli-Q water was run through the 

vacuum pump and mesh disc to allow for potential contamination from the 

equipment to be detected and prevented. If particles were found, the vacuum 

pump and mesh disc were cleaned again until no particles were detected. Only 

then were samples filtered. The vacuum pump was then flushed copiously with 

Milli-Q water to ensure no particles became adhered to the edges and so lost 

from the sample. The vacuum pump was used inside the laminar flow hood to 

minimise air-borne contamination. Damp filtered paper inside a petri dish was 
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placed alongside the samples to control for any contamination that might have 

occurred. 

 

Microplastic identification and characterisation  

The mesh discs were visually inspected under an Olympus SZX16 microscope 

and potential microplastics (identified by colour and uniformity of shape and 

material; Cole et al., 2014; Norén, 2016) classified by type (fragment or fibre), 

colour, size and description, and photographed using a microscope mounted 

Canon EOS 550D DSLR camera.  A sub-sample of one particle from each animal 

(n = 50) was subjected to further analysis using attenuated total reflection-Fourier 

transform infra-red spectroscopy (ATR-FTIR; PerkinElmer Spotlight 400 FT-IR 

Imaging System) to confirm the identity of the particles and determine the 

accuracy level of their visual identification as synthetic materials. Particles were 

scanned at a resolution of 8 cm-1 (wavelength range = 4000 – 650 cm-1) and pixel 

size of 6.25 µm using SpectrumIMAGETM software. The resulting spectra were 

compared to a spectral database from a number of polymer libraries using 

SpectrumTM (PerkinElmer). FTIR was attempted for a greater number of particles 

(n = 65 in total) but obtaining reliable spectra matches was not possible for some 

due to the extent of degradation. Though these particles were qualitatively similar 

to those with reliable spectra matches, we were conservative in our inclusion of 

only particles that exceeded the search score confidence of 0.70 or greater 

(Lusher et al., 2013) and those considered to have reliable spectra matches (after 

visual inspection) as this was deemed the most robust method. 

 

Factors affecting microplastic abundance 

A General Linear Mixed Model (GLMM) was used to examine whether factors 

such as taxon (cetacean or pinniped), age-class (adult or juvenile), sex (male or 

female), length of animal and cause-of-death (infectious disease, trauma or 

other) were related to microplastic abundance. These factors were incorporated 

within the GLMM as fixed effects and Species was used as a random effect to 

account for the differing number of animals sampled from each species.  
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Distribution of microplastics within GIT 

One-way analysis of variance (ANOVA) was used to assess whether microplastic 

abundance differs between GIT sections in all animals and among stomach 

compartments (fore, fundic and pyloric) in cetaceans. Statistical significance was 

set at a probability level (α) of 0.05. Analyses were undertaken in the statistical 

computing software, R(R Core Team, 2018). 
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Supplemental Information 

Table S1. Model simplification output from generalised linear mixed model 
(GLMM) – All animals 
* Lowest AIC score/ most appropriate model 
 

Model AIC-score 

1: No. MPs ~ Taxon + Age + Sex + Length + Cause + (1|Species) 246.3198 

2: No. MPs ~ Age + Sex + Length + Cause + (1|Species) 249.7889 

3: No. MPs ~ Sex + Length + Cause + (1|Species) 249.4026 

4: No. MPs ~ Length + Cause + (1|Species) 248.7458 

5: No. MPs ~ Cause + (1|Species) 239.1526* 

6: No. MPs ~ (1|Species) 246.745 

 

Table S2. P-values for each fixed effect following removal from generalised linear 
mixed model (GLMM; ANOVA) – All animals 
* Significant p-value (<0.05) 

 

 

 

 

 

Table S3. Model simplification output from generalised linear mixed model 
(GLMM) – Harbour porpoise and common dolphin only 
* Lowest AIC score/ most appropriate model 
 

Model AIC-score 

1: No. MPs ~ Age + Sex + Length + Cause + (1|Species) 187.0793 

2: No. MPs ~ Sex + Length + Cause + (1|Species) 187.0270 

3: No. MPs ~ Length + Cause + (1|Species) 186.8954 

4: No. MPs ~ Cause + (1|Species) 178.6772* 

5: No. MPs ~ (1|Species) 187.7520 

 
 
Table S4. P-values for each fixed effect following removal from generalised linear 
mixed model (GLMM; ANOVA) - Harbour porpoise and common dolphin only 
* Significant p-value (<0.05) 

 

 

 

 
 

Fixed effects p-value (α) 
Taxon  0.0649 
Age  0.9432 
Sex  0.8730 
Length  0.9545 
Cause of death  0.0114* 

Fixed effects p-value (α) 
Age  0.8797 
Sex  0.5473 
Length  0.3994 
Cause of death  0.0076* 
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Table S5. Life-history information for stranded marine mammals and the associated number of microplastics detected 
 

Sample ID 
Year 

found 
Species Taxa Age Sex Length Location Cause of death 

Total no. 
MPs 

EX|C17|16 2016 Common dolphin Cetacean Juvenile Male 192 South-west England Trauma 4 

EX|C18|16 2016 Harbour porpoise Cetacean Juvenile Female 120 South-west England Trauma 5 

EX|C19|16 2016 Harbour porpoise Cetacean Juvenile Male 113 South-west England Trauma 6 

EX|C20|16 2016 Harbour porpoise Cetacean Juvenile Female 115.5 South-west England Other 2 

EX|C21|16 2016 Common dolphin Cetacean Adult Male 214 South-west England Trauma 1 

EX|C24|16 2016 Common dolphin Cetacean Juvenile Male 162 South-west England Other 1 

EX|C28|16 2016 Common dolphin Cetacean Adult Female 204 South-west England Other 5 

EX|S9|16 2016 Grey seal Pinniped Juvenile Female 90 South-west England Infectious disease 8 

M102/16 2016 Harbour porpoise Cetacean Juvenile Male 104 Scotland Infectious disease 8 

M104/16 2016 Harbour porpoise Cetacean Juvenile Female 111 Scotland Trauma 4 

M109/16 2016 Harbour porpoise Cetacean Juvenile Male 118 Scotland Trauma 7 

M126/16 2016 Harbour porpoise Cetacean Juvenile Female 129 Scotland Trauma 2 

M134/16 2016 Harbour porpoise Cetacean Juvenile Male 118 Scotland Other 3 

M150/16 2016 Harbour porpoise Cetacean Adult Female 160 Scotland Other 7 

M157/16 2016 Risso's dolphin Cetacean Juvenile Male 254 Scotland Infectious disease 9 

M178/16 2016 Harbour porpoise Cetacean Juvenile Male 111 Scotland Trauma 4 

M190/16 2016 Harbour porpoise Cetacean Juvenile Male 125 Scotland Trauma 5 

M191/16 2016 Harbour porpoise Cetacean Adult Female 154 Scotland Trauma 6 

M256/11 2011 Pygmy sperm whale Cetacean Adult Male 211 Scotland Other 4 

M267/16 2016 White-beaked dolphin Cetacean Adult Male 264 Scotland Infectious disease 3 

M273/16 2016 Harbour porpoise Cetacean Adult Male 143 Scotland Infectious disease 11 
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M299/16 2016 Atlantic white-sided dolphin Cetacean Adult Male 246 Scotland Other 8 

M444/14 2014 Harbour seal (Common seal) Pinniped Juvenile Female 98 Scotland Infectious disease 5 

M54/16 2016 Harbour seal (Common seal) Pinniped Juvenile Male 118 Scotland Trauma 4 

SS2015/316 2015 Harbour seal (Common seal) Pinniped Adult Male 172 East England Infectious disease 7 

SS2015/317 2015 Harbour seal (Common seal) Pinniped Juvenile Female 126 East England Other 1 

SS2016/301 2016 Grey seal Pinniped Juvenile Male 150 East England Infectious disease 4 

SS2017/6 2017 Grey seal Pinniped Juvenile Female 123 West Wales Infectious disease 6 

SW2015/341 2015 Harbour porpoise Cetacean Juvenile Female 104 West Wales Trauma 7 

SW2015/422 2015 Striped dolphin Cetacean Juvenile Male 180 West Wales Other 7 

SW2016/210 2016 Harbour porpoise Cetacean Adult Female 157 West Wales Trauma 4 

SW2016/280 2016 Harbour porpoise Cetacean Juvenile Female 122 West Wales Trauma 2 

SW2016/317 2016 Harbour porpoise Cetacean Adult Male 137 West England Other 4 

SW2016/397 2016 Harbour porpoise Cetacean Adult Female 152 West Wales Infectious disease 10 

SW2016/402 2016 Bottlenose dolphin Cetacean Juvenile Male 145 West Wales Trauma 6 

SW2016/411 2016 Common dolphin Cetacean Adult Male 220 South-west England Other 2 

SW2016/416 2016 Common dolphin Cetacean Juvenile Female 165 South-west England Infectious disease 8 

SW2016/446 2016 Common dolphin Cetacean Adult Female 194 South-west England Other 4 

SW2016/447 2016 Common dolphin Cetacean Adult Female 202 South-west England Infectious disease 7 

SW2016/477 2016 Common dolphin Cetacean Juvenile Male 189 South-west England Infectious disease 3 

SW2016/478 2016 Common dolphin Cetacean Adult Male 207 South-west England Infectious disease 4 

SW2016/520 2016 Harbour porpoise Cetacean Adult Male 138 East England Other 5 

SW2016/562 2016 Common dolphin Cetacean Adult Male 225 West Wales Infectious disease 12 

SW2017/12 2017 Common dolphin Cetacean Juvenile Female 170 South-west England Infectious disease 7 

SW2017/13 2017 Harbour porpoise Cetacean Adult Male 140 South-west England Trauma 2 
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SW2017/15 2017 Common dolphin Cetacean Juvenile Male 158 South-west England Other 11 

SW2017/2 2017 Harbour porpoise Cetacean Juvenile Male 117 South-west England Trauma 6 

SW2017/60 2017 Common dolphin Cetacean Juvenile Female 177 South-west England Other 9 

SW2017/77 2017 Common dolphin Cetacean Juvenile Female 180 South-west England Other 8 

SW2017/8 2017 Common dolphin Cetacean Adult Male 194 South-west England Trauma 5 
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Chapter 4: What goes in, must come out: combining scat-based 

molecular diet analysis and quantification of ingested 

microplastics in a marine top predator, the grey seal 

(Halichoerus grypus) 

 

Abstract 

Microplastics (plastic particles <5 mm in size) are highly available for ingestion 

by a wide range of organisms, either through direct consumption or indirectly, via 

trophic transfer, from prey to predator. The latter is a poorly understood, but 

potentially major, route of microplastic ingestion for marine top predators. We 

developed a novel and effective methodology pipeline to investigate dietary 

exposure of wild top predators (grey seals; Halichoerus grypus) to microplastics, 

by combining scat-based molecular techniques with a microplastic isolation 

method. We employed DNA metabarcoding, a rapid method of biodiversity 

assessment, to garner detailed information on prey composition from scats, and 

investigated the potential relationship between diet and microplastic burden. 

Outcomes of the method development process and results of both diet 

composition from metabarcoding analysis and detection of microplastics are 

presented. Importantly, the pipeline performed well and initial results suggest the 

frequency of microplastics detected in seal scats may be related to the type of 

prey consumed. Our non-invasive, data rich approach maximises time and 

resource-efficiency, while minimising costs and sample volumes required for 

analysis.  This pipeline could be used to underpin a much-needed increase in 

understanding of the relationship between diet composition and rates of 

microplastic ingestion in high trophic-level species.  

 

 

This chapter is a reformatted copy of the version submitted for publication in 
Methods in Ecology and Evolution: Nelms SE, Parry HE, Bennett KA, 

Galloway TS, Godley BJ, Santillo D, Lindeque PK (In review) What goes in, 

must come out: combining scat-based molecular diet analysis and 

quantification of ingested microplastics in a marine top predator. I conducted 

all of the sample processing, data analysis and was lead author on this work. 

PL and HP assisted in the design and implementation of the methodology; KB 

obtained the samples; DS provided access to essential equipment; all authors 

contributed critically to the drafts of this manuscript. 
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Introduction  

An estimated 9.6 to 25.4 million tonnes of plastic are projected to enter the global 

ocean annually by 2025 (Jambeck et al., 2015). As a result, improving our 

understanding of the relationship between plastic pollution and impacts on marine 

species is a widely acknowledged global priority (UNEP, 2016). Microplastics 

(plastic particles <5 mm in size) are ubiquitous in many aquatic environments 

and, due to their small size, are highly bioavailable to a wide-range of species, 

from low-trophic level organisms to top predators (Desforges et al., 2015; Nelms 

et al., 2019; Steer et al., 2017).  

Marine microplastics, present in seawater, sediment or on vegetation, may be 

consumed as a result of being mistaken for food or due to indiscriminate feeding 

strategies (e.g. filter-feeding; Besseling et al., 2015; Hall, Berry, Rintoul, & 

Hoogenboom, 2015). Additionally, they may be ingested indirectly as a result of 

trophic transfer, whereby prey containing microplastics are consumed (Farrell 

and Nelson, 2013; Lourenço et al., 2017; Nelms et al., 2018). Ingestion of 

microplastics has been found to cause detrimental effects, such as intestinal 

damage, oxidative stress, energetic depletion and reduced reproductive output in 

some low trophic-level organisms (Cole et al., 2015; Lei et al., 2018). 

Furthermore, hydrophobic chemical contaminants present in seawater, such as 

heavy metals and polychlorinated biphenyls, can adhere to the surface of 

microplastics and, if ingested, may be released into the organism and exert toxic 

effects (Teuten et al., 2009).  

Understanding predator diets is crucial for examining disruptions to trophic 

interactions and potential threats to species and habitats that may be caused by 

anthropogenic factors (Jeanniard-du-Dot et al., 2017), such as plastic pollution. 

Marine mammals, in particular, are often considered sentinels for marine 

ecosystem health due to their high trophic-level, extensive foraging ranges, 

sampling of the full water column and longevity (Bossart, 2011; Fossi et al., 2014; 

Moore, 2008). Although they ingest microplastics, the route of uptake and 

resulting biological effects remain unclear (Lusher et al., 2018, 2015; Nelms et 

al., 2019). For this method development, we chose to focus on a single species 

(grey seals; Halichoerus grypus) as a case study but the pipeline developed here 

could be applied to any predatory species for which the question of microplastic 

ingestion is relevant.  
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Grey seals  are top predators in United Kingdom (UK) waters, consuming a range 

of demersal fish species, such as sand eel, cod and other gadoid fish (Brown et 

al., 2012; Gosch et al., 2014; Hammond and Wilson, 2016). While it has been 

shown they can ingest microplastics via trophic transfer from contaminated fish 

in a captive environment (Nelms et al., 2018), little is known about the extent to 

which seals ingest microplastics in the wild and whether the risk of doing so 

relates to their prey composition.  

Obtaining dietary information can be difficult for many marine mammal species 

because they are logistically challenging to access and sample. Stranded 

animals, from which gut content may be extracted for dietary analysis, are 

investigated when accessible (Fernández et al., 2014; Mintzer et al., 2008; Nelms 

et al., 2019). However, animals that died from infectious disease, starvation or 

other non-trauma related causes of mortality, may introduce bias due to probable 

abnormal feeding behaviour prior to death (Fernández et al., 2014; Mintzer et al., 

2008; Nelms et al., 2019). Grey seals offer the opportunity for relatively easy and 

representative sample collection because they routinely haul-out on land to rest, 

breed and moult, during which time they defecate. Although scats (faeces) only 

provide a snapshot of what the animal has recently consumed (previous ~48 

hours), and may be biased toward species present within the immediate proximity 

of the haul-out site (Grellier and Hammond, 2006; Jeanniard-du-Dot et al., 2017), 

scat-based methods are non-invasive and have traditionally been utilised to 

effectively examine diet composition of typical, living animals, using hard-parts 

from undigested prey remains present in the scat (Grellier and Hammond, 2006; 

Jeanniard-du-Dot et al., 2017). These methods are, however, labour intensive, 

time consuming and often miss gelatinous, rare or less robust organisms (Deagle 

et al., 2009). In addition, different prey species digest at varying rates so their 

importance in the diet may be under- or over-represented (Grellier and 

Hammond, 2006; Jeanniard-du-Dot et al., 2017). In recent years, molecular 

techniques, which can overcome these issues, have been developed using 

amplification, by Polymerase Chain Reaction (PCR), and sequencing, of a 

chosen species-specific gene fragment or barcode to better understand diet 

composition (Deagle et al., 2005). Such a technique, which provides 

presence/absence information for each potential prey species, can be performed 

on small quantities of faecal matter, but traditional cloning and subsequent 



 
 

92 
 

sequencing of the amplicons is time-consuming and therefore limits the number 

of scats and sequences that can be processed. Quantitative PCR (qPCR) 

methods have also been developed to quantitatively assess the presence of a 

particular species in faecal matter (Matejusová et al., 2008), but this can also be 

time consuming to develop and uses much smaller amplicons, such that primer 

design for distinguishing closely related species can be challenging. Both 

standard and qPCR require some knowledge of the likely prey encountered and 

the building of an appropriate primer and sequence library to cover all probable 

prey species (Deagle et al., 2005). Both may also underestimate contribution of 

species from which the DNA has degraded. More recent tools, such as next 

generation sequencing, offer a quick and reliable method of assessing diet 

composition from small sample volumes (McInnes et al., 2017). Metabarcoding 

is a rapid method of biodiversity assessment that combines two technologies: 

DNA based identification (barcoding) and high-throughput sequencing (HTS) 

allowing the mass-amplification (using universal primers) of DNA barcodes from 

collections of organisms or environmental DNA (Deagle et al., 2018). Such a 

method yields a greater number of sequences and therefore a greater diversity 

of prey species without predefining the screening panel (Jeanniard-du-Dot et al., 

2017; Thomas et al., 2016), and in addition can provide an estimation of relative 

abundances in each sample (Albaina, Aguirre, Abad, Santos, & Estonba, 2016; 

Bucklin & Lindeque, 2016). The  use of universal primers designed to amplify a 

short, highly variable region of DNA enables a large amount of information to be 

gleaned from degraded DNA, as would be present in faeces (McInnes et al., 

2017). In recent years, the expense of HTS has decreased dramatically and 

metabarcoding is now seen as a powerful and cost-effective tool for assessing 

diet composition (Berry et al., 2017; Bucklin and Lindeque, 2016). 

To date, no studies have examined the direct relationship between diet 

composition and microplastic ingestion in wild marine mammals. This is important 

because prey type may be a crucial factor that determines the extent to which 

plastic is ingested, particularly for top predators for which trophic transfer is 

potentially the main route of entry (Nelms et al., 2018). Although both 

metabarcoding and microplastic extraction from faeces/ gut content have been 

applied separately to a variety of marine and terrestrial taxa, including 

zooplankton, fish, turtles, birds and marine mammals (metabarcoding; Bucklin & 
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Lindeque, 2016; Berry et al., 2017; McInnes et al., 2017,  microplastics; Cole et 

al., 2014; Zhao, Zhu, & Li, 2016; Huerta Lwanga et al., 2017; Duncan et al., 2019; 

Nelms et al., 2019), they usually require different sample processing methods 

and have not been used concurrently. Here, for the first time, we combine existing 

DNA extraction techniques for determination of diet composition using molecular 

scatology methods, with specialist methods designed to isolate microplastics in 

the same protocol, providing a stream-lined methodology pipeline to assess diet 

and microplastic abundance simultaneously.  

We performed a spiked trial to assess the recovery rate of purpose-made 

microplastics from seal scats when subjected to two DNA extraction treatments. 

Using the most appropriate treatment, we extended the full pipeline to 15 wild 

seal scats from Wales and used metabarcoding to identify the prey composition 

and relate it to microplastic content. We outline and discuss techniques for 

overcoming challenges that arise from performing these processes concurrently, 

such as DNA preservation during microplastic extraction and control of both 

biological and microplastic contamination. Our aims were to a) develop a 

technique to combine diet analysis and microplastic quantification; b) provide 

insights on the diet of a relatively understudied population of grey seals and c) 

provide recommendations to improve future work linking diet and microplastic 

burden in marine top predators using scat samples, which may also be applicable 

to other species and ecosystems.  

 

Materials and methods 

Sample collection 

Grey seal scats (n = 15) were collected from a number of haul-out sites (used by 

unknown individual females and pups) on Skomer Island, Wales (Fig. 1a) in 

November 2013 (n = 9) and October 2014 (n = 6), and frozen at -20°C. Analysis 

was carried out at Plymouth Marine Laboratory, England. 
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Fig. 1a) Scats were collected from haul-out sites on Skomer Island (represented 

by star), Wales; b) Tissue samples from a dead weaned grey seal pup were 

collected from the Isle of May (represented by star), Scotland. 

 

Spiked trial  

Two scat sub-samples were spiked with purpose-made microplastics (see below 

for details) and subjected to different procedures, to develop the optimal protocol 

for extracting both DNA and microplastics, as outlined below. 

 

Sample processing 

A scat was thawed and two x 2 g sub-samples were placed into separate sterile 

centrifuge tubes using a sterile metal spatula. Ten purpose-made microplastics 

of various types - to represent the diversity found in the marine environment and 

those which are likely to be encountered by seals and fish (two each of 

polypropylene, nylon fishing line, fishing rope, low-density polyethylene (LDPE) 

and expanded polystyrene) were added to each of the two tubes. 

 

Enzymatic digestion 

To each tube, 15 mL of homogenising solution (400 mM Tris-HCl pH 8, 60 mM 

EDTA, 150 mM NaCl, 1% SDS) and 500 µL of RNase (10 mg/ mL) were added 

and the samples incubated at 37°C for 30 mins. Molecular biology grade 

Proteinase K (14 µL at 250 µg/ mL) was added and samples were incubated for 

a further 30 mins at 37°C. Sodium perchlorate (4.28 mL of 5 M NaClO4) was 

a) b) 
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added and the samples shaken at room temperature for 20 mins and incubated 

at 65°C for a further 20 mins. 

 

Combined DNA and microplastic extraction procedure comparison 

Two different treatments were applied to the scat sub-samples, hereafter 

Treatment A and Treatment B (see Fig. 2), each aimed at combining DNA and 

microplastic extraction into one procedure; 

Fig. 2. Schematic showing processes applied to Treatments A and B to extract 

DNA and isolate microplastics. 

 

Treatment A: 

- Step 1 - Microplastic removal: Following enzymatic digestion, the entire 

sample was filtered through a 35 µm mesh disc using a vacuum pump and 

collected in a sterilised (autoclaved) glass flask. The resulting solution was 

retained (at room temperature for a minimum amount of time to prevent 

DNA degradation) for subsequent DNA extraction. The mesh disc 

containing the scat residue and microplastics was stored in a Petri dish for 

later microscopic inspection. 

- Step 2 - DNA extraction: An equal volume of phenol/chloroform: isoamyl 

alcohol (24: 1) was added to 15 mL of the scat solution obtained during 

filtering (Step 1), which was gently mixed by inversion and centrifuged for 

5 min (G = 11600). The aqueous phase was removed and an equal volume 
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of chilled (-20°C) chloroform: isoamyl alcohol (24:1) added to the aqueous 

phase, which was further separated by centrifugation for another 5 min (G 

= 11600). The DNA solution (aqueous phase) was removed and 

precipitated once with 2.5 volumes 100 % ethanol overnight (-20°C) and 

washed with 70 % ethanol, pelleted using centrifugation, air dried for  ~ 3 

hours, then re-suspended in 1 mL TE (10 mM Tris, pH 8.0 and 1mM EDTA) 

buffer overnight. 

Treatment B:   

- DNA extraction and microplastic removal: Following enzymatic digestion, 

DNA was extracted using the methods outlined by Step 2 above. However, 

following separation by phenol/ chloroform:isoamyl alcohol (24:1), the 

aqueous phase was retained for DNA extraction and only the interphase 

and organic phase were filtered through a 35 µm mesh using vacuum 

pump as in Step 1 for microplastic removal above.  

 

Molecular analysis for diet 

Metabarcoding of DNA in the seal scats, to assess seal diet, was performed by 

amplification of a region of the 18S nuclear small subunit (nSSU) ribosomal RNA 

(rRNA) gene and subsequent High Throughput Sequencing (HTS). This method 

was used because there is at least one variable position in the 18S V9 region, 

such that metabarcoding of this region can discriminate between species in a 

reliable way, providing a reference sequence is available in the sequence 

database (Albaina et al., 2016). First, the quality and quantity of extracted DNA 

were assessed using a Nanadrop 1000 Spectrophotometer (ThermoScientific, 

Delaware, USA). Universal primers (Euk_1391f, EukBr; Amaral-Zettler, 

McCliment, Ducklow, & Huse, 2009) were chosen to target the V9 hypervariable 

region of the 18S rRNA gene. PCR amplification was performed in triplicate, to 

reduce PCR bias and increase the likelihood of amplifying rare DNA, 25 µL 

reactions containing 2.5 µL of each primer (10 µmol/ L), 2.5 µL dNTPs (2 mM), 

2.5 units of TaqDNA polymerase (5 units/ µL; Qiagen), 2.5 µL MgCl2 (25mmol/ 

L), 2.5 µL 10 x buffer, 11 µL molecular grade water and 1 µL DNA extract (range 

= 0.9 – 42.7 ng/µL). Reactions were amplified through denaturation at 95°C for 2 

mins then 27 cycles of (30 s at 95°C, 45 s at 57°C and 45 s at 72°C) followed by 

a final extension step of 7 mins at 72°C and then stored at 4°C. The PCR products 
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were checked by gel electrophoresis before being pooled and cleaned up using 

QIAquick PCR purification kit (Qiagen). Illumina HiSeq high-throughput 

sequencing was performed by MR DNA (Molecular Research).  

 

Microplastic quantification 

The dried mesh discs were examined and microplastic particles counted to 

determine the recovery rate of microplastics used to spike the samples. 

 

Optimised protocol 

DNA and microplastic extraction 

Treatment A was used as the pipeline to obtain both diet information and 

microplastic burden for the 15 wild seal scats.  

 

DNA sequencing 

Sequencing of the amplified 18S rRNA gene fragments from seal scat was 

performed at MR DNA (www.mrdnalab.com, Shallowater, TX, USA) on a MiSeq 

following the manufacturer’s guidelines (MiSeq, Illumina). Sequence data were 

processed using the MR DNA analysis pipeline (MR DNA, Shallowater, TX, USA). 

In summary, paired end sequences were joined and depleted of barcodes, 

chimeras and sequences with ambiguous base calls were removed before 

Operational Taxonomic Units (OTUs) were generated. OTUs were defined by 

clustering at 3 % divergence (97 % similarity) and any OTUs containing a single 

sequence were removed. The OTUs were assigned taxonomy using UCLUST 

(Edgar, 2010), a de novo picker within QIIMETM (Quantitative Insights Into 

Microbial Ecology). A representative set of sequences was then generated and 

these sequences were assigned taxonomy (at the level of 95 % homology) using 

the BLASTn search of the NCBI non-redundant dataset. Only OTUs with > 95% 

homology were retained for further analysis and OTUs assigned as predator DNA 

(as detailed above), fungi and bacteria were removed.  

 

Microplastic identification and characterisation 

Following the filtering step, the mesh discs were visually inspected for 

microplastics using a microscope (Olympus SZX16) and the particles were 

counted, photographed (microscope mounted Canon EOS 550D DSLR camera), 
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measured and characterised by type, colour and size. Each potential microplastic 

was subjected to further analysis to confirm polymer type using attenuated total 

reflection-Fourier transform infra-red spectroscopy (ATR-FTIR; PerkinElmer 

Spotlight 400 FT-IR Imaging System). Potential microplastics were scanned at a 

resolution of 8 cm-1 (wavelength range = 4000 – 650 cm-1) and pixel size of 6.25 

µm using SpectrumIMAGETM software. Spectra were compared to a number of 

polymer libraries using SpectrumTM (PerkinElmer). Only those considered to have 

reliable spectra matches (after visual inspection) and a search score confidence 

of 0.70 or greater (Lusher, McHugh, & Thompson, 2013) were accepted when 

interpreting output.  

 

Contamination control 

Strict contamination control measures are essential for studies aimed at 

assessing microplastic abundance. Though the aims of this study were to develop 

a methodology rather than produce abundance estimates, best practice 

contamination control measure were implemented during the handling of samples 

within the laboratory. Briefly these were; cotton laboratory coats worn at all times, 

surfaces and equipment thoroughly cleaned with 70% ethanol and/or rinsed with 

Milli-Q water. The sub-sample of scat for analysis was taken from the centre to 

avoid any possible contamination of the external surfaces. Microplastics detected 

in the samples were compared by characteristics (polymer, colour, type) with any 

plastic equipment used during sample collection, preparation and processing, 

such as nitrile gloves, polyethylene sample collection bags and Nylon mesh discs. 

For more details, see  (Nelms et al., 2018). For the molecular aspect of this study 

all equipment was autoclaved following the Milli-Q water rinse to prevent any false 

positive amplification of DNA. 

 

Statistical analysis 

The relationship between each of the top three most prevalent prey families (by 

proportion of sequences) and microplastic abundance was investigated using 

separate Generalised Linear Models (GLMs). Analyses were undertaken in the 

statistical computing software, R (GLM; R Core Team, 2018). The distribution of 

the data was checked for normality using a Q-Q plot and deemed not normal 

(zero-bounded, asymmetrical). Model selection was performed based on AIC 
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scores for models with poisson and negative binomial error families and various 

link function combinations (identity, log and sqrt). Statistical significance was set 

at a probability level (α) of 0.05.  

 

Grey seal DNA  

Using HTS methods, prior knowledge of diet composition is not required (as is 

the case when primers are selected for specific clades) because universal 18S 

primers allow for the detection of any eukaryote present within scat. It is essential, 

however, to have a robust reference sequence for the predator species to enable 

exclusion of these sequences in subsequent analysis. Grey seal 18S was not 

publicly available for comparison so we generated the sequence information as 

follows; 

 

Sample collection  

Tissue samples (liver, kidney and muscle) were taken from a freshly dead, 

weaned grey seal pup, which had died of natural causes, on the Isle of May, 

Scotland (Fig. 1b) in December 2017.  

 

DNA extraction (adapted from Berntson et al., 1999)  

Small sub-samples (5 mm) of tissue were removed and 300 µL of cetyl trimethyl 

ammonium bromide (CTAB) buffer [2 mL Cetyl trimethyl ammonium bromide 10% 

in dH20, 2.8 mL 5M NaCl, 0.4 mL 0.5M EDTA (pH 8), 1 mL 1M Tris-Cl (pH 8.0), 

0.02 mL Β-mercaptoethanol, 3.78 mL H2O] was added. The samples were 

homogenised using a pestle and mortar and a further 300 µL CTAB buffer was 

added. Molecular biology grade Proteinase K (1 µL at 20 mg/mL) was added and 

the samples were further homogenised followed by incubation at 55°C with 

periodic agitation for 24 hours. An equal volume of cold (-20°C; 24: 1) chloroform: 

isoamyl alcohol was added, followed by centrifugation at 7700 G for 10 mins. Two 

volumes of cold (-20°C) 95 % ethanol were added to the aqueous phase and 

DNA was precipitated for 1 hour at -80°C. The samples were centrifuged at 

10,000 G for 30 mins before being washed with cold (-20°C) 70 % ethanol and 

centrifuged again at 7000 G for 15 mins. The ethanol was then poured off and 

air-dried for 45 mins, after which the pellets were re-suspended in 50 µL TE and 

stored at 4°C overnight. The quality and quantity of extracted DNA were assessed 
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by visualisation using gel electrophoresis (1% agarose) and with a Nanadrop 

1000 Spectrophotometer (ThermoScientific, Delaware, USA). 

 

Sequencing and data processing 

PCR amplification was performed for each tissue type (liver, kidney and muscle; 

concentration of DNA range = 2823.7 - 5028.9 ng/µL) using the methods and 

universal primers as described above for seal scat. Following visualisation of the 

amplification products using gel electrophoresis (2 % agarose gel), DNA 

extracted from muscle was deemed the most appropriate and reliable for 

sequencing. Six replicates of the 18S V9 PCR products from grey seal muscle 

DNA (concentration of DNA range = 0.01 – 0.36 ng/µL) were sequenced in both 

directions by LGC Genomics, Berlin (Germany). Sequence data from the six 

replicates were aligned and a consensus sequence generated using MEGA 7 

(https://www.megasoftware.net/). The resulting GenBank accession number for 

grey seal 18S V9 nucleotide sequence is BankIt2148050 seq MH845620 . 

 

Results 

Spiked trial 

Observations and microplastic recovery rate 

During the spiked trial, phenol dissolved the purpose-made microplastics and 

affected the equipment used for filtering, as such Treatment B was not continued. 

Conversely, Treatment A resulted in a 100% recovery rate of microplastics used 

to spike the scat and was employed for full analysis of 15 scats. 

 

Optimised protocol 

Microplastics 

Microplastics (a total of 17) were found in eight of the 15 subsampled scats (53%), 

ranging between 1-5 microplastics per scat, as confirmed by FT-IR. Fibres were 

most commonly detected (76.5%; n = 13) while fragments made up 23.5% (n = 

4). The former ranged from 5.5 mm to 300 µm in length while the latter ranged 

from 400 µm to 150 µm along the longest edge. The majority were blue (52.9%) 

followed by red (17.6%), black (11.8%), clear, orange and purple (Fig. 3). The 

most common polymer type was Nylon (47.1%; n = 8) followed by low-density 
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polyethylene (LDPE), polyethylene terephthalate (PET) and polyethylene (all 

17.6%; n = 3). 

Fig. 3. Doughnut plot showing proportions of microplastic colours detected in seal 

scats (blue = 53%, red = 17%, black = 12%, clear, orange and purple = 12%). 

 

Seal diet  

In total, 1,449,416 sequences were returned and 9,683 OTUs were formed from 

the 15 scats. Following the removal of singletons 1,436,089 sequences and 6,993 

OTUs remained, of which 353 OTUs were unknowns (< 95% homologous) 

leaving 6,640 OTUs and 1,432,569 sequences of >95% homology (Table 1). Of 

these 386,968 (27 %) sequences were assigned as predator (seal) DNA. 
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Table 1. Overall number of OTUs and sequences per Kingdom (eukaryote, fungi, 

bacteria and viridiplantae) detected in seal scats, and their percentage of the 

overall composition. 

 

 

 

 

 

 

 

 

Biological rationale was employed to determine which taxa were subjected to 

further analysis, based on their likelihood to contain seal prey species, in a 

stepwise process of taxonomic elimination (Fig. 4). For example, within the 

Kingdoms listed above, prey are most likely to belong to Metazoans within 

Eukaryota. Chordata was the most common phylum in this taxon at 71% of 

sequences, followed by Nematoda (23%) and Cnidaria (5%; Fig.4a). The high 

proportion of nematodes is likely due to the presence of parasitic worms in the 

seals’ digestive tract, and perhaps other nematode species in the substrata from 

which the seal scat was collected. Seals are not known to eat Cnidaria and it is 

likely that their presence reflects the diet of the fish species consumed by the 

seals. Of the Chordata, mammalian DNA (predator; subsequently removed) was 

most prevalent (58%) followed by actinopteri (ray-finned-fish; 42% of Chordata 

and 19% of all sequences returned; Fig. 4b). The three most common families of 

ray-finned fish were gadidae (specifically Atlantic cod; 47%), pleuronectidae 

(righteye flounders; 45%) and paralichthyidae (large-tooth flounders; 5%; Fig. 

4c). Further details of the prey DNA analysis outputs can be found in 

Supplemental Information. 

Kingdom 
No. 

OTUs 

Total no. 

sequences 
% composition 

Eukaryota 4881 934586 65.238 

Fungi 1731 495391 34.581 

Bacteria 26 2579 0.180 

Viridiplantae 2 13 0.001 

Total 6640 1432569 100.000 
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Fig. 4. Stepwise process to identify prey a) Percentage sequences by Phyla 

detected in Metazoa (Chordata (teal; 71%), Nematoda (purple; 23%) and 

Cnidaria (blue; 5%); b) Percentage sequences by Class detected in Chordata, 

the most abundant Phyla (predator DNA (grey; 58%) and Actinopteri (burgundy; 

42%); c) Percentage sequences by Family (Gadidae (blue; 47%), Pleuronectidae 

(orange; 45%) and Paralichthyidae (green; 5%) detected in the Actinopteri, the 

most abundant when predator DNA was eliminated. 

 

Relationship between prey type and microplastics abundance 

Individual GLMs were run for each prey family and the most appropriate model 

selected based on AIC scores and p-values. A significant positive correlation was 

found between the proportion of Gadidae and number of microplastics (F1,13 = 

2.063, p = 0.05, Fig. 5a) whereas a statistically negative (biologically not positive) 

correlation was observed for the two flounder families (Pleuronectidae F1,13 = 

0.177, p > 0.05; Paralichthyidae F1,13 = 10.95, p < 0.05; Fig. 5b and c). 
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Fig. 5. Scatterplots showing the correlation (as investigated using generalised 

linear models; GLMs) between the number of microplastics and the proportion of 

the top three most prevalent prey families (by proportion of sequences) a) 

Gadidae b) Pleuronectidae c) Paralichthyidae. 
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Discussion 

Marine top predators, such as marine mammals, ingest microplastics (Lusher et 

al., 2015; Nelms et al., 2019) but the pathways by which this occurs are less well 

understood.  Aside from direct consumption of microplastics from the marine 

environment, trophic transfer is thought to represent a major route of ingestion 

for mid and high trophic-level taxa (Hammer et al., 2016; Nelms et al., 2018). 

Here, we present a novel and effective methodology pipeline that facilitates the 

simultaneous investigation of a more detailed aspect of trophic transfer – the 

relationship between specific prey types and the abundance of microplastics 

detected in scats from wild seals – using small sample volumes. To do so, we 

used DNA metabarcoding, a powerful molecular technique designed to identify 

taxonomic groups in complex samples (Bucklin & Lindeque, 2016), combined 

simultaneously with a microplastic extraction process. We believe that the 

methods described here could not only advance the development of our 

understanding of microplastic exposure experienced by these marine top 

predators, but could also help to elucidate the microplastic contamination status 

of the wider marine ecosystem by proxy. In addition, as microplastics have been 

detected in air, soil and freshwater environments (Dris et al., 2016; Huerta 

Lwanga et al., 2017; Rillig et al., 2017; Windsor et al., 2019), our method could 

be applied to a wide variety of taxa to investigate this issue across countless 

ecosystems. 

The spiked trial demonstrated that the protocol used for Treatment A produced 

100% recovery of purpose-made microplastics, and the extraction of sufficient 

DNA quantity and quality for metabarcoding analysis. Using this optimal protocol, 

it was possible to examine the feasibility of assessing prey composition in detail, 

and detecting microplastics in the scats, concurrently. This stream-lined 

methodology pipeline removed the necessity of performing both the DNA and 

microplastic extraction steps separately, which maximised time and resource 

efficiency and reduced the associated costs and sample required. These 

outcomes validate the pipeline and demonstrate its efficacy for extracting 

microplastics and high quality DNA from small volumes of faecal samples, further 

illustrating its applicability to species other than large marine vertebrates.  

Our approach of using the 18S V9 region for metabarcoding diet assessment 

proved appropriate in the context of seal scats because the amplicon’s relatively 
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small size enabled the analysis of degraded DNA present in faeces, which can 

be difficult to amplify successfully (McInnes et al., 2017). Additionally, whereas 

some dietary metabarcoding studies use blocking primers to inhibit the 

amplification of predator DNA (McInnes et al., 2017; Peters et al., 2015), our 

methods negate this need, which is beneficial because blocking primers may also 

prevent amplification of some prey species (McInnes et al., 2017), particularly if 

the predators and prey are closely related, or if the predator is known to consume 

conspecifics (Bishop et al., 2016). The use of universal primers to amplify DNA 

in the gut contents along with predator-specific blocking primers can also 

introduce biases into the PCR by also blocking amplification of DNA from closely 

related species and therefore the analysis of predator diets (Piñol et al., 2014).  

Compared with the traditional approach of using hard-part analysis to examine 

prey composition, metabarcoding has the ability to detect greater species 

diversity as well as cartilaginous prey which leave no obvious remains and are 

unlikely to be detected by eye (Deagle et al., 2009). In addition, a lesser sample 

volume is required which enables this technique to be used on smaller organisms 

(Bucklin and Lindeque, 2016). Deriving relative abundance data in diets from 

metabarcoding can, however, encounter issues such as, primer biases, quality of 

DNA, differential degradation of material during digestion and heterogeneity in 

the prey composition of scats (Deagle et al., 2005; Matejusová et al., 2008), so 

any outputs should be interpreted with these in mind. 

Microplastics were detected in over half of the scat sub-samples analysed. There 

are few other studies on seal scats to compare our results to, but Nelms et al., 

(2019) found microplastics in the digestive tracts of all wild cetaceans (eight 

species; 43 individuals) and pinnipeds (two species; 7 individuals) from British 

waters examined and 1 – 4 microplastics were detected in 48% of scats from 

captive grey seals fed on wild-caught Atlantic mackerel (Scomber scombrus; 

Nelms et al., 2018). Considering other species, Bråte, Eidsvoll, Steindal, & 

Thomas (2016) found that 3% of Atlantic cod stomachs from the Norwegian coast 

contained synthetic polymers and Rummel et al., (2016) detected plastic in 

approximately 1.2% (n = 2 of 162) of cod and 5.5% (n = 4 of 72) of flounder 

examined. The finding of greater numbers of microplastics in flounder is 

contradictory to our results here, in which higher proportions of cod were 

associated with greater microplastic abundances when compared to the two 
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flounder families. These observations can be explained by a number of factors. 

Firstly, as this was a proof of concept study rather than a full environmental 

assessment, we used a small sample size to develop and test our methodology 

pipeline.  Consequently, any potential relationships detected between prey 

composition and prey type are likely to be indications only and further work is 

required to investigate this fully (see methodological recommendations below). 

Secondly, the methods of examining the presence of microplastics used in the 

studies above differed from those employed here (i.e. fish digestive tracts vs fish 

remains from scats) and therefore are likely to yield differing results. Thirdly, 

spatial variation in microplastic abundance and the overlap with local fish 

distributions - which also exhibit temporal (e.g. seasonal) and spatial (e.g. 

regional and depth) variation - may produce diverse patterns and trends.  For 

example, the seals in this study predate fish in the Celtic Sea but the fish 

examined by Rummel et al., (2016) fed in the North and Baltic Seas where the 

abundance of microplastics, in both the marine environment and the species that 

inhabit it, might differ. Though little is known about the diet of grey seals in the 

Celtic Sea, where Skomer Island is located, a review by Brown, Bearhop, Harrod, 

& McDonald (2012) revealed that flatfish (e.g. flounders) contribute more to the 

diet of seals (grey and common; Phoca vitulina) in the neighbouring Irish Sea 

than in all other UK sea areas (Atlantic, North Sea Islands, Moray Firth, southern 

North Sea) investigated. Similarly Gadoids were a prominent food source in this 

area (Brown et al., 2012). These findings from hard part analysis correspond to 

and corroborate the dietary composition reported here obtained through 

metabarcoding analysis. 

Our results are preliminary and not designed to serve as an assessment of 

microplastic abundance in wild seal diet but as an example of how our protocol 

could be used to do so accurately, and in a resource and time efficient way, on a 

larger scale across a wide variety of taxa. We therefore make a number of 

methodological recommendations to assist in the robust collection and analysis 

of samples; 

1. Wherever possible microplastic contamination should be minimised. Scats 

should be collected using non-plastic equipment (or scrapings of plastic 

equipment should be taken for comparison as a control) and a sample 

from the surrounding substrate should be collected to eliminate any 
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obvious environmental sources of plastic. During sample processing, a 

sub-sample from the centre of the scat should be used to avoid any 

possible contamination of the external surfaces. Further information on 

contamination control can be found in Nelms et al., (2018). 

2. To obtain the best DNA results, and therefore the most accurate 

representation of prey species present, the collection of fresh scats is 

optimal (Jeanniard-du-Dot et al., 2017). Additionally, samples should be 

stored at  

-20°C as soon after collection as possible to prevent DNA degradation 

(Albaina et al., 2016; Berry et al., 2017; McInnes et al., 2017).  

3. To achieve ecologically representative results, we recommend that a 

systematic and extensive sampling approach be adopted. For example, 

regular sample collection across informative temporal and spatial scales 

will allow for any seasonal and geographical variations to be observed. 

The sample size should also be significantly expanded beyond the 15 

analysed for exploratory purposes here.  

4. To ground-truth any relationship between microplastic abundance and 

prey type detected from the scats it would be useful to examine the prey 

items directly. I.e. sample the gut content of fish species that are known to 

be consumed by the seals from same area that the scats are collected 

from. There would also be merit in examining water-borne microplastics 

and analysing for similarities in fish and scats. This would also reveal 

whether patterns relating to abundance and type of microplastics as 

detected in certain fish species, is related to those levels observed within 

their habitats. 

By using non-invasive techniques to assess diet and the presence of 

microplastics, it is possible to glean insightful information from wild and 

representative animals, without the need to sample stranded individuals which 

may not have been feeding normally prior to death, as is often the case in 

microplastics studies focusing on marine megafauna. Though the methods 

described here were developed on seal scats, they are applicable to other 

predatory aquatic taxa where the question of microplastic ingestion may be linked 

to prey consumption, for which fresh faeces is accessible (such as birds and polar 

bears, or freshwater vertebrates, e.g. otters); or when gut content can be 
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extracted from the digestive tract of dead animals, such as cetaceans, 

elasmobranchs, marine turtles, birds and large predatory fish, for example, tuna. 

Given that microplastics have been detected in air, soil and freshwater 

environments (Dris et al., 2016; Huerta Lwanga et al., 2017; Rillig et al., 2017; 

Windsor et al., 2019), the method developed here could be applied to a wide 

variety of taxa to investigate the relationship between microplastic ingestion and 

prey composition in most food web scenarios. 

In conclusion, this novel study is the first to combine diet analysis using non-

invasive, scat-based molecular techniques and the quantification of ingested 

microplastics for the purposes of investigating dietary exposure to microplastics 

in a marine top predator.  
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Supplemental information 

Table S1. Prey composition from DNA analysis by phyla for Metazoa by 

number of OTUs, total number of sequences and percentage of overall 

composition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Table S2. Prey composition from DNA analysis by class for Chordata by 

number of OTUs, total number of sequences and percentage of overall 

composition. 

  

 

 

 

 

 

 

 

 

Phylum No. OTUs Total no. 

sequences 

% 

composition 

Chordata 2844 662870 71.0 

Nematoda 1306 210426 22.5 

Cnidaria 495 43099 4.62 

Arthropoda 131 12463 1.33 

Platyhelminthes 35 3175 0.34 

Ctenophora 10 709 0.08 

Brachiopoda 2 478 0.05 

Acanthocephala 3 152 0.02 

Mollusca 4 106 0.01 

Annelida 10 88 0.0094 

Bryozoa 1 4 0.0004 

Total 4841 933570 100 

Class No. 

OTUs 

Total no. 

sequences 

% 

composition 

Mammalia 1128 386968 58 

Actinopteri 1704 274994 42 

Total 2832 661962 100 
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Table S3. Prey composition from DNA analysis by family for Actinopteri by 

number of OTUs, total number of sequences and percentage of overall 

composition. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Family No. OTUs 
Total no. 

sequences 

% 

composition 

Gadidae 643 128627 46.77 

Pleuronectidae 799 124156 45.15 

Paralichthyidae 130 13288 4.83 

Sparidae 105 5407 2.09 

Moronidae 19 1571 0.57 

Sciaenidae 2 1404 0.51 

Cyprinidae 2 351 0.04 

Scophthalmidae 4 110 0.03 

Total 1704 274994 100 
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General discussion 

 

Plastic pollution, and its impacts on marine wildlife, is a rapidly expanding and 

fast-moving field of research (Nelms et al., 2016; Vegter et al., 2014; Senko et 

al., In review; see Appendix 2). In recent years, there has been growing interest 

and concern from both the scientific community and general public about its 

omnipresence within aquatic ecosystems and the potential to cause harm (Cole 

et al., 2011). Policies aimed at reducing plastic input are slowly being developed 

but strong and robust evidence is needed to increase our understanding of this 

pollutant so that suitable and effective strategies are adopted. In this thesis, I 

examined two main aspects of plastic pollution – sources, trends and patterns of 

coastal anthropogenic litter and microplastic ingestion by marine mammal top 

predators. The results of these studies and recommendations for future research 

are discussed below. 

 

Overview 

In Chapter 1, I explored the composition, distribution and abundance of 

anthropogenic litter on British beaches using citizen-science data collected by 

Marine Conservation Society (MCS) volunteers over a 10-year time-period from 

736 beaches in England, Scotland and Wales during 3245 beach cleans (Nelms 

et al., 2017). Although the amount of effort (number of volunteers, length and 

duration) differed for each beach clean, I was able to correct for this variation and 

standardise the data, enabling comparisons among beaches. I found that, 

unsurprisingly, plastic was the most common material and the most frequently 

found items were large (>2.5 cm) and small (<2.5 cm) plastic fragments, plastic 

bottle lids, small polystyrene foam pieces and crisp packets. The majority of 

identifiable items originated from land-based activities, such as public littering. 

The most polluted beaches were heterogeneously distributed around Britain but 

there were clear regional differences in litter density – the Western English 

Channel and Celtic Sea Regional Sea (southwest England and south Wales 

coasts) had the highest levels of litter, whereas the Scottish Continental Shelf 

had the lowest. This variation is likely due a combination of factors, such as local 

population density (permanent residents or tourists), land use and the direction 

of prevailing winds and currents.  
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Though no change in overall litter abundance was detected for the 10-year time-

period, significant increasing trends were identified for certain items, specifically 

large fishing net, balloons, polystyrene foam pieces, wet wipes, food packaging 

and small plastic pieces. In their intended form, these items present issues for 

both wildlife and humans through ingestion, entanglement, habitat degradation, 

interactions with maritime equipment and impacts on human health and well-

being. Over time, however, they will fragment to form microplastics, thus exposing 

even more species to the effects of plastic pollution. 

 

Microplastic trophic transfer in marine top predators 

Microplastics are ingested by animals at all levels of the trophic web, from 

microscopic zooplankton to marine predators. The latter are exposed to two main 

ingestion pathways, direct consumption from seawater or substrate, and indirect 

consumption via trophic transfer, whereby predators consume prey containing 

microplastics. Until recently, this had only been demonstrated in low trophic level 

predators, such crabs, and empirical evidence for high trophic-level taxa was 

lacking. In Chapter 2, I sought to fill this knowledge gap by analysing scats from 

captive grey seals and the wild-caught mackerel they were fed upon. A third of 

scat subsamples and half of the fish contained between one and four 

microplastics and the most common polymer for both was ethylene propylene, a 

synthetic rubber. Since captive seals are not exposed to marine litter like wild 

seals are, I attributed the presence of microplastics in their scat to trophic transfer 

from their ‘prey’. This demonstrates that trophic transfer could be an indirect, yet 

major, route of microplastic ingestion for marine top predators (Nelms et al., 

2018). Following this investigation, a new question arose – how does diet affect 

the exposure of wild marine top predators to microplastic ingestion? In Chapter 

4, I sought to develop a method which would be able investigate this question, by 

combining scat-based molecular techniques with the microplastic isolation 

method used in Chapter 2. I employed DNA metabarcoding, a rapid method of 

biodiversity assessment, to garner detailed information on prey composition from 

scats, and investigated the potential relationship between diet and microplastic 

burden. In this preliminary study, I was able to first test two variations of the 

protocol using a spiked trial, whereby purpose-made microplastics were added 

to scat samples to assess their recovery rate, before applying the successful 
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method to 15 (non-spiked) scat subsamples. Though the purpose of this study 

was to develop a suitable method pipeline, and not to serve as an assessment of 

microplastic abundance in wild seal diet, the results revealed some interesting 

initial insights. For example, it appears that there is a relationship between the 

type of prey species consumed and the number of microplastics present in the 

scat. This could be due to the foraging behaviour of the prey and its propensity 

to ingest microplastics, either directly from the marine environment or from its 

prey. It is hoped that the methods pipeline developed in this study could be 

applied to a wider and more extensive sampling regime focused on exploring this 

relationship in greater detail.  

 

The extent of microplastic ingestion in wild marine mammals  

Although many species of marine mammals are known to ingest anthropogenic 

debris, little research has been carried out to better understand the extent to 

which wild marine mammals consume microplastics. In Chapter 3, I carried out 

a comprehensive assessment of the digestive tracts from 50 marine mammals of 

10 different species (Atlantic white-sided dolphin, bottlenose dolphin, common 

dolphin, grey seal, harbour porpoise, harbour seal, pygmy sperm whale, Risso’s 

dolphin, striped dolphin and white-beaked dolphin) that stranded around the 

British coast (Nelms et al., 2019). I found that every animal contained at least one 

microplastic but the overall abundance was low. This result is positive in some 

ways, as it indicates that the animals may be able to expel the synthetic particles, 

either through excretion or, in the case of cetaceans, regurgitation. It is not clear, 

however, whether toxicants on (such as hydrophobic persistent chemicals) or in 

(such as plasticizers) the microplastics are impacting upon animal health, as they 

are known to leach into biological tissue when ingested. We found a slight but 

significant relationship between cause of death and microplastic burden, 

indicating that animals which died of infectious diseases had ingested more 

microplastics than those that died of trauma or other causes. This may be a sub-

lethal effect caused by the microplastics and/ or their associated chemicals, or it 

may be a result of abnormal feeding behaviour by animals whose health has been 

previously compromised by an infection. More research is required to better 

understand the potential chronic effects of microplastic exposure on marine 

mammal health.  
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Future work 

General marine anthropogenic litter: Understanding and pinpointing the 

sources of litter entering aquatic environments is one of the most complex, but 

critical, steps for minimising plastic pollution and its impacts. It will require the 

involvement of multiple stakeholders, including policy makers, government 

officials, designers and innovators, as well as researchers from a variety of 

disciplines, such as ecology, oceanography, social science, business and 

politics. Citizen-science data collection is cost-effective and worthwhile but robust 

and systematic sampling protocols are essential for observing trends and spatial 

patterns. 

Microplastic ingestion and predator diet: In Chapters 2 and 4, I investigated 

microplastic trophic transfer and developed a method which can be used to better 

understand how it relates to diet composition in marine top predators. Though the 

methods described here were developed on seal scats, they are applicable to 

other predatory aquatic taxa where the question of microplastic ingestion may be 

linked to prey consumption, for which fresh faeces is accessible (such as birds 

and polar bears, or freshwater vertebrates, e.g. otters); or when gut content can 

be extracted from the digestive tract of dead animals, such as cetaceans, 

elasmobranchs, marine turtles, birds and large predatory fish, for example, tuna. 

In addition, given that microplastics have been detected in air, soil and freshwater 

environments, the method developed here could be applied to a wide variety of 

taxa to investigate the relationship between microplastic ingestion and prey 

composition in most food web scenarios. 

Microplastic ingestion in wild marine mammals: In Chapter 3, I found that 

at least 10 of the 26 marine mammal species inhabiting or transiting through UK 

waters are exposed to microplastics through ingestion. To better understand the 

global extent of microplastic ingestion, further examination of larger sample sizes, 

including investigation of animals of varying feeding strategies (e.g. lunge and 

suction feeders, such as baleen and beaked whales) in a greater variety of 

locations is required for comparison. Global hotspots for both large marine 

vertebrates and plastic pollution, such as the north-west Pacific Ocean (Block et 

al., 2011; van Sebille et al., 2015), may reveal clearer trends. In addition, long-

term monitoring may present temporal trends in abundance and type of 

microplastics ingested. Alternative routes of microplastic intake, such as 
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inhalation, should also be investigated by examining the lungs and airways of 

stranded animals. 

Impacts of microplastics on animal health: Microplastic ingestion has been 

shown to cause a number of detrimental physiological impacts resulting in a 

reduction of feeding capacity, energy reserves and reproductive output for 

smaller low-trophic level organisms (Cole et al., 2013; Sussarellu et al., 2016; 

Wright et al., 2013a). It is not yet known how it affects larger animals, such as 

marine mammals. As mentioned above, analysis of a larger sample size with 

detailed cause of death information may reveal a clearer insight. In addition, 

closer examination of the digestive tract and its structure may indicate whether 

any physical damage is inflicted by microplastics, or if very small microplastics/ 

nanoplastics are able to pass from the intestines into the capillaries and, 

subsequently, to the liver via the hepatic portal vein portal vein (Pinto da Costa 

et al., 2016). 

The ingestion of microplastics may also represent an additional pathway by which 

chemical contaminants enter marine mammals, aside from the usual dietary 

input. Further work is needed to examine the extent to which microplastics 

increase the exposure of marine mammals to these toxicants and what effects 

they may present. 

 

Conclusion 

In summary, plastic pollution is a complicated, trans-boundary and cross-sectoral 

issue with wide-ranging ecological, social and economic impacts. Marine 

mammal top predators are exposed to microplastics through two main pathways 

– direct consumption and trophic transfer. The latter may be an indirect, but 

potentially major, route of microplastic ingestion. Though ubiquitous in the marine 

mammals we examined, the low abundance of microplastics suggests they are 

either excreted or regurgitated. Stomachs, however, do appear to be a site of 

temporary retention and we do not yet know whether microplastics, or their 

associated chemicals, cause any detrimental impacts as they pass through. This 

thesis forms the most detailed assessment of microplastic ingestion in marine 

mammals to date but the information gathered here represents only a fraction of 

what is needed to understand this omnipresent pollutant.  
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Abstract 

Plastic debris is now ubiquitous in the marine environment affecting a wide range 

of taxa, from microscopic zooplankton to large vertebrates. Its persistence and 

dispersal throughout marine ecosystems has meant that sensitivity toward the 

scale of threat is growing, particularly for species of conservation concern, such 

as marine turtles. Their use of a variety of habitats, migratory behaviour, and 

complex life histories leave them subject to a host of anthropogenic stressors, 

including exposure to marine plastic pollution. Here, we review the evidence for 

the effects of plastic debris on turtles and their habitats, highlight knowledge gaps, 
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and make recommendations for future research. We found that, of the seven 

species, all are known to ingest or become entangled in marine debris. Ingestion 

can cause intestinal blockage and internal injury, dietary dilution, malnutrition, 

and increased buoyancy which in turn can result in poor health, reduced growth 

rates and reproductive output, or death. Entanglement in plastic debris (including 

ghost fishing gear) is known to cause lacerations, increased drag—which 

reduces the ability to forage effectively or escape threats—and may lead to 

drowning or death by starvation. In addition, plastic pollution may impact key turtle 

habitats. In particular, its presence on nesting beaches may alter nest properties 

by affecting temperature and sediment permeability. This could influence 

hatchling sex ratios and reproductive success, resulting in population level 

implications. Additionally, beach litter may entangle nesting females or emerging 

hatchlings. Lastly, as an omnipresent and widespread pollutant, plastic debris 

may cause wider ecosystem effects which result in loss of productivity and 

implications for trophic interactions. By compiling and presenting this evidence, 

we demonstrate that urgent action is required to better understand this issue and 

its effects on marine turtles, so that appropriate and effective mitigation policies 

can be developed. 

 

Keywords: ecosystem effects, entanglement, ghost fishing, ingestion, marine 

debris, marine turtle, nesting beaches, plastic pollution.  

 

Introduction 

Between 1950 and 2015, the total annual global production of plastics grew from 

1.5 million t to 299 million t (PlasticsEurope, 2015). As a result, the abundance 

and spatial distribution of plastic pollution, both on land and at sea, is increasing 

(Barnes et al., 2009; Jambeck et al., 2015). Indeed, plastic items have become 

the principal constituent of marine debris, the majority originating from land-based 

sources, such as landfill sites, with the remaining deriving from human activities, 

such as fishing (Barnes et al., 2009; Ivar do Sul et al., 2011). Of particular concern 

is the longevity of plastic debris and its wide dispersal ability (Barnes et al., 2009; 

Wabnitz and Nichols, 2010; Reisser et al., 2014b). It has been recorded 

worldwide in a vast range of marine habitats, including remote areas far from 

human habitation (Barnes et al., 2009; Ivar do Sul et al., 2011). Transported 
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across the globe by winds and oceanic currents, high concentrations of floating 

plastic can accumulate in convergence zones, or gyres, as well as exposed 

coastlines (Cozar et al., 2014; Reisser et al., 2014b; Schuyler et al., 2014). 

Enclosed seas, such as the Mediterranean basin, also experience particularly 

high levels of plastic pollution due to densely populated coastal regions and low 

diffusion from limited water circulation (Cozar et al., 2015). Once seaborne, 

plastic persists in the marine environment, fragmenting into smaller pieces as a 

result of wave action, exposure to UV and physical abrasion (Andrady, 2015). 

Small particles are highly bioavailable to a wide spectrum of marine organisms 

(Lusher, 2015). Furthermore, the hydrophobic properties and large surface area 

to volume ratio of microplastics (fragments of 5 mm in diameter) can lead to the 

accumulation of contaminants, such as heavy metals and polychlorinated 

biphenyls (PCBs), from the marine environment. These chemicals, and those 

incorporated during production (such as plasticizers), can leach into biological 

tissue upon ingestion, potentially causing cryptic sub-lethal effects that have 

rarely been investigated (Koelmans, 2015). 

For some species, plastics could present a major threat through ingestion, 

entanglement, the degradation of key habitats, and wider ecosystem effects 

(Barnes et al., 2009; Vegter et al., 2014; Gall and Thompson, 2015). Among these 

species are the marine turtles, whose complex life histories and highly mobile 

behaviour can make them particularly vulnerable to the impacts of plastic 

pollution (Arthur et al., 2008; Ivar do Sul et al., 2011; Schuyler et al., 2014). As 

concern grows for the issue of marine plastic and the associated implications for 

biodiversity, it is essential to assess the risks faced by key species (Vegter et al., 

2014). Understanding vulnerability is necessary for setting research priorities, 

advising management decisions, and developing appropriate mitigation 

measures (Schuyler et al., 2014; Vegter et al., 2014). This is particularly pertinent 

given that marine turtles are of conservation concern and often seen as 

“flagships” for marine conservation issues (Eckert and Hemphill, 2005). 

Here, we carry out a comprehensive review of the state of knowledge concerning 

this anthropogenic hazard and how it impacts marine turtles, and highlight a 

range of research and innovative methods that are urgently needed. To do so, 

we searched ISI Web of Knowledge and Google Scholar for the terms plastic, 

plastic pollution, marine debris, marine litter, ingestion, entanglement, 
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entrapment, ghost nets and ghost fishing. Plastic and debris were also searched 

for in conjunction with beach, sand, coral reef, sea grass beds, and fronts. 

Alongside each search term, we also included the word turtle. We found that the 

number of peer-reviewed publications per year (between 1985 and 2014) has 

generally increased over time (Figure 1a) and a descriptive overview of the 64 

peer- reviewed studies is given in Table 1 (Ingestion) and Table 2 

(Entanglement). We structure our review in five major sections looking at (i) 

ingestion, (ii) entanglement, (iii) impacts to nesting beaches, and (iv) wider 

ecosystem effects and then suggest priorities for (v) future research. 

 

Ingestion 

There are two potential pathways by which turtles may ingest plastic; directly or 

indirectly. Direct consumption of plastic fragments is well documented and has 

been observed in all marine turtle species (Carr, 1987; Bjorndal et al., 1994; 

Hoarau et al., 2014; Schuyler et al., 2014; Figure 2a). Accidental ingestion may 

occur when debris is mixed with normal dietary items. For instance, one study 

found that juvenile green turtles (Chelonia mydas) consumed debris because it 

was attached to the macroalgae they target directly (Di Beneditto and Awabdi, 

2014). Alternatively, plastic ingestion may be a case of mistaken identity. As 

turtles are primarily visual feeders, they may misidentify items, such as shopping 

bags, plastic balloons, and sheet plastic, as prey and actively select them for 

consumption (Mrosovsky, 1981; Tomas et al., 2002; Gregory, 2009; Hoarau et 

al., 2014). Hoarau et al. (2014) found a high occurrence of plastic bottle lids in 

the loggerhead turtles (Caretta caretta) they examined and surmised that the lids’ 

round shape and presence floating near the surface visually resemble neustonic 

organisms normally preyed upon. Laboratory trials have found that turtles are 

able to differentiate between colours and so the visual properties of plastic are 

likely to be important factors determining the probability of ingestion (Bartol and 

Musick, 2003; Swimmer et al., 2005; Schuyler et al., 2012). A number of studies 

have found that white and transparent plastics are the most readily consumed 

colours (Tourinho et al., 2010; Schuyler et al., 2012; Camedda et al., 2014; 

Hoarau et al., 2014). It is not certain, however, whether this trend is a result of 

selectivity by the turtles or due to the differing proportions of plastic types and 

colours in the environment (Schuyler et al., 2012; Camedda et al., 2014). Aside 
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from visual cues, perhaps microbial biofilm formation on plastic debris and the 

associated invertebrate grazers (Reisser et al., 2014a) cause the particles to emit 

other sensory cues (such as smell and taste) which could lead turtles to consume 

them. This, however, remains to be investigated. Indirect ingestion may occur 

when prey items, such as molluscs and crustaceans that have been shown to 

ingest and assimilate micro- plastic particles in their tissues (Cole et al., 2013; 

Wright et al., 2013), are consumed by carnivorous species. Although not yet 

investigated for marine turtles, trophic transfer has been inferred in other marine 

vertebrates, specifically pinnipeds (McMahon et al., 1999;  
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Table 1. Summary of all studies on plastic ingestion by marine turtles. 
 

Species Ocean Basin Study area Reference 
Year of 
Study 

n 
Occurrence 

% 
CCL range* 

Pelagic 
Juvenile 

Neritic 
Juvenile 

Adult 

Loggerhead 
(Caretta caretta) 

Mediterranean Sea Tyrrhenian sea (Tuscany coast)   
2010-
2011 

31 71 29.0-73.0 X ✓ ✓ 

 Adriatic sea (Croatia, Slovenia)   
2001-
2004 

54 35.2 25.0-79.2 X ✓ ✓ 

 Central Mediterranean (Sicily)   
1994-
1998 

44 15.9 unknown na na na 

 Central Mediterranean (Italy)   
2001-
2005 

79 48.1 25.0-80.3 X ✓ ✓ 

 Western Mediterranean (Sardinia) Camedda et al., 2014 
2008-
2012 

12
1 

14 51.38 ± 1.13 X ✓ ✓ 

 Western Mediterranean (Balearic archipelago) Revelles et al., 2007 
2002-
2004 

19 37 unknown na na na 

 Western Mediterranean (Spain) Tomás et al., 2002 na 54 75.9 34.0–69.0 ✓ ✓ ✓ 
 Eastern Mediterranean (Turkey) Kaska et al., 2004 2001 65 5 unknown na na na 

Atlantic ocean North–eastern Atlantic (Azores, Portugal) Frick et al., 2009 
1986-
2001 

12 25 9.3–56.0 ✓ ✓ X 

 North–western Atlantic (Georgia, USA) Frick et al., 2001 na 12 0 59.4–77.0 X ✓ ✓ 

 North–western Atlantic (Virginia) Seney and Musick, 2007 
1983-
2002 

16
6 

0 
41.6-

98.5(SCL) 
X ✓ ✓ 

 North–western Atlantic (Florida, USA) Bjorndal et al., 1994 
1988-
1993 

1 100 52 X ✓ X 

 Gulf of Mexico (Texas, USA) Plotkin et al., 1993 
1986-
1988 

82 51.2 51.0–105.0 X ✓ ✓ 

 Gulf of Mexico (Texas, USA) Plotkin and Amos, 1990 
1986-
1988 

88 52.3 unknown na na na 

 North-western Atlantic (New York, USA) 
Sadove and Morreale, 
1989 

1979-
1988 

10
3 

2.9 unknown na na na 

 North–western Atlantic (Florida, USA) Witherington, 1994 na 50 32 4.03–5.63 ✓ X X 
 Gulf of Mexico (Texas & Louisiana, USA) Cannon, 1998 1994 20 5 unknown na na na 

 South–western Atlantic (Brazil) Bugoni et al., 2001 
1997- 
1998 

10 10 63.0-97.0 X X ✓ 

Pacific Ocean South–western (Australia) Boyle and Limpus, 2008 na 7 57.1 4.6–10.6 ✓ X X 

 Central north (Hawaii, USA) Parker et al., 2005 
1990-
1992 

52 34.6 13.5–74.0 ✓ ✓ ✓ 

 North-eastern (Shuyak Island, Alaska) Bane, 1992 1991 1 100 64.2 X ✓ X 
 North-eastern (California) Allen, 1992 1992 1 100 59.3 X ✓ X 

 North-eastern (Baja California, Mexico) Peckham et al., 2011 
2003-
2007 

82 0 unknown na na na 
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Indian Ocean South-western (Reunion Islands) Hoarau et al., 2014 
2007-
2013 

50 51.4 68.7 ±4.99 X ✓ ✓ 

 North-eastern (Queensland, Australia) Limpus and Limpus, 2001 
1989-
1998 

47 0 unknown na na na 

Green 
(Chelonia 
mydas) 

Mediterranean Sea Central Mediterranean (Sicily) Russo et al., 2003 
1994-
1998 

1 0 37.8 X ✓ X 

Atlantic ocean South–western Atlantic (Río de la Plata) 
González Carman et al., 
2014 

2008-
2011 

64 90 31.3-52.2 X ✓ X 

 South–western Atlantic (Brazil) 
Barreiros and Barcelos, 
2001 

2000 1 100 40.5 X ✓ X 

 South–western Atlantic (Brazil) Santos et al., 2011 
2007-
2008 

15 20 35.1-60.0 X ✓ X 

 South–western Atlantic (Brazil) 
da Silva Mendes et al., 
2015 

2008-
2009 

20 45 33.0-44.0 X ✓ X 

 South–western Atlantic (Brazil) Bugoni et al., 2001 
1997-
1998 

38 60.5 28.0-50.0 X ✓ X 

 North-western Atlantic (New York, USA) 
Sadove and Morreale, 
1989 

1979-
1988 

15 6.6 unknown na na na 

 North–western Atlantic (Florida, USA) Bjorndal et al., 1994 
1988-
1993 

43 55.8 20.6-42.7 X ✓ X 

 Gulf of Mexico (Texas & Louisiana, USA) Cannon, 1998 1994 6 33.3 unknown na na na 

 Gulf of Mexico (Texas, USA) Plotkin and Amos, 1990 
1986-
1988 

15 46.7 unknown na na na 

 South-western Atlantic (Brazil) 
Guebert-Bartholo et al., 
2011 

2004-
2007 

80 70 29-73 X ✓ ✓ 

 South-western Atlantic (Brazil) 
DiBeneditto and Awabdi, 
2014 

na 49 59.2 unknown na na na 

 South-western Atlantic (Brazil) Tourinho et al., 2010 
2006-
2007 

34 100 31.5-56.0 X ✓ X 

 South- western Atlantic (Brazil) Stahelin et al., 2012 2010 1 100 39 X ✓ X 

 South- western Atlantic (Brazil) Poli et al., 2014 
2009-
2010 

10
4 

12.5 24.0-123.5 X ✓ ✓ 

 North–western Atlantic (Florida, USA) Foley et al., 2007 
2000-
2001 

44 2 unknown na na na 

Pacific Ocean South–western (Australia) Boyle and Limpus, 2008 na 57 54.3 5.5-11.3 ✓ X X 

 South-eastern (San Andres, Peru) Quiñones et al., 2010 1987 
19
2 

42 unknown na na na 

 South-eastern (Galápagos Islands, Ecuador) Parra et al., 2011 
2009-
2010 

53 3.3 53.0-93.0 X ✓ ✓ 

 Central north (Hawaii, USA) Parker et al., 2011 
1990-
2004 

10 70 30.0-70.0 X ✓ ✓ 

 North-eastern (Baja California, Mexico) 
López-Mendilaharsu et 
al., 2005 

2000-
2002 

24 0 unknown na na na 

 North-eastern (Gulf of California) Seminoff et al., 2002 
1995-
1999 

7 29.5 unknown na na na 
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Indian Ocean North-eastern (Torres Strait, Australia) Garnett et al., 1985 1979 44 0 unknown na na na 
 North-western (UAE) Hasbún et al., 2000 1997 13 0 35-105.5 X ✓ ✓ 

 North-western (Oman) Ross, 1985 
1977-
1979 

9 0 unknown na na na 

Leatherback 
(Dermochelys 

coriacea) 

Mediterranean Sea Central Mediterranean (Sicily) Russo et al., 2003 
1994-
1998 

5 40 131-145 X X ✓ 

Atlantic ocean North–eastern Atlantic (Gwynedd, Wales) 
Eckert and Luginbuhl, 
1988 

1988 1 100 256 X X ✓ 

 North–eastern Atlantic (Bay of Biscay) Duguy et al., 2000 
1978-
1995 

87 55 unknown na na na 

 North–eastern Atlantic (Azores) 
Barreiros and Barcelos, 
2001 

2000 1 100 144 X X ✓ 

 North-western Atlantic (Sable Island, Nova 
Scotia) 

Lucas, 1992 
1984-
1991 

2 100 unknown na na na 

 North-western Atlantic (New York, USA) 
Sadove and Morreale, 
1989 

1979-
1988 

85 11.7 unknown na na na 

 South–western Atlantic (Brazil) Bugoni et al., 2001 
1997-
1998 

2 50 135-135 X X ✓ 

Pacific Ocean Central-north Pacific (Midway Island) Davenport et al., 1993 1993 1 100 unknown na na na 

All General Mrosovsky et al., 2009 
1885-
2007 

40
8 

34 unknown na na na 

Hawksbill 
(Eretmochelys 

imbricata) 
Atlantic ocean 

Gulf of Mexico (Texas, USA) Plotkin and Amos, 1990 
1986-
1988 

8 87.5 unknown na na na 

South–western Atlantic (Brazil) Poli et al., 2014 
2009-
2010 

15 33.3 30.9-91.2 X ✓ ✓ 

Pacific Ocean North-eastern (Costa Rica) 
Arauz Almengor and 
Morera Avila, 1994 

1992 1 100 24.5 ✓ x x 

Kemp's ridley 
(Lepidochelys 

kempii) 

Atlantic ocean North-western Atlantic (New York, USA) Burke et al., 1994 
1985-
1989 

18 0 unknown na na na 

 North-western Atlantic (New York, USA) Sadove & Morreale 1989 
1979-
1988 

12
2 

0 unknown na na na 

 North–western Atlantic (Florida, USA) Bjorndal et al. 1994 
1988-
1993 

7 0 28.6-66.2 X ✓ ✓ 

 Gulf of Mexico (Texas & Louisiana, USA) Cannon et al. 1998 1994 
16
7 

5.4 unknown na na na 

 Gulf of Mexico (Texas, USA) Plotkin and Amos 1988 
1986-
1988 

10
4 

29.8 unknown na na na 

 Gulf of Mexico (Texas, USA) Shaver, 1991 
1983-
1989 

10
1 

29 5.2-71.0 ✓ ✓ ✓ 

 Gulf of Mexico (Texas, USA) Shaver, 1998 1984 37 19 unknown na na na 

Olive ridley 
(Lepidochelys 

olivacea) 

Atlantic ocean South–western Atlantic (Brazil, Parabia) Mascarenhas et al., 2004 2004 1 100 66 X X ✓ 

 South–western Atlantic (Brazil) Poli et al., 2014 
2009-
2010 

2 100 60.0-63.3 X ✓ ✓ 
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Flatback 
(Natator 

depressus) 
Indian Ocean North-eastern (Darwin, Australia) Chatto, 1995 1994 1 100 25.5 X ✓ X 

*CCL = Curved Carapace Length 

 
Table 2. Summary of all studies on entanglement in plastic debris by marine turtles. 
 

Species Ocean Basin Study area Reference Year of 
Study 

n CCL 
range 

Pelagic 
Juvenile 

Neritic 
Juvenile 

Adult Debris 
type Loggerhead 

(Caretta 
caretta) 

Atlantic ocean North–eastern (Boa Vista, Cape Verde 
Islands) 

Lopez-Jurado et al., 
2003 

2001 10 62.0-
89.0 

X ✓ ✓ Fishing 
  North–eastern  (Terceira Island, Azores) Barreiros and Raykov, 

2014 
2004 -
2008 

3 37.3-
64.1 

X ✓ ✓ Fishing/ 
Land-
based 

 Mediterranean 
Sea 

Tyrrhenian sea  (Island of Panarea, 
Sicily) 

Bentivegna, 1995 1994 1 48.5 X ✓ X Land-
based   Central Mediterranean (Italy) Casale et al., 2010 1980-

2008 
226 3.8-97.0 ✓ ✓ ✓ Fishing/ 

Land-
based 

Green  
(Chelonia 
mydas) 

Indian Ocean North-eastern (Darwin, Australia) Chatto, 1995 1994 1 35 X ✓ X Fishing 
  North-eastern (Australia) Wilcox et al., 2013 2005-

2009 
14 unknown na na na Fishing 

Hawksbill 
(Eretmochelys 

imbricata) 

Indian Ocean North-eastern (Darwin, Australia) Chatto, 1995 1994 1 32.5 X ✓ X Fishing 
  North-eastern (Australia) Wilcox et al., 2013 2005-

2009 
35 unknown na na na Fishing 

Olive ridley 
(Lepidochelys 

olivacea) 

Indian Ocean North-eastern (McCluer Island, 
Australia) 

Jensen et al., 2013 unknown 44 unknown na na na Fishing 
  North-eastern (Australia) Wilcox et al., 2013 2005-

2009 
53 unknown na na na Fishing 

  North-eastern (Australia) Chatto, 1995 1994 2 64 X X ✓ Fishing 
 Atlantic Ocean South-western (Brazil) Santos et al., 2012 1996-

2011 
18 2.01-

80.0 
X ✓ ✓ Fishing 

Flatback  
(Natator 

depressus) 

Indian Ocean North-eastern (Darwin, Australia) Chatto, 1995 1994 1 25.5 X ✓ X Land-
based   North-eastern (Australia) Wilcox et al., 2013 2005-

2009 
3 unknown na na na Fishing 

Multiple Indian Ocean North-eastern (Australia) Wilcox et al., 2014 2005-
2012 

336 unknown na na na Fishing 

*CCL = Curved Carapace Length 
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Figure 2.  Plastics and marine turtles: (a) plastic fragments extracted from the 

digestive tract of a necropsied juvenile green turtle (inset), found stranded in 

northern Cyprus (photo: EMD); (b) plastic extruding from a green turtle’s cloaca 

in Cocos Island, Costa Rica (photo: Cristiano Paoli); (c) loggerhead turtle 

entangled in fishing gear in the Mediterranean Sea (north of Libya) (photo: 

Greenpeace#/Care`#/Marine Photobank); (d) female green turtle attempting to 

nest among beach litter, northern Cyprus in 1992 before the commencement of 

annual beach cleaning (photo: ACB). 
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Eriksson and Burton, 2003). For example, the prey of the Hooker’s sea lion 

(Phocarctos hookeri), myctophid fish, ingest microplastic particles. Subsequently, the 

otoliths (ear bones) of these fish have been found alongside plastic particles within the 

sea lion scat, suggesting a trophic link (McMahon et al., 1999). This indirect ingestion 

may lead to sub-lethal effects that are difficult to identify, quantify and at- tribute to 

plastic ingestion as opposed to other water quality issues (Baulch and Perry, 2014; 

Vegter et al., 2014; Gall and Thompson, 2015). These are discussed later in this 

section. It is likely that feeding ecology and diet, as well as habitat use in relation to 

areas of high plastic density, determine the likelihood and consequences of plastic 

ingestion (Bond et al., 2014). These differ among turtle life stages, regional 

populations and species, meaning that there are likely to be inter- and intraspecies 

variation in the densities and types of plastic encountered and potentially consumed 

(Schuyler et al., 2014). 

 

Life stage 

Both the likelihood of exposure to and consequences of ingestion differ across life 

stage. Post-hatchlings and juveniles of six of the seven marine turtle species undergo 

a period of pelagic drifting, known as the “lost year”. Although flatback turtles (Natator 

depressus) lack an oceanic dispersal stage, their habitat use during the post- hatchling 

phase is still likely to be influenced by bathymetry and coastal currents (Hamann et 

al., 2011). Currents transport hatchlings away from their natal beaches, often to 

oceanic convergence zones, such as fronts or down-welling areas (Bolten, 2003; 

Boyle et al., 2009; Scott et al., 2014). 
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Figure 1. Number of publications returned from literature search per (a) year (between 

1985 and 2014), (b) life stage, (c) species (Lh, Loggerhead; Gr, Green; Lb, 

Leatherback; Hb, Hawksbill; Kr, Kemp’s ridley; Or, Olive ridley; Fb, Flatback), and (d) 

Ocean basin. 

 

These areas can be highly productive and act as foraging hotspots for many marine 

taxa, including fish, seabirds, and marine turtles (Witherington, 2002; Scales et al., 

2014; Schuyler et al., 2014). However, along with food, advection also draws in and 

concentrates floating anthropogenic debris, in- creasing the likelihood of exposure to 

plastic. This spatial overlap potentially creates an ecological trap for young turtles 

(Carr, 1987; Tomas et al., 2002; Battin, 2004; Witherington et al., 2012; Cozar et al., 

2014). Their vulnerability is further intensified by indiscriminate feeding behaviour, 

often mistaking plastic for prey items or accidentally ingesting debris while grazing on 

organisms that are encrusted on such items (McCauley and Bjorndal, 1999; Schuyler 

et al., 2012; Hoarau et al., 2014). Additionally, turtles in early life history stages, that 

are small in size, may be at higher risk of mortality from plastic ingestion due to their 

smaller, less robust, digestive tracts (Boyle, 2006; Schuyler et al., 2012). During our 

literature search, we found that of all the life stages, young “lost year” juveniles are the 

most data deficient, but potentially the most vulnerable (Figure 1b). After the post-
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hatchling pelagic stage, most populations of chelonid (hard-shelled) species, such as 

loggerheads, greens, and hawksbills (Eretmochelys imbricata), undergo an 

ontogenetic shift in feeding behaviour where they may switch to benthic foraging in 

neritic areas (although some populations forage pelagically   even   in   larger   size   

classes;   Tomas   et   al.,   2001; Witherington, 2002; Hawkes et al., 2006; Arthur et 

al., 2008; Schuyler et al., 2012). Some foraging areas experience higher 

concentrations of plastic debris due to physical processes, for example, frontal 

systems or discharging rivers, and when such accumulations overlap with turtle 

foraging grounds, high rates of ingestion may be observed (Gonzalez Carman et al., 

2014). Indeed, Gonzalez Carman et al.  (2014)  reported that  90%  of the juvenile 

green turtles examined had ingested anthropogenic debris and postulated that, aside 

from  aside from the high concentrations of debris, poor visibility (caused by estuarine 

sediment) and there- fore a reduced ability to discriminate among ingested items may 

also be a factor. 

 

Species 

The results from our literature search show that, of all peer-reviewed publications 

(between 1985-2014; n = ~6668) looking at marine turtles, the proportion that 

investigated occurrences of plastic ingestion is relatively low, ranging from 1-2% 

depending on species. We found that the majority of these studies focussed on 

loggerhead (n = 24; 44%) and green turtles (n = 23; 43%) in contrast to a low number 

of reports on the leatherback (Dermochelys coriacea; n = 7, 13%), Kemp’s ridley 

(Lepidochelys kempii; n = 7; 13%), hawksbill (n = 3; 6%), olive ridley (Lepidochelys 

olivacea; n = 2; 4%) and flatback turtles (n = 2; 4%; Fig. 1c). These biases, however, 

are broadly reflected by those observed for general turtle studies (green = 35%, 

loggerhead = 31%, leatherback = 14%, hawksbill = 9%, olive ridley = 5%, kemps ridley 

= 4% and flatback = 1%). This relationship demonstrates the need for caution when 

interpreting apparent patterns based on the number of observations of plastic 

ingestion among species. We also found that the majority of research was carried out 

in the Atlantic Ocean basin (n = 28 of 55 publications on plastic ingestion by turtles; 

Fig. 1d). These strong biases towards certain species/ regions demonstrate a need to 

expand research to better understand plastic ingestion for the taxon, globally. 

Among marine turtles, there are profound interspecific differences in feeding 

strategies, diet, and habitat use that could result in varying likelihoods of exposure to 
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and consequences of plastic ingestion (Bjorndal, 1997; Schuyler et al., 2014). For 

example, the generalist feeding strategy of loggerhead turtles seems to put them at 

high risk of ingesting plastic, but their ability to defecate these items, due to a wide 

alimentary tract, however, demonstrates a certain degree of tolerance (in adults and 

subadults; Bugoni et al., 2001; Tomas et al., 2001, 2002; Hoarau et al., 2014). This, 

though, may not mitigate the sub-lethal effects which may occur as a result of plastic 

ingestion (see the Ecological effects section). Although not heavily studied when 

compared with the other turtle species (Figure 1c), ingestion rates by Kemp’s ridley 

turtles appear to be low. This may be because they specialize in hunting active prey, 

such as crabs, which plastic debris is less likely to be mistaken for (Bjorndal et al., 

1994). Nonetheless, a potential issue for benthic feeding, carnivorous marine turtle 

species, such as Kemp’s ridley, olive ridley, loggerhead, and flatback turtles, is indirect 

ingestion of microplastics through consumption of contaminated invertebrate prey, 

such as molluscs and crustaceans (Parker et al., 2005; Casale et al., 2008) and any 

associated sediments. Green turtles too are mostly benthic feeders but are largely 

herbivorous (Bjorndal, 1997). Their preference for sea grass or algae may lead to a 

greater likelihood of ingesting clear soft plastics resembling their natural food in 

structure and behaviour. A study in south eastern Brazil found that 59% of juvenile 

green turtles stomachs contained flexible and hard plastic debris (clear, white, and 

coloured) and Nylon filaments (Di Beneditto and Awabdi, 2014); another found that 

100% of green turtle stomachs examined contained at least one plastic item (Bezerra 

and Bondioli, 2011). Hawksbills, although omnivorous, prefer to consume sponges 

and algae, acting as important trophic regulators on coral reefs (Leon and Bjorndal, 

2002). While clean-up surveys on coral reefs show that plastic is present in such 

habitats (Abu-Hilal and Al-Najjar, 2009), data on the ingestion rates and selectivity for 

hawksbills are lacking (Figure 1c). Peer-reviewed studies investigating ingestion by 

flatbacks are also scarce, but we found reports that in 2003, a flat- back turtle died 

following ingestion of a balloon (Greenland and Limpus, 2003) and in 2014, four out 

of five stranded post-hatchling flatback turtles had ingested plastic fragments 

(StrandNet Database, 2015). Pelagic species that forage on gelatinous prey, such as 

leather- backs, are also susceptible to plastic ingestion and Mrosovsky et al. (2009) 

estimated that approximately one-third of all adult leather- backs autopsied from 1968 

to 2007 had ingested plastic. This is thought to be due to similarities to prey items, 

such as jellyfish, acting as sensory cues to feed (Schuyler et al., 2014). 
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Ecological effects 

The effects of plastic ingestion can be both lethal and sub-lethal, the latter being far 

more difficult to detect and likely more frequent (Hoarau et al., 2014; Schuyler et al., 

2014; Gall and Thompson, 2015). Tourinho et al. (2010) reported that 100% of 

stranded green turtles (n = 34) examined in south eastern Brazil had ingested 

anthropogenic debris, the majority of which was plastic, but the deaths of only three of 

these turtles could be directly linked to its presence. Damage to the digestive system 

and obstruction is the most conspicuous outcome and is often observed in stranded 

individuals (Figure 2b; Camedda et al., 2014). The passage of hard fragments through 

the gut can cause internal injuries and intestinal blockage (Plotkin and Amos, 1990; 

Derraik, 2002). Accidental ingestion of plastic fishing line may occur when turtles 

consume baited hooks (e.g. Bjorndal et al., 1994). As the line is driven through the gut 

by peristalsis, it can become constricted, causing damage, such as tearing to the 

intestinal wall (Parga, 2012; Di Bello et al., 2013). 

In some cases, the sheer volume of plastic within the gut is noticeable during necropsy 

or possibly via X-ray or internal examination. Small amounts of anthropogenic debris, 

however, have been found to block the digestive tract (Bjorndal et al., 1994; Bugoni et 

al., 2001; Schuyler et al., 2014; Santos et al., 2015). For example, Santos et al. (2015) 

found that only 0.5 g of debris (consisting of mainly soft plastic and fibres) was enough 

to block the digestive tract of a juvenile green turtle, ultimately causing its death. 

Additionally, hardened faecal material has been known to accumulate as a result of 

the presence of plastic and the associated blockage to the gastrointestinal system 

(Davenport et al., 1993; Awabdi et al., 2013). On the contrary, it is possible for 

significant amounts of plastic to accumulate and remain within the gut without causing 

lethal damage (Hoarau et al., 2014). For example, Lutz (1990) reported that plastic 

pieces remained in the gut of a normally feeding captive turtle for four months. In the 

long term, however, a reduction in feeding stimulus and stomach capacity could lead 

to malnutrition through dietary dilution which occurs when debris items displace food 

in the gut, reducing the turtle’s ability to feed (McCauley and Bjorndal, 1999; Plot and 

Georges, 2010; Tourinho et al., 2010). Experimental evidence has shown that dietary 

dilution causes post-hatchling loggerheads to exhibit signs of reduced energy and 

nitrogen intake (McCauley and Bjorndal, 1999). Post-hatchlings and juvenile turtles 

are of particular concern because their smaller size means that starvation is likely to 
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occur more rapidly which has consequences for the turtle’s ability to obtain sufficient 

nutrients for growth (McCauley and Bjorndal, 1999; Tomas et al., 2002). 

The presence of large quantities of buoyant material within the intestines may affect 

turtles’ swimming behaviour and buoyancy control. This is especially crucial for deep 

diving species, such as the leatherbacks (Fossette et al., 2010) and small benthic 

foragers, such as flatbacks. Additionally, plastic ingestion can compromise a female’s 

ability to reproduce. For example, plastic was found to block the cloaca of a nesting 

leatherback turtle, preventing the passage of her eggs (Plot and Georges, 2010; 

Sigler, 2014). 

Long gut residency times for plastics may lead to chemical contamination as 

plasticizers, such as Bisphenol A and phthalates, leach out of ingested plastics and 

can be absorbed into tissues, potentially acting as endocrine disrupters (Oehlmann et 

al., 2009). Additionally, due to their hydrophobic properties, plastics are known to 

accumulate heavy metals and other toxins, such as PCBs, from the marine 

environment which can also be released during digestion (Cole et al., 2015; Wright et 

al., 2013). Such contaminants have been shown to cause developmental and 

reproductive abnormalities in many taxa, such as egg-shell thinning and delayed 

ovulation in birds as well as hepatic stress in fish (Azzarello and Van Vleet, 1987; 

Wiemeyer et al., 1993; Oehlmann et al., 2009; Rochman et al., 2013a, b; Vegter et al., 

2014). To date, the knowledge base regarding these issues in marine turtles is limited. 

Indirectly ingested microplastics may pass through the cell membranes and into body 

tissues and organs where they can accumulate and lead to chronic effects (Wright et 

al., 2013). The implications of trophic transfer, of both the microplastics and their 

associated toxins, are as yet unknown (Cole et al., 2013; Wright et al., 2013; Reisser 

et al., 2014a) and worthy of investigation. 

It is possible that the sub-lethal effects of plastic ingestion, including dietary dilution, 

reduced energy levels, and chemical contamination, may lead to a depressed immune 

system function resulting in an increased vulnerability to diseases, such as 

fibropapillomatosis (Landsberg et al., 1999; Aguirre and Lutz, 2004). Stranded juvenile 

green turtles in Brazil exhibit both high occurrence of plastic ingestion and incidences 

of this disease (Santos et al., 2011). Additionally, plastic ingestion may impact health 

and weaken the turtle’s physical condition which could impair the ability to avoid 

predators and survive anthropogenic threats, such as ship strikes and incidental 

capture by fisheries, issues which already threaten many marine turtle populations 
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(Lewison et al., 2004; Hazel and Gyuris, 2006; Hoarau et al., 2014). Other longer term 

consequences could include reduced growth rates, fecundity, reproductive success, 

and late sexual maturation which could have long-term demographic ramifications for 

the stability of marine turtle populations (Hoarau et al., 2014; Vegter et al., 2014). 

In summary, the potential effects of plastic ingestion on marine turtles are diverse and 

often cryptic, making it difficult to identify a clear causal link. The sheer scale of 

possibilities, though, makes this topic one that is in urgent need of further research. 

 

Entanglement 

Entanglement in marine debris, such as items from land-based sources and lost 

fishing gear (known as “ghost gear”), is now recognized as a major threat to many 

marine species (Figure 2c; Gregory, 2009; Wilcox et al., 2013; Vegter et al., 2014). 

Their sources are difficult to trace, but their widespread distribution indicates that 

ocean currents and winds may be dispersal factors (Santos et al., 2012; Jensen et al., 

2013; Wilcox et al., 2013). Entanglement is one of the major causes of turtle mortality 

in many areas including northern Australia and the Mediterranean (Casale et al., 2010; 

Jensen et al., 2013; Wilcox et al., 2013; Camedda et al., 2014). Despite this, 

quantitative research on mortality rates is lacking and a large knowledge gap exists in 

terms of implications for global sea turtle populations (Matsuoka et al., 2005). Our 

literature search returned just nine peer-reviewed publications directly refer- ring to 

marine debris entanglement and turtles (Bentivegna, 1995; Chatto, 1995; Lopez-

Jurado et al., 2003; Casale et al., 2010; Santos et al., 2012; Jensen et al., 2013; Wilcox 

et al., 2013, 2014; Barreiros and Raykov, 2014) and of these, seven are related to 

ghost fishing gear. For individual turtles, the effects of entanglement are injuries, such 

as abrasions, or loss of limbs; a reduced ability to avoid predators; or forage efficiently 

due to drag leading to starvation or drowning (Gregory, 2009; Barreiros and Raykov, 

2014; Vegter et al., 2014). From a welfare perspective, entanglement may cause long-

term suffering and a slow deterioration (Barreiros and Raykov, 2014). In some cases, 

injuries are so severe that amputation or euthanasia are the only options for 

rehabilitators (Chatto, 1995; Barreiros and Raykov, 2014). 

Ghost nets - mostly consisting of synthetic, non-biodegradable fibres, such as Nylon -

may persist in the marine environment for many years, indiscriminately “fishing” an 

undefinable number of animals (Bentivegna, 1995; Wilcox et al., 2013, 2014; Stelfox 

et al., 2014). Some nets, which may be several kilometres long, drift passively over 
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large distances (Brown and Macfadyen, 2007; Jensen et al., 2013), eventually 

becoming bio-fouled by marine organisms and attracting grazers and predators, such 

as turtles (Matsuoka et al., 2005; Gregory, 2009; Jensen et al., 2013; Stelfox et al., 

2014). Although this widespread problem is not unique to turtles, as a taxon, they 

appear to be particularly vulnerable. For example, a study by Wilcox et al. (2013) 

reported that 80% of the animals found in lost nets off the Australian coast were turtles. 

It may be, however, that the physical attributes of marine turtles mean they are more 

persistent in these nets. For example, their robust carapaces are likely to degrade 

more slowly and could be easier to identify than carcasses of other marine animals. 

More recently, Wilcox et al. (2014) found that nets with large mesh sizes but smaller 

twine sizes are more likely to entangle turtles, and larger nets seemed to attract turtles, 

further increasing their catch rates. 

Aside from lost or discarded fishing gear, turtles may become trapped in debris from 

land-based sources. For example, a juvenile loggerhead was found off the island of 

Sicily trapped in a bundle of polyethylene packaging twine (Bentivegna, 1995) and a 

juvenile flat- back turtle stranded in Australia after becoming trapped in a woven plastic 

bag (Chatto, 1995). Reports of such incidences in scientific literature are scarce and 

it is likely that many individual cases of entanglement are never published (BJG, pers. 

obs.). Thus, the rates of entanglement in debris, such as sheet plastic and Nylon rope, 

from land-based sources may be greatly underestimated. 

There are few investigations into the susceptibility of the various life stages, but one 

study found that for olive ridleys, the majority of trapped animals were subadults and 

adults (Santos et al., 2012). There could be several reasons for this. First, the smaller 

size of young juveniles enhances their ability to escape. Second, it may be that their 

carcasses are more readily assimilated into the environment through depredation and 

decomposition and therefore the evidence of their entanglement is less likely to be 

discovered. Lastly, it may be that nets are impacting migrating or breeding areas rather 

than juvenile habitats. The lack of published literature means that the scale of 

entanglement-induced mortality is unknown, as are the population level impacts of 

such mortality. 

 

Impacts on nesting beaches 

Nesting beaches are extremely important habitats for marine turtles and are already 

under pressure from issues such as sea-level rise and coastal development (Fuentes 
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et al., 2009). Sandy shorelines are thought to be sinks for marine debris whereby litter, 

after becoming stranded, is eventually trapped in the substrate or is blown inland 

(Poeta et al., 2014). As such, various sizes and types of plastic accumulate on marine 

turtle nesting beaches (Ivar do Sul et al., 2011; Turra et al., 2014). Developed or 

remote beaches may experience similar levels of contamination but inaccessible 

beaches, which are not cleaned may experience greater densities of plastic pollution 

(Figure 2d; Ozdilek et al., 2006; Ivar do Sul et al., 2011; Triessnig, 2012). From large 

fishing nets to tiny microscopic particles, this debris presents a threat to nesting 

females, their eggs, and emerging hatchlings (Ivar do Sul et al., 2011; Triessnig, 2012; 

Turra et al., 2014), further limiting and/or degrading the amount of habitat available for 

reproduction. 

Female marine turtles are philopatric, returning to their natal region to lay eggs in the 

sand (Bowen and Karl, 2007). Large debris obstacles may impede females during the 

nest site selection stage, causing them to abort the nesting attempt and return to the 

sea without depositing eggs (Chaco´n-Chaverri and Eckert, 2007). Alongside this, 

entanglement is a risk when debris, such as netting, monofilament fishing line, and 

rope, is encountered (Ramos et al., 2012). Additionally, macro-plastic within the sand 

column itself may prevent hatchlings from leaving the egg chamber, trapping them 

below the surface (Authors’, pers. obs.). 

On emergence from the nest, hatchlings must orient themselves towards the sea and 

enter the water as quickly as possible to avoid depredation and desiccation (Tomillo 

et al., 2010; Triessnig, 2012). The presence of obstacles may act as a barrier to this 

frenzy crawl, not only trapping and killing the hatchlings but increasing their 

vulnerability to predators and causing them to expend greater amounts of energy 

(Ozdilek et al., 2006; Triessnig, 2012). 

The physical properties of nesting beaches, particularly the permeability and 

temperature, are known to be altered by the presence of plastic fragments and pellets 

(Carson et al., 2011). These authors found that adding plastic to sediment core 

samples significantly increased permeability, and sand containing plastics warmed 

more slowly, resulting in a 16% decrease in thermal diffusivity (Carson et al., 2011). 

This, and the fact microplastics have been found up to 2 m below the surface (Turra 

et al., 2014), indicates potential ramifications for turtle nests. Hatchling sex-ratios are 

temperature-dependent; consequently, eggs that are exposed to cooler temperatures 

produce more male hatchlings than females within the clutch (Witt et al., 2010; Carson 
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et al., 2011; Vegter et al., 2014). Eggs buried beneath sediment containing a high 

plastic load may also require a longer incubation period to develop sufficiently (Carson 

et al., 2011). Increased permeability may result in reduced humidity which could in turn 

lead to desiccation of the eggs (Carson et al., 2011). Other possible impacts include 

sediment contamination from absorbed persistent organic pollutants or leached 

plasticizers (Oehlmann et al., 2009; Carson et al., 2011; Turra et al., 2014). For 

example, the physiological processes of normal gonad development in red-eared 

slider turtles (Trachemys scripta) at male- producing incubation temperatures were 

altered by PCB exposure, resulting in sex ratios that were significantly biased towards 

females (Matsumoto et al., 2014). 

 

Wider ecosystem impacts 

Marine turtles utilize a variety of aquatic habitats that are both neritic and oceanic 

(Bolten, 2003), but the presence of marine plastics may reduce productivity and cause 

detrimental changes in ecosystem health (Richards and Beger, 2011). Here, we 

outline the possible impacts of plastic pollution on two key types of habitats. 

 

Neritic foraging habitats 

Coral reefs are relied upon by turtles for food, shelter from predators, and the removal 

of parasites by reef fish at “cleaning stations” (Leo´n and Bjorndal, 2002; Blumenthal 

et al., 2009; Sazima et al., 2010; Goatley et al., 2012). Richards and Beger (2011) 

found a negative correlation between the level of hard coral cover and coverage of 

marine debris as it causes suffocation, tissue abrasion, shading, sediment 

accumulation, and smothering; all of which may lead to coral mortality (Matsuoka et 

al., 2005; Brown and Macfadyen, 2007; Richards and Beger, 2011). Additionally, high 

densities of marine debris appear to impact both the diversity and functioning of coral 

reef communities, which may lead to a further reduction in biodiversity (Matsuoka et 

al., 2005; Richards and Beger, 2011). Furthermore, scleractinian corals have been 

shown to ingest and assimilate microplastics within their tissues, suggesting that high 

microplastic concentrations could impair the health of coral reefs (Hall et al., 2015). 

For turtles, changes to these assemblages may lead to a reduced availability of food, 

a greater predation risk, and an increase in epibiotic loads, such as barnacles (Sazima 

et al., 2010). Sea grass beds and macroalgae communities are important foraging 

habitats for the herbivorous green turtle but are sensitive to habitat alterations; the 
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impacts of which are often observed in the form of reduced species richness (Santos 

et al., 2011). As highly competitive species become dominant, some marine 

herbivores are forced to consume less-preferred algal species which in turn reduces 

the dietary complexity of those organisms (Santos et al., 2011). Balazs (1985) found 

that this resulted in reduced growth rates of juvenile turtles. 

 

Oceanic fronts 

As previously discussed, features such as mesoscale thermal fronts and smaller 

coastal eddies act as foraging hotspots for many marine organisms and are an 

important micro-habitat for pelagic or surface feeding coastal turtles (Scales et al., 

2014, 2015). However, these features are likely sink areas for both macro and 

microplastics which degrade the quality of these critical habitats, not only in terms of 

increasing the risk of direct harm through ingestion and entanglement, but by indirectly 

altering the abundance and quality of the food available (González Carman et al., 

2014). Small particles of plastic are known to affect the reproduction and growth rates 

of low trophic level organisms, for example, zooplankton (Cole et al., 2013). Finally, 

there is a possibility that the accumulation of such plastic debris can inhibit the gas 

exchange within the water column, resulting in hypoxia or anoxia in the benthos, which 

in turn can interfere with normal ecosystem functioning and alter the biodiversity of the 

seabed (Derraik, 2002). 

 

Future research 

There are many worthy lines of investigation that would further aid our understanding 

of the expanding issue of marine plastic pollution and its impact on marine turtles. 

These are discussed below and summarized in Table
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Table 3. Summary of recommended research priorities. 

 

Topic Methods 

Ingestion 

Experiments and field based studies to investigate selectivity (by size, polymer type, colour) and cues leading to ingestion 
 
Targeted efforts to necropsy more widely to address demonstrated geographic, species, life stage, sex and negative-results biases. Incorporate 
body condition indices. This would be facilitated by global database 
 
Analyse faecal and lavage samples from live specimens with targeted efforts to sample pelagic life stages  
 
Compare data for differences in frequency, amount, type, shape, colour of plastic. Use standardised methods to catalogue debris for comparable 
results 
 
Create risk maps by assessing exposure to and consequences of ingestion. I.e., utilising satellite tracking, oceanographic and niche modelling in 
combination with empirical data i.e., from necropsies for ground-truthing 
 
Understand  distribution of plastic by size and type in the water column and benthic habitats and develop 3D oceanographic models to 
understand transport and sink areas for microplastics 
 
In situ investigation of plastic passage time and breakdown in turtle gut 
 
Health studies focusing on short and long-term impacts of plastic debris ingestion 
 
Investigate role as secondary consumers including dietary analysis using molecular and isotope techniques. Sample wild invertebrate prey 
species for the presence of microplastics. Meso-cosm experiments in a controlled laboratory setting 
 
Further investigation of potential for plastic consumption to lead to secondary contamination and methods to detect exposure 
 
Develop methods for the quantification of microplastics in turtle gut content 
 
Develop risk frameworks for species and populations, including detection of vulnerable life stages  

Entanglement 

 
 

Develop a global online database that records incidents of exposure according to entanglement, debris type, species and life stage 
 
Increase reports and understanding of entanglement in plastic debris from land-based sources 
 
Creating risk maps utilising satellite tracking, oceanographic and niche modelling and data from fisheries layers such as VMS. Ground-truthing 
and investigation of consequences using empirical data i.e., necropsies 
 
On encountering debris, record the presence/ absence and decomposition state of any entangled turtles 
 
For live strandings, gather information on health status and post-release mortality 
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Impacts on 
nesting beaches 

Record observations of encounters with beach debris for females and hatchlings 
 
Establish baseline surveys for occurrence of plastic debris on beaches with global online database 
 
Sample sand-cores to investigate sub-surface plastic distributions/ densities 
 
Investigate effects on eggs and hatchlings (e.g., sex ratios, embryo development, and fitness) 
 
Use oceanographic modelling to forecast how and when key coastal areas are likely to be impacted by plastic pollution 

Ecosystem effects 

Monitor key turtle habitats to generate baseline data. Meso-cosm experiments. Collaborate with other research disciplines and industries 
 
Develop methods to detect and quantify trophic transfer of plastic, associated toxins and bioaccumulation 
 
Explore the impact of plastics on the process of bentho-pelagic coupling 

 

 

 

 



 
 

153 
 

Ingestion 

Given the variability in the scale and extent of plastic pollution within the marine 

environment, there is a clear need to improve our knowledge of relative risk. To 

achieve this, we advocate for further research to better understand the species, 

populations, and size classes that have either high likelihood of exposure or high 

consequences of ingestion. There are a number of biases that need to be eliminated 

in our knowledge base. 

 

Geographic 

Studies from the Atlantic are as many as those from all other oceans combined. 

There clearly needs to be much further work from the Indo-pacific. 

 

Species 

Although the relative distribution of studies in some way maps to the overall research 

effort across species, there clearly needs to be more work on species other than 

loggerhead and green turtles. Of particular interest are hawksbill, leatherback, and 

olive ridley turtles, given their cosmopolitan distribution and the largely oceanic 

nature of the latter two species. For Kemp’s ridleys and flatbacks, despite their 

limited geographic range, there is clearly room for a better under- standing of this 

problem, especially given the conservation status of the former. 

 

Life stage 

It is suggested that young turtles residing in or transiting convergence zones, where 

high densities of plastics are known to occur, are at greater risk from ingesting plastic 

debris. As such, these areas could act as a population sink (Witherington, 2002; 

Witherington et al., 2012; Gonzalez Carman et al., 2014).  As the development and 

survivorship of young turtles is critical for species persistence, it must be emphasized 

to generate greater understanding of the impacts of plastics for this life stage and 

therefore future population viability. Further sampling of frontal zones and knowledge 

concerning the oceanic developmental stage or “lost years” is also needed. 

Particularly as the detectability of mortality rates in these post-hatchling turtles is 

likely to be low (Witherington, 2002; Witherington et al., 2012). 
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We found only one study that compared ingestion between the sexes, the results of 

which showed that the frequency of occurrence of debris ingestion was significantly 

higher in females. Further studies are needed to investigate whether this pattern is 

observed elsewhere and if so, whether this sex-based difference in plastic ingestion 

is biologically significant (Bjorndal et al., 1994). 

 

In terms of practical methods for identifying temporal and spatial patterns of plastic 

ingestion by turtles, Schuyler et al. (2014) found necropsy to be the most effective 

method. Its application, however, is constrained by small sample sizes because data 

collection is limited to dead animals. Therefore, every opportunity to examine by-

caught and stranded individuals should be utilized (Bjorndal et al., 1994). Alongside 

gut contents from necropsied turtles, faecal and lavage samples from live specimens 

should also be analysed. Although not currently a commonly used practise, this may 

offer insights into survival, partial or total digestion, and comparisons with dead 

turtles with plastic loads (Witherington, 2002; Hoarau et al., 2014). Integrating body 

condition indices into necropsy practices will generate a better understanding of the 

sub-lethal impacts of plastic ingestion, such as malnutrition and the adsorption of 

toxins (Bjorndal et al., 1994; Gregory, 2009; Labrada-Martagon et al., 2010). It may 

also be useful to record conditions such as the presence of fibropapillomatosis or 

epibiotic loads (such as barnacles) as they are also often used as indicators of health 

(Aguirre and Lutz, 2004; Stamper et al., 2005). 

When surveying the literature on plastic debris and marine turtles, it must be 

emphasized to recognize that published studies do not necessarily represent a 

randomized sample of the rates of interactions between marine turtles and plastic 

debris. It is unlikely that researchers who find no evidence of plastic in their study 

(either in habitats or during necropsies) report negative findings—we found only two 

studies that did so (Flint et al., 2010; Reinhold, 2015). Data on the absence of marine 

turtle interactions with plastic debris form an important complement to other 

datasets, and will facilitate a better understanding of spatio-temporal trends in rates 

of interactions.  We strongly encourage researchers to publish both positive and 

negative results related to plastics and marine turtles. 
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We suggest that the endeavours above would be greatly facilitated by a global open 

access database of necropsy results with regard to plastics. At its simplest, this 

would be date, location, species, size, state of decomposition, likely cause of death, 

and some basic descriptors of presence or absence of plastic ingestion or 

entanglement with associated metadata. This way, workers with a single or small 

number of cases could still contribute to the global endeavour. Currently, sea- 

turtle.org hosts a Sea Turtle Rehabilitation and Necropsy Database, STRAND, which 

allows users to upload gross necropsy reports. 

To complement this, it will be important to investigate the passage of plastics through 

the gut, their degradation, and in addition the transport and bioavailability of 

bioaccumulative and toxic substances (Campani et al., 2013). Few studies have 

been con- ducted on the bioaccumulation and trophic transfer of microplastics. Most 

have focused on invertebrates in controlled laboratory experiments and none focus 

on the higher trophic level organisms such as marine turtles (Wright et al., 2013). 

Future studies should sample turtle prey species for the presence of microplastics, 

examine trophic transfer from prey species containing microplastics, and test for the 

presence of the contaminants associated with these particles in tissues of 

necropsied turtles. 

To ensure data are comparable, the measurements used to quantify plastic 

abundance should be standardized. Currently, a variety of metrics are employed, 

making comparisons among studies difficult. The most common approach is to 

record total numbers and/or size of fragments. There is a possibility, however, that 

plastic may break down within the gut or become compressed to appear smaller. 

Therefore, it is more accurate and comparable to record the total dry weight once 

extracted (Schuyler et al., 2012; Camedda et al., 2014). Additionally, a wider, more 

global application of the European Marine Strategy Framework Directive (MSFD) 

“toolkit” for classification would allow a better comparison of the properties and types 

of ingested plastics. Furthermore, although not currently included in the MSFD 

toolkit, efforts to classify colour and/or shape would aid selectivity studies and offer 

insights as to whether these properties influence the levels of ingestion by turtles 

(Lazar and Gracan, 2011; Hoarau et al., 2014). The colour and shape should then 

be compared with those of plastic pieces found in the environment of the species/ 
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life stage investigated. Systematic collection of photos with a scale bar could allow 

computer-based analytical techniques to be used to classify plastics and compare 

data across studies. 

Debris– turtle interactions often occur in remote locations, far from human habitation 

and the chronic effects of plastic ingestion may present themselves long after the 

items were first encountered (Witherington, 2002; Ivar do Sul et al., 2011; Schuyler 

et al., 2014). The use of tracking technologies, such as satellite telemetry, has 

already been successfully employed to identify foraging habitats and migration 

corridors for all sea turtle species. Such data are now being used to develop niche 

models that can offer a synoptic view of the distribution of a whole segment of a 

population by season (Pikesley et al., 2013) and can help predict where these ranges 

may be in the future (Pikesley et al., 2014). Combining such data with plastic debris 

concentrations using remote sensing methods may identify threat hotspots leading 

to more effective conservation recommendations (Barnes et al., 2009). At present, 

the tracking devices used on subadult and adult turtles are not yet available for 

hatchlings, but technological advances mean they will most likely be available soon 

as small turtles are now being tracked (Abecassis et al., 2013; Mansfield et al., 

2014). In the interim, direct sampling of juveniles in situ with subsequent assessment 

of plastic loads during a period of captivity would seem a reasonable approach. 

Alternative methods, such as ocean circulation modelling, can be used to predict the 

migratory trajectories of hatchling turtles to understand their movements in the open 

ocean (Putman et al., 2012). Additionally, such methods could also be employed to 

simulate marine debris dispersal. The development of sophisticated three-

dimensional oceanographic models will enable substantial improvements to our 

understanding of debris transport and turtle movements. 

The analysis of trace elements may be used to broadly infer the locations of foraging 

areas and deduce possible interactions with high concentrations of plastics (Lopez-

Castro et al., 2013). A study by Lo´pez-Castro et al. (2013) tentatively identified six 

oceanic clusters as foraging locations for Atlantic green turtles. As it stands this 

method needs refinement but with further development, fine-scale mapping may 

become feasible, offering valuable insights in terms of the spatial overlap with plastic 

debris distribution. 
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In addition to the horizontal spatial overlap between turtles and plastics, it would also 

be beneficial to understand the vertical distribution of quantities and sizes of plastics 

as this will influence the degree to which marine biodiversity is affected, particularly 

for those taxa who breathe air and forage near the surface (Reisser et al., 2014b). 

 

Entanglement 

In a study by Wilcox et al. (2013), the spatial degree of threat posed by ghost net 

entanglement was predicted by combining physical models of oceanic drift and 

beach clean data with data concerning marine turtle distributions in northern 

Australia. This process identified high-risk areas so that recommendations for 

monitoring and remediation could be made (Wilcox et al., 2013). This approach could 

be replicated on a global scale but would only be possible where such data exist. As 

such, a greater research effort is urgently needed (Matsuoka et al., 2005). Indeed, 

the MSFD Technical Subgroup on Marine Litter is developing a dedicated monitoring 

protocol for their next report (MSFD GES Technical Subgroup on Marine Litter, 

2011). Additionally, fisheries layers, such as vessel monitoring system (VMS) data, 

may help outline areas of high fishing pressure (Witt and Godley, 2007). To 

determine the amount of time debris has drifted, Jensen et al. (2013) suggest 

recording the abundance of epibionts as well as the presence and de- composition 

state of any entangled turtles. 

It would be beneficial to test for any variation in entanglement rates among species 

and life stages to better understand vulnerability (Wilcox et al., 2013), particularly for 

small or isolated populations (Jensen et al., 2013). Stranding networks, where dead 

or alive turtles washed up on beaches are recorded, offer an opportunity to carry out 

research, not only in terms of debris entanglement but for other anthropogenic issues 

such as fisheries bycatch and ship strike (Casale et al., 2010). In obvious cases of 

entanglement, such data can provide valuable insights into the temporal and spatial 

trends in mortality. However, it can be difficult for the lay- person, and even experts, 

to confidently determine the cause of death for accurate recording (Casale et al., 

2010). For those turtles that strand alive, information should be gathered on health 

status and post-release mortality. Currently, there are indications that species, time, 
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depth, and severity of entanglement affect the probability of post-release survival 

(Snoddy et al., 2009). 

During our literature search, we found that the majority of publications on turtle 

entanglement focus on the issue of ghost fishing by lost gear and few report 

entrapment in other forms of marine debris, for example, those originating  from  

land-based  sources (n ¼ 2 of 9). Exploration into why this may be seems a pertinent 

next step for research. Additionally, to overcome the lack of peer- reviewed material, 

efforts should be made to gather and synthesize all relevant grey literature (for 

example, Balazs, 1984, 1985) in a manner that is suitable for peer-reviewed 

publication. 

As per ingestion, a global open access database of entanglements (and animals 

discovered without entanglement) would greatly facilitate research efforts. 

 

Impacts to nesting beach 

Few studies exist whereby the extent of debris-induced mortality, or even 

interactions, for emerging hatchlings is investigated (Ozdilek et al., 2006; Triessnig, 

2012). Observational monitoring programmes could be developed for the many 

conservation projects operating globally on turtle nesting beaches. This could also 

be applied to nesting adult females. Currently, most observations are anecdotal 

(Ozdilek et al., 2006; Triessnig, 2012). Standardized protocols for monitoring and 

data collection would help facilitate comparisons across studies and over time 

(Velander and Mocogni, 1999). Additionally, the establishment of a globally 

accessible data- base of marine debris surveys on nesting beaches would help 

facilitate an improved understanding of the impacts of plastics on sea turtles that use 

sandy beaches. Oceanographic modelling could be used to forecast how and when 

key coastal areas are likely to be impacted in the future. 

To date, most studies on coastal microplastic distributions have focused on surface 

densities. As illustrated by Turra et al. (2014), this may lead to a mis-representation 

of their overall concentrations. To better quantify this, and develop a greater 

understanding of the potential impacts on marine turtles and their eggs, three-

dimensional sampling should be carried out, investigating the distribution of 

microplastics at depth (Turra et al., 2014). 
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Additionally, the relationship between marine plastics and hatchling sex ratios, both 

in terms of chemical contamination and nest environments, requires greater 

clarification. This is of interest due to the potential large-scale impacts on turtle 

populations, particularly as climate change is already predicted to significantly alter 

female to male ratios (Hawkes et al., 2009). 

 

Wider ecosystems effects 

Due to the importance of marine habitats such as coral reefs, sea grass beds, and 

mesoscale thermal fronts for marine turtles, it is essential that we understand the 

scale of impact from marine debris. Data concerning the distribution and abundance 

of plastics within these key ecosystems will provide an environmental baseline, a 

method by which patterns, trends, and, potentially solutions, may be identified. As 

both coral reefs and seagrass beds are often frequented by divers, utilizing citizen 

science-based approaches, such as volunteer surveys, may be an affordable and 

effective method of collecting such data (Smith and Edgar, 2014). Offshore sampling 

at oceanic fronts may require greater resources but collaboration between research 

disciplines and industries may help to minimize duplication of effort and expense. As 

the presence of plastics within the marine environment is of concern not only for 

biodiversity conservation but for fisheries, tourism, and human health and well-being 

(through contamination of seafood, a commercially important resource), it is likely 

that research into this area will grow. As such, it would seem appropriate that those 

concerned should cooperate to tackle the issue, sharing data where possible. 

To better understand the ecosystem level effects of marine plastics, micro- and 

mesocosm experiments are useful methods of replicating natural environmental 

systems in controlled conditions (Benton et al., 2007). So far, the majority of such 

studies have looked only at single taxa, but these study systems allow for 

investigation into how the links between different marine environments may be 

affected. As such, further studies should focus on bentho-pelagic coupling to explore 

the impacts of plastics on the relationships themselves, providing an indication of 

what influences this foreign debris may have on ecosystem functioning. 
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Conclusion 

Currently, there is little clear evidence to demonstrate that interactions with plastics 

cause population level impacts for marine turtles. This, however, should not be 

interpreted as a lack of effect (Gall and Thompson, 2015). Their widespread 

distribution, complicated spatial ecology, and highly mobile lifestyles make studying 

turtles difficult and the development of monitoring programs that deliver statistically 

robust results challenging. This coupled with the diffuse nature of marine plastic 

pollution further exacerbates the difficulty in identifying a direct causal link to any 

potential impacts. In this review, we have demonstrated the widespread and diverse 

pathways by which plastics may affect turtles. These include ingestion, both directly 

and indirectly; entanglement; alterations to nesting beach properties; wider 

ecosystem effects. Although it is evident that this issue could have far-reaching 

ramifications for marine biodiversity, the lack of focused scientific research into this 

topic is a major hindrance to its resolution. Policy-makers require robust, 

comparable, scale-appropriate data (including negative results) on which to develop 

appropriate and effective mitigation recommendations, something which, as it 

stands, are severely lacking (Brown and Macfadyen, 2007). We encourage open 

reporting of plastic– turtle interactions and urge such observations to be sub- mitted 

for peer-reviewed publication where ever possible. Furthermore, cooperation among 

scientists, industry, governments, and the general public is urgently needed to 

confront this rapidly in- creasing form of pollution. 
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Abstract 

Plastic pollution is increasing throughout the world's oceans and is considered to be 

a major global threat to marine wildlife and ecosystems. It can cause direct mortality 

to vulnerable marine megafauna, but can also lead to sub-lethal effects that may 

influence resource acquisition, health, reproductive output, and population growth. 

Here, we review published effects of plastic pollution on air-breathing marine 

megafauna (i.e. seabirds, marine mammals, and sea turtles) worldwide, highlight 

key knowledge gaps, and provide emerging directions for research and 

management. We found 253 peer-reviewed studies published from 1969–2018 that 

documented plastic-pollution entanglement (n=54), ingestion (n=180), or both 

(n=19), 86% of which were undertaken in the Atlantic (54%) and Pacific (32%) Ocean 

regions. Interactions with plastic pollution were reported for all seven sea turtle 

species, 53% of seabird species, and 41% of marine mammal species. Seabird 

ingestion represented 45% of all studies, with loggerhead turtles (n=33) and northern 

fulmars (n=25) accounting for the most publications describing entanglement and 
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ingestion by species. Lethal (16%) and sub-lethal (30%) effects were reported in 

46% of studies, and included starvation, drowning, gastrointestinal tract damage, 

physical injury, constriction, reduced mobility, nutrient dilution, malnutrition, 

physiological stress, and exposure to toxicants. However, we were unable to find 

direct evidence of changes in vital rates or abundance trends resulting from these 

effects. Although the global and pervasive nature of plastic pollution has gained 

substantial international attention and interest, the actual extent and magnitude of 

population-level effects on marine megafauna populations worldwide remains 

largely unknown, representing a major information gap.  

 

Introduction 

Plastic pollution is ubiquitous throughout the world’s oceans and can originate from 

both land- and marine-based sources, such as public littering, sewage and drainage 

outflows, fisheries, and shipping (Barnes et al., 2009; Ryan et al., 2009; Cózar et al. 

2014; Nelms 2017). Marine plastic pollution is increasing globally and accounts for 

up to 80% of anthropogenic waste accumulated on shorelines and in oceans (Barnes 

et al. 2009; Nelms et al. 2017). Today, over 5 trillion pieces of plastic, collectively 

weighing over 250,000 tons, are estimated to be floating in the world’s oceans 

(Eriksen et al. 2014).  

Plastic will persist in marine environments due to its chemically engineered durability 

that makes it resistant to degradation (Barnes et al., 2009; Cózar et al. 2014). It 

accumulates on shorelines and on the seafloor from shallow waters to deep basins 

in all major ocean gyres (Thompson et al. 2009; Lebreton et al. 2012; Eriksen et al. 

2014; Pham et al. 2014; Woodall et al. 2014), while concentrating at the surface in 

convergence zones, drift lines, coastal areas, and shores close to beaches where 

marine wildlife aggregate (Corcoran et al. 2009). Plastic pollution directly affects 

marine wildlife through ingestion, entanglement, and habitat degradation (Vegter et 

al. 2014). A recent assessment revealed that 693 species have interacted with 

marine debris, with plastic accounting for 92% of all interactions (Gall and Thompson 

2015).  

Air-breathing marine megafauna (i.e. seabirds, marine mammals, and sea turtles) 

were the taxa most commonly observed to incur effects (Gall and Thompson 2015). 
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Plastic pollution can cause direct mortality to marine megafauna from entanglement 

or ingestion, but can also lead to sub-lethal effects that impinge on resource 

acquisition, health, and other factors (Nelms et al. 2015; Gall and Thompson 2015; 

Figure 1).  

Figure 1. Plastic pollution and air-breathing marine megafauna: (a) adult humpback 

whale (Megaptera novaeangliae) found entangled in a conglomerate of ghost fishing 

gear and other plastic materials, including over 22 different line types, off of Maui, 

HI, USA (photo: Ed Lyman, NOAA/MMHSRP permit #932-1489); (b) ringed seal 

(Phoca hispida) with plastic strap wrapped around its body (photo: Alaska Fish and 

Game under ADFG research permits 358-1888 and 358-1787); (c) Laysan albatross 

(Phoebastria immutabilis) chicks and plastic items along a beach at Midway Atoll 
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National Wildlife Refuge, HI, USA (photo: USFWS); (d) Laysan albatross chick with 

ingested plastic after its death at Midway Atoll National Wildlife Refuge, HI, USA 

(photo: John Klavitter, USFWS); (e): three olive ridley turtles (Lepidochelys olivacea) 

entangled at the surface in a conglomerate of ghost fishing gear in the Maldives. 

Massive conglomerates of ghost gear tangled together are common in the Maldives 

during the NE Monsoon, where turtles frequently become entangled in a single 

conglomerate of ghost gear (photo: Dave Bretherton/Olive Ridley Project); (f) surface 

convergence front in the northern Gulf of Mexico, with accumulated sargassum algae 

and a typical plastic load. These surface-front “weedlines” are important oceanic 

habitat for marine megafauna including turtles, seabirds, and cetaceans (photo: Blair 

Witherington). 

 

Marine megafauna are particularly susceptible to plastic pollution because of their 

broad distributions, complex life histories that expose many species to impacts at 

sea and on land, and high trophic levels. Ingestion frequency has been increasing 

globally in seabirds and sea turtles since the 1960s (Robards et al. 1995; Ryan et 

al. 2009; Teuten et al. 2009) and mid 1980s (Schuyler et al. 2014a), respectively. 

Recent estimates suggest that 99% of all seabird species and 95% of the individuals 

within these species may have plastic in their digestive tracts by 2050 (Wilcox et al. 

2015). Similarly, 52% of individual sea turtles may have already ingested 

macroplastic (Schuyler et al. 2015), with microplastics now ubiquitous in this taxon 

(Duncan et al. 2018). However, despite increases in marine megafauna interactions 

with plastic pollution, the effects on individuals and populations relative to impacts of 

other threats have not been thoroughly investigated. 

In this review, we systematically compiled and evaluated available information from 

published studies on plastic pollution research conducted on seabirds, marine 

mammals, and sea turtles worldwide. We first assess the current state of the peer-

reviewed literature regarding interactions between plastic pollution and marine 

megafauna, which includes an evaluation of the taxonomic and spatial extent of 

types of lethal and sub-lethal effects and their potential for individual and population-

level impacts. We then provide an overview of the different pathways by which 

marine megafauna interact with plastic pollution. We conclude by highlighting critical 
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knowledge gaps, future research priorities, and recommendations for mitigation.  

 

Methods 

We conducted an extensive literature review to assess available information on 

impacts of plastic pollution on air-breathing marine megafauna. We searched ISI 

Web of Knowledge from 1969 to 2018 for the terms plastic, litter, debris, and 

ingest/entangle. Alongside each search term, we also incorporated the relevant 

taxon of interest including marine mammal, cetacean, whale, dolphin, porpoise, seal, 

sea lion, walrus, dugong, manatee, sea cow, sea otter, turtle, seabird, and marine 

bird. Studies were evaluated and filtered to remove cases where plastic pollution 

was not an explicit threat or if the study was a review that lacked original data. 

Entanglement in active fishing gear (i.e. bycatch) was not considered, but 

entanglement in derelict gear was. Data were collated based on the lowest 

taxonomic group, interaction type (i.e. entanglement and/or ingestion), individual 

effect (i.e. lethal or sub-lethal), location of interaction (i.e. ocean region), number of 

individuals impacted, and whether the study provided sufficient evidence (e.g. 

mortality levels/rates, affected life stage) to demonstrate population-level impacts, or 

the lack thereof at the time of the study. Effects were classified as “lethal” if an animal 

died directly from plastic, and all other effects were considered “sub-lethal”.  

 

Summary of review: Current state of knowledge  

In total, 253 published studies documented plastic pollution in marine megafauna, 

either by entanglement (n=54), ingestion (n=180), or both (n=19) (Dataset S1). We 

found that the cumulative number of studies on entanglement in and ingestion of 

plastic pollution published from 1969–2018 increased in all three taxa (Figure 2). Of 

all published studies, 40 reported lethal (n= 9, entanglement; n=26, ingestion; n=5, 

entanglement and ingestion) and 77 reported sub-lethal (n=35, entanglement; n=37, 

ingestion; n =5 entanglement and ingestion) effects of plastic pollution. Lethal and 

sub-lethal effects included gastrointestinal tract damage (n=44), reduced mobility at 

sea or on land (n=24), physical injury (n=18), starvation (n=16), drowning (n=12), 

nutrient dilution (n=7), constriction (n=6), malnutrition (n=6), physiological stress 
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(n=2), and exposure to toxicants (n=1). Most research was conducted in the Atlantic 

(54%) and Pacific (32%) Ocean regions (Figure 2, Dataset S1). 

 

Figure 2. The number of peer-reviewed studies investigating plastic pollution and 

seabirds, marine mammals, and sea turtles per year (published between 1969 and 

2018), per ocean basin and proportion per age-class (adult and juvenile). 
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All seven sea turtle species, 53% of the 346 seabird species (BirdLife International 

2012), and 42% of the 128 marine mammal species (Society for Marine Mammalogy 

2016) had documented interactions with plastic pollution. Ingestion studies of 

seabirds comprised 45% of all published entanglement and ingestion studies, 

combined (Figure 2; Dataset S1). The species with the highest number of 

publications from either entanglement and/or ingestion included loggerhead turtles 

(Caretta caretta; n=33) and northern fulmars (Fulmarus glacialis; n=25), which 

comprised 10 and 13% of all papers, respectively (Dataset S1).  

Loggerhead turtles (14%), harbour seals (Phoca vitulina; 11%), California sea lions 

(Zalophus califomiaous; 10%), olive ridley turtles (Lepidochelys olivacea; 8%), and 

northern gannets (Morus bassanus; 8%) were most frequently represented in the 

entanglement studies, whereas loggerhead turtles (14%), green turtles (Chelonia 

mydas; 14%), northern fulmars (12%), and great shearwaters (Ardenna gravis; 8%), 

were most frequently represented in the ingestion studies (Dataset S1). Harbour 

seals (19%), loggerhead and olive ridley turtles (63% and 38%, respectively), and 

northern gannets (38%) had the highest number of entanglement publications for 

marine mammals, sea turtles, and seabirds, respectively (Dataset S1). By contrast, 

sperm whales (Physeter microcephalus; 10%), loggerhead turtles (51%), and 

northern fulmars (21%) had the highest number of ingestion publications for marine 

mammals, turtles, and seabirds, respectively (Dataset S1).  

To date, 32% (n=80) of studies discussed potential population-level consequences 

of plastic pollution for at least one species evaluated in their study (Figure 3).  
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Figure 3. Number of published, peer-reviewed studies that evaluated or discussed 

population-level effects of plastic pollution on seabirds, marine mammals, and sea 

turtles between 1969 and 2018.  

 

Twenty-four studies suggested the possibility of population-level effects without 

providing their own evidence (n=7, entanglement; n=17, ingestion), while 78 studies 

concluded that more information is needed to assess effects on populations (n=19, 

entanglement; n=40, ingestion; n = 19, ingestion and entanglement) (Figure 3; 

Dataset S1). Overall, we were unable to find a study that provided direct evidence 

of population-level effects, although two studies found correlative or inferred effects 

(Figure 3 and Table 1; Dataset S1). By contrast, we found 21 studies that were 

unable to demonstrate effects at the time of study (Figure 3 and Table 1; Dataset 

S1). Keeping in mind the apparent lack of research on or evidence of population-

level effects of plastic pollution on marine megafauna, we evaluate results of our 

literature review by effect types and taxonomic group.
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Table 1. Summary of peer-reviewed studies published between 1969 and 2018 that evaluated potential population-level 

consequences of plastic pollution based on reported lethal or sub-lethal effects. 

Taxa Species 

Threat; 

N entangled/ 

ingested; 

Study period 

Lethal or sub-lethal 

effect 
Age class 

*Evidence 

of 

population-

level effect 

Key findings Reference 

Marine 

Mammal 

(Cetacean) 

Franciscana 

dolphin 

(Pontoporia 

blainvillei);  

Guiana 

dolphin 

(Sotalia 

guianensis) 

Ingestion; 

15 (14 

Franciscana, 

1 Guiana); 

Unspecified 

166 dead animals, 

but plastic ingestion 

not the reported 

cause of death. 

Unspecified 
Unable to 

demonstrate 

Impacts of debris 

ingestion appear to be 

minimal considering no 

lethal or sublethal effects 

were reported. 

Madeira di 

Beneditto 

and Arruda 

Ramos 

(2014) 

Marine 

Mammal 

(Cetacean) 

Harbour 

porpoise 

(Phocoena 

phocoena); 

harbour seals 

(Phoca 

vitulina); grey 

seal 

Ingestion and 

entanglement; 

31; 

1990-2014 

6,587 carcasses 

found, of which 1622 

allowed for 

necropsy; 14 cases 

of entanglement and 

17 of ingestion 

reported. 

Juvenile; 

Adult 

Unable to 

demonstrate 

Despite high standings, 

few animals interacted 

with plastic; these rates 

are unlikely to cause 

population-level effects. 

Unger et 

al. (2017) 
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(Halichoerus 

grypus) 

Seabird 

Short-tailed 

Shearwater 

(Puffinus 

tenuirostris) 

Ingestion; 

164; 

2012 

171 birds 

necropsied, but 

plastic did not affect 

body condition of 

164 that exhibited 

ingestion. 

Chick 
Unable to 

demonstrate 

Plastic ingestion does not 

appear to affect the birds' 

body condition, despite 

high ingestion.  

Cousin et 

al. (2015) 

Seabird 

Wandering 

albatross 

(Diomedea 

exulans); 

black-browed 

albatross 

(Thalassarche

melanophris); 

grey-headed 

albatross 

(Thalassarche

chrysostoma) 

Ingestion; 

52 (46 

wandering, 3 

black-browed, 

3 grey-

headed); 

1993-2009 

Hook/line ingestion; 

mortality 

unspecified. 

Adult 
Unable to 

demonstrate 

Wandering albatross 

populations have declined 

sharply, but no evidence 

links this decline to plastic 

ingestion; other 

populations show no 

evidence of decline due to 

plastic ingestion.  

Phillips et 

al. (2010) 

Seabird 
Southern 

giant petrel 

Ingestion; 

193; 

2001-2004 

193 animals 

ingested plastic, 
Chick 

Unable to 

demonstrate 

Population has stabilized; 

no evidence of 

population-level effects. 

Copello et 

al. (2008) 
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(Macronectes

giganteus) 

none of which were 

attributed to plastic. 

Seabird 

Waved 

albatross 

(Phoebastriair

rorata) 

Ingestion; 

6; 

1999-2007 

43 dead animals, 6 

of which ingested 

plastic; mortality not 

attributed to 

ingestion.  

Chick; Adult 
Unable to 

demonstrate 

Population is declining, 

but unlikely because of 

plastic pollution.  

Anderson 

et al. 

(2008) 

Turtle  

Loggerhead 

turtle (Caretta 

caretta) 

Ingestion; 

121; 

1995-2016 

Despite the high 

occurrence of debris 

in loggerheads 

observed in the 

study (1414 plastic 

items collected in 

121 of the 155 

turtles analyzed), 

there was little 

evidence that debris 

caused impactions, 

obstructions, or 

perforations in the 

gut; the small 

amount of debris 

was also suggestive 

Juvenile; 

Adult 

Unable to 

demonstrate 

The amounts of ingestion 

by juvenile loggerheads 

that inhabit the western 

Mediterranean are low 

and does not appear to 

pose a significant threat to 

the survival of their 

populations in the region.  

Domènech

et al. 

(2019) 
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of little dietary 

dilution. 

Marine 

Mammal 

(Pinniped) 

Fur seal 

(Arctocephalu

s spp.); south 

elephant seal 

(Mirounga 

leonina) 

Entanglement

; 

106 (101 fur 

seals, 5 

elephant 

seals); 

1991-2001 

None documented  Unspecified 
Unable to 

demonstrate 

0.24% of population 

entangled; no clear effect 

on population. 

Hofmeyr et 

al. (2002) 

Marine 

Mammal 

(Pinniped) 

Pacific 

harbour seal 

(Phoca 

vitulina) 

Entanglement

; 

11; 

2001-2005 

Unspecified Unspecified 
Unable to 

demonstrate 

Entanglement unlikely to 

affect study population. 

Moore et 

al. (2007) 

Marine 

Mammal 

(Pinniped) 

Australian fur 

seal 

(Arctocephalu

s pusillus) 

Entanglement

; 

74; 

1997-2012 

None documented  
All age 

classes 

Unable to 

demonstrate 

Population is currently 

increasing; entanglement 

unlikely to affect 

population. 

Lawson et 

al. (2015) 

Marine 

Mammal 

(Pinniped) 

Antarctic fur 

seal 

(Arctocephalu

s gazella) 

Entanglement

; 

208; 

1988-1989 

None documented  
All age 

classes 

Unable to 

demonstrate 

Current rate of 

entanglement (0.4%), 

most of which are juvenile 

males, unlikely to impact 

population. 

Arnould 

and Croxall 

(1995) 
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Marine 

Mammal 

(Pinniped) 

California sea 

lion (Zalophus 

californianus) 

Entanglement

; 

237; 

1991-1995 

None documented  
All age 

classes 

Unable to 

demonstrate 

The current entanglement 

rate (0.49%) is unlikely to 

cause population-level 

impacts.  

Zavala 

Gonzalez 

and Mellink 

(1997) 

Marine 

Mammal 

(Pinniped) 

Antarctic fur 

seal 

(Arctocephalu

s gazella) 

Entanglement

; 

1,033; 

1989-2013 

One death reported 

due to 

entanglement. 

All age 

classes 

Unable to 

demonstrate 

Rates of entanglement 

are low (0.016%) and 

involve mostly juvenile 

males; entanglement 

unlikely to affect 

population. 

Waluda 

and 

Staniland 

(2013) 

Marine 

Mammal 

(Pinniped) 

Australian fur 

seal 

(Arctocephalu

s pusillus 

doriferus) 

Entanglement

; 

359; 

1997-2013 

None documented  
All age 

classes 

Unable to 

demonstrate 

Population has been 

recovering since 

protection in 1975.  

McIntosh 

et al. 

(2015) 

Marine 

Mammal 

(Pinniped) 

Australian fur 

seal 

(Arctocephalu

s pusillus 

doriferus) 

Entanglement

; 

106; 

1996-2002 

Entanglement rates 

range from .024% to 

.059% per season; 1 

death attributed to 

entanglement. 

All age 

classes 

Unable to 

demonstrate 

Entanglement rates are 

considered negligible and 

unlikely to impact 

population. 

Hofmeyr et 

al. (2006) 

Marine 

Mammal 

(Pinniped) 

Australian sea 

lion 

(Neophoca 

Entanglement

; 

High rates of 

entanglement (45% 

in fur seals and 74% 

All age 

classes 

Unable to 

demonstrate 

Despite high occurrence 

of entanglement, fur seal 

populations increasing by 

Page et al. 

(2004) 
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cinerea); New 

Zealand fur 

seal 

(Arctocephalu

s forsteri) 

126 (35 sea 

lions, 91 fur 

seals); 

1989-2002 

in sea lions), only 5 

of which were killed 

(fur seals). 

16%; stable sea lion 

populations, although 

entanglement-related 

mortality is likely slowing 

their recovery.  

Marine 

Mammal 

(Pinniped) 

California sea 

lion (Zalophus 

californianus); 

Steller sea 

lion 

(Eumetopias 

jubatus) 

Entanglement

; 

914; 

1976-1998 

914 pinnipeds 

reported entangled. 

All age 

classes 

Unable to 

demonstrate 

Population of California 

sea lions increasing, while 

entanglement rates were 

not significant for Stellar 

sea lions.  

Hanni and 

Pyle (2000) 

Marine 

Mammal 

(Pinniped) 

New Zealand 

fur seal 

(Arctocephalu

s forsteri) 

Entanglement

; 

185; 

1995-2005 

185 seals reported 

entangled over past 

ten years, with 

average of 19  2; 4 

deaths attributed to 

entanglement.  

All age 

classes 

Unable to 

demonstrate 

Low mortality rates due to 

mortality; population 

appears to be increasing. 

Boren et al. 

(2006) 

Marine 

Mammal 

(Pinniped) 

California sea 

lion (Zalophus 

californianus) 

Entanglement

; 

157; 

2001-2005 

Unspecified Unspecified 
Unable to 

demonstrate 

Entanglement rate for 

California sea lions 

(0.03%) is unlikely to 

impact population.  

Moore et 

al. (2009) 
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Marine 

Mammal 

(Pinniped) 

Northern fur 

seals 

(Caiiorhinus 

urslnus) 

Entanglement

; 

;Unspecified; 

1960-1895 

 

.0.4% entanglement 

rate in 1985, at least 

two orders of 

magnitude greater 

than in the 1940s. 

Juvenile; 

Adult 
Correlative  

Changes in pup numbers 

and unexpected mortality 

in juveniles provide 

correlative evidence for 

population decline.  

Fowler 

(1987) 

Marine 

Mammal 

(Cetacean) 

Northern right 

whale 

(Eubalaena 

glacialis) 

Entanglement

; 

21; 

1979-2009 

Entanglement 

responsible for 

increased energy 

cost and drag, 

impeded foraging 

efficiency.  

Juvenile; 

Adult 

Inferred from 

sub-lethal 

impacts 

In affected population, 

chronic entanglement 

causes greater energy 

costs, impeding 

reproductive investment 

and blubber thickness.  

Van der 

Hoop et al. 

(2017) 

Turtle 

Olive ridley 

turtle 

(Lepidochelys 

olivacea) 

Entanglement

; 

18; 

1996-2011 

18 entangled turtles, 

2 of which were 

reported dead. 

Juvenile 
Unable to 

demonstrate 

18 entanglement events 

across 15 years unlikely 

to affect population. 

Santos et 

al. (2012) 

Seabird 

Northern 

Gannet 

(Morus 

bassanus) 

Entanglement

; 

525; 

2005-2010 

195 of 525 

entangled animals 

died; 190 of which 

were attributed to 

entanglement.  

Juvenile 
Unable to 

demonstrate 

Presence of plastic in 

population is concerning, 

but currently not 

impacting population. 

Votier et al. 

(2011) 

*Indicates evidence or lack of evidence for population-level impacts of plastic pollution only at time of study. 
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Taxonomic and spatial extent of lethal and sub-lethal effects 

Entanglement 

 

Marine mammals  

A total of 42 studies was found linking entanglement in plastic with marine mammals, 

of which 30 reported either lethal (10%) or sub-lethal (62%) effects (Dataset S1). 

Pinnipeds (55%) and cetaceans (38%) comprised the majority of studies by taxon 

(Dataset S1). In terms of lifestage, immature marine mammals were most commonly 

reported in entanglement studies (74% of studies; Figure 2, Dataset S1). The Pacific 

and Atlantic Ocean regions accounted for the majority of entanglement studies 

(Figure 2; Dataset S1).  

 

Sea turtles 

A total of 16 studies was found linking entanglement in plastic with sea turtles, of 

which 14 reported either lethal (19%) or sub-lethal (63%) effects (Dataset S1). 

Loggerhead (63%) and olive ridley turtles (38%) were the most frequently reported 

species in entanglement publications (Dataset S1). Immature turtles accounted for 

75% of all entanglement studies (Figure 2; Dataset S1). The Mediterranean, Atlantic, 

and Indian Ocean regions accounted for the majority of entanglement studies (Figure 

2; Dataset S1).  

 

Seabirds  

A total of 16 studies was found linking entanglement in plastic with seabirds, of which 

10 reported either lethal (44%) or sub-lethal (25%) effects (Dataset S1). Northern 

gannets (38%) were the most frequently reported species in entanglement 

publications (Dataset S1). Adult seabirds accounted for 50% of all entanglement 

studies (Figure 2; Dataset S1). The Atlantic and Pacific Ocean regions comprised 

the majority of entanglement publications (Figure 2; Dataset S1).  
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Ingestion 

 

Marine mammals  

A total of 30 studies reported ingestion of plastic by marine mammals, of which 11 

reported either lethal (37%) or sub-lethal (37%) effects (Dataset S1). Cetaceans 

(70%) comprised the majority of studies by taxon (Dataset S1). In terms of lifestage, 

adult and immature marine mammals were equally reported in ingestion studies 

(57% of studies; Figure 2; Dataset S1). The Atlantic and North Sea Ocean regions 

accounted for the majority of entanglement studies (Figure 2; Dataset S1).  

 

Sea turtles 

A total of 55 studies was found linking ingestion of plastic by sea turtles, of which 35 

reported either lethal (18%) or sub-lethal (38%) effects (Dataset S1). Loggerhead 

(51%) and green turtles (49%) were the most frequently reported species in ingestion 

publications (Dataset S1). Immature turtles accounted for 73% of all turtle 

entanglement studies (Figure 2; Dataset S1). The Atlantic Ocean region accounted 

for the majority of ingestion studies (Figure 2; Dataset S1).  

 

Seabirds  

A total of 112 studies was found linking ingestion of plastic by seabirds, of which 16 

reported either lethal (8%) or sub-lethal (5%) effects (Dataset S1). Northern fulmar 

(21%) and great shearwaters (13%) were the most frequently reported species in 

ingestion publications (Dataset S1). Adult seabirds accounted for 52% of all 

ingestion studies (Figure 2; Dataset S1). The Atlantic and Pacific Ocean regions 

comprised the majority of entanglement publications (Figure 2; Dataset S1).  

 

Overview and implications of marine megafauna interactions with plastic 

pollution 

Entanglement and other external effects 

Marine megafauna can become entangled in plastic pollution including fibrous 

material, line, rope, packing bands, netting, and other packaging material. Animals 
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may be attracted to plastic material in several ways, including: 1) curiosity or naivety 

(especially in immature animals); 2) to use as a resting platform or for shelter; or 3) 

to seek prey that is either entangled or attracted to the material (Matsuoka et al., 

2005; Gregory, 2009; Jensen et al., 2013; Duncan et al. 2017). If entanglement does 

not lead to immediate mortality (e.g. from drowning), stress may cause acute and 

chronic effects on important behavioral and physiological processes such as 

predator avoidance, foraging, energy assimilation, migration, mating, nesting, and 

care of offspring. Ghost or derelict fishing gear (i.e. gear that is abandoned, lost, or 

deliberately discarded) can continue “fishing” and entangle marine megafauna for 

long periods of time (Baulch and Perry 2014; Matsuoka et al. 2005; Gilardi et al. 

2010; Wilcox et al. 2014). Recent estimates suggest that 6.4 million tons of fishing 

gear is lost annually and is increasing worldwide (Macfayden et al. 2009; Wilcox et 

al. 2014). When compared to other plastic items, derelict fishing gear (e.g., nets, 

pots, traps, lines, buoys) is believed to cause the greatest impact to marine 

megafauna (Wilcox et al. 2016; Duncan et al. 2017).  

 

Physical injury and illness 

Entanglement in plastic pollution can lead to physical injuries that include 

lacerations, constriction, severe sclerosis, loss of limbs, and difficulty breathing if the 

airway becomes restricted (Wegner and Cartamil 2012; Snoddy et al. 2009; Vegter 

et al. 2014). The animal may starve, drown, or be unable to escape predators or 

vessels if the entangled material hampers movement (Gregory 2009; Barreiros and 

Raykov, 2014; Vegter et al., 2014, Nelms et al. 2015). For example, cetaceans 

entangled in plastic ropes, lines, and floats may develop systemic infections and 

chronic debilitation from extensive tissue damage (Cassoff et al. 2011), and 

pinnipeds have been known to insert their heads through plastic packing bands, 

which can eventually lead to severed blood vessels (Fowler, 1987). Entanglement 

of seabirds, both at sea and at terrestrial breeding sites, may reduce their flying and 

foraging efficiency (Derraik 2002).  

 

Physiological stress 

Entanglement in plastic pollution can result in severe physiological stress, inhibiting 
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diving and resulting in increased hydrodynamic drag (Ceccarelli 2009; Macfayden et 

al. 2009; Gilardi et al. 2010; Van de Hoop et al. 2013b; Wilcox et al. 2014). For 

example, an entangled North Atlantic right whale (Eubalaena glacialis) incurred an 

increase in average locomotory power requirements of 70.5% when entangled in 

plastic rope (Van de Hoop et al. 2013b), while energy requirements for a California 

sea lion entangled in plastic netting increased four-fold (Feldkamp 1985). In 

laboratory experiments, entangled fur seals reduced swimming time by 75%, 

increased resting by 138%, and increased their mean energy expenditure by 112% 

(Feldkamp et al. 1989).  

Several studies have shown that sea turtles entangled in fishing gear – an 

experience that induces similar physiological responses to entanglement in derelict 

gear – require additional time to rest and recover at the surface to replenish on-board 

oxygen stores consumed while involuntarily submerged (Gregory et al. 1996; 

Stabenau and Vietti 2003; Snoddy and Williard 2009; Snoddy et al. 2009). Blood 

samples from wild Kemp’s ridley turtles (Lepidochelys kempii) entangled in nets 

demonstrated that submergence significantly influenced the time course of recovery 

of blood homeostasis (Hoopes et al. 2000). Wild green turtles captured (and 

submerged) in gillnets have exhibited blood lactate levels indicative of severe 

metabolic acidosis and have shown substantial changes in blood ion levels (sodium 

[Na+], chloride [Cl–], and potassium [K+]) (Snoddy et al. 2009). Cardiac muscle 

damage may also occur from overexertion during entanglement (Snoddy et al. 

2009). Greater entanglement durations in green and Kemp’s ridley turtles have 

resulted in decreased health, shown by physical examination, and a significant 

increase in blood lactate, lactate dehydrogenase and creatine phosphokinase 

enzymes, phosphorus, and glucose levels (Snoddy et al. 2009). Similarly, a threefold 

increase in plasma corticosterone – a hormone representative of stress (Gregory et 

al. 1996) – and a decrease in blood pH (Harms et al. 2003) were reported in 

loggerhead turtles submerged for only 30 minutes that were captured in trawl, 

entanglement, and pound nets. Such dive durations are not uncommon among freely 

diving juvenile and adult sea turtles while performing natural behavior; thus, these 

findings indicate physiological derangement caused by stress of entanglement, not 

necessarily physiological limitations on aerobic dive activity. Upon release from 
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entanglement (and submergence), green and Kemp’s ridley turtles spent extended 

periods of time recovering at the surface, potentially increasing their vulnerability to 

predation and anthropogenic threats, such as vessel strikes (Snoddy et al. 2009; 

Snoddy and Williard 2010). Despite an apparent lack of similar studies for seabirds, 

these animals are also likely to experience some form of physiological stress from 

submersion due to entanglement.   

 

Reduced mobility 

Plastic pollution may also impede, obstruct, or entrap marine megafauna that rely on 

terrestrial environments for resting or reproduction (e.g. seabirds, pinnipeds, and sea 

turtles). Plastic material has been known to affect adult and nestling seabirds, 

entangling their legs, feet, bill, and wings (Tasker et al. 2000; Votier et al. 2011; Bond 

et al. 2012). Synthetic materials present on sea turtle nesting rookeries can block 

nesting attempts or impede hatchlings. For example, on a Mediterranean beach in 

Turkey, plastic objects impeded hatchling sea turtles’ attempt to reach the sea, 

potentially making them more susceptible to predation and decreased energy 

reserves required for the frenzy swim upon entering the water (Triessnig et al. 2012). 

On Elliot Key, Florida, USA, extensive derelict fishing gear and other beach cast 

debris, consisting largely of plastic, was believed to be preventing nesting by sea 

turtles. Potential evidence of this effect came following removal of the items (3.4 

tons), when nesting by loggerhead and green turtles resumed (Coastal Cleanup 

Corporation, Suzy Pappas pers. comm.). 

 

Ingestion 

It is believed that marine megafauna may ingest plastic: 1) by mistaking the item for 

food (Gregory, 2009; Hoarau et al., 2014; Schuyler et al, 2012; Schuyler et al, 

2014b); 2) accidentally through non-selective feeding strategies, such as filter 

feeding (Fossi et al. 2014) or if otherwise mixed with natural food items (Di Beneditto 

and Awabdi, 2014); 3) if the item is attached or covered with natural prey (Frick et 

al. 2009); or 4) via trophic transfer from contaminated prey (Nelms et al 2018).   
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Gastrointestinal tract damage 

Ingested plastic objects may damage the gastrointestinal tract (GIT) of marine 

megafauna by causing ulcerations, perforations, lesions, and obstructions (Derraik 

2002; Jacobsen et al. 2010; Brandão et al. 2011; Awabdi et al. 2013; Di Bello et al., 

2013; Di Beneditto & Awabdi 2014; Nelms et al. 2015). Gastrointestinal ulcerations 

or perforations and laceration of the larynx from ingesting plastic have been 

documented in marine mammals, sea turtles, and seabirds, and can result in chronic 

infection, peritonitis, gastrointestinal motility issues, septicemia, and mortality (Day 

et al. 1985, McCauley & Bjorndal 1999, Levy et al. 2009; Guebert-Bartholo et al. 

2011). Impaction or blockage of the gastrointestinal tract caused by plastic ingestion 

can inhibit digestion and cause pain, bloating, necrosis, hardened fecal matter, 

mechanical abrasion or blockage of absorptive surfaces in the digestive tract, and 

blockage of the cloaca which can prevent egg laying (Mader 2006; Guebert-Bartholo 

et al. 2011; Awabdi et al. 2013; Di Beneditto and Awabdi 2014). Seabirds that ingest 

high levels of plastic may exhibit slower growth rates and earlier mortality (Pierce et 

al. 2004), while gut compactions and minor ulcerations caused by plastic ingestion 

in seabirds may result in reduced disease resistance and post-fledging survival (Fry 

et al. 1987).  

 

Dietary dilution  

Dietary dilution can occur when ingestion of plastic limits nutrient or water 

absorption. The presence of inorganic and space-occupying, non-food material 

within the GIT can cause a false sense of satiation, leading to a reduced desire to 

feed (McCauley and Bjorndal 1999). Nutrient dilution is known to affect both juvenile 

and adult animals (Day et al. 1985; Sievert & Sileo 1993; Bjorndal et al. 1994; 

McCauley & Bjorndal 1999). Although sub-lethal, dietary dilution may lead to 

malnutrition, reduced energy, and eventual mortality. Loggerhead turtle hatchlings 

fed a 50% diluted diet with inert matter (fumed silica) displayed significantly lower 

energy and nitrogen intake than hatchlings fed a 10% diluted diet, indicating that 

dietary dilution may decrease energy assimilation and allocation to somatic growth, 

which could reduce energy reserves and survivorship (McCauley & Bjorndal 1999). 

Similarly, dietary dilution may dehydrate seabird chicks with already reduced fat 
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reserves (Auman et al. 1997). Growth rates for Laysan albatross (Phoebastria 

immutabilis) that had ingested high volumes of plastic were significantly lower than 

for chicks that had ingested low volumes of plastic (Sievert & Sileo 1993). Decreased 

body condition (reduced fledging weight), which can result from dietary dilution, has 

been found to decrease survival of juvenile seabirds (Braasch et al. 2009; Morrison 

et al. 2009). 

 

Exposure to contaminants associated with plastic pollution 

Plastic can adsorp and concentrate chemical contaminants, such as persistent 

organic pollutants (POPs), from the marine environment (Teuten et al. 2009). These 

toxic compounds can be harmful because they are inherently stable, persist for a 

long time, and can accumulate in adipose (fatty) tissues following ingestion (D’Ilio et 

al. 2011). Many common polymers, such as polyethylene, have high sorptive 

capacities for toxicants due to their polymeric chain structure and enhanced surface 

area (Rochman et al. 2013). This capacity increases with degradation and a 

corresponding increase in surface area, which leads to the plastic becoming more 

hazardous the longer it remains in the marine environment (Andrady 2011). In 

addition to the adsorption of existing marine contaminants to their surfaces, plastic 

often contains toxic additives, monomers, and chemical byproducts as well as 

plasticizers, such as phthalates and Bisphenol A (BPA), added during manufacturing 

(Teuten et al. 2009; Lithner et al. 2011).  

POPs in marine megafauna tissues have been linked to plastic ingestion. Colabuono 

et al. (2010) found Polychlorinated biphenyls (PCBs) and organochlorine pesticides 

(OCPs) in plastic pellets and fragments ingested by Procellariiforme seabirds in 

Southern Brazil, while Tanaka et al. (2013) reported that short-tailed shearwaters 

(Puffinus tenuirostris) found with plastic in their stomachs in the North Pacific had 

polybrominated diphenyl ethers (PBDEs) in their abdominal adipose, which was also 

found in the same pieces of plastic. Similarly, lower chlorinated compounds were 

found to have transferred to short-tailed shearwaters as a result of ingesting 

contaminated plastic (Yamashita et al. 2011). At Midway atoll, PCBs, polychlorinated 

dibenzo-p-dioxins, naphthalenes, and furans have been found in adult Laysan 

albatrosses (Jones et al. 1996), while PCBs were found to have transferred from 
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contaminated plastic to streaked shearwater chicks in a feeding experiment (Teuten 

et al. 2009). 

In addition to potential toxicity contamination via ingestion, seabirds that nest on top 

of plastic material may absorb contaminants through their skin (Verlis et al. 2014), 

which could affect sexual development and potentially disrupt the endocrine system, 

resulting in reproductive difficulties and cancers (vom Saal et al. 2007; Talsness et 

al. 2009). Prior research has found that transfer of chemicals that commonly occur 

in plastic (e.g. BPA) can occur through the skin (Geens et al. 2011; Zalko et al. 2011). 

 

Knowledge gaps and research priorities  

 

Assessment of available literature  

In many marine megafauna species, particularly cetaceans and turtles, effects of 

plastic pollution may occur several to greater than hundreds of miles offshore, and 

subsequent mortality may be difficult, if not impossible, to assess (Gregory 2009). 

Thus, mortality is likely to be grossly under-reported. The comparatively large 

number of studies that reported lethal effects in pinnipeds suggests that, they are 

either disproportionately impacted by entanglement, or that entanglement in plastic, 

and subsequent mortality, is more visible and thus easier to document given their 

close association with terrestrial habitats. It is also likely that pinniped populations 

have relatively smaller home ranges relative to other taxa. Although sea turtles are 

also associated with terrestrial environments (i.e. nesting females), they tend to have 

larger ranges than pinnipeds and are not closely linked to terrestrial environments 

for the vast majority of their lives. Turtles that suffer serious injuries and subsequent 

mortality from plastic pollution may be more likely to die in open water, especially 

small juveniles.  

Among marine mammals, little information exists on plastic pollution impacts to 

sirenians and baleen whales. Given sirenians’ affinity for nearshore and inland 

environments worldwide, it is surprising that only two studies (n=1, entanglement; 

n=1, ingestion) have documented their interaction with plastic. This lack of 

information could be an indicator that plastic pollution may not pose a serious threat 

to these animals, that they interact with plastic differently than other megafauna, or 
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that such observations are not generally reported in peer-reviewed literature 

because they are often incidental and made by non-scientists. While baleen whales 

are known to interact with fisheries (Read et al. 2006), differentiating between 

interactions with active fisheries (i.e. bycatch) and ghost fishing gear (i.e. plastic 

pollution) is challenging, which may explain the small number of baleen whales that 

were definitively linked to entanglement in plastic.  

Virtually no studies have been carried out in the Arctic and Southern Ocean, which 

is also surprising given that many scientists are working in these regions and they 

represent global hotspots for several marine megafauna species. The lack of studies 

may indicate that animals from these regions are not as exposed to plastic pollution 

as those inhabiting coastal regions more populated by humans, and thus more likely 

to receive terrestrial inputs. Alternatively, these regions may pose logistic issues 

associated with data collection (e.g. working from a boat with limited or no access to 

the shore).  

 

Individuals, species, and habitats affected 

Although a variety of marine megafauna are known to suffer detrimental effects 

caused by plastic pollution, the list of species is incomplete (but growing), as is the 

catalog of effects on individual animals (Vegter et al. 2014; Gall and Thompson 

2015). A more representative dataset of these effects, with spatial and temporal 

variation represented, will be necessary to better discern patterns and trends. Where 

differential effects on species have been examined (Di Beneditto & Awabdi 2014), 

patterns are apparent, but effects from habitats that differ by species remain 

unknown. Clearly, some marine habitats bear an especially high plastic pollution 

load, such as remote islands within oceanic current fields (e.g. Midway Atoll), while 

some populations may be more resilient to impacts (e.g. certain pinnipeds and large 

whales). Spatial hotspots in plastic hazards have shown to be associated with 

dynamic oceanographic and geographic features such as frontal zones (Carman et 

al. 2014; Witherington 2002; Witherington et al. 2012) as well as proximity to human 

population centers (Browne et al. 2010; Carman et al. 2014). Although 

understanding the impacts of marine plastic does not require a complete dataset on 
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the spatio-temporal intersection of plastic and marine megafauna by species and 

population, it will require sufficient representative data to model these effects. 

Some marine megafauna can apparently overcome certain plastic pollution impacts, 

although the mechanisms are not fully understood. For example, photographic 

studies of humpback whales entangled in ghost (or active) gear in Alaska and the 

Gulf of Maine, USA, revealed that the majority of animals (52-78%) had been non-

lethally entangled, suggesting that animals were able to free themselves (Neilson et 

al. 2009). In the Gulf of Maine, 48-65% of humpbacks were entangled between 1997 

and 2002, of which 8-25% were estimated to entangle annually (Robbins and Mattila, 

2004). Similarly, approximately 37% of 371 leatherback turtles autopsied from 1968 

– 2007 had plastic in their GI tract (Mrosovsky et al. 2009), yet of those, only 12 

(8.7%) appeared to die from it. By contrast, documented entanglement rates for grey 

seals (Halichoerus grypus) from photo ID techniques in southwest England from 

2004 to 2008 revealed that 64% of entanglement events resulted in serious injuries, 

with significantly lower recapture rates of entangled seals, suggesting an elevated 

post-release mortality rate (Allen et al. 2012). More information is needed to 

understand why some species or populations appear to be more resilient to impacts 

than others.  

 

Population-level assessments 

In general, potential population-level consequences of plastic pollution in marine 

megafauna have infrequently been discussed, and have yet to quantified (Figure 3; 

Table 1). Despite reviewing more than 100 published studies of lethal and sub-lethal 

effects, we were unable to find population-level assessments of changes in vital 

rates (e.g., survivorship, fecundity, somatic growth, life-stage duration) or 

abundance trends resulting from plastic hazards exposure (Figure 3; Table 1). Two 

studies, however, reported correlative and inferred evidence of effects, both of which 

resulted from entanglement (Figure 3; Table 1).  

Although the harm from plastic to marine megafauna is widespread, it is unclear if 

or how many populations are significantly affected, and which populations show the 

greatest effects. A critical question is whether the lack of information represents a 

lack of actual effects or a lack of investigation? Effects could be widespread and 
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important for populations, but are not yet known and quantified. As plastic pollution 

continues to increase worldwide, its potential to cause population effects may 

increase or become easier to assess. Conversely, plastic pollution may not present 

a major conservation threat to marine megafauna at current levels. 

Establishing population baselines in many megafauna populations presents 

challenges due to their extensive migrations and large ranges. Thus, estimating 

trends can be difficult in species where we lack sufficient population information. A 

crucial step will be to estimate the proportion of individuals in a population that are 

killed by plastic exposure in relation to their population size as well as the mortality 

they incur from other anthropogenic impacts (Browne et al. 2015). Population models 

can help elucidate potential impacts by incorporating a suite of metrics including 

relative contribution of a given lifestage (e.g. mature females), the size and growth 

rate of a population, mortality rates of different lifestages, and reproductive 

parameters (Browne et al. 2015).  

 

Multidimensional effects: plastic as an exposure route for associated chemical 

pollutants 

The acute, coarse-scale effects from plastic pollutants (e.g., entanglement, gut 

impaction) are more easily demonstrated than chronic effects on a finer scale. Where 

investigated, microplastics appear to be ubiquitous in marine megafauna (Duncan 

et al. 2018; Lusher et al. 2018; Nelms et al. 2019). However, gaps still remain in our 

understanding of plastic ingestion, particularly microplastics and their potential to 

transfer and persist up marine food webs to marine megafauna or to be ingested 

directly by them. Otoliths of night-feeding pelagic fish (Electrona subaspera) 

consumed by Hooker’s sea lions (Phocarctos hookeri) have been found alongside 

small plastic fragments (~ 1 mm diameter) in their scat that presumably had been 

originally consumed by the fish (McMahon et al., 1999). Similarly, scat from fur seals 

at Macquarie Island, Australia, contained small plastic particles (< 10 mm) believed 

to similarly accumulate through food-web transfer from the same myctophid fish 

(Eriksson & Burton 2003). Ingestion of microplastics by animals at the base and 

middle of the food chain, such as zooplankton and epipelagic zooplanktivorous fish, 
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could also facilitate trophic transfer to marine megafauna (Boerger et al. 2010; 

Davison et al. 2011; Eriksen et al. 2014; Nelms et al. 2018).  

The large surface area to volume ratio of microplastics (particles ≤ 5mm) means that 

they are susceptible to the adsorption of hydrophobic contaminants from seawater, 

and research suggests that many more species than previously thought ingest them 

(Browne et al. 2008; Cole et al. 2011). The recent increase in products with 

antimicrobial silver nanoparticles (Blaser et al. 2008) and endocrine-disrupting 

brominated flame retardants (Hammer et al. 2012) may mark a trend in a proliferation 

of chemically altered synthetic products. Low-trophic organisms, such as fish and 

lugworms, may also transfer toxicants up the food web to marine megafauna by 

ingesting contaminated plastic (Teuten et al., 2009; Rochman et al. 2013). Future 

research should assess the levels and effects of both microplastic and contaminants 

in animals of lower trophic levels including the role that ingestion may play in 

biomagnifying toxic chemicals common in plastic pollution up the food chain to 

marine megafauna.  

 

Exposure risk of plastic hazards  

Risk associated with marine plastic hazards is the measure of probability that harm 

will occur given a specific level of exposure, with exposure related to dose (e.g. 

plastic burden) and time. In the simplest terms, risk is related to a function of hazard 

multiplied by dose and time. Thus, plastic that poses only a small hazard, but is 

frequent or available for extended periods of time, may pose a risk similar to that of 

greater hazards with more limited exposure. Analyses like these for marine 

megafauna are lacking due to the paucity of data on each element of the risk 

equation. Hazards of marine plastic are incompletely described, either in their 

immediate effects (entanglement, physical effects in the gut, toxicants from 

manufacturers) or in their eventual effects following UV exposure, fragmentation, 

adsorption of environmental toxicants, and additional chemicals shed during 

digestion. Stressor-response profiles have not been developed for this suite of 

plastic hazards. One notable exception, however, used logistic regression to 

estimate that sea turtles with a curved carapace length of 43.5 cm had a 50% 

probability of mortality after ingesting 14 plastic items, with a 22% probability of 
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death from ingesting a single item that reached 100% with 226 items (Wilcox et 

al. 2018). This study serves as an important catalyst for future research to assess 

the extent to which concentrations of plastic may result in physiological and 

anatomical impairment that can lead to death.  

Methodologies used to assess risk exposure need to be carefully considered. 

Several ingestion studie have excluded non-detects which can lead to substantial 

overestimations of mean ingestion amounts (Lynch 2018). Researchers are now 

beginning to call for studies to publish both positive and negative results to better 

understand the overall impacts of plastic pollution (Nelms et al. 2015; Lynch et al. 

2018). Moreover, most sea turtle and seabird plastic ingestion studies have used 

frequency of occurrence (%FO) to assess ingestion; however, %FO does not 

depict the amount of debris that was actually ingested by the animal, which limits 

its usefulness and can substantially bias results in terms of actual risk (Lynch 

2018). Where possible, Lynch (2018) recommends that researchers measure 

plastic ingestion by debris mass per turtle mass (g/kg) in order to better identify at-

risk populations.  

Differences in plastic collection techniques from dead (e.g. causes of death for 

necropsied animals) or alive (e.g. esophagus lavage or feces) animals also make it 

difficult to draw meaningful comparisons within and amongst studies (Casale et al. 

2016; Lynch 2018; Rodríguez et al. 2018; Nelms et al. 2019), while strandings are 

not indicative of actual mortality rates in a given population (Epperley et al. 1996; 

Williams et al. 2011; Casale et al. 2016). It is recommended that future studies either 

only include animals that died immediately and were presumably healthy and feeding 

normally, such as seabird fledglings grounded by lights, or strive to include these 

animals as a comparison (Casale et al. 2016; Rodríguez et al. 2018).  

 

Laboratory and field research 

A surprisingly small amount of plastic (i.e. 0.5 g or one-tenth of a typical plastic bag) 

can block the digestive tract in juvenile green turtles (Santos et al. 2015), yet as 

much as 75 g (149 plastic items) can accumulate and remain in the gut of sea turtles 

without causing apparent damage (Hoarau et al. 2014). In one case, plastic 

remained in the gut of an apparently healthy captive loggerhead turtle for four 
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months (Lutz 1990). Clearly, more experimental research is needed to understand 

the effects of ingesting plastic.  

Controlled studies are needed to assess post-entanglement and post-ingestion fate 

in marine megafauna. Captive animals that could serve as surrogates for 

endangered species could be used to better understand potential sub-lethal and 

lethal responses, which may be helpful in assessing at-risk populations. These 

studies can control the amounts and types of plastic ingested, including chemical-

laden plastic, as well as track weathering, dosage, and components of the introduced 

items. Researchers can concurrently track changes in feeding, weight, growth rates, 

and other behaviors to gain a better understanding of how marine megafauna might 

be affected, which can ultimately be used to infer possible population-level impacts 

where interaction rates are well documented or believed to be high.  

We recommend a strong emphasis on thorough veterinary examinations of live 

animals and necropsies of dead animals. The development of a global database of 

effects of plastic pollution from health assessments and necropsies would help 

provide information on the extent and frequency of plastic interactions with marine 

megafauna (Nelms et al. 2015).  

 

Modeling and assessment of long-term impacts from sub-lethal effects 

Although plastic pollution can lead to both lethal and sub-lethal effects, the latter are 

more difficult to identify and may be more prevalent and possibly even have broader 

population-level implications than lethal effects (Hoarau et al., 2014; Gall and 

Thompson 2015). Many of the threats that are commonly considered to be sub-lethal 

could become lethal if chronic and may have population consequences. Such sub-

lethal effects could negatively affect an individual’s survival probability, growth rate, 

reproductive output, and offspring survival. These changes to vital rates and their 

relative effects on population dynamics are in urgent need of future research.  

Linking sub-lethal effects with measurable fitness consequences, such as reduced 

energy acquisition and assimilation, increased energetic demands, and potentially 

harmful behavioral changes, from laboratory or field-based research will allow 

researchers to develop models that can assess long-term impacts in individuals and 

ultimately populations. Currently, these consequences have only been documented 
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in a handful of studies that have focused on increased hydrodynamic drag, 

physiological stress, and nutrient dilution, with associated energetic demands, 

energy acquisition and assimilation, seemingly detrimental behavioral changes, and 

reproductive impairment (e.g. McCauley & Bjorndal 1999; Snoddy et al. 2009; 

Snoddy and Williard 2010; Van der Hoop et al. 2017). For example, physiological 

stress and other health indices can be quantified by evaluating blood chemistry, 

either in the laboratory or field. Fitness consequences and survivorship can then be 

estimated using tagging technology coupled with known physiological stress levels 

upon release of the animal. If recaptured, blood samples and a range of other health 

indices can be taken. This approach has been used to assess short and long-term 

impacts of catch and release fishing on sharks and other large pelagic fishes, where 

regression models have linked blood chemistry and angling time to infer short and 

long-term post-release survivorship based on the magnitude of pH change (Skomal 

2007).  

Although it currently will be challenging to achieve meaningful sample sizes, future 

field studies might combine tagging or telemetry techniques with physiological 

analyses to measure or infer post-plastic-interaction survival rates, growth rates, 

reproductive output, and health status for individual animals. For example, post-

release mortality in juvenile sea turtles entangled in gillnets off the North Carolina 

coast was documented using both satellite telemetry and analysis of blood 

biochemistry (Snoddy & Williard 2010). With advances in tagging technology, it will 

become logistically easier to assess the extent to which sub-lethal effects may 

become lethal or result in reproductive impairment.  

   

Conclusions and recommendations  

Despite increased interest in and awareness of the presence of plastic pollution 

throughout the world's oceans, our review underscores a dearth of available 

empirical information for informing demographic assessments of impacts on marine 

megafauna. Understanding plastic pollution in population-level contexts will allow for 

prioritization of limited conservation resources among threats affecting the same 

populations in the same areas. As marine habitats and prey items continue to 

become saturated in the face of increasing plastic pollution worldwide, population-
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level effects in marine megafauna may increase and become easier to assess. 

Nevertheless, plastic pollution has clearly led to many animals suffering slow and 

painful deaths, which raises serious concerns for animal welfare (Votier et al. 2011).  

Potential solutions to hazardous plastic in the environment are as complex as for 

any other pollutant, involving sociopolitical aspects of human behavior change as 

well as engineering solutions to escape during transport, inefficiency of waste 

collection and disposal, and alternative materials (Gold et al. 2013). Although these 

solutions are outside the scope of our review, we point to avenues of investigation 

that would inform solutions benefitting marine megafauna specifically. 

One important gap lies in understanding the origins of plastic pollution that pose a 

hazard to marine animals. Forensic investigation into errant plastic have revealed 

general source points and original usage categories (Woodall et al. 2015), but this 

work is on a miniscule scale relative to the global scope of plastic pollution. 

Conversely, data on plastic waste mismanagement by country (Jambeck et al. 2015) 

provides information on a broad scale, but does not identify hazard origins relative 

to marine habitats. Modeling of ocean surface currents has the potential to describe 

geographic origin of plastic pollution in drift patches (Van Sebille et al. 2012), which 

can identify human population centers for outreach and technology transfer. Plastic 

pollution sources might also come from identifying original usage. Original use 

identification could be as direct as matching shapes, colors, and lettering of plastic 

in marine habitats to cataloged items, and as inferential as assuming use 

applications based on resin identification from spectroscopy (Zettler et al. 2013; 

Rocha-Santos & Duarte 2015).  

Comprehensive efforts to better understand and mitigate the effects of plastic 

pollution on marine species and ecosystems worldwide are urgently needed. 

Mitigation can be achieved in part by reducing the use of disposable and short-lived 

plastic items and more effective recycling programs (Hopewell et al. 2009). Reducing 

the exposure of marine megafauna to plastic will require lowering the plastic loading 

rate. Based on studies of the origin of plastic pollution cast on marine beaches 

(Pruter 1987; Derraik 2002) and at sea (Ryan et al. 2009), there are many sources. 

Identifying major origins of plastic pollution would guide public outreach efforts, 

enforcement, and export of trash management technology and methods. Re-
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designed or modified fishing gear, coupled with policy initiatives that include 

economic incentives or deterrents, should be developed as a means to reduce gear 

loss and discarding at sea (Wilcox et al. 2016).  

Finally, we highlight and encourage the multidisciplinary nature of potential solutions 

to threats from marine plastic pollution. Ocean research is not likely to result in 

information helpful for reducing this threat without work coordinated between 

resource experts, oceanographers, sociologists, materials scientists, and specialists 

in achieving human behavior change. 
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