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• This paper studies a three-dimensional map for a piecewise-linear capsule system.
• The capsule system has two degrees-of-freedom involving dry friction and impact.
• Global and local dynamics of the system are studied by using the proposed map.
• All possible local mappings are obtained for a wide range of parameter variation.
• The map can be used to explain the occurrence of different bifurcations.
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a b s t r a c t

A three-dimensional map is studied in this paper to provide a fundamental understanding for the vibro-
impact capsule system, which is a non-autonomous two degrees-of-freedom non-smooth dynamical
system consisting of soft impact and dry friction with forward and backward drifts. By using the
map, one can investigate the global and local dynamics of the system and construct all possible local
mappings for a wide range of parameter variation. An example study by varying the amplitude of
external excitation of the system is presented. Our results show that the proposed map can effectively
explain the occurrence of the boundary-intersection crossing and the sliding bifurcations observed in
the system.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Locomotion mechanism has been widely used in engineering
and healthcare, such as oil/gas pipe inspection [1], disaster res-
cue [2], and medical diagnosis and treatment [3]. These devices
have external moving parts, e.g., wheels, legs or paddles, which
are not suitable for the applications in complex environments,
e.g., in the gastrointestinal tract. On the other hand, a locomo-
tion mechanism without any external moving parts may have
many advantages in these applications. For example, the two-
mass system [4] shown in Fig. 1(a), which consists of a movable
mass within a shell, has simpler and more cost-effective design
than the legged capsule [5]. By controlling its inner mass peri-
odically [6], the entire system can move forward or backward
when the interaction force applied on the shell exceeds its en-
vironmental resistance. Inspired by the drifting oscillator [7], a
two degrees-of-freedom vibro-impact capsule system with bidi-
rectional drifts [8], shown in Fig. 1(b), can provide effective lo-
comotion in a confined environment. The system consists of an
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inner mass attached to a capsule via a spring and a damper at one
end. A secondary spring is attached to the other end of the capsule
to provide visco-elastic impacts when the relative displacement
between the inner mass and the secondary spring is greater than
or equal to their gap. As the inner mass is driven by a harmonic
force, the interaction force can overcome capsule-surface resis-
tance and drive the capsule to move forward or backward as a
whole. In order to optimise its trajectory for directional control
and energy saving, understanding the dynamics of such a system,
e.g., prediction of bifurcation, is vital.

Our previous work on the capsule system focused on its mod-
elling [8], motion control [9] and model verification [10]. Both
numerical and experimental studies indicate the existence of
optimal orbits of the capsule system to achieve the best progres-
sion or the lowest energy consumption, and a position feedback
control method was developed to follow these orbits. The capsule
system takes the use of non-smoothness of the system, i.e., fric-
tion and impacts, to achieve desired locomotion. To analyse its
dynamics, the system can be modelled as a piecewise-linear
drifting oscillator with a set of linear and smooth subsystems,
whose subspaces are divided by the non-smooth boundaries in-
duced by friction and impacts. Although local dynamics of the
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Fig. 1. Physical models of (a) the two-mass system [4], and (b) the vibro-impact capsule system with bidirectional drifts.

system has been extensively studied, e.g., [8,9,11], the root causes
of bifurcation and change of locomotion direction are still not
fully understood. Therefore, the global map which can interpret
the switching mechanisms of the capsule dynamics across non-
smooth boundaries is required. In addition, the capsule system is
sensitive to its system and control parameters, e.g., the frequency
and amplitude of excitation, and any parameter variation may
cause a qualitative change of its dynamics. However, there is no
systematic approach to study such a complex dynamics, which is
the rationale of this paper.

This paper aims to study a three-dimensional (3D) map for
the vibro-impact capsule system, to depict its global and lo-
cal dynamics in the presence of non-smooth boundaries. Dis-
crete mapping approaches have been widely used to investigate
dynamical systems subjected to non-smoothness, e.g., [12–17].
Shaw and Holmes [12] first adopted a discrete mapping approach
to study the dynamics of a periodically forced piecewise-linear
oscillator. Nordmark [13] introduced local mappings between
different Poincaré sections to study the grazing-induced bifur-
cations in an impact oscillator. Luo [14,15] proposed a mapping
structure to piece together appropriate or relevant local mappings
to form global mappings for a horizontal impact pair system
and a ball-bouncing system. Based on Nordmark’s work [13],
Bernardo et al. [16] derived normal-form mappings to study
sliding bifurcations. For an impact system with a drift, Pavlovskaia
and Wiercigroch [17] proposed a one-dimensional analytical map
to approximate a five-dimensional flow. However, these map-
ping approaches only consider one non-smoothness (i.e., either
impacts or friction) in the system, and the impact system [17]
considers the drift in one direction, while the capsule system
is subjected to bidirectional drifts, friction and impacts simul-
taneously. Luo et al. [18] adopted a disturbed map to study
the stability of periodic single-impact motions of a unidirec-
tional plastic impact oscillator with a frictional slider. Different
from Luo et al. [18], this paper aims to study the dynamics
of a bidirectional visco-elastic impact system and to construct
global mappings to depict the switching mechanisms between
its piecewise smooth subsystems. With a special care of period-
1 trajectory, Páez Chávez et al. [19] divided the trajectory of
the capsule system into a smooth vector field in each disjoint
subregion and studied the system by means of path-following
techniques. This paper will divide the trajectory of the capsule
system in the same way, but consider general periodic motions
by studying all possible switching routes in the system.

The rest of this paper is organised as follows. Section 2 studies
the modelling of the vibro-impact capsule system. According to
the non-smoothness of the system, the 3D map is constructed
in Section 3. In Section 4, case studies are provided, and the
influence of the amplitude of excitation on the dynamics of the
capsule system is investigated. Finally, conclusions are drawn in
Section 5.

2. Modelling of the capsule system

The two degrees-of-freedom capsule system shown in Fig. 1(b)
is considered in this work, where an inner mass Mm is con-
nected to a rigid capsule Mc via a spring with stiffness k1 and
a damper with damping coefficient c. The inner mass is driven
by a harmonic force Pd cos(Ωt), where Pd, Ω and t represent the
amplitude, frequency and time of the excitation, respectively. A
secondary spring with stiffness k2 is attached to the capsule and
the gap between the inner mass and the secondary spring is G.
Xc and Vc represent the displacement and velocity of the capsule,
whilst Xm and Vm represent the displacement and velocity of
the inner mass, respectively. In this study, Coulomb friction is
used to calculate the frictional force between the capsule and the
supporting surface,{
Ff ∈ [−Pf , Pf ], Vc = 0,
Ff = −sign(Vc)Pf , Vc ̸= 0, (1)

where Pf = µ(Mm+Mc)g , µ is the friction coefficient between the
capsule and the supporting surface, and g is the acceleration due
to gravity. As the detailed modelling of the capsule system can be
found from [8], we will study the modelling briefly as below.

When the relative displacement between the inner mass and
the capsule is smaller than their gap, Xm− Xc < G, the secondary
spring is not contacted, and hence the motion of the inner mass
is governed by

MmẌm = Pd cos(Ωt)− k1(Xm − Xc)− c(Ẋm − Ẋc). (2)

The dry friction between the capsule and the supporting surface
may lead the capsule to move in stick–slip motion. The capsule is
kept still with Ẍc = 0, Ẋc = 0 when |k1(Xm − Xc)+ c(Ẋm − Ẋc)| ≤
Pf . In this situation, the friction force can be determined by the
interaction force between the inner mass and the capsule as Ff =
−k1(Xm−Xc)− c(Ẋm− Ẋc). Also, the capsule can drift (slip) when
|k1(Xm − Xc)+ c(Ẋm − Ẋc)| > Pf . So, the motion of the capsule
can be expressed as

Mc Ẍc = Ff + k1(Xm − Xc)+ c(Ẋm − Ẋc), (3)

where the friction force is determined by Ff = −sign(Vc)Pf .
When the relative displacement is equal to or larger than the

gap, Xm − Xc ≥ G, the secondary spring is in contact, and the
motion of the inner mass can be written as

MmẌm = Pd cos(Ωt)−k1(Xm−Xc)−c(Ẋm−Ẋc)−k2(Xm−Xc−G). (4)

When |k1(Xm − Xc)+ c(Ẋm − Ẋc)| ≤ Pf , the capsule is kept still
with Ẍc = 0, Ẋc = 0, and the friction force can be determined
by Ff = −k1(Xm − Xc) − c(Ẋm − Ẋc) − k2(Xm − Xc − G). When
|k1(Xm − Xc)+ c(Ẋm − Ẋc)+ k2(Xm − Xc − G)| > Pf , the capsule
may drift forward or backward, governed by

Mc Ẍc = Ff + k1(Xm − Xc)+ c(Ẋm − Ẋc)+ k2(Xm − Xc − G), (5)

where the friction force is determined by Ff = −sign(Vc)Pf .
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Here, for simplicity, we introduce the following non-dimensi
onal system parameters,

τ = Ω0t, ω =
Ω

Ω0
, α =

Pd
Pf

, ζ =
c

2MmΩ0
, δ =

k1
Pf

G, β =
k1
k2

,

γ =
Mc

Mm
, fb =

max(|Ff |)
Pf

,

to represent the non-dimensional time, excitation frequency and
amplitude, damping ratio, gap, stiffness ratio, mass ratio, and
friction, respectively, where Ω0 =

√
k1
Mm

is the natural frequency
of the capsule system. In this study, dry friction is considered,
so fb = 1. The non-dimensional variables of the system can be
written as

xc =
k1
Pf

Xc, vc =
dxc
dτ
=

k1
Ω0Pf

Xc, v̇c =
dvc

dτ
=

k1
Ω2

0Pf
Ẍc,

xm =
k1
Pf

Xm, vm =
dxm
dτ
=

k1
Ω0Pf

Xm,

v̇m =
dvm

dτ
=

k1
Ω2

0Pf
Ẍm, xr = xm − xc, vr = vm − vc,

which are the non-dimensional capsule’s displacement, velocity
and acceleration, inner mass’s displacement, velocity and accel-
eration, the relative displacement and velocity between the inner
mass and the capsule, respectively.

Therefore, the equations of motion for the capsule system can
be rewritten in a compact form as follows (cf. [8])⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋm = vm,

v̇m = α cos(ωτ )− xr − 2ζvr − H3β(xr − δ),
ẋc = vc,

v̇c = (H1(1− H3)+ H2H3) (−sign(vc)fb + xr + 2ζvr
+ H3β(xr − δ)) /γ ,

(6)

with H1 := H(|xr + 2ζvr |− fb), H2 := H(|xr + 2ζvr + β(xr − δ)|−
fb), H3 := H(xr − δ), where H(·) stands for the Heaviside step
function.

We define the state space of the capsule system as x :=
(xr , vr , vc) and introduce four auxiliary functions,⎧⎪⎨⎪⎩
P1(x) := vc,

P2(x) := xr ,
P3(x) := xr + 2ζvr ,

P4(x) := xr + 2ζvr + β(xr − δ).

As the capsule system moves in a vibro-impact stick–slip manner,
P1(x) = 0 represents the non-smooth plane induced by dry
friction, and P2(x) = δ represents the non-smooth plane induced
by impacts. On the non-smooth plane of P1(x) = 0, P3(x) = ±fb
and P4(x) = ±fb are the boundaries of slip regions.

Next, we divide the trajectories of the piecewise-linear model
Eq. (6) by introducing the following six segments.

No contact-forward drift (NC-FD). For x ∈ Ω1 := {x| P1(x) > 0,
P2(x) ≤ δ} ∪ {x| P1(x) = 0, P2(x) ≤ δ, P3(x) > fb}, the equations of
motion can be rewritten as

ẋ = F1(x, τ ) := (vr ,−
γ + 1

γ
P3(x)+

fb
γ
+αcos(ωτ ),

P3(x)− fb
γ

). (7)

No contact-stick (NC-S). For x ∈ Ω2 := {x| P1(x) = 0, P2(x) ≤
δ, |P3(x)| ≤ fb}, the capsule system is governed by

ẋ = F2(x, τ ) := (vr ,−P3(x)+ αcos(ωτ ), 0). (8)

No contact-backward drift (NC-BD). For x ∈ Ω3 := {x| P1(x) <

0, P2(x) ≤ δ}∪{x| P1(x) = 0, P2(x) ≤ δ, P3(x) < −fb}, the equations
of motion can be written as

ẋ = F3(x, τ ) := (vr ,−
γ + 1

γ
P3(x)−

fb
γ
+αcos(ωτ ),

P3(x)+ fb
γ

). (9)

Contact-forward drift (C-FD). For x ∈ Ω4 := {x| P1(x) > 0, P2(x)
≥ δ} ∪ {x| P1(x) = 0, P2(x) ≥ δ, P4(x) > fb}, the capsule system is
governed by

ẋ = F4(x, τ ) := (vr ,−
(γ + 1)

γ
P4(x)+

fb
γ
+ αcos(ωτ ),

P4(x)− fb
γ

).

(10)

Contact-stick (C-S). For x ∈ Ω5 := {x| P1(x) = 0, P2(x) ≥
δ, |P3(x)| ≤ fb}, the equations of motion of the capsule system
can be written as

ẋ = F5(x, τ ) := (vr ,−P4(x)+ αcos(ωτ ), 0). (11)

Contact-backward drift (C-BD). For x ∈ Ω6 := {x| P1(x) < 0,
P2(x) ≥ δ} ∪ {x| P1(x) = 0, P2(x) ≥ δ, P4(x) < −fb}, the equations
of motion can be written as

ẋ = F6(x, τ ) := (vr ,−
(γ + 1)

γ
P4(x)−

fb
γ
+ αcos(ωτ ),

P4(x)+ fb
γ

).

(12)

3. Switching mechanisms and 3D map

3.1. Definitions of boundary surfaces and lines

According to the non-smooth conditions of the capsule system,
the boundary surfaces can be defined as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1 := {x| P1(x) = 0, P2(x) < δ, P3(x) > fb},
S2 := {x| P1(x) = 0, P2(x) < δ, |P3(x)| < fb},
S3 := {x| P1(x) = 0, P2(x) < δ, P3(x) < −fb},
S4 := {x| P1(x) = 0, P2(x) > δ, P4(x) > fb},
S5 := {x| P1(x) = 0, P2(x) > δ, |P4(x)| < fb},
S6 := {x| P1(x) = 0, P2(x) > δ, P4(x) < −fb},
S7 := {x| P1(x) > 0, P2(x) = δ, vr > 0},
S8 := {x| P1(x) > 0, P2(x) = δ, vr < 0},
S9 := {x| P1(x) < 0, P2(x) = δ, vr > 0},
S10 := {x| P1(x) < 0, P2(x) = δ, vr < 0}.

(13)

It is worth noting that, the surfaces, Si, where i = 1, 2, . . . , 6, are
on the plane P1(x) = 0 to represent the non-smoothness induced
by dry friction. Stick motion of the capsule occurs on the surfaces,
S2 and S5. The surfaces, Si, where i = 7, 8, . . . , 10, are on the plane
P2(x) = δ to denote the non-smoothness induced by visco-elastic
impacts. For example, the trajectory of the capsule system enters
impact surface through S7 or S9, and leaves the surface from S8
or S10.

Among these boundary surfaces, we introduce the following
boundary lines to describe different bifurcation events.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1 := {x| P1(x) = 0, P2(x) < δ, P3(x) = fb},
L2 := {x| P1(x) = 0, P2(x) ≤ δ, P3(x) = −fb},
L3 := {x| P1(x) = 0, P2(x) ≥ δ, P4(x) = fb},
L4 := {x| P1(x) = 0, P2(x) > δ, P4(x) = −fb},
L5 := {x| P1(x) = 0, P2(x) = δ, vr > − δ

2ζ +
fb
2ζ },

L6 := {x| P1(x) = 0, P2(x) = δ, 0 < vr < − δ
2ζ +

fb
2ζ },

L7 := {x| P1(x) = 0, P2(x) = δ,− δ
2ζ −

fb
2ζ < vr < 0},

L8 := {x| P1(x) = 0, P2(x) = δ, vr < − δ
2ζ −

fb
2ζ },

L9 := {x| P2(x) = δ, vr = 0}.

(14)

According to the vector functions, Fn, the subspaces, Ωn, where
n = 1, 2, . . . , 6, are divided by the non-smooth boundary sur-
faces, Si=1,2,...,10, and lines, Lj=1,2,...,9, which are visualised in Fig. 2.
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Fig. 2. (a) Subspaces, Ωn=1,2,...,6 , non-smooth boundary surfaces, Si=1,2,...,10 , and lines, Lj=1,2,...,9 , in 3D state space. Top view of the 3D state space (i.e., the plane
P1(x) = 0) for (b) δ < fb , (c) δ = fb and (d) δ > fb . The subspaces can be described as Ω1 := {x| P1(x) > 0, P2(x) ≤ δ} ∪ S1 , Ω2 := S2 ∪ L1 ∪ L2 ∪ L7 ,
Ω3 := {x| P1(x) < 0, P2(x) ≤ δ} ∪ S3 ∪ L8 , Ω4 := {x| P1(x) > 0, P2(x) ≥ δ} ∪ S4 ∪ L5 , Ω5 := S5 ∪ L3 ∪ L4 ∪ L6 , and Ω6 := {x| P1(x) < 0, P2(x) ≥ δ} ∪ S6 .

So, the subspaces can be expressed as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ω1 := {x| P1(x) > 0, P2(x) ≤ δ} ∪ S1,
Ω2 := S2 ∪ L1 ∪ L2 ∪ L7,
Ω3 := {x| P1(x) < 0, P2(x) ≤ δ} ∪ S3 ∪ L8,
Ω4 := {x| P1(x) > 0, P2(x) ≥ δ} ∪ S4 ∪ L5,
Ω5 := S5 ∪ L3 ∪ L4 ∪ L6,
Ω6 := {x| P1(x) < 0, P2(x) ≥ δ} ∪ S6.

(15)

As shown in Fig. 2(b), the intersection of L1, L3, L5 and L6 is
O1 := (δ, fb−δ

2ζ , 0), and the intersection of L2, L4, L7 and L8 is
O2 := (δ,− fb+δ

2ζ , 0), where we define O1 ∈ L3 and O2 ∈ L2
for convenience. Since fb ≥ 0, there are three scenarios for the
location of O1, i.e., in the top-right quarter, on the axis of x+r , and
in the bottom-right quarter of the plane P1(x) = 0 for δ < fb, δ =
fb, and δ > fb, respectively. When δ < fb, if x(0) = (0, 0, 0), the
capsule starts from stick motion and might have drift and impact
afterwards. It is noted that L1, L2, L3 and L4 are the boundary
lines separating stick and drifting motions. When a trajectory
hits any of these lines, sliding bifurcation may occur. L5, L6, L7
and L8 are the intersection lines of the non-smooth boundary
planes P1(x) = 0 and P2(x) = δ. When a trajectory hits any of
these lines, boundary-intersection crossing bifurcation may occur.
Furthermore, we assume that L9 is smooth for all vector functions,
Fn=1,2,...,6(x, τ ), so L9 is not considered as a non-smooth boundary
in this study. For δ = fb and δ > fb, top views of the 3D
state space in Fig. 2(a) are presented in Fig. 2(c) and (d). When
δ = fb, O1 := (δ, 0, 0) and if x(0) = (0, 0, 0), the capsule will
start from stick motion and must have forward drift before any
impact occurs. For δ > fb, if x(0) = (0, 0, 0), the capsule will start
from forward drift and impact might occur afterwards. It should
be noted that, for these two scenarios, δ = fb and δ > fb, the
boundary line L6 (for contact-stick motion) doest not exist. For the
location of O2, since −

fb+δ

2ζ < 0, it is always in the bottom-right

quarter of the plane P1(x) = 0. In the following subsections, we
will use the scenario, δ < fb, as an example to study the switching
mechanisms in the 3D map.

3.2. Switching mechanisms on boundary surfaces

Let us define the two sides of the surface Si as S+i and S−i .
For i = 1, 2, . . . , 6, S+i represents the upper half plane of Si at
where P1(x) → 0+, and S−i represents its lower half plane for
which P1(x) → 0−. The normals of S+i and S−i can be written
as ∇P+1 (x) = (0, 0, 1) and ∇P−1 (x) = (0, 0,−1), respectively.
For i = 7, 8, 9, 10, S+i represents the right half plane of Si at
where P2(x)→ δ+, and S−i represents its left half plane for which
P2(x) → δ−, so ∇P+2 (x) = (1, 0, 0) and ∇P−2 (x) = (−1, 0, 0).
Typical examples for the trajectories crossing S1, S5 and S7 are
illustrated in Fig. 3.

As shown in Fig. 3(a), a typical trajectory passes through the
boundary surface S1 via x−1 and x+1 . According to the definition
of S1, P3(x−1 ) > fb and P3(x+1 ) > fb. The surface normal for S−1
is denoted as ∇P−1 (x), and the trajectory vector is F3(x, τ ). The
surface normal for S+1 is denoted as ∇P+1 (x), and the trajectory
vector is F1(x, τ ). So, the approaching direction of this trajectory
at x−1 can be determined by the sign of

⟨
∇P−1 (x), F3(x, τ )

⟩
, given as

⟨
∇P−1 (x), F3(x, τ )

⟩⏐⏐
x=x−1
= −

P3(x)+ fb
γ

⏐⏐⏐⏐
x=x−1

< 0, (16)

where the negative sign indicates that S−1 is an attracting sur-
face. The approaching direction of the trajectory at x+1 can be
determined by the sign of

⟨
∇P+1 (x), F1(x, τ )

⟩
, given as⟨

∇P+1 (x), F1(x, τ )
⟩⏐⏐
x=x+1
=

P3(x)− fb
γ

⏐⏐⏐⏐
x=x+1

> 0, (17)
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Fig. 3. Examples of the switching mechanisms for the trajectories crossing (a) S1 , (b) S5 , and (c) S7 . Bold black curves represent system trajectories and the arrows
tangent to trajectories represent the corresponding vector functions. The arrows perpendicular to surfaces represent the normals of the corresponding surfaces.
The switching mechanisms for the system trajectory on these non-smooth surfaces are determined by the sign of the inner product of the surface normal and
the trajectory vector function. Positive and negative inner products indicate a repelling and an attracting trajectories, respectively, and zero inner product indicates
trajectory grazing at boundary surface.

where the positive sign indicates that S+1 is a repelling surface.
Therefore, the switching mechanism on the boundary surface S1
is to attract the trajectory from Ω3 and repel it to Ω1. Similar
switching mechanisms can be found on the boundary surfaces,
S3, S4 and S6, which are summarised in Table 1.

The second example of the switching mechanism is shown in
Fig. 3(b), where a trajectory passes through the boundary surface
S5 by intersecting S+5 and S−5 at x+5 and x−5 , respectively. According
to the definition of S5 in Eq. (13), we can obtain |P4(x+5 )| < fb and
|P4(x−5 )| < fb. Therefore,⟨
∇P+1 (x), F4(x, τ )

⟩⏐⏐
x=x+5
=

P4(x)− fb
γ

⏐⏐⏐⏐
x=x+5

< 0, (18)

where ∇P+1 (x) is the surface normal of S+5 , F4(x, τ ) is the trajec-
tory vector of x+5 , and⟨
∇P−1 (x), F6(x, τ )

⟩⏐⏐
x=x−5
= −

P4(x)+ fb
γ

⏐⏐⏐⏐
x=x−5

< 0, (19)

where ∇P−1 (x) is the surface normal of S−5 , and F6(x, τ ) is the
trajectory vector of x−5 . According to Eqs. (18) and (19), both S+5
and S−5 are attracting surfaces, so S5 attracts trajectory from both
sides of the boundary surface. The switching mechanism on S5
is to attract trajectory from Ω4 and Ω6 and repel it to Ω5. The
boundary surface S2 has similar switching mechanism, and its
switching route is given in Table 1.

For the boundary surface S7 shown in Fig. 3(c), a trajectory
intersects S−7 and S+7 at x−7 and x+7 , respectively. We can obtain⟨
∇P−2 (x), F1(x, τ )

⟩⏐⏐
x=x−7
= −vr < 0, (20)

where ∇P−2 (x) is the surface normal of S−7 , F1(x, τ ) is the trajec-
tory vector of x−7 , and⟨
∇P+2 (x), F4(x, τ )

⟩⏐⏐
x=x+7
= vr > 0, (21)

where ∇P+2 (x) is the surface normal of S+7 , and F4(x, τ ) is the
trajectory vector of x+7 . According to Eqs. (20) and (21), S−7 is an
attracting surface, and S+7 is a repelling surface. Therefore, the
switching mechanism on S7 is to attract trajectory from Ω1 and
repel it to Ω4. Similarly, the switching mechanisms on S8, S9 and
S10, which are summarised in Table 1, can be determined.

3.3. Switching mechanisms on boundary lines

When system trajectory hits boundary lines on the plane
P1(x) = 0, four types of sliding bifurcations, including adding–
sliding, crossing–sliding, grazing–sliding and switching–sliding
bifurcations, may occur, which are depicted in Fig. 4. As can be

seen from Fig. 4(a), ∇P+3 (x) = (1, 2ζ , 0) is the normal of L1
pointing from S2 to S1, ∇P−3 (x) = (−1,−2ζ , 0) is the normal of
L2 pointing from S2 to S3, ∇P+4 (x) = (1 + β, 2ζ , 0) is the normal
of L3 pointing from S5 to S4, and ∇P−4 (x) = (−1 − β,−2ζ , 0) is
the normal of L4 pointing from S5 to S6. The vector of the point
x1 on L1 is given by F2(x, τ ), so⟨
∇P+3 (x), F2(x, τ )

⟩⏐⏐
x=x1
= vr − 2ζ fb + 2ζαcos(ωτ ). (22)

For α ∈ (0, fb−δ

4ζ2 − fb),
⟨
∇P+3 (x), F2(x, τ )

⟩⏐⏐
x=x1

> 0, so L1 attracts
trajectories from S2 and then repels them to S1. The section view
of L1 is shown in Fig. 4(b), where a trajectory hits L1 (black dot)
from Ω1, and a grazing–sliding bifurcation occurs. If a trajectory
hits L1 from Ω3, a crossing–sliding bifurcation will occur. There-
fore, the switching mechanism on L1 is to attract trajectories from
Ω1, Ω2 and Ω3, and repel them to Ω1. Similarly, the switching
mechanism on L4 is to attract trajectories from Ω4, Ω5 and Ω6,
and repel them to Ω4 for α ∈ (0, (1+β)(fb+δ)

4ζ2 − fb). In this example,
we assume α ∈ (0, fb−δ

4ζ2 − fb) ∩ (0, (1+β)(fb+δ)
4ζ2 − fb), to ensure that

the switching directions on L1 and L4 are unitary. For detailed
derivations of these boundaries, one can refer to Appendix A.

For the point x2 on the line L2, its vector is given by F2(x, τ ),
where⟨
∇P−3 (x), F2(x, τ )

⟩⏐⏐
x=x2
= −vr + 2ζ fb + 2ζαcos(ωτ ). (23)

Based on the amplitude of excitation α, L2 can be divided into
3 segments as L(1)2 for vr ∈ [−

fb−δ

2ζ , 2ζ fb − 2ζα), L(2)2 for vr ∈

[2ζ fb − 2ζα, 2ζ fb + 2ζα], and L(3)2 for vr ∈ (2ζ fb + 2ζα,+∞),
which has been detailed in Appendix B. For L(1)2 , we have

⟨
∇P−3 (x),

F2(x, τ )
⟩⏐⏐
x=x2

< 0 and system trajectories are driven out of S2.
So, the switching mechanism on L(1)2 is similar to that on L1,
attracting trajectories from Ω1, Ω2 and Ω3, and then repelling
them to Ω3. For L(2)2 , the sign of

⟨
∇P−3 (x), F2(x, τ )

⟩⏐⏐
x=x2

depends
on time significantly, and consequently, adding–sliding, crossing–
sliding, grazing–sliding and switching–sliding bifurcations may
occur on this boundary line. The switching mechanism on L(2)2 is
to attract trajectories from Ω1, Ω2 and Ω3, and then repel them
to Ω2 or Ω3. For L(3)2 , we have

⟨
∇P−3 (x), F2(x, τ )

⟩⏐⏐
x=x2

> 0, and
system trajectories will approach to S2. As shown in Fig. 4(c),
when a trajectory hits L(3)2 from Ω1, switching–sliding bifurcation
will occur. Therefore, the switching mechanism on L(3)2 is to attract
trajectories from Ω1 and Ω3, and then repel them to Ω2.

Similarly, for a given amplitude of excitation α, L3 can be
divided into three segments as L(1)3 for vr ∈ (−∞,

2ζ (fb−α)
1+β

), L(2)3 for
vr ∈ [

2ζ (fb−α)
1+β

,
2ζ (fb+α)

1+β
], and L(3)3 for vr ∈ ( 2ζ (fb+α)

1+β
,

fb−δ

2ζ ], which has
been detailed in Appendix B. As a whole, the switching mecha-
nism on L3 is to attract trajectories from Ω4, Ω5 and Ω6, and then
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Table 1
Switching mechanisms on the non-smooth boundary surfaces.
Surface Source space Target space Source vector Target vector Operation mode

S1 Ω3 Ω1 F3(x, τ ) F1(x, τ ) NC-BD → NC-FD

S2
Ω1 Ω2 F1(x, τ ) F2(x, τ ) NC-FD → NC-S
Ω3 Ω2 F3(x, τ ) F2(x, τ ) NC-BD → NC-S

S3 Ω1 Ω3 F1(x, τ ) F3(x, τ ) NC-FD → NC-BD

S4 Ω6 Ω4 F6(x, τ ) F4(x, τ ) C-BD → C-FD

S5
Ω4 Ω5 F4(x, τ ) F5(x, τ ) C-FD → C-S
Ω6 Ω5 F6(x, τ ) F5(x, τ ) C-BD → C-S

S6 Ω4 Ω6 F4(x, τ ) F6(x, τ ) C-FD → C-BD

S7 Ω1 Ω4 F1(x, τ ) F4(x, τ ) NC-FD → C-FD

S8 Ω4 Ω1 F4(x, τ ) F1(x, τ ) C-FD → NC-FD

S9 Ω3 Ω6 F3(x, τ ) F6(x, τ ) NC-BD → C-BD

S10 Ω6 Ω3 F6(x, τ ) F3(x, τ ) C-BD → NC-BD

Fig. 4. (a) Switching mechanisms on boundary lines Lj=1,2,3,4 , (b) section view of L1 , and (c) section view of L(3)2 . Bold curves (grey and black) with arrows denote
system trajectories, and the black ones represent the trajectories when bifurcations occur. The black arrows tangent to the trajectories denote their corresponding
vector fields, and the black arrows perpendicular to Lj=1,2,3,4 represent the normals of the corresponding boundary lines.

repel them to Ω4 or Ω5. So, switching–sliding bifurcations can
occur on L(1)3 , all the four types of sliding bifurcations can happen
on L(2)3 , and crossing–sliding and grazing–sliding bifurcations may
exist on L(3)3 .

The switching mechanisms and possible bifurcations on the
boundary lines Lj=5,6,7,8 are shown in Fig. 5, where section view
of each boundary line is presented in Fig. 5(b)–(e). As can be seen
from Fig. 5(b), the boundary line L5 degenerates to a point at
where the boundary-intersection crossing bifurcation will occur
when system trajectory hits L5. The switching mechanism for L5
is to attract trajectories from Ω3 and then repel them to Ω4.
Similarly, as shown in Fig. 5(e), the passage of L8 indicates the
occurrence of a boundary-intersection crossing bifurcation from
Ω4 to Ω3. As can be seen from Fig. 5(c), when trajectories hit
L6 from Ω1 and Ω3, boundary-intersection crossing bifurcations
will occur, and both trajectories enter S5. Therefore, the switching
mechanism on L6 is to attract trajectories from Ω1, Ω2 and Ω3,
and then repel them to Ω5. Opposite to L6, as shown in Fig. 5(d),
the switching mechanism on L7 is to attract trajectories from Ω4,
Ω5 and Ω6, and then repel them to Ω2.

Finally, the switching mechanisms on Lj=1,2,...,8 are summarised
in Table 2. It is worth noting that the boundary line L9 satisfies
the condition of grazing bifurcations. However, we have defined

the vector functions Fn=1,2,...,6 are smooth on L9. It is therefore
that L9 will not be considered as a non-smooth boundary in this
study.

3.4. 3D map

Based on the switching mechanisms on the boundary surfaces
and lines, we can define the following switching planes for the
3D map.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Σ1 := S1,
Σ2 := S2 ∪ L1 ∪ L2 ∪ L7,
Σ3 := S3 ∪ L8,
Σ4 := S4 ∪ L5,
Σ5 := S5 ∪ L3 ∪ L4 ∪ L6,
Σ6 := S6,
Σ7 := S7,
Σ8 := S8,
Σ9 := S9,
Σ10 := S10.

(24)

According to these switching planes, local mapping, P : Σk → Σi
given by Fn(x, τ ), can be written as PΣi,Fn,Σk , where Σi=1,2,...,10,
Fn=1,2,...,6 and Σk=1,2,...,10 represent the target switching plane, the
vector function, and the source switching plane, respectively. In
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Fig. 5. (a) Switching mechanisms on boundary lines Lj=5,6,7,8 , and (b)–(e) section views of Lj=5,6,7,8 . Bold curves (grey and black) with arrows denote system
trajectories, and the black ones represent the trajectories when bifurcations occur.

Table 2
Switching mechanisms on the non-smooth boundary lines.
Lines Source spaces Target spaces Source vectors Target vectors Operation mode

L1
Ω1 Ω1 F1(x, τ ) F1(x, τ ) NC-FD → NC-FD
Ω2 Ω1 F2(x, τ ) F1(x, τ ) NC-S → NC-FD
Ω3 Ω1 F3(x, τ ) F1(x, τ ) NC-BD → NC-FD

L2

Ω1 Ω2 F1(x, τ ) F2(x, τ ) NC-FD → NC-S
Ω2 Ω2 F2(x, τ ) F2(x, τ ) NC-S → NC-S
Ω3 Ω2 F3(x, τ ) F2(x, τ ) NC-BD → NC-S
Ω1 Ω3 F1(x, τ ) F3(x, τ ) NC-FD → NC-BD
Ω2 Ω3 F2(x, τ ) F3(x, τ ) NC-S → NC-BD
Ω3 Ω3 F3(x, τ ) F3(x, τ ) NC-BD → NC-BD

L3

Ω4 Ω4 F4(x, τ ) F4(x, τ ) C-FD → C-FD
Ω5 Ω4 F5(x, τ ) F4(x, τ ) C-S → C-FD
Ω6 Ω4 F6(x, τ ) F4(x, τ ) C-BD → C-FD
Ω4 Ω5 F4(x, τ ) F5(x, τ ) C-FD → C-S
Ω5 Ω5 F5(x, τ ) F5(x, τ ) C-S → C-S
Ω6 Ω5 F6(x, τ ) F5(x, τ ) C-BD → C-S

L4
Ω4 Ω4 F4(x, τ ) F4(x, τ ) C-FD → C-FD
Ω5 Ω4 F5(x, τ ) F4(x, τ ) C-S → C-FD
Ω6 Ω4 F6(x, τ ) F4(x, τ ) C-BD → C-FD

L5 Ω3 Ω4 F3(x, τ ) F4(x, τ ) NC-BD → C-FD

L6
Ω1 Ω5 F1(x, τ ) F5(x, τ ) NC-FD → C-S
Ω2 Ω5 F2(x, τ ) F5(x, τ ) NC-S → C-S
Ω3 Ω5 F3(x, τ ) F5(x, τ ) NC-BD → C-S

L7
Ω4 Ω2 F4(x, τ ) F2(x, τ ) C-FD → NC-S
Ω5 Ω2 F5(x, τ ) F2(x, τ ) C-S → NC-S
Ω6 Ω2 F6(x, τ ) F2(x, τ ) C-BD → NC-S

L8 Ω4 Ω3 F4(x, τ ) F3(x, τ ) C-FD → NC-BD

summary, all possible 3D local mappings for the capsule system
are given in Table 3.

4. Numerical studies

Numerical studies by varying the amplitude of excitation are
given in this section to show how the proposed 3D map can be
used to describe and explain the dynamics of the capsule system
with a focus on its switching mechanisms on the non-smooth
boundaries. The overall influence of α on the dynamics of the
capsule system is presented in Fig. 6, calculated for ω = 0.8,
δ = 0.02, ζ = 0.05, β = 1.5 and γ = 3.3. As α increases from
0 to 2, grazing, adding–sliding, boundary-intersection crossing,
crossing–sliding, switching–sliding and grazing–sliding bifurca-
tions can be observed.

Based on various bifurcations encountered when the ampli-
tude of excitation increases, dynamics of the capsule system is

considered from the following regimes. For each typical trajec-
tory, the displacements of the inner mass and the capsule are
shown in Fig. 7, together with its phase portrait, to explain
how the orbit switches from one non-smooth boundary to an-
other. The dynamics of the capsule system for each regime is
summarised as follows.

• α ∈ (0, 0.0074]: As shown in Fig. 7(a), the global mapping
of the capsule system can be represented by an identity
mapping, P = IdΣ2,F2,Σ2 , which is dominated by F2(x, τ ),
and the capsule is kept stationary without any impact. For
α = 0.0074, a grazing bifurcation is encountered, and the
system trajectory passes L9 tangentially. Further increase of
α will lead to the occurrence of impacts.
• α ∈ (0.0074, 0.3687]: As shown in Fig. 7(b), the global map-

ping can be written as P = PΣ5,F2,Σ2 ◦ PΣ2,F5,Σ5 . The capsule
is kept stationary with one impact per period of excitation.
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Table 3
All 3D local mappings for the capsule system.
Mapping Operation Vector Mapping Operation Vector

PΣ2,F1,Σ1 Σ2
F1
←− Σ1 NC-FD PΣ2,F1,Σ8 Σ2

F1
←− Σ8 NC-FD

PΣ3,F1,Σ1 Σ3
F1
←− Σ1 NC-FD PΣ3,F1,Σ8 Σ3

F1
←− Σ8 NC-FD

PΣ5,F1,Σ1 Σ5
F1
←− Σ1 NC-FD PΣ5,F1,Σ8 Σ5

F1
←− Σ8 NC-FD

PΣ7,F1,Σ1 Σ7
F1
←− Σ1 NC-FD PΣ7,F1,Σ8 Σ7

F1
←− Σ8 NC-FD

PΣ1,F2,Σ2 Σ1
F2
←− Σ2 NC-S PΣ2,F5,Σ5 Σ2

F5
←− Σ5 C-S

PΣ3,F2,Σ2 Σ3
F2
←− Σ2 NC-S PΣ4,F5,Σ5 Σ4

F5
←− Σ5 C-S

PΣ5,F2,Σ2 Σ5
F2
←− Σ2 NC-S PΣ6,F5,Σ5 Σ6

F5
←− Σ5 C-S

PΣ1,F3,Σ3 Σ1
F3
←− Σ3 NC-BD PΣ1,F3,Σ10 Σ1

F3
←− Σ10 NC-BD

PΣ2,F3,Σ3 Σ2
F3
←− Σ3 NC-BD PΣ2,F3,Σ10 Σ2

F3
←− Σ10 NC-BD

PΣ4,F3,Σ3 Σ4
F3
←− Σ3 NC-BD PΣ4,F3,Σ10 Σ4

F3
←− Σ10 NC-BD

PΣ5,F3,Σ3 Σ5
F3
←− Σ3 NC-BD PΣ5,F3,Σ10 Σ5

F3
←− Σ10 NC-BD

PΣ9,F3,Σ3 Σ9
F3
←− Σ3 NC-BD PΣ9,F3,Σ10 Σ9

F3
←− Σ10 NC-BD

PΣ2,F4,Σ4 Σ2
F4
←− Σ4 C-FD PΣ2,F4,Σ7 Σ2

F4
←− Σ7 C-FD

PΣ3,F4,Σ4 Σ3
F4
←− Σ4 C-FD PΣ3,F4,Σ7 Σ3

F4
←− Σ7 C-FD

PΣ5,F4,Σ4 Σ5
F4
←− Σ4 C-FD PΣ5,F4,Σ7 Σ5

F4
←− Σ7 C-FD

PΣ6,F4,Σ4 Σ6
F4
←− Σ4 C-FD PΣ6,F4,Σ7 Σ6

F4
←− Σ7 C-FD

PΣ8,F4,Σ4 Σ8
F4
←− Σ4 C-FD PΣ8,F4,Σ7 Σ8

F4
←− Σ7 C-FD

PΣ2,F6,Σ6 Σ2
F6
←− Σ6 C-BD PΣ2,F6,Σ9 Σ2

F6
←− Σ9 C-BD

PΣ4,F6,Σ6 Σ4
F6
←− Σ6 C-BD PΣ4,F6,Σ9 Σ4

F6
←− Σ9 C-BD

PΣ5,F6,Σ6 Σ5
F6
←− Σ6 C-BD PΣ5,F6,Σ9 Σ5

F6
←− Σ9 C-BD

PΣ10,F6,Σ6 Σ10
F6
←− Σ6 C-BD PΣ10,F6,Σ9 Σ10

F6
←− Σ9 C-BD

Fig. 6. Evolution of phase trajectories of the capsule system in the state space
(xr , vr ) under variation of the amplitude of excitation α ∈ [0, 2]. As α in-
creases, grazing, adding–sliding, boundary-intersection crossing, crossing–sliding,
switching–sliding and grazing–sliding bifurcations are observed. Simulation con-
ditions are ω = 0.8, δ = 0.02, ζ = 0.05, β = 1.5, and γ = 3.3 by using initial
state (xr , vr , vc ) = (0, 0, 0). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

When α = 0.3687, as shown in Fig. 6(c), an adding–sliding

bifurcation occurs, and the trajectory (the black segment)
passes L(2)3 tangentially. As α further increases, the capsule

will move forward.

• α ∈ (0.3687, 0.5245): As shown in Fig. 7(d), the global
mapping of the capsule system can be represented by P =
PΣ5,F2,Σ2 ◦ PΣ2,F5,Σ5 ◦ PΣ5,F4,Σ4 ◦ PΣ4,F5,Σ5 , where the local
mapping PΣ5,F4,Σ4 indicates a forward drift of the capsule.
• α = 0.5245: A boundary-intersection crossing bifurcation

occurs as shown in Fig. 7(e), when the trajectory (the green
segment) hits and passes through L7 from Σ4 to Σ2 directly.
Therefore, the global mapping can be represented as P =
PΣ5,F2,Σ2 ◦ PΣ2,F4,Σ4 ◦ PΣ4,F5,Σ5 . Further increase of α will
make the trajectory leave the impact boundary through S8.
The 3D trajectories for the boundary-intersection crossing
bifurcation around α = 0.5245 are shown in Fig. 8(a) and
(b).
• α ∈ (0.5245, 0.939]: As shown in Fig. 7(f), the global

mapping for this regime can be written as P = PΣ5,F2,Σ2 ◦

PΣ2,F1,Σ8 ◦ PΣ8,F4,Σ4 ◦ PΣ4,F5,Σ5 . For the segments of F4(x, τ )
and F1(x, τ ), the capsule moves forward without and with
impact, respectively. For α = 0.939 as shown in Fig. 7(g), an
adding–sliding bifurcation is encountered, and the trajectory
(the red segment) passes L2 tangentially. As α increases
further, backward motion of the capsule can be observed.
A detailed adding–sliding bifurcation around α = 0.939 can
be found in Fig. 9(a).
• α ∈ (0.939, 1.443): The global mapping for this regime can

be represented as P = PΣ5,F2,Σ2 ◦ PΣ2,F3,Σ3 ◦ PΣ3,F2,Σ2 ◦

PΣ2,F1,Σ8 ◦ PΣ8,F4,Σ4 ◦ PΣ4,F5,Σ5 . As can be seen from the
trajectory shown in Fig. 7(h), the magenta segment for back-
ward drift dominated by F3(x, τ ) is inserted between the red
segments dominated by F2(x, τ ).
• α = 1.443: A boundary-intersection crossing bifurcation

occurs at α = 1.443, when the trajectory (the magenta seg-
ment) hits L6 as shown in Fig. 7(i), at where PΣ5,F3,Σ3 maps
the trajectory from Σ3 into Σ5 directly. A detailed 3D tra-
jectory for this bifurcation around α = 1.443 can be found
from Fig. 8(c) and (d). The global mapping can be given as
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Fig. 7. Displacements of the inner mass (dashed lines) and the capsule (solid lines), and phase portraits of the capsule system for varied amplitude of
excitation, α, calculated for ω = 0.8, δ = 0.02, ζ = 0.05, β = 1.5, and γ = 3.3. The amplitude of excitation for (a)–(p) are α = 0.0074, 0.3, 0.3687, 0.4,
0.5245, 0.7, 0.939, 1.2, 1.443, 1.5, 1.6148, 1.64, 1.661, 1.69, 1.7126, 1.9, respectively. The blue, red, magenta, green, black, and orange lines represent the trajectory
segments dominated by Fn=1,2,...,6 , respectively. On the phase portraits, The grey dashed, black solid and red dashed lines represent the non-smooth boundaries, L2 ,
L6 ∪ L7 and L3 , respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

P = PΣ5,F3,Σ3 ◦ PΣ3,F2,Σ2 ◦ PΣ2,F1,Σ8 ◦ PΣ8,F4,Σ4 ◦ PΣ4,F5,Σ5 .
As the amplitude of excitation increases, the trajectory will
enter the impact boundary through S9.

• α ∈ (1.443, 1.6148]: The global mapping for this regime
can be represented by P = PΣ5,F6,Σ9 ◦ PΣ9,F3,Σ3 ◦ PΣ3,F2,Σ2 ◦

PΣ2,F1,Σ8 ◦ PΣ8,F4,Σ4 ◦ PΣ4,F5,Σ5 . As can be seen from Fig. 7(j),
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the trajectory enters the impact boundary through S9, and
the orange segment of F6(x, τ ) is inserted. For α = 1.6148 as
shown in Fig. 7(k), a crossing–sliding bifurcation is encoun-
tered, and the trajectory approaches to S4 after passing L3
(There is only one point on L3, represented by the black dot
in Fig. 7(k)). Further increase of α will drive the trajectory
from Σ9 to Σ4, and consequently, the sticking segment
governed by F5(x, τ ) will vanish. Detailed 3D trajectories
around α = 1.6148 are shown in Fig. 9(b).
• α ∈ (1.6148, 1.661]: As shown in Fig. 7(l), the global

mapping for this regime is given as P = PΣ9,F3,Σ3 ◦PΣ3,F2,Σ2 ◦

PΣ2,F1,Σ8 ◦ PΣ8,F4,Σ4 ◦ PΣ4,F6,Σ9 . For α = 1.661 shown in
Fig. 7(m), a switching–sliding bifurcation occurs, and the
trajectory (the blue segment) approaches to S2 after passing
L2. If α is further increased, the trajectory will be driven from
S8 to S3 rather than S2. For this switching–sliding bifurcation,
the detailed 3D trajectories around α = 1.661 are shown in
Fig. 9(c).
• α ∈ (1.661, 1.7126]: As illustrated in Fig. 7(n), the global

mapping for this regime can be represented using P =
PΣ9,F3,Σ3 ◦PΣ3,F2,Σ2 ◦PΣ2,F3,Σ3 ◦PΣ3,F1,Σ8 ◦PΣ8,F4,Σ4 ◦PΣ4,F6,Σ9 .
When α = 1.7126 as shown in Fig. 6(o), a grazing–sliding
bifurcation is encountered, and the trajectory passes L2 tan-
gentially (There is only one point on L2, represented by
the red dot in Fig. 7(o)). Further increase in α will lead
to the vanishing of sticking segment governed by F2(x, τ ).
A detailed presentation of this grazing–sliding bifurcation
around α = 1.7126 is shown in Fig. 9(d).
• α ∈ (1.7126, 2]: As shown in Fig. 7(p), the global mapping

for this regime can be represented using P = PΣ9,F3,Σ3 ◦

PΣ3,F1,Σ8 ◦ PΣ8,F4,Σ4 ◦ PΣ4,F6,Σ9 , and there is no sticking
segment found in this mapping.

To depict the boundary-intersection crossing bifurcations aro-
und α = 0.5245 and α = 1.443 in detail, system trajectories
are plotted with the non-smooth boundary lines in 3D space in
Fig. 8. As shown in Fig. 8(a) and (b), the local mapping PΣ2,F4,Σ4
(the green segment) hits L7 at α = 0.5245, which is the intersec-
tion line of S5 and S8. A slight increase (α = 0.6) or decrease
(α = 0.4) in α will lead the trajectories to reach S8 or S5,
respectively. As a consequence, the local and global mappings are
changed, and boundary-intersection crossing bifurcation occurs
around α = 0.5245. As shown in Fig. 8(c)–(d), a boundary-
intersection crossing bifurcation happens around α = 1.443 and
the magenta segment of PΣ5,F3,Σ3 hits L6, which is the intersection
line of S2 and S9. A slight increase (α = 1.5) or decrease (α = 1.4)
in α will lead the trajectories to reach S9 or S2, respectively.
Therefore, boundary-intersection crossing bifurcations can be de-
tected by using the 3D local mappings, among which PΣ2,F4,Σ4
and PΣ5,F3,Σ3 indicate the occurrence of boundary-intersection
crossing bifurcations on L7 and L6, respectively.

The non-smoothness in dry friction induces stick–slip motion
for the capsule system, where sliding regions are bounded by
Lj=1,2,3,4. When orbits hit on these lines, adding–sliding, crossing–
sliding, switching–sliding and grazing–sliding bifurcations may
occur. As shown in Fig. 9, the cases for α = 0.939, 1.6148, 1.661,
and 1.7126 are taken as examples to study each type of sliding
bifurcations, which are described as follows.

• Adding–sliding bifurcation: As shown in Fig. 9(a), an add-
ing–sliding bifurcation occurs around α = 0.939. The sliding
segment PΣ5,F2,Σ2 is tangent to the boundary line L(2)2 , and
any infinitely small increase in α (α = 1.2) will lead to a
backward motion segment represented by F3(x, τ ). Another
adding–sliding bifurcation happens on L(2)3 for α = 0.3687,
as shown in Fig. 6(d), and thereafter, a forward motion
dominated by F4(x, τ ) is added. As discussed in Section 3.3,
the adding–sliding bifurcation can only happen when the
trajectory passes L(2)2 or L(2)3 tangentially.

• Crossing–sliding bifurcation: As shown in Fig. 9(b), a cross-
ing–sliding bifurcation occurs around α = 1.6148, and the
local mapping PΣ5,F6,Σ9 crosses the boundary via L(3)3 . An
infinitely small perturbation in α will change the way that
the trajectory passes the non-smooth boundary of P1(x) = 0.
If the trajectory passes the P1(x) = 0 plane through S5,
sliding segments dominated by F5(x, τ ) may exist in global
mappings. If an orbit reaches S4 directly, sliding segments
dominated by F5(x, τ ) will disappear.
• Switching–sliding bifurcation: As shown in Fig. 9(c), a

switching–sliding bifurcation occurs around α = 1.661, and
the local mapping PΣ2,F1,Σ8 hits the boundary line L(2)2 . An
infinitely small perturbation in α will change the way how
the trajectory approaches into the sliding region of S2. For
α < 1.661, e.g., α = 1.64, the segment PΣ2,F1,Σ8 approaches
to S2 directly. For α > 1.661, e.g., α = 1.69, the segment
PΣ3,F1,Σ8 approaches to S3 first and then reaches S2.
• Grazing–sliding bifurcation: As shown in Fig. 9(d), a graz-

ing–sliding bifurcation occurs around α = 1.7126, and the
local mapping PΣ2,F3,Σ3 grazes the boundary line L(2)2 . The
segment in Σ2 degenerates to the tangent point on L(2)2 and
approaches to S3 immediately. Any infinitely small increase
in α will make the sliding segments dominated by F2(x, τ )
vanish.

5. Conclusions

This paper studied a 3D map for the piecewise-linear capsule
system with bidirectional drifts. The purpose of this study is to
provide a general analytical tool for studying its global and local
dynamics associated with the non-smooth boundaries induced by
dry friction and impact. Based on the analysis of the vector field
in the vicinities of the non-smooth boundary surfaces and lines,
the switching mechanisms on the non-smooth planes were deter-
mined, and all possible local mappings were obtained. By using
the switching mechanisms, it can reveal the relationship between
system trajectory and the non-smooth boundaries, and this could
be used to explain the occurrence of boundary-intersection cross-
ing and sliding bifurcations in the capsule system. Furthermore,
the global map of the capsule system can also be obtained by
constructing relevant local mappings according to the switching
mechanisms studied in this paper.

By investigating various amplitudes of the external excita-
tion, it is found that for a small amplitude (α ≤ 0.3687), the
capsule is kept stationary and the system orbits are constrained
within the sliding regions. Adding–sliding bifurcation may occur
around α = 0.3687 and α = 0.939 when system orbits are
tangent to the sliding boundary lines L(2)3 and L(2)2 , indicating
the occurrence of forward and backward motions, respectively.
Crossing–sliding, switching–sliding, and grazing–sliding bifurca-
tions were observed when system orbits hit the sliding boundary
lines Lj=1,2,3,4, determining the disappearance of sliding segments.
Additionally, boundary-intersection crossing bifurcations occur
when system orbits hit the intersection lines Lj=5,6,7,8, which can
be detected directly by using local mappings.

Our numerical case studies demonstrate the validity of the
proposed switching mechanisms on the non-smooth boundary
lines and surfaces. The results illustrate that the proposed 3D
global and local mappings can be used as an analytical tool to
explain the occurrence of bifurcations and to investigate local and
global properties of the capsule system. Future work on the 3D
map will focus on deriving the analytical solution of the capsule
system in order to optimise its trajectory for enhancing the rate
of progression and power efficiency.
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Fig. 8. (a)–(b) A boundary-intersection crossing bifurcation occurs around α = 0.5245 and its trajectory passes L7 . The green segment PΣ2,F4,Σ4 maps the trajectory
from L(3)3 to L7 directly. For a slightly smaller α (α = 0.4), the trajectory will go out from L(3)3 and enter S5 . For a slightly larger α (α = 0.6), the segment will go out
from L(3)3 and reach S8 . (c)–(d) A boundary-intersection crossing bifurcation occurs around α = 1.443 when the trajectory passes L6 . The magenta segment PΣ5,F3,Σ3

maps the trajectory from L(1)2 to L6 directly. For a slightly smaller α (α = 1.4), the trajectory will go out from L(1)2 and enter S2 . For a slightly larger α (α = 1.5),
the segment will go out from L(1)2 and reach S9 . The blue, red, magenta, green, black, and orange lines represent the trajectory segments dominated by Fn=1,2,...,6 ,
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Appendix A

The switching mechanism on L1 depends on the sign of⟨
∇P+3 (x), F2(x, τ )

⟩⏐⏐
x=x1

, expressed in Eq. (22). Here we assume
that the sign is positive for any point x1 on L1 at any time τ , given
as⟨
∇P+3 (x), F2(x, τ )

⟩⏐⏐
x=x1
= vr − 2ζ fb + 2ζαcos(ωτ ) > 0. (A.1)

Eq. (A.1) can be modified as

αcos(ωτ ) > fb −
vr

2ζ
. (A.2)

As x1 is a point on the line L1, we have vr >
fb−δ

2ζ . To make Eq. (A.1)
valid for any point x1 on L1 at any time τ , one sufficient condition
is

min(αcos(ωτ )) > max(fb −
vr

2ζ
). (A.3)

Therefore, we have

− α > fb −
fb − δ

4ζ 2 . (A.4)

When the amplitude of the driven force α ∈ (0, fb−δ

4ζ2 − fb), the
sign of

⟨
∇P+3 (x), F2(x, τ )

⟩⏐⏐
x=x1

is positive for any point x1 on L1
at any time τ , and hence the switching mechanism on L1 is
uni-directional, pointing from S2 to S1.

Based on the same principle, when the amplitude of the forc-
ing, α ∈ (0, (1+β)(fb+δ)

4ζ2 − fb), the sign of
⟨
∇P−4 (x), F5(x, τ )

⟩⏐⏐
x=x4

is positive for any point x4 on L4 at any time τ , and hence, the
switching mechanism on L4 is uni-directional, pointing from S5
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Fig. 9. (a) An adding–sliding bifurcation occurs around α = 0.939, where the red segment PΣ5,F2,Σ2 is tangent to L(2)2 . A slight increase in α will add a backward
motion segment. For instance, when α = 1.2, it changes the local mapping to PΣ3,F2,Σ2 , and consequently, a backward motion PΣ2,F3,Σ3 (the magenta segment) is
added. (b) A crossing–sliding bifurcation occurs around α = 1.6148, where the orange segment PΣ5,F6,Σ9 hits L(3)3 . A smaller α (α = 1.5) indicates the existence
of sliding motion (the black segment) represented by F5(x, τ ), whilst a larger α (α = 1.64) indicates the vanishing of the sliding segment (the black one). (c) A
switching–sliding bifurcation occurs around α = 1.661, where the blue segment PΣ2,F1,Σ8 hits L(2)2 and enters S2 . A slight increase in α, e.g., α = 1.69, will change
the trajectory mapping into S3 and then into S2 . For a smaller α, e.g., α = 1.64, the segment PΣ2,F1,Σ8 approaches to S2 directly. (d) A grazing–sliding bifurcation
occurs around α = 1.7126, where the magenta segment PΣ2,F3,Σ3 grazes L(2)2 . A smaller α, e.g., α = 1.69, indicates the existence of sliding segment dominated by
F2(x, τ ), whilst a larger α, e.g., α = 1.9, indicates the disappearance of the sliding motion described by F2(x, τ ). The blue, red, magenta, green, black, and orange lines
represent the trajectory segments dominated by Fn=1,2,...,6 , respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

to S6. Therefore, α ∈ (0, fb−δ

4ζ2 − fb) ∩ (0, (1+β)(fb+δ)
4ζ2 − fb) ensures

that the switching directions on L1 and L4 are unitary.

Appendix B

The switching mechanism on the line L2 depends on the sign of⟨
∇P−3 (x), F2(x, τ )

⟩⏐⏐
x=x2

. To determine its sign, here we discuss the
existence condition of the solution for

⟨
∇P−3 (x), F2(x, τ )

⟩⏐⏐
x=x2
= 0.

Here, we assume there exists vr and τ , satisfying⟨
∇P−3 (x), F2(x, τ )

⟩⏐⏐
x=x2
= −vr + 2ζ fb + 2ζαcos(ωτ ) = 0. (B.1)

Then we have

− 2ζα ≤ −vr + 2ζ fb ≤ 2ζα. (B.2)

Therefore, for a given α, the necessary condition for the existence
of the solution of Eq. (B.1) is 2ζ fb − 2ζα ≤ vr ≤ 2ζ fb + 2ζα.
As a consequence, we will always have (i) for vr < 2ζ fb − 2ζα,

⟨
∇P−3 (x), F2(x, τ )

⟩⏐⏐
x=x2

< 0; (ii) for 2ζ fb−2ζα ≤ vr ≤ 2ζ fb+2ζα,
the sign of

⟨
∇P−3 (x), F2(x, τ )

⟩⏐⏐
x=x2

depends on the time τ signif-
icantly; and (iii) for vr > 2ζ fb + 2ζα,

⟨
∇P−3 (x), F2(x, τ )

⟩⏐⏐
x=x2

>

0. Therefore, the line L2 can be divided into three segments
for discussing its switching mechanism, namely L(1)2 for vr ∈

[−
fb−δ

2ζ , 2ζ fb − 2ζα), L(2)2 for vr ∈ [2ζ fb − 2ζα, 2ζ fb + 2ζα], and
L(3)2 for vr ∈ (2ζ fb + 2ζα,+∞).

Based on the same principle, for a given α, L3 can be divided
into three segments to discuss its switching mechanism, namely
L(1)3 for vr ∈ (−∞,

2ζ (fb−α)
1+β

), L(2)3 for vr ∈ [
2ζ (fb−α)

1+β
,

2ζ (fb+α)
1+β
], and

L(3)3 for vr ∈ ( 2ζ (fb+α)
1+β

,
fb−δ

2ζ ].
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