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Abstract 

The incidence of type 1 diabetes (T1DM) is increasing annually and the 

disease pathophysiology remains to be completely understood. The current 

understanding suggests a complex interplay of genetic factors, environmental 

factors and the immune system that ultimately converge to cause selective 

destruction of the pancreatic beta cells. As part of this process immune cells 

(e.g. cytotoxic T-cells), infiltrate the islets and release pro-inflammatory 

cytokines (e.g. IL-1, TNF- and IFN-) which cause beta cell dysfunction and 

cell death. Increasing evidence suggests that there is an imbalance between 

the levels of pro-inflammatory and anti-inflammatory cytokines at the islet site 

in T1DM and this may contribute to beta cell death. Anti-inflammatory 

cytokines (e.g. IL-4, IL-13 and IL-10) are reported to be protective in certain 

animal models of the disease, but their roles in pancreatic beta cells have been 

less extensively studied.  

The work in this thesis primarily examines the pathway stimulated by the anti-

inflammatory cytokines IL-13 and IL-4 and its role in mediating the 

cytoprotectivity in beta cells. Particularly, we examine whether STAT6 is 

central to these protective effects.  

It was confirmed that STAT6 plays a crucial role in IL-4 and IL-13 mediated 

protection of beta cells against a range of cytotoxic stimuli (pro-inflammatory 

cytokines, palmitate and serum withdrawal). Additionally, It was shown that IL-

13 and IL-4 induce the upregulation of anti-apoptotic genes such as MCL1, 

BCLXL and SOCS1, in a STAT6 regulated manner in beta cells. Surprisingly, 

we observed the STAT6-dependent upregulation of a gene not previously 
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associated with this pathway, SIRPThis was further investigated as a 

regulator of beta cell viability and the results revealed that knockdown of 

SIRP resulted in beta cell apoptosis, implicating this protein as a novel 

regulator of beta cell viability.  

Taken together, this work shows that loss of STAT6 renders beta cells 

vulnerable to cell death and suggest that therapeutic targeting of this pathway 

may offer a potential treatment for T1DM.  
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1.0 Introduction 

1.1 Diabetes Mellitus 

The word “diabetes” was first used in 250 BC by a Greek physician, Aretaeus. 

Diabetes is a Greek word, which means 'syphon' because the disease usually 

causes fluid to drain from patients. In this context, Aretaeus noticed that the 

disease caused patients to pass excessive amounts of urine but It was not until 

1674 that Thomas Willis, personal physician to King Charles I, completed the 

term 'Diabetes Mellitus'; imbued with the Latin word “mellitus” meaning honey 

(Dean and McEntyre, 2004).  

Diabetes mellitus describes an assemblage of metabolic disorders arising from 

defects in the control of insulin secretion or in responses to the hormone 

causing hyperglycaemia (American Diabetes Association, 2010). Two distinct 

forms of the disease have been resolved and were initially accredited to a 

French scientist, Lancereaux, although this distinction was earlier recognised 

by a British scientist, called Harley (1866). In one of the subtypes, it was 

observed that patients were obese and in the other, patients were lean 

(Lancereaux, 1880). These have since been named type 1 (occurring in lean 

persons) and type 2 (typically in obese persons) diabetes mellitus. We know 

now that type 1 diabetes mellitus (T1DM) arises from a significant loss of 

insulin secretion requiring administration of exogenous insulin, whereas type 

2 diabetes mellitus (T2DM) is more prevalent and, arises from a complex 

combination of insufficient insulin secretion by beta cells and peripheral insulin 

resistance. T2DM in some individuals can be reversed by lifestyle changes 

such as exercise and reducing intake of glucose-rich meals, without a 

requirement for exogenous insulin. Recent findings suggest that the 
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classification of diabetes needs to be more complex although the vast majority 

of the pathology falls in these two broad groups (American Diabetes 

Association, 2010). Other forms of diabetes have been established and will be 

discussed later in the chapter. 

According to the World Health Organisation (WHO, 2016 global report on 

diabetes), an estimated 422 million adults were living with diabetes in 2014 

and the number is estimated to rise to 642 million by 2040. Diabetes UK 

estimates that approximately 4.7 million people live with diabetes in the UK 

(Diabetes, 2019) (https://www.diabetes.org.uk/about_us/news/new-stats-

people-living-with-diabetes). It is suggested that the increase in the global 

diabetes burden will mostly affect countries experiencing the economic 

transition from low to middle-income levels and that the prevalence is 

underreported in these settings (Yach et al., 2004). T2DM makes up 90% of 

all diabetes and type 1 diabetes mellitus with other forms of diabetes make up 

the remaining 10% (Zheng et al., 2017).  

1.1.1 Type 2 Diabetes Mellitus (T2DM) 

T2DM (formally referred to as non-insulin dependent diabetes mellitus) is the 

most common form of diabetes, and is usually associated with hyperglycaemia 

due to insulin resistance and may require insulin therapy as a last resort. 

Insulin resistance is defined as the inability of target tissues such as liver and 

muscle to respond appropriately to insulin stimulation (Freeman and Pennings, 

2018). The rise in the number of people with T2DM is largely attributed to the 

increase in the numbers of obese people worldwide including children and is 

suggested to be the main cause that is driving the increased incidence of 

T2DM. The disease is diagnosed using serological techniques in which either 
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random plasma glucose, fasting blood glucose or oral glucose tolerance tests 

are measured from blood samples. In these tests a random blood sample, a 

fasting blood sample (12h fasting) or blood sample after a 2h glucose 

challenge administered orally or intravenously, is used to measure blood 

glucose levels. Alternatively, glycated haemoglobin measurements can be 

used to indicate the average blood glucose over the previous three months. 

Glycated or glycosylated haemoglobin is formed by a non-enzymatic reaction 

between glucose and haemoglobin at the N-terminal valine of  either the beta 

chain or alpha chain of the haemoglobin molecule (Makris and Spanou, 2011). 

A random blood glucose test which detects ≥7mmol/L (normal values 5.6-

6.9mmol/L), a fasting blood glucose test of ≥7mmol/L or a 2h glucose tolerance 

test (following either oral or intravenous administration of 75g glucose) 

reporting values of ≥11.1mmol/L supports the diagnosis of diabetes (Kahn et 

al., 2014). Additionally, a glycated haemoglobin concentration ≥48mmol/mol 

(or ≥6.5%) may also indicate that an individual is diabetic, however this is not 

a strict rule since certain individuals from South East Asian or African 

background differ greatly in their values of glycated haemoglobin due to 

genetic factors enriched in these populations (Canadian Diabetes Association, 

2013).  

 The combined effects of insulin resistance in target tissues and beta cell 

dysfunction result in beta cells being unable to match the metabolic demand 

of the body for appropriate levels of insulin in response to rising blood glucose 

(Kahn et al., 2014). Beta cell dysfunction in T2DM follows from a plethora of 

factors, which include obesity, an individual’s genetic susceptibility and 

epigenetics, environmental factors and alterations within the immune system. 
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1.1.1.1 Lifestyle and obesity 

Obesity is said to be the most blamed factor responsible for insulin resistance 

but a combination of genetic, and environmental factors also play a role 

(Eguchi and Manabe, 2013). Obesity is a disease that can be defined as the 

excess accumulation of fat or adipose tissue leading to an increased in body 

weight (≥ 20% of the ideal weight) (Hruby and Hu, 2015). The body mass index 

(BMI) is commonly used to determine obesity in an individual; it is a ratio of the 

weight in kilograms and the square of the height in metres. An individual is 

classed obese if they have a BMI of ≥30kg/m2 (Ofei, 2005). Lifestyle factors 

that have been implicated in the development of obesity or overweight include 

excessive consumption of alcohol, physical inactivity, and high calorific intake. 

Nutritional factors or dietary risk factors for T2DM include processed foods, 

potatoes, trans-fatty acids, irregular eating habits, consumption of white rice, 

beverages with high sugar content and unsaturated fats (Ayala et al., 2008, 

McNaughton et al., 2008). On the contrary, brown rice, zinc, vitamin D, dietary 

fibre, dairy produce, vegetables, peanut butter and healthy food habits appear 

to reduce the risk of T2DM (Steyn et al., 2004). Being obese contributes about 

55% to the disease aetiology, although a proportion of lean people develop 

diabetes and many obese people do not. Currently, about 80-95% of white 

Europeans with type 2 diabetes are obese and clinical trial interventions to 

reduce obesity through weight loss or dieting and exercise can reverse 

diabetes (Franks, 2012, Lean et al., 2018, Steven et al., 2016). Obesity 

induces a chronic low-grade inflammation in tissues, which can lead to the 

increased release of adipokines and pro-inflammatory cytokines such as TNF-

 and IL-1. These cytokines affect lipid metabolism detrimentally leading to 
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an increase in circulating free fatty acids and a decrease in overall insulin 

sensitivity (Boden, 2008). 

Aside from these, an age-associated decrease in beta cell response, insulin 

sensitivity, and glucose intolerance have also been established (Karakelides 

et al., 2010). This age-association might be attributed to sarcopenia since older 

people tend to be less active (Kirkman et al., 2012). Additionally, there is 

decreased islet proliferation and increased sensitivity of beta cells to apoptosis 

with age due to an increase in the expression of the death receptor Fas 

(Maedler et al., 2006).  All of the above probably contribute to beta cell 

dysfunction and a reduction in beta cell mass. 

The emphasis on lifestyle cannot be overstated (Kolb and Martin, 2017), 

however, there are also genetic and environmental components that cumulate 

in the dysfunctional beta cells. For example, beta cell dysfunction has been 

suggested to be caused by glucolipotoxicity and amyloid deposition in the islet 

(Porte and Diabetes, 2001).  

1.1.1.2 Genetic and epigenetic factors associated with T2DM 

More than 175 genetic loci have been associated with T2DM most of which 

are highly linked to beta cell function (Grarup et al., 2014). It is estimated that 

an individual’s risk of developing diabetes (if one parent is diabetic) is 40% and 

this risk increases to 70% if both parents have T2DM (Ali, 2013). In support of 

this, twin studies have shown a concordance rate of 70% in monozygotic twins 

and 20-30% in dizygotic twins (Kaprio et al., 1992). Single-nucleotide 

polymorphisms (SNPs) in genes controlling insulin synthesis and secretion 

(such as transcription factor 7-like 2 (TCF7L2) which was discovered by 

linkage studies and GWAS) have been reported to increase the susceptibility 
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of an individual to T2DM. TCF7L2 is a transcription factor that influences Wnt 

signalling which is known to modulate proinsulin synthesis and glucose 

stimulated insulin secretion in beta cells (Zhou et al., 2014). Other genes 

associated with T2DM include peroxisome proliferator-activated receptor 

(PPARG), insulin receptor substrate 1 and 2 (IRS1 and IRS2), inwardly-

rectifying potassium voltage-gated channel subfamily J 11 (KCNJ11), hepatic 

nuclear factor 1 alpha (HNF1A),hepatocyte nuclear factor 1-beta (HNF1B) and 

hepatocyte nuclear factor 4 alpha (HNF4A) and Wolfram syndrome 1 (WFS1), 

fat-mass and obesity-associated gene (FTO) (Ali, 2013). Although these genes 

have been identified, not everyone with the susceptibility alleles develops 

diabetes and only about 20% of diabetes is linked directly to heritability (Prasad 

and Groop, 2015).  

T2DM risk can also be conveyed by epigenetic changes caused predominantly 

by environmental factors such as intrauterine malnutrition or intrauterine 

hyperglycaemia (Kwak and Park, 2016). Epigenetic changes refer to changes 

in gene function (upregulation or silencing of a gene) without nucleotide 

alterations usually due to methylation of specific bases, and histone 

modifications (Halban et al., 2014, Kwak and Park, 2016).  

 Evidence of epigenetic changes have been found in T2DM including in genes 

influencing beta cell function and survival such as peroxisome proliferator-

activated receptor gamma coactivator 1 alpha (PPARGC1), insulin (INS), 

pancreatic and duodenal homebox 1 (PDX1), suppressor of cytokine signalling 

2 (SOCS2), aristaless related homebox1 (ARX), and histone deacetylase 7 

(HDAC7) (Davegårdh et al., 2018). In a study using islets from individuals with 

T2DM, hyper DNA methylation of the insulin promoter negatively regulated the 
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INS gene expression and glucose stimulated insulin secretion compared to 

control donors (Yang et al., 2011). Similarly, islets from individuals with T2DM 

have been reported (Yang et al., 2012) to have methylation at CpG sites of the 

PDX1 promoter and enhancer regions which correlated with PDX1 expression. 

Pdx1 is a key transcription factor that is essential for beta cell development, 

function and survival. Loss of this transcription factor has been shown in pdx1 

null mice to cause pancreatic agenesis (Fujimoto and Polonsky, 2009).  

In some studies, researchers found differences in DNA methylation levels in 

the islet beta cells when compared to peripheral blood cells. Most of these 

studies could not be replicated in vitro by stimulating beta cells with high 

glucose (Yang et al., 2011, Yang et al., 2012), raising the question as to 

whether DNA methylation is a cause or consequence of hyperglycaemia. 

1.1.1.3 Environmental factors in T2DM 

It is now established that certain environmental factors can induce epigenetic 

changes linked to diseases, implying that the environmental effects interact to 

regulate cellular responses.  Exposure to land and air pollutants such as 

exhaust fumes and herbicides have been associated with up to a 20% 

increased risk of developing T2DM (Dendup et al., 2018). Many pollutants are 

lipophilic and thus obese individuals tend to store more toxic pollutants in their 

adipose tissue (Zeliger, 2013). An example of one such pollutant is atrazine 

(2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) a herbicide, which 

has been shown to promote mitochondrial dysfunction, insulin resistance and 

obesity (Murea et al., 2012). Atrazine was shown to change mitochondria 

structure and function by decreasing the oxygen consumption rate through the 

inhibition of a key mitochondria complex I & II enzymes (Lim et al., 2009). In 
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this same study, mice exposed to atrazine significantly gained visceral fat 

irrespective of whether or not they were on a high fat diet. Insulin resistance 

was induced in these mice through inhibition of the insulin-Akt signalling 

pathway (Lim et al., 2009).  In this context, a recent systematic review 

associated higher levels of walkability (a measure of how friendly an area is to 

walk) and green space with a lower risk of developing T2DM. This same review 

showed that increased levels of noise pollution and air pollution were 

associated with a greater risk of developing T2DM (Dendup et al., 2018).  

1.1.1.4 Immune system 

The involvement of the immune system in T2DM almost always comes as a 

complication arising from hyperglycaemia or obesity (Spranger et al., 2003). A 

number of studies have shown an increase in the levels of circulating TNF- 

in the blood of persons with T2DM compared to controls (Spranger et al., 2003, 

Chen et al., 2013). It has also been shown that increased glucose and TNF- 

have an additive effect by amplifying NF-kB activation and hence exacerbating 

inflammation through the generation of reactive oxygen species (Iwasaki et al., 

2007). Other cytokines that are dysregulated in T2DM include IL-1 and IL-6 

(Spranger et al., 2003). The increase in cytokine release seems to be a 

consequence of oxidative stress resulting from hyperglycaemia and the 

release of obesity-induced adipokines. This however, is more likely to be a 

consequence for the complications in the disease rather than being the main 

cause of the disease (Graves and Kayal, 2008).  
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1.1.2 Other forms of Diabetes 

1.1.2.1 Gestational diabetes 

Glucose intolerance can arise during pregnancy, in which case it is termed 

gestational diabetes and occurs in 5% of women during the second or third 

trimester of pregnancy. Although it resolves immediately after delivery in most 

cases, the development of gestational diabetes increases the risk of 

developing T2DM later in life, especially in obese women (Gilmartin et al., 

2008). Up to 40% of women who were diagnosed with gestational diabetes 

develop T2DM after 10years of follow-up (Kaaja and Rönnemaa, 2008).  The 

disease may stem from a variety of factors such as increases in placental 

lactogen secretion, insulin secretion, and growth hormone and insulin 

resistance (Kampmann, 2015, Kaaja and Rönnemaa, 2008). Together these 

re-orient maternal metabolism towards a lipid dependent metabolism in order 

to favour glucose reaching the foetus. Consequently, the profile of maternal 

inflammatory cytokines (TNF-, IL-1, and IL-6) increases and together with 

increased blood glucose can cause further deterioration of insulin sensitivity 

(Baz et al., 2016). Gestational diabetes is tested by performing an oral glucose 

tolerance test at the beginning of the third trimester (24-28 weeks) at least 

twice and is positive if the results are ≥7.2mmol/L in both tests (Kampmann, 

2015, Rani, 2016). Gestational diabetes can be managed by pre-conception 

counselling, exercise and diet (reduction in daily caloric intake) during 

pregnancy, as well as the use of oral hypoglycaemics such as metformin, and 

Glibenclamide (Anwar et al., 2018).  
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1.1.2.2 Maturity Onset Diabetes of the Young (MODY) 

Another form of diabetes that is non-insulin dependent but differs from T2DM, 

is Maturity Onset Diabetes of the Young (MODY) which is reported to make up 

approximately 1.2-3% of diabetes diagnosed in children (Hattersley and Patel, 

2017). However, MODY is often misdiagnosed as T1DM thus the prevalence 

may be under represented (Ledermann, 1995). MODY is a group of 

heterogeneous monogenic inheritable diabetes that result from mutations in 

transcription factors and enzymes that modulate beta cell maturation and 

function (Anık et al., 2015). Most patients present with autosomal dominant 

inheritance by the age of 25. The clinical features of these patients are variable 

depending on the mutation causing the disease. At least 13 gene mutations 

have been associated with the disease (Chambers et al., 2016). The most 

common mutations described lie in the coding regions of genes encoding 

hepatocyte nuclear factor 1 (HNF1), hepatocyte nuclear factor 4 (HNF4) 

and glucokinase (GCK), and these account for 52%, 10% and 32% of MODY 

cases in the UK respectively (Thanabalasingham and Owen, 2011). Other 

genes include HNF1B, INS, PDX1, paired box 4 (PAX4), neuronal 

differentiation 1 (NEUROD1),  KCNJ11 and ATP binding cassette subfamily C 

member 8 (ABCC8), but their incidence is less common (Thanabalasingham 

and Owen, 2011, Gardner and Tai, 2012). The misdiagnosis of MODY as 

T1DM has a massive impact on treatment. Given the correct diagnosis, MODY 

patients can often be effectively treated with anti-hyperglycaemic drugs which 

are preferable to exogenous insulin administration (Boyd and Byrne, 2018).  

1.1.2.3 Latent Autoimmune Diabetes of Adulthood (LADA)  

Latent autoimmune diabetes of adulthood (LADA) was first reported in 1986 in 

a group of individuals previously diagnosed with T2DM. These persons 
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present with more typical features of T1DM such as the production of islet 

autoantibodies but they also had preserved beta cell function (Groop et al., 

1986). Due to the challenges of classifying LADA, there is controversy over its 

existence: the only difference between LADA and T1DM is the dependence on 

insulin in T1DM individuals (Laugesen et al., 2015).  Since in the past T1DM 

was mostly diagnosed in the young, and now at any age, it is argued that LADA 

is simply T1DM of the old (Thomas et al., 2018). LADA makes up 

approximately 10% of type 2 diabetes individuals between the ages of 35-75 

years. Individuals diagnosed with LADA and with autoantibodies experience 

beta cell failure within 5 years and those without autoantibodies after around 

12 years. LADA patients have dietary treatment similar to those of T1DM 

individuals as well as Metformin. The use of exogenous insulin typically follows 

beta cell dysfunction (Stenström et al., 2005).  

1.1.2.4 Neonatal Diabetes Mellitus (NDM) 

Neonatal diabetes mellitus (NDM) is a rare genetic form of diabetes that occurs 

in children below the age of 6 months and with incidence rates of 1 in 100 000 

(Hattersley and Patel, 2017). There exist two clinical forms of NDM, permanent 

NDM (PNDM) which requires lifelong exogenous administration of insulin, and 

transient NDM (TNDM) which is sporadic sometimes recurring in an 

individual’s twenties or thirties (Marin et al., 2016, Aguilar-Bryan and Bryan, 

2008).  These two forms can only be distinguished by genetic analysis. The 

genetic causes of more than 90% of TNDM are now known and over 68% of 

these cases are due to abnormalities in the imprinted region of chromosome 

6q24. The rest are due to mutations in the KCNJ11 and ABCC8 genes (Sood 

et al., 2017, Marin et al., 2016). PNDM is mostly due to  mutations in the 

KCNJ11, ABCC8 and the INS genes (Marin et al., 2016), with KCNJ11 and 
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ACC8 accounting for 50% of cases (Hattersley and Patel, 2017). NDMs are 

generally managed by the use of exogenous insulin and sulfonylurea in order 

to improve neurodevelopment (Marin et al., 2016). 

1.1.3 Type 1 Diabetes Mellitus (T1DM) 

The main focus of this thesis relates to type 1 diabetes mellitus (T1DM) rather 

than the other types described above. T1DM is an autoimmune disease in 

which there is selective destruction of the pancreatic beta cells of the islets of 

Langerhans. This leads to lifelong exogenous insulin dependence to control 

blood glucose (Insel et al., 2015). Beta cell destruction usually occurs during a 

subclinical period in which insulin-containing beta cells are selectively 

destroyed by the immune system in persons that are genetically susceptible. 

In the past, T1DM was mainly diagnosed in children hence it acquired the 

name Juvenile-onset diabetes although it can be diagnosed at any age 

(Atkinson et al., 2013, Thomas et al., 2018).  

It is estimated that approximately 1,106,500 children under the age of 20 live 

with type 1 diabetes worldwide (Snouffer, 2018).  More than 30 000 children in 

the UK live with the disorder and  trends suggest that the disease incidence is 

steadily increasing in many European countries and the world at large 

(Patterson et al., 2009, Patterson et al., 2018). However, the reason for this 

increase in T1DM incidence is not clear. 

In a similar manner to T2DM, the disease is diagnosed serologically by 

measuring fasting blood glucose concentration (≥7.0mmol/L positive), random 

blood glucose (≥11.1mmol/L means diabetic) or oral glucose tolerance tests. 

Glycated haemoglobin levels above 48mmol/mol can be used but this test is 

usually less sensitive since dysglycemia is rapid in T1DM (DiMeglio et al., 
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2018). A combination of the serological tests above, and the clinical symptoms 

are most commonly used for diagnosis, hence 50% of adults with new-onset 

T1DM tend to be misdiagnosed as T2DM (DiMeglio et al., 2018). This has 

important implications since the treatments used for these two diseases are 

different. During insulin biosynthesis insulin is first synthesized as 

preproinsulin. A signal peptide is cleaved in the ER to give proinsulin. 

Proinsulin is then cleaved to yield active insulin in vesicles from where it is 

released with the other cleaved component, c-peptide in equimolar quantities. 

C-peptide levels can be useful for disease diagnosis; since very low 

concentrations indicate severe beta cell assault. C-peptide concentrations 

(normal range: 0.26-1.03nmol/L) can be a sensitive measure of beta cell 

function but should be used for definitive diagnosis in  combination with other 

tests (Yi et al., 2018). The gold standard for distinguishing type 1 diabetes from 

the others, is a serological measurement of two or more auto-antibodies (which 

recognise beta cell specific proteins). These are normally present in more than 

90% of  patients at diagnosis and indicate ongoing disease pathophysiology.  

There are five main islet autoantibodies which have been identified to date, 

these are Islet cell autoantibodies (ICA), Insulin autoantibodies (IAA), 

antibodies raised against glutamic acid decarboxylase 65 (GAD65), protein 

tyrosine phosphatase related antigen 2 molecule (IA-2A) and zinc transporter 

8 autoantibody (ZnT8) (Törn et al., 2008, Lampasona et al., 2011, Schlosser 

et al., 2011). Recently, a 38kDa glycoprotein autoantigen was identified as 

tetraspanin-7 was also shown to be a target of islet autoantibodies in T1DM 

(McLaughlin et al., 2016).The functions of these antigens are on Table 1. 
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Table 1: Functions of autoantigens in T1DM 

Antigen Function Reference 

GAD65 An enzyme essential in gamma-
aminobutyric acid (GABA) 
biosynthesis which is an inhibitor of 
neurotransmission in the central 
nervous system with paracrine 
functions. Its function in the islet is not 
known but local paracrine effects on 
glucagon secretion are suggested 

(Lampasona 
and Liberati, 
2016, Wendt et 
al., 2004) 

IA-2A A protein tyrosine phosphatase-like 
protein promotes mobilisation of 
secretory granules to the plasma 
membrane  

(Mziaut et al., 
2008) 

ZnT8 Regulates Zinc content in beta cells.  
Stabilizes insulin crystals in secretory 
vesicles 

(Lemaire et al., 
2012) 

IAA Insulin is triggers glycogenesis hence 
responsible for glucose homoeostasis  

(Lampasona 
and Liberati, 
2016) 

ICA Non-specific antigens on the islets (Lampasona 
and Liberati, 
2016) 

Tetraspanin 7 Function as a molecular scaffold and 
facilitate signalling on receptors such 
as EGFR 

(Termini and 
Gillette, 2017) 

 

A number of factors have been identified that may promote the development 

of T1DM, although the explanation as to how they lead to the disease remains 

a conundrum. Both genetic and environmental factors have been implicated 

and possibly combine to provoke the immune system into attacking pancreatic 

beta cells in a selective manner (Roep and Tree, 2014, Russell and Morgan, 

2014). In the subsequent sections, various factors associated with the 

development of T1DM will be examined. 

1.1.3.1 Genetic factors 

The evidence that genetic factors play a role in T1DM arises from the 

observation that a significant number of individuals with the disorder have 
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close relatives with T1DM. There is a 15 fold higher risk of developing T1DM 

among siblings of a person with T1DM compared to the general population. 

Additionally, the risk is 3% if the mother has T1DM individual and 5% if the 

father has T1DM (Pociot and Lernmark, 2016). There is also a greater than 

50% chance of concordant development of T1DM in monozygotic twins (Steck 

and Rewers, 2011). Together, these data reveal a significant genetic 

component to the disease.  

The human leukocyte antigen- DQ (HLA-DQ) locus accounts for about a half 

of the most important susceptibility genes in T1DM, however, an additional 50 

non-HLA genes also contribute to the risk of T1DM (Knip and Simell, 2012).  

The HLA class II region on chromosome 6p21 (precisely loci HLA-DRB1 and 

HLA-DQB1) is known to exert the highest T1DM risk, with the alleles DR3-

DQA1*0501-DQB1*0201 (DR3) and DR4-DQA1*0301-DQB1*0302 (DR4) 

accounting for 30-50% of the genetic T1DM risk (Steck and Rewers, 2011). At 

least one of these alleles is present in 95% of all T1DM patients in the US (Aly 

et al., 2006). Although the HLA-DR/DQ locus confers a high risk of developing 

T1DM, some haplotypes of these have been reported to be protective such as 

HLA-DQA1*0102, DQB1*0602 (Steck and Rewers, 2011). Other HLAs 

associated with T1DM include alleles A24, A30 and HLA I. HLA-B18, B39, 

B44, C3, C8, and C16. There also exist non-HLA gene markers and currently, 

more than 50 such markers have been confirmed with the most significant 

being in INS (11q15), interferon induced with helicase C domain 1 (IFIH1) 

(2q24), cytotoxic T-lymphocytes associated protein 4 (CTLA-4), protein 

tyrosine phosphatase, non-receptor type 22 (PTPN22) and IL2RA (Eizirik et 

al., 2012).  
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To understand the genetics of T1DM, two main approaches have been 

employed. In the first, children born of a first-degree family history of T1DM 

have been monitored for development the disease. And in the other, new-

borns are screened to identify children at increased genetic risk. They are then 

followed up to detect autoantibodies known to be associated with increased 

risk for T1DM (Størling and Pociot, 2017, Pociot and Lernmark, 2016). These 

approaches have helped to record the natural history of T1DM and to 

categorise the alleles with various risk levels. 

There is only a 33% chance of developing the disease in individuals with the 

highest genetic susceptibility and in conjunction with evidence from pair-wise 

twin studies, it is acceptable to argue that genetic susceptibility alone is not 

sufficient to develop T1DM and additional environmental factors are required 

to trigger  the disease (Barnett et al., 1981). 

1.1.3.2 Environmental factors as triggers of T1D  

A growing number of potential environmental factors have been reported which 

may act as triggers for T1DM (or at least influence this process). These include 

demographic, viral infection, early introduction of cow’s milk, vitamin D, and 

the intestinal microbiome. Evidence for each of these factors has been 

generated to support their involvement (Knip and Simell, 2012). A study by 

Barnett et al. (1981)  and another by Kaprio et al. (1992) suggested that only 

about 13%-33% of paired monozygotic twins concordantly develop T1DM 

indicating that other factors influencing the disease exist.  

The Geography of T1DM is also an indicator of a possible environmental factor 

with the highest number of cases recorded in northern Europe. Also, the rate 

of increase in T1DM over 15 years cannot be explained by genetic factors 
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alone and points to contributions from the environmental changes (Patterson 

et al., 2009). In the subsequent sections, the various environmental factors 

associated with the development of T1DM will be examined. 

Viruses  

The involvement of viruses in the pathogenesis of T1DM was first suggested 

over a century ago by Harris (1899). Recently the evidence has become more 

compelling, with certain enterovirus serotypes receiving the most attention 

(Morgan and Richardson, 2014, Harris, 1899, Richardson and Morgan, 2018).  

A number of viruses have been implicated in T1DM including, mumps, 

cytomegalovirus (CMV), rotavirus, enteroviruses particularly coxsackie virus B 

(CVB), herpesvirus and rubella virus (Filippi and von Herrath, 2008, 

Richardson and Horwitz, 2014).  

The link between enteroviruses and T1DM have been established by meta-

analysis suggesting a clinically significant association (Yeung et al., 2011). 

Enteroviruses are a group of non-enveloped RNA viruses from the 

picornavirus family which induce mainly mild and asymptomatic infections in 

infants and newborns (Knip and Simell, 2012). There are over 100 different 

serotypes of enteroviruses but the most commonly implicated in T1DM is 

Coxsackie virus B4 (although B1 to B6 have also been implicated) (Filippi and 

von Herrath, 2008). Coxsackie B3 has been shown to infect and accelerate 

insulitis in NOD mice at 8 weeks (Drescher et al., 2004). In the Finnish diabetes 

protective study, investigators showed that enteroviral infection occurred in 

susceptible children prior to the appearance of islet auto-antibodies (Lönnrot 

et al., 2000). This appearance  has been deemed seasonal with the highest 

infections occurring between autumn and winter (Kimpimäki et al., 2001). 

Evidence of enteroviral infection in the pancreas has been obtained by staining 
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tissue sections for the viral capsid protein VP1 in children and young adults 

soon after the diagnosis of T1DM (Richardson et al., 2013, Richardson et al., 

2009). It is proposed that the virus gets to the pancreas through the blood (or 

via the pancreatic duct), and that beta cells are targeted by these viruses 

because they express an isoform of the Coxsackie-adenovirus receptor (CAR) 

(Ifie et al., 2018), which enteroviruses can use to gain entry into the cells. The 

virus might induce beta cell death by cytolysis after replication, although very 

little evidence of large scale islet cell lysis has been reported in T1DM. Rather, 

It has been suggested that a persistent form of infection might develop and 

affect the immune system by upregulation of MHC I or through molecular 

mimicry (Knip and Simell, 2012, Richardson and Horwitz, 2014).  

Other viruses have been implicated in the pathoaetiology of T1DM with the first 

report dating back to 1899; a case of T1DM after mumps infection (Harris, 

1899). An Australian study showed an association of rotavirus infection and 

the beta cell autoimmunity in T1DM susceptible children (Honeyman et al., 

2000), but another Finnish study did not support the same conclusion 

(Blomqvist et al., 2002). A strong correlation has also been reported between 

CMV and islet cell autoantibodies in individuals with T1DM implicating 

persistent CMV infections in T1DM (Pak et al., 1988).  

Bacteria 

Emerging evidence suggests that the microbiome homeostasis may play a 

crucial role in the development of metabolic disorders such as type 2 diabetes, 

dyslipidaemia, non-alcoholic fatty liver disease (Fabbiano et al., 2017), and 

T1DM. In a report on NOD mice that lacked the Myeloid differentiation primary 

response 88 (MYD88), (a toll-like receptor adaptor protein) developed diabetes 

according to the microbial constituents of the intestine (Wen et al., 2008). A 
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comparative study on the oral microbiota and faecal microbiota of T1DM 

persons versus controls showed a significant difference in certain species (e.g. 

Chirstensenella) associated with T1DM (de Groot et al., 2017). However, these 

changes in microbiota seem to be largely due to a change in metabolism and 

not the cause of the disease. In one report, to illustrate this bariatric surgery to 

induce weight loss was performed and the gut microbiota of the individuals 

studied. The results revealed rapid changes in the gut microbiota as an 

adaptation to a starvation-like situation (Furet et al., 2010).  

Dietary factors 

A variation in exposure to complex diets at different stages in life such as the 

early introduction of cow milk, vitamin D, cereals (gluten) and short-term 

breastfeeding have been implicated in T1DM (Antvorskov et al., 2016). In a 

breastfeeding study performed involving T1DM susceptible infants, it was 

observed that infants breastfed for a minimum of 4 months had a lower risk of 

developing IA-2A autoantibodies when compared to infants breastfed for  ≤2 

months (Kimpimäki et al., 2001). In another study by the same group, early 

introduction of cow’s milk to T1DM susceptible children was associated with 

increased risk of seroconversion (Kimpimäki et al., 2001) although others did 

not find any association in children under the age of 5 (Wadsworth et al., 1997). 

Two recently published case reports of T1DM susceptible children have 

reported remission from T1DM with the use of high doses of vitamin D 

(1000IU/day) and omega 3 fatty acids (50-60mg/kg/day) (Cadario et al., 2018). 

Additionally, taking high concentrations of vitamin D in the last trimester of 

pregnancy was associated with a decreased risk of developing T1DM in 

susceptible offspring (Virtanen, 2016).  
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Studies using wheat based feed and gluten free diet performed with NOD mice 

have suggested a role for gluten in the development of diabetes. NOD mice 

on a gluten free diet had a reduced incidence of diabetes (15%) when 

compared to those fed a gluten containing diet (64%) (Funda et al., 1999). In 

humans, first-degree relatives of T1DM individuals put on a gluten free diet for 

6 months followed by a gluten containing diet for a further 6 months had a 

significantly better insulin response to glucose during the gluten free period 

compared to when fed the gluten containing diet. This decreased with a return 

to a gluten containing diet (Pastore et al., 2003). Furthermore, the case study 

of a 6 year old boy diagnosed with T1DM who was then placed on a gluten 

free diet revealed better fasting blood glucose levels and no change in GAD65 

autoantibody titres providing anecdotal evidence that such a diet might 

preserve beta cells (Sildorf et al., 2012). 

1.1.3.3 The immune system involvement in T1DM 

It is established that the immune system plays a key role in T1DM 

pathogenesis since autoantibodies against beta cell proteins can be readily 

detected in the blood of patients, and thus are generally used as biomarkers 

of the disease (Yi et al., 2018). However, studying the pancreas provides much 

more direct evidence for the role of the immune system in the disease. 

Unfortunately, studies on the human pancreas are limited by the lack of access 

to the pancreas due to its retroperitoneal location thus making it hard to study 

the disease pathogenesis completely (Morgan, 2017).  

The NOD mouse model has been used to gain an improved understanding of 

the disease pathogenesis in T1DM. Pancreatic sections reveal the infiltration 

of various immune cell subsets (DC, macrophages, natural killer cells, CD4+ 
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and CD8+ T-cells) with similar phenotypes to those found in humans (Pearson 

et al., 2016). Examination of the human pancreas from patients with T1DM 

reveals the presence of various immune cells associated with and infiltrating 

into the islets of Langerhans, termed ‘insulitis’. Recently a consensus view was 

generated on the definition of insulitis which states that three or more islets 

contain greater than or equal to fifteen CD45+ cells/islet  (Vecchio et al., 2018, 

Leete et al., 2016, Willcox et al., 2009b, Campbell-Thompson et al., 2013). A 

more detailed assessment of the immune cell subtypes present in insulitic 

pancreatic islets revealed that CD8+ cytotoxic T-cells were  predominant, with 

lower numbers of CD4+ and CD20+ B-cells. Other studies also noted the 

occasional presence of macrophages, natural killer cells, dendritic cells and 

FoxP3 positive cells at the islet site (Willcox et al., 2009b, Rodriguez-Calvo et 

al., 2014). The infiltrating immune cells are likely mediators of beta cell death 

in T1DM primarily mediated through the secretion of protein factors from the 

influent T-cells ( cytokines, perforins, granzymes) (Pirot et al., 2008).   
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1.2 The Pancreas; its Architecture and function 

The pancreas is a hammer-shaped organ that lies beneath the stomach, 

measuring between 14-20cm in length in adult humans and with an average 

weight of 100g. It develops from the foregut endoderm and appears by the end 

of the seventh week of gestation. Functionally, the pancreas is responsible for 

the maintenance of glucose homeostasis and the secretion of pancreatic 

enzymes (e.g. amylase) for digestion. The pancreas connects to the 

duodenum via the Ampulla of Vater, which is a duct formed by the union of the 

bile duct and the pancreatic duct. The pancreas is anatomically divided into 

the head, which links to the digestive system, the body and the tail which are 

closest to the spleen (Fig. 1.1). The bulk of the pancreas (85%) is made up of 

acinar cells responsible for the exocrine functions of the organ with only 

approximately 2% responsible for the endocrine function (Campbell and 

Verbeke, 2013, Longnecker, 2014). Blood flows through the portal system first 

from the endocrine pancreas then into the exocrine capillaries with a high 

concentration of islet hormones which may exert trophic effects since 

pancreatic exocrine cells have receptors for hormones such as insulin (Pandol, 

2010).  
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Figure 1. 1: The pancreas and surrounding organs 

The pancreas is divided into the pancreatic head (H), body (B) and the tail (T) 

Courtesy of Mrs Nikki Archer 
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1.2.1 The Exocrine Pancreas 

The exocrine pancreas makes up about 85% of the whole pancreas and is 

responsible for secretion of digestive enzymes through its ductal system into 

the duodenum. These enzymes flow with water and ions also secreted by the 

exocrine cells. The exocrine pancreas is composed mainly of the ductal 

system, and the lumen which extends from the duodenum to the acinus made 

up of acinar cells (exocrine cells)  which are in berry-shaped clusters (Pandol, 

2010). Acinar cells through this ductal system secrete over 20 different 

enzymes involved in chemical digestion. These include proteases, amylases, 

hydrolases, lipases, and ribonucleases and each is normally stored in 

zymogen granules in their proenzymes forms. The enzymes are activated 

once in the duodenum by an enterokinase, which cleaves a peptide from the 

N-terminal of the proenzyme. Activated trypsin is a primary target, which then 

activates other pro-enzymes (-Amylase, procarboxypeptidase, proelastase, 

phospholipase, mesotrypsin).  

The existence of the exocrine and endocrine pancreas in one organ usually 

means that inflammatory damage to the exocrine compartment could result in 

collateral damage to the endocrine compartment and vice versa. In this 

context, 30% of people with acute pancreatitis display glycosuria and 50% of 

these have elevated blood glucose although their symptoms resolve upon 

resolution of pancreatitis. Chronic pancreatitis, however, depending on the 

pathology can lead to overt diabetes (Gorelick, 1993). Endocrine malfunction 

can also lead to a pancreatic exocrine insufficiency in more than 50% of T1DM 

cases (Campbell-Thompson et al., 2015). 
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1.2.2 The Endocrine pancreas  

The endocrine pancreas is made up of the pancreatic islets of Langerhans; 

these structures are disseminated throughout the pancreas and makeup about 

2% of the pancreas volume (105-106 islets) in a human pancreas. Each 

pancreatic islet consists of various cell types (endocrine, endothelial, nerve, 

fibroblast) and is usually about 40-107µm in diameter (Seino and Bell, 2008, 

Komatsu et al., 2017). Pancreatic islets contain five different endocrine cell 

types: insulin-secreting beta cells, glucagon-producing alpha cells, pancreatic 

polypeptide-secreting PP cells, somatostatin secreting delta cells and ghrelin-

secreting epsilon cells (Figure 1.2, PP and  cells have not been stained).  

 

Figure 1.2: Representative image of human pancreas showing 
immunofluorescent stained alpha (red), beta (cyan) and delta cells (green). 

Human FFPE section was cut, placed on a slide, cleared, rehydrated and 
probed with antisera against insulin (cyan), glucagon (red) and somatostatin 
(green). Islets were observed under the fluorescent microscope at 20X 

magnification. Scale bar 550m.  

Courtesy: Dr Sarah Richardson 
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Alpha cells ( cells) 

The alpha cells makeup about 30% of the islet cell mass in humans and are 

responsible for the secretion of glucagon, a hormone which promotes the 

release of glucose into the blood. Glucagon protects the body against 

hypoglycaemia by stimulating hepatocytes to produce glucose by initiating 

glycogenolysis and gluconeogenesis. Glucagon is synthesized from a large 

precursor proglucagon, which is 178 amino acids in length and is cleaved by 

prohormone convertase 2 to yield active glucagon (29 amino acids) in alpha 

cells. The control of glucagon secretion is thought to be both intrinsic (by 

glucose) and paracrine (somatostatin, insulin and neuronal) although the exact 

mechanisms are still under debate.  

It has been shown that glucagon secretion is predominantly modulated by the 

prevailing glucose concentration, but it can also be affected by somatostatin 

and insulin. Briefly, at low glucose concentrations (hypoglycaemia, glucose 

≤3.3mmol/L), alpha cell plasma membrane depolarisation as T-type channels 

open, leading to the activation of voltage-gated Na+ and  calcium channels. 

The Ca2+ channels open leading to an increase in intracellular Ca2+. The 

Increase in intracellular Ca2+ causes the migration of secretory granules and 

their fusion to the cell membrane, and thus the exocytosis of glucagon (Briant 

et al., 2016, Quesada et al., 2008). It is also suggested that incretins, such as 

glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP) can 

suppress glucagon secretion (Xavier, 2018). Furthermore, under certain 

circumstances, alpha cells may secrete GLP-1, an alternative cleavage 

product of proglucagon. Under such conditions, this may lead to autocrine 

effects on glucagon release (Marchetti et al., 2012). 
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Delta cells ( cells) 

Somatostatin is secreted by delta cells and these cells make up roughly 11% 

of the human islet (Seino and Bell, 2008). Delta cells are not only present in 

the pancreatic islet, but in the gastrointestinal tract and, the central nervous 

system. Somatostatin has a broad inhibitory effect on the secretion of many 

hormones, including glucagon, and insulin. Somatostatin is synthesized as 

preprosomatostatin (116 amino acids) which is cleaved into prosomatostatin 

(92 amino acids) by proconvertase 1. Prosomatostatin is then enzymatically 

cleaved by proconvertase 2 to yield somatostatin-14(14 amino acids) and 

somatostatin-28 (28 amino acids) both of which are biologically active. 

Somatostatin receptors are present on both beta cells and alpha cells hence 

its actions directly affect these two cell types. Furthermore, somatostatin has 

been suggested to inhibit PP secretion in addition to its own secretion 

(Brereton et al., 2015).  

Pancreatic Polypeptide-producing (PP) cells 

Pancreatic polypeptide-producing cells (PP) also called F-cells were thought 

to be the smallest population of cells in the human islets (<2%) prior to the 

discovery of epsilon cells. More than 90% of PP cells are located at the head 

of the pancreas (Rahier et al., 1983). These cells produce a 36-amino acid 

peptide pancreatic polypeptide, which is released postprandially upon 

stimulation by the vagus nerve. Alternatively, secretion can be stimulated by 

other factors such as arginine. Pancreatic polypeptide is known to act directly 

in the gut where it reduces gastric secretion and the motor activities of the 

intestines. Surprisingly, our current understanding suggests that this hormone 

has a limited impact on other islet cells. That said, It has been shown to inhibit 

glucagon secretion at low glucose concentrations but no effects on insulin 
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release have been reported (Xavier, 2018). These cells have received limited 

attention compared to pancreatic beta cells. 

Epsilon cells ( cells) 

Epsilon cells make up the smallest population of islet cells (about 1% in adult 

human islet) and secrete the hormone ghrelin. Ghrelin is known to inhibit 

insulin secretion from rat, mouse and human beta cells and hence it acts as a 

paracrine inhibitor of insulin in the islet, similar to somatostatin. The major 

sources of ghrelin are the pancreas and stomach (Wierup et al., 2014). Ghrelin 

has been identified in the hypothalamus precisely in the arcuate nucleus where 

it is suggested to regulate appetite leading to increases in food intake, a 

decrease in energy use, all this cumulating to body weight gain (Sato et al., 

2012). 

In diabetes research, the central focus has been on the beta cell due to the 

obvious dysregulation in insulin function and action, however, other islet cells 

have been implicated in the disease pathogenesis. For example, it has been 

reported that alpha cells increase in mass in T1DM and hyper secretion of 

glucagon (hyperglucagonemia) is a common feature of T1DM. Similar to alpha 

cells, the number of delta and PP cells have also been shown to increase in 

both T1DM and T2DM (Brereton et al., 2015). The potential sources of these 

endocrine cell types in diabetes are neogenesis of progenitor cells, self-

replication to replenish the pancreatic islet volume,  and transdifferentiation 

from other endocrine cells or exocrine acinar cells (Corritore et al., 2016). 

Beta cells (cell) 

The beta cells are the most abundant and the most studied of all the islet cells 

and makeup about 60% of the islet population in human. By three weeks of 
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gestation, the first endocrine cells to appear are the beta cells, these are then 

followed by the alpha cells (at 8weeks), then the delta cells and then the 

epsilon cells (at week 9). PP cells begin to appear at about week 17 (Jeon et 

al., 2009). The primary function of beta cells is the synthesis and secretion of 

insulin (Xavier, 2018, Seino and Bell, 2008). Many metabolites (amino acids, 

free fatty acids, and ketones), neurotransmitters (acetylcholine and 

norepinephrine) and hormones (GLP-1, GIP, Glucagon, Gastrin, Secretin, 

CCK and PACAP) induce insulin secretion but the most important is glucose. 

Glucose induces and amplifies insulin secretion.  

The secreted form of insulin has 51aa, although insulin is initially translated as 

a 110aa protein known as preproinsulin. Preproinsulin has a hydrophobic N-

terminal 24aa residue signal peptide which interacts with a signal recognition 

particle (ribonucleoprotein particle) in the cytosol. The nascent preproinsulin is 

translocated into the lumen of the rough endoplasmic reticulum (RER). Signal 

peptidases on the inner surface of the RER then cleave the signal sequence 

to form proinsulin. Following this event, the signal sequence is degraded 

rapidly. Under the catalysis of enzymes and associated chaperone proteins 

such as protein-thiol reductase, proinsulin is folded and three disulphide bonds 

are formed within the molecule. In a rate-limiting step, proinsulin is transported 

to the Golgi apparatus where it is packaged into immature secretory vesicles. 

In these vesicles, proinsulin is cleaved by trypsin-like enzymes PC1/3  and 

PC2 into mature insulin and a 31aa residue connecting peptide (C-peptide) 

(Seino and Bell, 2008, Fu et al., 2013).  

Glucose enters the beta cells through a facilitated form of transport via the 

glucose transporters, GLUT1 and GLUT2. Once glucose enters it becomes 
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phosphorylated by glucokinase to form glucose-6-phosphate (G6P) to initiate 

glycolysis. Metabolism via glycolysis yields pyruvate which is converted to 

acetyl-CoA catalysed by pyruvate dehydrogenase. Acetyl-CoA then enters the 

tricarboxylic acid cycle in which ATP is produced and transported to the 

cytoplasm. An increase in cytoplasmic ATP causes the closure of ATP 

sensitive potassium channels, which prevents K+ efflux from the cell and 

induces depolarisation of the plasma membrane. This event promotes the 

opening of the L-type voltage-dependent Ca2+ channels leading to an influx of 

Ca2+ into the cytosol. Ca2+ influx causes insulin secretory granules to move 

towards the plasma membrane where they dock and fuse for exocytosis of 

insulin to occur (Marchetti et al., 2017b).  

Since the thesis focuses on the role of STAT6 in beta cells, I will expand more 

on beta cell models and some advantages and disadvantages. 

Beta cell study models 

The study of beta cells has been limited by the accessibility and availability of 

pancreatic tissue (Morgan, 2017). Primary beta cells obtained from individuals 

are rare to find and usually undergo various treatments to isolate beta cells, 

which changes their functionality and potentially skew experiments. 

Additionally, maintaining these primary cells out of their in vivo habitat can be 

laborious and will require the technical expertise, hence research on beta cells 

is mostly dependent on cell lines and animal models (Skelin et al., 2010).  

The use of cell lines is advantageous in that experiments performed with these 

are generally reproducible over a limited number of passages. Cell lines can 

also be transfected and manipulated to investigate gene expression or the 

cytotoxicity of different agents (Ulrich et al., 2002). Many different rodent cell 
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lines derived from virus or radiation induced insulinomas. The rat insulinoma 

cell line (RIN) and inulinoma cell line (INS-1E) were both derived by x-ray 

irradiation of rat insulinomas (Asfari et al., 1992, Skelin et al., 2010). RIN cells 

differ in their glucose response (insulin decreases with passages) and 

transport compared to the native beta cells and hence not appropriate for 

glucose stimulated insulin secretion assays (Halban et al., 1983). The INS-1E 

cells respond to glucose stimulated insulin secretion within physiological range 

but differ in total insulin content (about 20% compared to 60% in the native 

beta cell of which 10% can be released) and require the use of toxic beta 

mercaptoethanol to culture (Asfari et al., 1992). The mouse insulinoma (MIN6) 

cell line are derived from neoplastic islet cells transduced with SV40 under the 

insulin promoter. These cell response to glucose stimulated insulin secretion 

within physiological ranges in the presence of nicotinamide and sometimes 

this response is lost between passages (Miyazaki et al., 1990). Other cell lines 

have been reported but disadvantaged by their relatively low response to 

glucose stimulated insulin secretion or no insulin content (Skelin et al., 2010). 

Some human derived beta cell lines have been developed, for example, the 

Flatt lab through electrofusion of isolated human pancreatic beta cells and 

immortalised human ductal PanC-1 epithelial cell line developed the 1.1B4, 

1.4E7, and 1.1E7 (McCluskey et al., 2011). Although these cells have been 

reported to respond to glucose stimulation within physiological ranges, in our 

hands these cells have produced inconsistent results. Another human cell line 

developed is the EndoC H1 which is herein detailed in materials and methods 

(section 2.2.1.2).  

The rationale for the use of animal models in research lies in the similarities 

between the pathologies in humans, dogs, cats, monkey, pigs, mice and rats 
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(O’Kell et al., 2017). Animal models provide information on the various 

pathways and their possible role in T1DM. For instance, poor antigen 

presenting cell maturation reported in both NOD mice and humans was a head 

start to beta cell auto-antibodies (Serreze and Chen, 2005). Several animal 

models for T1DM have been reported and are generated by either chemically 

inducing insulin deficiency (Streptozotocin-induced), genetic induction (AKITA 

mice), virally induced (using coxsackie B, encephalomyocarditis, Kilham rat or 

LCMV virus) and spontaneous autoimmune (NOD mice and BB rats) (King, 

2012). The difficulty with the use of animal models in T1DM research comes 

from the heterogeneity of the disease and the fact that the pathogenesis of the 

human T1DM is not completely understood. T1DM heterogeneity arises from 

ages of onset, differences in the genetics and differences between individuals 

(von Herrath and Nepom, 2009). A few translating successes and failures have 

been reported in animal models. For example, the use of anti-CD20 in NOD 

mice has now been reported in humans to have a considerable success in 

subjects with high C-peptide (Herold et al., 2011). The Finish trial  in which oral 

insulin was administered to children was first established in NOD mice before 

translating to human failed to have an effect in children as recorded in mice 

(https://clinicaltrials.gov/ct2/show/NCT00336674) (Funda et al., 2014). The 

differences in T1DM between mice, rats and humans possibly account for most 

of the failed translations. The heterogeneous nature of T1DM in humans with 

varying in age of onset and different genetics (Leete et al., 2016) and hence 

the choice of the animal model should be representative of the type of T1DM 

one seeks to understand (von Herrath and Nepom, 2009). The 

pathophysiology in mice and rat models differs from humans in terms of the 

autoantibodies detected, mice and rats mostly have the ICA autoantibody (with 
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the exception of NOD mice which can also have IAA and GAD) while humans 

have 7 types of antibodies (CHATZIGEORGIOU et al., 2009). Additionally, the 

pancreatic architecture and insulin levels differ between humans and animals. 

The rat and mouse islets are reported to have alpha cells on the outside 

surrounding a core of beta cells (homotypic contact) while human beta cells 

and alpha cell intermingle in no particular pattern (heterotypic contact) 

(Abdulreda et al., 2013). The human islet has more alpha cells (35%) when 

compared to the rodent models (18%) (Seino and Bell, 2008). Physiological 

differences have been reported such as the effect of ATP on human islets, 

which leads to insulin release, but in rodents have had conflicting reports 

(Abdulreda et al., 2013). Additionally, mice have a higher fasting blood glucose 

compared to humans, while rats show a closer figure to humans. Rats have a 

fasting blood glucose of about 5.65 mmol/L (Wang et al., 2010), mice 6.1 

mmol/L (Sun et al., 2016) and humans 5.6 mmol/L (Kahn et al., 2014). 

Although differences exist between animal models, these models have 

contributed extensively to the understanding of beta cell pathophysiology.  
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1.3 Mechanisms of beta cell death in Type 1 diabetes 

Gaining a full understanding of the mechanisms of beta cell death in T1DM 

has been complicated by many factors including the limited access to the 

whole pancreas from human donors (and thus an over-reliance on rodent 

data). When human samples are available there is variability between donors, 

fixation methods and autolysis occurring during the time of death that can 

obscure the disease pathology (Morgan et al., 2014). Therefore, the precise 

mechanisms involved in beta cell death remain uncertain but are probably 

varied and depend on a myriad of factors including both the underlying cause 

of diabetes, genetic factors and the extent of immune system activation. In the 

two main forms of diabetes (T1DM and T2DM), there is beta cell death, with 

the key difference being that there is an autoimmune attack of beta cells in 

type I which is not seen in T2DM (Cnop et al., 2005). For the purpose of this 

thesis, I will expand more on the mechanisms of beta cell death in T1DM.  

1.3.1 Genetic susceptibility 

HLA 

As already described, polymorphisms within the HLA class lI gene family have 

the strongest association with T1DM, and these genes are found in the human 

leukocyte antigen region on chromosome 6p21.3. The HLA region codes for 

homologous cell-surface proteins that are known to be the most polymorphic 

in the human genome. Their polymorphic nature gives the immune system an 

advantage against a wide range of microorganisms, allowing them to present 

a large diversity of peptides to T-cells (Janeway et al., 2001).  HLA II is 

expressed on specialised antigen presenting cells and is made up of  and  

chains, which together are used to present antigens to CD4+ T-cells (Nerup et 

al., 1974). Alleles that confer genetic risk of T1DM are structurally different at 
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the molecular level. A well-known example is the replacement of aspartic acid 

residue at position 57 of the beta chain of the DQ molecule by either valine, 

alanine or serine in people with T1DM. This modification causes a change in 

electric charge within the peptide-binding groove of HLA-DQ8 and changes its 

ability to bind insulin epitopes (Todd et al., 1987). It is suggested that the weak 

binding of some auto-epitopes by diabetogenic class II alleles fails to generate 

tolerance at the thymus or peripherally leading to the perpetuation of self-

recognising immune cells (Wong and Li, 2003).  

HLA class I, on the other hand, is expressed by all nucleated cells and presents 

intracellular antigens to CD8+ T-cells. HLA class I has been associated with 

T1DM independent of the HLA class II DR/DQ allele after adjusting analysis 

for linkage equilibrium (Noble et al., 2002).  

NON HLA loci 

In humans, the expression of insulin is modulated by the transcription of a 

highly polymorphic insulin gene variable number tandem repeat associated 

with a proinsulin promoter. One such polymorphism is in the VNTR I which 

causes a peripheral increase in INS mRNA but a much lower expression in the 

thymus (Durinovic-Belló et al., 2010). Low expression of INS mRNA in the 

thymus affects the negative selection process in which less bound T-cells  are 

not destroyed creating insulin autoreactive T-cells. Cytotoxic T-lymphocyte-

associated antigen 4 (CTLA-4) is another T1DM candidate gene which 

encodes for the T-cell receptor which is expressed on T-cells 48h after their 

activation. Although the exact mechanism by which polymorphisms in this 

gene contribute to T1DM is unclear, it is suggested that mechanism might 

involve alternative spliced variants of the gene. Targeted disruption of PTPN22 
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another candidate gene has been shown to lead to an increase in the number 

of memory T-cells although the mechanism remains elusive (Kim and 

Polychronakos, 2005). It is reported that the SNP R620W in PTPN22 causes 

a decrease in the B and T cell receptors, hence preventing the removal of 

autoreactive cells in the thymus (Sharp et al., 2015). At least 8 IL-4R SNPs 

have been reported and together with IL-4 and IL-13 haplotypes have been 

suggested to be involved in persistent islet autoimmunity and T1DM (Mirel et 

al., 2002, Erlich et al., 2009)  although the precise mechanism is not completely 

understood (Steck et al., 2005). Others have not found an association between 

these SNPs and T1DM (Maier et al., 2003). 

Conversely, other SNPs in the IL-4R, IL-4 and IL-13 lead to protection from 

T1DM (Bugawan et al., 2003). 

1.3.2 Apoptosis 

Apoptosis is a form of programmed cell death in which somatic cells die in a 

genetically controlled fashion without damaging neighbouring cells. In this form 

of cell death, the cell shrinks, undergoes pyknosis, the nuclear envelope 

collapses and DNA fragmentation occurs (Prause et al., 2016). The cell 

membrane integrity is altered to display properties that allow them to be 

phagocytosed easily. Apoptosis differs from necrosis, a process in which cells 

are lysed in an unregulated manner causing collateral damage to neighbouring 

cells (Alberts et al., 2002b). Apoptosis serves as a homeostatic process to 

maintain cell numbers and it is also used by the immune system to eliminate 

infected or damaged cells.  T1DM is a chronic slowly-progressing autoimmune 

destruction of beta cells, which presents clinically after about 70% ablation of 

the beta cells. It has been suggested that most probable cause of beta cell 
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death is due to apoptosis although evidence for this is limited in tissue (Pirot 

et al., 2008, Cnop et al., 2005). 

Apoptosis is the most studied form of beta cell death and can be ‘extrinsic’ (via 

death receptors) or ‘intrinsic’ (BCL-2- mediated or mitochondrial). There is an 

additional pathway that is T-cell mediated through perforins and granzyme-

dependent killing of the cell.  This perforin/granzyme pathway induces 

apoptosis through granzyme A or granzyme B (Thomas et al., 2009b).  

The extrinsic pathway of apoptosis 

The extrinsic pathway is regulated by the activation of TNF receptor 

superfamily members including FasL/FasR, and TNF-TNFR1 that are 

transmembrane receptors whose extracellular domains are rich in cysteine 

residues. The intracellular domain is made up of about 80amino acids and 

termed the death domain. Activation of FasR by the binding of its ligand (FasL) 

leads to the formation of a trimer which induces the formation of a Fas-

associated death domain (FADD) complex. This event leads to the recruitment 

of procaspase-8 to FADD to form the death-inducing complex (DISC). 

Procaspase-8 undergoes autocatalysis to form active caspase 8 and this 

activated form induces the cleavage of procaspase 3 to active caspase 3. 

Alternatively, caspase 8 can activate mitochondrial death signalling through 

the cleavage of the BH3-interacting domain death agonist (BID)  to a truncated 

bid (tBID)(Kawasaki et al., 2004). This process can be inhibited by a protein 

called c-FLIP that binds to FADD and caspase 8 making them ineffective 

(Elmore, 2007). The truncated tBID then activates BCL2 antagonist/killer 1 

(Bak) and BCL2 associated X, apoptosis regulator (Bax) activation. Activated 

Bax and Bak form pores within the mitochondria membrane leading to 
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cytochrome c release. Cytochrome c reacts with Apaf1 forming an 

apoptosome, leading to the activation of caspase 9 which in turn activates the 

execution caspases 3,6 and 7 induction of apoptosis (Dewson and Kluck, 

2009). Execution caspases translocate to the nucleus and trigger proteolysis 

and fragmentation of DNA through the activation of caspase activated DNase 

(CAD) (Liu et al., 1998b) (Fig 1.3). 

The intrinsic pathway of apoptosis 

The intrinsic pathway, on the contrary, is activated by withdrawal of growth 

factors, hormones and cytokines that suppress death signals. Importantly, it is 

non-receptor mediated but can also be activated by viral infections, radiation, 

toxins, and  free radicals (Elmore, 2007). The intrinsic pathway relies on the 

delicate balance between the pro-apoptotic BCL-2 members Bax, Bak, (BCL2 

interacting mediator of cell death (Bim), BCL2 associated agonist of cell death 

(Bad), BID,  and Egl-1 and anti-apoptotic BCL-2 members; Bcl-XL, Mcl-1, and 

Bfl-1 of mitochondrial proteins (Thomas et al., 2009a). BCL-2 proteins reside 

in the outer mitochondrial membrane and regulate mitochondrial membrane 

permeability. A stimulus that promotes intrinsic apoptosis will initiate the loss 

of mitochondrial transmembrane potential, which is irreversible, and thus lead 

to programmed cell death. Transcriptional upregulation of pro-apoptotic BCL-

2 family members leads to the activation of Bax/Bak that diminishes the 

mitochondrial transmembrane potential leading to the release of cytochrome c 

and Smac (also known as Diablo) from the mitochondria into the cytosol. 

Cytochrome c interacts with the adapter protein Apaf1 and together form the 

apoptosome, this once formed recruits and activates procaspase-9. Under 

normal conditions, prosurvival BCL-2 members prevent Bax/Bak activity by 

binding to them (Prause et al., 2016) (Fig 1.3).  
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The perforin/granzyme apoptosis 

The killing of beta cells by CD8+ cytotoxic T-cells is suggested to be mediated 

via perforins and granzymes or through the secretion of pro-inflammatory 

cytokines. Perforins are cytolytic proteins expressed by CD8+ T-cells and are 

localised in granules together with granzymes which are released by 

exocytosis in response to stimulation of T-cells following antigen recognition of 

HLA I molecules. Released perforins form transmembrane pores in a Ca2+ 

dependent manner, this enables the entry of granzymes (serine proteases) 

which activate apoptotic caspases (Thomas et al., 2009b). Interestingly, a 

report on perforin-deficient NOD mice revealed that these mice were delayed 

from developing diabetes, however, they displayed similar levels of insulitis 

compare to wild type mice. These data suggested the killing of beta cells 

mediated by T-cells  does not require perforins but might be propagated by 

other mechanisms  such as FAS ligand binding and cytokine secretion (Kägi 

et al., 1997). 

Granzyme A, activates DNA degradation through a DNAse NM23-H1 which is 

a tumour suppressor gene. The gene is responsible for immune surveillance 

of tumours wherein they induce apoptosis in tumour cells. A nucleosome 

assembly known as SET normally inhibits this gene. Granzyme A acts by 

cleaving the SET complex releasing NM23-H1 which leads to DNA damage 

and inhibition of repairs (Martinvalet et al., 2005). 

The granzyme B pathway activates apoptosis in a caspase-dependent manner 

via a single-stranded DNA damage. Granzyme B like caspases cleaves 

proteins at aspartate residues leading to the activation of procaspase-10 or 

cleavage of inhibitor of caspase-activated DNAse (CAD). It has also been 

shown that granzyme B can cleave BID leading to the subsequent release of 
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cytochrome c (act of intrinsic pathway) or can directly cleave caspase-3 

bypassing the upstream signalling pathway (Martinvalet et al., 2005). The 

protection of beta cells from granzyme induced cell death by IL-13 remains to 

be investigated but it is reported that loss in STAT6 leads to increase in NM23-

H1 mRNA (Li et al., 2012). 

Both extrinsic and intrinsic apoptosis have a common endpoint, the execution 

phase. It involves the execution caspases (caspase 3, 6 and 7). Caspase-3 is 

pivotal to execution as it cleaves endonuclease CAD from its inhibitor. CAD 

degrades chromosomal DNA and causes chromatin condensation (Elmore, 

2007) Fig 1.3.  Caspase 3 has been reported to be the main executioner 

caspase, firstly because it activates other executioner caspases. Secondly, the 

final stages of apoptosis such as nuclear condensation, chromatin margination 

and DNA fragmentation are only performed by caspase 3. Caspase 6 and  7 

seem to have more specialised roles  in apoptosis  upstream of the final stages  

which are, proteolysis of  Lamin A (a supporting scaffolding protein of the 

nuclear envelop) by caspase 6 and proteolysis of poly-ADP ribose polymerase 

(PARP) by caspase 7 (Slee et al., 2001). (Fig 1.3).
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Figure 1. 3: Intrinsic, Extrinsic and perforin granzyme pathways for apoptosis  

Apoptosis can occur by either by 1) extrinsic mechanisms where cytokines and CD8+ T-cells induce death through cell surface receptors,  2) 

intrinsic mechanisms, which is induced by toxins or stress in a mitochondria driven fashion or by 3) perforin/granzyme mechanisms usually 

secreted by CD8+ cells. All of these pathways ultimately converge in some way at the level of the mitochondria. Modified from Pirot et al., (2008) 



68 
 

1.3.3 Pro-inflammatory cytokines and beta cells 

Although the mechanism of beta cell death in T1DM is still not completely clear, 

the mechanisms implicated include a) expression of the Fas ligand or death 

receptors on beta cells. b) CD8+ T-cell release of granzymes and perforins. c) 

immune cell secretion of pro-inflammatory cytokines  such as IL-1, TNF-, IFN-

 by CD4+, CD8+ T-cells (Prause et al., 2016). d) auto-antibody mediated cellular 

cytotoxicity (Wong and Wen, 2005).  

Persons with T1DM have a significantly higher proportion of circulating pro-

inflammatory cytokines (IL1, IL-6, and TNF-) than matched healthy controls 

(Chatzigeorgiou et al., 2010, Pham et al., 2011, Thomas et al., 2013, Gouda et 

al., 2018). In in vitro studies, the cytotoxic effects of these cytokines on beta cells 

involves the production of nitric oxide, reactive oxygen species and activation of 

apoptotic pathways (Thomas et al., 2013). 

It is well established that beta cell death can occur due to chronic exposure to 

pro-inflammatory cytokines. Human pancreatic beta cells express the IL-1 

receptor and are reported to secrete IL-1under high glucose (33.3mM) (Maedler 

et al., 2002). Activated macrophages have also been suggested to secrete IL-1 

in the pancreas of T1DM individuals (Eizirik et al., 2009). IL-1 has been shown 

to induce human and rodent beta cell dysfunction (by inhibiting insulin 

biosynthesis) and death in in vitro studies (Russell et al., 2013, Palmer et al., 

1989, Spinas et al., 1987, Cetkovic-Cvrlje and Eizirik, 1994).  Specifically, IL-1 

activates a cascade of signalling processes when it binds to its receptor, leading 

to the formation of multi-protein complex cytoplasmic domain made up of MyD88, 

Tollip, IL-1R, IL-1 receptor associated kinase (IRAK)-1 and IRAK-4. IRAK-4 

activates IRAK-1, which interact with TNF receptor associated factor (TRAF)-6 
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that in turn activates nuclear factor kappa B subunit 1 (NF-B) or mitogen-

activated protein kinase 1 (MAPK) and inhibitor of nuclear factor kappa B kinase 

subunit beta (IKK). IKK then activates inhibitors of NF-B leading to translocation 

of NF-B to the nucleus. Once in the nucleus, it modulates the expression of 

inducible Nitric Oxide (iNOS) which leads to beta cell death through oxidative 

stress and mitochondrial damage (Collier et al., 2011) (Fig 1.3).   

TNF- on its own has a little effect on beta cell cytotoxicity but in combination 

with IL-1 can induce beta cell death and inhibit insulin biosynthesis (Cetkovic-

Cvrlje and Eizirik, 1994). Specifically, TNF- binds to its receptor (TNF-R1) and 

this leads to the formation of trimer with the TNF receptor-associated death 

domain protein (TRADD). TRADD recruits TRAF-2 and then together with TRAF-

6, this protein complex activates NF-B leading to P38 and JNK activation 

(Elmore, 2007). Rodent beta cells express low levels of TNF-R1 but not TNF-R2 

and have been shown to respond to TNF- stimulation accordingly inducing NF-

B (Stephens et al., 1999, Kwon et al., 1999). TNF- has been reported to be 

secreted by human islets (Hanley et al., 2006) and also by NKT cells, CD4+ T-

cells and some neurons (Eizirik et al., 2009). 

IFN- has been reported to inhibit insulin release and to induce beta cell death 

(Cetkovic-Cvrlje and Eizirik, 1994, Laffranchi and Spinas, 1997). IFN- binding to 

its cognate receptor (IFNGR1) leads to the autophosphorylation of a Janus 

Kinase and recruitment and activation of STAT-1 which homodimerizes, migrates 

to the nucleus and modulates the expression of genes such as Myc proto-

oncogene protein (c-Myc), BCL2 and IRF-1, Bak expression which leads to 

mitochondrial permeability and release of cytochrome c eventually leading to cell 

apoptosis (Zhou et al., 2008). Knockdown of STAT-1 and interferon regulatory 
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factor (IRF)-1 in IFN- stimulated INS-1E beta cells protected them from 

apoptosis. Knockdown of STAT1 also downregulated the production of NO. 

Exposure of rodent beta cells to IFN- leads to the downregulation of beta cell 

functional genes glucokinase, Pdx1 and Nkx2.2 that seem to be IRF-1 modulated 

(Moore et al., 2011). It is suggested that dendritic cells and CD4+ and CD8+ T-

cells secrete IFN-gamma (Ablamunits et al., 1998, Eizirik et al., 2009). 

Fas seem to be absent from the normal human islet according to 

immunohistochemistry on pancreatic sections but is upregulated in IL-1 treated 

islets (Loweth et al., 2000). Fas expression has been induced in rodent beta cells 

using IL-1, TNF- and IFN-. Transgenic NOD mice with the dominant negative 

form of Fas were protected from developing diabetes and from cytokine induced 

Fas upregulation (Allison et al., 2005).  

Whilst the roles of IL-1, IFN- and TNF- are well established in inducing beta 

cell death, the role of IL-6 remains somewhat controversial. IL-6 in combination 

with IL-1 has been shown to potentiate beta cell death in response to a variety 

of cytotoxic stimuli (Prause et al., 2016, Russell et al., 2013, Ellingsgaard et al., 

2008), whilst studies by Choi et al. (2004) have shown the reverse suggesting 

that IL-6 reduces the incidence of diabetes in NOD mice (Kristiansen and 

Mandrup-Poulsen, 2005). The source of IL-6 at the islet site is also a matter of 

debate. Many investigators assume that IL-6 will primarily be released by influent 

immune cells, however, it has also been shown that IL-6 is expressed by islet 

endocrine cells and that its release can be stimulated under certain conditions 

(Campbell et al., 1989). 

These are not the only cytokines suggested to induce beta cell death. IL-17A has 

been shown to increase the expression of IL-1, IFN-, and TNF-mRNA and 
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proteins in human pancreatic islets, potentially exacerbating beta cell apoptosis 

(Grieco et al., 2014, Arif et al., 2011). Moreover, IL-12, IL-23, IL-24 and IL-33 

have been studied in pancreatic beta cells and have each shown the capacity to 

induce oxidative and endoplasmic reticulum(ER) stress which eventually leads to 

beta cell dysfunction and death (Taylor-Fishwick et al., 2013, Weaver et al., 2015, 

Prause et al., 2016).  

1.3.4 Anti-inflammatory cytokines and beta cells 

Whilst the actions of pro-inflammatory cytokines are extensively studied, the 

actions of anti-inflammatory cytokines (IL-2, IL-4, IL-10, IL-13 and IL-22) on beta 

cells have received much less attention. Anti-inflammatory cytokines can be 

secreted by a variety of immune cells such as CD4+ T-cells, M2 macrophages 

and regulatory B cells (Russell and Morgan, 2014).  IL-10 and IL-22 have been 

shown to protect beta cells from apoptosis, to suppress ER stress and to promote 

glucose-stimulated insulin secretion (Xu et al., 2010, Hasnain et al., 2014).  

The actions of IL-4 and IL-13 have been reported in vitro to protect human and 

rodent beta cells from cytotoxicity induced by pro-inflammatory cytokines  and in 

vivo to protect NOD mice from developing diabetes (Russell et al., 2013, Manna 

and Aggarwal, 1998, Rutti et al., 2016, Zaccone et al., 1999, Cameron et al., 

1997). Systematically, It is suggested that IL-4 might act by increasing the  

regulatory T-cell population and that IL-13 might act by suppressing NF-B 

activity, while also upregulating beta cell survival genes (Cameron et al., 1997, 

Manna and Aggarwal, 1998, Rütti et al., 2016). 

This thesis is focused on studying the mechanism by which IL-13 (and the related 

cytokine IL-4) protects beta cells from cytotoxicity. Treatment of cells with these 

cytokines is reported to stimulate Jak/STAT signalling pathway. 
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1.4 The Jak/STAT signalling Pathway 

Cells receive external signals from different proteins such as growth factors, 

cytokines and hormones through a myriad of cell surface receptors, which 

connect to different intracellular pathways in order to communicate information to 

the nucleus. The Jak/STAT signalling pathway is one such signalling pathway, 

and it is responsible for signalling in response to different soluble factors such as 

erythropoietin, IL-13 and growth hormone  (Sehgal et al., 2003). The canonical 

pathway is constituted of two key families of proteins; these are the Janus kinase 

(Jak) proteins and the Signal Transducer and Activators of Transcription (STAT) 

protein families. The pathway is negatively regulated by endogenous inhibitors 

including suppressors of cytokine signalling (SOCS), SH2 containing protein 

tyrosine phosphatase (SHP)  1 and 2 proteins and protein inhibitors of activated 

STATs (PIAS) (Liongue and Ward, 2013). 

Janus Kinases 

There exist four members of the mammalian Jak family: Jak1, Jak2, Jak3 and 

Tyrosine Kinase 2 (Tyk2). Jaks are large non-receptor tyrosine kinases ranging 

in size from 120-140kDa (Zouein et al., 2011). Structurally, Jaks are divided into 

seven Jak homology domains (JH1-7) (Fig 1.4). JH1 is the tyrosine kinase 

domain and is responsible for the kinase function of the protein. The JH2 is a 

pseudokinase domain, which has no kinase activity and is reported to play a role 

in the functional regulation of the kinase domain. This structural architecture of 

the kinase domains gave the Jaks their name “Janus” derived from the two-faced 

Roman god of beginnings, endings and duality (Yamaoka et al., 2004). The 

protein also contains an SH2 like domain (between JH3-JH4) whose function 

remains unknown and a FERM domain (JH4 to JH7). The FERM domain 

mediates the binding of Jaks to various cytokine receptors and together with the 
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pseudokinase domains can modulate the activity of the kinase domain (Sehgal 

et al., 2003, Stark and Darnell, 2012, Yamaoka et al., 2004). Jaks are activated 

when associated with various receptors of the cytokine superfamily, or other 

receptors such as certain tyrosine kinases, or G-protein coupled receptors (Table 

2). Canonically, Jaks are mostly associated with receptors, but non-receptor 

associated Jaks exist and have been reported to have other functions such as 

gene regulation (Zouein et al., 2011, Noon-Song et al., 2011). 
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Table 2 : Jaks their associated receptors and growth factors 

Receptors Cytokines and/or growth 

factors 

Associated Jaks Ref 

Type 1 cytokine receptors 

C receptors IL-2, IL-4, IL-7, IL-9, IL-15, IL-21 Jak1, Jak3 1 

gp130 IL-6, IL-11, IL-12, IL-23  Jak1, Jak2 1 

EPOR EPO Jak2 2 

PrlR Prolactin Jak2 3 

OSMR OSM Jak2 4 

LIFR LIF Jak1, Jak2 1 

GHR GH Jak2 5 

Type II cytokine receptors 

IFNGRA IFN- Jak1, Jak2, Tyk2 1 

IFNAR1&2 IFN- Jak1, Tyk2 1 

IL10RA IL-10 Jak1, Tyk2 6 

IL20RA IL-20 Jak1, Jak2 7 

IL22RA1 IL-22 Jak1, Tyk2 8 

Chemokine receptors 

CXCR4 SDF-1 Jak2, Jak3 9 

Seven membrane Receptors 

CCK2R Gastrin Jak2 10 

Angiotensin II 

Receptor 

Angiotensin II Jak2, Tyk2 1 

Receptor Tyrosine Kinases 

VEGF R1, R2, R3 VEGF Jak2 1 

EGFR EGF Jak1, Jak2 11 

PDGFR PDGF Jak2 12 

FGFR FGF Jak2 13 

IGF-1R IGF Jak1, Jak2 14 

TrkBR TrkB Jak2 15 

1(Sehgal et al., 2003) 2. (Choi et al., 2010) 3. (Fujinaka et al., 2007) 4. (Dharminder Chauhan et al., 1995) 

5. (Waters and Brooks, 2015) 6. (Williams et al., 2004) 7. (Lee et al., 2013) 8. (Lejeune et al., 2002) 9. (Vila-

Coro et al., 1999) 10. (Ferrand et al., 2005) 11. (Andl et al., 2004) 12. (Masamune et al., 2005) 13. (Dudka 

et al., 2010) 14. (Gual et al., 1998) 15. (Kim et al., 2015) 
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Every member of the Jak family has been implicated in T1DM and since the thesis 

is centred on the Jak/STAT pathway, the various Jaks have been illustrated on 

table 3 below and their link to T1DM described. 

Table 3: Jaks and beta cell health  

Jak Role in beta cells or T1DM Reference 

Jak1 
 Blockade of Jak1 protected NOD mice from 

rapidly developing T1DM 

(Trivedi et al., 

2017) 

Jak2 

 Blockade  of Jak2 inhibits IFN- signalling 

hence protects NOD mice from diabetes  

 Phosphorylation induced by EPO and 

lactogens protects beta cells from 

cytotoxicity 

 Inhibition reversed IL-13 protection of INS-

1E during serum withdrawal  

(Trivedi et al., 

2017)  

(Fujinaka et al., 

2007) 

 

(Russell et al., 

2013) 

Jak3 

 Inhibition of Jak3 reverses IL-4 protection of 

INS-1E from cytokine-induced death 

 Inhibition of Jak3 protected islets from pro-

inflammatory cytokine mediated cell death 

(Kaminski et al., 

2010) 

(Lv et al., 2009) 

 

Tyk2 

 SNP mutations in Tyk2 are associated with 

T1DM 

 Tyk2 knockdown reduces MHCI expression 

and cell death in human islets induced by 

poly-IC 

 Tyk2 transduces IFN- signals 

 

(Marroqui et al., 

2015) 

(Marroqui et al., 

2017) 
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Figure 1. 4: Janus kinase and STAT domain structures 

a. Domain structure of Janus Kinases b. Domain structure of STAT, C= C-

terminal, N= N-terminal domain, P= phosphorylated tail, T=transactivation 

domain 
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Signal Transducers and Activators of Transcription (STAT) 

The STAT proteins are a family of cytoplasmic transcription factors that are 

activated in response to various latent cytokines and growth factors. There are 

seven identified members of the STAT family in humans; these are STAT1, 

STAT2, STAT3, STAT4, STAT5a, STAT5b and STAT6. STATs are between 750-

800 amino acids in length (shorter isoforms have been reported that lack a 

functional transcriptional activation domain, although they can bind and occupy 

certain binding sites) (Stark and Darnell, 2012). Each of the STAT proteins has a 

similar structure, containing an N-terminal domain, a coiled-coil domain, a DNA 

binding domain, a Linker domain, an SH2 domain, and a trans activation domain 

(Fig 1.4b).  

The N-terminal domains of the different STAT family proteins vary subtly in length 

(124-145 amino acids). Although most STATs use the SH2 domain for dimer 

formation, STAT4 has been suggested to use the N-terminal domain instead 

(Sehgal et al., 2003, Hossain et al., 2013, Vinkemeier et al., 1998). The N-

terminal domain is also important for post-translational modification of STATs 

(such as FoxP3-STAT3) (Hossain et al., 2013), and may negatively regulate the 

phosphorylation status of STAT1 at Y701 (Shuai and Liu, 2003).  

The coiled-coil domain has been reported to have a series of functions. For 

example, it is the binding site for other proteins including transcription factors (e.g. 

IRF9, or other STATs such as STAT3) (Vogt et al., 2011). Furthermore, the 

coiled-coil domain has been reported to be essential for nuclear translocation of 

STAT proteins (Ma et al., 2003). The C-C domain of STAT3 has been reported 

to be important for its SH2 domain binding to gp130 receptor upon activation by 

EGF or IL-6 (Zhang et al., 2000).  The DNA  binding domain has immunoglobulin 

variable fold structures, and it is through these regions that STAT dimers bind to 
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DNA at palindromic response elements or GAS motifs TTCN3/4GAA (Heim, 

2003).  

The linker domain (LD) is a ridged spacer which connects the DNA binding 

domain and the SH2 domain (Liongue and Ward, 2013). The SH2 domain is 

critical in mediating the binding of STATs to receptors and mediates the homo 

and hetero dimerization of STATs. Specifically, the SH2 domain of an activated 

STAT protein facilitates its binding to other phosphorylated  STAT monomers 

(Heim, 2003).  

The transcriptional activation domain (or trans-activation) can contain conserved 

tyrosine, serine or threonine residues that are phosphorylated at the receptor 

complex depending on the STAT molecule. In STAT6, the tyrosine at position 

641 is essential for transcriptional activity, while Threonine 645 is a negative 

regulator of DNA binding and transcription. The role of serine 756 is not 

completely understood but is suggested to interact with other molecules such as 

PP2A (Wang et al., 2004). The trans-activation domain is the least conserved 

domain and has been reported to interact with many proteins such as BRCA1 

however; its biological significance is not completely understood (Sehgal et al., 

2003, Lim and Cao, 2006). 

The 7 members of the STAT family have in one way or other been implicated in 

T1DM but for the purpose of this thesis, STAT6 will be the main focus. Table 4 

illustrates the 7 STAT members and the literature reporting their potential role in 

type 1 diabetes. 
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Table 4 : Signal Transducers and Activators of Transcription family and beta cell 
function 

 

 

 

STAT Role in T1D References 

STAT1  Knockout of STAT1 protects NOD mice 

from diabetes 

 Upregulated in the insulin containing 

islets of patients with T1DM 

 Drives apoptosis in rat beta cells 

stimulated with pro-inflammatory cytokines 

(Kim et al., 2007) 

 

  (Richardson et al., 

2016) 

(Moore et al., 2011) 

 

STAT2  Propagates IFN- signalling in T1D 

 Induces inflammation and ER stress in 

human beta cells 

(Santin et al., 2012) 

(Marroqui et al., 

2017) 

STAT3  Activating mutations in STAT3 induce an 

autoimmune form of neonatal diabetes 

 Activated in T-cells of T1DM individuals 

 

 Important for pancreatic development 

and insulin secretion 

(Flanagan et al., 

2014) 

(Hundhausen et al., 

2016) 

(Kostromina et al., 

2010) 

STAT4  Enhances IL-12 mediated beta cell death 

 

 SNPs in STAT4 have been suggested to 

be involved in early development of 

T1DM 

(Weaver et al., 

2015) 

 

(Lee et al., 2008) 

STAT5(A 

&B) 

 Important for beta cell insulin secretion 

 Lactogens protect rodent and human 

cells via STAT5 from STZ induced 

cytotoxicity 

 Important for beta cell growth  

(Jackerott et al., 

2006, Lee et al., 

2007) 

STAT6  IL-4 and IL-13 induce STAT6 

phosphorylation and protect rodent beta cells 

but the mechanism is unclear 

 

 Whole body knockout decreases insulin 

action and IL-4 administration improves 

insulin action and prevented autoimmunity  

 

(Russell et al., 2013, 

Kaminski et al., 

2007, Kaminski et 

al., 2010) 

(Ricardo-Gonzalez 

et al., 2010, Lau et 

al., 2012) 
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1.4.1 Central dogma of IL-13 and IL-4 signalling  

Like many cytokines, the actions of IL-13 are dependent on the type of cell being 

stimulated, for example, in B cells it induces the synthesis of IgE and in 

monocytes, it inhibits pro-inflammatory cytokine synthesis (Punnonen et al., 

1998). IL-13 shares similar functions to IL4, although it has only approximately 

25% amino acid sequence homology. Immune cells such as invariant natural 

killer T-cells (iNKT) (Usero et al., 2016) and innate lymphoid type 2 (Hams and 

Fallon, 2012) cells have been shown to secrete IL-4 and IL-13. Although most of 

the secretion of IL-4 and IL-13 is thought to be by infiltrating immune cells, the 

human pancreatic islet has also been shown to express IL-13 mRNA (Olsson et 

al., 2005).  

IL-4 signals by binding either to type I or type II cell surface receptors. Type I 

receptors are comprised of an IL-4R subunit and the common gamma chain 

(C). However, IL-4R dimerises with IL-13Rto generate a   type II receptor. 

IL-13 signals by binding to the type II receptor (made up of IL-13R1 and IL-4R. 

Alternatively, IL-13 can also bind to another receptor IL-13R2 the role of which 

has not been completely elucidated. However, IL-13R2 has a higher affinity for 

IL-13 than the type II receptor; as such, it acts as a negative regulator of the 

canonical IL-13 signalling.  

Unstimulated receptors exist as monomers with their associated Jaks. Binding of 

cytokines leads to receptor dimerization (IL-4R with C or IL-13R), bringing the 

associated receptor Jaks in close proximity leading to trans-phosphorylation of 

each other. Canonically,  It is suggested that IL-4 activates Jak1/Jak3 whereas 

IL-13 activates Jak1, Jak2 or Tyk2 (Jiang et al., 2000). However, the exact 

complement of Jaks activated in response to these cytokines depends on the cell 
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type. Once activated the Jaks phosphorylate the key tyrosine residues on the 

cytoplasmic tail of the cytokine receptor. It is suggested that signalling of both IL-

13 and IL-4 occurs on the IL-4Rwhich contains five tyrosine residues, Y497 for 

the recruitment of the IRS2,  Y575, Y603, and Y631 for STAT6 docking and Y713 

as a negative regulator of signalling (Hershey, 2003).  It is also known that STAT3 

is activated in response to the stimulation of these cytokines by docking on the 

cytoplasmic tail of IL-13R1 (Y402) (Umeshita-Suyama et al., 2000). STAT6 

binding to the receptor leading to its phosphorylation by Jak proteins, which 

induces the dissociation of STAT6 from the receptor and promotes the 

dimerization of phospho-STAT6 proteins and sometimes heterodimerisation with 

STAT3 (Delgoffe and Vignali, 2013). Alternatively, the activation of IRS-2 leads 

to the activation of the PI3-K/AKT pathway (Russell et al., 2013). Homodimers of 

STAT6 are then translocated to the nucleus where gene transcription occurs 

(McCormick and Heller, 2015) Fig. 1.5. 
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Figure 1. 5: IL-13 and IL-4 Signalling pathway 

Schematic representation of Jak/STAT signalling. Cytokine binding leads to receptor dimerization, the activation of receptor-associated 

Jaks, followed by phosphorylation of tyrosine residues on the receptor tail to which STAT6 docks. Following docking STAT6 is 

phosphorylated, detaches from the receptor and dimerizes in the cytosol into the nucleus where it transcribes target genes. 
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Negative regulation of Jak/STAT signalling pathway 

The Jak/STAT pathway can be negatively regulated at two major levels; either at 

the level of the Jaks or at the level of STATs.  

Negative regulation of Jaks 

The most extensively researched negative regulator of Jaks is the suppressor of 

cytokine signalling (SOCS). There are at least 8 members of this family SOCS1-

7 and cytokine-inducible SH2 containing protein (CISH) (Shuai and Liu, 2003). 

The precise mechanism by which SOCS proteins inhibit Jak kinase activity 

remains to be completely understood, however, a number of possibilities have 

been suggested. For example, it is reported that a conserved sequence of SOCS 

called the extended SH2 domain with high affinity  for phosphopeptides might be 

the way the inhibitory mechanism works (Babon et al., 2006). Specifically, 

SOCS1 and SOCS3 have an extended SH2 domain which binds directly to the 

activation loop of Jak2 (Y1007 and Y1008) preventing the phosphorylation of 

tyrosine residues on the cytoplasmic tail of the receptor (Yoshimura and 

Yasukawa, 2012). Additionally, others have suggested that the SH2 domain of 

SOCS3 and CISH can bind directly to tyrosine residues on the cytoplasmic tail of 

the receptor inhibiting the binding of STATs (Nicholson et al., 2000).  

Alternatively, SOCS proteins contain another conserved region of 40 amino acids 

at C-terminus called the SOCS box, this region interacts with molecules that 

recruit ubiquitin transferase and this can lead to the degradation of the SOCS-

Jak complex (Shuai and Liu, 2003). 

Additionally, Jaks are regulated by protein tyrosine phosphatases such as SHP1 

and SHP2. These proteins dephosphorylate Jak2 and Jak1 at their activation 

loops (Alicea-Velázquez et al., 2013, You et al., 1999). SHP1 regulates EPO 

signalling by dephosphorylating any Jak2 which is associated with the EPO 
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receptor (Jiao et al., 1996). SHP1 has also been reported to dephosphorylate 

Jak1 in IFN- signalling in macrophages since SHP1 deficient macrophages 

show an increased Jak1 and STAT1 phosphorylation (David et al., 1995). 

Additional phosphatases have also been shown to interact with Jaks, for 

example, CD45 negatively regulates EPO and IFN signalling by 

dephosphorylating Jak1 and Jak3 (Irie-Sasaki et al., 2001). 

Regulation of STATs 

STAT activity can be regulated by post-translational modifications (e.g. 

phosphorylation, methylation and, ubiquitylation) or through their interaction with 

certain proteins, such as protein inhibitors of activated STATS (PIAS) and protein 

tyrosine phosphatases (PTP) (Shuai and Liu, 2003).  

As already described, the stimulation of cells by certain cytokines induces the 

tyrosine phosphorylation of STAT proteins at the transactivation domain, leading 

to dimerization and subsequent translocation to the nucleus. However, there exist 

threonine and, serine phosphorylation sites in some STATs proteins, which can 

also modify protein activity. For example, STAT1 full transcriptional activity and 

function after IFN activation requires serine phosphorylation (Sadzak et al., 

2008). However, in the context of STAT6, serine phosphorylation at the 

transactivation domain has been suggested to negatively regulate DNA binding 

(Maiti et al., 2005). Methylation also has a role in controlling STAT activity, for 

example, methylation of the Arg31 residue of STAT1 by arginine methyl-

transferase 1 increases DNA binding activity of STAT1 and is suggested to inhibit 

the interaction of PIAS1 with the protein (Shuai and Liu, 2003). This effect was 

independent of tyrosine and serine phosphorylation. Methylation of a similar 

residue (Arg27) in STAT6 has also been reported to enhance STAT activity with 
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increased tyrosine phosphorylation, nuclear translocation and DNA binding all 

observed (Chen et al., 2004). 

There are four members of the protein inhibitors of activated STATs (PIAS) family 

PIAS1, PIAS3, PIASX (PIAS2) and PIASY (PIAS4) and these are constitutively 

expressed within the beta cells (Segerstolpe et al., 2016). PIAS proteins can 

regulate STAT activity by; 1) Blocking DNA binding of STAT molecules, for 

example, STAT1 and STAT3 binding are blocked by PIAS1 and PIAS3 

respectively (Chung et al., 1997, Liu et al., 1998a). 2) PIAS2 and PIAS4 enhance 

the activity of  HDACs to inhibit transcription of STAT2 and STAT4 respectively 

(Arora et al., 2003, Liu et al., 2001) 3) STAT activity can be modulated by 

sumoylation of the STAT proteins, but this binding can either enhance or inhibit 

the activity of STAT molecules (Shuai, 2006).  PIAS proteins contain a 

serine/threonine rich domain suggested to be responsible for targeted binding, 

they include a Zn-binding RING-finger like domain for SUMO transfer, a scaffold 

attachment factor A/B for binding to scaffold and a matrix attachment regions in 

the nuclear matrix. PIAS proteins operate by binding to their STAT dimers thereby 

preventing STATs from interacting with the DNA (Seif et al., 2017). 

The Jak/STAT signalling pathway can also be regulated by cross talk between 

the STATs. For instance, pre-treatment of cells with one cytokine can lead to 

upregulation of genes that negatively regulate pathways induced by a different 

cytokine. For example, pre-treatment with IFN- inhibits IL-4 induced STAT6 

activation through the inhibition of transcription of IL-4R mRNA (So et al., 2000).  

Viruses have also been shown to target STATs for degradation; this is mediated 

through the polyubiquitin-proteasome pathway and provides a method of evading 

the immune system. Specifically, simian virus 5 has been reported to target 
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STAT1, parainfluenza virus targets STAT2 and mumps virus targets STAT1 and 

STAT3 through the assembly of STAT-specific ubiquitin ligase complexes (Ulane 

et al., 2005). These are then degraded by the proteasomal pathway. Additionally, 

enteroviruses have been reported to inhibit the translocation of IFN activated 

STAT1/2 heteromers to the nucleus by downregulating the karyopherin-1, a p-

STAT1 nuclear localisation receptor (Wang et al., 2017).  

In addition to the above mentioned regulations, STAT molecules can be regulated 

at the level of alternative splicing. For instance, alternative splicing of the STAT3 

gene generates two isoforms, STAT3 and STAT3 through a conserved 

acceptor site on exon 23, which leads to the addition of seven amino acids and a 

termination codon (Aigner et al., 2018). These isoforms compared to the wild-

type STAT3 have an altered C-terminal transactivation domain and the serine 

727 phosphorylation site. STAT3 was until recently suggested to be a dominant-

negative regulator of STAT3 but now known to have different transcription and 

regulatory activities (Caldenhoven et al., 1996). STAT3 and STAT3 are not the 

only isoforms, two other STAT3 isoforms exist STAT3 and STAT3 formed by 

proteolytic processing (Nakajima et al., 2003). Proteolytic processing is a post 

translation modification of proteins by protease cleavage of a single of multiple 

peptides leading to the activation or inhibition of the target protein (Neurath, 

1989). In STATs, proteolytic processing usually generates a C-terminally 

truncated STAT protein commonly referred to as STAT (Hendry and John, 

2004). Proteolytic processing of STAT6 has been described in mice to occur 

between amino acid 685-686 (Aspartate and methionine). The forced expression 

of this mutant forms have been reported to prolong the accumulation of STAT6 
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in the nucleus and induce apoptosis and cell growth suggesting a dominant 

negative effect (Hendry and John, 2004). 

1.4.2 The role of IL-13 and Jak/STAT6 in pancreatic beta cell health  

In T1DM IL-13 levels are reduced along with other anti-inflammatory cytokines 

(IL-4, IL-10) (Berman et al., 1996, Rapoport et al., 1998), however pro-

inflammatory cytokines secreted from infiltrating CD4+ and CD8+ lymphocytes or 

macrophages are increased during insulitis (Mandrup-Poulsen, 1996, Eizirik and 

Mandrup-Poulsen, 2001). One possibility is that the reduction in IL-13 secretion 

might be due to a dysfunction in the invariant NKT-cells (Usero et al., 2016).  In 

NOD mice models the cytokine is reported to reduce the incidence of diabetes 

(Zaccone et al., 1999). 

 In vitro studies have shown the expression of IL-13R1 and IL-4R in both 

human and rodent islets (Russell et al., 2013). The precise Jaks associated with 

the IL-4R or IL-13R1 in beta cells are not clearly defined but the involvement 

of Jaks in T1DM has been proposed (see table 2). IL-13 has been shown to 

activate STAT6, STAT3 and IRS2 and to protect rodent and human islets from 

the cytotoxic effects of pro-inflammatory cytokines (Russell et al., 2013, Rütti et 

al., 2016). STAT6 is more highly expressed in beta cells  in the islets  when 

compared to other islet cells  and the exocrine pancreas and its expression 

diminishes in T1DM persons as seen on stained tissue sections (Leslie et al, 

2018). Although IL-13 protects against cytotoxicity the mechanism by which this 

is accomplished is not completely understood. Additionally, the role of STAT6 in 

this pathway has not been reported in beta cells. 
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1.4.3 Therapeutic inhibition of Jak/STAT pathway 

The role of the Jak/STAT pathway in cell communication, growth and survival is 

established, as well as its role in autoimmune diseases and malignancy reported 

(Liu et al., 2015b).  Mutations that lead to inactivation of Jak1 and Jak2 are lethal 

in mice due to neurological and erythropoiesis dysfunction respectively the 

reason why these forms of mutations have not been seen in humans (Sehgal et 

al., 2003). Jak3 and Tyk2 inactivating mutations cause severe immunodeficiency 

disease and viral infections respectively, linking both of these to the immune 

system (Aittomäki and Pesu, 2014). Activating mutations of these pathways on 

the other hand have been reported in malignancies or proliferative disease. For 

instance the change in the amino acid valine to phenylalanine at position 617 in 

Jak2 (pseudokinase domain) leads to a constitutively active Jak2/STAT5 

signalling and heighten haematopoiesis and reported in patients with 

polycythaemia vera (Pesu et al., 2005, James et al., 2005). These gains in 

function indicate that inhibitory therapeutic intervention could play an important 

role in addressing these. Ruxolitinib is a potent Jak1 and Jak2 inhibitor FDA 

approved for the treatment of rheumatoid arthritis and polycythaemia vera 

irrespective of Jak2V617F mutations (Clark et al., 2014). Oclacitinib a pan-Jak 

inhibitor has also been approved for use in the treatment of atopic dermatitis in 

dogs (Cosgrove et al., 2013). Tofacitinib originally designed to specifically inhibit 

Jak3 has been reported to inhibit Jak1, Jak2 and to a lesser extend Tyk2 have 

been approved for the use in the treatment of severe rheumatoid arthritis. It is 

also suggested to be used for immunosuppression in autoimmune diseases and 

transplantations (Changelian et al., 2003).  

STATs are known to also have a gain or loss in function with mutations. For 

example, inactivating mutations in STAT5B  A630P have been reported to cause 
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growth retardation (Kofoed et al., 2003).  STAT3 inhibitory mutations have been 

reported to be important for immune response against bacterial (staphylococcus, 

pneumococcus) and fungal infections (candiditis) and an autosomal dominant 

hyper IgE syndrome (Job’s disease) due to a loss in IL-17 production (Milner et 

al., 2008). Activating mutations in various STATs have been reported in multiple 

leukaemias and lymphomas. For instance it has been shown that STAT6 D419G 

mutation enhances the expression of CD23 in some non-Hodgkin lymphomas 

(Bösl et al., 2015). STAT molecules are non-enzymatic proteins and hence 

therapeutic targeting is challenging, however, theoretically they can be targeted 

by preventing their phosphorylation, disrupting their SH2 domain hence 

preventing dimerization and receptor association and inhibiting DNA binding 

(Aittomäki and Pesu, 2014, O'Shea et al., 2015). One major challenge of 

specifically targeting STAT molecules lies in the similarities in their sequence 

homology. For examples, targeting of STAT1 is likely to interfere with STAT3 

activity which could be severe (O'Shea et al., 2015). A few molecules have been 

developed to target STATs although none has yet been approved for use in 

humans (Furqan et al., 2013).   
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 1.5 Aims 

IL-4 and IL-13 have been shown to protect NOD mice from developing T1DM and 

protect human islets and rodent beta cells from cytotoxic stimuli (Zaccone et al., 

1999, Cameron et al., 1997, Russell et al., 2013). However, the mechanism by 

which this protection is mediated remains undefined and the genes altered 

following stimulation of these cells are unknown. Furthermore, no study has 

clearly defined the complement of Jaks activated by IL-13 and IL-4 in beta cells 

and it is difficult to infer this information from other cell models since this differs 

between cell types. These cytokines signal by activating the transcription factor 

STAT6 and so the goal of this thesis was to investigate to the role of STAT6 in 

beta cell cytoprotection. This has been divided into the following aims; 

1. Assess the protective effect of IL-4 and IL-13 in rodent and human-derived 

beta cell lines (Chapter 3) 

2. Determine the complement of Jaks expressed in beta cells and reveal 

which are activated by IL-13 and IL-4 treatment (Chapter 4) 

3. Investigate the functional consequences of altered STAT6 expression and 

activity in beta cells (Chapter 5) 

4. Study the genes regulated by IL-13 stimulation of rodent and human beta 

cells and to assess whether these changes are dependent on STAT6 

activity (Chapter 4 and 5) 

5. Study the impact of novel genes induced by IL-13 and IL-4 stimulation on 

beta cells viability (Chapter 6). 
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1.6 Study hypothesis 

1. IL-13 protects beta cells from serum withdrawal, palmitic acid and pro-

inflammatory cytokines 

2. Loss of STAT6 attenuates the protection of beta cells by IL-13 from 

cytotoxic stimuli 

3. IL-13 and IL-4 protect beta cells from cytotoxicity by upregulating anti-

apoptotic genes in a STAT6 dependent manner 
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Chapter 2.0: Materials and Methods 

 

  



93 
 

2.0 Materials and Methods 

This chapter explains in detail the different methods and materials used in the 

various studies reported in this thesis. There are, however, chapters with specific 

methods that are detailed therein.  

2.1 Reagents  

Table 5: Chemicals and reagents 

Reagent Company Catalogue 
number 

2-Mercaptoethanol Fisher(UK) BP176-100 

Attractene Qiagen(USA) 301005 

Bovine Serum Albumin (BSA) Roche (Switzerland) 10775835001 

CDP-Star Sigma(USA) C0712 

Dimethyl sulfoxide Sigma(USA) PH1309 

DMEM Fisher(UK) 12491015 

Extracellular matrix Sigma(USA) E1270 

Fibronectin Sigma(USA) F1141 

Foetal Bovine Serum (FBS) Fisher(UK) 10270 

Glycine Sigma(USA) G8898 

LDS Invitrogen(USA) NP0007 

L-Glutamine 200mM Life Tech (USA) 21051040 

Lipofectamine Ltx Fisher(UK) 100014470 

Lipofectamine RNAi Max Fisher(UK) 13778030 

MOPS SDS running buffer Life Tech (USA) B0001 

Nicotinamide Sigma(USA) N5535 

Optimem Fisher(UK) 31985070 

Palmitic acid Sigma(USA) P0500 

Penicillin/Streptomycin Life Tech(USA) 15140122 

Phosphatase inhibitor cocktail 2 Sigma(Israel) P2850 

Phosphatase inhibitor cocktail 3 Sigma(Israel) P0044 

Phosphate buffered saline Lonza(Switzerland) 10010023 

Propidium iodide Sigma (USA) P4170 

Protease inhibitor cocktail Sigma(Israel) P8340 

Re-blot strong plus Millipore (USA) 2504 

RNeasy mini kit Qiagen(USA) 74104 

RPMI 1640 Lonza (Belgium) 21875034 

RT2 First Strand  Qiagen(USA) 330401 

Skim milk powder Sigma(USA) 70166 

Sodium Selenite Sigma (USA) S5261 

SYBRGreen Master Mix Qiagen (USA) 330500 

Tris-Acetate gels 12% Invitrogen (USA) EA03552BOX 

Trizma base Sigma(USA) T1503 

Trypan blue Sigma(USA) T6146 

Trypsin EDTA Fisher(UK) SM-2003 
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2.2 Cell cultures 

2.2.1 Cell culture conditions 

2.2.1.1 Rat insulinoma -cell line (INS-1E) 

INS-1E cells are a rat cell line derived by X-ray irradiation of rat insulinoma cells 

and respond to glucose stimulation by increased insulin secretion within the 

functional ranges (3-11mM glucose) (Špaček et al., 2008). INS-1E cells possess 

a high insulin content although, they require the use of -mercaptoethanol for 

their proliferation (Skelin et al., 2010, Asfari et al., 1992). Unlike many beta cells, 

INS-1E cells remain close to the parental cell phenotype over at least 116 

passages where they still respond with a glucose-stimulated insulin response 

similar to that of the parent cell (Asfari et al., 1992). The cells were cultured in 

RPMI-1640 medium containing 11mM glucose and supplemented with 10% FBS, 

100U/ml penicillin, 2mM L-glutamine, 100U/ml Streptomycin and 50M -

mercaptoethanol. The cells were plated in 75cm2 flasks, 25cm2 flask, 6well plates 

or 12well plates depending on the experiment and incubated in 5% CO2 in a 

humid incubator at 370C. 

2.2.1.2 Human EndoC H1 beta cell line  

EndoC cells are a human beta cell line generated by transducing foetal 

pancreatic buds with a lentiviral vector expressing SV40LT (simian vacuolating 

virus 40 T antigen) under an insulin promoter (Ravassard et al., 2011). Lentiviral 

vector transduction of cells enables long-term expression of a target gene, herein 

expressing SV40LT under the insulin promoter. SV40LT is an oncoprotein, which 

induces malignancy in cells by binding to tumour suppressor proteins such as 

P53 and P105-Rb causing cells to replicate (promotes cells to leave the G1 phase 

to the S-phase) (Ali and DeCaprio, 2001). Hence, the transducing of foetal 
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pancreas with a lentivirus expressing SV40LT enabled the selective formation of 

insulin positive cells. SCID mice were then grafted with these buds to obtain 

mature pancreatic tissue that differentiated into beta cells expressing SV40LT 

and formed insulinomas. The beta cells were re-grafted into other SCID mice 

after transducing them with a lentiviral vector expressing the human telomerase 

reverse transcriptase (hTERT). The human telomerase reverse transcriptase 

together with the telomerase RNA component form the telomerase complex 

which lengthens telomeres in DNA immortalizing cells by permitting them to 

exceed their dividing thresholds (Hayflick limit). Hence, the lentiviral vector will 

permit long-term expression  of the hTERT hence preventing these cells from 

apoptosis (Weinrich et al., 1997).  The resulting beta cells were then expanded 

in vitro to generate the cell line (Ravassard et al., 2011).  

The use of primary beta cells in research is challenging due to the availability of 

these cells and the labour involved in isolating beta cells from pancreata. Also, 

rodent beta cells experiments do not always translate to humans in several ways. 

For example, humans only have a single gene that encodes for insulin while 

rodents have two. In addition, sensitivity to treatments such as palmitate between 

human beta cells and rodent beta cells is different. EndoC H1 cells are not killed 

by palmitate treatment while rodent beta cells are. These differences and many 

more suggest that we need to use human beta cell lines to fill in the gaps in 

knowledge. EndoC H1 cells have the advantage of expressing insulin and 

responding to glucose stimulated secretion in a dose dependent manner. EndoC 

H1 cells express beta cell specific genes such as MAFA, NKX6-1, PAX6, PDX1, 

NEUROD1, GCK, SLC2A2, KCNJ11, GAD2 and PTPRN. Although EndoC H1 

expressed the right markers for human beta cells, they have a very slow growth 

rate (144h to divide) (Tsonkova et al., 2017), express relatively low insulin per 
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cell compared to humans (0.46 pg in EndoC H1 vs 20pg in humans) (Marchetti 

et al., 2017a). Lastly, EndoC H1 are a recommended cell line but still fall short 

by the fact that, they are a mono-layer cell culture and do not exactly replicate 

the in vivo environment in which beta cells co-exist with other endocrine cell 

types. Furthermore, genetic manipulation of cells by the addition of various 

plasmids alter some functions although only the IAPP protein has been reported 

in EndoC H1 cells at the moment (Skelin et al., 2010, Ravassard et al., 2011). 

EndoC  cells were cultured in plates pre-coated with ECM/fibronectin, 

100U/mL Penicillin, 100U/ML streptomycin and 25mmol/L glucose within 

Dulbecco's Modified Eagle's Medium (DMEM) for at least 1hour. The coating 

medium was then replaced with culture medium which consisted of DMEM 

containing 5.6mmol/L glucose and supplemented with 2mM L-glutamine, 

100U/mL Penicillin, 100U/mL streptomycin, 50M β-2-Mercaptoethanol, 10mM 

Nicotinamide, 5.5g/mL transferrin, 2% fatty acid free albumin power (bovine 

serum albumin) and 6.6ng/mL sodium selenite. The cells were mainly cultured in 

a 25cm2 flask or in 6, 12 or 24 well plates depending on the experiment and 

incubated at 5% CO2 at 370C in a humidified incubator  (Ravassard et al., 2011). 

2.2.1.3 HEK293 cells  

HEK293 cells are a human embryonic kidney cell line developed by exposing 

embryonic kidney cells to an adenovirus type 5 DNA (Graham et al., 1977). These 

cells were cultured as previously described (Graham et al., 1977) with few 

modifications. They were cultured in 11mM glucose RPMI-1640 medium 

supplemented with 10% FBS, 100U/ml penicillin, 2mM L-glutamine, and 100U/ml 

Streptomycin. 
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2.2.2 Passaging cells 

INS-1E and HEK293 cell lines were grown to about 80% confluency before 

passaging. The medium was aspirated and the cells washed with phosphate 

buffered saline (PBS), then incubated in 0.05% trypsin-0.53mM EDTA (Fisher, 

UK) for 5min at 37oC to detach the cells from the plates. The trypsin was 

neutralised with culture medium and then spun (200g, 5min) to pellet the cells. 

Pelleted cells were resuspended in 10mL of fresh medium, counted with a 

haemocytometer and seeded as required per experiment. 

EndoC  cells were seeded at about 60-70% confluency and cultured to a 

confluency of over 90% before passaging them in a similar manner to the INS-1 

with a slight modification of using PBS containing 10% FBS as the neutralising 

medium after trypsinisation. 

2.3 Silencing gene expression with small interference RNA 

Small interference RNAs (siRNA) are small (20-30 nucleotides) noncoding 

double-stranded RNAs that can regulate gene expression by binding to the 

complementary messenger RNAs of the gene of interest. Specifically, the newly 

formed double-stranded RNA is processed into siRNA by RNAse II-like enzymes 

(Dicer). The siRNA then binds to an RNA inducing complex (RISC) where the 

more stable 5’ strand is incorporated into the RISC and separated from the other. 

The single-stranded siRNA then guides the RISC complex to align and bind to its 

target mRNA. A combination of catalytic RISC protein and Argonuate 2 cleaves 

the mRNA (Hassan D. et al., 2017). Knockdown experiments exploited the use 

of small interference RNA (siSTAT6, & siSIRP all from Thermofisher, USA) 

while scrambled siRNA sequences were employed for control treatments 

(Eurofins, Germany). The siRNA transfection was performed with lipofectamine 
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RNAi max (a liposome delivery system) transfection reagent (Invitrogen, USA), 

Optimem (Lifetechnologies, USA) according to the manufacturer’s instructions 

with only slight modifications. siRNA (10nM/well) was diluted in Optimem medium 

(60L/mL culture medium) for 10min followed by the addition of lipofectamine 

(3.4l/mL of culture medium). The solution was then mixed and applied cells in a 

dropwise fashion and then mixed gently by swirling the plate. 

Table 6: siRNA mix for transfection  

Reagent/ml Control Treatment 

Optimem 60l 60l 

siRNA 10nM* 10nM 

Lipofectamine 3.5l 3.5l 

*the scrambled siRNA is used 

2.4 Assessment of cell viability  

2.4.1 Using trypan blue as a vital dye 

Following treatment, medium containing detached cells was collected from 

culture plates into 10mL tubes and this was later supplemented with medium 

containing any remaining adherent cells after these were harvested by 

trypsinisation. The cell suspension was then centrifuged at 188g for 5min and the 

supernatant aspirated. The cell pellet was reconstituted with an equal volume of 

trypan blue (0.4% in PBS) in culture medium. Trypan blue stains dead cells (but 

not live cells) because live cells actively pump it out whereas it is retained in non-

viable cells (Tran et al., 2011). 

2.4.2 Propidium Iodide staining 

Propidium iodide (PI) is a fluorescent DNA intercalating agent which binds to 

short non-specific sequences dsDNA (4-5 DNA base pairs). PI has an excitation 
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wavelength between 491-495nm and a maximum emission wavelength of 

636nm. Unlike trypan blue, PI cannot penetrate an intact plasma membrane, and 

thus can only get into the cell when the plasma membrane has become 

permeable. Once bound to DNA its fluorescence increases by about 30 fold with 

a shift in the excitation maximum and emission maximum in both the red and blue  

respectively. This enables its use for rapid detection of dead cells whose DNA is 

accessible due to a permeable plasma membrane. PI staining was performed as 

previously described (Crowley et al., 2016). Both attached and detached cells 

were harvested as described above (section 2.4.1), centrifuged and re-

suspended in FACS buffer (Table 11). Cells were stained with a solution of 

20g/mL of propidium iodide diluted in FACS buffer and then incubated for 10min 

at 40C (on ice).  Cells were then analysed using a BD AccuriTM C6 flow cytometer 

in which single cells flow through a nozzle and pass a laser beam to detect 

forward and side scatter (FSC and SSC). The extent of forward scatter relates to 

the cell size while the side scatter relates to the granularity of the cell. The 

instrument was calibrated to separate cells according to size and granularity 

which allowed gating to detect both live and dead cells (P1 see fig. 2.1) while 

excluding cellular debris. Cells that were permeable to PI were detected by 

measuring the light emitted at 575nm. By the use of appropriate gating, the 

proportions of live and dead cells were estimated under each incubation condition 

(Fig. 2.1). 
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Figure 2. 1: Flow cytometer gating showing the populations P1 (both live and dead 
cells) and P2 (dead cells).  

INS-1E or EndoCHC1 cells were treated with 20g/mL of PI /Facs buffer for 

10min on Ice and analysed on the flow cytometer. Ungated cells (P1 left panel) 

comprise of two populations, which are resolved as viable, or non-viable cells 

respectively (right panel). 
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2.5 Cell cycle analysis 

Cell cycle analysis at a single time point was performed using a flow cytometer 

as described by Pozarowski & Darzynkiewicz (2014). After treatment, cells were 

trypsinised and pelleted by spinning at 300g for 5min. The pellets were re-

suspended in 250l cold saline GM (Table 11) and then fixed with 750L 95% 

cold ethanol for at least 30min at 40C. The fixative was removed and replaced 

with staining solution (50g/ml of PI and 100g/ml of RNase A in PBS) for at least 

1h at room temperature before 25000 events were counted using the Accuri C6TM 

flow cytometer. The data were analysed graphically (Fig. 2.2) to reveal the 

proportions of apoptotic cells, those in the G0/G1 phase of the cell cycle, the S 

phase and the G2/M phase. 

 

Figure 2. 2: Cell cycle analysis showing the apoptotic cells as M6, synthesis (S), 
G1/G0 and G2/M phases. 

Untreated cells were harvested, fixed and stained to show the apoptotic cells (M6, 

4.6%), Synthesis (S, 16.6%), G0/G1 (73.6%), Gap2 and mitosis phase (M)(G2/M, 

4.5%). 
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2.6 Gene Expression (RT-PCR) studies 

2.6.1 RNA extraction and estimation from cultured cells 

RNA extraction was performed using the RNeasyTM Mini kit by Qiagen. Cells were 

washed with PBS. Then, adherent cells were disrupted using RLT buffer (350L 

for 6well plates). With the help of a scraper, unattached cells were disrupted and 

transferred to a shedding column (QIA ShredderTM) and centrifuged for a 2min at 

13000g. An equivalent amount of ethanol (70%) (350l) was added to the spin-

through and the eluate transferred to an RNeasy Spin column. Ethanol 

precipitates the RNA enabling it to bind to the RNeasy membrane. The samples 

were briefly centrifuged at 8000g, before washing with RPE and RW1 buffers. 

The RNA was eluted from the spin column using 50l DNase/RNase free water 

and stored at -200C until needed for cDNA synthesis.  

RNA quality and quantity were measured using a NanoDrop™ 8000 

Spectrophotometer (Thermo Scientific, UK). The 260/280nm ratio is used to 

assess the quality of the sample and a ratio of greater than or equal to 2.0 was 

regarded as appropriate. Alternatively, the Agilent bioanalyser was used to 

confirm the quality of the RNA by electrophoretically measuring the RNA integrity 

(RIN) of samples. The RNA integrity is a measure of the ratio of 28S to 18S 

ribosomal subunits which indicates the level of RNA degradation in each sample. 

It also can detect the presence of genomic DNA in the samples and compute a 

RIN number to grade the quality of the RNA (from the best quality of 10 to the 

poorest quality 1). 

2.6.2 cDNA synthesis 

cDNA synthesis was performed using the RT2 First Strand kit (Qiagen, USA), 

according to the manufacturer’s instructions. Using 100ng of total RNA, genomic 
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DNA was first eliminated with a DNA elimination buffer. Ten microliters of reverse 

transcription mix (Table 8: Reverse-transcription mix) was added and synthesis 

performed at 420C for 15mins followed by a stop step of 950C for 5mins: 

Table 7: Genomic DNA elimination mix 

Component Amount/reaction 

RNA 100ng 

Buffer GE 2L 

RNase-free water variable 

Total volume 10L 

 5mins at 42oC then placed on ice for 1min 

Table 8: Reverse-transcription mix 

Component Volume/reaction 

5x Buffer BC3 4L 

Control P2 1L 

RE3 Reverse Transcriptase 2L 

RNase-free Water 3L 

Total volume 10L 

2.6.3 Quantitative RT-PCR. 

Relative gene expression was measured by quantitative real-time PCR using RT2 

SYBRGreen master mix (Qiagen, USA) following the manufacturer’s protocol. 

Amplicons were read on the Applied BiosystemTM Quant Studio 12K flex. HPRT1 

and YY1 were used as housekeeping genes for all PCR reactions and were used 

to normalise the data during analysis. Analysis of data was performed using the 

change in cycle threshold (Ct) formula to obtain the fold change in mRNA level. 

𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 = 2−(∆∆𝐶𝑡) 

∆∆𝐶𝑡 = ∆𝐶𝑡𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 − ∆𝐶𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

∆𝐶𝑡𝑠𝑎𝑚𝑝𝑙𝑒 = 𝐶𝑡(𝐺𝑂𝐼𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡) − 𝐶𝑡(𝐻𝐾𝐺𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡) 

∆𝐶𝑡𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 𝐶𝑡(𝐺𝑂𝐼 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) − 𝐶𝑡(𝐻𝐾𝐺 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) 

GOI: gene of interest, HKG: Housekeeping gene. 
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Table 9: PCR mix for one reaction and cycling conditions 

Component Volume 

RT2 SYBR Green Mastermix 12.5L 

cDNA synthesis reaction 1L 

RT2 qPCR Primer Assay (10MStock) 1L 

RNase-free water 10.5L 

Total volume 25L 

Cycling conditions 

 

 

 

2.7 Protein detection by western blotting 

2.7.1 Protein extraction 

In order to study the expression and phosphorylation of proteins, western blotting 

was performed as described by Russell et al. (2013) with some modifications. 

Briefly, after treatment each flash of cells was washed with cold PBS. This was 

removed and replaced with lysis buffer (Table 11) containing Protease and 

Phosphatase inhibitors for 10min on ice. The contents of each flask were scraped 

and transferred into a 1.5mL tube on ice, mixed and then centrifuged for 10min 

at 2500g at 40C. The supernatant was transferred into a new 1.5mL tube and 

stored at -200C until used. 

2.7.2 Protein estimation 

The concentration of protein within samples was estimated using bicinchoninic 

acid (BCA) (ThermoFisher, UK). This test exploits the reduction of Cu2+ to Cu1+ 

by proteins in an alkaline medium resulting in a change in colour from blue to 

purple. The test is made up of a two-step reaction; the first involves chelating of 

Cycles Duration Temperature 

1 10min 950C 

 

40 

15 s 950C 

1min 600C 
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Cu2+ by various amino acid residues (Cysteine or cystine, tyrosine, and 

tryptophan) to form a blue complex in an alkaline environment with sodium 

potassium tartrate. The next step is the colour formation step in which 

bicinchoninic acid (BCA) reacts with Cu1+ to form a BCA/copper complex soluble 

in water with a linear absorbance as protein concentration increases at 562nm 

(Huang et al., 2010). In order to perform the test, 10L of each sample (1:5 and 

1:10 dilutions in lysis buffer) and BSA standards (0, 0.2, 0.4, 0.6, 0.8, 1.0 and 

1.2mg/mL) were pipetted into a 96well plate. This was followed by 200L BCA 

reagent. The BCA reagent was prepared by diluting Reagent A (sodium tartrate) 

with Reagent B (copper (II) sulphate pentahydrate) at 1:50 ratio. The plate was 

then incubated for 15min on a mixer before reading at 562nm on a PheriSTARTM 

instrument. The protein concentration of samples was calculated using from a 

standard curve. 

Preparation of protein samples and running of the gel 

Equal amounts of protein (10-50g/well) were loaded into each well of 

polyacrylamide gel after dilution with lysis buffer. Each sample contained 65% 

protein extract, 25%LDS loading buffer (4 x) and 10% β-mercaptoethanol. Before 

loading the mixture, the samples were heated at 700C for 10min. 20L of each 

sample was loaded into a pre-cast 12% poly-acrylamide Bis-Tris gel (Invitrogen). 

The gel was run at 120V in 1X MOPS (Life Tech, USA) running buffer alongside 

a rainbow molecular marker for 2h. 

Transfer of proteins and blotting. 

PVDF membrane and blotting paper (Millipore, UK) were cut to approximately the 

size of the gel. The PVDF membrane was pre-soaked in methanol; rinsed 3x with 

dH2O, and then placed on the gel. The gel and membrane were sandwiched 
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between pre-soaked (in transfer buffer) blotting paper and two pre-soaked 

blotting pads. The anode core was placed on top and then locked into place. The 

module was filled with transfer buffer (Table 11: Buffers and their Contents1) to 

cover the membrane. The outer chamber was then filled with water to help cool 

the membrane during the transfer process and the module run at 30V, 170mA for 

2h. 

After electrophoresis, the membrane was blocked with 5% milk or BSA diluted in 

TBST for 1h at room temperature, followed by addition of primary antibody in 5% 

milk diluted in TBST at 40C. After incubation, three 15min washes with TBST were 

performed, the membrane was then probed with alkaline phosphatase 

conjugated secondary antibody diluted 1:25000 in TBST containing 1%milk for 

1hour at room temperature. The secondary antibody depended on the species in 

which the primary antibody was raised. Another 3X TBST wash was performed 

followed by incubation of the membrane in chemiluminescent reagent alkaline 

phosphatase substrate (Sigma Aldrich, UK) for 5min at room temperature and 

then detection using the Licor C-Digit blot scanner. In cases where the secondary 

antibody was conjugated to a fluorophore, no detection fluid was used and the 

blots were scanned directly on the Licor clx OdysseyTM instrument.  

Re-probing membranes 

Western blotting membranes were reprobed when two or more proteins of 

interest were to be detected on a single blot. To reprobe, the previously bound 

primary antibody was removed using a stripping buffer (reblot strong plus, Merck 

Millipore, UK) (diluted using dH2O (Promega, UK)). The membrane was 

incubated in reblot strong plus buffer for 13min followed by two 5min washes in 
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TBST. The membrane was then blocked with 5% milk TBST before adding the 

next primary antibody. 

2.8 Protein detection by Immunohistochemistry and 

Immunofluorescence  

2.8.1 Immunohistochemistry 

Immunostaining was performed on human formalin-fixed paraffin embedded 

pancreas samples from the Exeter Archival Diabetes Biobank 

(http://foulis.vub.ac.be/). Serial sections were cut (4m) and mounted on to glass 

slides. Immunohistochemistry was performed as previously described (Arif et al., 

2014, Willcox et al., 2009a). Samples were dewaxed using two changes of 

histoclear (D-limonene) (National Diagnostic, Nottingham UK), then rehydrated 

in decreasing ethanol concentration (from 100% to 50%) before putting the slides 

into ddH20 in 50mL Coplin jars.  

Fixing of tissues with formalin can cause epitope masking hence reducing the 

immunoreactivity of antigens of interest with antibodies. This occurs because 

formalin forms cross-links between proteins and nucleic acids and the formation 

of these bonds lead to steric hindrance of antibody binding sites (Werner et al., 

2000). Heat Induced Epitope retrieval (HIER) was performed to re-expose 

blocked epitopes in a process suggested to break the cross-linking bonds formed 

by formalin fixation. Sections of pancreas on glass slides were placed in a 

pressure cooker containing citrate buffer (pH6, see Table 11: Buffers and their 

Contents) in a microwave (800W) then heated for 20min before cooling for a 

further 20min. Samples were blocked with 5% (v/v) normal goat serum (NGS) 

and then probed with primary antibody diluted in Dako antibody diluent and left 

overnight at 40C. 

http://foulis.vub.ac.be/
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Following primary antibody incubations, slides were given 3 washes in TBS 

before blocking with 300L of Dako Real PeroxidaseTM for 5min in order to arrest 

any endogenous tissue peroxidase activity within the sample. The blocking 

reagent was washed once in TBS, then a relevant secondary antibody added. 

The Dako REAL EnVisionTM HRP conjugated secondary antibody was added for 

1h and unbound antibody removed by three 5min washing in TBS. After washing, 

sections were incubated in 300L of Dako Real EnVisionTM high-sensitivity 

diaminobenzidine (DAB+) chromogenic substrate for 10min followed by a 5min 

wash in ddH20 to stop the reaction. DAB is catabolised by horseradish peroxidase 

(HP) to produce a brown-coloured product at places where secondary antibodies 

are bound to the tissue. The tissue sections were then stained with haematoxylin 

and eosin for 1min and washed with running tap water for 5min. Each tissue 

section was briefly dipped in STWS (40mM NaHCO3, 170mM MgSO4) to “blue” 

the tissue. The sections were then washed in in ddH2O followed by incubation in 

CuSO4 solution (20mM CuSO4/150mM NaCl) for 5min to intensify the 

chromogenic stain (DAB). Sections were given a final wash in ddH2O followed by 

dehydration by dipping slides in increasing concentration of ethanol 50%, 70%, 

90% and twice in 100% (5min each). The sections were then cleared of any 

remaining alcohol and water by 2x5min incubation in histoclear and mounted 

under a coverslip with use of distyrene/xylene (DPX) (Dako, UK) before leaving 

to dry at RT. 

2.8.2 Immunofluorescent staining  

In order to study multiple antigens on a tissue section, slides were sequentially 

probed with the different primary antibodies and fluorescent-tagged secondary 

antibodies. To do this, slides were dewaxed, rehydrated, and blocked as 

described in section 2.8.1. The first antiserum ( diluted in antibody diluent) was 
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put on sections for 1h at room temperature followed by three 5min PBS washes. 

Secondary fluorescent conjugated antibody was applied to the sections in 

opaque staining trays at room temperature for 1h. Secondary antibody was then 

washed 3X with PBS in opaque Coplin jars and the next sequence of stain 

performed. On the last sequence, the secondary antibody was added together 

with a nuclear stain 4′,6-diamidino-2-phenylindole (DAPI). Following the last 

stain, slides were washed and mounted using Dako fluorescent mounting media 

and then left to dry overnight in a dark cupboard. The slides were visualised on a 

fluorescent microscope (Leica Microsystems, Milton Keynes, UK). 

2.9 DNA cloning  

2.9.1 Agar plates, and Broth 

Luria Broth (LB) was used for E.coli amplification and was prepared by weighing 

20g of broth, which was then dissolved in 1L of ddH20; this was autoclaved at 

1210C for 15min and left to cool to a temperature lower than 500C before adding 

an antibiotic (100g/mL ampicillin, 50g/mL kanamycin(Sigma, UK)). LB with 

agar was used for inoculating competent E.coli. It was prepared by weighing 35g 

in 1L of ddH20 then autoclaved. Following autoclaving, the agar was left to cool 

before adding 100g/mL of ampicillin or 50g/mL kanamycin depending on the 

plasmid, mixed and then poured under the biosafety cabinets into 20mL Petri 

dishes.  

Competent E.coli 

Bacteria can obtain genetic information by three mechanisms, conjugation from 

other bacteria, transduction by the help of a bacteriophage and by transformation 

which is uptake of DNA through the cell wall. Bacterial uptake of plasmid or DNA 

(transformation) is possible if the recipient bacteria is made “competent” through 
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heat shock or electroporation both of which precede CaCl2 treatment 

(Rahimzadeh et al., 2016, Bergmans et al., 1981). The mechanism by which 

CaCl2 helps in DNA uptake is still unclear but it is thought to bring the DNA close 

to the bacterial cell wall (Rahimzadeh et al., 2016). 

2.9.2 Bacterial Transformation, amplification and plasmid extraction 

Transformation and expansion 

Following resuspension of each plasmid, it was transformed into competent E.coli 

(New England Biolabs, UK) using a heat shock method as described with some 

modifications by Froger and Hall (2007). Into a 1.5mL Eppendorf 100L of 

competent E.coli was transferred and mixed with 100ng of plasmid by flicking. 

The mixture was then left on ice for 10min prior to being heat shocked at 420C 

for 50s in a water bath, and then incubated on ice for 2min. The transformed 

bacteria were transferred into a universal tube containing 900L LB without 

ampicillin. The LB broth with transformed bacteria was cultured at 370C in a 

shaker for 1h at 150rpm. Fifty microliters of solution were then spread on an LB 

agar plate with ampicillin or kanamycin (in a biosafety cabinet). The plates were 

grown overnight in a non-CO2 incubator at 370C to allow bacterial colonies to 

form.  

Fifty millilitres of LB+ Ampicillin (or Kanamycin) was placed into a universal tube, 

then colonies were picked from the plate and inoculated into the broth and 

incubate for 8h in at 370C shaking incubator. 

Plasmid extraction 

After expansion by overnight liquid culture, the culture was transferred into 50mL 

tubes for extraction. The tubes are spun down at 4000rpm for 15min and the 

supernatant decanted. Extraction was performed using a Midiprep as required by 
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the manufacturer (Qiagen, USA). Briefly, cells were resuspended in 4mL of buffer 

(P1), and then lysed with 4mL of lysis buffer (P2) and mixed by inverting the 

capped tube 4-6times. The mix was then neutralised with 4mL prechilled buffer 

(P3). The solution was transferred to a filter (QIAfilter) and balanced with QBT 

buffer before filtering with the aid of a plunger into a column (Qiagen-Tip). The 

column was washed twice before eluting the plasmid with 5mL of buffer QF. The 

DNA was then precipitated with 3.5mL Isopropanol and spun at 4000rpm for 

45min. The supernatant was discarded before DNA was precipitated with 70% 

ethanol then spun for 4000rpm for 10min. The supernatant was discarded and 

the tubes air dried before dissolving the DNA in 100L DNase free water. DNA 

was then quantified using a Nanodrop instrument (Thermofisher, USA). 

2.9.3 Transfection of INS-1E and HEK293 cells 

Plasmids were then transfected into cells using Attractene (Qiagen, USA) or 

Lipofectamine LTX (Fisher, UK) and Optimem (Fisher, UK) as transfection 

reagents according to table 10: 

Table 10: Plasmid transfection in INS-1E or HEK293 Cells 

Reagent Control Treatment 

Optimem 60l/mL  60l/mL 

DNA (STAT6, CA, DN) 0ng/mL 400ng/mL 

DNA (Reporter firefly 

luciferase)for Dual Luciferase 

experiments 

200ng/mL 200ng/mL 

DNA (Renilla control) for Dual 

luciferase experiments 

200ng/mL 200ng/mL 

eGFP (for viability experiments) 500ng/mL 500ng/mL 

Attractene or 

 

Lipofectamine 

2l/mL 2l/mL 

3.5l/mL 3.5l/mL 
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2.9.4 Dual-Luciferase Reporter assay 

The Dual-Luciferase Reporter Assay (DLR) is an assay system that measures 

the activity of a given promoter for a transcription factor, gene or intracellular 

signal (McNabb et al., 2005). The term ‘Dual’ simple refers to the assay’s capacity 

to measure the expression of two luciferase enzymes at the same time. The 

assay exploits the differences in the biochemistry of two enzymes, a luciferase 

(61kDa) from the firefly (Photinus pyralis) and a (36kDa) luciferase from the sea 

pansy (Renilla reniformis). The enzymes are different in structure and substrate 

requirements permitting measurement of two protein products in the same 

reaction. These two enzymes do not require any post-translational modification 

for their functioning and so act efficiently as reporters. The photon emission 

reaction of the firefly luciferase occurs by the oxidation of beetle luciferin in the 

presence of ATP, Mg2+ and a co-enzyme to increase the speed of reaction. The 

luminescence reaction for the Renilla occurs by the oxidation of coelenterazine 

by Renilla luciferase to coelenteramide and CO2 (Fig. 2.3.). In the DLR, the 

activity of the firefly enzyme is directly proportional to that of the promoter 

(experimental reporter) whilst the Renilla acts as the control and allows the 

number of cells transfected to be controlled for. These activities were measured 

simultaneously from the same lysate, such that as one reaction was quenched 

(Firefly), the other was activated Renilla. The experimental activity (firefly 

luciferase) was then normalised against the control (Renilla) (Sherf et al., 1996).  

DLR was performed following the manufacturer’s instructions. Briefly, 24h after 

STAT6 mutant plasmid transfection alongside the luciferase reporter and Renilla 

plasmids, cells were given two PBS washes before lysing with 100L of 1x 



113 
 

passive lysis buffer at room temperature for 15min with gentle shaking. Lysates 

were transferred into 1.5mL Eppendorf tubes and placed on ice. The luciferase 

assay reagent II (LAR II) and the Stop and GloR substrate were reconstituted as 

required and used to prime the plate reader. 20l of each sample was transferred 

into a 96-well white plate and the plate placed into the PHERstar luminometer. 

The instrument was set to inject the LARII reagent at 0s then read for 12s before 

the injection of the STOP and GloR with another 12s there after making a total of 

24s recording. The readings with the Firefly enzyme were normalised to the 

Renilla data and expressed relative to the relevant controls. 
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Figure 2. 3: Reactions of Luciferin and coelenterazine catalysed by firefly and Renilla 
luciferase enzymes 

Source: www.promega.com 
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2.10 Statistical Analysis 

All statistical analyses were performed on GraphPad Prism 7.03 for Windows 

software. To compare two means, a Student’s t-test was performed and when 

more than two means were compared, an ANOVA was used with a Tukey post-

test. ANOVA stands for the analysis of variance and is usually used to compare 

if the means of two or more unrelated data sets are different. It differs from the t-

test in that it examines the variability of between the groups and within the groups. 

Even though the ANOVA test can tell that there is a difference in the means of 

the data set, it is limited by the fact that it cannot tell which group is different or 

how big the difference (Ennos, 2007). To identify which group is different and how 

big the difference is a post-hoc test is performed. There are several post hoc test 

but for the purpose of this thesis the Tukey post-test was used.  The Tukey test 

is used to determine if there is a significant difference between experimental 

group on a studentized range distribution. It compares the mean of each group 

to the mean of every other group within a given data set (Ennos, 2007). Data in 

this thesis is presented as mean values ± standard error of the mean (SEM). 
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Table 11: Buffers and their Contents 

Unless or otherwise stated in text or on table 5, the chemicals on this table were 

acquired from Sigma (USA). 

Buffer Contents 

BCA Protein assay Reagent A: Sodium carbonate, sodium bicarbonate, 

bicinchoninic acid & sodium tartrate in 0.1N sodium 

hydroxide. 

Reagent B: 4% cupric sulphate pentahydrate 

FACS Buffer PBS, 2% FBS 

LDS sample buffer 

(4X) 

4M glycerol, 0.56M Tris Base, 0.42M Tris HCL, 0.3M 

Lithium dodecyl sulphate, 2mM EDTA, 0.075% serva blue 

G250, 0.025% Phenol red 

Lysis Buffer 20mM Tris, 150mM NaCl, 1mM EDTA, 1% Triton-X 

MOPS running 

buffer (20X) 

50 mM MOPS (3-(N-morpholino) propanesulfonic acid), 

50 mM Tris Base, 0.1% SDS, 1 mM EDTA, pH 7.7 

Saline GM - D-Glucose (Sigma) 6.1mM 

- KCl (Sigma) 5.4mM 

- Na2HPO4 (Sigma) 2.75mM 

- KH2PO4 (Sigma) 1.1mM 

- NaCl (Sigma) 6.9mM 

- 50L 0.5M EDTA (Sigma) 

All into 50mL tube and top up to the mark with ddH2O 

water 

TBS 137mM NaCl, 2.6mM KCl, 49.5mM Tris (pH 7.6) 

TBST TBS+0.05% Tween (pH 7.6) 

Transfer Buffer 25mM Tris, 0.19M Glycine, 20% Methanol (pH 8.3) 

Whole cell lysis 

buffer 

20mM Tris, 0.15M NaCl, 1mM EDTA and 1% Triton-X 100 

(pH 7.4) 

Citrate 

buffer(10mM) 

Citric acid 1.92g, 1L ddH20 and add 2N NaOH to pH6 
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Chapter 3.0: IL-13 and IL-4 protect pancreatic 

beta cells from cytotoxicity 
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3.0 IL-13 and IL-4 protect pancreatic beta cells from cytotoxicity 

3.1 Introduction 

T1DM is a pancreatic islet inflammatory disease in which the insulin-producing 

beta cells of the pancreas are specifically destroyed by autoreactive T-cells. 

Developing therapies to resolve the disease pathology has been unsuccessful 

probably because the pathogenesis of the disease itself remains to be fully 

understood (Grunnet and Mandrup-Poulsen, 2011).  

Cytokines are small protein molecules involved in intercellular communication 

and implicated in almost every biological process in the body. They can be 

secreted by most types of cells (almost every nucleated cell) although immune 

cells are an important source. The actions of cytokines can be anti-inflammatory 

or pro-inflammatory (Charles, 2007).  

 A long list of cytokines have been implicated in the pathogenesis of T1DM and 

in many cases, their effects on beta cells have been extensively studied. For 

instance, IL-1 has been shown to inhibit insulin biosynthesis and induce beta 

cell death by apoptosis through NO production. Cytokines such TNF- and IFN-

 on their own induce very little beta cell death but in combination with IL-1 

exacerbate beta cell death. IFN- inhibits insulin secretion and induces beta cell 

dysfunction independent of NO production. (Eizirik and Mandrup-Poulsen, 2001, 

Rabinovitch and Suarez-Pinzon, 2003, Thomas et al., 2013, Laffranchi and 

Spinas, 1997). Other pro-inflammatory cytokines have been shown to inhibit 

insulin secretion by induction of beta cell ER stress through increased production 

of reactive oxygen species and nitrites include IL-23, IL-24 and IL-33 (Hasnain et 

al., 2014). Circulating levels of these cytokines have been monitored in T1DM 

and their changes studied extensively (He et al., 2014, Alnek et al., 2015). 
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Increasing evidence suggests that in T1DM there is a paradigm shift in the 

Th1/Th2 CD4+ T-cells cytokine secretion to a Th1 secretion model (Walker and 

von Herrath, 2016, He et al., 2014). Other reports show a decrease in circulating 

Th1 cytokines; in one such report, they studied mRNA levels of these cytokines 

which might be different from protein expression levels (Vaseghi and Jadali, 

2016). In another report, wherein T1DM patients were grouped into under 15 

years and over 15 years of age, an initial increase in Th1 cytokines (individuals 

under 15 years) was followed by a decrease (over 15 years individuals) 

suggesting that duration of T1DM might have an influence on serum cytokines 

levels (Fatima et al., 2016). Serum cytokine levels (IL-2, IL-5, IL-10, IL-6, IL-

1IL-8, IL-10, IL-17, IL-23, and GM-CSF) of patients compared to their matched 

controls seem to be elevated irrespective of whether Th1 or Th2 derived (Alnek 

et al., 2015). While many studies have been published on the role of pro-

inflammatory cytokines in beta cell biology (Choi et al., 2010, Collier et al., 2011, 

Stanley et al., 2017, Souza et al., 2008), few have looked at their “anti-

inflammatory” counterparts. The levels of these anti-inflammatory cytokines (IL-4 

and IL-13) have only been studied at a serological level which gives us a picture 

of the alterations in circulating cytokines but does not provide evidence of events 

in the islet environment which could be different (Russell and Morgan, 2014). 

The protective role of IL-13 and related IL-4 have been previously studied in NOD 

mice by treating them with human recombinant IL-13 three times weekly which 

led to a delay in their development of type 1 diabetes. Use of anti-CD3 

monoclonal antibody to induce the release of cytokines (IFN- and TNF-) by T-

cells in these mice was also diminished by IL-13 administration when compared 

to their controls. IL-4 treatment of NOD mice was suggested to protect them from 

diabetes by diminishing insulitis and promoting a Th2 response while decreasing 
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the number of T-cells infiltrating the pancreatic islets (Zaccone et al., 1999, 

Cameron et al., 1997). Similarly, galactosylceramide (-GalCer) treated NOD 

mice were protected from developing T1DM mainly by modulating IL-4 secretion 

by invariant natural killer cells (NKT). NOD mice treated with -GalCer and anti-

IL-4 mAB or NOD IL-4 -/- mice treated with -GalCer still developed T1DM. In 

these experiments, -GalCer was used to activate invariant NKT-cells (shown to 

be deficient in T1DM) which then produce IL-4 and IL-10. The use of NODIL-4 -

/- showed that the protection offered by -GalCer was mainly due to IL-4 (Mi et 

al., 2004). 

We and others, have shown that IL-13 and related IL-4 protect beta cells from 

inflammatory cytokines (IL-1, TNF-, IFN- and IL-6), palmitic acid and serum 

deprivation induced death (Kaminski et al., 2010, Kaminski et al., 2007, Russell 

et al., 2013, Rutti et al., 2016). Human islets stimulated with pro-inflammatory 

cytokines had diminished insulin secretion while their co-incubation with Th2 (IL-

4 and IL-10) and Th3 (TGF-1) cytokines reversed this inhibition. In these 

experiments, cell death was prevented by the addition of Th2, but not Th3 

cytokines (Marselli  L and M, 2001). 

The objectives of this chapter were as follows; 

 To investigate the protection of INS-1E beta cells by IL-13 ( and IL-4), from 

serum withdrawal, pro-inflammatory cytokines, and palmitic acid induce 

cytotoxicity  

 To investigate the effect of IL-6 with and without pro-inflammatory 

cytokines on EndoC H1 beta cells  
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 To investigate the protection of EndoC H1 cells by IL-13 from pro-

inflammatory cytokine induced cytotoxicity 
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3.2 Materials and Methods 

Rat INS-1E and human EndoC HC1 beta cell lines were used in these 

experiments. Culture of these cells has been described in section 2.2.2.1 and 

2.2.2.2. All cytokines (IL-1, IL-6, TNF-, IL-4, IL-13, and IFN-) were purchased 

from R&D systems (Abingdon, Oxford, UK). Palmitic acid and Bovine serum 

albumin were purchased from Sigma (Dorset, UK). The concentrations used in 

these experiments were previously optimised in our group (Russell et al., 2013, 

Kaminski et al., 2007). 

3.2.1 Viability assessment 

Viability of cells was assessed with either trypan blue or propidium iodide as 

described in section 2.4. Cell viability analysis was performed to assess the 

response to various cytotoxic stimuli in this chapter. 

3.2.3 Serum withdrawal assay 

Serum withdrawal experiments were performed according to (Russell et al., 

2013). Briefly, INS-1E cells were seeded at 2.0x105 cells/mL in a 12-well plate 

and complete medium was replaced after 4h with serum free medium in the 

presence or absence of IL-13 or IL-4. Cells were incubated for 96h, with a 

medium change performed after 48h. Cells were then harvested and viability 

measured as described in section 2.4.2. 

3.2.2 Cytokine induced cytotoxicity 

INS-1E or EndoC H1 cells were pre-incubated with 20ng/mL of IL-13, for 

48hours. The medium was then changed and replaced with medium containing 

20ng/mL of each of the following cytokines IL-6, IL-1, TNF and IFN with and 

without IL-13 for 48hours (Russell et al., 2013). Both floating and attached cells 

were then harvested and cell viability measured. 
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3.2.3 Palmitic acid induced cytotoxicity 

Palmitic acid induced cytotoxicity assays were performed as described by 

(Russell et al., 2013). Palmitic acid was prepared in 50% ethanol and dissolved 

by heating for 10min at 700C. The palmitic acid was introduced to INS-1E cells 

by using fatty acid free BSA as a carrier, to which palmitic acid was bound upon 

incubation at 370C for 1h. Prior to palmitic acid treatment of cells, INS-1E were 

stimulated with and without 20ng/mL of IL-13 for 48hours, followed by a further 

48hours of palmitic acid treatment. Cells were then harvested and viability 

measured. 
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3.3 Results 

In order to demonstrate that IL-13 protects beta cells from cytotoxicity, cultured 

beta cells were incubated under cytotoxic conditions comprising of: serum 

withdrawal, palmitic acid or pro-inflammatory cytokines. The cytoprotective 

potential of IL-13 was investigated in rodent INS-1E and human EndoC H1 cells.  

3.3.1 IL-13 partially protects INS-1E beta cells from serum withdrawal 

induced cytotoxicity

Serum withdrawal (sometimes called serum starvation or serum deprivation or 

serum free conditoins) involves the use of cell culture medium without FBS and 

has been used to induce cell death in various cell types including beta cells 

(Higuchi et al., 2006, Charles et al., 2005, Russell et al., 2013). FBS contains 

growth factors and lack of these leads to the activation of intrinsic apoptotic 

pathways, culminating in cell death (Charles et al., 2005).  

Initially, the level of beta cell death induced by serum withdrawal in INS-1E 

cultures was assessed over a 96h to determine a suitable time point at which to 

conduct subsequent experiments. Serum withdrawal for up to 48h did not induce 

significant cell death when compared to serum containing medium (24h Con 

4.1±0.6% cell death, SW 7.7±1.26% p=0.88; 48h Con, 13.3±3.4% SW 21.6±7.8% 

p=0.99). However, there was a significant rise in cell death at 72h and 96h in 

serum free conditions when compared to cells incubated in serum containing 

medium (72h Con 10.16±2.2%, SW 31.8±4.1% cell death p<0.001; 96h Con 

21.1±2.8%, SW 44.5±5.3% cell death). With reference to the previously 

established time point, 96h was chosen for all other serum withdrawal 

experiments (Fig. 3.1) (Russell et al., 2013).   
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IL-13 protected INS-1E cells from serum withdrawal induced cell death at 96h 

(SW, 47.9±1.8%; SW+IL-13, 36.4±2.4% cell death, p<0.001) (Fig. 3.2). IL-4 also 

significantly improved beta cell viability after removal of serum from the culture 

medium (SW, 52.8±1.6%; SW+IL-4, 46.7±1.3% cell death, p<0.01) (Fig.3.3). 

Earlier reports had also shown that IL-13 and related IL-4 can protect pancreatic 

beta cells from cytotoxic effects of serum withdrawal (Kaminski et al., 2007, 

Russell et al., 2013, Sternesjo and Sandler, 1997). 
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Figure 3. 1 Serum withdrawal induces cell death in INS-1E beta cells 

INS-1E cells were incubated in serum withdrawn conditions for 96h and cell 

viability assessed using trypan blue. Data represents mean values ±SEM of three 

replicates in two experiments. ***p<0.001, ns: not significantly different from 

serum containing culture medium determined by student t-test. 
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Figure 3. 2 IL-13 treatment partially protects INS-1E beta cells from serum 
withdrawal induced cell death 

Cell death was induced by incubation of INS-1E beta cells in serum withdrawn media for 

96h. These cells were untreated or treated with 20ng/mL of IL-13 and cell viability 

assessed by trypan blue staining. 

Data represent mean values ±SEM of 6 replicates of three different experiments, 

***p<0.001 determined by student t-test. 
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Figure 3. 3 IL-4 treatment partially protects INS-1E beta cells from serum 
withdrawal induced cell death 

Cell death was induced by incubation of INS-1E beta cells in serum withdrawn media for 

96h. The cells were untreated or treated with 20ng/mL of IL-4 and cell viability assessed 

by trypan blue staining. 

Data represent mean values ±SEM of 6 replicates of three different experiments, 

**p<0.01 determined by student t-test. 
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3.3.2 IL-13 partially protects INS-1E beta from pro-inflammatory cytokines 

induce cell death 

Emerging evidence suggests that an imbalance between pro-inflammatory and 

anti-inflammatory cytokines occurs in T1DM and that this may play an important 

role in modulating the viability of pancreatic beta cells in the disease (Fatima et 

al., 2016, Fitas et al., 2018). Pro-inflammatory cytokines such as IL-1, TNF- 

and IFN- are widely reported to induce beta cell death and dysfunction and these 

effects have been extensively studied in pancreatic islets and beta cells (Rutti et 

al., 2016, Collier et al., 2011, Cetkovic-Cvrlje and Eizirik, 1994, Marselli  L and M, 

2001). IL-1 alone is reported to induce cell death, however, this depends on the 

concentration used and the length of exposure (Spinas et al., 1986, Palmer et al., 

1989). Conversely, TNF-, IFN- and IL-6 do not induce any potent cytotoxic 

effects on their own, but when applied in combination with IL1-, these cytokines 

are cytotoxic (Cetkovic-Cvrlje and Eizirik, 1994).   

Previous experiments by Russell et al. (2013) revealed that pre-incubation of INS-

1E with IL-13 was crucial to its mediated protection from pro-inflammatory 

cytokines induced cell death. This revelation was assessed here and confirmed 

by treatment of INS-1E beta cells with pro-inflammatory cytokines (IL-1, TNF- 

IFN- and IL-6) for 48h simultaneously with IL-13 and following pre-treatments of 

IL-13. INS-1E beta cell treatment with pro-inflammatory cytokines induced 

significant cell death (pro-cytokines (IL-1, TNF- IFN- and IL-6), 64.6±4.3%) 

which was reduced by 48h pre-incubation with IL-13 (pro-cytokines+pre-IL-13: 

47.4±2.2% p<0.001). However, under conditions where IL-13 was added 

concurrently with pro-inflammatory cytokines, there was a less significant 

reduction in cell death (pro-cytokines+pre-IL-13: 47.4±2.2%, pro-cytokines+ IL-
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13: 60.4±3.5%, cell death p<0.05) Fig. 3.4. On the basis of these results, all 

subsequent experiments were performed with a 48h pre-incubation period with 

IL-13. INS-1E cells were then treated with four pro-cytokines (IL-1, TNF- IL-6 

and IFN-) with and without IL-13 for 48h. As expected in experiments with a in 

other experiments, IL-13 significantly reduced cell death induced by these 

cytokines (pro-cytokines: 78.7±2.8%, pro-cytokines+IL-13: 58.1±4.0%, cell death 

p<0.001) Fig 3.5. These results are in agreement with those of Kaminski et al., 

(2007), Russell et al., (2013) who showed that pre-incubation for 48h with IL-4 or 

IL-13 significantly reduced cell death induced by pro-inflammatory cytokines. 
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Figure 3. 4 IL-13 pre-incubation partially protected INS-1E cells from pro-
inflammatory cytokine induced cell death. 

INS-1E beta cell death was induced with pro-inflammatory cytokines, IL-1, IFN-

, TNF- and IL-6 for 48h with and without pre-treatment with IL-13. Cell death 

was assessed by trypan blue. Data represent mean values of ±SEM of three 

technical replicates of experiments repeated thrice. 

*p<0.05, ***p<0.001 determined by student t-test. 
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Figure 3. 5 IL-13 partially protects INS-1E beta cells from pro-inflammatory 
cytokine induced cell death 

INS-1E cells were cultured in the presence of 20ng/mL of IL-1, IFN-, TNF-, & 

IL-6 with and without IL-13. Cell death was assessed by trypan blue. Data 

represent mean values ±SEM of 8 technical replicates of experiments performed 

three times. ***p<0.001 determined by student t-test. 
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3.3.3 IL-13 partially protects beta cells from palmitic acid induced cell death 

Palmitic acid has been shown to induce cell death in various beta cell lines 

(Morgan et al., 2008, Diakogiannaki et al., 2007, Welters et al., 2004, Lenzen, 

2008). The exact way by which this fatty acid induces cell death remains elusive 

but it is an extremely effective cytotoxin. Experiments with palmitic acid were 

performed in serum free medium since FBS contains various fatty acids (Gregory 

et al., 2011) including palmitic acid, that might alter the overall concentration of 

the fatty acid. Initially, two concentrations of the fatty acid were chosen based on 

literature (0.25mM, and 0.5mM) (Maedler et al., 2003, Diakogiannaki et al., 2007) 

to treat INS-1E for 24h and 48h to assess the cell death profile. Incubation of cells 

in 0.5mM palmitic acid for 24h induced significantly more cell death when 

compared to the 0.25mM (control:15.8±1.0%, 0.25mM 24h:24.7±3.2%, 0.5mM 

24h: 64.4±4.0%, cell death p<0.001). Forty-eight hours incubation with palmitic 

acid led to a significant increase in cell death in the 0.25mM treatment when 

compared to 24h (0.25mM 24h: 24.7±3.2%, 0.25mM 48h:79.5±1.6%, cell death 

p<0.001). There was a significant increase in cell death in the 0.5mM 48h 

treatment (0.5mM 24h: 64.4±4.0%, 0.5mM 48h: 83.4±2.7% cell death p<0.01) but 

this was not significantly different from the 0.25mM 48h treatment (79.5±1.6%), 

as previously noted (Diakogiannaki et al., 2007, Russell et al., 2013), Fig. 3.6. 

Experiments with the chosen concentration (0.25mM palmitic acid) were then 

performed after pre-incubation with IL-13 for 48h. As expected palmitic acid 

treatment of INS-1E cells for 48h led to significant cell death (Control: 9.4±1.0, 

PA: 86.18±2.0% cell death, p<0.001) that was significantly reduced by 48h pre-

incubation with IL-13 (PA: 86.2±2.0%, PA+IL-13: 72.9±2.6%, p<0.01) Fig 3.7. 
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Figure 3. 6 Palmitate induces INS-1 cell death at different concentrations and times 

INS-1E beta cells were treated with 0.25mM and 0.5mM palmitic acid for 24h and 

48h and cell viability assessed with trypan blue. Data represent mean values 

±SEM of triplicates of experiments performed twice. ***p<0.001 determined by 

student t-test. 
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Figure 3. 7 IL-13 partially protects INS-1E cells from palmitic acid induced 
cytotoxicity 

Cell death was induced by treating INS-1E beta cells with 0.25mM of palmitic acid 

for 48h with and without IL-13 and cell death assessed by trypan blue.  

Data represent mean values of ±SEM of 6 technical replicates of three 

experimental repeats. **p<0.01, ***p<0.001 determined by student t-test. 
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3.3.4 IL-13 partially protects EndoC H1 from pro-inflammatory cytokines  

Then EndoC H1 cell line has been shown to respond glucose with a rise in 

insulin secretion and respiration in a similar manner to human beta cells 

(Krizhanovskii et al., 2017). It has been shown by others (Cunha et al., 2017, 

Lenzen, 2008) that pro-inflammatory cytokines induce cell death in EndoC H1 

beta cells.  

It is well established that IL-1, IFN- and TNF- are detrimental to beta cell 

survival but the role of IL-6 has been controversial (Eizirik et al., 2009, Prause et 

al., 2016). Whilst some reports show a protective response during inflammation 

(Choi et al., 2004, Kristiansen and Mandrup-Poulsen, 2005), our group and others 

have revealed that it potentiates beta cell death (DiCosmo et al., 1994, Russell 

et al., 2013). Experiments using EndoC H1 cells were performed to understand 

the role of IL-6 in inducing cell death. EndoC H1 cells were cultured in the 

presence of cytokines (IL-1, IFN- and TNF-) with and without IL-6 and with 

and without IL-13. Based on the results from experiments using INS-1E cells, pro-

inflammatory cytokine stimulation of EndoC H1 to show IL-13 protection were 

performed following IL-13 pre-treatment Fig 3.4. As previously shown in rodent 

beta cells by Russell et al. (2013), IL-6 significantly increased cell death by pro-

inflammatory cytokines (pro-cytokines-IL6; 66.1±1.6%, pro-cytokines+IL6; 

74.3±1.0%, cell death p<0.01). Interestingly, IL-13 protected EndoC H1 cells 

from cell death induced by the pro-inflammatory cytokine treatment without IL-6 

(pro-cytokines-IL6; 66.1±1.6%, pro-cytokines-IL6+IL13; 52.9±0.7%, cell death 

p<0.01). Additionally, IL-13 significantly protected Endo H1 cells from pro-

inflammatory cytokine treatment with IL-6 (pro-cytokines+IL6; 74.3±1.0%, pro-

cytokines+IL6+IL-13; 60.3±2.0%, cell death p<0.01) Fig 3.8. 
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Figure 3. 8 IL-13 partially protects EndoC H1 from pro-inflammatory cytokines 
and pro-inflammatory cytokines with IL-6 

EndoC H1 cells were cultured in the presence of 20ng/mL of IL-1, IFN-, TNF-

, ± IL-6, in the presence and absence of IL-13 and cell viability assessed by flow 

cytometry after propidium iodide staining. Data represent mean values ±SEM of 

6 replicates of experiments performed three times. ***p<0.001 determined by 

student t-test. 
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3.4 Discussion 

The data arising from the experiments in this chapter show that IL-13 protects 

INS-1E and EndoC H1 cells against serum withdrawal (IL-4 protects against), 

palmitic acid and pro-inflammatory cytokine induced cell death. The protection of 

beta cells by IL-13 from serum withdrawal is in agreement with previous data 

(Russell et al., 2013, Rütti et al., 2016). The results in this chapter show for the 

first time, that IL-13 can also protect human-derived EndoC H1 cells from pro-

inflammatory cytokines induced cell death. Also, the use of palmitic acid to induce 

beta cell death was reduced by IL-13 as previously reported (Russell et al., 2013).  

In the pancreas, anti-inflammatory cytokines such as IL-4 and IL-13 are likely to 

be secreted by infiltrating immune cells such as invariant natural killer T-cells 

(Usero et al., 2016, Mi et al., 2004) or the islet ductal cells (Prokopchuk et al., 

2005) or pancreatic stellate cells (Xue et al., 2015), although the precise source 

is not entirely clear. Some of these sources have been reported to be 

dysregulated in T1DM leading to decreased availability of these cytokines (Usero 

et al., 2016). 

In this chapter, serum withdrawal was exploited to induce cell death in INS-1E 

cells. Serum withdrawal ultimately induces cell death by apoptosis through the 

activation of caspase 3 and caspase 9 (Higuchi et al., 2006, Goyeneche et al., 

2006). Serum withdrawal conditions have also been shown to induce death 

through the depletion of the pro-survival factor Bcl-2, which in turn caused the 

release of Bak/Bax that change the mitochondrial outer membrane potential by 

forming pores, followed by the discharge of cytochrome C leading to apoptosis in 

RINm5F cell (a rat insulinoma cell line)(Tejedo et al., 2001). We report in our 

experiment, the significant reduction of beta cell death by IL-4 and IL-13 
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stimulation due to serum withdrawal. This protection could be explained by results 

from other cell types wherein, IL-13 is reported to increase the expression of anti-

apoptotic Bcl-2 protein while diminishing the expression of Bax, hence it is likely 

that IL-13 counteracts serum withdrawal depletion of Bcl-2 and increment of Bax 

to sustain the beta cells (Yang et al., 2015, Chand et al., 2018). It has also been 

suggested that serum withdrawal increase superoxide and nitrogen oxide 

production in INS-1 cells (Maestre et al., 2003), although there is controversy 

about the involvement of cytochrome C. Serum withdrawal has been shown to 

induce cell death in other cell types through the activation of P53. P53 is a tumour 

suppressor molecule that is activated during cell stress and trans activates Apaf-

1 which forms a complex with pro-caspase 9 and cytochrome C leading to 

cleavage of caspase 9. Caspase 9 then cleaves caspase 3 that effects DNA 

degradation (Fridman and Lowe, 2003). IL-13 has been show to suppress P53 in 

T-cells, therefore, the protection of INS-1E from serum withdrawal could have 

been through the repression of p53 leading to the inhibition of Apaf-1 and hence 

inhibition of the pro-caspase 9/Apaf complex (Yang et al., 2015).  

The accumulation of lipids in beta cells and other cells can lead to their 

dysfunction and death. This process is known as lipotoxicity. This is primarily 

associated with type 2 diabetes and can consequently lead to reduced insulin 

secretion, and pancreatic beta-cell failure (Kusminski et al., 2009, Robertson et 

al., 2004, DeFronzo, 2010). Palmitate is the most abundant circulating saturated 

fatty acid found in the body and can be acquired through diet or synthesized 

directly when needed (Carta et al., 2017). Palmitate may potentiate beta cell 

death by a variety of mechanisms, such as increased chemokine production 

(CXCL1, CCL2), ER stress leading to unfolded protein response (UPR) but also 

by enhancing the secretion and toxicity of IL-1 and other cytokines such as TNF-
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, IL-6 and IL-8 . (Sharma and Alonso, 2014, Russell et al., 2013, Igoillo-Esteve 

et al., 2010, Song et al., 2014). Palmitate also induces caspase 3 activation and 

other ER stress markers in rodent beta cells (Song et al., 2014). Other 

mechanisms reported include the upregulation of Programme Cell Death 2 Like 

(Pdcd2l), mitochondrial dysfunction, Bcl-2 mRNA downregulation, Caspase-2 

increase in the cytosol, increase superoxide and NO production, increase in Bax 

and the arrest of G0 phase of the cell cycle (Maestre et al., 2003). Taken together, 

it is clear that the precise mode of killing of beta cells by palmitate remains elusive 

but it might be a combination of these mechanisms. From the various reports 

cited above, it is suggestive that palmitate initiates the production of cytokines, 

which together with lipotoxicity lead to beta cell death. IL-13 therefore might be 

counteracting the actions of the pro-inflammatory cytokines either by upregulating 

pro-survival factors such as Bcl-2 or downregulating Bax (Yang et al., 2015). Fatty 

acids like pro-inflammatory cytokines both induce nitrite production which has 

been previous shown to be reduced by IL-4 or IL-13 co-stimulation in INS-1E cells 

(Russell et al., 2013) and suggest that IL-13 might protect against fatty acids in a 

like manner.  

The present results reveal that IL-13 and IL-4 can protect both rat INS-1E cells 

and human-derived EndoC H1 cells from pro-inflammatory cytokine induced 

beta cell death. These results are in agreement with the findings by us and others 

in in vitro experiments which show that IL-13 and IL-4 can act directly on the beta 

cells and protect human islets, rat and human-derived beta cells lines from cell 

death induced by pro-inflammatory cytokines (Rutti et al., 2016, Russell et al., 

2013). The death of beta cells mediated by pro-inflammatory cytokines is one of 

the most researched in the context of type 1 diabetes pathogenesis (Eizirik et al., 

2009, DiCosmo et al., 1994, Choi et al., 2004, Pirot et al., 2008, Souza et al., 
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2008) and low chronic inflammation by cytokines in type 2 diabetes (Eguchi and 

Manabe, 2013).  

TNF-induces beta cell death through the activation of Caspase 8 and IKK 

complex which then leads to the activation of caspase 3 and NF-B leading to 

apoptosis (Tomita, 2017). In immune cells IL-13 has been reported to reduce or 

limit caspase 3 cleavage although the precise mechanism is not known (Yang et 

al., 2015). IL-13 has been shown to inhibit TNF- activities in other cell types by 

inhibiting nuclear translocation of NF-B through decreasing cytoplasmic 

expression of its nuclear translocation protein p65 (Manna and Aggarwal, 1998). 

The reduction in NF-kB activity by IL-13 has been illustrated using clonal beta cell 

lines by Rutti and colleagues who suggest that is the most probably way IL-13 

prevents the action of IL-1 (Rutti et al., 2016). IL-1 increases nitric oxide 

production by beta cells which enhances beta cell death. It has been shown that 

the addition of IL-13 or IL-4 decreases significantly the production of nitric oxide 

in beta cells (Russell et al., 2013). IFN- induces beta cell death through the 

activation of STAT1 that transcribes Interferon regulatory factor 1 (IRF-1) and 

iNOS which together alter the mitochondrial outer membrane permeabilization 

(MOMP) through upregulation of Bak which subsequently leads to caspase 

activation and cell death by apoptosis (Cnop et al., 2005). IRF-1 can also induce 

apoptosis in a p53 dependent manner (Tanaka et al., 1994). IL-13 has been 

shown to regulate BCLXL pro-survival molecule and likely helps maintain the 

balance of these molecules enabling a stable MOMP hence preventing 

cytochrome C release and apoptosis (Wurster et al., 2002). Also, IL-13 can 

probably counteract the action of IRF-1 should the alternative cell death pathway 

be activated by suppression of p53 (Yang et al., 2015). 
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In the present chapter, it was shown that IL-6 enhances the effects of pro-

inflammatory cytokines on EndoC H1 cells. These results are completely in 

accord with previous reports, which were generated using various rodent and 

human beta cell lines (Russell et al., 2013, Wadt et al., 1998, Southern et al., 

1990). However, despite this, others have shown that IL-6 rescues beta cells from 

pro-inflammatory cytokines (Kristiansen and Mandrup-Poulsen, 2005, Choi et al., 

2004). IL-6 signals via Jak/STAT3 and also through the MAPK/mTOR pathway 

and can be secreted by islet beta cells in vivo (Pilström et al., 1995).  

In our experiments, 20ng/mL of IL-6 was used together with pro-inflammatory 

cytokines and this resulted in increased INS-1E and EndoC H1 cell death. 

Similarly, use of 20ng/mL IL-6 on INS-832/13 in the presence of TNF- and IL-

1, increase beta cell death and decreased glucose stimulated insulin secretion 

(Oh et al., 2011). In a recent report the use of 10ng/mL IL-6 to stimulate INS-1 

832/3 cells for 1h did not affect glucose stimulated insulin secretion. Additionally, 

IL-6 did not rescue INS-1 832/3 dysregulation of glucose stimulated insulin 

secretion induced by IL-1 with and without conditioned medium (containing a 

cocktail of myokines, secretions from muscle cells) (Barlow et al., 2018). Contrary 

to these findings In experiments wherein IL-6 is proposed to improve beta cell 

function 1ng/mL of IL-6 was used to show improvement of glucose stimulated 

insulin secretion in MIN6 cells and had to be pre-incubated for 24h to observe 

this effect (Suzuki et al., 2011). Additionally, 24h Pre-incubation with 80g/mL of 

IL-6 or serum from exercised mice (claimed to be rich in IL-6) protected INS-1E 

from cytokine induced cell death (Paula et al., 2015). In all these, IL-6 is 

suggested to protect at concentrations lower than 10ng/mL or greater than 

200ng/mL, also depending on the source of the IL-6, and if pre-incubated 24h 
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before inflammatory stimulations. Pre-incubation of IL-6 in our experiments did 

not result to any improvement in beta cell viability (data not shown). The serum 

used by researchers from exercised mice arguably contains more than just IL-6 

and hence might not be the main protective compound. Taken together, our data 

revealed that, IL-6 enhances beta cell death in pro-inflammatory cytokines, 

conceivably by a STAT3 dependent mechanism that leads to the cleavage of 

caspase 3 as reported by Oh et al. (2011). 

A role for IL-4 and IL-13 in protecting NOD mice (a model for type 1 diabetes), 

from developing autoimmune diabetes has also been reported (Zaccone et al., 

1999, Cameron et al., 1997) with the suggestion that the protection might be due 

to the skewing of CD4+ T-cells response towards a Th2 phenotype (Wong, 2011). 

Contrary to the protection offered by administration of IL-13 or IL-4 NOD mice 

deficient in the IL-4R/IL-13R1 hetero receptor showed resistance to 

developing type 1 diabetes, due to increase T-regs and decreased Th17 cells. 

However, the ablation of the hetero receptor does not take into account the 

circulating levels of the IL-13 neither was a comparison performed for IL-13 

treated NOD mice (Ukah et al., 2017). Also, the role of IL-13 in glucose 

homeostasis has been illustrated using C57BL/6 and BALB/C mice in which IL-

13 was ablated and glucose tolerance test performed with marked increases 

witnessed in IL-13-/- compared to controls. There was an upregulation in 

gluconeogenesis genes, with suggestions that this is possibly through the 

transcription factor STAT3 (Stanya et al., 2013) although a recent study by Rutti 

et al. (2016) suggests that IL-13 does not rescue IL-1 induced loss in glucose-

stimulated insulin response in human islets and rodent cells. 
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The potentiating effect of IL-6 was illustrated using human EndoC H1 cell lines, 

but other works seem to show the opposite effect (Choi et al., 2004). Although, in 

the experiments of Choi and colleagues, rat beta cells were pre-incubated with 

IL-6 for 24h prior to toxicity. Interestingly, the actions of IL-6 seem to depend on 

whether it was pre-cultured with the beta cells, and on the concentration used to 

stimulate the beta cells. We show in our present experiments that IL-13 still 

protects beta cells from pro-inflammatory cytokines with and without IL-6. 

In conclusion, the actions of IL-13 seem to offer a ‘versatile protection’ against a 

variety of cytotoxic stimuli (pro-inflammation, palmitate, and serum withdrawal), 

which initiate beta cell death using different mechanisms but converge in ER 

stress or mitochondrial dysfunction. The underlying mechanism by which IL-13 is 

protecting beta cells still not completely understood. We have shown in our 

previous work that this is potentially through the Jak/STAT6 signalling (Russell et 

al., 2013), but others have suggested that it is potentially though, the PI3Kinase 

signalling pathway (Rutti et al., 2016). In the subsequent chapters, experiments 

seek to explore which signal transduction pathways are involved in the 

cytoprotective actions of IL-13. 
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Chapter 4.0: Characterisation of the IL-13 

Jak/STAT6 Signalling Pathway in beta cells 
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4.0 Characterisation of the IL-13 Jak/STAT6 Signalling Pathway in 

beta cells  

4.1 Introduction 

In the previous chapter, it was shown that both IL-13 and IL-4 protect beta cells 

from various cytotoxic stimuli (cytokines, serum withdrawal and palmitic acid). In 

other published work it has been suggested that this protection is likely to be 

mediated by the Jak/STAT signalling pathway (Russell et al., 2013). The role of 

Jak/STAT has been studied in the context of various important aspects of 

pancreatic beta cell biology, for example with reference to the actions of insulin, 

growth factors, erythropoietin, cytokines, prolactin and other hormones (Choi et 

al., 2010, Fujinaka et al., 2007, Shen et al., 2010). 

Upon cytokine binding to a cognate receptor, a conformational change occurs 

allowing the receptor to dimerize and bringing Jak proteins into close proximity 

with each other leading to their trans phosphorylation. Jaks phosphorylate 

specific tyrosine residues within the cytoplasmic tail of the receptor creating 

docking sites for the STAT proteins. Importantly, Jaks also activate bound STAT 

molecules (by phosphorylation) that then dissociate from the receptor and homo-

or heterodimerize and migrate to the nucleus to induce the transcription of target 

genes (Dodington et al., 2018, Shuai and Liu, 2003). 

4.1.1 Jak1 

The roles for Jak1 and Jak2 in T1DM have been investigated recently by Trivedi 

and colleagues in experiments wherein they used a Jak1/Jak2 inhibitor 

(AZD1480) in NOD mice and on isolated human islets. The results showed a 

reduction in various hallmarks of T1DM in the mice, including IFN- signalling, 

MHC class I expression, and islet T-cell accumulation. Altogether the data 
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indicated a reduction in autoimmunity in NOD mice through a reduction in 

phospho-STAT1 (Trivedi et al., 2017). Another drug, Exenatide (Ex-4), a potent 

glucagon-like peptide 1 receptor (GLP-1) agonist, also significantly reduced Jak1 

expression in INS-1E cells and this was associated with a decrease STAT1 

(Couto et al., 2007). Data from these experiments were obtained by real-time 

PCR, but the conclusions support those of Trivedi et al (2017). These results 

implicate Jak1 as a regulator of beta cell viability. 

4.1.2 Jak2 

Atkinson and colleagues, who treated female NOD mice with a potent Jak2 

inhibitor, AG490 (also known to inhibit Jak3), and found a reduced incidence of 

diabetes compared to vehicle treated controls. However, although pancreatic 

leukocyte infiltration was not diminished and euglycemia could only be achieved 

in mice whose initial blood glucose levels were below 17.5mM (Davoodi-

Semiromi et al., 2012). In a separate study, it was found that treatment of 

C57BL/6 mice with recombinant Human (rHu) EPO for one week caused 

activation of Jak2 and STAT5 and that this was associated with a reduction in the 

incidence of diabetes in db/db mice exposed to streptozotocin (STZ). The 

PI3K/Akt pathways was also activated under these conditions and, in order to 

attempt to verify the involvement of Jak2, a knockout approach was taken in 

which RIPcre+Jak2 fl/fl mice were treated with STZ and rHuEPO. There was no 

protection of rHuEPO from STZ induce diabetes in the mutant animals indicating 

that Jak is essential for the ability of rHuEPO to promote beta cell viability (Choi 

et al., 2010). We have shown that Jak2 is activated by IL-13 and have suggested 

that Jak2 could be involved in mediating the protective actions of IL-13 under 

condtions of serum withdrawal-induced cytotoxicity on INS-1E cells. A Jak2 
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inhibitor (hexabromocyclohexane) antagonised this protective response (Russell 

et al., 2013).  

4.1.3 Jak3 

Jak3’s role in T1DM was illustrated by study of the actions of Janex-1, a Jak3 

selective inhibitor, which was administered to NOD mice for 25weeks and the 

extend of insulitis assessed. Janex-1 treatment lowered the proportion of NOD 

mice developing T1DM without affecting their B cell and T-cell splenic populations 

(Cetkovic-Cvrlje et al., 2003). Janex-1 acts by suppressing NF-B and 

upregulating SOCS1 and SOCS3 (Lv et al., 2009) which may account for its 

protective effects. Another Jak3 inhibitor WHI-P154, reversed the cytoprotection 

of IL-4 from pro-inflammatory cytokines in INS-1E (Kaminski et al., 2010). 

Similarly, the islets of C57BL/6J mice in which Jak3 had been knocked out were 

more resistant to cytokine toxicity compared to controls. Thus, Jak3 appears to 

play an important role in mediating beta cell cytotoxicity under certain conditions. 

4.1.4 Tyk2 

The fourth member of the Jak family is Tyk2, a kinase which is activated by IFN-

In human EndoC  cells this leads to upregulation of MHC class I molecules 

in a STAT1 and STAT2 dependent manner. Knockdown of Tyk2 reversed the 

IFN- induced inflammatory response and also attenuated the induction of ER 

stress markers such as CHOP, CXCL10, ATF3, BIP and XBP1s (Marroqui et al., 

2017). Given that loss of Tyk2 seems to reduce ER stress in the beta cells in the 

presence of IFN-, it can be inferred that beta cells might also have an impaired 

antiviral response observed in the absence of Tyk2 (Størling and Pociot, 2017).  



149 
 

4.1.5 IL-4 and IL-13 regulated genes 

The regulation of genes by IL -4 and IL-13 (mediated via Jak/STAT signalling) 

has been extensively studied in other cell types (Ritz et al., 2008, Jiang et al., 

2000, Fichtner-Feigl et al., 2005) but gene regulation in beta cells has received 

limited attention. IL-13 has been shown to upregulate four beta cell genes CISH, 

CD83, Galnt14 and St6galnac3 using rat beta cells (Rütti et al., 2016). CISH is a 

negative regulator of the Jak/STAT signal transduction regulatory pathway 

belonging to SOCS family of proteins and binds phosphorylated tyrosine 

residues. CD83 is an antigen presentation protein, while Galnt14 and St6galnac3 

encode for N-acetylgalactosaminyltransferase and sialyltransferases 

respectively (Rütti et al., 2016, Trengove and Ward, 2013). IL-4 and IL-13 are 

known to upregulate anti-apoptotic genes such as BCLXL, MCL1 and SOCS1 in 

other cell types (Ritz et al., 2008, Dunkle et al., 2011).  

Our group has shown that IL-13 activates Jak2, STAT3, STAT6, and the PI3-AKT 

pathways in beta cells but have argued that the inhibition of the PI3-AKT pathway 

does not alter IL-13-induced cytoprotection in INS-1E cells (Russell et al., 2013). 

By contrast a study by Rutti and colleagues suggested that the PI3-AKT is the 

main pathway by which IL-13 protects beta cells (Rutti et al., 2016).   

The main objectives of this chapter were as follows;  

 To investigate and identify the Jaks that are activated by IL-4 and IL-13 

stimulation and determine how important they are to IL-13 mediated 

protection of beta cells 

 To investigate and identify the genes regulated by IL-13 and IL-4 using a 

Jak/STAT qPCR array system.  
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4.2 Materials and Methods 

4.2.1 Cytokine Stimulation 

20ng/ml of IL-4 and IL-13 were used to stimulate INS-1E cells for the desired time 

according to each experiment. 

4.2.2 Gene expression studies using RT2 Profiler PCR array 

Gene expression studies were performed as described in section 2.6. At the 

conclusion of the incubation periods, cells were lysed and RNA extracted 

according to the manufacturer’s protocol, before being reverse transcribed to 

form cDNA. SYBRGreen was used in the qPCR protocol designed to amplify the 

cDNA using commercially synthesised primers targeted to the genes of interest. 

4.2.3 Western blotting 

Western blotting and small interference RNA studies were performed as 

previously described in section 2.7 and section 2.3 respectively. INS-1E and 

EndoC HC1 were cultured as described in section 2.2.    

Table 12: List of antibodies and dilutions 

ANTIBODY COMPANY CATALOGUE NUMBER DILUTION 

STAT6 Cell signalling  5397 1:1000 

Phospho STAT6 Santa Cruz Sc-11762 1:200 

JAK1 St John’s Labs STJ113441 1:500 

JAK2 Santa Cruz Sc-294 1:500 

JAK3 Santa Cruz  Sc-6932 1:1000 

TYK2 Fisher 720124 1:1000 

PHOSPHO JAK1 St John’s labs STJ90314 1:500 

PHOSPHO JAK2 Abcam Ab219728 1:1000 

PHOSPHO JAK3 St John’s labs STJ98188 1:500 

PHOSPHO TYK2 Cell signalling 68790s 1:1000 

SIRPA Cell signalling 13379s 1:1000 

GAPDH Proteintech 60004-1 1:10000 

MCL-1 Cell signalling  94296s 1:1000 

BCLXL Biolegend 633902 1:1000 

BETA ACTIN Sigma A5316 1:25000 
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4.3 Results 

4.3.1 INS-1E express all four Janus kinases 

In order to reveal which Jak proteins are involved in IL-13 signalling in INS-1E 

cells, it was important to study the complement of Jaks expressed in these cells. 

INS-1E cells were cultured, lysed and protein extracted as in section 2.7. A series 

of western blot analyses were then performed, probing with antisera directed 

against the different Jaks (see Table 12: List of antibodies and dilutions).  

Western blotting analysis of INS-1E cells showed the presence of Jak1 with a 

molecular weight of about 130kDa (Fig. 4.1) and are in agreement with previous 

data obtained by qPCR in INS-1E and human islet beta cells (Couto et al., 2007). 

Immunohistochemical staining of INS-1E cells has also revealed the presence of 

Jak1 (Stout et al., 1997).  

INS-1E cells also expressed two Jak2 bands at an approximate molecular weight 

of 125kDa and 110kDa respectively (Fig4.1). This confirms earlier data showing 

the expression of Jak2 in INS-1E cells by western blotting (Fujinaka et al., 2007, 

Russell et al., 2013). I also found that Jak3 is expressed in INS-1E beta cells and 

that the antigen appears as three bands with molecular weights of 53kDa, 70kDa 

and 115kDa (Fig. 4.1). Jak3 has previously been observed in INS-1E cells using 

immunohistochemistry by Stout et al., (1997).  

The presence of Tyk2 was observed by western blotting with the band migrating 

at a molecular weight equivalent to about 134kDa (Fig 4.1).Tyk2 has previously 

been observed in INS-1E cells by immunostaining (Stout et al., 1997) and in 

EndoC HC1 beta cells by western blotting (Marroqui et al., 2015).  
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Figure 4. 1: All four Jaks are present in INS-1E beta cells.   

INS-1E cells were lysed and supernatant collected. Western blotting was 

performed and membranes probed for anti-sera for Jak1, Jak2, Jak3 and Tyk2. 

The data represents three independent experiments. 
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4.3.2 Jak1, 2, 3 and Tyk2 are activated by IL-13 and IL-4 with a differing time 

course 

To determine whether Jak1 is activated by IL-13 and IL-4, INS-1E cells were 

stimulated with either IL-4 or IL-13 for periods of 15, 30, 45 and 60min prior to 

cell lysis. Following western blotting, membranes were probed with an anti-serum 

against the activated form of Jak1 (Y1022/1023). The results reveal that IL-4 

induced the phosphorylation of Jak1 but that this was only seen at later points 

during the incubation period (45min and 60min). IL-13, on the other hand, 

stimulated Jak1 phosphorylation at much earlier time (15min), and 

phosphorylation then declined by at 45min and had completely disappeared by 

60min (Fig 4.2). These data suggest a difference in the way these two cytokines 

induce Jak1 signalling.  

Membranes were also probed for phospho-Jak2 (Y1007/1008). Initial results with 

IL-13 treatment showed a somewhat unexpected pattern in that basal levels of 

phospho-Jak2 were high even in the absence of stimulation. Addition of IL-13 

induced an initial decline in phospho-Jak2 before the phosphorylation increased 

once more (Fig. 4.3a). In a repeated set of experiments, the stimulation time was 

expanded, and the data showed a similar initial pattern of Jak2 phosphorylation, 

with an initial decline followed by a later increase (75-120min after initial 

stimulation) exceeding the initial basal levels (Fig. 4.3b). IL-4 treatment induced 

a similar pattern of Jak2 phosphorylation, although there were some subtle 

differences in the kinetics of phosphorylation. In experiments with IL-4, Jak2 

phosphorylation was initially depleted within 15min but then elevated between 

30-75min before declining again (Fig. 4.3c).  
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In similar experiments, INS-1E cells were stimulated with IL-13 and IL-4 for 0-

60min, samples were lysed and a Western blot performed probing for phospho-

Jak3 (Y785). IL-13 induced the phosphorylation of Jak3 within 15min and this 

remained elevated over the rest of the 60min time-course. However, IL-4 

stimulated Jak3 phosphorylation only after 45min treatment (Fig 4.4).  

Probing of Western blot membranes from similar experiments to those described 

above with anti-phospho-Tyk2 (1054/1055), revealed that, IL-4 induced the 

phosphorylation of Tyk2 at 45min and 60min while IL-13 treatment induced the 

phosphorylation of Tyk2 strongly but transiently at 15min (Fig 4.5). IFN- 

treatment of INS-1E for 30min also induced phosphorylation of Tyk2.  The 

phosphorylation patterns of the different Jaks in response to IL-4 and IL-13 

stimulation have been represented in Fig 4.6. 
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Figure 4. 2: Jak1 is activated by both IL-4 and IL-13.  

INS-1E cells were treated with 20ng/mL of either IL-4 or IL-13 for 15-60mins, 

followed by a PBS wash. Cells were lysed and the supernatant collected. a. Western 

blotting was performed and membranes probed with anti-sera for phospho-Jak1. 

GAPDH was used as loading control. b. Densitometry analysis shows the pattern of 

phosphorylation 

The data represents two independent experiments. 
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Figure 4. 3: Jak2 is activated by both IL-4 and IL-13 after initial depletion of phosphor-Jak2. 

 INS-1E cells treated with 20ng/mL of either (a-b) IL-13 or (c) IL-4 for 120min, washed 

with PBS. Cells were lysed and the supernatant collected. Western blotting was 

performed with 50g of protein and membranes probed with anti-sera for phosphor-Jak2. 

Beta-actin was used as loading control. d. shows densitometric representation of Jak2 

phosphorylation. The data represents three independent experiments. 

U
n

tr
e

a
te

d

5
m

in

1
5

m
in

3
0

m
in

4
5

m
in

6
0

m
in

7
5

m
in

9
0

m
in

1
0

5
m

in

1
2

0
m

in

0

2

4

6

8

Jak2

P
h
o
s
p
h
o
 J

a
k
2
 r

e
la

ti
v
e
 t
o
 u

n
tr

e
a
te

d
 c

o
n
tr

o
l

IL-4

IL-13

d

.. 



157 
 

  

Figure 4. 4: IL-4 and IL-13 both activate Jak3 at different time points  

a. INS-1E cells were treated with 20ng/mL of either IL-4 or IL-13 for 15-

60mins, followed by a PBS wash. Cells were lysed and the supernatant 

collected. Western blotting was performed with 50g of protein and 

membranes probed with anti-sera for phospho-Jak3. GAPDH was used as 

loading control. b. Densitometry analysis reveal Jak3 phosphorylation pattern 

upon IL-4 and IL-13 treatments. The data represents two independent 

experiments. 
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Figure 4. 5: IL-4 and IL-13 both activate Tyk2 at different time points  

a. INS-1E cells were treated with 20ng/mL of either IL-4 or IL-13 for 15-60mins, 

followed by a PBS wash. Cells were lysed and the supernatant collected. Western 

blotting was performed on 50g of protein and membranes probed with anti-sera 

for phospho-Tyk2. GAPDH was used as loading control. b. Densitometry analysis 

reveal Tyk2 phosphorylation pattern upon IL-4 and IL-13 treatments.  The data 

represents two independent experiments 
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Figure 4. 6: Heat map highlighting phosphorylation pattern of Jaks upon IL-4 and IL-13 
stimulation 

Western blots probed for the various phospho Jaks and based on the densitometry 

analysis,  the intensity of the band with respect to time graded accordingly from light pink 

to intense red using Microsoft Office PowerPoint. 
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4.3.3 IL-13 and IL-4 both activate STAT6 

It has been shown previously that both IL-13 and IL-4 activate STAT6 in clonal 

pancreatic beta cell lines, human islets (Kaminski et al., 2007) and in monocytes 

(Roy et al., 2002). It was, therefore, important to confirm these data in the current 

study. Experiments were performed by stimulating INS-1E cells with IL-4 and IL-

13 for 0-60min. Western blots were performed with cell lysates and probed with 

anti-phospho-STAT6 (Y641). IL-13 and IL-4 induced the phosphorylation of 

STAT6 at 15min to 60min. Western blotting analysis revealed the appearance of 

three bands, the lowest and expected band at 105kDa, the middle at 150kDa and 

the highest at 200kDa as previously observed in our group (Russell et al., 2013) 

(Fig. 4.7).  

4.3.4 Jak2 knockdown reduced STAT6 phosphorylation 

Since Jak2 has been previously implicated in IL-13 signalling (Russell et al., 

2013), and we report changes in Jak2 phosphorylation in the current study (Fig. 

4.3), we set out to examine whether Jak2 acts upstream of STAT6 in INS-1E 

cells. In order to achieve this goal, we depleted Jak2 expression levels using a 

small interference RNA system (siRNA). It was initially important to optimise the 

use of the siRNA molecules by targeting an abundantly expressed gene. GAPDH 

was chosen to test this. Knockdown was performed as described in section 2.3, 

initially using two transfection reagents, attractene and Lipofectamine, to 

determine which was better for siRNA transfections. A modestly successful 

knockdown of GAPDH was obtained using both attractene and Lipofectamine at 

24h (Fig. 4.8a). An improved knockdown was obtained at 48h using 

Lipofectamine, with GAPDH expression depleted by approximately 75% (Fig 

4.8b) compared to control. Cells transfected using attractene did not show a clear 
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change in GAPDH expression. This optimised protocol was used for experiments 

using STAT6 siRNA described later in chapter 5.  

Following the optimisation of the siRNA protocol, silencing of Jak2 expression 

was attempted using the same approach. Transfection of INS-1E cells with Jak2 

targeting siRNA for 48h successfully depleted Jak2 expression (Fig. 4.9). As 

previously reported a 30min IL-13 treatment induced a robust increased in 

phospho-STAT6 (Y641) expression under control conditions, however, this 

response was partially blocked by Jak2 knockdown (Fig. 4.9). 
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Figure 4. 7: IL-4 and IL-13 induce STAT6 phosphorylation in a similar manner.   

INS-1E cells were treated with 20ng/mL of either IL-4 or IL-13 for 15-60mins, 

followed by a PBS wash. Cells were lysed and the supernatant collected. Western 

blotting was performed using 50g of proteins and membranes probed with anti-

sera for phospho-STAT6. Total STAT6 was used as loading control. The data 

represents three independent experiments. 
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Figure 4. 8: Lipofectamine performed better for long duration transfections.  

INS-1E cells were treated with 10nM small interference RNA targeting (a-b) 

GAPDH using attractene and lipofectamine transfection reagents for 24h and 

48h. Cells were then washed with PBS. Cells were lysed and the supernatant 

collected. Western blots were performed and membranes probed for (a-b) 

GAPDH. Beta-actin was used as the loading control. (c) Densitometry 

analysis reveal the extend of knockdown although no significant difference 

was observed. Data represents two independent experiments. 
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Figure 4. 9: Jak2 knockdown reduced STAT6 induced phosphorylation by IL-13.  

INS-1E cells were transfected with 10nM of siJak2 for 48h followed by IL-13 stimulation for 

30min. Cells were then harvested, lysed, centrifuged and the supernatant collected. Western 

blotting was performed and membranes probed for Jak2, phospho-STAT6 and beta actin as 

loading control.  

Data represents results of experiments performed at least twice.   
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4.3.5 IL-13 stimulation leads to the upregulation of anti-apoptotic genes 

In order to discover genes regulated by IL-13, a rat Jak/STAT targeted PCR array 

was used (RT2 Profiler PCR array from Qiagen). RT2 Profiler PCR arrays are 

pathway focused arrays with a panel of 84 genes, 5 housekeeping genes, 3 

reverse transcription controls, 1 genomic DNA control and 3 positive controls all 

on a 96well plate. In these experiments, INS-1E cells were stimulated with IL-13 

for 48h, RNA extracted, estimated and cDNA synthesized as described in section 

2.6. cDNA was amplified on the Quantstudio 12K flex and analysed using the 

Qiagen online analysis tool which calculates fold change of each gene relative to 

the untreated control.  

The most highly upregulated gene was SIRP, a gene whose protein product is 

known to bind the surface marker CD47 leading to inhibition of phagocytosis in 

macrophages (Willingham et al., 2012). This gene has been studied only rarely 

in beta cells and has not previously been implicated in the response to IL-13 in 

these cells. The anti-apoptotic genes MCL1 and BCL2L1 were also upregulated, 

along with EPOR (erythropoietin receptor), IFNGR1 (interferon gamma receptor), 

SMAD1 (Mothers against decapentaplegic homolog 1), CDKN1a (Cyclin-

dependent kinase inhibitor 1, known for inhibiting apoptosis), SH2B1 (SH2-

domain adapter 1), EGFR (Epidermal growth factor receptor), and SOCS1 a 

negative regulator of the Jak/STAT signalling pathway (amongst others 

represented in Fig. 4.10 & table 12). The RT2 Profiler arrays were used to identify 

the most upregulated genes and the results were then confirmed using specific 

SYBRGreen PCR primer assays in separate experiments. The upregulation of 

most of the genes seen by the array method was confirmed using samples 

obtained after 48h treatment of INS-1E cells followed by qPCR: SIRP (Control: 

1.0, IL-4: 3.0±0.4, IL-13:2.7±0.15, p<0.001), MCL1 (Control: 1.0, IL-4: 1.5±0.12, 
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IL-13:1.46±0.07, p<0.01), and SOCS1 (Control: 1.0, IL-4: 1.5±0.1, 1.7±0.2, 

p<0.001). BCL2L1 was significantly upregulated by IL-4 and not by IL-13 (Control: 

1.0, IL-4: 1.5±0.2 p<0.05, IL-13: 1.15±0.1) as was EPOR (control: 1.0, IL-4: 

2.3±0.6 p<0.05, IL-13: 1.13±0.1). Although strongly upregulated in the PCR array, 

SMAD1 and IFNGR1 were not changed by IL-13 or IL-4 in the specific qPCR 

primer experiments (Fig. 4.11). Protein expression of SIRP, MCL1, and BCLXL 

was determined by western blotting and as expected these proteins were 

upregulated following 48h exposure to IL-4 and IL-13 in INS-1E cells (Fig. 4.12). 

Densitometric analysis of the western blots revealed a significant upregulation of 

SIRP in response to both IL-4 and IL-13 relative to the untreated control (Fig. 

4.13). Densitometric analysis also revealed a significant upregulation of BCLXL 

by IL-4 but not by IL-13 while similar analysis of MCL1 expression showed no 

significant difference between treatments and controls (Fig. 4.13).  

 EndoC H1 cells that were stimulated with IL-13 for 48h were harvested lysed 

and probed with anti-sera against SIRP, MCL1 and BCLXL. SIRP, and MCL1 

showed an upregulation after IL-13 treatment while BCLXL was less affected (Fig. 

4.12c).  

Although qPCR experiments for total STAT6 were not performed, western blot 

experiments revealed that both IL-13 and IL-4 significantly increased STAT6 

levels in INS-1E beta cells after 48h but STAT3, was not altered (Fig 4.14). 
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Figure 4. 10: IL-13 stimulation of INS-1E cells upregulates an array of genes.  

INS-1E cells were stimulated with IL-13 for 48h, harvested and RNA collected using an RNeasy kit. RT-PCR was 

performed using RT2-First Strand from Qiagen. cDNA was then used to perform a qPCR on an RT2 Profiler PCR array. 

Data represents expression relative to unstimulated cells. 
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Figure 4. 11: Specific gene primer qPCR confirmed the upregulation of genes from the array. 

  INS-1E cells were stimulated with 20ng/mL of IL-4(♦) or IL-13(▲) for 48h, harvested and 

RNA extracted with RNeasy. cDNA was synthesized using the RT2 First Strand kit and 

amplicons amplified by SYBRgreen qPCR. a. SIRP, b. EPOR, c. MCL-1 d. BCL2L1 e. 

SOCS-1, f. IFNGR1, g. SMAD1 and h. B2M. Data represents mean of ±SEM of three 

independent experiments each with three replicates *p<0.05, **p<0.01 and ***p<0.001 

relative to control determined by student t-test.  
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Figure 4. 12: IL-4 and IL-13 upregulate SIRP, MCL1 in both INS-1 and EndoC H1 cells 
and BCLXL in INS-1E.  

(a & b) INS-1E and (c) EndoC H1 cells were treated with 20ng/mL for 48h, lysed and 

the supernatant collected. Western blotting was performed with 50g of protein and 

membranes probed with anti-sera against SIRP, MCL-1, BCLXL, with GAPDH as 

loading control. Data represents three independent experiments. 
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Figure 4. 13: Densitometric analysis on INS-1E Western blots revealed persistent 

SIRP upregulation.  

Western blot densitometry analysis were performed with the Licor software 

normalised with loading control and expressed relative to the control. Data 

represent means ±SEM of three independent experiments determined by student 

t-test. 
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Figure 4. 14: IL-4 and IL-13 both upregulate STAT6 expression but not STAT3.  

a. INS-1E cells were stimulated with 20ng/mL of IL-4 or IL-13 for 48h, cells 

harvested, lysed and the supernatant collected. Western blotting was performed 

with 50g of proteins and membranes probed with anti-sera against STAT3, 

STAT6 and loading control GAPDH. b. Densitometry analysis confirm a 

significant  increase in STAT6 upon IL-4 and IL-13 stimulations. Data represents 

three independent experiments 
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4.4 Discussion 

4.4.1 The role of the Jaks 

In the previous chapter, it was revealed that IL-13 and IL-4 protect pancreatic 

beta cells from a range of cytotoxic stimuli, but the protective mechanisms remain 

to be completely understood. IL-4 and IL-13 signal by binding to their cognate 

receptors leading to receptor dimerization and Jak trans-phosphorylation. IL-4 

binds to IL-4R and forms a heterodimer with the common gamma chain (C) 

receptor, while IL-13 binds to IL-13R1 and forms a heterodimer with IL-

4R(Russell and Morgan, 2014). It has previously been shown that the IL-13 and 

IL-4 receptor components are present on both rat clonal beta cell lines and on 

human islet tissue sections (Kaminski et al., 2010). The present chapter sought 

to characterize the key components of the Jak/STAT6 pathway that might be 

involved in the protection of beta cells from cytotoxicity. The impact of IL-13 

signalling on the PI3K/At pathway was not studied here since our previous work 

suggests that, although, this pathway is activated in response to IL-13, it is 

unlikely to be involved in the cytoprotective effects of the cytokine in beta cells 

(Russell et al., 2013). 

In Jak/STAT signalling, the receptor associated Jaks are phosphorylated after 

receptor dimer formation and prior to the recruitment of STATs. However, it is 

unclear which Jak proteins act upstream of STAT6 in response to IL-13 treatment. 

It was shown by western blotting analysis that rat INS-1E beta cells express all 

four known Janus kinases (Jak1, Jak2, Jak3 and Tyk2). These data support initial 

findings by Stout et al. (1997) who also showed by immunohistochemistry that 

INS-1E expressed these proteins. These data are also in accord with other 

studies that show indirectly that Jak1 and Jak2 are expressed in INS-1E and NOD 
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mice using Jak1 and Jak2 inhibitors to influence downstream effects (Trivedi et 

al., 2017, Couto et al., 2007). Jak1 has been implicated in IFN- signalling in both 

beta cells and other cell types. However, a role for Jak1 in IL-4 and IL-13 

mediated Jak/STAT signalling has not been previously reported in beta cells. It 

was shown here that both IL-4 and IL-13 activate Jak1 (Fig. 4.2) but with differing 

kinetics. Research on cytokines that use the common gamma chain, illustrates 

that these cytokines require Jak1 for signal transduction (Haan et al., 2011). IL-4 

has previously been shown to activate Jak1 in a haematopoietic cell line 

(Friedrich et al., 1999) and other cell types through the IL-4R (Chen et al., 1997). 

IL-13 has also been suggested to activate Jak1 in other cell types (Keegan et al., 

1995). Jak1 is known to also be activated by type 1 interferons leading to 

STAT1/STAT2 activation in other cell types (Ahmed et al., 2013). In future 

experiments, it will be important to determine the role of Jak1 is to IL-13 signalling 

by performing knockdown experiments with Jak1. Jak2 knockdown was 

performed instead of Jak1 based on previous experiments by our group 

demonstrating that Jak2 knockdown reversed IL-13 protection (Russell et al., 

2013). It is important to note that the activation of Jak1 can also be induced by 

type 1 interferons (Ahmed et al., 2013). The association of Jaks to receptors is 

not specific as one type of Jak can be found on different receptors. The 

association of Jaks to the receptor is thought to occur after de novo synthesis of 

receptors (Usacheva et al., 2002) and according to the RT2 profiler array, the IL-

4R was upregulated by IL-13 stimulation. It is tempting to speculate that IL-13 

might protect from pro-inflammatory IFN- cytokine by competition for 

cytoplasmic Jak1, although research on receptor association dynamics is still 

needed to confirm this. Alternatively, signalling through Jak1 could lead to the 

upregulation of negative regulators of other signalling pathways such as SOCS1 
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and PIAS1 (Liu et al., 2016, Sun et al., 2013). This suggests that Jak1 might play 

a role in the IL-13 mediated protection of INS-1E from inflammatory cytokines in 

multiple ways. 

Jak2 is known to be activated by IL-4 and IL-13 in vascular endothelial cells 

(Palmer-Crocker et al., 1996). The results in this chapter shows the appearance 

of two Jak2 bands suggested to be isoforms  and have been reported in other 

cell types (Feener et al., 2004, Robertson et al., 2009) although this has not been 

reported in beta cells. In INS-1E beta cells, it has been shown that prolactin 

activates Jak2 in a biphasic manner, with an increase in phosphorylation at 

15mins, then a nadir at 30mins (Brelje et al., 2002). Jak2 has been implicated in 

beta cell proliferation, survival, and protection against beta cell cytotoxicity, and 

can be phosphorylated in response to EPO, Lactogens and prolactin (Choi et al., 

2010, Fujinaka et al., 2007, Yao et al., 2015). Furthermore, Jak2 inhibitors have 

been used to reverse diabetes in NOD mice (Trivedi et al., 2017), where systemic 

delivery was used. Importantly, we have shown that Jak2 is activated upon IL-13 

stimulation and the use of a Jak2 specific inhibitor revealed its role in mediating 

the protective effects of IL-13 (Russell et al., 2013). However, when the time-

course of Jak2 activation was explored in the present work, these data revealed 

a nadir in Jak2 phosphorylation shortly after IL-13 (or IL-4) treatment, but this 

evolved into an elevated level of phosphorylation after 75min of stimulation. It is 

unclear if this initial change is due to enzymatic dephosphorylation of Jak2, as 

this process is known to be performed by a number of protein phosphatases 

including; protein tyrosine phosphatase 1B (PTPN1), Src homology region 2 

domain containing phosphatase (SHP)-1 and SHP2 which can all cause a rapid 

dephosphorylation of the tyrosine 1008 and 1007 on Jak2 (Li et al., 2015a). 

Furthermore, all of these phosphatases have been reported to be present in beta 
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cells (Zhang et al., 2009, Fernandez-Ruiz et al., 2014). The dephosphorylation 

event almost coincides with the activation of STAT6 at 5min and a reported 

increase in the activity of PTPN1 (Li et al., 2015a), which might further implicate 

phosphatases. Building on previous results which had implicated Jak2 in IL-13 

protection of beta cells (Russell et al., 2013), we decided to study Jak2 further. 

Jak2 knockdown reduced the activation of STAT6 by IL-13 (Fig. 4.8) providing 

very strong support for a possible role of this kinase in IL-13 mediated protection 

of beta cells from cytotoxicity.  

The presence of Jak3 in INS-1E beta cells and its activation by both IL-4 and IL-

13 has also been revealed in this chapter. Western blotting showed the presence 

of three bands which represents 3 spliced variants of Jak3 described in other 

cells (Lai et al., 1995). Jak3 phosphorylation is induced by IL-4 and IL-13 via the 

common gamma chain present in their receptors in other cell types (Malar et al., 

1996). Jak3 inhibition using a highly specific inhibitor, WHI-P154 reversed the 

protection induced by IL-4 in rat beta cells cultured in the presence of pro-

inflammatory cytokines (Kaminski et al., 2010). Inhibition of Jak3 using JANEX-1 

in islets and NOD mice reduced NF-B activation by blocking IL-1 and IFN- 

signalling and also reduced iNOS expression by a similar mechanism (Lv et al., 

2009). One possibility is that, IL-4 and IL-13 activation of Jak3 leads to a 

signalling cascade that generates negative feedback molecules (such as 

SOCS1) which then counteract the signalling of pro-inflammatory cytokines such 

as IL-1and IFN-.  

The data presented here and that of others (Marroqui et al., 2015, Stout et al., 

1997) suggest that INS-1E cells express Tyk2. Tyk2 can be activated by both IL-

4 and IL-13 in other cell types (Millward-Sadler et al., 2006), but is also known to 
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be activated by type 1 interferons (Ahmed et al., 2013). More studies are needed 

to confirm which receptor Tyk2 associates with preferentially and whether or not 

it plays a role in IL-13 mediated protection. Tyk2 gene mutations are implicated 

in T1DM and in virus-induced diabetes (Nagafuchi et al., 2015) and knockdown 

of this gene leads to a decrease in MHC I expression and cell death in poly-IC 

stimulated human beta cells (Marroqui et al., 2015).  

Until recently, the role of Jak proteins was understood to be restricted to the 

Jak/STAT signal transduction pathway. However, in the last few years, each of 

the Jak proteins has been shown, unexpectedly, to also translocate to the 

nucleus, where they bind and phosphorylate tyrosine residues on histones 

leading to altered promoter activity. This, in turn, leads to changes in the 

expression of various genes which could potentially be involved in viability, 

survival and other important cell processes. (Zhu et al., 2017, Ahmed et al., 2013, 

Dawson et al., 2009, Landires et al., 2013). This novel insight has however only 

been studied in very few cell types but not in pancreatic beta cells, and may 

illustrate a different but crucial role of the Janus kinases. It is possible that the 

activation of these kinases by different cytokines will lead to differential 

localisation at key nuclear binding sites eventually leading to diverse activities.  

A question that remains unanswered is which receptor (IL-4R, C, IL-13R1) 

mediates the activation of each specific isoform of Jak in beta cells? The present 

understanding indicates a large variation in the cytokine receptor sequence that 

interacts with Jaks (Ferrao and Lupardus, 2017). This suggests that different Jaks 

bind to specific receptors with variable affinities. Immuno-precipitation of the 

receptor components might be one way to define Jak associations. Answering 

this question will give a clearer picture as to which of the Jaks is involved in IL-
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4/IL-13 signalling. Jak proteins use the FERM domain to bind to specific receptor 

components called box1 and box2 (Ferrao and Lupardus, 2017). The IL-4R and 

IL-13R1 have been reported to each have both box1 and box2 and can 

accommodate different Jaks (Usacheva et al., 2002, Ferrao and Lupardus, 2017), 

but whether these are activated simultaneously or in sequence (and which is most 

important) remains to be answered. 

4.4.2 The genes regulated by IL-4 and IL-13 stimulation 

Following the activation of Jaks, the appropriate STAT is recruited to the receptor 

cytoplasmic tail where it becomes activated. In the case of IL-4 and IL-13 

signalling, canonically STAT6 is recruited and phosphorylated, and this model 

was confirmed here using INS-1E cells (and was previously reported in human 

islets (Russell et al., 2013)). However, it is also important to concede that 

additional pathways may be activated independent of STAT6. For example, it was 

previously shown that STAT3 is also phosphorylated in response to IL-13 

treatment of INS-1E (Russell et al., 2013). In addition, activation of PI3K also 

occurs upon IL-4 and IL-13 stimulation (Rutti et al., 2016, Russell et al., 2013). It 

is established that activated STAT6 dimerises with other activated STAT6 

monomers and migrates to the nucleus where it binds to the palindromic 

sequence TTC(N)3 or4 GAA to regulate gene expression (Goenka and Kaplan, 

2011). In trying to understand the genes upregulated by activated by IL-13, a 

qPCR array kit was exploited. 

 Anti-apoptotic molecules such as BCLXL and MCL-1 were upregulated in 

response to IL-4 and IL-13 treatment at both gene and protein levels. These 

results concur with findings in other cell types (Lømo et al., 1997, Wurster et al., 

2002). The importance of both BCLXL and MCL-1 as key anti-apoptotic proteins 
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is well established in beta cell survival, and thus it is likely that the upregulation 

of these proteins may contribute to the protective effects of IL-13 (Carrington et 

al., 2009, Miani et al., 2013). In keeping with this, activated STAT6 dimers have 

been shown to bind to the BCLXL gene promoter region to upregulate BCLXL 

expression (Wurster et al., 2002, Natoli et al., 2013). Data from our group has 

also shown a loss in MCL-1 in certain islets of people with T1DM when compared 

to non-diabetes controls (Richardson et al., 2013). This could imply that 

decreased anti-apoptotic signalling contributes to the death of beta cells in T1DM 

(Usero et al., 2016). 

The results from the gene-specific qPCR assays revealed the dramatic 

upregulation of SIRP (Signal regulatory protein alpha, also known as Src 

Homology domain-containing protein tyrosine phosphatase substrate 1 SHPS-1) 

in response to IL-13 and IL-4. These data were confirmed by qPCR and western 

blotting in EndoC H1 and INS-1E beta cells. SIRP is a transmembrane 

glycoprotein of the Immunoglobulin superfamily involved in cell-cell 

communication through binding to its ligand CD47 (Oshima et al., 2002). CD47 

is a marker of self and is known to inhibit phagocytosis in macrophages through 

its interaction with SIRP (Bian et al., 2016). However, this binding event sends 

a bidirectional signal and as such can have effects on both cells (Oshima et al., 

2002). Results here suggest that CD47 is present in beta cells under control 

conditions and agrees with the results of Kobayashi and colleagues who showed 

the expression of both SIRP and CD47 in the islets of C57BL mice. In that 

report, islet SIRP knockout mice had a reduced ability to secrete insulin 

(Kobayashi et al., 2008). The role of SIRP in beta cell viability remains to be 
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addressed and this is considered in chapter 6 of this thesis. The induction of 

SIRP by IL-13 response has not been documented previously in beta cells.  

Suppressor of cytokine signalling 1 (SOCS1) was also significantly upregulated 

by both IL-4 and IL-13, and a similar effect has been reported in other cell types 

(Hebenstreit et al., 2003). SOCS proteins are the most studied negative 

regulators of the Jak/STAT signalling pathway, wherein they are reported to 

target signalling proteins such as the Jaks for degradation through the ubiquitin 

pathway (Shuai and Liu, 2003). The role of SOCS1 in beta cell health has been 

extensively studied (Martinez-Nunez et al., 2011, Sun et al., 2013, Trengove and 

Ward, 2013, Li et al., 2015b) and may be protective to these cells under certain 

circumstances. Overexpression of SOCS1 protects NOD mice (a T1DM mouse 

model ) from insulitis by preventing both MHCI expression and FASL expression 

and decreasing T-cell proliferation (Chong et al., 2004). Others have shown that 

SOCS1 protected NOD mice from diabetes by blocking IFN- signalling and 

preventing T-cells from attacking the islets (Flodstrom-Tullberg et al., 2003). In 

this context, SOCS1, and other members of the SOCS family (2&3) have been 

shown to be increased at the mRNA level in human islets from people with T1DM, 

possibly as a protective mechanism against inflammatory cytokines (Santangelo 

et al., 2005). Taken together, these data imply that beta cells might be protected 

from cytotoxicity, in part through the upregulation of SOCS1 which can negatively 

regulate pro-inflammatory cytokines signalling.  

The gene-specific qPCR showed an increased expression of the erythropoietin 

receptor (EPOR) by IL-4, but not by IL-13. Little is known about the relationship 

between EPOR and IL-4, except for one report that showing that EPOR signalling 

protects against white adipose tissue inflammation and insulin resistance in a 
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STAT6 dependent on manner (Alnaeeli et al., 2014). Erythropoietin has been 

reported to protect db/db mice from streptozotocin induced diabetes in a beta cell 

specific manner through the upregulation of BCLXL (Choi et al., 2010). 

The RT2 Profiler array also revealed the upregulation other genes such as 

GATA3, PIAS2, SH2B1, PTPN1, GRB2, JUN, PDGFRA, CRK, CRP and MYC 

however, these require further validation with specific primers. Some of these 

genes are known to be STAT6 regulated, such as GATA3, and PIAS2, (Shuai 

and Liu, 2003) and are implicated in diabetes and or IL-13/IL-4 signalling see.  

  



181 
 

Table 13: Other IL-13 regulated genes and their beta cell functions 

Gene Function Reference 

GATA3  Reduced GATA3 upregulation in 

response to type 2 cytokines in cord 

blood T lymphocytes is a genetic risk 

for T1DM 

(Luopajärvi et al., 

2007) 

PIAS2  Upregulated in PBMCs of non-diabetic 

rats stimulated with serum from 

diabetic rats 

 Negative regulator of STAT2 

(Kaldunski et al., 

2010)  

 

(Shuai and Liu, 

2003) 

GRB2  An adaptor protein essential for IGF 

PI3K signalling  

(Hügl et al., 1998) 

PTPN1  Negative regulator of the STATs 

 Its deletion protects mice from T1DM 

(Lu et al., 2008) 

(Herren et al., 

2015) 

cJUN  Helps the beta cell recover from iNOS 

toxicity 

(Scarim et al., 

2003) 

PDGFRA  Essential for PDGF signalling 

important for age dependent 

proliferation of beta cells 

(Chen et al., 2011) 

CRK  An adaptor protein Involved in glucose 

signalling  

(Lee et al., 2004) 

CRP  An acute phase protein secreted in 

response to inflammation and helps in 

phagocytosis. Hence its levels are 

upregulated in T1DM 

(Chase et al., 

2004) 

MYC  Overexpression of the c-MYC in 

streptozotocin induced diabetes mice 

reversed the alter gene expression of 

liver metabolism genes  

(Riu et al., 2002) 

 

Collectively, this chapter set out to study the signalling pathway stimulated by IL-

13 and IL-4 and in beta cells. Whilst a conclusion on which particular Jaks are 

involved in the signalling cannot be drawn pending receptor component 

experiments and viability experiments, the data suggest that all Jaks could 

potentially be involved. The activation of Jak proteins leads to STAT6 recruitment 

and phosphorylation, this in turn increased the expression of various genes, some 
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of which are well known, such as MCL-1 and BCL2L1 and another, not formally 

associated with IL-13, called SIRP And these might be contributing to the 

cytoprotection observed following IL-13 treatment.  

I have confirmed in this chapter, the presence of all four Jaks in INS-1E beta cells 

and illustrated the different activation patterns of these kinases upon IL-4 and IL-

13 stimulation. The dynamics of Jaks and receptors association is still not known 

and might be key to understanding the role of Jaks in beta cells. Importantly, the 

genes regulated by IL-13 were studied in beta cells and revealed the upregulation 

of anti-apoptotic MCL-1 and BCLXL. Additionally, the dramatic upregulation of 

SIRP was observed whose role in beta cells has not been completely defined. 

In the next chapter, the impact of manipulating STAT6 expression by either 

overexpression or knockdown on IL-13 protection in beta cells will be 

investigated. 
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Chapter 5.0: The Impact of STAT6 on beta 

cells 
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5.0 The Impact of STAT6 on beta cells 

5.1 Introduction 

Evidence in the previous chapter demonstrated that the ability of IL-13 to protect 

beta cells involves the upregulation of a variety of gene products. Leading on 

from this, the results described in this chapter establish whether these genes are 

regulated in a STAT6 dependent manner and evaluate the role played by STAT6 

in the cytoprotection afforded by IL-13. Downstream targets of IL-4 and IL-13 

have been extensively studied in immune cells and in other cell types, but 

relatively little is known about their roles in beta cells (Elo et al., 2010, Czimmerer 

et al., 2018, Chen et al., 2003, Szanto et al., 2010).  

IL-13 signals by binding to its cognate receptor leading to receptor dimerization, 

Jak phosphorylation and the recruitment of STAT6. STAT6 is then 

phosphorylated, homo-dimerises and migrates to the nucleus (Jiang et al., 2000). 

According to a GWAS study conducted using human T helper (Th) cells, 80% of 

IL-4 activated genes (453 genes were studied) are regulated by STAT6 over a 

period of 48h. These included genes such as GATA3, GIMAP4, IL-24, LTB, 

SPINT2 and SOCS1 (Elo et al., 2010) but not those found in the present work in 

beta cells. In beta cells, some of the genes regulated by IL-13 have been 

identified by Rütti et al. (2016). In their experiments, INS-1E cells were stimulated 

for 48h and the regulation of 4 genes noted which include CISH, CD83, Galnt14 

and St6galnac3 (a pseudogene). Although CD83 has been linked to T1DM, Rutti 

and colleagues did not go on to confirm whether these genes are directly 

controlled by STAT6 since they concluded that the protection afforded by IL-13 

was PI3 kinase-mediated (Rutti et al., 2016). 
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Whole body knockout of STAT6 in Balb/CJ or C57BL/6j mice led to increases in 

serum cholesterol, triglycerides, and insulin resistance due to an increase in 

PPARwhich caused the activation of fatty acid break down pathways. Hence, 

these mice had lean bodies but high serum fat levels. This suggested that STAT6 

may regulate PPARexpression, hence controlling lipogenesis (Ricardo-

Gonzalez et al., 2010). In another report where Balb/c Lyn knockout mice and 

Lyn knockout STAT6 knockout were used, the absence of STAT6 exacerbated 

autoimmunity by increasing serum auto-antibodies, increasing T-cell activation 

(increase CD69, CD44 and decrease CD62L), and increasing serum cytokines 

such as IFN-, suggesting that polarisation to a more Th1 response occurs in the 

absence of STAT6 to encourage autoimmunity (Lau et al., 2012). 

The aims of this chapter were: 

 To assess the impact of STAT6 on beta cell viability by suppressing its 

expression using small interference RNA. Additionally, to study if loss of 

STAT6 had any influence on IL-13 afforded protection of beta cells from 

cytotoxicity  

 Alternatively, the impact of STAT6 was studied by enhancing its 

expression by transfecting a STAT6 plasmid vector into beta cells and 

performing cytoprotection experiments 

 Gene and protein expression studies were performed after STAT6 

knockdown to determine whether the genes upregulated in chapter three 

are controlled by STAT6. 
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5.2 Materials and methods 

5.2.1 Real-time RT-PCR 

After incubation of cells with relevant test reagents, RNA was extracted as 

described in section 2.6.1, and 500ng used for cDNA synthesis as described in 

section 2.6.2. qPCR was performed accordingly to the methods given in section 

2.6.3.  

5.2.2 Knockdown of STAT6 

Knockdown of STAT6 was performed as described in section 2.3. Briefly, 10nmol 

/mL of STAT6 siRNA (5’ CGAGAUCUUGCUCAAUUAATT, 3’ 

UUAAUUGAGCAAGAUCUGGA from Life technologies, USA) was mixed with 

Optimem, and the transfection reagent Lipofectamine RNAi Max (Thermofisher, 

UK). The mixture was used to transfect plated cells in a dropwise manner, plates 

swirled and incubated at 370C. 

5.2.3 Plasmids  

All plasmids arrived on blotting paper or were lyophilised and were reconstituted 

following the manufacturers’ protocols. Briefly, tubes containing the plasmids 

were centrifuged at 5000g for 5min and DNA suspended in RNAse/DNAse free 

water. The tubes were then left at room temperature for 10min and centrifuged at 

5000g for one minute before storage at -200C or used to transform competent 

Escherichia coli (E.coli). 

STAT6 plasmid 

The rat STAT6 gene ORF cDNA clone expression plasmid was obtained from a 

commercial source (Stratech, UK), (RefSeq NM_001044250.1). The STAT6 

insert was positioned within the multiple cloning site of a pCMV3 vector conferring 

ampicillin resistance. The insert was flanked by various restrictions and two 
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recognised by; KpnI and XbaI, were employed to isolate and sub clone the insert. 

The structure of the STAT6 expression plasmid is shown in figure 5.1 below.  

 

 

 

 

Figure 5. 1:  STAT6 cDNA expression plasmid  

(Courtesy of Sinobiological: http://www.sinobiological.com/Rat-STAT6-Gene-

cDNA-Clone-full-length-ORF-Clone-expression-ready-untagged-

p53097.html#img-1) 
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STAT6 reporters constructs 

The STAT6 reporters plasmids were generously gifted by Mrs Laura Pelletier and 

Prof Karen Leroy of the French National Institute of Health and Medical Research 

(Paris, France). The STAT6 reporters (N3 or N4) were constructed to report the 

binding activity of STAT6 to either an N3 or an N4 GAS domains. The STAT6 

reporters (each containing either an N4 or an N3) are positioned upstream of the 

luciferase gene (Fig. 5.2) thereby allowing their use to monitor promoter activity.  

 

 

 

 

Figure 5. 2: STAT6 reporter construct 

(Courtesy of panomics: www.panomics.com 

 

 

 

http://www.panomics.com/
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Renilla plasmid 

The renilla plasmid was obtained commercially from Promega, UK. The vector 

encodes a luciferase reporter gene hluc (from Renilla reniformis) with an HSV-

TK promoter which allows constitutive expression in mammalian cells Fig 5.3. 

 

 

 

 

 

 

  

Figure 5. 3: Renilla reporter construct 

Source https://www.promega.co.uk/resources/protocols/product-information-

sheets/a/pgl474-vector-protocol/ 
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GFP plasmid 

In order to monitor the transfection efficiency of our cells, maxGFP was 

employed. This exploits a variant of green fluorescent protein (GFP) from the 

copepod Pontellina plumata (Shagin et al., 2004). The plasmid was commercially 

obtained from Lonza, UK and encodes a kanamycin resistance gene for use in 

selection (Fig.5.4).  

 

 

 

 

 

 

 

  

Figure 5. 4 pmaxGFP plasmid map 

Source: https://bioscience.lonza.com/lonza_bs/US/en/Transfection/ 
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5.2.6 Site-directed Mutagenesis 

Site-directed mutagenesis (SDM) is a protocol performed to create targeted 

changes in DNA by either insertion, deletion or substitution. Such changes in the 

DNA sequence may lead to gain or loss of function in a target protein if designed 

appropriately. SDM was performed following a protocol previously described 

(Bachman, 2013) although pioneered originally by Kunkel (Kunkel, 1985). The 

most important step in carrying out SDM is the design of specific primers that will 

create the change required in the target sequence. The NEBasechanger website 

(www.nebasechanger.neb.com) was used to simulate substitutions in rat STAT6 

cDNA in order to create constitutively active and dominant negative forms. The 

following primers were used to modify the STAT6 sequence; constitutively active 

STAT6 (STAT6CA): forward primer 5’ AAGCAATATGCCGCTAGCCTTCTC3’ 

reverse primer 3’ACTGATAAAGCCGATGATC5’; dominant negative STAT6 

(STAT6DN): primer 5’GGGAGGGGTTCTGTCTCAACTAC3’, reverse 3’ 

GTCCTTTCCCATCTGTTC 5’. At protein level, the constitutively active STAT6 

primer induced a change in the amino acids valine and threonine at position both 

to alanines at position 547 and 548. While the dominant negative primers induced 

a change of the tyrosine 641 to a phenylalanine (Daniel et al., 2000). 

Following the acquisition of the primers, the SDM PCR was performed using a 

Q5® SDM kit (New England Biolabs (NEB), UK). An exponential amplification of 

the plasmid was done using a combination of Q5 master mix, the appropriate 

primers and the template DNA. Denaturation was performed for 30s at 980C 

followed by 25cycles of 980C 10s, 600C 30s, 720C 30s to anneal and a final 

extension step of 720C for 2min. 

http://www.nebasechanger.neb.com/
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After the SDM, the PCR products were circularised by ligases, and template DNA 

removed by a Dpn1 enzyme (NEB, UK).  

Following this step the plasmids products were sent off for sequencing to confirm 

the successful substitution of the nucleotides.   

5.2.4 Confirming successful insertion or deletion of base pairs 

Five microliters of each sample from the SDM was sent off to Source 

BioScienceTM for sequencing using the appropriate primers depending on the 

vector in which the DNA was inserted. Sequencing results were analysed using 

an online sequence alignment tool (www.expasy.org) in which both the reference 

sequence and mutated sequence are aligned to observe the SDM. 

5.2.5 Bacteria transformation and plasmid purification 

Bacterial transformation to amplify plasmid DNA was performed as detailed in 

section 2.9.2. 

5.2.6 Transfection of cells with plasmid DNA 

Transfection of INS-1E cells or HEK293 cells was performed as detailed in 

section 2.9.3. 

5.2.7 Viability assays 

Cell viability assays were performed as described in section 2.4, using propidium 

iodide staining with some additional modifications. In these experiments, cells 

were transfected with STAT6 constructs prior to the viability assay. Green 

Fluorescent Protein (GFP) construct was co-transfected with STAT6 cDNA in 

order to select only the transfected cells, and thus only the GFP positive cells 

were used for viability counts. After harvesting the cultured cells and staining with 

http://www.expasy.org/
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PI, the flow cytometer was gated to sort GFP positive cells. From the GFP positive 

gate, PI positive cells were quantified (Fig 5.6). 
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Figure 5. 5: Gating for cell viability read out on the flow cytometer.  

After harvesting cells transfected and treated with various reagents using trypsin, cells 

were stained with 20g/mL PI/Facs buffer and analysed on the flow cytometer. Panel 

a. shows the total population of cells by size (FSC) and granularity (SSC) gated P2. 

Panel b. shows the percentage of the total population P2 that is non-viable labeled P4. 

Panel c. shows the compensation plot of GFP and PI performed according 

manufacturer’s recommendations. Panel d. shows a histogram GFP positive cells 

(M1).  GFP positive cells were then plotted by size and granularity (P1), panel e. and 

on panel f, P1 cells were plotted for PI positive cells P3, which represents the 

percentage non-viable cells positive for GFP. “A” after each acronym on the plots 

stands for Area 

a b c

d e f. 
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5.2.8 Western blotting 

Western blotting was performed to assess protein expression according to the 

protocol in section 2.7. 
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5.3 Results 

5.3.1 STAT6 knockdown abrogated IL-13 protection  

In the previous chapter, a knockdown protocol was established and exploited to 

deplete STAT6 expression in INS-1E cells. A comparison of the different 

transfection reagents revealed that Lipofectamine was more effective than 

attractene (Fig 5.6a). STAT6 levels were significantly reduced (compared to cells 

exposed to scrambled siRNA) in rodent beta cells by approximately 75% within 

48h of introduction of STAT6 siRNA according to densitometric analysis (Fig. 

5.6b). Using the Lipofectamine transfection reagent to monitor the duration of 

knockdown, it was confirmed that STAT6 expression was reduced for at least four 

days (Fig. 5.6c).  

It was important to understand whether STAT6 depletion affected beta cell 

viability in the absence of a cytotoxic stimuli. To asses this, STAT6 knockdown 

was performed in INS-1E cells and cell viability compared with those exposed to 

a scrambled control for a period of 7days. Knockdown of STAT6 did not impact 

the viability of cells for at least six days (Fig.5.7). Observation of the transfected 

cells under the light microscope suggested that, STAT6 knockdown reduced the 

rate of cell growth compared to the scrambled control. Both scramble and 

knockdown treatments witnessed an increase in cell death by day 6 and 7 due to  

increase cell density relative to growth factors in the medium. These lead to cell 

starvation and induction of intrinsic apoptotic pathway and hence increase cell 

death (Alberts et al., 2002b, Alberts et al., 2002a). 

To determine whether the protection offered by IL-13 was mediated via a STAT6-

dependent pathway, IL-13 mediated protection was studied after STAT6 

knockdown. Serum withdrawal was initially exploited to induce beta cell death 
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and was performed as described in section 3.2.3. As already established in 

chapter 3.0 and in other studies (Russell et al., 2013, Charles et al., 2005), serum 

withdrawal from INS-1E cells led to a significant increase in cell death, and this 

was reduced by IL-13 treatment (SW: 46.38±3.5%, SW+IL-13: 27.96±3.3%, 

p<0.001). Importantly, the protection offered by IL-13 was abrogated by STAT6 

KD (SW+STAT6 KD: 48.11±3.6%, SW+STAT6 KD+ IL-13: 42.0±2.6% cell death 

p>0.05) (Fig. 5.8). 

 A similar result was obtained with IL-4 treatment using serum withdrawal to 

induce cell death. Again, SW induced a significant increase in cell death that was 

reduced by IL-4 treatment (SW 53.5±1.5%, SW+IL-4 44.0±1.1% cell death; 

p<0.01). The protection offered by IL-4 was completely reversed by the 

knockdown of STAT6 (SW+KD 58.9±1.8%, SW+KD+IL-4 56.1±2.2% cell death 

p>0.05) (Fig. 5.9).  

To determine whether STAT6 was involved in the IL-13 mediated protection from 

other cytotoxic stimuli, INS-1E cells (with or without STAT6 knockdown) were 

treated with a pro-inflammatory cytokine cocktail (IL-1, TNF-, IFN- and IL-6) 

in the presence or absence of IL-13 and cell viability assessed. As expected, pro-

inflammatory cytokine cocktail treatment led to an increase in cell death that was 

reduced by pre-treatment with IL-13 (Cyt; 92.8±1.3%, Cyt+IL-13; 82.4±1.9%, cell 

death p<0.001). STAT6 knockdown alone had no significant effect relative to the 

scrambled control (control; 15.5±1.4%, Control+KD; 16.9±2.2% cell death). 

Knockdown of STAT6 however, reversed the protection offered by IL-13 

(cytokines: 92.8±1.3%, cyt+KD+IL-13; 94.1±0.8%, cell death p>0.05) (Fig. 5.10).  

As expected 250M palmitic acid (PA) treatment of INS-1E cells for 48h induced 

a large increase in cell death (PA; 91.37±1.49% cell death), and as observed 
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previously this was reduced significantly by IL-13 pre-treatment (PA+ IL-13; 

75.14±3.33%, cell death p<0.001). Strikingly, knockdown (KD) of STAT6 

reversed the protection afforded by IL-13 under conditions of palmitic acid 

treatment (PA+KD+IL-13; 96.16±1.0%, cell death p<0.001). Again, in these 

experiments, knockdown of STAT6 alone did not significantly affect cell viability 

(control; 9.9±1.6%: KD; 15.19±2.1%, cell death p>0.05) Fig. 5.11. Taken together 

these data support the notion that STAT6 is critical in mediating the protective 

effects of IL-13 in pancreatic beta cells. 
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Figure 5. 6: STAT6 was successfully knocked down for four days 

INS-1E cells were treated with 10nM of siSTAT6 for (a-b) 48h and (c) 96h. Cells were 

washed with PBS, lysed and the supernatant harvested for western blotting. (a-b) 

Western blotting was performed with 20g of protein and membranes probed with anti-

sera against STAT6 and control anti-sera against beta-actin. (b) Densitometric analysis 

with Licor software showed a statistically significant decrease in STAT6 expression.  

Western blots results are representative of 3 independent repeats. Data for 

densitometry analysis represent mean ±SEM of triplicate experiments *p<0.05, 

determined by student t-test. 

c 

a 

b 
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Figure 5. 7: STAT6 knockdown does not induce cell death in beta cells 

INS-1E cells were cultured and treated with 10nM of siSTAT6 or scramble siRNA 

and cells harvested at the end of each day for viability studies using trypan blue 

staining.  

Data represent mean values from two independent experiments 
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Figure 5. 8: Depletion of STAT6 reverses the partial protective effects of IL-13 on 
serum withdrawal  

INS-1E cells were transfected with siSTAT6 or scrambled siRNA for 24h prior to 

the addition of 20ng/mL of IL-13 in the absence of serum for 96h. Cells were then 

harvested and viability assessed by trypan blue staining.  

Data represent mean values of 3 independent experiments ±SEM **p<0.01,  

***p<0.001, determined by student t-test. 
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Figure 5. 9: Depletion of STAT6 reverses the partial protective effects of IL-4 on 
serum withdrawal  

INS-1E cells were transfected with siSTAT6 or scrambled siRNA for 24h prior to 

the addition of 20ng/mL of IL-4 in the absence of serum for 96h. Cells were then 

harvested and viability assessed by trypan blue staining.  

Data represent mean values of 3 independent experiments ±SEM **p<0.01 

determined by student t-test. 
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Figure 5. 10: Depletion of STAT6 reverses the partial protective effects of IL-13 on 
pro-inflammatory cytokines treatment 

INS-1E cells were transfected with siSTAT6 or scramble siRNA for 24h prior to 

the addition of 20ng/mL of IL-13 in the presence or absence of 20ng/mL of pro-

inflammatory cytokine cocktail (cytokines) (IL-1, IL-6, TNF- & IFN-). Cells 

were then harvested and viability assessed by trypan blue staining.  

Data represent mean values of 3 independent experiments ±SEM ***p<0.001 

determined by student t-test. 

 

 



205 
 

0

25

50

75

100

N
o

n
-v

ia
b

le
 c

el
ls

(%
)

***

***

IL-13
STAT6 KD

Palmitic acid

-
-
-

+
-
-

-
-
+

+
-
+

-
+
-

+
+
-

+
+
+

***

  

Figure 5. 11: Depletion of STAT6 reverses the partial protective effects of IL-13 on 
palmitic acid treatment 

INS-1E cells were transfected with siSTAT6 or scramble siRNA for 24h prior to 

the addition of 20ng/mL of IL-13 in the presence or absence of 250mol/l palmitic 

acid for 48h. Cells were then harvested and viability assessed by trypan blue 

staining.  

Data represent mean values of 3 independent experiments ±SEM ***p<0.001 

determined by student t-test. 
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5.3.2 Knockdown of STAT6 reverses the upregulation of IL-13 responsive 

genes and gene products 

In the previous chapter, it was revealed that IL-13 stimulation of INS-1E cells 

induced the upregulation of several genes (as illustrated in section 4.3.9). To 

understand the role of STAT6 in the regulation of these genes, small interference 

RNA was used to knockdown STAT6, prior to the stimulation of cells with IL-4 

and IL-13. Using gene-specific primers, SYBRGreen qPCR confirmed the 

upregulation of SIRP, BCL2L1, SOCS1, MCL-1 and EPOR in response to IL-4 

and IL-13 stimulation. The fold change was calculated using 2-Ct formula relative 

to levels of the housekeeping genes HPRT1 and YY1.  

As shown previously (Fig. 4.11a), IL-13 and IL-4 stimulation both significantly 

increased the expression of SIRPImportantly, knockdown of STAT6 

completely reversed the IL-13 and IL-4 induced increases in SIRP levels (Fig. 

5.12a). The expression of SOCS1 was similarly elevated by IL-13 and IL-4 

stimulation, and this effect was again abrogated by STAT6 knockdown (Fig. 

5.12b). Although increases in MCL-1 mRNA expression did not achieve statistical 

significance following IL-4 treatment, a significant decrease in MCL-1 mRNA 

levels was noted with STAT6 knockdown when compared to scrambled control. 

Treatment of cells with IL-13 only slightly increased MCL-1 mRNA and this was 

unchanged by STAT6 knockdown (Fig. 5.12c). EPOR was upregulated in 

response to IL-4 stimulation, but not by IL-13. This upregulation by IL-4 was 

reversed by STAT6 knockdown (Fig. 5.12d). IL-4 treatment induced the 

upregulation of BCL2L1 and STAT6 knockdown significantly reduced its 

expression. IL-13 treatment increased BCL2L1 mRNA expression, even though 

this did not attend statistical significance. However, knockdown of STAT6 

significantly reduced BCL2L1 during IL-13 treatment (Fig. 5.12e). IFNGR1 
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expression was unchanged in these experiments and was not affected by 

knockdown (Fig. 5.12f). SMAD1 was reduced under STAT6 knockdown 

conditions but was not directly increased by IL-13 or IL-4 (Fig 5.12h). Initially, 

B2M was used as one of the housekeeping genes, but surprisingly it was noticed 

that its expression was significantly upregulated by knockdown of STAT6 (Fig 

5.12g). 

Western blotting analysis were then performed to determine if these gene 

expression changes led to respective alterations in protein expression. As 

expected and shown in the previous chapter (Fig. 4.10), SIRP expression was 

upregulated by IL-13 and IL-4 stimulation but importantly, this was attenuated by 

STAT6 knockdown. Probing the same membranes using antisera raised against 

BCLXL, the gene product for BCL2L1, or MCL-1 showed an increase in protein 

levels in response to the anti-inflammatory cytokines (IL-4 and IL-13), an effect 

which was blocked by STAT6 knockdown (Fig 5.13) and confirmed by 

densitometry analysis Fig 5.14 although MCL1 levels did not achieve statistical 

significance. 
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Figure 5. 12: IL-13 and IL-4 stimulation of INS-1E cells induces the upregulation of anti-inflammatory and anti-apoptotic genes 

INS-1E cells were stimulated with IL-13 or IL-4 for 48h after STAT6 knockdown, RNA extracted from treated cells and cDNA synthesize. 

Specific primers were generated for qRT-PCR analyses of a selection of genes a. Sirp b. Socs1 c. Mcl1 d. Epor e.Bcl2l1 f. ifngr1 g. B2m 

and h. Smad1 *p<0.05, **p<0.01, ***p<0.001, relative to the control. † †p<0.01, † † †p<0.001, relative to IL-4 treatment. ‡p<0.05, 

‡‡‡p<0.001, relative to IL-13 treatment. The significant differences were determined by the student t-test. 
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Figure 5. 13: SIRP, BCLXL, and MCL-1 are upregulated by IL-4 and IL-13 in 
a STAT6 dependent manner 

STAT6 was depleted by siRNA knockdown followed by 20ng/mL of IL-4 or 

IL-13 for 48h. Cell were lysed, the supernatant collected and western 

blotting performed. Western blots were probed with anti-sera against 

SIRP, BCLXL, MCL-1, and GAPDH. 

Data represent western blot results of experiments that were performed 3 

independent times. 
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Figure 5. 14: Densitometric analysis on Western blots reveals that SIRP and 
BCLXL are upregulated in a STAT6 dependent manner 

Western blot densitometry analysis were performed with the Licor software 

normalised with loading control and expressed relative to the control. Data 

represent means  ±SEM of three independent experiments determined by student 

t-test 
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5.3.3 Construction of constitutively active and dominant negative mutant 

STAT6 

In order to obtain constitutively active STAT6, the wild type STAT6 sequence at 

position 1638-1644 (GTCACT) was changed to GCCGCT hence substituting the 

amino acids valine (547) and Threonine 548 to alanines in these two positions. 

For the dominant negative construct, the STAT6 sequence coding for Tyrosine 

641 (1920-1923) was changed to phenylalanine. Once SDM was performed and 

constructs amplified by E.coli transformation, plasmids were extracted and sent 

for sequencing to confirm the mutagenesis.  

An online alignment tool 

(https://www.expasy.org/genomics/sequence_alignment) was used to confirm 

the changes (Fig. 5.15).   

 

 

 

 

 

 

 

 

 

 

https://www.expasy.org/genomics/sequence_alignment
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Figure 5. 15: Rat STAT6 cDNA sequence (NC_005106.4) alignment with constitutive 
active and dominant negative forms 

Sequence results from sequencing lab were aligned with wild type STAT6 (WT) (a) 

constitutively active STAT6 (CA), GTC ACT codes for Valine and Threonine were 

changed to (↑) GCC (↑) GCT which then codes for two alanines enabling STAT6 to be 

constitutively active. To obtain dominant negative STAT6 (DN), the sequence coding 

for tyrosine 641 TAT was changed to (↑) TTT to code for phenyalanine. 

Y641 

V547 T548 
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The successful insertion was confirmed by sequencing of the plasmid and 

aligning the sequence results with that of the wildtype (Fig 5.15). INS-1E cells 

were transfected with the plasmid for 24h and then stimulated with IL-13 for 

30mins before collecting lysates. A western blot was performed and membranes 

probed with both phospho-STAT6 and total STAT6 anti-sera to monitor 

transfection of the plasmid into INS-1E cells (Fig. 5.16). Expression of STAT6 

was increased in transfected cells. Treatment of INS-1E cells transfected with 

various STAT6 mutant with IL-13 for 30min, caused an increase in 

phosphorylation of STAT6 in cells transfected with (empty vector (EV)), wild type 

(WT), and constitutively active mutant (CA). Dominant negative STAT6 (DN) had 

a slight increase in phosphorylation of STAT6 upon IL-13 stimulation (Fig. 5.16).  
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Figure 5. 16: Mutant STAT6 forms  are activated by IL-13 

INS-1E cells were transfected with a 500ng/mL empty vector (EV), wild type 

(WT), constitutive active (CA), dominant negative (DN) STAT6 plasmid with 

Lipofectamine LTX reagent for 24h followed by treatment in the presence 

and absence of 20ng/mL IL-13 stimulation for 30min. Cells were PBS 

washed, lysed and the supernatant collected and western blotting 

performed. Membranes were probed for phospho-STAT6, total STAT6 and 

a loading control GAPDH. 

Data represent western blots of experiments performed twice 
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5.3.4 Effects of IL-13 on mutant STAT6 variants 

Activated STAT6 dimerizes and migrates to the nucleus to transcribe genes by 

binding to a DNA motif with the consensus sequence TTCN3/4GAA; with N3/4 

representing any three (N3) or four (N4) nucleotides respectively. STAT6 is the 

only member of the STAT family that has a preference for N4 sites (Li et al., 

2016a). The N3 reporter consists of 3 copies of the N3 Gamma Activated Site 

(GAS) in the promoter (TTCtagGAA) while the N4 reporter contains a 3 “N4” 

STAT6 binding sites in the promoter (TTCcgagGAA) upstream of a luciferase 

reporter enzyme (Fig. 5.2).  

The dual luciferase assay simultaneously measures the activity of the firefly 

(reporter) and the amount of Renilla luciferase. While the reporter gives us a 

measure of the activity of the molecule of interest, the Renilla is used to normalise 

the data from the reporter assay. After the measurement of the luciferase activity, 

the firefly reaction is stopped with simultaneous activation of the Renilla luciferase 

which acts as a control reporter (Sherf et al., 1996). In order to evaluate the 

functionality of the various STAT6 forms, HEK293 cells were transfected with an 

expression vector containing WT, CA, or DN STAT6 alongside the N4 luciferase 

reporter and Renilla for 24h before stimulating with IL-4 and IL-13. No activity was 

observed in the empty vector control even with IL-4 and IL-13 stimulation. 

Transfection of WT STAT6 did not yield any activity on its own but the addition of 

IL-4 and IL-13 lead to a nine-fold and 20-fold increase respectively relative to the 

unstimulated control. Transfection with the CA STAT6 showed a 2.8 fold increase 

in activity relative to the control, this increased further to 20 fold, and 27 fold with 

IL-4 and IL-13 stimulation respectively relative to the WT. In contrast, the 

dominant negative form yielded no activity even after the addition of IL-4 and IL-

13. Figure 5.17. 
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After evaluating our STAT6 variants in HEK293 cells, the INS-1E cells were then 

transfected with the N4 luciferase reporter and the Renilla construct to test this 

system. We observed a luciferase reporter activity in IL-13 treated cells samples 

but notice little or no activity with the Renilla reporter. In this context, the Renilla 

response was then tested in a separate experiment in INS-1E. The response 

obtained with the Renilla construct in INS-1E cells was dose-dependent with the 

highest activity realised when 1g per well of the Renilla construct was used (Fig. 

5. 18) in contrast to its activity in HEK293 cells which was greatest with 200ng of 

Renilla. The absolute values were also quite different with a much higher activity 

obtained in the HEK293 cells possibly due to the differences in the cell lines (one 

being human and the other rat). Because the Renilla response was relatively poor 

in INS-1E cells results were expressed our results relative to the empty vector 

control and/ or wild type STAT6.  

Using the N3 and N4 reporters to study the activity of STAT6 by luciferase assay, 

INS-1E cells were transfected with the various STAT6 mutants and reporter 

assays performed as described in section 2.9.4. With the N4 reporter, wild-type 

(WT) STAT6 did not induce any luciferase activity in the absence of cytokine but 

the cells responded well to the addition of IL-13 (31.4 fold change relative to the 

WT unstimulated STAT6). Constitutively active STAT6 (CA) showed an increase 

in activity in the absence of IL-13 (19.5 fold) and this response was tripled by the 

addition of IL-13 (80.6 fold relative to WT STAT6). In contrast, the dominant 

negative STAT6 (DN) showed no activity (Fig 5.19).   

When variant forms of STAT6 were co-transfected with the N3 luciferase reporter, 

only a modest elevation in STAT6 activity was observed in cells transfected with 

the STAT6WT construct in response to IL-13 (5.2 fold relative to the unstimulated 
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control). Surprisingly, transfection with STAT6CA alone did not alter 

transcriptional activity relative to the WT protein (STAT6CA: 1.2 fold), however, 

activity was increased upon stimulation of these cells with IL-13 (STAT6CA + IL-

13: 2.8 fold change). These responses were significantly lower than that of the 

WT activity with IL-13 stimulation in the N4 reporter. The dominant negative 

STAT6 showed no activity with the N3 reporter. (Fig. 5.20). 

  



218 
 

Figure 5. 17: IL-4, IL-13 and STAT6CA induce STAT6 activity as expected.  

HEK293 cells were transfected with an empty vector (EV) or STAT6 variants 

(STAT6WT, STAT6CA, STAT6 DN) with the N4 luciferase reporter and Renilla 

construct for 24h followed by stimulation with 20ng/mL of IL-4 and IL-13 for a 

further 24h. Cells were washed, lysed and dual luciferase assay performed. Data 

was normalised to the Renilla activity and then to the empty vector and 

STAT6WT. 

Data represent fold change mean values from 3 independent experiments ±SEM. 

***p<0.001 relative to STAT6WT: no stimulation, +++p<0.001 relative to 

STAT6WT: no stimulation, &&&p<0.001 relative to STATWT IL-4, ###p<0.001 

relative STAT6WT IL-13, all determined by the student t-test. 
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Figure 5. 18: Renilla plasmid activity was very low in INS-1E cells 

INS-1E cells were transfected with 100ng, 500ng or 1000ng of Renilla cDNA 

construct for 24h. Cells were then harvested and lysed prior to measuring the 

Renilla activity. 

Data represents fold change mean of values of experiments performed twice 
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Figure 5. 19: IL-13 and STAT6VT (CA) mutant induce STAT6 activity at the N4 
domain   

INS-1E cells were transfected with 500ng/mL of STAT6WT, STAT6CA or 

STAT6DN alongside the N4 STAT6 luciferase reporter construct. Cells were 

cultured in the presence of (blue bars) or absence (yellow bars) 20ng/mL of IL-

13, lysed and a luciferase assay performed with 20L of lysates.  

Data represent fold change mean values of experiments performed twice *p<0.05 

relative to STAT6WT: no stimulation, +++p<0.001 relative to STAT6WT: IL-13, 

all determined by the student t-test. 
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Figure 5. 20: IL-13 induces STAT6 activity but not mutant forms at the N3 domain 

INS-1E cells were transfected with 500ng/mL of STAT6WT, STAT6CA or 

STAT6DN alongside N3 STAT6 luciferase reporter construct. Cells were cultured 

in the presence (blue bars) or absence (yellow bars) of 20ng/mL of IL-13, lysed 

and a luciferase assay performed with 20L of lysates.  

Data represent fold change mean values of ±SEM of experiments performed 

twice. ***p<0.001 relative to STAT6WT, +p<0.05 relative to STAT6WT+IL-13, all 

determined by the student t-test. 
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5.3.5 STAT6 mutants reduce beta cell death with IL-13 stimulation 

Data presented in the preceding chapters has revealed that IL-13 protects beta 

cells from the cytotoxic effects of pro-inflammatory cytokines (Figs. 3.4-3.5), and 

in this chapter, the data revealed that this protection is reversed by the 

knockdown of STAT6 (Fig 5.10). An experiment was designed to assess whether 

the expression of constitutively active or dominant negative forms of STAT6 could 

directly impact beta cell viability. 

 For these experiments, the transfection efficiency of INS-1E cells was first 

determined by transfecting with a GFP construct then detecting GFP expression 

using flow cytometry. INS-1E cells showed a transfection efficiency of about 12%. 

For this reason, experiments performed with INS-1E cells that involved 

transfection of variants of STAT6 were performed alongside co-transfection of a 

GFP construct to mark transfected cells for isolation and characterisation in 

viability experiments based on the co-transfection principle. The co-transfection 

principle suggests that if two plasmids are co-transfected into cells, there is a 

positive correlation coefficient of 0.96, which implies that both plasmids are 

almost equivalently delivered into the recipient cells (Xie et al., 2011). Therefore, 

GFP expression served as a transfection control. 

INS-1E cells were transfected with STAT6WT, STAT6CA, or STAT6DN 

constructs alongside a GFP reporter with and without IL-13 stimulation and pro-

inflammatory cytokines. Viability assays were performed using propidium iodide 

staining. In the absence of cytokines, there were no significant increases in cell 

death in the STAT6WT, STATCA when compared to the control. Surprisingly, the 

DN mutant increased cell death in INS-1E cells when compared to the empty 

vector controls (EV control), STAT6CA and STAT6WT (EV: 32.48±2.2%, DN: 
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46.45±2.3%, CA: 30.85±1.6%, WT: 32.21±1.7%, cell death p<0.05). Additionally, 

IL-13 stimulation did not protect from DN mediated cell death (DN: 46.45±2.3, 

DN+IL-13: 53.92±5.5, cell death p>0.05) or improve viability upon transfection 

with other STAT6 variants (Fig 5.21). 

 As previously shown in Chapter 3 and 4, pro-inflammatory cytokines (Pro) 

induced beta cell death in INS-1E cells (Pro: 86.9±2.2% cell death). Similarly, 

pro-inflammatory cytokine stimulation of INS-1E cells transfected with variants of 

STAT6 induced significant cell death (Pro: 86.88±2.2%, Pro+DN: 87.75±1.1%, 

Pro+CA: 85.48±1.4%, and Pro+WT: 82.4±2.9%, p>0.05). As illustrated in section 

3.3.2, IL-13 stimulation protected beta cells from the detrimental effects of pro-

inflammatory cytokines in all treatments including STAT6DN (Pro: 86.9±2.2%, 

Pro+IL-13: 68.3±1.7%, Pro+DN+IL-13: 70.9±2.6%, Pro+WT+IL-13: 67.8±2.4%, 

and Pro+CA+IL-13: 60.9±2.2%, cell death p>0.01). STAT6CA appeared to have 

improved beta cell viability after IL-13 treatment compared to the STAT6WT cells 

treated with pro-inflammatory cytokines although this did not reach significance.  
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Figure 5. 21: STAT6 mutants reduce beta cells death by Pro-inflammatory 
cytokines upon IL-13 treatment 

INS-1E cells were transfected with various STAT6 mutants and GFP to identify 

the transfected cells followed by pro-inflammatory cytokines (Pro) (20ng/mL IL-6, 

IL-1, IFN-, and TNF-) for 48h in the absence and presence of IL-13. Cells 

were harvested with the use of trypsin and cell viability assessed by propidium 

iodide staining. 

Data represents mean values ±SEM of three independent experiments. 

***p<0.001 relative to EV control, ++p<0.01 relative to EV control, $$$p<0.001 

relative to Pro, all determined by the student t-test. 
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5.3.6 STAT6 is lost in cells exposed to pro-inflammatory cytokines and is 

rescued by IL-13 treatment. 

Initial findings using immunohistochemistry suggested that STAT6 is lost from the 

insulin containing islets of individuals with T1DM when compared to age and sex 

matched non-diabetes controls (Leslie et al., 2018). It was not clear what caused 

this change, but we reasoned that it might be due to the release of pro-

inflammatory factors from the influent immune cells. In order to test this, INS-1E 

cells were treated with pro-inflammatory cytokines with and without IL-13. The 

results revealed a significant loss of STAT6 upon treatment with pro-inflammatory 

cytokines Fig. 5.22a. Similarly, treatment of INS-1E cells with 250M palmitate 

for 48h showed a loss in STAT6 by western blotting (Fig 5.22a). Additionally, INS-

1E cells deprived of serum for 96h showed a decrease in STAT6 expression (Fig 

5.22b).  

Treatment of the cells with IL-13 in combination with pro-inflammatory cytokines 

revealed a restoration of STAT6 expression (Fig. 5.22c). A similar response 

occurred in cells incubated in the absence of serum. 
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Figure 5. 22 : STAT6 is ablated by cytotoxicity  

INS-1E cells were cultured in the presence of a. pro-inflammatory cytokines (20ng/mL of 

each IL-1, IL-6, TNF-, and IFN-), 250M palmitic acid or b. 96h serum withdrawn 

conditions c. alternatively, cells were cultured with pro-inflammatory cytokines or serum 

withdrawal conditions in the presence or absence of IL-13. Cell lysates were collected 

and 10g used to perform western blotting and membranes probed with antisera against 

STAT6 and loading control GAPDH. d. Densitometric analysis reveal a significant 

increase in STAT6 relative to respective controls in IL-13 treatments. 

Data are representative of experiments performed 3 times independently. 
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5.4 Discussion 

This chapter provides evidence for the importance of STAT6 in mediating the 

protective effects of IL-13 in pancreatic beta cells. The data suggest that the 

increased expression of anti-apoptotic proteins, including a consistent increase 

in SIRPmight be among the mechanisms by which this protection is facilitated. 

I have shown in this chapter that STAT6 is important in mediating the 

cytoprotection of the beta cell afforded by IL-13. Additionally, it was shown here 

that many of the genes upregulated by IL13 and IL-4 are STAT6 modulated.  

The results are in agreement with those in chapter 3 and with earlier reports on 

the protection of beta cells by IL-13 and IL-4 in a cytotoxic milieu (either serum 

withdrawal, palmitic acid, or pro-inflammatory cytokines) (Kaminski et al., 2010, 

Russell et al., 2013). In contrast, the data presented in this chapter differ from 

those of Rutti et al. (2016) who suggest that the protective effects of IL-13 are 

mediated via a PI3K/Akt signalling route. Although there is activation of the PI3K 

pathway in response to IL-13, a PI3K inhibitor (wortmannin) did not affect the 

protection achieved with IL-13 (Russell et al., 2013). The present data suggest 

that the IL-13 protection primarily works in a STAT6 dependent fashion. 

Additionally, in a study where STAT6 and IRS2 (shown to be the main activation 

route of the PI-3K pathway) deficient mice were employed and their lymphocytes 

cultured overnight in the presence and absence of IL-4, STAT6 was shown to be 

crucial for IL-4 mediated protection whereas IRS2 was dispensable (Wurster et 

al., 2002). The role of STAT6 in beta cell has received limited attention in T1DM, 

but its effect has been documented in other autoimmune diseases. In one such 

disease (systemic lupus erythematosus), a mouse model was used to illustrate 

the importance of STAT6. In Lyn (-/-) mice, a lupus like autoimmune model, 
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depletion of STAT6 (Lyn (-/-) STAT6 (-/-)) exacerbated autoimmunity supporting 

the role of STAT6 as a protective transcription factor (Lau et al., 2012).  

Typically, activated STAT6 dimerises and translocates to the nucleus where it 

transcribes a specific set of genes (Goenka and Kaplan, 2011). Depleting STAT6 

is expected to prevent the upregulation of IL-13/IL-4 induced genes. We identified 

a number of genes which were upregulated in response to IL-13 in the previous 

chapter, and now confirm that many of these changes occurred in a STAT6-

dependent manner. With the use of small interference RNA molecules, it was 

shown that anti-apoptotic genes BCL2L1 and MCL-1 are STAT6 dependent since 

knockdown of STAT6 led to a reduced expression of these genes in INS-1E cells 

(Fig 5.13, 5.14 and 5.15). In immune cells, it is known that IL-4 and IL-13 

modulate both BCLXL and MCL-1 expression in a STAT6 dependent manner 

(Ritz et al., 2008, Steele et al., 2010) but their modulation via STAT6 in pancreatic 

beta cells has not been previously documented. In one example wherein 

lymphocytes from STAT6 deficient and relevant control mice were cultured 

overnight with IL-4, BCLXL expression was significantly upregulated in the wild 

type controls but diminished in STAT6 deficient lymphocytes (Wurster et al., 

2002). Interestingly, loss of STAT6 expression has been observed in tissues from 

individuals with T1DM (Leslie et al. 2018) and MCL-1 expression is reduced in 

some islets of individuals with T1DM (Richardson et al., 2013).  

The findings in this chapter also revealed that SIRP expression is regulated in 

a STAT6 mediated manner in beta cells. This relationship is novel and has not 

been previously reported in any cell type. It was therefore, important to explore 

the role of SIRP in the pancreatic beta cell, and this will be considered further 

in the next chapter.  
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 It was not surprising that IL-13 and IL-4 upregulate the suppressor of cytokine 

signalling 1 (SOCS1) in beta cells, since this phenomenon is established in other 

cell types treated with these cytokines (Hebenstreit et al., 2003, Hebenstreit et 

al., 2005, Ritz et al., 2008). SOCS1 is a negative regulator of Jak/STAT signalling 

and is suggested to regulate the pathway by binding to the activation loop of the 

Jaks (Babon et al., 2006). In this chapter the experiments show that SOCS1 is 

STAT6 regulated. These findings are in agreement with work by Dickensheets 

and colleagues (2006) in which monocytes from STAT6 knockout or control 

animals were stimulated with IL-4 and SOCS1 detected by western blotting. In 

their experiments, SOCS1 was shown to be STAT6 modulated but also a 

negative regulator of the Jak/STAT6 pathway when overexpressed 

(Dickensheets et al., 2006). The role of SOCS1 has been extensively studied in 

beta cells (Sun et al., 2013, Zaitseva et al., 2009, Barral et al., 2006, Chong et 

al., 2004) and it may contribute to cytoprotective effect by negatively regulating 

pro-inflammatory cytokine signalling. In one such study, SOCS1 was shown to 

inhibit IFN-, IL-1 and TNF- induced beta cell death via the downregulation of 

caspase 3 activation through the negative regulation of STAT1 activation 

(Zaitseva et al., 2009). In another study using mice with diabetes that was virally 

induced, overexpression of SOCS1 reduced the incidence of diabetes by over 

90%. In those experiments, it was shown that SOCS1 overexpression rendered 

beta cells resistant to cytotoxic T lymphocyte attack. It is however, not known 

whether SOCS1 can impact the protection against non-cytokine forms of 

cytotoxicity such as serum withdrawal or palmitate. 

SMAD1 (SMAD stands for mothers against decapentaplegic) is an intracellular 

signal transducer of TGF- receptor. SMAD1 has not been extensively studied in 

beta cells, but it is known to be expressed in beta cells which agrees with our 
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qPCR data showing its detection after 23 cycles (Toren-Haritan and Efrat, 2015). 

So although experiments in beta cells revealed that IL-4 and IL-13 stimulation did 

not upregulate SMAD1, research using hepatic cell lines has reported the 

upregulation of SMAD1 by IL-13 in a non-Jak/STAT manner leading to the 

expression of connective tissue growth factor (Liu et al., 2011). In contrast to 

these findings, our data show that knockdown of STAT6 led to a reduced 

expression of SMAD1. Further work will be required better understand the 

relationship between SMAD1 and STAT6 in beta cells. 

Initially, B2M was recommended as the housekeeping gene for qPCR of STAT6 

responsive genes but after performing experiments with STAT6 knockdown it 

was realised that B2M expression may be negatively controlled by STAT6 in beta 

cells. In these experiments, STAT6 knockdown led to upregulation of B2M mRNA 

suggesting that the transcription factor is important for maintaining the levels of 

B2M. B2M is a protein of low molecular weight (11.8kDa) present in all nucleated 

cells and is non-covalently linked with MHCI alpha chain (Li et al., 2016b). Due 

to the changes observed upon STAT6 knockdown I excluded B2M as a house 

keeping gene. Our recently published work suggests that a loss in STAT6 

expression occurs in insulin containing islets of T1DM (Leslie et al., 2018). This 

loss in STAT6 together with evidence of increased in B2M levels in the insulin 

containing islets of subjects with T1DM (Richardson et al., 2016) resonate with 

the present findings suggesting that B2M expression maybe negatively controlled 

by STAT6.  

In dual-luciferase reporter assays, STAT6 showed a preference for the N4 GAS 

domain binding site in beta cells, when compared to the N3 site, this agrees with 

the work of Li et al. (2016a) who showed by x-ray scattering experiments that 
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STAT6 possess a key residue (H415) that gives it the selective ability to bind to 

the N4 site over N3.  

The HEK293 cells are an embryonic kidney cell line with a high transfection 

efficiency (Thomas and Smart, 2005) were transfected with a STAT6 luciferase 

reporter, and the Renilla construct alongside various STAT6 mutants. An 

increased activity was observed with the constitutively active mutant of 

approximately 8 fold after IL-13 stimulation; similar to that reported by Daniel and 

colleagues (Daniel et al., 2000). Also observed, was the inhibition of STAT6 

activity by a dominant negative STAT6, results that were also obtained by Daniel 

et al., 2000 using HEK293 cells (Fig.5.16). In DLR experiments with INS-1E cells, 

the transfection efficiency of the Renilla construct used as a normalisation control 

was poor, and so the data arising from the INS-1E cells experiments could not be 

normalised in the typical way. This meant that interpretation of the results was 

equivocal. The difference in transfection between the INS-1E and HEK293 could 

be due to the differences in the cell lines (one is a human kidney cell lines and 

the order is rat beta cell line).   

Constitutively active STAT6 acts by virtue of an IL-4 or IL-13 independent 

phosphorylation of STAT6 due to a conformational changed induced by two 

amino acids (Fig.5.15). It been suggested that CA STAT6 has a higher binding 

stability than the wild type is and is more resistant to proteolytic degradation. The 

dominant negative STAT6 due to that change in the Tyr641 leads to an inability 

to activate STAT6 with IL-4 or IL-13 and hence no DNA binding activity of STAT6 

(Daniel et al., 2000).  

INS-1E cells transfected with variants of STAT6 showed an increase in total 

STAT6 expression (Fig. 5.16) but this did not seem to directly protect the cells 
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from pro-inflammatory cytokines. Protection was only achieved when IL-13 was 

used in combination with the STAT6 constructs. Cytoprotective experiments with 

STAT6 mutants were performed over a period of five days; plasmid transfection 

for 24h, 48h of IL-13 stimulation and 48h of pro-inflammatory cytokines 

stimulation followed by PI staining and flow cytometry. Loss of plasmid by cells 

over the experimental period (5days) in cell division (Middleton and Sugden, 

1994) could have been a possible reason for the lack of effect of the dominant 

negative and other STAT6 variants but this is unlikely given that the flow 

cytometer gating was performed on transfected cells alone. The mechanism by 

which IL-13 still protected INS-1E against pro-inflammatory cytokines in 

STAT6DN transfections remains unclear. One might be tempted to suggest that 

endogenous STAT6 could have been activated to contribute to this protection. 

Additionally, it is difficult to say if all GFP positive cells also contained the various 

STAT6 mutants. Further research with the use of stably transfected cell lines or 

CRISPR (clustered regularly interspaced short palindromic repeats) modified cell 

lines will be required to uncover the mechanisms. 

Recent findings by our group, suggest that STAT6 is lost from insulin containing 

beta cells of T1DM individuals although the mechanism by which this occurs 

remains to be understood (Leslie et al., 2018). The data in this chapter revealed 

that STAT6 levels might be reduced in response to pro-inflammatory cytokines, 

serum withdrawal or palmitate although the precise mode by which this occurs 

remains to be revealed. IFN- has been shown to inhibit the phosphorylation and 

activity of STAT6 by IL-4 treatment in other cell types. This inhibition was 

achieved by 24h pre-treatment of cells with IFN- followed by IL-4 stimulation. 

STAT6 inhibition was dependent on the concentration of IFN-(Heller et al., 2004, 

Dickensheets et al., 1999). The inhibition of the IL-4 signalling by IFN- might lead 
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to reduced STAT6 expression since it was shown earlier that IL-4 positively 

regulates STAT6 expression (Fig. 4.14). Additionally, pro-inflammatory cytokines 

have been reported to upregulate the expression of some noncoding microRNAs 

(miRs) which negatively regulation the expression of target genes. MiRs achieve 

this by pairing to the 3’-untranslated region of the target mRNA leading to their 

degradation or inhibition of gene expression. Two such miRs, miR-155-5p and 

miR-210, are increased in T1DM, and known to be modulated by inflammatory 

cytokines (TNF-, IFN- and IL-1) in beta cells and other cell types (Grieco et 

al., 2017, Assmann et al., 2017, Huang et al., 2018). These miRs have been 

reported to suppress STAT6 expression and activity in other cell types (Kopriva 

et al., 2013, Matsukura et al., 2016, Martinez-Nunez et al., 2011). It is therefore 

possible that the pro-inflammatory cytokines upregulate these microRNAs 

leading to loss of STAT6 and hence potentiating beta cell death, but this has yet 

to be confirmed in beta cells. 

In previous experiments as well as in the present work, cytoprotection was 

achieved by pre-incubation with IL-13 for 48h prior to addition of cytotoxic stimuli. 

Pre-incubation allows the beta cells to increase the expression of STAT6 and its 

downstream target genes such as, SOCS-1, SIRP and anti-apoptotic proteins 

MCL-1 and BCLXL before subsequent application of the inflammatory cytokine 

mixture.  

This chapter demonstrates the importance of STAT6 for IL-13 protection since 

depletion of STAT6 by knockdown completely prevented IL-13 mediated 

cytoprotection. Furthermore, this work also reveals that many of the IL-13 

regulated genes reported in Chapter 4 were controlled in a STAT6-dependent 

manner. The upregulation of a gene not previously recognised as being 
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transcriptionally regulated by STAT6 (or IL-13), SIRP was identified, and its role 

in beta cell health needs to be investigated further. This will be explored in chapter 

6. 
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Chapter 6.0: Signal Regulatory Protein alpha 

(SIRP) in beta cells 
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6.0 Signal Regulatory Protein alpha (SIRP)/ CD47 in beta cells 

6.1 Introduction 

In the earlier chapters, it was revealed that Signal regulatory protein alpha 

(SIRP) was strongly upregulated in human and rodent beta cell lines stimulated 

with IL-13 and IL-4 in a STAT6 dependent manner. However, the impact of SIRP 

upregulation on beta cells is unknown.  

SIRP (also known as Src homology 2 domain-containing tyrosine phosphatase 

substrate 1(SHPS-1), BIT (Brain Ig-like molecule with tyrosine-based activation 

motifs), P84, MFR (Macrophage fusion receptor) or MyD-1) belongs to the 

superfamily of immunoglobulins and is predominantly expressed in myeloid and 

neuronal cells (Oshima et al., 2002). SIRP is a transmembrane glycoprotein 

whose extracellular region contains 3 immunoglobulin domains whilst its 

cytoplasmic tail contains four tyrosine phosphorylation sites that are typically 

activated following binding to CD47 its cognate ligand (Matozaki et al., 2009) (Fig. 

6.1). The phosphorylation of SIRP can also be stimulated by other mechanisms, 

such as its association with insulin-like growth factor-1 (IGF1) receptor when 

activated by IGF1 (Shen et al., 2009). The activation of SIRP leads to the 

recruitment of Src homology 2 phosphatases such as SHP1, and SHP2 (Takada 

et al., 1998) leading to their activation and interaction with Grb2, and SOS Gab1 

leading to the recruitment of Ras and its activation. Activated Ras then activates 

Raf which in turn phosphorylates and activates MEK which then phosphorylates  

and activates ERK that transcribe genes involved in proliferation or survival 

(Zhang et al., 2015).  

CD47 (also known as integrin associated protein) is the cognate ligand for 

SIRP, which is expressed on most somatic cells. Like SIRPit is a member of 
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the Ig superfamily with an extracellular IgV domain, a five transmembrane-

spanning domain and a short cytoplasmic tail (Per-Arne, 2013). CD47 is also 

recognised as a marker of self (or a “don’t eat me” molecule) and is known to 

inhibit macrophage phagocytosis, promote cell migration, cell-to-cell 

communication, inhibition of apoptosis, cell proliferation, and downregulation of 

cytokine production in dendritic cells (Oshima et al., 2002). Importantly, CD47 

can signal by either a trans (i.e from one cell to another) interaction with SIRP, 

together with SIRPanother member of the SIRP family lacking the cytoplasmic 

tail) and thombospodin-1 or in a cis interaction where it binds to integrins or 

SIRPon the same cell (Soto-Pantoja et al., 2014, Kojima et al., 2016) (Fig 6.1). 

CD47 and SIRP are each expressed in rodent islets and it has been proposed 

that knockout of SIRP alters insulin secretion although the precise mechanism 

is not known (Kobayashi et al., 2008).  

The role of SIRP in beta cells has received limited attention but genome wide 

association studies in diabetic mouse have revealed that the idd13 locus 

(chromosome 2), correlates with the location of SIRP and is involved disease 

pathogenesis. Indeed, high-resolution genomic mapping analysis of the six genes 

in that region, identified Sirp as the causal gene at the Idd13.2 locus which is 

crucial for the regulation of insulitis and the susceptibility of NOD mouse to 

diabetes (Wong et al., 2014). Furthermore, linkage analysis in the Biobreeding 

rat model of T1DM identified the Iddm27 locus (orthologous to Idd13 in mouse) 

as being important in the control of islet integrity and susceptibility to diabetes 

(Wallis et al., 2009). The human chromosome 20p13 includes a SIRP cluster that 

encodes SIRP and has been associated with T1DM (Barrett et al., 2009). A 

report by Takenaka et al. (2007) identified 18 amino acids variations in the 
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extracellular N-terminal variable region of SIRP between mice susceptible to 

diabetes (NOD) and mice protected from diabetes (NOR). These changes in 

amino acids might change the binding dynamics of the SIRP on T-cells 

promoting insulitis (Wong et al., 2014). The role of SIRP in immune cells is 

established as an inhibitor of phagocytosis when it binds to CD47 on the surface 

of other cell types (van Bommel et al., 2017, Nuvolone et al., 2013). C57BL/6N 

mice generated to lack the cytoplasmic region of SIRP in the islets showed 

reduced plasma insulin levels, impaired glucose tolerance, and reduced capacity 

of the beta cells to secrete insulin upon glucose stimulation (Kobayashi et al., 

2008). Wong et al., (2014) showed that a SIRP variant (change in 20 amino 

acids) expressed by NOD mice drives islet inflammation by binding with higher 

affinity to CD47 compared to the diabetes resistant strains. Additionally, transfer 

of this variant SIRP from NOD mice to myeloid cells of NOD.SCID (without 

immune system) mice induced diabetes (Wong et al., 2014).  

The functional role of SIRP in beta cells remains an area of limited research but 

novel data presented in this thesis showing its association with IL-13/IL-4 

signalling and the transcription factor STAT6 makes it in an interesting candidate 

for further study.  

This chapter has several objectives; 

 To investigate the importance of SIRP in beta cells. In particular, I aimed 

to study the role of SIRP in beta cell viability and protection from 

cytotoxicity using rodent beta cell lines, human derived beta cells and 

human islets. 
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 Additionally, expression of the SIRP binding ligand CD47 was studied in 

both human and rodent beta cells.  
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Figure 6. 1: Schematic structure of SIRPand CD47.  

CD47 is the ligand for SIRP. ‘Y’ indicate cytoplasmic tyrosine residues which 

can become phosphorylated upon ligand binding. The arrows indicate the 

direction of signal after interaction. A cis interaction by CD47 and SIRP occurs 

on the same cell while a trans interaction occurs on different cells 
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6.2 Materials and methods 

6.2.1 Western blotting 

Western blotting was performed as described in section 2.7. The antibodies to 

SIRP (catalogue number: 13379, 1:1000 5% BSA TBST) and GAPDH 

(catalogue number: 60004-1, 1:10000 5% milk TBST) were purchased from Cell 

signalling and Proteintech respectively. Human islets were a kind donation from 

the Oxford transplant programme. 

6.2.2 Transfection studies 

Small interference RNA was used to reduce the expression of SIRP in INS-1E 

cells and was performed as described in section 2.3. Increased 

SIRPexpression was achieved by transfecting INS-1E cells with a pCMV6 

vector (catalogue number: RC222380, Origene, USA) containing the human 

SIRP coding sequence (Fig 6.2). Transfections of these constructs (including 

relevant controls) were performed with Lipofectamine LTX reagent (Invitrogen) 

as described in section 2.9.3 and the success of transfection was examined by 

western blotting.  

6.2.3 RT- qPCR 

RT-qPCR was performed as described in section 2.6. Primers were commercially 

obtained from Qiagen, UK. 

6.2.4 Viability studies and cell cycle analysis 

Viability studies were performed using propidium iodide staining as described in 

section 2.4, whilst cell cycle analysis was performed as reported in section 2.5. 
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6.2.5 Immunohistochemistry and immunofluorescent staining  

Immunohistochemical and immunofluorescence staining of FFPE human 

pancreas sections were performed as in section 2.8.2. These samples were 

obtained from the Exeter Archival Diabetes Biobank (http://foulis.vub.ac.be/), a 

collection of post-mortem pancreas samples (Table 15). The list of antibodies 

used and their conditions are described in table 14. Images were captured at the 

same settings on a fluorescent microscope (Leica Microsystem, UK) and the 

mean fluorescent intensity (MFI) of the CD47 containing cells was determined 

using a custom MATLAB script (MATLAB version R2015b) VIOLA (developed by 

Dr Chilton of the University of Exeter Medical School). The script was used to 

determine the MFIs of CD47 in regions of interest in the tissue. DAPI (4',6-

diamidino-2-phenylindole) was used as a nuclear stain (Dako, UK) at 1:1000 

dilution. 

 

Table 14: Antibodies and conditions used in immunostaining  

 

  

Antibody Dilution Source Catalogue number 

CD47 1:1000 RnD systems AF4670 

Insulin 1:300 DAKO A0564 

Glucagon 1:400 Abcam ab92517 

Anti-guinea pig 647 1:400 Invitrogen A21450 

Anti-Goat 555 1:400 Invitrogen A32814 

Anti-Rabbit 488 1:400 Invitrogen A32732 
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Table 15: Tissue samples and patient information  

Case ID Case type Age 

(Years) 

Sex Duration of 

Disease 

146/66 No Diabetes Control 18 F  

21/89 No Diabetes Control 4 F  

PM34/67 No Diabetes control  41 F  

E556 T1DM 18  M 4months 

SC119 T1DM 4 F 2 weeks 

E560 T1DM (organ donor) 42 F 18months 
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Figure 6. 2 Map of the pCMV6 plasmid containing SIRP clone 

Courtesy:https://www.origene.com/catalog/cdna-clones/expression-

plasmids/rc222380/sirp-alpha-sirpa-nm_001040022-human-tagged-orf-clone 
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6.3 Results 

6.3.1 Signal regulatory protein alpha is expressed in human islets and 

upregulated by IL-13 treatment 

In Chapter 4 it was shown by qPCR and western blotting that SIRP is expressed 

in the INS-1E and in human EndoC H1 cells and that its expression was 

increased in response to IL-13 and IL-4 (Fig. 4.12). The expression of SIRPin 

rat beta cells is in agreement with Kobayshi et al. (2008) who showed the 

expression of SIRP in rat pancreatic beta cells by immunohistochemistry. It was 

also important to determine whether a similar pattern could be observed in 

isolated primary human islets. Therefore, isolated humans islets were lysed and 

protein extracted for western blotting with an anti-SIRP antibody (Fig 6.3a). This 

revealed that SIRPis expressed in islet cells. A separate preparation of human 

islets was stimulated with 20ng/mL of IL-13 for 48h prior to western blotting and 

it was found that SIRP expression was increased in response to IL-13 

stimulation (Fig.6.3b). 
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Figure 6. 3: SIRP is present in human islets and is upregulated by IL-13 
stimulation 

Human islets from donors were lysed, a western blot performed, and probed for 

SIRP and GAPDH as loading control. a. unstimulated human islet samples 

express SIRP, b. stimulated human islet samples with 20ng/mL of IL-13 for 

48h prior to lysis for western blotting. IL-13 stimulation upregulated SIRP 

expression  

Data are representative of two independent islet preparations.  
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6.3.2 SIRP knockdown using siRNA induces cell death in INS-1E cells 

To assess the impact of SIRP on beta cell viability, SIRP expression was 

initially knocked down over a 4 day period in INS-1E cells using specific siRNA 

molecules, then RNA and protein extracted. Quantitative PCR analysis revealed 

that SIRP mRNA was successfully depleted over this 4 day period (Fig 6.4a). 

Western blotting analysis of samples revealed that SIRPprotein levels were 

depleted by approximately 80% during this period. Importantly, the knockdown 

did not affect expression of other proteins such as STAT6 or STAT3 (Fig. 6.4b). 

SIRP expression was also successfully reduced in EndoC H1 cells (Fig 6.4c) 

using siRNA targeting the human sequence. During experiments with INS-1E 

cells, it was unexpectedly observed at later time-points that there were fewer cells 

present after knockdown of SIRP compared to samples transfected with 

scrambled control siRNA. To examine this phenomenon more closely, cell growth 

was assessed by manual counting of cells following trypan blue staining. These 

data confirmed that after three days of SIRP knockdown there was significantly 

lower cell numbers in the knockdown treatments compared to the scrambled 

controls (Day3, control: 83.5±8.6 x104cells/mL, SIRP KD: 51.0±3 x104 cells/mL, 

p<0.05, Day4, control: 137.8±15.2 x104cells/mL, SIRP KD: 84.8±3 x104, 

cells/mL p<0.001) (Fig. 6.7).  

To understand whether SIRP has a role in IL-13 mediated protection of rodent 

beta cells, it was important to assess whether the depletion of SIRP expression 

could alter beta cell viability alone. In initial experiments, cell viability was 

determined by propidium iodide staining in cells incubated in complete medium 

but with SIRP knockdown. This revealed a significant increase in the percentage 

of dead cells after SIRP knockdown when compared to the scrambled controls 
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(Control; 22.5±1.8%, Control + KD; 34.89±2.1%, cell death p<0.001). As 

expected, serum withdrawal increased cell death and this effect was further 

potentiated by SIRP knockdown (serum withdrawal; 49.3±0.9%, SW+KD; 

70.24±1.5%, cell death p<0.001) (Fig. 6.6). Under serum withdrawal conditions 

addition of IL-13 reduced the percentage of dead cells and this was also seen 

under SIRP knockdown conditions (SW; 49.3±0.9%, SW+IL-13; 44.4±0.8%, 

SW+KD; 70.24±1.5%, SW+KD+IL-13; 62.2±2.0% cell death) (Fig 6.6). One 

possible explanation for this observation is that the levels of SIRP were still 

elevated after IL-13 treatment despite the use of siRNA to knockdown the protein. 

To address this possibility, SIRP was knocked down in INS-1E cells 

accompanied by treatment with IL-13. qPCR analysis of these samples revealed 

that IL-13 treatment reversed the depletion in SIRP levels to at least normal 

expression levels (Fig 6.5).  

Since depletion of SIRP slowed the growth beta cells and increased cell death 

when compared to cells treated with a scrambled control siRNA, it was important 

to confirm these findings using a cell cycle analysis protocol. In these 

experiments, SIRP was knocked down for four days (Fig. 6.4), and then cell 

cycle analysis performed as described in section 2.5. The proportion of the cells 

in SubG0/G1 (apoptotic), G0/G1, G2/M+S (proliferating) was calculated after 

analysis by flow cytometry. Cell cycle analysis revealed that SIRP knockdown 

did not alter any phase of the cell cycle, however an increase in the sub G0/G1 

population of apoptotic cells was observed, consistent with our previous findings 

(Control Sub G0G1: 10.3±0.8% of cells, SIRP KD Sub G0G1: 34.5±3.2%, 

p<0.001, Fig 6.8). 
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Figure 6. 4: SIRP was successfully knocked down in beta cells 

Cells were transfected with 10nM of rat SIRP siRNA in a&b INS-1E cells for 96h and c. in human EndoC H1 cells for 48h respectively. 

a. Cells were washed, RNA extracted and RT-qPCR performed or b and c lysed and western blotting performed, membranes were 

probed with anti-sera against SIRP, STAT6, STAT3, and GAPDH.Data represents RT-qPCR results and western blots of experiments 

performed at least twice independently 
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Figure 6. 5: SIRP knockdown reduces the growth of INS-1E cells 

INS-1E cells were cultured and transfected with siRNA SIRP for 96h and cells 

were harvested and live cells counted after staining with trypan blue. 

Data represents mean values of experiments performed three times ±SEM. 

*p<0.05, ***p<0.001, determined by student t-test. 
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Figure 6. 6: SIRP knockdown increases cell death in INS-1E cells 

INS-1E cells were cultured in serum-withdrawn conditions with and without 

SIRP knockdown in the absence and presence of IL-13 for 96h. Cell viability 

was assessed by flow cytometry after propidium iodide staining.  

Data represents mean values of 3 independent experiments ±SEM, ***p<0.001, 

determined by the student t-test. 
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Figure 6. 7: SIRP knockdown is reversed to normal levels by stimulation with  IL-13 
for 48h  

INS-1E cells were depleted of SIRPusing small interference RNA followed by IL-13 

stimulation. RNA was extracted and cDNA synthesized for qPCR using SYBRGreen.  

Data represents mean values of experiments performed twice independently ±SEM.  
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Figure 6. 8: SIRP knockdown induces an increase in DNA fragmentation in beta cells 

Cell cycle analyses were performed on INS-1E cells following SIRP 48h knockdown. Cells 

were fixed with 95% ethanol followed by PI staining after treatment with RNAse A and 

analysed on a flow cytometer. Panel a. shows representative plots of control and SIRP 

cell cycle analysis. There was no significant difference in the G0G1 and G2/M+S (proliferation 

phase) while the M6 (Sub G0G1) was significantly increased in SIRP knockdown 

treatment.  b. is a plot of normalised cell cycle analysis values. 

Data represents mean values from three independent experiments ±SEM. ***p<0.001, 

determined by the student t-test. 

a. 

b. 
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6.3.3 SIRP overexpression protects INS-1E beta cells from serum withdrawal 

induced death 

Since SIRP knockdown causes a clear increase in INS-1E cell death, it was 

assessed whether increasing the expression of SIRP could induce the opposite 

effect. In these experiments, SIRP was overexpressed under conditions of 

serum withdrawal using a commercially obtained construct in which SIRP cDNA 

was placed under the control of a CMV promoter (Origene, UK), and thus 

stimulated a constitutive expression of the protein (Fig. 6.2). Initially, INS-1E cells 

were transfected with this construct, and the over-expression of SIRP was 

confirmed by western blotting after 24h (Fig. 6.9). Cytotoxicity assays were then 

performed by transfecting INS-1E cells with the SIRP plasmid, followed by a 

96h period of serum withdrawal. Overexpression of SIRP in control medium 

significantly reduced cell death compared to the empty vector transfection 

(Control: 12.6±0.9%, Control+SIRP plasmid: 8.5±0.5%, cell death p<0.001). As 

expected serum deprivation enhanced INS-1E cell death (Control: 12.6±0.9%, 

SW: 51.9±2.0% cell death, p<0.001). Importantly, overexpression of SIRP 

strongly reduced the level of cell death in INS-1E cells under these conditions 

(SW: 51.9±0.9%, SW+SIRP plasmid: 38.0±1.1% cell death, p<0.001). Taken 

together, these data suggest that SIRP is a novel regulator of beta cell viability. 
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Figure 6. 9: SIRPwas overexpressed in INS-1E cells 

INS-1E cells were transfected with the SIRPclone for 24h with Lipofectamine LTX 

reagent. Cells were then washed, lysed and western blotting performed. Membranes 

were probed with anti-sera against SIRP and GAPDH for loading control. 

Data represents results of experiments performed twice independently.  

 

B 

 

 

 



257 
 

  

Figure 6. 10: Overexpression of SIRP protects INS-1E cells from serum withdrawal 
induced death 

INS-1E cells were cultured under serum withdrawn (pink bars) conditions for 96h, 

either untransfected (grey circles) or after transfection (filled hexagons) with a plasmid 

encoding SIRP. Cell viability was assessed by flow cytometry after PI staining.  

Data represents mean values of experiments performed 3 times independently ±SEM 

***p<0.001, determined by the student t-test. 
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6.3.4 INS-1E and human islets cells express the SIRP ligand CD47 and this is 

lost from beta cells of T1DM individuals  

SIRPbecomes activated when it binds to its cognate ligand CD47, and this 

event precipitates the phosphorylation of key tyrosine residues on the 

cytoplasmic tail of SIRP (Matozaki et al., 2009). In macrophages, the binding of 

CD47 to SIRPprevents phagocytosis, and the system thus functions as a “don’t 

eat me” signal (Ayi et al., 2016). Since the expression of CD47 has not been 

examined in pancreatic beta cells we set out to investigate this in beta cell lines, 

isolated human islets and in human pancreas sections. Western blotting analysis 

revealed that both rodent beta cells and human islets express CD47 (Fig.6.11).  

To study the expression of CD47 in situ within the pancreas, 

immunohistochemical staining was performed on FFPE human pancreatic 

sections from non-diabetic individuals using an antiserum raised against CD47. 

This revealed that CD47 is expressed within the islets of Langerhans, with very 

little specific staining observed in the exocrine pancreas. CD47 staining was 

intense in the cytoplasm of the cells, on the plasma membrane but it was not 

found in the nucleus. Within the islets, the staining of some cells was more 

intense than others (Fig.6.12). In order to identify which islet cells express CD47, 

co-immunofluorescence staining of 6 pancreatic sections from 3 individuals with 

T1DM and 3 age and sex matched non-diabetic controls was performed (Table 

15). Insulin was used as a marker of beta cells and glucagon as a marker for 

alpha cells (Richardson et al., 2016, Arif et al., 2014, Leete et al., 2016, 

Kobayashi et al., 2008). Using cyan for insulin, red for glucagon and green for 

CD47 the immunofluorescent staining confirmed our previous observation that 

CD47 is expressed within the islets of individuals without diabetes. Interestingly, 

the expression of CD47 was more intense in the beta cells than the alpha cells 
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within the islets. To quantify this, the mean fluorescence intensity was acquired 

and processed using a MATLAB script (Alpha; 49.79±1.4, beta; 58.3±1.8 MFI 

p<0.001) (Fig.6.14). Sections from individuals with T1DM were then studied using 

the same microscope and camera settings as the non-diabetic control sections. 

As expected, CD47 staining was expressed within the islets, however rather 

surprisingly, the expression of CD47 in insulin containing beta cells was less 

intense than that in alpha cells in the sections from individuals with T1DM. The 

mean fluorescence intensity was evaluated and this confirmed these 

observations (T1D alpha: 60.36 ± 2.7, T1D beta cells: 49±2.2, p<0.01). The mean 

fluorescence intensity results obtained from non-diabetic controls were then 

compared with those of T1DM individuals and revealed a reduction in CD47 

expression in T1DM donor beta cells (control beta cells; 58.3±1.8, T1D beta; 

49±2.2 p<0.001). Interestingly, CD47 was upregulated in the alpha cells of 

individuals with T1D when compared to matched controls (control alpha cells; 

49.8±1.4, 60.4±2.7 p<0.001). 
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Figure 6. 11: Isolated human islets and rat beta cells express CD47 

INS-1E cells  a. and human islets b. were lysed, western blotting performed and probed 

for CD47 expression with GAPDH as loading control.  

Data represents results of experiments performed thrice independently. 
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Figure 6. 12: Human islets express CD47 

Pancreatic tissue section from an individual without diabetes. Formalin-fixed 

paraffin embedded pancreas sections were stained for CD47 using an 

immunoperoxidase approach.  

CD47 is highly expressed in the islets as indicated by the intense brown staining. 

There is some exocrine expression, which on the cell surface membrane.  

 Scale bar 50m  
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Figure 6. 13: CD47 is expressed in beta cells and is diminished in T1D 

Pancreatic tissue section from an individual without diabetes. Formalin-fixed paraffin embedded pancreas sections were stained using 

co-immunofluoresence approach for insulin (blue), glucagon (red), CD47(green) and the nuclear stain DAPI. In control the case, CD47 

is expressed predominantly in the beta cells while in the T1DM case seems to be more expressed in the alpha cells. Scale bar 50m 
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Figure 6. 14: CD47 is reduced in T1DM beta cells and increased in alpha cells 

Identical settings were established to collect images and these images were then 

quantified by measuring the mean fluorescent intensity (MFI) of CD47, insulin, and 

glucagon in insulin containing islets (ICI). The images were then imported into a Matlab 

script, VIOLA, to measure CD47 MFI only in cells containing insulin or only in cells 

containing glucagon. Data was collected from 7 islets/case (3 T1DM individuals and 3  

individuals without diabetes). Data represents mean values ±SEM, **p<0.01 in arbitrary 

units (AU), determined by the student t-test. 
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6.3.5 CD47 is upregulated by IL-13 and IL-4 stimulation 

Next we investigated whether stimulation of INS-1E cells with IL-4 or IL-13 

affected the levels of CD47 using RT-qPCR. CD47 was upregulated 1.5 fold by 

both cytokines when compared to the unstimulated control. In these experiments, 

an additional question was addressed in order to establish whether the 

upregulation was STAT6 dependent. Knock down of STAT6 alone did not affect 

CD47 mRNA levels. However, the addition of IL-13 or IL-4 after STAT6 knock 

down did not lead to any increases in mRNA levels of CD47, indicating STAT6 

knockdown blocks the upregulation of CD47 by IL-4 and IL-13 stimulation (Fig 

6.15). 
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Figure 6. 15: IL-4 and IL-13 upregulated CD47 in INS-1E cells 

INS-1E cells were stimulated for 48h with 20ng/mL of IL-4 (◊) or IL-13 (Δ) after 

48h small interference STAT6 knockdown(filled shapes). RNA was harvested 

and cDNA synthesized. qPCR was performed and results analysed. 

Data represents qPCR fold change means of experiments performed three 

times ±SEM *p<0.05, **p<0.01, determined by the student t-test.  
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6.4 Discussion 

6.4.1 SIRP is important in controlling beta cell viability 

It had been established in the previous chapter that STAT6 controls the 

expression of SIRP, and here it was shown that this response occurs in rodent 

and human clonal beta cells, and also in primary human islets. The regulation of 

SIRP by STAT6 has not previously been reported in beta cells. These data also 

revealed that depletion of SIRP expression results in a significant decrease in 

beta cell viability in the absence of other cytotoxic stimuli. Cell cycle analysis 

confirmed an increase in DNA fragmentation in SIRP knockdown cells indicating 

increased apoptosis. The knockdown of SIRP significantly increased beta cell 

death when cells were incubated under conditions of serum withdrawal. 

Conversely, overexpression of SIRP by transfection, protected beta cells from 

serum withdrawal-induced cell death. Surprisingly, knockdown of SIRP followed 

by IL-13 treatment offered cytoprotection in serum withdrawal conditions albeit 

with lower efficacy. This observation could be explained by the fact that SIRP 

lies downstream of STAT6, hence depletion of SIRPby siRNA was reversed by 

introducing IL-13 and the consequent activation of STAT6 (Fig 6.7).  

Cell death attributed to loss of SIRP has not been studied in beta cells 

previously, however, similar findings have been reported in neutrophils (Stenberg 

et al., 2013) and in fibroblastic reticular cells (Saito et al., 2017). Additionally, 

knockdown of SIRP in neuronal cells of mice has been shown to induce caspase 

3 upregulation and downregulation of BCLXL (Huang et al., 2017), suggesting 

that, loss of SIRPmight induce caspase 3 activity and loss of anti-apoptotic 

BCLXL leading to beta cell death.   
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Taken together, these observations imply that SIRP might be central to the 

protection offered by IL-13 in beta cells and more broadly that SIRP may be a 

novel regulator of beta cell viability.  

6.4.2 The potential mechanism by which SIRP protects beta cells 

In this present work, it was shown that SIRP is important for beta cell survival, 

suggesting that it acts on a signalling cascade to prevent apoptosis. The precise 

mechanism by which SIRP reduces apoptosis is still unclear. However, in 

smooth muscle cells stimulated with IGF, SIRPrecruits PDK1 through Grb2 

leading to the activation of the Akt pathway. The activation of Akt leads to the 

subsequent activation of FOXO1 to prevent it from trans-activating BIM hence 

inhibiting apoptosis in these cells (Shen et al., 2010). IGF1 has been shown to 

protect beta cells from apoptosis, and to be important in beta cell proliferation and 

differentiation (Mallol et al., 2017, George et al., 2002, Maile and Clemmons, 

2002). Alternatively, it was also revealed by the same group that SIRP can 

recruit STAT1, which is known to transduce apoptotic signals mediated by 

interferons (Shen et al., 2009). The binding of SIRP by STAT1 was shown to be 

independent of SIRPphosphorylation. It is conceivable that an increase in the 

level of SIRPmay lead to sequestration of cytoplasmic STAT1, hence depleting 

the availability of STAT1 for interferon activation and in turn inhibit the 

propagation of apoptotic signalling. In this regard, it is unclear if IGF can stimulate 

the activity of SIRP in beta cells and future experiments could usefully examine 

this. 

Growth hormone activation of Jak2 leads to the phosphorylation of SIRPin 

fibroblasts, and this has been shown to enhance its binding to SHP2 suggesting 

an important role in growth hormone signalling and cell proliferation (Stofega et 
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al., 1998). This implies that knockdown of SIRP in INS-1E cells may inhibit 

growth or survival signals initiated by growth factors in culture media. Additionally, 

beta cells are known to express SHP2 which has been shown in knockout mice 

studies to be important in the production and secretion of insulin. In that report, 

the PI3K pathway showed reduced activation in the SHP2 pancreatic knockout 

mice, when compared to controls. Additionally, there was reduced PDX1, GLUT2 

and phospho-FOXO1 activation in SHP2 pancreatic knockout mice(Zhang et al., 

2009). PDX1 is important for beta cell identity, GLUT2 for glucose uptake or 

sensing and FOXO1 to inhibit apoptosis (Fujimoto and Polonsky, 2009). 

Grb2 and HSP70 are also reported to bind to SIRP (Shen et al., 2009) and both 

are present in human beta cells where they are crucial for beta cell survival (Hügl 

et al., 1998, Welsh et al., 1995, Rütti et al., 2016). The majority of these studies 

have been performed in other cell types and the mechanisms by which the growth 

factors activate SIRP are still not known. SIRP has, however, been reported 

to provide a scaffold for multi-protein complexes essential for the transmission of 

signals but these need to be studied in the context of beta cells (Timms et al., 

1999).  

Based on the experiments performed in this chapter using serum withdrawal 

which induces cell death by depletion of the anti-apoptotic protein BCLXL (Tejedo 

et al., 2001, Goyeneche et al., 2006), it can be suggested that SIRP protects 

from cell death by activating the Akt pathway leading to the activation of FOXO1. 

FOXO1 activation inhibits the activation BIM hence preventing mitochondrial 

permeabilisation by the Bak/Bax complex (Fig. 6.16). Future experiments could 

examine the protection of beta cells from pro-inflammatory cytokines by SIRP. 
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Figure 6. 16: Possible mechanisms by which SIRP protects  

STAT6 activation leads to the upregulation of SIRP, which can be activated by binding 

to CD47, PDGFR or IGFR leading to the recruitment of either STAT1, Grb2, SHP1, and 

SHP2. Recruitment of STAT1 could diminish interferon signalling, while Grb2, SHP1 and 

SHP2 can lead to the activation of the Akt and Erk pathways leading to the upregulation 

of anti-apoptotic proteins or cell proliferation.  
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6.4.3 SIRP and beta cell function 

SIRP has rarely been studied in the pancreatic beta cell, with only a single report 

examining its expression in these cells (Kobayashi et al., 2008). In that report, 

the investigators proposed a novel role for SIRP in the regulation of insulin 

secretion. They used mice depleted of SIRP specifically in the pancreas and 

found effects on insulin secretion in animals fed on high-fat diet when compared 

to wild type controls. These data suggest that SIRP plays a role in promoting 

insulin secretion. It was also shown using immunohistochemical staining that 

SIRP was expressed in the islets of Langerhans and within the islets specifically 

in beta cells alone (Kobayashi et al., 2008) and this differed from our findings. 

Kobayashi and colleagues, used rat pancreas tissue while our tissues were of 

human origin and much older than their tissues which could account for the 

differences (Karlsson and Karlsson, 2011). Additionally, rat tissues were 

permeabilised with 0.1% triton X overnight at 40C after antigen retrieval while our 

tissue was permeabilised by use of methanol. In muscle cells, SIRP is able to 

recruit SHP-2 (which we have shown to be expressed in INS-1E beta cells) (Maile 

and Clemmons, 2002) and loss of SHP-2 from beta cells causes a decrease in 

glucose stimulated insulin secretion (Zhang et al., 2009). These data may imply 

that perhaps SIRP and SHP2 could interact to positively regulate insulin 

secretion. This might occur through the maintenance of beta cell identity (PDX1) 

and by maintaining GLUT2 expression as it is important in glucose sensing 

(Zhang et al., 2009). This hypothesis has not been tested in beta cells. 

6.4.4 CD47 and beta cell survival  

The extracellular region of SIRP binds to its ligand CD47 to induce a 

bidirectional signal that has been implicated in migration, cell survival and 
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proliferation (Kobayashi et al., 2008, Matozaki et al., 2009). CD47 is expressed 

on most somatic cells (Ayi et al., 2016, Bian et al., 2016, Per-Arne, 2013), and 

here using immunohistochemistry its expression in pancreatic beta cells was 

revealed. Indeed its expression on these cells was higher than that on other 

pancreatic cell populations. This result agrees with that of Kobayashi and 

colleagues in mice (Kobayashi et al., 2008) and with RNA sequencing data from 

human islets (Segerstolpe et al., 2016). In tissue sections from individuals with 

T1DM, we noticed an unexpected decrease in the expression of CD47 in beta 

cells although the mechanism remains unclear.  

The novel observation of the reduction in CD47 in beta cells may impact on the 

recognition of pancreatic beta cells as “self” (Per-Arne, 2013). Loss of CD47 in 

pancreatic beta cells might make them more vulnerable to immune attack. The 

loss of CD47 has been linked to increased surface expression of calreticulin and 

phosphatidylserine suggesting enhanced phagocytic clearance of CD47 depleted 

cells (Gardai et al., 2005). Additionally, loss of CD47 in TCR transgenic mice has 

been shown to break immune tolerance leading to autoimmune diabetes (Dugas 

et al., 2010). In immune cells such as neutrophils, decreased expression of CD47 

leads to increased phagocytosis by macrophages (Lawrence et al., 2009), 

conversely, overexpression decreased neutrophil apoptosis and phagocytosis 

(Barrera et al., 2017).  

Interestingly, as the expression levels of CD47 diminished in T1DM beta cells, 

expression of this molecule in the alpha cells was increased. One explanation for 

the diminished CD47 expression in beta cells could be that loss of STAT6 (also 

observed in sections from individuals with T1DM), leads to the decreased 

expression. It is not clear why alpha cells in T1DM tissue sections have an 
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increased expression of CD47 but reports from cancer studies (Cook and Soto-

Pantoja, 2017, Jaiswal et al., 2009) suggest that such upregulation enhances the 

proliferation and protects from immune attacking. This could explain why alpha 

cells are spared in T1DM and how they evade the immune attack during insulitis 

(Habener and Stanojevic, 2012). Another intriguing possibility might be a case of 

beta cells transdifferentiating due to inflammation, changing their phenotype to 

alpha cells but still retaining CD47 expression (Nordmann et al., 2017). In support 

of this conclusion, it was observed that not all alpha cells in T1DM have elevated 

CD47 expression and that the number of alpha cells was generally higher in 

T1DM islets when compared to relevant controls. 

Data arising from qPCR analysis suggest that IL-4 and IL-13 can induce 

upregulation of CD47 mRNA in beta cells in a STAT6 dependent manner. Also, 

the data revealed that knockdown of STAT6 did not directly alter the expression 

level, suggesting that other factors regulate CD47 expression under basal 

conditions. Individuals with T1DM have been reported to have reduced levels of 

IL-4 and IL-13 (Kikodze et al., 2013, Alnek et al., 2015) and STAT6 (Leslie et al., 

2018), suggesting that beta cells may not be able to upregulate CD47 during 

inflammation and that this could lead to enhanced phagocytosis and clearance of 

CD47 depleted cells (Lawrence et al., 2009). 

6.4.5 Conclusion 

In summary, SIRP is an IL-13 regulated gene in beta cell lines and human islets 

and might play an important role in beta cell survival. SIRPwas shown to be 

important for beta cell survival as the knockdown of this gene led to significant 

beta cell loss and its overexpression protected beta cells from cytotoxicity. The 

mechanism of protection by SIRP in beta cells remains to be clarified. The 



273 
 

binding of SIRP to its cognate receptor CD47 may be one of the ways by which 

this protection is achieved. CD47 expression was significantly decreased in beta 

cells of sections from individuals with T1DM and this could impact the 

phagocytosis of these cells. Additionally, the loss in CD47 could lead to 

upregulation of “eat me” signals such as calreticulin (Gardai et al., 2005).  
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7.0 Discussion  

The incidence of type 1 diabetes is increasing in children below the age of 15 

years and is predicted to double between 2005 and 2020 (Patterson et al., 2009, 

Patterson et al., 2018). It is estimated that approximately 35,000 children under 

the age of 19 live with T1DM in the UK and that the prevalence among children 

under the age of 14 is about 24.5 per 100,000 (Patterson et al., 2009). The 

pathophysiology of type 1 diabetes is not completely understood. Our present 

understanding suggests there is a complex interaction between environmental 

factors, genetic susceptibility and the immune system (Copenhaver and Hoffman, 

2017). GWA studies have identified susceptibility genes that may predispose 

individuals to T1DM yet only about 33% of high-risk carriers develop the disease, 

implicating a role for other factors (Steck and Rewers, 2011). Environmental 

factors implicated include viruses, bacteria, lack of vitamin D, and geographical 

location (Knip and Simell, 2012).  

The involvement of the immune system in T1DM is serologically established by 

the presence of auto-antibodies, generated against particular islet proteins 

(Siljander et al., 2009). Immune cell infiltration of the islets of Langerhans has 

been verified in rare human T1DM pancreatic tissue demonstrates the presence 

of different immune cell subsets (Arif et al., 2014, Morgan et al., 2014). One route 

through which these infiltrating immune cells can impact on beta cell function and 

survival is via the secretion of specific cytokines. There is evidence to suggest 

that beta cell death occurs as a result of an imbalance between the secretion of 

pro-inflammatory and anti-inflammatory cytokines (Souza et al., 2008, Berchtold 

et al., 2016). Work on the detrimental effects of pro-inflammatory cytokines on 

beta cells has been extensive (Moore et al., 2011, Cetkovic-Cvrlje and Eizirik, 

1994, Russell and Morgan, 2014, Pirot et al., 2008, Souza et al., 2008, Collier et 
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al., 2011) but, the action of “anti-inflammatory” cytokines on pancreatic beta cells 

has received far less attention. This thesis sought to investigate the actions of 

two such anti-inflammatory cytokines, IL-13 and IL-4, and examine their role in 

protecting beta cells from cytotoxicity. The role of the transcription factor STAT6, 

activated in response to receptor binding of both these cytokines, was studied in 

detail.  

The first part of the thesis investigated the capacity of IL-13 and IL-4 to protect 

beta cells from cell death induced by exposure to different cytotoxic stimuli (serum 

withdrawal, palmitic acid, and pro-inflammatory cytokines). The second 

component explored the signalling pathways stimulated by IL-13 in beta cells and 

the expression of genes regulated by IL-13. The third part of the work studied the 

impact of manipulating STAT6 levels in the response to IL-13 either by using 

small interference RNA to deplete STAT6 expression or by transfecting an 

expression plasmid to enhance STAT6 levels or to constitutively activate or inhibit 

STAT6 activation. Finally, the genes upregulated by IL-13 stimulation were 

examined to better understand the mechanisms of cytoprotection from 

cytotoxicity in beta cells. 

7.1 Overview of IL-13 cytoprotective phenotype 

IL-13 was shown to exert a potent protective effect against a range of cytotoxic 

stimuli in beta cells (pro-inflammatory cytokines, serum withdrawal and palmitate) 

using rat beta cell lines. IL-13 treatment of human derived beta cell line EndoC 

H1 also protected from pro-inflammatory cytokine induced cell death. The 

precise mode of protection is still not completely known, however, the finding that 

IL-13 can protect against multiple cytotoxic stimuli suggests that several different 

anti-apoptotic pathways may be activated. These multiple cytotoxic stimuli 
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activate apoptotic pathways in beta cells via activation of caspase 3 (serum 

withdrawal, TNF- and palmitate), Caspase 8 (TNF-), Caspase 9 (serum 

withdrawal), depletion of BCLXL and induction of nitric oxide (IL-1IFN-) (Cnop 

et al., 2005, Yang et al., 2015, Tomita, 2017, Eizirik et al., 2009). These results 

are in accord with previous studies (Kaminski et al., 2007, Kaminski et al., 2010, 

Russell et al., 2013, Rütti et al., 2016). Furthermore, the protection may be 

relevant in vivo since treatment of NOD mice with IL13 (or IL-4) reduces the 

incidence and slows the rate of acquisition of diabetes in this mouse model 

(Zaccone et al., 1999, Cameron et al., 1997, Mi et al., 2004). Importantly, 

individuals with T1DM have been shown to have defective invariant natural killer 

T-cells known to secrete IL-13 that can modulate effector T-cells in T1DM (Usero 

et al., 2016). 

7.2 The Jak/STAT6 signalling in the pancreatic beta cell 

Given that IL-13 has a protective effect on pancreatic beta cells, it was important 

to understand the underlying mechanisms by which IL-13 might protect. Typically, 

IL-13 signals by binding to its cognate receptor, IL-13R1 leading to the 

recruitment of a receptor component IL-4Rto form a heterodimerAlternatively 

IL-13 can also bind to IL-13R2 monomer. IL-13 binds to IL-13R2 with a higher 

affinity and although its downstream signalling had initially proved elusive due to 

its short cytoplasmic tail, evidence now suggests that this monomer could be 

involved in inducing TGF-1 production (Fichtner-Feigl et al., 2005). The biology 

of this second receptor has not been studied in the context of beta cells or T1DM. 

However, the receptor expression is thought to be very low since RNAseq failed 

to detect IL-13R2 in beta cells of humans (Segerstolpe et al., 2016). The 

heterodimer formation between IL-4R and IL-13R1 or between IL-4Rand C 
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brings their associated Jak kinases into close proximity leading to trans 

phosphorylation. The activated Jaks, in turn, phosphorylate specific tyrosine 

residues in the receptor leading to the recruitment of STAT6 to the 

phosphorylated docking sites and its subsequent activation (Russell and Morgan, 

2014).  

It was shown in the present work that INS-1E beta cells express all four Jaks, but 

that these are activated with differing kinetics following treatment with IL-4 and 

IL-13. The differing activation kinetics of the Jaks could explain the differences in 

pathways known to be activated by IL-13 stimulation (pSTAT3, pSTAT6 and 

PI3K/Akt ) (Russell et al., 2013). Importantly, each receptor monomer can recruit 

up to two different Jaks since they possess Box regions, which are used by the 

FERM domains in Jaks to bind to receptors (Ferrao and Lupardus, 2017, 

Usacheva et al., 2002, Noon-Song et al., 2011, Umeshita-Suyama et al., 2000). 

This work demonstrates that IL-13, as well as IL-4 stimulation of INS-1E cells, led 

to the phosphorylation of all four Jaks. It will be important in the future to ascertain 

if a particular Jak or Jaks is recruited to either the IL-4R or the IL13R1. This 

could be done either using co-immunoprecipitation assays, to determine which 

Jak is pulled down with each receptor or site directed mutagenesis by mutating 

specific residues in either the Box (receptor) or the FERM (Jaks) domains and 

examining if this alters the outcome of IL-13 or IL-4 treatment. Based on the 

experiments of Russell et al., (2013), the activation of STAT6 and the protection 

offered by IL-13 against cytotoxicity were reduced after Jak2 inhibition, 

implicating Jak2 in the signalling pathway. This correlated well with western blot 

analysis (Fig 4.9), which suggested that knockdown of Jak2 reduced STAT6 

activation in response to IL-13. Other studies suggest that IL-4 requires Jak3 

activation to mediate its protection (Kaminski et al., 2010).  
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In our previous experiments and reports by others, it was shown that both the 

PI3K/Akt and the Jak/STAT signalling pathways are activated by IL-4 and IL-13 

in beta cells (Russell et al., 2013, Kaminski et al., 2010, Rutti et al., 2016). 

However, using a PI3K/Akt inhibitor wortmannin, it was reported that IL-13 was 

still able to protect beta cells from serum withdrawal induced cell death (Russell 

et al., 2013), implying that the Jak/STAT signalling is more likely to be involved in 

cytoprotection than the PI-3K/Akt pathway, although other investigators have 

argued the contrary (Rütti et al., 2016). In future experiments, an alternative 

method to show that the contribution of the PI-3K/Akt to the protection afforded 

by IL-13 will be to perform a site directed mutagenesis or CRISPR on the IL-4R 

receptor at tyrosine 497 position reported to recruit IRS2 which activates the 

pathway (Nelms et al., 1999). 

 The use of a Jak/STAT specific PCR array panel to identify genes modulated 

during IL-13 stimulation identified a variety of genes with altered expression. A 

proportion of these were confirmed at both the RNA levels using gene specific 

primer qPCR assays and at the protein level, by Western blotting. Amongst these 

genes, the upregulation of signal regulatory protein alpha (SIRP) was 

demonstrated for the first time. This prompted an investigation into its role in beta 

cells. Encouragingly, MCL-1 and BCLXL and SOCS-1 were also upregulated at 

both the RNA and protein level and these have been previously shown to protect 

beta cells from cell death both in vitro and in vivo (Allagnat, 2010, Carrington et 

al., 2009). Additionally, It was shown that IL-13 and IL-4 upregulated the 

expression of STAT6 itself, implying the presence of a positive feedback loop. 

Taken together, this implies that pre-incubation of cells with IL-13 upregulates 

anti-apoptotic proteins such as SOCS1, BCLXL, and MCL-1 and these likely are 

involved in the cytoprotection observed. Other genes that were upregulated but 
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not directly studied in this work were GRB2, JunB, Jun, Crk, and SH2B1. These 

have also been shown to regulate beta cell health and might contribute to the 

cytoprotective effects of IL-13 (Gurzov et al., 2008, Chen et al., 2014, Scarim et 

al., 2003, Hügl et al., 1998, Lee et al., 2004). Further genes implicated in the 

regulation of inflammation and not directly studied here include PIAS1 and PIAS2. 

PIAS1 & 2 are known to inhibit STAT1 and STAT2 signalling by binding to the 

activated homo or heterodimers of STAT molecules to prevent DNA binding (Liu 

et al., 2015a). As aberrant STAT1 signalling has been observed in T1DM 

(Richardson et al., 2016), these molecules may warrant future attention. Figure 

7.1 details the current understanding of the IL-4 and IL-13 signalling in pancreatic 

beta cells. 
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Figure 7. 1: A schematic representation of the present understanding of Jak/STAT6 
signalling in beta cells 

Stimulation of beta cells with IL-4 or IL-13 recruits receptor components that leads to 

trans-phosphorylation of Jaks. Activated Jaks then phosphorylate tyrosine residues on 

the receptor cytoplasmic tail exposing docking sites wherein STAT6 is recruited and 

activated. Activated STAT6 then migrates to the nucleus where it regulates the 

expression of genes. 
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7.3 The role of STAT6 in IL-13 signalling  

The core of the thesis was to investigate the role of STAT6 in IL-13 mediated 

cytoprotection of beta cells. To achieve this, STAT6 expression and activity were 

either reduced or increased, through the use of small interference RNA or a 

STAT6 expression plasmid. Somewhat surprisingly, knockdown of STAT6 alone 

did not affect beta cell viability. Nevertheless, the data reveal that STAT6 

facilitates the IL-13 induced protection of beta cells since knockdown of STAT6 

attenuated the protective effect of IL-13 following stimulation with pro-

inflammatory cytokines, palmitate or serum withdrawal. Knockdown of STAT6 

also revealed that many of the genes that were upregulated in response to IL-13 

and IL-4 (SIRP, SOCS-1, MCL-1 and BCL2L1) were modulated by STAT6 

confirming the key role of STAT6 in IL-13 mediated protection. Given the results 

of knockdown studies, alternative validation of these findings using a STAT6 

expression vector was performed. Using site-directed mutagenesis, a STAT6 

expression vector was used to create a constitutively active and dominant 

negative form as described by Daniel et al. (2000). These variant forms behaved 

as expected when assayed using a luciferase reporter system. Their use in 

viability assays showed subtle protection from pro-inflammatory cytokines by 

constitutively active STAT6 but this did not achieve statistical significance. It was 

noticed, however, that the dominant form by itself was detrimental to beta cell 

survival. The low transfection efficiency of the INS-1E cells was a particular 

challenge and made it difficult to interpret results arising from the experiments 

with STAT6 variants. In an attempt to overcome this, co-transfection of the STAT6 

variants with a GFP construction was performed. The theory being that the GFP 

transfected cells are more likely to be transfected with STAT6 (co-transfection 

principle). However, we cannot guarantee that the identified cells are transfected 
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with both the GFP and the STAT6 plasmid and the results were not sufficiently 

clear to draw firm conclusions. In the future, it may be beneficial to generate 

stably transfected cells or use CRISPR technologies to generate cells containing 

variant forms of STAT6. 

This work also demonstrates that the loss of STAT6 leads to a decline in anti-

apoptotic proteins MCL-1 and BCLXL and an increase in the expression of the 

MHC class I subunit, B2M. These findings align with studies of pancreatic tissue 

from donors with T1DM in whom B2M expression is increased in insulin 

containing islets (Richardson et al., 2013, Richardson et al., 2016). Furthermore, 

immunohistochemical staining of pancreatic sections revealed a decrease in the 

expression of MCL-1 in certain islet cells in T1DM, when compared to individuals 

without diabetes (Richardson et al., 2013).  

Collectively, this work has demonstrated a role for STAT6 in the protection of 

rodent and human beta cells against cytotoxic stimuli. It was further shown that 

the loss of STAT6 can occur following exposure to cytotoxic stimuli and that the 

use of IL-13 and IL-4 could rescue such loss. Importantly, STAT6 expression is 

reduced in the islets of individuals with T1DM (Leslie et al., 2018), suggesting 

that the beta cells in these islets may be more susceptible to death induced by 

cytokines elaborated by infiltrating immune cells, potentially through reduced 

expression of anti-apoptotic molecules like MCL1. These cells may also have 

enhanced visibility to influential immune cells. The loss of STAT6 and its 

contribution to beta cell health is schematically represented in Figure 7.2. 
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CD8+ 

Figure 7. 2: Schematic showing how the Loss of STAT6 could contribute to beta cell 
loss in  T1DM 

Under stress, STAT6 expression is reduced, this leads to decreased MCL-1, BCLXL 

and SOCS1 expression but in contrast leads to increase B2M expression. The 

decrease in anti-apoptotic proteins enhances apoptosis, while increase in B2M leads 

to MHC class I expression and hence prompting immune cells which infiltrate and 

secrete more detrimental cytokines 
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7.4 The role of SIRP and its ligand CD47 in beta cells 

This work demonstrates for the first time that IL-13 and IL-4 lead to a significant 

and strong upregulation of SIRP expression in beta cells. As very little was 

known about the role of this protein in beta cell survival, additional investigations 

were carried out. It was shown that SIRP is expressed in rodent and human 

beta cell lines and in human islets by western blotting. Strikingly, knockdown of 

this protein with small interference RNA induced beta cell death directly. SIRP 

has only been previously described in a single study in pancreatic islets of rodent 

models, wherein pancreatic specific knockout affected insulin secretion 

(Kobayashi et al., 2008) but no information about its impact on beta cell viability 

was provided. Importantly, the study of SIRPin other cell systems has revealed 

that it sequesters a number of binding partners, including Grb2, PDK1, Jak2, 

STAT1 and SHP2. Intriguingly, all of these molecules have been associated in 

other studies with the control of beta cell viability (Shen et al., 2009, Zhang et al., 

2009, Shen et al., 2010). The increased expression of SIRP in beta cells 

exposed to IL-13 or IL-4 may therefore impact on the function of these molecules 

and subsequent downstream pathways. The ability of SIRP to bind to these 

molecules has not yet been studied in beta cells but may be important since an 

alteration in some of these interactions may facilitate either loss or improvement 

in cell viability. For example, reduced levels of SIRP could result in the inhibition 

of the SHP2, Grb2 and PDK1 mediated activation of the Akt cytoprotection 

pathway (Shen et al., 2009). Future study of these binding partners in beta cells 

might shed light on the mechanism of death caused by SIRP knockdown. 

 In the present study, a SIRP expression plasmid was used to artificially 

increase SIRP levels and study the impact on apoptosis induced by serum 
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withdrawal. This revealed that the upregulation of SIRP might play an important 

role in the protection of beta cells from cytotoxicity although the precise 

mechanism of cytoprotection remains to be determined. SIRP is known to signal 

by binding to its associated ligand CD47 thereby transmitting signals in a 

bidirectional manner, that impact upon both phagocytosis and apoptosis 

pathways in the recipient and donor cells (Oshima et al., 2002). It was shown in 

the present work that both human and rodent beta cells express CD47, and that 

CD47 is more abundantly expressed on beta cells compared to alpha cells in 

donors without diabetes. Surprisingly, the reverse was true in individuals with 

T1DM, with expression of CD47 being reduced in beta cells and increased in 

alpha cells.  

7.5 Therapeutic potential of the IL-4/IL-13 pathway 

The findings arising from this thesis have demonstrated that IL-13 and IL-4 can 

stimulate anti-apoptotic pathways in beta cells; hence, the Jak/STAT6 presents 

a potential therapeutic targetable pathway. The administration of IL-4 and IL-13 

in vivo to reduce the incidence of T1DM has been demonstrated in NOD mice 

models of the disease and shown to be effective at decreasing the disease 

incidence (Zaccone et al., 1999, Cameron et al., 1997). The administration of IL-

13 to humans has not been reported, and the direct administration of this cytokine 

would be challenging due to a potential side effect of inducing asthma (Yang et 

al., 2001). To avoid the direct administration of IL-4 or IL-13, molecules that 

induce the secretion of either IL-4 or IL-13 could be exploited. One molecule that 

has been considered in the context of diabetes and which is known to enhance 

IL-4 synthesis is calcitriol (Vitamin D or 1, 25(OH) 2D3) (Ysmail-Dahlouk et al., 

2016). In that study, PBMCs were isolated from individuals with T1DM and non-

diabetic controls and treated with calcitriol. In the untreated samples, IL-4 
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secretion was lower in T1DM and IFN- was higher. However, treatment of the 

PBMCs with calcitriol significantly enhanced IL-4 secretion and STAT6 activation 

and reversed the production of IFN- (Ysmail-Dahlouk et al., 2016). Additionally, 

the administration a synthetic glycolipid alpha-galactosylceramide (GalCer) is 

a potent activator of invariant NKT-cells that secrete IL-13 could be used, 

although, the activity of these cells has been reported to be dysregulated in T1DM 

individuals (Usero et al., 2016, Sullivan and Kronenberg, 2005).   

Alternatively, enhancing the activity of some proteins involved in the anti-

apoptotic pathway such as STAT6, SIRP, MCL-1, SOCS1, BCLXL and PIAS1 

could serve as potential therapeutic targets. One drug that might be repurposed 

for the treatment of T1DM which could exploit the pathway is valproic acid, a 

compound used for the treatment of epilepsy, migraines and bipolar disorder 

(Chateauvieux et al., 2010). Valproic acid has been shown to increase STAT6 

and PIAS1 expression in FBR cell lines (McGarry et al., 2004), and importantly, 

to reduce beta cell apoptosis in juvenile diabetic rats although the mechanism 

was attributed to histone deacetylase inhibition (Khan and Jena, 2016).  

7.6 Conclusion 

Taken together, the data presented in this thesis revealed that loss of STAT6 

leads to a reduction in the Jak/STAT6 signalling pathway in beta cell. This does 

not directly compromise viability but it makes the beta cells more vulnerable to 

cytotoxicity. In recently published data we show that STAT6 is reduced in T1DM 

individuals, possibly due to increased pro-inflammatory cytokines secretion 

(Leslie et al., 2018), highlighting this as a potentially important dysregulated 

pathway in T1DM.  
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This loss of STAT6 will cause a reduction in anti-apoptotic proteins such as MCL-

1 and BCLXL. STAT6 depletion is also associated with reduced levels of SOCS-

1, which is a negative regulator of IFN signalling (Li et al., 2015b, Allagnat et al., 

2010, Carrington et al., 2009). Interferon signalling pathways are dysregulated in 

T1DM (Qaisar et al., 2018) and have been suggested to initiate diabetes in NOD 

mice (Li et al., 2008). Loss of SOCS1 could contribute to potentiating IFN 

signalling hence exacerbating the disease. Importantly, in this thesis, I have 

reported that IL-13 and IL-4 upregulate SIRP in beta cells and shown that SIRP 

is able to protect the cells from cytotoxicity through a still to be defined 

mechanism. The depletion in STAT6 could imply an eventual loss in SIRP that 

would lead to beta cell death.  

Finally, the Jak/STAT6 pathway is shown to be critical for maintaining beta cell 

survival through a variety of mechanisms that involve the regulation of multiple 

genes, the most differentially expressed being SIRP whose loss might be 

deleterious to beta cell survival in T1DM. The updated schematic representation 

of this pathway is in Fig 7.3. 

Taken together, these data implicate STAT6 as an important regulator of beta 

cell viability.  
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Figure 7. 3: Jak/STAT6 pathway Schematic updated 

The pathway illustrates the upregulated genes upon stimulation with IL-13, some of which are anti-apoptotic MCL1, 

BCLXL, STAT6 and SIRPAlso upregulated is SOCS1, which negatively regulates STAT molecules. 
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7.7 Limitation of the study and future works 

7.7.1 Limitations  

The work presented here has focused on the role of STAT6 in beta cell 

cytoprotection afforded by IL-4 and IL-13. These cytokines are known to activate 

in addition to STAT6, both the PI-3K/Akt pathway and STAT3 Russell et al. 

(2013), which were not studied further.  

To study the role of STAT6 in controlling beta cell viability, experiments in which 

INS-1E cells were transfected with mutated forms of STAT6 with modified activity, 

did not take into account endogenously expressed STAT6, which could 

potentially skew or mask the results obtained. To resolve this, cell lines stably 

expressing these variant forms of STAT6 could be developed by cloning these 

versions into INS-1E cells using a Flp-InTM T-RExTM system or CRISPR gene 

editing technology. The Flp-InTM T-RExTM system is used to develop stable cell 

lines containing the gene of interest under the control of a tetracycline inducible 

promoter. These cells have a flippase (Flp) recombinase recognition target site 

at a transcriptionally active locus, which can be targeted to accommodate the 

gene of interest using a Flp-InTM expression vector (Senkel et al., 2009). While 

the CRISPR gene editing technology uses helicase and nuclease enzymes on 

the CRISPR associated system (CAS) protein and a guide RNA (target gene and 

tracerRNA) to specifically help edit the genome of interest to the desired 

sequence (Adli, 2018). 

The cytoprotective experiments performed in this thesis investigated on INS-1E 

cells and human derived EndoC H1 cell lines and it is not known whether these 

protective effects can occur with human islets. 
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 Immunohistochemical staining of tissue sections with anti-sera against SIRP 

did not perform as expected. There was no staining in pancreatic tissue sections 

when probed with anti-sera against SIRPThis challenge made it hard to 

validate the loss of STAT6 seen in tissue (Leslie et al., 2018), with a similar loss 

in SIRP. This could be attributed to the type of fixative used in our tissue 

samples, the antigen retrieval method or the conformation of the protein in tissue, 

which differs from the linear structures in western blotting (Ivell et al., 2014, 

Werner et al., 2000).  

7.7.2 Future works 

Future works arising from the findings in this thesis will include; 

  Further assessing the impact of STAT6 in beta cells by generating stable 

cell lines expressing the various forms of STAT6. This will validate the 

results obtained in this thesis.  

 IL-13 upregulated the expression of SIRP and in chapter 6 it was shown 

that knockdown of SIRP was detrimental to beta cells. Overexpressing 

SIRP protected INS-1E cells from serum withdrawal cytotoxicity. Hence, 

the role of SIRP in beta cell viability by overexpressing this protein in pro-

inflammatory cytokine treatments and measuring cell viability will be 

investigated. In doing this, the experiments will validate the findings that 

SIRP is one of the main mechanisms by which IL-13 protects beta cells 

from cytotoxicity. Since there is a lot of evidence implicating pro-

inflammatory cytokines (Allagnat et al., 2010, Choi et al., 2004, Collier et al., 

2011, Fatima et al., 2016, Souza et al., 2008) in beta cell loss, this could 

serve as a therapeutic target for treatment of T1DM. Additionally, the 

phosphorylation of tyrosine residues on the cytoplasmic tail of SIRP is 
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critical in modulating the activity of the protein will be studied to assess 

whether phosphorylation of these residues is important in the protective 

effects of SIRPin beta cells. SIRP activated tyrosine residues will be 

mutated by site directed mutagenesis and the viability experiments  

performed to determine the impact of each residue on beta cell survival. 

Also, these tyrosine residues can bind other proteins such as STAT1, SHP1 

and SHP2 which will be investigated using co-immunoprecipitation. The role 

of CD47 in the SIRP mediated protection will also be investigated by 

knockdown of CD47 prior to viability experiments with SIRP 

 Our PCR array detected a range of other genes, which were upregulated in 

response to IL-13 and IL-4, for example, PIAS1 and SOCS1. However, in 

this study, the impact of these proteins on beta cells survival and function 

has not been assessed. Thus additional studies to address whether some 

of these additional ‘hits’ might be important in the protective effects of IL-13 

in beta cells may well be warranted 

 A broad examination of the genes activated by IL-13 will be investigated 

using RNAseq. The results from RNAseq will be used to validate our 

findings and enable further research to understand and exploit beta cell 

protection by IL-13. 
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