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Abstract Earth's climate transitioned from a warm unglaciated state to a colder glaciated “icehouse”
state during the Cenozoic. Extensive ice sheets were first sustained on Antarctica at the Eocene-Oligocene
Transition (EOT, ~34 Ma), but there is intense debate over whether Northern Hemisphere ice sheets
developed simultaneously at this time or tens of millions of years later. Here we report on EOT-age
sediments that contain detrital sand from Integrated Ocean Drilling Program Sites U1406 and U1411 on the
Newfoundland margin. These sites are ideally located to test competing hypotheses of the extent of Arctic
glaciation, being situated in the North Atlantic's “iceberg alley” where icebergs, calved from both the
Greenland Ice Sheet today, and the Laurentide Ice Sheet during the Pleistocene, are concentrated by the
Labrador Current and deposit continentally derived detritus. Here we show that detrital sand grains present
in these EOT-aged sediments from the Newfoundland margin, initially interpreted to represent ice rafting,
were sourced from the midlatitudes of North America. We find that these grains were transported to the
western North Atlantic by fluvial and downslope processes, not icebergs, and were subsequently reworked
and deposited by deep-water contour currents on the Newfoundland margin. Our findings are inconsistent
with the presence of extensive ice sheets on southern and western Greenland and the northeastern
Canadian Arctic. This contradicts extensive bipolar glaciation at the EOT. The unipolar icehouse arose
because of contrasting latitudinal continental configurations at the poles, requiring more intense Cenozoic
climatic deterioration to trigger extensive Northern Hemisphere glaciation.

1. Introduction

It is widely inferred that continental-scale ice sheets first developed on Antarctica across the Eocene-
Oligocene Transition (EOT; Hambrey & Barrett, 1993; Kennett, 1977; Miller et al., 1991; Zachos et al.,
1996). While the Arctic likely supported sea ice and coastal outlet glaciers prior to this time (Davies et al.,
2009; Moran et al., 2006; St. John, 2008), intense debate exists over whether the northern continents were
extensively glaciated at the same time as Antarctica during the Paleogene. The traditionally accepted view
is that Greenland has experienced multiple glaciations since the late Miocene (~7 Ma; Larsen et al., 1994)
with more extensive glaciation of the Northern Hemisphere in the late Pliocene (~2.7 Ma; Bailey et al.,
2013). Debate centers around two main lines of evidence: (i) excursions in Paleogene (~66-23 Ma) benthic
foraminiferal oxygen isotope records that are too large to be accommodated by Antarctic ice growth alone
(Coxall et al., 2005; Tripati et al., 2005) and (ii) ice-rafted debris (IRD) in strata of middle Eocene-to-early
Oligocene age (39-30 Ma) from the Norwegian-Greenland Sea (NGS; Figure 1; Eldrett et al., 2007; Tripati
et al., 2008). One interpretation is that these records together indicate simultaneous bipolar Paleogene gla-
ciation, with ice sheets on multiple Northern Hemisphere continents (Dawber & Tripati, 2011; Tripati
et al., 2005; Tripati et al., 2008)—or at least Greenland (Tripati & Darby, 2018). Another interpretation is that
significant Northern Hemisphere glaciation did not occur at the EOT because the northern continents were
too warm in summer to support major ice sheets (DeConto et al., 2008; Eldrett et al., 2009; Solgaard et al.,
2013). In this second interpretation, the oxygen isotope-derived ice budgets presented in favor of bipolar gla-
ciation are overestimates because they are based on inadequate records and/or incorrect accounting for
ocean cooling (Coxall et al., 2005; Edgar et al., 2007; Lear et al., 2008), and IRD deposited in the NGS is
explained by small outlet glaciers on East Greenland, and potentially also by Arctic Ocean sea ice (Eldrett
et al., 2007; Moran et al., 2006; St. John, 2008).
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Figure 1. Circum-North Atlantic Ocean, showing our Integrated Ocean Drilling Program study sites (U1406 and U1411)
and other sites relevant to our study, modern-day surface currents responsible for transporting icebergs, and the terranes
of the North Atlantic margins. ECG = East Greenland Current, WGC = West Greenland Current, BIC = Baffin Island
Current, and LC = Labrador Current. Modified from Bailey et al. (2012).

In a recent study of detrital grains deposited at Ocean Drilling Program Site 913 in the NGS, a dynamic cryo-
sphere with episodic growth of continental ice in the Northern Hemisphere is interpreted to have initiated
from the middle Eocene (~44 Ma; Tripati & Darby, 2018; Figure 1). An ancient ice cap covering at least a
large portion of East Greenland is invoked, together with possible ice-rafting sources around the rim of
the Arctic Ocean. Based on these results, Tripati and Darby (2018) question the time-sequential CO,-tem-
perature threshold model for the onset of bipolar glaciation developed by DeConto et al. (2008). That model
suggests that the CO, level at which ice sheet (as opposed to ice-cap or glacier) inception is triggered is lower
for the Northern Hemisphere than the Southern Hemisphere, and therefore, the circum-Arctic continents
are less prone to pre-Neogene glaciation than Antarctica. By questioning the sequential CO, threshold
model for bipolar glaciation based on their provenance study of detrital grains at Site 913 (NGS; Figure 1),
Tripati and Darby (2018) invoke extensive Paleogene bipolar glaciation. However, evidence for ice extent
more substantial than upland coastal outlet glaciers or a small ice cap on East Greenland is needed to sub-
stantiate this argument.

Deep-sea sediments from the northwestern Atlantic Ocean may hold further clues to the nature of Paleogene
glaciation in Greenland and northeastern Canada. Detrital sands and coarse silts and conspicuous 1- to 5-mm
grain aggregates were recently reported in sediments of EOT age from Integrated Ocean Drilling Program
(IODP) Expedition (Exp.) 342 Sites U1406 and U1411 (Figure 1) and were proposed to be of ice-rafted origin
(Norris et al., 2014). These sites lie within the North Atlantic Ocean's modern day “iceberg alley,” where ice-
bergs calved from northeastern Canada and the southern and western margins of the Greenland Ice Sheet
(Bigg et al., 2014), and not eastern Greenland, are concentrated by the Labrador Current and deposit IRD
(Bigg et al., 1996). An improved understanding of the origin of these detrital grains therefore offers a way
to shed new light on the plausibility of the suggestion that the Northern Hemisphere became extensively gla-
ciated at the EOT (Tripati et al., 2005; Tripati & Darby, 2018), as evidence for iceberg-rafting sources from
more locations than just eastern Greenland at this time is required to substantiate this claim.

Here we report the results of a sedimentary and geochemical study of detrital grains in sediments of EOT age
from IODP Sites U1406 andU1411. We compare these detrital grains to (i) the overlying Pleistocene
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sequence at Site U1411 and (ii) the EOT sequence from the NGS (Site 913; Figure 1). In doing so, we test the
hypothesis that the EOT-age detrital sands at Sites U1406 and U1411 are ice-rafted in origin and derived
from a large ice sheet on Greenland, with iceberg calving sources on its southern and western margins (as
today), and perhaps from elsewhere, especially in northeastern Canada. Our results directly address the con-
troversy over whether the Northern and Southern Hemispheres share one broadly similar CO,-temperature
threshold for glaciation (Tripati et al., 2005; Tripati & Darby, 2018) or whether two climate thresholds were
crossed during the Cenozoic to establish our modern bipolar icehouse state (DeConto et al., 2008).

2. Materials and Methods
2.1. Study Sites

Widespread evidence exists for extensive ice-rafting across the open North Atlantic Ocean during Plio-
Pleistocene glaciations (Bailey et al., 2013; Bolton et al., 2018; Raymo et al., 1989; Shackleton et al., 1984),
but our ability to test for ice-rafting during older intervals, such as the EOT, has been hampered by major
gaps in the deep-sea geological record because of hiatuses and condensed horizons attributed to deep-ocean
current activity (Miller & Tucholke, 1983). Recently, however, an expanded (sedimentation rates up to ~3
cm/kyr) and shallowly buried (125-195 m below seafloor) sequence of EOT sediments (~32.8-35.2 Ma)
was recovered (Norris et al., 2014) at IODP Site U1411, drilled into a perched contourite sediment drift
(Boyle et al., 2017) deposited in the Northwest Atlantic Ocean on the Southeast Newfoundland Ridge
(SENR; 41°37.1'N, 49°00'W; ~3,300-m water depth; Figure 1). A second, less expanded (sedimentation rates
up to ~1 cm/Kkyr), sequence of EOT-age sediments was also recovered at IODP Site U1406 (40°20.99'N,
51°38.99'W; ~3,800-m water depth; Figure 1) on the adjacent J-Anomaly Ridge (JAR; Norris et al., 2014),
positioned ~250 km to the southwest of Site U1411.

During shipboard analysis of the Site U1406 and U1411 sediments, fine detrital sands and coarse silts of
EOT-age were observed (Norris et al., 2014). In addition to being disseminated through the largely homoge-
nized nannofossil ooze (Site U1406) and silty clay (Site U1411) sediments that constitute the EOT intervals at
these sites, loosely aggregated 1- to 5-mm scale pockets of the same detrital sand and silt were also observed
on core surfaces. These clasts were tentatively determined during IODP Exp. 342 to be siltstone dropstones
(Norris et al., 2014) rafted by icebergs to the SENR and JAR. Both the SENR and JAR are bathymetric highs
isolated from the influence of downslope sedimentary processes originating from the Newfoundland conti-
nental margin (Boyle et al., 2017).

2.2. Detrital Grain Concentration

To determine temporal changes in the concentration of the detrital sand grains across the EOT at our two
study sites, we calculated the abundance of detrital sand grains in the Site U1411 and Site U1406 late
Eocene-Oligocene intervals by counting the number of sand grains in each sample and dividing by the
dry bulk weight. Laser grain size analysis of several samples from the Site U1411 Paleogene interval
(Figure S1 in the supporting information) revealed that the vast majority of the sand was fine- to
medium-grained, and so focused the grain counts on the 63- to 500-um fraction. The >500-um fraction for
each sample was also examined for any coarse-grained sand. Counts were also performed in the same way
on samples from the Site U1411 Pleistocene interval for comparison. Mica, which was present in the sam-
ples, was not counted because sieving does not provide an accurate reflection of its grain size due to its platey
nature. Mica also has a relatively low settling velocity and can therefore be carried significant distances by
ocean currents (Garzanti et al., 2008).

2.3. Grain Surface Textural Analysis

To test for ice rafting activity during the EOT, we examined the texture of the detrital quartz sands at Sites
U1406 and U1411, and also at Site 913 for comparison (Figure 1), to explore the transport history of these
grains. We analyzed only quartz grains >200 pm, because there are differences in the expression of surface
textures below this threshold (Krinsley & Doornkamp, 2011). Over 600 samples from the EOT sequence at
U1411 were sieved at >200 um and examined for quartz grains using a binocular microscope. The majority
of the samples examined did not contain quartz grains in the >200-pm size fraction, but 48 samples con-
tained 1-5 grains. From these 48 samples, a total of 111 suitable quartz grains were picked for analysis
(Data Set S1 in the supporting information). These samples were compared to representative samples
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from the sand- and dropstone-rich overlying Pleistocene sequence at Site Ul411 and the Eocene-to-
Oligocene sequence from Site 913. Five samples were analyzed from the Site U1411 Pleistocene sequence,
and six samples were analyzed from the Site 913 EOT interval; quartz grains >200 um in these samples were
abundant, allowing ~20-30 grains to be easily picked from each sample. In total, 101 grains were analyzed
from the Site U1411 Pleistocene interval, and 185 grains were analyzed from the Site 913 EOT interval
(Data Set S1).

For textural analysis, the grains from each interval were mounted onto aluminum stubs and sputter coated
in gold film in preparation for scanning electron microscopy (SEM) analysis using a Leo 1450VP SEM with
an attached light element PGT energy-dispersive spectrometer at the University of Southampton- National
Oceanography Centre, Southampton (NOCS). The surface textures, roundness, and relief were assessed for
each grain analyzed (Table S1 in the supporting information). A suite of surface textures were analyzed for
each grain, based on a compilation of several studies (Dunhill, 1998; Helland & Holmes, 1997; Mahaney
etal., 2001; St. John et al., 2015; Williams & Morgan, 1993). Each texture was classed as being either mechan-
ical or chemical in its weathering origin in these studies; mechanical textures relate to physical damage
caused by grains being ground/smashed/split, whereas chemical textures result from dissolution and repre-
cipitation of silica immersed in water (Krinsley & Doornkamp, 2011). The relative abundance of each texture
was calculated on the grains from within each interval. Silica dissolution was graded using the scheme of St.
John et al. (2015). Roundness was graded using Power's scale (Powers, 1953), and the relief of each grain was
classified as being low, medium, or high. We used Euclidean distances to further explore the differences in
the surface textures between each interval (Text S1 in the supporting information).

2.4. Sedimentology

To determine whether the aggregate clasts at Site U1411 represent ice-rafted dropstones, we studied their
distribution, morphology, and composition. We compared these clasts to sand-sized detrital material and
grain aggregates from the EOT interval at Site 913 that were previously interpreted as dropstones (Eldrett
etal., 2007; Tripati et al., 2008). The grain aggregates described during IODP Exp. 342 were examined in core
sections from the EOT composite interval at Site U1411 (Sections U1411 B-15H-1 to U1411 B-20H-4 and
U1411C-6H-3 to U1411C-12H-6). The size and mineralogy of the component grains of the aggregates were
investigated via SEM and energy-dispersive spectrometer to confirm that they resembled the grains dissemi-
nated throughout the sediment (Text S1). The three-dimensional structure of the aggregates within the back-
ground sediment of the cores was explored using X-ray microcomputed tomography at the uVIS X-Ray
Imaging Centre, University of Southampton. These analyses were conducted on a half-core round (~2 cm
in thickness) from the aggregate-rich Oligocene-aged interval of Site U1411 (Sample U1411B-7H-6W, 58-
60 cm), showing several grain aggregates on its surface. We also inspected the Eocene-Oligocene interval
at Site 913 for features similar to the Site U1411 grain aggregates (Sections 913B-23R-1 to 913B-27R-5).

2.5. Geochemical Provenance

We explored the geochemical provenance of the EOT-age detrital grains from Site U1411 to determine
whether sand grains in the EOT interval at this site were sourced from possible glacier calving sites (i.e.,
south and west Greenland, east Greenland, or northeastern Canada). We analyzed the lead (Pb) isotope
composition of feldspars and the strontium-neodymium (Sr-Nd) isotope compositions of the sand-sized det-
rital fraction of grains extracted from samples from the Site U1411 EOT interval. These results were com-
pared to the published isotopic signatures of circum-North Atlantic continental terranes. For Pb, we
hand-picked 350-500 sand-sized (>63 um) feldspar grains from 24 samples from the U1411 EOT interval.
Each sample was digested en masse, because none of the feldspars found were large enough to be analyzed
individually. Pb was separated via column chemistry using AG1x8 anion exchange resin following the meth-
ods of Baker et al. (2004). Pb isotopes were analyzed using a multicollector inductively coupled plasma mass
spectrometer (Thermo Scientific Neptune) at the University of Southampton, NOCS. For Sr and Nd, we lea-
ched and digested the coarse (>63 um) detrital fractions of eight samples from the U1411 EOT interval, fol-
lowing the methods of Lang et al. (2014). Nd was isolated from each sample using two column passes: first
AG50-X8 200-400 mesh cation columns and second LN Spec columns. Nd isotopes were analyzed at NOCS
via multicollector inductively coupled plasma mass spectrometer. We isolated Sr for isotopic analysis using
columns containing Sr-Spec resin; samples were then loaded onto stubs with a Ta filament, following which
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we analyzed Sr isotopes using a Thermofisher Triton multicollector thermal isolation mass spectrometer at
the University of Southampton- NOCS (full details of the analytical methods are provided in Text S1).

3. Results
3.1. Detrital Sand Grains Found in Newfoundland Sediments of EOT Age

A long-term increase is observed in the concentrations of detrital sand grains deposited at Sites U1406 and
U1411 from the late Eocene through to the Oligocene and in the Pleistocene (Figure 2). Sand grains in the
>500-um-size fraction, which are typically present in IRD, are abundant in sediments of Pleistocene age
from Site Ul411. In contrast, sand grains >500 um are absent from the underlying sediments of
Paleogene age at the same site (Figure 2). In these older sediments of Site U1411, the detrital sand grains
are predominantly very fine (63-125 um) and well sorted (Figure S1), unlike IRD. The stratigraphic distribu-
tion of these finer-grained sands reveals an increase in concentration from <100 grains/g prior to ~35 Ma to
~10,000 grains/g by the Mid-Oligocene Glacial Interval (~28-26 Ma; Liebrand et al., 2017; Figure 2). Grain
abundance distribution at Site U1406 shows a similar trend, albeit at lower concentrations (Figure 2).

The surface textures observed on quartz grains from the Site U1411 EOT interval are less angular (Figure 3a)
than those from both the Pleistocene sequence at the same site (Figure 3b) and EOT-aged sands from Site
913 (Figure 3c). About 55% of the grains from the Site U1411 EOT interval are subrounded to well rounded,
compared to only 25% and 21% for the Site 913 EOT and Site U1411 Pleistocene grains, respectively (Table 1).
All chemical surface textures are 15-25% more common on Site U1411 EOT grains than on their Pleistocene
counterparts, and ~7-25% more common than on Site 913 grains. Low relief and common-to-pervasive silica
dissolution features are far more common in the EOT-aged grains from Site U1411 (42% and 68%, respec-
tively) than either the Site U1411 Pleistocene (14% and 49%) or Site 913 EOT (11% and 54%) grains.
Mechanical textures such as impact pits, conchoidal fractures, arc and straight step-like fractures, and
gouges/striations are all more common in the Pleistocene-aged grains at Site U1411 and the EOT grains from
Site 913 than in the EOT Site U1411 grains (Tab. 1). The Site 913 EOT and Site U1411 Pleistocene intervals
are also closer in Euclidean Space (50) than either the EOT pairing from both sites (69) or the EOT and
Pleistocene pairing at Site U1411 (85).

At open-ocean subpolar North Atlanticsites, IRD of Plio-Pleistocene age is found in high concentrations in sedi-
ments deposited during major Northern Hemisphere glacials (Bailey et al., 2012; Raymo et al., 1989; Shackleton
etal., 1984). This IRD is distinguished by poorly sorted detrital grains exhibiting a high degree of angularity and
abundant mechanically induced surface textures, when compared to grains transported by fluvio-marine pro-
cesses (Bailey et al., 2012; Krinsley & Doornkamp, 2011; Mahaney et al., 2001). The sedimentary properties of
sand grains in the EOT sequence at Site 913 and the Pleistocene interval at Site U1411 are consistent with this
description, indicating an ice-rafted origin. High angularity and high frequencies of mechanical surface textures
indicate that these are relatively fresh grains sculpted mechanically (e.g., through glacial crushing) and were
transported by icebergs without significant saltation (Mahaney et al., 2001). In contrast, the EOT grains from
Site U1411 are more rounded and show low-medium relief and high frequencies of chemical surface textures,
implying transport by fluvio-marine processes with extensive saltation and submersion (Krinsley &
Doornkamp, 2011; Mahaney et al., 2001), rather than by iceberg rafting. It is also worth noting that dolomitic
detrital clasts, which are common in Pleistocene-aged IRD (during ambient ice-rafting episodes) from Hudson
Bay sources, are absent in the Site U1411 EOT interval (Andrews & Tedesco, 1992), further contradicting an ice-
rafted origin for the EOT-aged sands and silts in favor of fluvio-marine processes. However, this interpretation
does not explain the conspicuous grain aggregates (Figure 4a) identified at the Newfoundland margin sites that
have been attributed (Norris et al., 2014) to ice rafting.

3.2. Grain Aggregates and Ice Rafting

The grain aggregates are conspicuous on the surfaces of Site U1411 split core because of their lightness in color,
which contrasts with their host lithology, a dark green homogenous thoroughly bioturbated silty clay. The
aggregates are elliptical to irregular in shape and ~1-10 mm in diameter (Figures 4a and 4c). SEM and elemen-
tal analysis reveal that the aggregates are composed predominantly of quartz grains with a minor contribution
of feldspars and accessory minerals. These grains predominantly fall within the coarse silt-to-very fine sand
size fraction (~31 to 125 um). In contrast, the EOT interval at Site 913 contains coarser detrital material than
Site U1411, with coarse sand and occasional pebbles. Some of these clasts are sedimentary lithic fragments,
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Figure 2. Temporal evolution of detrital sand grain deposition at sites U1411 and U1406 (note differing x axis scales). The
small circles along the central y axis denote where samples were examined for grains >500 um, but none were found;
grains were found in the 63- to 500-pum fraction in all samples. A composite deep-water benthic foraminiferal oxygen
isotope record (Liebrand et al., 2017; Zachos et al., 2001) is shown for reference. MOGI= Mid-Oligocene Glacial Interval,
NCW= Northern Component Water. The red star indicates when ice-rafted debris was deposited in marginal marine
Antarctic sediments (Scher et al., 2011).

superficially similar to the aggregates that we document at Site U1411. At Site 913, however, their constituent
grains are coarser and more heterogeneous in composition (Figure 4¢). Some of the sedimentary lithic clasts
from Site 913 are underlain by deformed lamina, indicative of dropstone emplacement (Eldrett et al., 2007;
Figures 4e and 4f). No equivalent structures are seen in the EOT sequence at Site U1411.

In a few cases, the grain aggregates at Site U1411 show a distinctly burrow-like morphology in cross section
on the split-core surface (Figure 4d). Microcomputed tomography analysis of a core sample containing
elliptical- to irregular-shaped grain aggregates further reveals a spectacular three-dimensional structure of
an extensive network of millimeter-scale in diameter filaments of coarse silt and fine sands (Figures 4g and
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7 a)U1411 EOTintervI

Figure 3. Scanning Electron Microscope images of quartz grains from the (a) Site U1411 EOT interval, (b) Site U1411
Pleistocene interval, and (c) Site 913 EOT interval. Scale bar = 200 um.

4h). Most of these filaments are oriented vertically to subvertically, and some can be traced to aggregates on
the split-core surface. We therefore interpret the Site U1411 aggregates as cross sections of burrow fills.

Taken together, our analysis of both grain textures and the nature of the grain aggregates provides no evi-
dence in favor of the presence of IRD within the EOT interval of Site U1411. It remains possible, however,
that the sand-sized material may have been eroded by small continental ice sheets at higher latitudes and
then extensively reworked, first by meltwater and then submarine currents to the Newfoundland margin,
thereby overprinting evidence of ice sheet activity in the high northern latitudes. To evaluate this possibility,
next we determined the provenance of the fine sands deposited at Site U1411.

3.3. Grain Provenance and Ice Rafting

The results of Pb and Nd-Sr isotopic analysis of detrital sand from the Site U1411 EOT interval were consid-
ered alongside terrane data from the major circum-North Atlantic provinces (Figure 5). The EOT feldspars
analyzed from Site U1411 have Pb isotope ratio ranges of ~17.2-18.9 (***Pb/***Pb) and ~15.3-15.6 (**’Pb/
204py, Figure 5a). eNd(0) values of the coarse detrital fraction range from ~-18.7 to -10.2, and 87Sr/®6Sr ratios
range from ~0.712 to 0.720 (Figure 5b). When compared to published data from circum-North Atlantic
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Table 1
Abundance of Surface Textures on Quartz Grains From the Site Ul411 and 913 EOT Intervals, and the Site Ul411
Pleistocene Interval

Abundance (%)
Surface texture Site U1411 EOT Site 913 EOT Site U1411 Pleistocene
Mechanical
-Breakage blocks 38 35 23
-Conchoidal fractures 59 83 77
-Arc step-like fractures 30 37 37
-Straight step-like fractures 16 20 17
-Isolated fractures 18 36 12
-Mechanical impact pits 37 72 63
-Gouges/striations 41 59 64
-Edge abrasion 55 46 71
-Upturned plates 34 28 40
Chemical
-Microlayering 26 3 2
-Chemical v-pits 43 32 19
-Adhering particles 38 17 12
-Silica precipitation 84 70 65
Silica Dissolution
-Rare-Absent 7 11 13
-Present 25 34 37
-Common 45 41 38
-Pervasive 23 14 11
Relief
-Low 42 11 14
-Medium 43 50 52
-High 15 39 34
Roundness
-Very angular 5 6 16
-Angular 17 24 40
-Subangular 23 45 23
-Subrounded 29 17 12
-Rounded 20
-Well rounded 6 1 1

terranes, the Pb isotope ratios of Site U1411 feldspars do not overlap with Greenland provinces of Archean or
Proterozoic age of southern and western Greenland (Bailey et al., 2012; White et al., 2016). Instead, they
overlap in Pb-Pb space with the local North American (Appalachian and Grenville), Scandinavian, and
British/Irish provinces (Figure 5a). The Site U1411 Pb isotope data for the EOT also overlap with the
Greenland Caledonides (Figures 5a and S2), but a Greenland source is ruled out by the Nd-Sr data, which
show that the sands from Site Ul411 are sourced from North America and/or Scandinavia from
Proterozoic-age Grenville and/or Sveconorwegian provinces (Figure 5b). The Site U1411 Nd-Sr data are off-
set from all Greenland terranes, indicating that the Newfoundland grains were not derived from the two
interpreted source areas for the IRD of EOT age at Site 913: the Greenland Caledonides and East
Greenland Paleogene Volcanics (Bernard et al., 2016; Eldrett et al., 2007; Tripati et al., 2008; Tripati &
Darby, 2018). The Site U1411 data are, however, comparable in Nd-Sr space to late Pleistocene glaciomarine
sediments from two sites (HU90-028-20 and HU90-028-10; Figure 1) in the Gulf of St. Lawrence (Farmer
et al., 2003) and to non-Heinrich event glaciomarine sediments deposited on Orphan Knoll in the
Northwest Atlantic at Site EW903-GGC31 from 15 to 20 ka (Downing & Hemming, 2012). Pleistocene det-
rital sediments at these locations originate from the Gulf of St. Lawrence (Figure 5b), further reinforcing
the idea of a local Grenville source for the EOT grains from Site U1411.

The small size of the sand-sized feldspars (~63-125 um) from the EOT interval of Site U1411 prevents Pb iso-
tope analysis of individual grains. Yet comparison of our Site U1411 data to the Pb isotope composition of
individual and composite ice-rafted feldspars deposited in the subpolar North Atlantic at Sites V28-82 and
V32-14 during ice-rafting events of the Last Glacial (Gwiazda et al., 1996; ~19-26 ka, i.e., outside of
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Figure 4. Grain aggregates from the Site U1411 EOT interval, (a-c) typical elliptical to irregular morphology, (d) rare elongate
morphology, (e and f) Site 913 EOT interval. Scale bar = 1 mm. Computed tomography scan of Site U1411 core sample reveals
that the aggregates seen at this site are cross sections of burrow-fills (g and h) Sample diameter = 10 cm; the arrow denotes
stratigraphic orientation. A video file, from which (g) and (h) are captured, is available in the supporting information.

Heinrich events) illustrates that a Precambrian Greenland and/or Precambrian North American source for
these grains is untenable (Figure 5a). Thus, our findings indicate that the detrital sands and silts deposited on
the SENR during the EOT do not originate from Greenland or northeastern Canada. In principle, the prove-
nance data allow for a Sveconorwegian contribution to Site U1411 sediments. Iceberg trajectory models,
however, suggest that if IRD from Scandinavia were to reach the SENR, Greenland IRD would also likely
reach the site, and the geochemical data presented here do not support Greenland as a source (Bigg et al.,
1996, 1998, 2014). Furthermore, the grain textural analysis does not support IRD from any source. Taken
together, therefore, our analyses strongly point to a local midlatitude North American-only provenance
and transport by rivers and ocean currents, rather than ice rafting

4. Discussion

Our combined grain size, textural, and provenance analyses of the detrital grains deposited on the
Newfoundland margin during the EOT conclusively demonstrates transport of local sediments by fluvial
processes and subsequent reworking by ocean currents, rather than ice rafting. The fact that the EOT
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Figure 5. Radiogenic isotope provenance analysis of Eocene-Oligocene Transition-age grains from Site Ul411. See
Figure 1 for locations of terranes and relevant sites. (a) Pb isotopic composition of coarse feldspar composites from Site
U1411, alongside data from feldspars analyzed from North Atlantic terranes and Pleistocene-age glaciomarine feldspars
from Sites V23-14 and V28-8237. (b) Nd-Sr isotopic analysis of the coarse detrital fraction from Site U1411, alongside
published Pb values of North Atlantic terranes and Pleistocene-age glaciomarine sediments from Sites EW903-GGC31,
HU90-028-10, and HU90-028-20 (Downing & Hemming, 2012; Farmer et al., 2003). References for North Atlantic terrane
data are given in Tables S2 and S3. The error is shown to two standard deviations where larger than symbol size.

intervals of the SENR have been shown not to contain IRD, contrary to the initial interpretations during
shipboard work on IODP Exp. 342, argues strongly against extensive glaciation of southern and western
Greenland and northeastern Canada at this time. Modeling of the formation of the Greenland Ice Sheet sug-
gests that western Greenland only becomes glaciated once proto-ice caps that emerge in elevated regions of
eastern and southern Greenland merge and spread toward Baffin Bay (Schaefer et al., 2016; Solgaard et al.,
2013). The absence of any icebergs rafting from southern or western Greenland across the EOT, as shown by
our findings, therefore implies that any ice cap in eastern Greenland had not expanded across the continent
to the southern or western coastlines at this time.
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A link to deep-water activity is further supported by the gradual increase in abundance of disseminated sand
at both Sites U1406 and U1411 from the late Eocene (~35 Ma; Figure 3), at a time when the Labrador Sea is
suggested (Coxall et al., 2018) to have first become a major conduit for the southward export of Northern
Component Water (Figure 2). Our findings are also consistent with the suggestion that heat piracy asso-
ciated with strengthened meridional overturning circulation may have helped to promote austral cooling
prior to Antarctic glaciation (Coxall et al., 2018). The local provenance signal of the detrital sand on the
SENR suggests that these grains were likely entrained into ocean currents locally, potentially through down-
slope transport from the shelf-break of the Grand Banks during the lower sea levels of the early Oligocene.
The development of a higher-resolution record of grain flux at Site U1411 (and Site U1406), in combination
with high-resolution benthic foraminiferal stable isotope records and a more accurate age model, will allow
for further interrogation of the combination of driving forces behind the detrital sand grains.

The lack of evidence from the Newfoundland margin sites for extensive EOT glaciation in southern and wes-
tern Greenland and/or northeastern Canada lends strong support to the hypothesis (DeConto et al., 2008),
based on coupled climate-ice sheet model simulations, that the Cenozoic transition to a glaciated state
occurred first in the Southern Hemisphere and later in the Northern Hemisphere as two different climate
thresholds were crossed. This finding is consistent with the suggestion that the differing arrangement of con-
tinents at the two poles causes distinct CO, temperature thresholds for the establishment of major ice sheets
in the two hemispheres (DeConto et al., 2008). In this interpretation, Antarctica is cold relative to the con-
tinental land masses of the Arctic because of its higher latitudinal setting, triggering extensive glaciation of
Antarctica earlier than of the Arctic land masses as climate slowly deteriorated through the Cenozoic.

The lack of evidence for extensive Northern Hemisphere glaciation at the EOT is also consistent with the
observed warmth of the EOT Northwest Atlantic Ocean (Liu et al., 2018), North Sea (Sliwiriska et al., 2019),
and on Greenland (Eldrett et al., 2009), especially in summer. Climate-forced ice sheet simulations show that
the Greenland Ice Sheet of today is a relict formed under conditions colder than present (Solgaard et al., 2013).
Thus, while a warm Northwest Atlantic could, in principle, prevent icebergs calved from southern and western
Greenland and northeastern Canada from reaching the SENR, the warmth observed for the Northwest
Atlantic Ocean would have prevented the glaciation of those areas in the first place.

The limitation of Cenozoic glaciation in the Northern Hemisphere to either an eastern Greenland ice cap, or
upland outlet glaciers, also implies that there were no significant contributions to oxygen isotope-derived ice
budgets from the Northern Hemisphere, with observed oxygen isotope shifts attributable to Antarctic ice
volume and cooling alone (Coxall et al., 2005; Edgar et al., 2007; Lear et al., 2008).

5. Conclusions

Sediments of Eocene-to-Oligocene age from the NGS host IRD sourced from the east coast of Greenland
(Eldrett et al., 2007), but we find no evidence for contemporaneous ice rafting within the North Atlantic's
iceberg alley on the Newfoundland margin. This result strongly suggests that active ice calving from eastern
Greenland during the EOT does not signify existence of an ice sheet large enough to extend to southern and
western Greenland and that the eastern ice cap (Tripati & Darby, 2018) or outlet glaciers (Eldrett et al., 2007)
that existed there at this time were not also accompanied by similar ice masses in northeastern Canada. The
conspicuous detrital sands in sediments of EOT age at IODP Site U1411 were sourced locally from midlati-
tude terranes of North America and delivered to the Newfoundland margin by a combination of fluvial and
marine processes. These findings rule out the development of large ice sheets on Greenland and in the north-
eastern Canadian Arctic and are consistent with EOT warmth in the Northwest Atlantic Ocean (Liu et al.,
2018) and on Greenland (Eldrett et al., 2009). These results are also consistent with numerical climate-forced
ice sheet simulations (Solgaard et al., 2013) that indicate that the Greenland Ice Sheet of today is a relict
formed under colder conditions than present.

There is robust evidence for development of an extensive Antarctic ice sheet at the EOT (Coxall et al., 2005;
Kennett, 1977; Scher et al., 2011), but our data show that large ice sheets in the Northern Hemisphere were
not established at the same time. Accordingly, our data indicate the sequential rather than simultaneous
development of Cenozoic ice sheets in the two hemispheres. The precise timing of the inception of major
Northern Hemisphere glaciation can be tested by scientific drilling on the Newfoundland margin into sedi-
ments of Mio-Pliocene age, but our records show that the unipolar (Antarctic) icehouse state existed millions
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of years before a bipolar one. The establishment of the Cenozoic unipolar (Antarctic) icehouse climate state
before a bipolar one is likely attributable to the fundamental control exerted on the cryosphere by the con-
trasting arrangement of the polar continents, which lie at lower latitudes in the Northern Hemisphere (even
more so during the EOT than today; Steinberger et al., 2015) resulting in warmer summers there than on
Antarctica for a given global radiative forcing (DeConto et al., 2008).
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