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Abstract 

 

Lactic acid is an economically important organic acid that has a wide range of applications in 

industry, including in the manufacture of sustainable and biodegradable plastic alternative 

poly-lactic acid (PLA). Transition towards a bio-based economy requires increased 

production of lactic acid and other industrially important chemicals from biomass. 

Lignocellulosic biomass is a preferred feedstock for production, as it is inexpensive and 

abundant, however the recalcitrant nature of lignocellulose makes its utilisation challenging. 

Therefore, development of a consolidated bioprocessing (CBP) system for efficient 

conversion of lignocellulosic biomass to value-added products is required. 

 

Lactic acid is currently produced via fermentation of expensive carbohydrate-based 

feedstocks by lactic acid bacteria (LAB). Application of an ensiling system may overcome 

problems associated with current fermentation methods and enable conversion of 

lignocellulosic biomass to lactic acid via CBP. Ensiling is commonly used for the preservation 

of freshly harvested crops for animal feed, including sweet sorghum, which contains a high 

concentration of soluble sugar and lignocellulose. In this study, a series of lab-scale ensiling 

experiments were performed, in which the effects of various conditions and additives on 

ensiling product yields from sweet sorghum were evaluated. Addition of CaCO3 was 

identified as an effective method of pH control, resulting in a 2.8 x increase in lactic acid 

production by endogenous LAB. Inoculation with two different species of LAB (Lactobacillus 

plantarum and Pediococcus acidilactici) and addition of a commercial cellulose enzyme 

package were demonstrated to have minimal influence on lactic acid yield compared to 

ensiling temperature and time. An ensiling temperature of 45 °C resulted in high lactic acid 

selectivity and potential degradation of some lignocellulose. However, due to variability 

between ensiling experiments, further investigation is required before optimal ensiling 

temperature and time can be confirmed for maximum production of lactic acid from sweet 

sorghum.  
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1. Introduction 

1.1. Bio-based chemical production 

 
The gradual transition towards a bio-based economy is key in reducing environmental 

pollution and lessening dependence on declining petroleum and coal based feedstocks 

(Jönsson and Martin, 2016). A variety of fuels and chemicals are currently produced from 

sugar or starch rich crops, which are a renewable and sustainable source of carbon. 

However, many of these crops are primarily food resources and so competition exists 

regarding land and energy use between food crops and those grown for alternative 

industries. This competition can result in food scarcity and price increases (Haq et al., 2016). 

Hence, there has been increased interest in the development of second-generation bio-

products, in which non-food biomass is the basis for production. Potential feedstocks include 

lignocellulosic biomass, food waste, agricultural waste, and algal biomass (Abdel-Rahman 

and Sonomoto, 2016). Among these, lignocellulose is considered advantageous as it is the 

most abundant raw material on the planet (Wyman and Yang, 2008), and therefore offers a 

large scale and continuous supply for long-term bio-production. Furthermore, since most 

lignocellulosic biomass is considered as waste or byproduct it is inexpensive compared to 

other biomass (Perlack et al., 2005). Development of an efficient system for the conversion 

of lignocellulosic carbon to value added products, could transform the basis of fuel and 

chemical industries and improve efforts towards environmental sustainability. 

1.2. Lactic acid demand and application 

Lactic acid is one of the most economically important organic acids, with extensive industrial 

and biotechnological applications (Ghaffar et al., 2014). In 2013, global lactic acid demand 

was estimated to be 714.2 kilo tons and expected to grow annually by 15.5% to reach 

1,960.1 kilo tons in 2020 (Abdel-Rahman and Sonomoto, 2016). The food industry accounts 

for 35% of demand, as lactic acid is essential in the production of fermented foods and is a 

commonly used acidulant and preservative, flavouring agent, pH regulator and bacterial 

inhibitor (Komesu et al., 2017). Lactic acid also plays a number of roles within the 

pharmaceutical and cosmetic industries, as well as in the chemical industry, in which lactic 

acid is converted to ethanol, propylene glycol and acrylic polymers. Polymer production 

accounts for the greatest proportion of demand. Thirty nine percent of lactic acid is used in 

the manufacture of poly lactic acid (PLA) (Komesu et al., 2017). PLA is a biodegradable 

alternative to petroleum-based plastics, with applications that include packaging and fibres, 

foams (Abdel-Rahman, Tashiro and Sonomoto, 2013) and roles in biomedical devices 

(Lasprilla et al., 2012). In 2013 PLA demand was estimated to be 360.8 kilo tons and 
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expected to grow annually by 18.8% to reach 1,205.3 kilo tons in 2020 (Abdel-Rahman and 

Sonomoto, 2016). Manufacture of lactic acid-based environmentally friendly solvents is 

another area for predicted growth as there is the potential to use lactate esters from alcohols 

with low molecular weights in formulation of pesticides (Sasson et al., 2005; Baur et al., 

2008) and other bioactive components, due to its low toxicity. However, high costs 

associated with lactic acid production are limiting further solvent development as well as the 

manufacture of PLA (Wee et al., 2006). Despite increased PLA demand, it was estimated 

that only 450 million kg of PLA is produced annually compared to 200 billion kg of total 

plastics (Okano et al., 2010). If PLA is to compete with petroleum based plastics then the 

price must decrease by approximately half, which makes the targeted manufacture cost of 

lactic acid less than 0.8 US $/kg (Okano et al., 2010). 

1.3. Lactic acid production 

Lactic acid can be produced via petroleum based chemical synthesis or microbial 

fermentation. The preferred method is microbial fermentation due to use of renewable and 

sustainable feedstock, mild production conditions and low energy consumption (Reddy et al., 

2015). Selection of an appropriate lactic acid producer for microbial fermentation can also 

result in the production of optically pure D- or L- isomers, which are required for specific 

applications (Grabar et al., 2006). Currently lactic acid production depends on expensive 

carbohydrates that compete with food resources (Abdel-Rahman, Tashiro and Sonomoto, 

2013). Approximately 90% of commercially available lactic acid is produced by submerged 

fermentation of corn, with 70% of production cost due to corn feedstock prices (Abdel-

Rahman, Tashiro and Sonomoto, 2013). Recently however, there has been investigation into 

production from inexpensive lignocellulosic waste, including corn stover (Hu et al., 2016; 

Jiang et al., 2016; Yi et al., 2016), oil palm empty fruit bunch, (Ye et al., 2014), rice straw 

(Kuo et al., 2015), hardwood (Hama et al., 2015), corncob residue (Bai et al., 2016), and 

sweet sorghum (Wang et al., 2016). Production from these types of feedstocks involves 

overcoming current challenges associated with optimising fermentation conditions, in 

addition to those related to accessing carbon available within lignocellulose. 

1.3.1. Fermentation mode 

Key factors affecting lactic acid yields during fermentation include selection of the biocatalyst, 

fermentation temperature, pH and period, nutrient availability and substrate and product 

concentration (Ding and Tan, 2006; Hofvendahl and Hahn–Hägerdal, 2000; Ge et al., 2010; 

Upadhyaya, DeVeaux and Christopher, 2014; Abdel-Rahman and Sonomoto, 2016). Batch 

fermentation is the most widely used method for production, as highest conversion 

efficiencies and yields are achieved in comparison to continuous or fed-batch fermentation 
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(Abdel-Rahman, Tashiro and Sonomoto, 2013). Following batch fermentation all usable 

carbon is depleted, whereas in a continuous fermentation system residual carbon is always 

present. Continuous fermentation enables high dilution ratio and allows fermentation to be 

maintained for a long period of time (Komesu et al., 2017). However, when expensive 

feedstocks are involved, batch fermentation is preferred due to maximised lactic acid yield 

over greater volumetric production (John et al., 2007). As with all fermentation methods, 

there are limitations to batch fermentation, such as long fermentation periods and low cell 

densities (Abdel-Rahman, Tashiro and Sonomoto, 2013), and so investigation into optimum 

fermentation modes for specific feedstocks continues.  

 

Currently, solid-state fermentation (SSF) is not performed industrially for lactic acid 

production, however there are a number of advantages associated with SSF, which could 

result in more efficient lactic acid production than submerged fermentation. SSF allows for 

higher final lactic acid concentrations, as lactic acid producers are less prone to inhibition as 

a result of high substrate concentrations at the start of fermentation (Singhania et al., 2009). 

Reduced requirement for instrumentation and equipment during SSF, also results in lower 

associated capital and operating costs (Martins et al., 2011), although ability to alter 

fermentation conditions is also reduced. Environmental benefits include less energy required 

for sterilisation and reduced susceptibility to bacterial contamination. Furthermore, SSF 

allows use of solid agro-industrial wastes as substrates in their natural form, and facilitates 

solid waste management, unlike submerged fermentation (Singhania et al., 2009). 

1.3.2. Lactic acid bacteria 

Selection of a suitable biocatalyst for the production of lactic acid depends primarily on the 

carbohydrate that is to be fermented, as a microorganisms metabolism differs depending on 

carbon source (Lunelli et al., 2010). Further desirable characteristics for industrial application 

include the requirement of minimal nitrogenous nutrients, production of high yields of stereo 

specific lactic acid at low pH and high temperature, and formation of minimal by-products 

(Srivastava, Narayanan and Roychoudhury, 2004).  

 

Fermentative lactic acid production is currently driven by lactic acid bacteria (LAB), Bacillus 

strains, and some genetically modified bacteria, including Escherichia coli and 

Corynebacterium (Abdel-Rahman et al., 2013). LAB have a long history of industrial use. 

LAB are gram-positive bacteria that are facultatively anaerobic, non-motile and non-spore 

forming. Most LAB perform homofermentative fermentation of hexose sugars via the pentose 

phosphate pathway to produce lactic acid only. The alternative pathway, the 

phosphoketolase pathway is performed by heterofermentative LAB, and yields acetic acid, 
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ethanol and carbon dioxide as by-products (Abdel-Rahman, Tashiro and Sonomoto, 2013) 

(Fig. 1). Some LAB are facultatively heterofermentative, including Lactobacillus planatarum, 

which performs heterofermentation of hexose sugars under aerobic conditions (Castillo 

Martinez et al., 2013).  By-product formation by heterofermentative bacteria reduces lactic 

acid yields and increases the costs of separation and purification (Guo et al., 2014). As LAB 

have limited ability to synthesise B vitamins and amino acids, nutritionally rich media is 

required for growth, which results in further increases in production costs and hampers lactic 

acid recovery (Hofvendahl and Hahn–Hägerdal, 2000). 
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Figure 1. A schematic representation of (A.) homofermentation (pentose phosphate pathway) 

and (B.) heterofermentation (phosphoketolase pathway) of glucose to lactic acid with 

structural formulas shown (Adapted from Komesu et al., 2017). 

P = phosphate, BP = biphosphate, and LDH = lactate dehydrogenase. 

A. B. 
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1.3.3. Separation and purification 

Optically pure lactic acid isomers have greater value than a racemic mixture, as single 

isomers are required for specific applications (Komesu et al., 2017). L-lactic acid is preferred 

for applications in food and medicine, due to metabolic conversion of L-lactic acid in the body 

being faster than D-lactic acid (Komesu et al., 2017). It is also L-lactic acid that forms highly 

polymerised PLA, suitable for commercial use (Södergård and Stolt, 2002). Although many 

LAB naturally produce a single isomer, LAB that express two lactate dehydrogenase 

enzymes produce both L- and D- lactic acid isomers (Fig 2.). Some Lactobacillus species, 

produce the L-isomer, and following accumulation convert L-isomers into D-isomers, using 

lactate racemase, until equilibrium is reached and a racemic mixture is formed (Srivastava, 

Narayanan and Roychoudhury, 2004). Separation of racemic mixtures involves expensive 

high performance liquid chromatography techniques (Srivastava, Narayanan and 

Roychoudhury, 2004) and therefore LAB that produce single optical isomers are preferred for 

fermentation. Lactobacillus strains have the potential to be engineered for the selective 

production of a particular isomer (Benthin and Villadsen, 1995, Kyla-Nikkila et al., 2000). L. 

plantarum expresses both lactate dehydrogenase enzymes and lactate racemase, which is 

used as a rescue pathway for the production of D-lactic acid from L-lactic acid (Goffin et al., 

2005). When both the gene encoding D-LDH and the operon encoding lactate racemase 

were knocked out, production of D-lactic acid was completely inhibited, with the mutant 

exclusively producing L-lactic acid (Okano et al., 2018). However, growth rate of the double 

knockout mutant in D-lactic acid deficient media was reduced, as D-lactic acid is essential in 

the biosynthesis of peptidoglycan. 

 

Between forty and seventy percent of operating and capital costs of lactic acid production are 

associated with the separation steps following fermentation (Wankat 2007). Common 

methods of separation include precipitation (Min et al., 2011, Kwak et al., 2012, Nokano et 

al., 2012), solvent extraction (Yankov et al., 2014; Alkaya et al 2009; Krzyzaniak et al., 2013), 

and membrane separation processes (Sikder et al., 2012; Pal and Day, 2013; Wang et al., 

2014a). The number of downstream processing steps involved in separation and purification 

influences the price and quality of lactic acid (Idler et al. 2015). Lactic acid purity can be 

affected by several factors during fermentation, including temperature, pH, aeration, 

fermentation process and substrate (Ennahar et al., 2003; Tanaka et al., 2006; Tashiro et al., 

2013). The cost of purification can be reduced when a pure substrate is used such as 

sucrose from sugarcane and sugar beet, however the high cost of such feedstocks make 

these unfeasible for use (Komesu et al., 2017). Starchy materials like wheat and maize are 

advantageous as potential raw materials because these avoid inhibition of LAB as a result of 

high glucose concentrations (substrate inhibition) (Nakano et al., 2012). However, 
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physiochemical and/or enzymatic saccharification is required prior to their fermentation 

because most LAB are unable to utilise starchy materials directly (Narita et al., 2004). There 

have been successful examples of direct lactic acid production from starch by combination of 

efficient lactic acid producers and amylolytic enzymes (Narita et al., 2006; Okano et al. 

2007). The α - amylase enzyme from S. bovis 148 degrades raw starch in the presence of a 

C-terminal starch-binding domain (Matsui et al., 2007). High yields of optically pure lactic 

acid were achieved from direct conversion of soluble starch, when pCUSαA from S. bovis 

was introduced into L. lactis strain IL 1403 (Okano et al., 2007). In addition, or as an 

alternative to engineered strains, the use of mixed strains in fermentation can provide useful 

combinations of metabolic pathways for the utilization of more complex materials for 

production of lactic acid (Cui et al., 2011; Kleerebezem and van Loosdrecht, 2007; Nancib et 

al., 2009; Taniguchi et al., 2004) 

 

 

 

 

 

 

 

Figure 2. A schematic representation of D - and L - lactic acid optical isomers showing their 

3D orientations. 

 

 

 

  

 

 

 

 

 

 

 

 

 

D-Lactic Acid L-Lactic Acid 

https://www.google.com.au/imgres?imgurl=http%3A%2F%2Fnptel.ac.in%2Fcourses%2F116102006%2FFlash%2F6.1%2520figure%25202.jpg&imgrefurl=http%3A%2F%2Fcellfatigue.blogspot.com%2F2016%2F06%2Fdiet-and-d-lactate.html&docid=ua9cyTd4fSmuNM&tbnid=9bg2H_7Y9d7JoM%3A&vet=10ahUKEwjbgonosK7iAhUBeisKHR3UDPAQMwhRKAAwAA..i&w=906&h=353&bih=589&biw=781&q=d%20vs%20l%20lactic%20acid&ved=0ahUKEwjbgonosK7iAhUBeisKHR3UDPAQMwhRKAAwAA&iact=mrc&uact=8
https://www.google.com.au/imgres?imgurl=http%3A%2F%2Fnptel.ac.in%2Fcourses%2F116102006%2FFlash%2F6.1%2520figure%25202.jpg&imgrefurl=http%3A%2F%2Fcellfatigue.blogspot.com%2F2016%2F06%2Fdiet-and-d-lactate.html&docid=ua9cyTd4fSmuNM&tbnid=9bg2H_7Y9d7JoM%3A&vet=10ahUKEwjbgonosK7iAhUBeisKHR3UDPAQMwhRKAAwAA..i&w=906&h=353&bih=589&biw=781&q=d%20vs%20l%20lactic%20acid&ved=0ahUKEwjbgonosK7iAhUBeisKHR3UDPAQMwhRKAAwAA&iact=mrc&uact=8


 15 

1.3.4. Effects of temperature and pH 

Lactic acid production during fermentation results in increased pH, which has inhibitory 

effects on cellular metabolism and limits further lactic acid production (Grabar et al., 2006). 

pH can be controlled by extraction, adsorption or electrodialysis of lactic acid (Boontawan et 

al., 2011), although addition of a base, such as calcium carbonate, sodium hydroxide or 

ammonium hydroxide, is the most common method of pH control (Abdel-Rahman, Tashiro 

and Sonomoto, 2013). Several studies show that a pH below 5.7 is optimal for lactobacillus 

species (Hofvendahl and Hahn–Hägerdal, 2000) with optimal growth temperature ranging 

from 30 to 40 °C, although some thermophillic Lactobacillus strains grow well and have 

highly activated metabolism at around 45 °C (Dubernet et al., 2003). The mesophilic and 

neutrophilic nature of most LAB, increases the risk of contamination by non- lactic acid 

producing microbes and decreases fermentation efficiency (Abdel-Rahman et al., 2014). 

Furthermore, addition of neutralising agents for fermentation generates large amounts of 

gypsum during downstream processes (Abdel-Rahman and Sonomoto, 2016), which poses 

serious environmental problems and affects waste treatment (Vaidya et al., 2005). 

Temperate fermentation conditions also hamper simultaneous saccharification and 

fermentation of lignocellulosic biomass using hydrolytic enzymes, which require higher 

temperatures for optimum function (Abdel-Rahman, Tashiro and Sonomoto, 2013). 

Enterococcus faecium QU 50 was identified as a novel LA-producing strain that achieved 

efficient homofermentation (L-lactic acid yield, 1.0 g/g-consumed sugar) of different 

lignocellulose derived sugars at 50 °C at a controlled pH of 6.5  (Abdel-Rahman et al., 2014). 

However, further research is required to identify novel thermotolerant and acid tolerant 

strains or increase tolerance of existing strains in order to improve fermentation efficiency. 

1.4. Lignocellulose structure 

Further problems are encountered when a lignocellulosic feedstock is used for fermentation 

as fermentable sugars are not accessible due to the complex and recalcitrant structure of 

lignocellulose (Mohanty, Misra and Hinrichsen et al., 2000) (Fig. 3). Cellulose, hemicellulose 

and lignin form approximately 90% of lignocellulose dry weight (Balat, 2011; Yang et al., 

2009), although exact structural and chemical composition of lignocellulose is a result of 

genetic and environmental factors, and how these factors interact (Demirbas, 2007). In 

general it can be assumed that lignocellulosic feedstocks contain approximately 40% of 

carbon bound as cellulose, 30% as lignin and 26% as hemicelluloses and other 

polysaccharides. Cellulose is a linear homopolymer composed of beta-linked D-glucose units 

(Mohanty, Misra and Hinrichsen et al., 2000). Cellulose polymers form bundles by intra- and 

intermolecular hydrogen bonding and these bundles aggregate into microfibrils. Linear 

covalent bonds and branching hydrogen bonds within microfibrils give cellulose its high 
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tensile strength and insolubility (Rubin, 2008). While cellulose is a uniform component of 

most types of lignocellulosic biomass, the proportions and composition of hemicelluloses and 

lignin differ between species (Fengel and Wegener, 1989; Sjöström, 1993).  

 

Hemicellulose is a short, highly branched heterogenous polymer consisting of pentose 

(xylose and arabinose), hexose (galactose, glucose and mannose) and acid sugars (Saha, 

2003). Hemicellulose of the plant family Pocaceae, which includes all temperate grasses and 

cereals, is comprised mainly of xylan-based structures with small amounts of xyloglucans 

and mixed linkage glucans (Scheller and Ulvskov, 2010). Although xylans are built on a 

backbone of xylose, they are a highly diverse group of polysaccharides. Xylans present in 

Poaceae have a high number of attached arabinose resuidues as well as glucuronic acids 

and 4-O-methyl glucuronosyl residues (Scheller and Ulvskov, 2010).  

 

Lignin is considered as the glue that holds the lignocellulosic matrix together (Bajpai, 2006). 

It is primarily formed from three hydroxycinnamyl alchohols; p‐coumaryl alcohol (H), coniferyl 

alcohol (G) and sinapyl alcohol (S). Similarly to hemicellulose, lignin is a heterogenous 

polymer and includes a high diversity in series of linkages (Rubin, 2008). Lignin has been 

identified as a major deterrent to enzymatic and microbial hydrolysis of lignocellulose 

(Avgerinos and Wang, 1983) as lignin serves to protect cellulose and hemicellulose from any 

environmental stressors (He et al., 2017). By covalently linking to hemicellulose, lignin 

embeds into any spaces in the cell wall, which confers mechanical strength to the cell wall 

(Chabannes et al., 2001) and acts as a physical barrier to restrict access of cellulases to 

cellulose (Chang and Holtzapple, 2000). Protection of polysaccharides from enzymatic 

degradation by lignin is affected by degree and type of cross-linkage to polysaccharides, 

diversity of structures found in lignin composition and distribution of phenolic polymers 

throughout the cell wall (Laureano-Perez et al. 2005). Lignin content of the cell wall increases 

as the cell wall matures, which can significantly reduce pre-treatment efficiency (Hu and 

Ragauskas, 2012). 
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Figure 3. Structure of lignocellulose (Adapted from Streffer, 2014) 

A schematic representation of the complex structure of lignocellulose. The molecular 

structure of cellulose, hemicellulose and lignin are shown. Hexagons represent lignin 

subunits; p-coumaryl alcohol (H), coniferyl alcohol (G) and sinapyl alcohol (S). Cellulose 

microfibrils (light green) are surrounded by randomly organised hemicellulose (brown) and 

lignin fibrils (light green). Microfibrils are organised into macrofibrils that provide structural 

stability in the plant cell wall (Rubin, 2008). 

 

1.5. Lignocellulose utilisation 

Due to the complex structure of lignocellulosic biomass, pre-treatment and hydrolysis are 

required for high lactic acid production (Abdel-Rahman, Tashiro and Sonomoto, 2011).  Pre-

treatment aims to solubilise hemicellulose, lignin and crystalline cellulose (Van den Bosch et 

al., 2015), therefore making cellulose accessible for enzymatic hydrolysis, which yields 

fermentable sugars (Mosier et al., 2005). Pre-treatment includes physical (milling and 

grinding), chemical (alkali, dilute acid, oxidizing agents, and organic solvents), 

physicochemical (steam explosion, autohydrolysis, hydrothermolysis, and wet oxidation), and 

biological methods (lignin-hydrolysing Fungi, Bacteria and Archaea) (Abdel-Rahman, Tashiro 

and Onomoto, 2011; Kumar and Sharma, 2017). Highest sugar yields result from intensive 
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pre-treatment, however associated high temperatures, pressures and chemical loadings, 

require additional energy inputs and substantial capital and operating costs (Bensah and 

Mensah, 2013; Amin et al., 2017). Furthermore, it is not only fermentable sugars that are 

produced during pre-treatment. Some of the resulting by-products are known to inhibit the 

fermentation process by affecting cell growth, enzyme activities and lactic acid production 

(Abdel-Rahman and Sonomoto, 2016). These include phenolic compounds generated from 

lignin degradation, furan compounds generated from sugar degradation, aliphatic acids 

(acetic acid, formic acid and levulinic acid), inorganic ions and bio-alcohols (Zhang et al., 

2016). Inhibitory effects can be reduced by detoxification using chemical additives or bio-

abatement via microbial treatment (Larsson et al., 1999, Zhao et al., 2013). Product inhibition 

of cellulolytic enzymes by monosaccharides (glucose) and disaccharides (cellobiose), 

produced during pre-treatment and enzymatic hydrolysis, can be prevented by performing 

saccharification and fermentation simultaneously (Jönsson and Martin, 2016). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Conventional process for lactic acid production from lignocellulosic biomass. 

(Abdel-Rahman, Tashiro and Sonomoto, 2011) 

Substrates and products are shown by a solid outline and processes by a dotted outline. 
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Hexose (mainly glucose) and pentose (mainly xylose) sugars are produced following the 

saccharification of cellulose and hemicellulose. Most lactic acid producers either cannot 

utilise xylose or demonstrate carbon catabolite repression (CCR), in which xylose is only 

consumed following glucose consumption (Abdel-Rahman and Sonomoto, 2016). This 

sequential sugar utilisation leaves most sugar unutilised, decreases the efficiency of 

fermentation and increases production costs (Wang et al., 2014b). Isolation of CCR negative 

strains (Reddy, Park and Wee, 2015; Abdel-Rahman et al., 2014; Abdel-Rahman et al., 

2015) and genetic engineering approaches (Zhang et al., 2015) have been explored to 

overcome inefficient utilisation of mixed sugars. Yoshida et al. (2011) integrated the xylose 

assimilating pathway into L. planatarum, which enabled production of D-lactic acid from a 

mixture of 25 g L-1 xylose and 75 g L-1 glucose without CCR. A simpler strategy is through 

cultivation of mixed lactic acid producers. Co-culture of L. rhamnosus, which consumes 

glucose homofermentatively, and L. brevis, which consumes glucose and xylose 

heterofermantatively increased lactic acid yields during fermentation of NaOH pre-treated 

corn stover, by 18.6 % and 29.6%, compared with single cultures of L. rhamnosus and L. 

brevis, respectively (Cui, Li and Wan 2011). Co-cultivation generally achieves higher cell 

densities and improves lactic acid productivity (Nancib, Nancib and Boudrant, 2009), which is 

often affected by end product inhibition once lactic acid accumulates (Abdel-Rahman and 

Sonomoto, 2016). There is also evidence that cell immobilisation improves cell density and 

maintains long-term function of biocatalysts in addition to improving stability of the 

fermentation system (Li et al., 2015). Immobilisation of Lactococcus lactis increased LA 

productivity from 0.5 g/l/h in a free-cell system to 1.0 g/l/h in an immobilized cell system, 

using a Jerusalem artichoke hydrolysate substrate (Shi et al., 2012). Cell immobilisation is 

normally achieved by some form of physical entrapment and chemical adsorption (Shi et al., 

2012), however cell immobilisation occurs naturally to some extent during solid state ensiling 

due to the non-motile nature of Lactobacillus species and absence of mixing in the system. 

Therefore similar effects on lactic acid productivity may be seen during solid-state 

fermentation as for cell immobilisation studies. 

1.6. Ensiling for chemical production 

Ensiling is a form of solid-state fermentation, which is commonly used within agriculture to 

preserve crops (Wilkinson, Bolsen and Lin, 2003). Silage is an essential part of a ruminant 

diet in most of the world, (Wilkinson, Bolsen and Lin, 2003) as ensiling allows year-round 

feeding of crops that have a short harvest window. During ensiling, freshly harvested wet 

biomass (usually shredded) is tightly packed into piles, which are covered with plastic 

sheeting to reduce oxygen intrusion (Gallagher et al., 2018). Endogenous LAB present 

ferment free sugars in the biomass to organic acids, which results in a decrease in pH to 
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around 4 (Van Soest, 1994; Duniere et al., 2017). Simultaneously, oxygen concentrations in 

the pile are depleted due to its use in microbial metabolism and the production of CO2 and 

other fermentation gases, resulting in dilution and off-gassing (Gallagher et al., 2018). 

Reduced pH and oxygen concentration minimises further bacterial and fungal growth and 

prevents biomass degradation (Buxton, Muck and Harrison, 2003). 

 

Ensiling has been investigated for the commercial production of ethanol, in which yeast 

inoculants were added to optimise fermentation towards ethanol production (Kitamoto et al., 

2011, Gallagher et al., 2018). Potential exists for the production of other value added 

chemicals from biomass via optimisation of ensiling. As lactic acid is the major organic acid 

produced during the ensiling process (Duniere et al., 2017, Kung and Shaver, 2001) 

application of ensiling for the commercial production of lactic acid could be a cheaper 

alternative to current liquid-state lactic acid fermentations. Ensiling is not only less process-

intensive but it bypasses a number of the previously discussed problems associated with 

liquid-state fermentations. Furthermore as ensiling relies on the endogenous microbial 

community in the biomass there is no requirement for sterile fermentation conditions. This 

avoids formation of furfural compounds, occurrence of the Maillard reaction and increased 

energy consumption associated with initial autoclaving of biomass (Abdel-Rahman, Tashiro 

and Sonomoto, 2013).  

 

            Silage fermentation is very dynamic and there are a number of factors that influence the 

biological process (Ambye-Jensen et al., 2014). These include ensiling conditions, initial 

biomass composition and selected additives. Although lactic acid is normally the major 

organic acid produced during ensiling, the presence of other endogenous bacteria can 

influence organic acid production. Enterobacteria are the principal competitors of LAB for 

available sugars in biomass during ensiling (Muck, 2010).  Enterobacteria reduce nitrate to 

nitrite or nitrogen oxide, and so are the main source of gases produced during ensiling. Their 

principal fermentation product is acetic acid, which is also produced during 

heterofermentation by various LAB. Other organic acids produced include butyric acid and 

propionic acid (Kung and Shaver, 2001). Butyric acid concentrations depend on dry matter 

content of biomass as fermentation by Clostridia species results in butyric acid production 

and risk of Clostridial contamination increases as dry matter content decreases (Ambye-

Jensen et al., 2014). Propionic acid is often only present in small concentrations (<0.2 – 

0.3%) as most Propionibacteria are usually outcompeted (Kung and Shaver, 2001). The 

bacterial community present during ensiling can be manipulated via addition of chemicals 

and bacterial inoculums in order to control organic acid production (Cai et al, 1999; Yitbarek 

and Timir, 2014). 
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1.7. Ensiling as a pre-treatment 

Ensiling of lignocellulosic material encounters the same problems regarding access to 

fermentable sugars, however there is evidence to suggest that in some cases ensiling can 

provide effect as a pre-treatment through degradation of hemicellulose. Dewar, McDonald 

and Whittenbury (1963) discovered the hydrolysis of hemicellulose during storage of 

perennial ryegrass, which was later supported following reduction in organic acids and 

pentose sugars associated with the hemicellulose structure (Morrison, 1979). Similar findings 

were reported during ensiling of wheat straw mixed with alfafa (Singh et al., 1996) and 

ensiling of orchardgrass (Yahaya et al., 2002). Ensiling of barley, triticale, wheat straws and 

cotton stalk significantly increased the conversion of hemicellulose and cellulose to sugars 

during subsequent enzyme hydrolysis, from 19-24% for untreated biomass to 24-34% for 

ensiled biomass (Chen, Sharma-Shivappa and Chen, 2007). Lignocellulose degradation 

during ensiling is highly dependent on type of biomass; the same silage treatment can result 

in biomass being almost unaffected while other biomass undergoes large structural changes 

and therefore high pre-treatment effect. Compared to conventional pre-treatment methods, 

ensiling requires a longer reaction time but due to ambient temperatures and pressures, 

requires less energy and lower capital costs (Chen, Sharma-Shivappa and Chen, 2007). 

1.8. Consolidated Bioprocessing 

Consolidated bioprocessing (CBP), in which pre-treatment, enzymatic hydrolysis and 

fermentation are performed in one step without enzyme addition, has been a major area of 

research (Lynd et al., 2005, ref required). CBP would reduce the requirement of physical and 

chemical inputs, offering a lower-energy, lower-cost route to fermentation of lignocellulose 

(Bhatia, Johri and Ahmad, 2012). However, engineering of a single microbe or design of a 

microbial consortia able to utilise insoluble lignocellulosic components and produce desired 

product at commercially attractive yields and titers remains challenging (den Haan et al., 

2015, Minty et al., 2013, Peng, Gillmore and O’Malley, 2016).  As there is already evidence 

that ensiling can provide effect as a pre-treatment, identification of the endogenous microbes 

responsible for lignocellulose degradation could provide a basis for CBP. Establishment of an 

efficient CBP system for lactic acid production from lignocellulose will not only transform the 

lactic acid industry but will provide a basis for the production of other value added products, 

including ethanol, from lignocellulosic biomass.  

 

CBP using a microbial consortium as opposed to a single engineered microbe more closely 

reflects natural lignocellulose conversion systems and can result in extremely efficient 

substrate utilisation and increased product yields (Sabra et al., 2010). Most progress in 

consortia-based bioprocessing to date is based on a ‘bottom-up’ approach, where synthetic 
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communities of microorganisms have been constructed to achieve specific goals (Peng, 

Gillmore and O’Malley, 2016). Shahab et al., (2018) achieved co-cultivation of cellulolytic 

anaerobic fungus Trichoderma reesei with facultatively anaerobic LAB through a specially 

developed membrane reactor that enabled contrary oxygen requirements. The artificial 

cross-kingdom consortium produced 85.2% theoretical maximum of lactic acid from non-

detoxified steam-pretreated beechwood. Although the study establishes potential of an 

engineered microbial consortium for CBP of lignocellulosic biomass, the requirement of 

steam pre-treatment and the complex fermentation set-up make application economically 

unfeasible. In order to effectively degrade non-pretreated lignocellulosic biomass, a larger 

microbial consortia is likely to be required, hence a ‘top-down’ CBP approach may be 

advantageous as these microbial systems display increased stability and resilience 

(Peng,Gilmore and O’Malley, 2016). The ‘top-down’ approach is also not limited by the fact 

that more than 99% of microorganisms have not yet been cultured or genomically 

characterised (Pace 1997; Peng,Gilmore and O’Malley, 2016). Production of biogas from 

anaerobic digestion is an example of ‘top-down’ application of natural consortia. Although 

there is limited knowledge of microbes involved in such consortia, recent advances in 

sequencing technology are allowing a greater understanding of microbial composition and 

diversity of natural consortia. In this study a ‘top-down’ approach has been applied for 

production of lactic acid based on the natural microbial consortia present during sorghum 

ensiling.   

1.9. Sweet Sorghum as a feedstock 

Sorghum (Sorghum bicolor) is a C4 crop that provides grain, sugar, and lignocellulosic 

resources (Li et al., 2013). A variety known as sweet sorghum is considered one of the most 

efficient crops to convert atmospheric CO2 into sugar (Janssen et al., 2010). Forty percent of 

sweet sorghum dry weight is comprised of readily fermentable sugar, which makes sweet 

sorghum an attractive feedstock for fermentation (Himmel, Baker and Overend, 1994). There 

are a number of advantages associated with the growth of sweet sorghum. These include: 

adaptability to a wide range of environmental conditions (climate and soil conditions), low 

fertiliser requirement, high water-use efficiency compared to other crops (1/3 of sugarcane, 

½ of corn) and short growth period of 3-5 months (Ratnavathi et al., 2011). These 

advantages allow sweet sorghum to be planted on marginal lands, which reduces 

competition with food crops (Matsakas and Christakopoulos, 2013). Sweet sorghum also 

provides the opportunity for production of food or feed from grain as well as bio-products 

from juice and lignocellulosic portions, which further eliminates food vs fuel related issues 

(Chiaramonti et al., 2002). Ensiling of sweet sorghum for animal feed is usually performed 

directly following harvest, however ensiling is also performed using sorghum stover (stalks 
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and leaves) following use of grain for human consumption (Mehra et al., 1989), or using 

bagasse (stalk residue) following juice extraction for syrup or ethanol production (Bernardes 

et al., 2015, Conway, Wilson and Conway, 2012). Ensiling of sweet sorghum for chemical 

production via consolidated bioprocessing would see all types of biomass utilised in one 

process. Free sugars in the juice would initially be fermented by LAB, followed by 

fermentation of sugars made available by the degradation of lignocellulose. Conversion of 

sweet sorghum to lactic acid would therefore result in no waste products and the generation 

of high value products from stover and bagasse, which currently have no other use apart 

from as animal feed. 
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2. Aims and Rationale  

 

The aim of this project was to optimise the ensiling process for the production of lactic acid 

from sweet sorghum. The first objective was to establish optimum conditions for fermentation 

of free sugars to lactic acid, the second was to enable fermentation of the lignocellulosic 

biomass to lactic acid through a consortia based CBP approach. To achieve these 

objectives, ensiling conditions (time and temperature) and use of ensiling additives were 

explored. Additives used were CaCO3 to control pH, L. plantarum inoculant to increase the 

LAB population and CTec3, a commercial enzyme package, for the hydrolysis of cellulose 

and hemicellulose.  

 

After consideration of potential LAB to use as an inoculant, L. plantarum DSM20174 was 

selected due to previous reports of inoculation with L. plantarum having beneficial effects on 

silage quality as a result of lactic acid production (Ely, Sudweeks and Moon, 1981; Hu et al., 

2009; Sifeeldein et al., 2018). For this reason L. plantarum is a common component of 

commercial silage inoculants (Khota et al., 2017; Matejčeková et al., 2018). L. plantarum is 

facultatively homofermentative and can grow in both aerobic and anaerobic environments 

and is able to ferment both pentose and hexose sugars (Morais et al., 2013). It is commonly 

isolated from plant material (Laskin, Sariaslani and Gadd 2010), including sweet sorghum 

(Daeschel, Mundt and McCarty, 1981). Therefore inoculation with L. plantarum avoids 

introduction of exogenous bacteria, which may have unpredicted effects on community 

dynamics or may be unable to survive under given environmental conditions. L. plantarum 

was selected due to its long history of use in industry (Teusink and Smid, 2006) and 

extensive knowledge of its physiology and genetics (Hui and Khachatourians, 1995). 

Furthermore an efficient transformation system has been established for L. plantarum 

(Bringel and Hubert, 1990; Teresa Alegre, Carmen Rodríguez and Mesas, 2004) so there is 

potential for further improvement of the ensiling system via introduction of beneficial genes 

from other bacteria.  

 

A preliminary experiment in which L. plantarum DSM20174 was cultured in MRS media for 

24 h at 27, 32, 37, 42 and 45 °C showed that L. plantarum reached highest OD at 37 °C, 

despite DSMZ recommendations of 30 °C. L. plantarum culture reached an OD of 

approximately 3.5 at 37 °C, which was significantly higher than for all other tested 

temperatures. As L. plantarum was to be used as an inoculant during ensiling experiments 

37 °C was selected as the ensiling temperature for all initial ensiling experiments. A number 

of previous studies have showed optimum growth of L. plantarum strains and other 

Lactobacillus species at 37 °C during fermentation (Noori, Ebrahimi and Jafari et al. 2016; 
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Matejčeková et al. 2018; Pelikánová, Liptáková and Valík, 2015). As the highest optimum 

growth temperature of the Saccharomyces genus was demonstrated to be 32.3 °C (Salvadó 

et al., 2011), it is expected that enisling at 37 °C will favour the growth of Lactobacillus over 

endogenous yeast species. 
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3. Materials and Methods 

3.1. Ensiling Process 

N6G0 S. bicolor biomass (NexSteppe) was planted on 1st March 2017 and harvested from 

Rio Farms Field in Monte Alto, Texas on 5th June 2017. Biomass was transported to a walk-

in freezer and frozen in 20 cm layers with regular turning. Frozen biomass was transported at 

-20 °C to Shell Technology Centre Houston, where it was stored at the same temperature 

until use. Prior to ensiling set-up, biomass was thawed at 4 °C for 15-20 h then transferred to 

room temperature for 1-2 h. Required biomass was weighed and additives in varying 

concentrations, based on experimental design (see section 3.3) were thoroughly mixed into 

biomass using gloved hands. Biomass initial pH was recorded and triplicate 1 ml exudate 

samples for High Performance Liquid Chromotography (HPLC) analysis obtained by pressing 

biomass using 20 ml syringes (BD Plastipak). Approximately 40-42 g biomass was tightly 

packed into 50 ml falcon tubes. Tubes were weighed and sealed with a rubber stopper 

(Fermenthaus) and three-piece airlock (True Brew). Biomass was ensiled in incubators at 

specified temperatures for specified time periods according to experimental design (see 

section 3.3). After ensiling, stoppers and airlocks were removed and individual tube weight 

recorded. Approximately 10 g biomass from each tube was sampled. Samples were well 

mixed and moisture content and pH measured (see section 3.5). Approximately 1 ml exudate 

samples for HPLC analysis were obtained using the same pressing method as for initial 

samples. 

Ensiling was performed in triplicate replicates for each treatment, including sampling time 

during ensiling, due to destructive sampling. 1 x L. plantarum cell loading is equivalent to 

approximately 120 x103 cfu g-1 and 1 x P. acidilactici cell loading is equivalent to 310 x103 cfu 

g-1. 1 day is equivalent to 24 h +/- 2 h and ensiling temperature +/- 1°C.  

3.2. Preparation of LAB inoculum 

3.2.1. Preparation of Lactobacillus plantarum inoculant 

de Man, Rogosa and Sharpe (MRS) (Sigma-Aldrich) agar plates were inoculated with L. 

plantarum DSM20174 (DSMZ) from glycerol stocks and incubated at 37 °C for 24 h. MRS 

broth, was prepared (55 g MRS/ 1l dH2O sterilised by autoclaving) and inoculated with L. 

plantarum from stock plates (approximately 1 plate / 600 ml broth). Cultures were incubated 

at 37 °C, 200 rpm for 20-24 h in baffled shake flasks (Fisher). After incubation, cell cultures 

from required number of shake flasks were combined and sampled to measure OD (600 nm). 

Volume of culture required for an accurate cell loading was calculated (see appendix 
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equation 1). Cell cultures were divided into 50 ml falcon tubes and centrifuged at 11985 x g, 

15 °C for 10 min. Supernatants were discarded and cell pellets resuspended in dH2O 

dependent on mass of biomass to which cells were added (1 ml dH2O / 10 g biomass). 

Equivalent volumes of dH2O were added to biomass to be ensiled without inoculum.  

1 x L. plantarum cell loading  ≈  120 x 103 colony forming units (cfu) g-1 

 

3.2.2. Preparation of Pediococcus acidilactici inoculant 

MRS agar plates were inoculated with P. acidilactici ATCC25742 (ATCC) from glycerol 

stocks and incubated at 45 °C for 24 h. MRS broth was inoculated with P. acidilactici from 

plates (approximately 1 plate / 600 ml broth). Cultures were incubated at 45 °C, 200 rpm for 

16-20 h in baffled shake flasks (Fisher). Then cell culture preparation was performed as 

described for L. plantarum. 

1 x P. acidilactici cell loading  ≈  310 x 103 cfu g-1  

 

3.3. Design of individual ensiling experiments 

3.3.1. Ensiling of untreated biomass 

Untreated biomass was ensiled at 37 °C for 1 day and end samples taken. 

3.3.2. Ensiling with CaCO3 addition and L. plantarum inoculation 

Biomass only, biomass with 15 g l-1 CaCO3 and biomass with 40 g l-1 CaCO3 were ensiled, 

each with the following cell loadings: 0 x L. plantarum, 1 x L. plantarum, 3 x L. plantarum and 

5 x L. plantarum. Ensiling was performed at 37 °C for 1 day and end samples taken. 

3.3.3. Ensiling to determine effects of temperature  

Biomass with 3 x L. plantarum, 40 g l-1 CaCO3 was ensiled at 27, 32, 37, 42 and 45 °C for 5 

days and end samples taken. 

3.3.4. Ensiling with CTec3 addition, CaCO3 addition and L. plantarum 

inoculation 

Ensiling was performed at 37 °C or 45  ͦC for 9 days with the following additions: Biomass 

with 40 g l-1 CaCO3, biomass with 40 g l-1 CaCO3 and 3 g kg-1 CTec3, biomass with 40 g l-1 

                    ≈  50 ml of OD600 3.75 culture for 500 g biomass 

≈  50 ml of OD600 3.75 culture for 500 g biomass 
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CaCO3 and 3 x L. plantarum, and biomass with 40 g l-1 CaCO3, 3 g kg-1 CTec3 and 3 x L. 

plantarum. Sampling was performed after 1 day and 9 days. 

3.3.5. Ensiling with P. acidilactici inoculation at 45 °C 

Biomass with 40 g l-1 CaCO3 and biomass with 3 x P. acidilactici, 40 g l-1 CaCO3 were ensiled 

at 45 °C for 5 days. Sampling was performed after 1 day and 5 days. 

3.3.6. Time course experiment 

Biomass with 40 g l-1 CaCO3 was ensiled at 45 °C for 3 days. Due to time frame limitations, 

biomass was ensiled in two batches to allow sampling to be performed at suitable intervals. 

Batch 1 was sampled after 3, 6, 9, 24, 30 and 48 h and batch 2 was sampled after 14, 18, 

24, 48 and 72 h.  Initial samples were taken for both batches. Results from different batches 

for the same time points (0, 24 and 48 h) were combined to give an overall mean (n = 6). 

Results from both batches were grouped in a single graph for continuous representation of 

changes in metabolite concentrations during the ensiling period.  

3.4. Preparation and analysis of HPLC samples to identify ensiling products 

1 ml samples were centrifuged at 21170 x g, 15 °C for 7 mins to pellet large particles. 0.8 ml 

of supernatant was transferred to 1 ml Costar® Spin-X centrifuge tubes (Sigma-Aldrich) and 

centrifuged as above to remove any large particles. 0.2 ml supernatant was added to HPLC 

vials (Agilent Technologies) with 0.8 ml 0.01 N H2SO4 for 5-fold dilution. Samples were 

analysed by HPLC on a Dioonex Ultimate 3000 HPLC system (Thermo Fisher Scientific). For 

quantification of ethanol, lactic and acetic acid, samples were analysed by the Aminex HPX-

87 (H column) (Bio-Rad). For quantification of sugar components (glucose, sucrose and 

fructose) samples were analysed by the Aminex HPX-87P Column (P Column) (Bio-Rad). 

The H and P column are pre-packed HPLC columns, in hydrogen form with 9 µm particle 

size, 8% cross linkage and pH ranges of 1-9. Sample analysis was performed at 50 °C, with 

an isocratic elution of 0.005% H2SO4, at a flow rate of 0.6 ml min-1 for 25 min. Concentration 

of ethanol, lactic acid, acetic acid and sugar components in samples were determined by 

comparison to known concentration standards of 1, 5, 10, 15 and 20 g l-1. 

3.5. Measurement of moisture content 

Approximately 4-5 g of biomass was weighed into a 50 ml falcon tube and exact weight 

recorded. Samples and two empty falcon tubes (control) were dried at approximately 62 °C in 

a vacuum oven for a minimum of 12 hours. Samples were re-weighed post drying and 

moisture content determined (see appendix equation 2). 
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3.6. Acid hydrolysis to determine cellulose content of biomass 

Approximately 4 g of biomass was mixed with 100 – 125 ml dH2O and then filtered through a 

0.32 mm glass fibre filter circle using a vacuum. Filter paper with residue was transferred to 

an empty conical and dried at approximately 62 °C in a vacuum oven for a minimum of 12 

hours. After drying, caps were returned to falcon tubes and samples were allowed to cool. 

Dried residues were scraped from filter paper using a spatula and filter papers discarded. 

Samples were ball milled for 30 s at a frequency of 30 Hz to form a uniform powder. Ball 

milling was performed using Mixer Mill MM400 (Retsch®) following manufacturer’s 

recommendations. 0.1 g of sample was combined with 0.54 ml 70% H2SO4 in 20 ml pressure 

tubes with caps. Tubes were incubated in 30 °C water bath for 60 mins, vortexing for 15 s 

after 15 mins and 45 mins incubation. Tubes were removed from water bath and 14.46 ml 

dH2O added to dilute acid to approximately 3.6% weight.  Samples and 15 ml of sugar 

recovery standard (4% H2SO4, dH2O, 2.4% w/v glucose and 1.2% w/v xylose) in pressure 

tubes were autoclaved at 110 – 121 °C for 90 mins. Immediately after autoclaving, tubes 

were transferred to a Laminar Flow hood until samples reached room temperature. Samples 

were then filtered through 0.32 mm glass fibre filter circles and diluted for HPLC analysis. 

3.7. Statistical analysis  

3.7.1. Ensiling with CaCO3 addition and L. plantarum inoculation  

For each product concentration (ethanol, acetic acid and lactic acid), an ordinary two-way 

analysis of variance (ANOVA) with a post-hoc Tukey’s multiple comparisons test (Tukey 

1949) was performed for comparison between cell loadings at the same CaCO3 

concentration and for comparison of CaCO3 concentrations at the same cell loading. The 

Tukey test enables simultaneous pairwise comparison of all means and identifies any 

difference between two means that was greater than the expected standard error (Witte and 

Witte, 2009). 

Association between ethanol and lactic acid concentrations, and between pH and lactic acid 

concentration was determined by linear regression and Pearsons correlation.  

3.7.2. Ensiling to determine effects of temperature 

An ordinary two-way ANOVA with a post-hoc Dunnett’s multiple comparisons test (Dunnett, 

1955) was performed to determine if product concentrations at different ensiling 

temperatures were statistically different from at 37 °C. 
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3.7.3.  Ensiling with CTec3 addition, CaCO3 addition and L. plantarum 

inoculation 

In order to firstly determine effects of temperature and additives only, time was excluded as a 

factor and statistical analysis performed separately for each time point. For each product 

concentration (ethanol, acetic acid and lactic acid), an ordinary two-way ANOVA with a post-

hoc Sidak’s multiple comparisons test (Sidak, 1967) was performed to compare results for 

the same additives between ensiling temperatures and to compare different additives within 

the same ensiling temperature. The Sidak test is used as an alternative to the Tukey test for 

comparison of a selected set of means.  

To determine interactive effects of time, temperature and additives on lactic acid 

concentration, an ordinary three-way ANOVA with post-hoc Tukey’s comparison test was 

performed. 

An ordinary one-way ANOVA with a post-hoc Dunnett’s multiple comparisons test was 

performed to determine if cellulose content was statistically different from initial cellulose 

content of biomass. An ordinary two-way ANOVA with a post-hoc Sidak’s multiple 

comparisons test was performed for comparison of % cellulose degradation with CTec3 

addition and without CTec3 addition.  

3.7.4. Ensiling with P. acidilactici inoculation at 45 °C 

For each product concentration (ethanol, acetic acid and lactic acid), an ordinary two-way 

ANOVA with a post-hoc Tukey’s multiple comparisons test was performed for comparison of 

ensiling times and for comparison of Pediococcus inoculation with uninoculated biomass. 
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4. Results  

4.1. Ensiling to determine natural metabolite consumption and production 

Results of ensiling at 37 °C without any modifications to the ensiling system show that the 

endogenous microbial community in the biomass favours production of ethanol over lactic 

acid and acetic acid after 1 day (Fig. 5). Although some lactic acid and acetic acid is 

produced (< 3 mmol g-1), modifications are required to optimise the system to favour lactic 

acid production, by altering factors that will affect growth of the endogenous microbial 

community. 

 

Approximately 1.6 g of total free sugars (sucrose, glucose and fructose) were available per 

gram of wet pre-ensiled biomass. This is equivalent to approximately 1.5 mmol sucrose and 

5.7 mmol combined glucose and fructose available per gram of wet pre-ensiled biomass. 

Hence maximum theoretical lactic acid yield based on measured free sugar concentrations is 

17.4 mmol g-1. 

 

All available sugars (sucrose, glucose and fructose) were consumed after 1 day (24 hours) 

ensiling (Fig. 5), therefore this was the chosen duration for subsequent ensiling experiments. 

 

During ensiling there was a decrease in pH from mean initial pH of 5.2 to a mean end pH of 

3.0, due to the production of organic acids, including lactic acid and acetic acid. The acidic 

pH may have limited further organic acid production and therefore favoured ethanol 

production, hence pH control was a key factor considered for increased lactic acid 

production. 
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Figure 5. Metabolite concentrations from initial biomass and untreated biomass ensiled at   

37 °C for 1 day. 

 

N6G60 Sorghum bicolor biomass was ensiled at 37 °C without additives. Initial metabolite 

concentrations are represented by white bars and metabolite concentrations following 1 day 

ensiling are represented by grey bars. Bars represent the mean of n=3 independent 

replicates with standard error shown. Sugar concentrations; sucrose (S), glucose (G) and 

fructose (F), are shown on the left y axis. Product concentrations; lactic acid (LA), acetic acid 

(AA) and ethanol (EtOH) are shown on the right y axis. Following 1 day ensiling, 

concentrations of S, G and F were all below 0.07 mmol g-1 (bars not visible on graph). 
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4.2. Ensiling with CaCO3 and L. plantarum addition 

CaCO3, at two different concentrations, was added to biomass prior to ensiling as a method 

of buffering the system to prevent a drop in pH. L. plantarum inoculum, at various cell 

loadings, was added in combination with CaCO3 to determine the treatment that produced 

highest lactic acid yields.  

 

Performance of a two-way ANOVA followed by Tukey’s multiple comparisons test showed 

that cell loading significantly affected mean lactic acid concentration (Fig. 6) (P < 0.0001). At 

0 g l-1 CaCO3 addition there was a significant increase in final mean lactic acid 

concentrations for 3 x and 5 x cell loading compared to biomass without inoculum (0 x cell 

loading) (P =0.0089 and P = 0.0239, respectively). This showed that increasing the presence 

of L. plantarum in the biomass increased lactic acid production, although the decrease in pH 

limited lactic acid production to a maximum of approximately 5 mmol g -1. At 15 g l-1 and 40 g 

l-1 CaCO3 addition there was a significant increase in mean lactic acid production as cell 

loading increased, up until 3 x cell loading. Between 3 x and 5 x cell loading there was no 

significant increase in mean lactic acid production. Therefore the lower cell loading of 3 x L. 

plantarum was selected for use in subsequent ensiling experiments. 

 

There was a significant interaction between cell loading and CaCO3 concentration (P < 

0.0001). For all cell loadings, increasing CaCO3 concentration increased lactic acid 

concentrations and decreased ethanol concentrations, excluding biomass without inoculum, 

in which mean lactic acid concentration at 15 g l-1 CaCO3 was not significantly different from 

that at 40 g l-1 CaCO3 (Fig. 6). In the absence of cell loading, addition of 40 g l-1 CaCO3 

increased lactic acid concentration by 2.8 x compared to lactic acid concentration without 

CaCO3. With 5 x cell loading, addition of 40 g l-1 CaCO3 increased lactic acid concentration 

by 2.6 x compared to lactic acid concentration without CaCO3. 

 

For all conditions acetic acid concentrations were minimal when compared to lactic acid and 

ethanol concentrations. There was no significant correlation between acetic acid 

concentration and ethanol or lactic acid concentration. Acetic acid concentration was 

significantly higher without inoculum than for all other cell loadings regardless of CaCO3 

addition. In the absence of inoculum, CaCO3 addition of 15 g l-1 (P = 0.0175) and 40 g l-1 (P = 

0.0121) significantly increased acetic acid concentration compared to biomass without 

CaCO3. At all other cell loadings results suggest that acetic acid concentration was not 

limited by reduced pH.  
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The large standard error bar for mean acetic acid concentration with 5 x cell loading and 40 g 

l-1 CaCO3 (Fig. 6) is due to a single sample having a higher acetic acid concentration (2.1 

mmol g-1) than the other samples (0.4 mmol g-1). This may be the result of a sampling error, 

variation in initial biomass or uneven distribution of CaCO3. For the same sample, ethanol 

concentrations were not any higher than for the other samples with the same treatment, 

which suggests high acetic acid production was not due to a shift towards 

heterofermentation. 

 

A. Lactic acid                              B. Acetic acid 
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Figure 6. Effect of calcium carbonate concentration and L. plantarum cell loading on (A.) 

lactic acid, (B.) acetic acid and (C.) ethanol concentrations from 1 day ensiled biomass. 

 

N6G60 Sorghum bicolor biomass was ensiled for 1 day at 37 °C. Biomass with 0 g l-1 CaCO3 

addition is represented by white bars, 15 g l-1 CaCO3 addition by grey bars and 40 g l-1 

CaCO3 addition by black bars. Equivalent approximate number of cfu g-1 wet biomass for 

each cell loading is shown in the table. Bars represent the mean of n = 3 independent 

replicates with standard error shown. 

Cell 

Loading 

cfu g-1 wet  

biomass 

0 x No inoculum 

1 x  120 x103 

3 x 360 x103 

5 x 600 x103 
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Performance of a two-way ANOVA showed that cell loading significantly affected mean 

ethanol concentration (P < 0.0001) (Fig. 6). There is significant correlation (P < 0.0001) 

between ethanol concentration and lactic acid concentration (Fig. 7). As lactic acid 

concentration increases, as a result of CaCO3 addition, ethanol concentration decreases.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  The relationship between ethanol concentration and lactic acid concentration from 

1 day ensiled biomass with calcium carbonate addition at various concentrations 

 

N6G60 Sorghum bicolor biomass was ensiled for 1 day at 37 °C. Biomass with 0 g l-1 CaCO3 

addition is represented by white circles, 15 g l-1 CaCO3 addition by grey circles and 40 g l-1 

CaCO3 addition by black circles. Circles represent the mean of n = 3 independent replicates 

with linear regression shown (y = - 0.53 x + 12.21, r2 = 0.90). 

 

A decrease in pH occurred from initial pH of 5.4 to a pH of 3.5 after 1 day ensiling without 

CaCO3 for all biomass with L. plantarum addition at any cell loading (Fig. 8). This decrease in 

pH was a result of lactic acid produced by additional cells (approximately 5 mmol g-1 for all 

cell loadings). Compared to other treatments, lactic acid concentrations without CaCO3 

addition was low, due to lactic acid production being limited by the decreased pH. Addition of 

40 g l-1 CaCO3 increased end pH from 3.5 to 4.8, which allowed increased production of 

lactic acid.  Although there was still a small decrease in pH, 40 g l-1 CaCO3 maintained the 

pH at approximately 4.8, regardless of increased lactic acid production with increased cell 

loading. There was no significant increase in lactic acid production between 3 x and 5 x cell 

loading, but the results show that this is not due to insufficient CaCO3 concentrations to 

maintain the pH of biomass during ensiling, as pH remained at 4.8. 
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Figure 8. Effect of L. plantarum cell loading and calcium carbonate concentration on pH of 1 

day ensiled biomass  

 

N6G60 Sorghum bicolor biomass was ensiled for 1 day at 37 °C. Biomass with 0 g l-1 CaCO3 

addition is represented by white circles, 15 g l-1 CaCO3 addition by light grey circles and 40 g 

l-1 CaCO3 addition by dark grey circles. Cell loading of 1 is equivalent to approximately 120 

x103 cells g-1 wet biomass. Circles represent the mean of n = 3 independent replicates. 

 

There is a significant overall correlation between pH and lactic acid concentration (P = 0.022) 

(Fig. 9). Results show this correlation is affected by CaCO3 addition, although the interaction 

between lactic acid concentration and pH is complex. High lactic acid concentrations (> 6 

mmol g-1) only occur when pH is maintained by CaCO3 addition, therefore the effect of 

increased lactic acid on pH of biomass, or vice-versa, cannot be determined. The pH of 

biomass with 40 g l-1 CaCO3 addition is higher than the pH of biomass with 15 g l-1 CaCO3 

addition at similar lactic acid concentrations. For example, when lactic acid concentration is 

12.8 mmol g-1 pH of biomass with 15 g l-1 CaCO3 is approximately 4.0, but when lactic acid 

concentration is 13.1 mmol g-1 pH of biomass with 40 g l-1 CaCO3 is approximately 4.8. 

Rather than the small increase in lactic acid concentration having no effect on pH or resulting 

in a decrease in pH, pH increased because CaCO3 successfully buffered the system. 

Highest lactic acid concentrations were achieved from ensiling when 40 g l-1 CaCO3 was 

added, as lactic acid production was no longer inhibited by low pH. 40 g l -1 CaCO3 was 

therefore used in all subsequent ensiling experiments as a base case condition. 
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Figure 9. Effect of calcium carbonate concentration on lactic acid concentration and pH of 1 

day ensiled biomass 

 

N6G60 Sorghum bicolor biomass was ensiled for 1 day at 37 °C. Biomass with 0 g l-1 CaCO3 

addition is represented by white circles, 15 g l-1 CaCO3 addition by grey circles and 40 g l-1 

CaCO3 addition by black circles. pH values for 0 mmol g-1 lactic acid are initial pH of biomass 

with CaCO3 addition prior to ensiling. Circles represent the mean of n = 3 independent 

replicates with linear regressions shown (for 0 g l-1 CaCO3 y = - 0.30 x + 5.06, r2 = 0.95; for 

15 g l-1 CaCO3 y = - 0.10 x + 5.37, r2 = 0.99; for 40 g l-1 CaCO3 y = - 0.04 x + 5.40, r2 = 0.67). 
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4.3. Ensiling to determine effects of temperature 

 

As temperature is a key factor affecting microbial growth, ensiling was performed at a range 

of temperatures from 27-45 °C, with inoculation of L. plantarum, to determine how different 

temperatures influenced lactic acid production. 

 

Performance of a two-way ANOVA followed by Dunnet’s multiple comparisons test showed 

that temperature significantly affected lactic acid production (P< 0.0001). Lactic acid 

production was increased at 27, 32, 42 and 45 °C compared to 37 °C (Fig. 10). Ensiling at 37 

°C may have produced the least lactic acid due to increased competition of L. plantarum with 

other mesophillic microbes at this temperature, including yeasts responsible for ethanol 

production. The highest concentration of lactic acid was produced at 45 °C, with a mean of 

19.75 mmol lactic acid produced per g wet biomass. L. plantarum cannot grow at 45 °C 

(demonstrated by inoculation in MRS and incubation at 45 °C, 200 rpm for 72 hours) 

therefore high lactic acid concentration must have been due to alternative lactic acid 

bacteria, which were thermotolerant or thermophillic.  

 

Change in ensiling temperature did not significantly affect acetic acid production or ethanol 

production except at 27 °C and 45 °C when ethanol concentrations were significantly lower 

(P < 0.0001) than ethanol concentrations at 37 °C. It is likely that at 45 °C ethanol producing 

microbes (yeasts) could not grow and so were outcompeted by thermotolerant and 

thermophillic lactic acid producers. 
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Figure 10. Effect of temperature on lactic acid, acetic acid and ethanol concentrations from 

biomass ensiled with L. plantarum inoculation 

 

N6G60 Sorghum bicolor biomass was ensiled for 5 days (+/- 2 hours) at 27, 32, 37, 42 and 

45 °C with 40 g L-1 CaCO3 addition and inoculation with L. plantarum at approximately 360 

x103 cells g-1 wet biomass. Lactic acid is represented by white bars, acetic acid by grey bars 

and ethanol by black bars. Lactic acid concentration is shown on the left axis and acetic acid 

and ethanol concentrations are shown on the right axis. Bars represent the mean of n=3 

independent replicates with standard error shown. *** indicates P < 0.001, **** indicates P < 

0.0001. 
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4.4. Ensiling with L. plantarum inoculation and CTec3 addition at 37 °C and 

45 °C 

CTec3 is a cellulase and hemicellulose complex, produced by Novozymes, for the 

conversion of pretreated lignocellulosic materials to fermentable sugars. Ensiling was 

performed with addition of CTec3 to determine if CTec3 could increase lactic acid production 

by making more sugars available for fermentation, and to determine if ensiling had any effect 

as a pre-treatment method. L. plantarum inoculant was also added to selected treatments to 

determine if L. plantarum affected lactic acid production at different ensiling temperatures 

and times, and if there was any interaction between L. plantarum and CTec3 addition.  

 

Performance of a two way ANOVA followed by Sidak’s multiple comparisons test showed 

that temperature significantly affected mean lactic acid production after 1 day and 9 days 

ensiling (P < 0.0001 and P = 0.0049, respectively) (Fig. 11). One day ensiling at 45 °C 

significantly reduced mean lactic acid production compared to 37 °C when biomass was 

ensiled with L. plantarum addition (P <0.0001), CTec3 addition (P <0.0001) or combined L. 

plantarum and CTec3 addition (P = 0.01). This may be because L. plantarum cannot grow at 

45 °C and so lactic acid production is expected to be higher at 37 °C than at 45 °C, although 

it is unclear why there was a decrease at 45 °C with addition of CTec3 alone. 

 

After 9 days there was an increase in lactic acid production at 45 °C compared to 37 °C for 

all treatments. However, addition of CTec3 and L. plantarum was the only treatment that 

showed a significant increase (P = 0.0411). Ensiling at 45 °C virtually eliminated all ethanol 

production at 45 °C and reduced acetic acid production for all treatments. 

 

The results demonstrate that at 45 °C lactic acid production is not due to L. plantarum activity 

as there was no significant difference in mean lactic acid production with or without L. 

plantarum inoculation. There was a significant increase in lactic acid production when L. 

plantarum was inoculated at 37 °C after 1 day but after 9 days ensiling lactic acid 

concentrations were similar with and without inoculation. 

 

Performance of a 3 way ANOVA followed by Tukey’s multiple comparisons test showed that 

ensiling time significantly affected lactic acid production at both 37 °C and 45 °C (P < 

0.0001). Generally, increasing ensiling time to 9 days increased lactic acid production at 37 

°C. This was not true for biomass ensiled with L. plantarum addition as there was no 

significant increase in lactic acid concentration between 1 day and 9 day ensiling at 37 °C. 

This is possibly because addition of L. plantarum cells at exponential phase accelerated 

lactic acid production so that after 1 day ensiling maximum lactic acid concentration had 
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already been achieved and therefore extending ensiling time had no further effect on lactic 

acid production.  

 

At 45 °C increasing ensiling time to 9 days increased lactic acid production for all samples 

independent of additives in the biomass. Furthermore any significant differences in lactic acid 

production observed between additives after 1 day ensiling were eliminated after 9 days 

ensiling at both 37 °C and 45 °C. Therefore, it can be assumed that temperature and ensiling 

time had a greater influence on the microbial community during ensiling than any of the 

additives investigated. Results suggest that additives (particularly L. plantarum) influence the 

rate of lactic acid production but do not affect total lactic acid yield. 

 

There was a significant interaction between ensiling temperature and time on lactic acid 

concentration (P < 0.0001). This may be due to growth or lactic acid production by 

thermotolerant and thermophillic LAB species present at 45 °C occurring at a slower rate e 

than for mesophillic bacteria present at 37 °C°C. Therefore increasing both temperature and 

ensiling time had a synergistic effect on lactic acid production.  

 

There was a significant difference in lactic acid concentration between 37 °C and 45 °C with 

CTec3 addition after 1 day ensiling (P < 0.0001). Ensiling with CTec3 addition at 37 °C for 1 

day made no significant difference to lactic acid concentration compared to ensiling without 

additives, whereas ensiling with CTec3 addition at 45 °C for 1 day resulted in a significantly 

lower lactic acid concentration than ensiling without additives (P = 0.0006). This suggests 

that at 45 °C CTec3 may have some form of inhibitory effect on bacteria. After 9 days 

ensiling, CTec3 addition made no significant difference to lactic acid concentrations at 37°C 

or at 45°C when compared to lactic acid concentrations without CTec3. However, CTec3 did 

significantly increase acetic acid concentrations after 9 days ensiling, at 37 °C and 45 °C, 

compared to ensiling without or with other additives. As 37 °C generally resulted in higher 

acetic acid concentrations it is not possible to determine if the significant difference between 

acetic acid concentrations at different temperatures is due to the effect that temperature has 

on CTec3 function or temperature alone. When considering effect on ethanol concentration 

CTec3 resulted in a significant increase after 9 days ensiling at 37 °C. 

 

The large error bar for mean lactic acid concentration of biomass ensiled at 45 °C for 9 days 

with L. plantarum inoculation is due to one sample being significantly lower (5.4 mmol g-1) 

than the others (15.6 mmol g-1 and 14.6 mmol g-1) (Fig. 11).  
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A. 1 day     B. 9 days 

 

 

 

 

 

 

 

 

 

 

Figure 11. Effects of ensiling additives and ensiling temperature on lactic acid concentrations 

from (A.) 1 day and (B.) 9 day ensiled biomass 

 

N6G60 Sorghum bicolor biomass with 40 g l-1 CaCO3 addition was ensiled at 37 °C or 45 °C 

for 1 day and 9 days (+/- 2 hours). Biomass ensiled at 37 °C is represented by white bars 

and 45 °C by grey bars. CTec3 was added at a concentration of 3 g CTec3 kg-1 wet biomass. 

L. plantarum (L. pl.) was added at a cell loading of approximately 360 x103 cells g-1 wet 

biomass. N. A. denotes biomass with no additives. Bars represent the mean lactic acid 

concentration of n=3 independent replicates with standard error shown. * indicates P < 0.05, 

**** indicates P < 0.0001. 
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A. Acetic Acid B. Ethanol 

 

 

 

 

 

 

 

 

 

Figure 12. Individual and combined effects of CTec3 cellulosic enzyme package addition, L. 

plantarum cell addition and ensiling temperature on (A.) acetic acid and (B.) ethanol 

concentrations from 9 day ensiled biomass 

 

N6G60 Sorghum bicolor biomass with 40 g l-1 CaCO3 addition was ensiled at 37 °C or 45 °C 

for 9 days (+/- 2 hours). Biomass ensiled at 37 °C is represented by white bars and 45 °C by 

grey bars. CTec3 was added at a concentration of 3 g CTec3 kg-1 wet biomass. L. plantarum 

(L. pl) was added at a cell loading of approximately 360 x103 cells g-1 wet biomass. N.A. 

denotes biomass with no additives. Bars represent the mean product concentration of n=3 

independent replicates with standard error shown. * indicates P < 0.05, *** indicates P < 

0.001. 

 

Cellulose degradation was a better measure of CTec3 performance than ensiling product 

concentrations. Performance of a one way ANOVA followed by Dunnet’s multiple 

comparisons test showed that when compared to initial cellulose content, biomass ensiled 

without CTec3 at 37 °C was the only treatment that did not show a significant decrease in 

mean cellulose content. Addition of CTec3 made no significant difference to % cellulose 

degradation at 45 °C after 9 days ensiling (both with or without L. plantarum inoculation), 

probably due to cellulose degradation already occurring naturally after 9 days ensiling at 45 

°C. Addition of CTec3 significantly increased % cellulose degradation for biomass ensiled at 

37 °C for 9 days both with L. plantarum (P = 0.0082) and without L. plantarum (P = 0.0007) 

compared to biomass ensiled with no CTec3 under the same conditions. However, there was 

no significant difference in % cellulose degradation with or without CTec3 for any biomass 

ensiled at 37 °C for 1 day. Temperature made no significant difference to % cellulose 

degradation following 9 days ensiling with CTec3, despite 45 °C being nearer to the optimum 

temperature of CTec3 (50-55 °C) (Novozymes). 
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Figure 13. Effect of CTec3 cellulosic enzyme package addition on cellulose content of 

ensiled biomass with various treatments 

 

N6G60 Sorghum bicolor biomass with 40 g l-1 CaCO3 was ensiled at 37 °C or 45 °C for 1 day 

and 9 days. Biomass ensiled with no CTec3 addition is represented by white bars and 

biomass with CTec3 addition (3 g CTec3 kg-1 wet biomass) by grey bars. ‘L. pl. 37 °C 1d’ 

represents inoculation of L. plantarum at a cell loading of approximately 360 x103 cells g-1 

wet biomass, ensiling temperature of 37 °C and ensiling period of 1 day. Bars represent the 

mean % cellulose degradation of n=3 independent replicates with standard error shown. 

Percentage cellulose degradation was calculated by expressing decrease in cellulose 

content as a percentage of initial cellulose content (approximately 40% total wet biomass 

weight). ** indicates P < 0.01, *** indicates P < 0.001. 
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4.5. Ensiling with P. acidilactici at 45 °C 

A preliminary metagenomics study of biomass ensiled at 45 °C identified Pediococcus 

species as the major genus. Therefore additional Pediococcus cells were added to biomass 

to determine if lactic acid production could be increased further. P. acidilactici was selected 

as it is a thermophillic and homofermentative LAB that has been previously isolated from 

silage (Cai et al., 1999). However addition of P. acidilactici cells during ensiling at 45 °C did 

not increase lactic acid production.  

 

Performance of a two-way ANOVA followed by a post-hoc Tukey’s multiple comparisons test 

showed that inoculation with Pediococcus significantly decreased lactic acid concentrations 

following both 1 day and 5 days ensiling (P = 0.0012 and P = 0.0051, respectively). Ethanol 

production during ensiling at 45 °C was minimal (0.13 - 0.19 mmol g-1) and acetic acid 

concentrations were relatively low, however for both 1 and 5 days, acetic acid concentrations 

were significantly higher with Pediococcus addition  (P < 0.0001 and P <0.0001, respectively) 

(Fig. 14).  

 

There was no significant difference in lactic acid concentrations after 1 day or 5 days ensiling 

at 45 °C. Lactic acid reached a similar concentration after 1 day ensiling as it did after 9 days 

ensiling under the same conditions in the previous experiment. Since after 1 day ensiling 

lactic acid concentration had already reached close to its previous maximum it was to be 

expected that no more lactic acid would be produced following 5 days ensiling. 
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A. Lactic acid                                       B. Acetic acid 

 

 

 

 

 

 

 

 

 

Figure 14. Effect of P. acidilactici addition on A. lactic acid and B. acetic acid concentration 

from biomass ensiled at 45 °C for 1 day and 5 days. 

 

N6G60 Sorghum bicolor biomass with 40 g l-1 CaCO3 addition was ensiled at 45 °C for 1 day 

and 5 days (+/- 2 hours). Biomass ensiled without inoculation is represented by white bars 

and with P. acidilactici inoculation by grey bars. P. acidilactici was added at a cell loading of 

approximately 310 x103 cells g-1 wet biomass. Bars represent the mean lactic acid 

concentration of n=3 independent replicates with standard error shown. ** indicates P < 0.01, 

*** indicates P < 0.001. 
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4.6. Time course ensiling at 45 °C 

Although results for 4.4 showed that 9 days ensiling always increased lactic acid production 

compared to 1 day ensiling, there was no sampling performed at any intermediate time point. 

To better characterise the ensiling process under determined optimum conditions, including 

minimum ensiling time to achieve maximum lactic acid yields from free sugars, a time course 

experiment was performed at 45 °C.   

 

Due to possible short–term freezer failure, storage of biomass was not maintained at 20 °C 

and some defrosting of biomass occurred. This affected initial sugar concentrations in the 

biomass. Sugar concentrations of initial biomass measured in the first ensiling experiment 

performed showed total free sugar concentration of approximately 1.6 g g-1 biomass, 

composed of 32.9% sucrose, 35.6% glucose and 31.5% fructose. In comparison, sugar 

concentrations measured from initial biomass in the current time course experiment showed 

total free sugar concentration of approximately 1.4 g g-1 biomass, composed of 2.9% 

sucrose, 48.9% glucose and 48.2% fructose. The 0.2 g g-1 difference in total sugar 

concentration may have been a result of natural variation between batches of biomass, 

although decrease in total sugar content could have been due to changes in storage 

temperature. The decrease in sucrose percentage by 30% and associated increase in 

glucose and fructose percentages are a result of changes in storage temperature. Within the 

time period when biomass reached room temperature sucrose will have degraded into 

glucose and fructose due to activity of an enzyme called invertase, which is naturally present 

in sweet sorghum (Njokweni, Ibraheem and Ndimba, 2016). Previous studies have confirmed 

degradation of sucrose and decrease in total sugar concentrations of biomass due to 

increased storage temperatures and times (Skrede, 1983; Lingle et al., 2012).  

 

Results show that glucose was fermented before sucrose. Fermentation of glucose and 

fructose occurred at a similar rate, however initial fermentation of fructose was approximately 

8 hours after initial fermentation of glucose (Fig. 15). Therefore glucose was depleted 

approximately 12 hours before sucrose was depleted. Preferential utilisation of glucose over 

fructose has been reported previously in fermentations with LAB but the reasons for it are 

unclear (Erten, 1999). After 60 hours ensiling all sugars were depleted. This is considerably 

slower than ensiling at 37 °C, in which all sugars were depleted after 1 day ensiling. 

However, it should be considered that ensiling at 37 °C was performed without CaCO3 

addition.  

 

Lactic acid concentration reaches its maximum after approximately 48 hours enisling, despite 

a small amount of fructose still being present. Compared to ensiling at 37 °C fermentation at 
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45 °C occurred at a slower rate. Although in this experiment lactic acid production reached a 

maximum after 48 hours, in the previous experiment lactic acid reached a similar average 

concentration of 14.2 mmol g-1 after 1 day ensiling and showed no further increase following 

another 4 days ensiling. In contrast, in experiment 4.4 average lactic acid concentration after 

1 day ensiling at 45 °C was 5.25 mmol g-1, approximately half of lactic acid concentration 

reached after 1 day in the current experiment and considerably far from the maximum. 

Despite the same conditions and additives between experiments, rate of lactic acid 

production showed considerable variation. There was even considerable variation between 

batches in the same experiment, which can be seen by the large error bars for all 

metabolites after 24 hours ensiling when lactic acid concentrations from two separate 

batches of biomass were combined. 

 

Addition of 40 g l-1 CaCO3 to biomass increased the initial pH of silage to 6.0. During ensiling, 

pH decreased to approximately 4.9 at which it remained stable due to the buffering effect of 

40 g/L CaCO3. Decrease in pH followed increases in lactic acid concentration over time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Metabolite concentrations and pH over time from biomass ensiled at 45 °C for 3 

days. 

 

N6G60 Sorghum bicolor biomass with 40 g l-1 CaCO3 addition was ensiled at 45 °C for 3 

days (72 hours). Metabolite concentrations are shown for up to 60 hours. Sampling was 

performed at 0, 3, 6, 9, 14, 18, 24, 30, 38, 48 and 72 hr from 2 ensiled biomass batches.  24 

hr and 48 hr time points represent the mean of n =6 independent replicates from 2 batches. 

All other time points represent the mean of n=3 independent replicates with standard error 

shown. Sugar concentrations (glucose and fructose) are shown on the left y axis and product 

concentration (lactic acid) is shown on the right y axis. Data is fit to sigmoidal dose-

responsive non-linear model (for glucose r2 = 0.97; for fructose r2 = 0.96; for lactic acid r2 = 
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0.99). Sucrose, acetic acid and ethanol concentrations were negligible. pH at each time point 

is shown in the lower graph. For pH, data is fit to smooth 2nd order polynomial curve (r2 = 

0.98). 
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5. Discussion  

5.1. Ensiling product yields and microbial community composition of silage 

Most ensiling processes are driven by lactic acid fermentation, which results in highest 

quality silage, due to lowest dry matter and energy loss from the crop (Kung and Shaver, 

2001). Generally, lactic acid fermentation naturally dominates during ensiling, however in the 

current study; ensiling of sweet sorghum at 37 °C without additives favoured ethanol 

fermentation. When ensiling product concentrations were converted from mmol g-1 of wet 

biomass to g l-1 of expressed liquid from biomass, ethanol concentration was approximately 

double lactic acid concentration. In a previous study, ensiling of sweet sorghum in 18.9 l 

buckets at 30 °C gave considerably different results. After 24 hours, approximate 

concentrations were 3 g l-1 ethanol and 8 g l-1 lactic acid. After 2 weeks this increased to 5 g l-

1 ethanol and 23 g l-1 lactic acid (Gallagher et al., 2018). The difference in relative ethanol 

and lactic acid concentrations between studies is likely to be due to a number of factors 

affecting microbial community composition.  

 

Sweet sorghum used in both studies was of the same variety and harvested from the same 

field at the same growth stage, however silage set-up was performed immediately in the 

study by Gallagher et al., whereas in the current study biomass was frozen and then silage 

set-up performed in the laboratory. Other key differences between the studies include 

ensiling temperature (30 °C vs. 37 °C) and scale of ensiling (8.9 L buckets vs. 50 ml falcon 

tubes). 

 

It is likely that in the current study, the microbial community of biomass ensiled at 37 °C 

comprised a greater proportion of yeasts than LAB, which were responsible for observed 

high ethanol concentrations. Some species of yeasts are strictly aerobic and therefore rapid 

removal of air normally prevents their growth, in addition to the growth of aerobic moulds and 

bacteria in the silage (Pahlow et al., 2003; Liu et al., 2014). It is possible that during transport 

and storage sweet sorghum was exposed to oxygen, which increased growth of yeasts. Mills 

and Kung (2002) reported increases in the number of yeasts and moulds in chopped barley 

forage that had been exposed to air in a forage wagon for 24 h prior to silo filling. Packing of 

silage may have also affected oxygen levels, as if falcon tubes were not packed tightly 

enough then it may have taken longer for an anaerobic environment to be established. 

 

Following depletion of oxygen, ethanol production can occur via fermentation of glucose by 

anaerobic yeast (Equation 1) and enterobacteria (Equations 2) and via heterofermentation of 

glucose by LAB (Rooke and Hatfield, 2003). It is likely that ethanol was produced by a 



 52 

combination of these fermentation pathways as ratios of lactic acid, acetic acid and ethanol 

cannot be linked to a single fermentation reaction. Previous metagenomic analysis identified 

several genera of yeasts present in sweet sorghum silage after 1 day at 30 °C (Gallagher et 

al., 2018). These were; Candida, Saccharomyces, Cladosporium, Issatchenki, Papiliotrema 

and Hannaella. Candida was the most dominant genus in ensiled biomass and in pre-ensiled 

biomass. Candida can assimilate lactic acid in addition to glucose for fermentation to alcohol. 

Other lactic acid assimilating yeasts include Saccharomyces, Cryptococcus, and Pichia 

species, which are commonly isolated from maize and sorghum silage (Middelhoven, de 

Jong and de Winter, 1990). Therefore lactic acid concentrations may be directly linked to 

ethanol concentrations if lactic acid is fermented to ethanol by such yeasts during current 

ensiling. 

 

Yeast: 

Glucose → 2 Ethanol + 2 CO2 

Equation 1. Simplified equation for anaerobic fermentation of glucose to ethanol by yeast 

species (Rooke and Hatfield, 2003) 

 

Enterobacteria: 

2 Glucose → 2 Lactate + Acetate + Ethanol + 2 CO2 

Equation 2. Simplified equation for fermentation of glucose to ethanol by enterobacteria 

species (Rooke and Hatfield, 2003) 

 

The strong negative correlation between lactic acid concentration and ethanol concentration 

(Section 4.2) suggests that there is direct competition for available sugars or required 

nutrients in the biomass between ethanol producing microbes and lactic acid producing 

microbes. Therefore ensiling system modifications designed to limit growth of ethanol 

producing microbes should indirectly or directly increase lactic acid concentrations.  

 

Although it can be assumed that strategies to decrease yeast populations will enable 

increased growth of LAB, there is evidence of commensalism between yeasts and LAB.  

During dough fermentation, CO2 production and O2 consumption by S. cerevisiae played a 

role in stimulating the growth of Lactobacillus sanfranciscensis (Sieuwerts, Bron and Smid, 

2018). As many LAB are stimulated by CO2 (Stevens et al., 2008) and inhibited by the 

presence of reactive oxygen species produced in an aerobic environment (An et al., 2011), 

presence of yeast may contribute to LAB growth during initial stages of ensiling. 
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Yeasts also directly stimulate LAB growth by release of stimulatory compounds, including 

riboflavin (Megee et al., 1972). A study by Sieuwerts, Bron and Smid (2018) later showed 

that L. sanfranciscensis and L. plantarum were stimulated by a factor secreted by S. 

cerevisiae, during growth on chemically defined medium. This commensalism between LAB 

and yeast is just one example of the many complex interactions that may exist in the silage 

microbial community and indeed any natural microbial consortia. Such interactions make it 

difficult to predict the effect of ensiling system modifications on product yields. 

5.2. pH control 

Fermentation by LAB and other microbes produced organic acids, which decreased the pH 

of silage. After 1 day ensiling at 37 °C the pH had dropped to approximately 3. Unlike LAB, 

yeasts are not inhibited by low pH and are able to grow and multiply within the pH range of 3 

to 8 (McDonald et al., 1991). Therefore yeasts will have outcompeted LAB once pH dropped 

below a certain threshold. It was previously demonstrated that L. plantarum growth stopped 

when internal cellular pH of 4.6 – 4.8 was reached, with external pH limit dependent on 

growth medium. When L. plantarum was cultured in MRS with hydrochloric acid as the 

acidulant, internal pH approached 4.5 when external pH neared 3 (McDonald, Fleming and 

Hassan, 1990). In line with this study, results from 1 day ensiling at 37 °C suggest that 

growth of endogenous LAB and therefore lactic acid production may have stopped when 

external pH reached 3. To enable maximum growth and lactic acid production by LAB, 

CaCO3 was added to buffer the system so that pH remained suitable for the LAB present. 

Fermentation of brewer’s spent grain hydrolysate, with 20 g l-1 CaCO3 addition increased 

total lactic acid yield by 13% in L. fermentum and 17% in L. rhamnosus compared to 

fermentation without CaCO3 (Pejin et al., 2015). Similar increases in lactate productivity by 

Lactococcus lactis were observed following addition of up to 30 g l-1 CaCO3 during 

hydrolysed sago starch fermentation (Bujang, Sujang and Adeni, 2004). Based on effective 

CaCO3 concentrations used previously, biomass was ensiled with 15 g l-1 and 40 g l-1 CaCO3 

addition in initial attempts to control pH of silage. 

 

As has been demonstrated in previous fermentations, addition of CaCO3 increased lactic 

acid concentrations from ensiled biomass.  40 g l-1 CaCO3 buffered the system so that pH 

remained stable at approximately 4.8, despite production of lactic acid and other organic 

acids during ensiling. The increased pH prevented inhibition of growth and lactic acid 

production by LAB. 40 g l-1 was a more suitable concentration than 15 g l-1 CaCO3 as at 15 g 

l-1 there was still a decrease in pH, from an average of 4.6 to an average of 4 as cell loading 

increased. In the presence of inoculum of any size, 40 g l-1 CaCO3 increased lactic acid 

concentrations significantly more  than 15 g l-1 CaCO3.  In the absence of inoculum there was 
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no significant difference in lactic acid concentrations between 15 g l-1 CaCO3 addition and 40 

g l-1 CaCO3. This may be because lactic acid production was limited by L. plantarum cell 

number and not by decrease in pH. Without inoculum, lactic acid production was minimal and 

so any minor change in pH could be successfully buffered by 15 g l-1 or 40 g l-1 CaCO3. Even 

without inoculum, addition of 40 g l-1 CaCO3 resulted in a 2.8 x increase in lactic acid 

production. In subsequent experiments 40 g l-1 CaCO3 was sufficient to successfully buffer 

pH of silage (data not shown). 

 

Initial pH of biomass with 40 g l-1 CaCO3 was 5.6 in Section 4.2, whereas in the time course 

experiment the initial pH of biomass with 40 g l-1 CaCO3 was 6.0 (Section 4.6). This 

difference in initial pH is likely due to natural variation in the pre-ensiled biomass (moisture 

content also differed between samples). During the time course ensiling, pH decreased to 

approximately 4.9, at which it remained stable. This was similar to 4.2, in which the pH 

decreased to approximately 4.8. As expected, decrease in pH followed lactic acid production 

during ensiling, however a small initial decrease occurred before lactic acid production 

occurred, which suggests production of other organic acids by LAB and other microbes. 

Growth of these microbes may have been due to ensiling temperature and anaerobic 

conditions not yet being reached. 

5.3. Inoculation with LAB 

Inoculation with L. plantarum resulted in significant increases in lactic acid production during 

ensiling at 37 °C, both with and without CaCO3 addition. The decreases in acetic acid 

concentration that occurred suggest that inoculation with L. plantarum increased competition, 

which prevented growth of endogenous bacteria responsible for acetic acid production. The 

significant interaction between cell loading and CaCO3 concentration on lactic acid 

concentration is due to CaCO3 altering silage pH so that additional L. plantarum cells are 

able to continue lactic acid production. Initial cell loading size for L. plantarum was based on 

the most common inoculation size recommended of 1 x 105 cfu per gram of wet forage. 

There was a significant increase in lactic acid concentration between 1 x and 3 x cell loading 

with 40 g l-1 CaCO3, which suggests that 1 x cell loading was not sufficient to effectively 

dominate the fermentation. However, there was no significant difference in lactic acid 

concentration between 3 x and 5 x cell loading, likely due to L. plantarum reaching its 

maximum cell density within the biomass under the particular ensiling conditions. 3 x cell 

loading (3.6 x 105 cfu g-1 biomass) was selected for use in subsequent ensiling experiments 

as a smaller inoculation size is economically favourable. Despite these considerations it was 

later determined that similar lactic acid concentrations could be achieved at 37 °C without 

any inoculation, following an extended ensiling period of 9 days. Subsequent results also 
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suggest that increasing ensiling temperature to 45 °C may further improve yield and increase 

selectivity towards lactic acid production, irrespective of L. plantarum inoculation. Therefore, 

although addition of L. plantarum increases the rate of lactic acid production, extending 

ensiling time or increasing ensiling temperature is likely to be more practical and economical 

than inoculation.  

 

Following identification of Pediococcus as the dominant genus at 45 °C inoculation with P. 

acidilactici was performed in attempt to increase lactic acid concentrations further. As P. 

acidilactici is obligately homofermentative, inoculation with P. acidilactici provides greater 

potential than L. plantarum inoculation, however there was no increase in lactic acid 

production after 1 day or 5 days ensiling at 45 °C with P. acidilactici inoculation. This was 

likely because Pediococcus cells were already present at their maximum cell density in the 

biomass under the given conditions and so adding more cells had no effect on the system. In 

fact, significantly less lactic acid (approximately 1 mmol g-1 less) was produced with P. 

acidilactici addition. This may have been due to contamination of P. acidilactici cell cultures 

added to the biomass, which competed with endogenous Pediococcus species. Small but 

significant increases in acetic acid production suggest contamination by heterofermentative 

LAB or other acetic acid producing species. Alternatively the endogenous Pediococcus 

bacteria responsible for lactic acid production may have not been P. acidilactici, but another 

species. Therefore introduction or further addition of P. acidilactici cells may have affected 

the dynamics of microbial growth, and subtly shifted community metabolism away from lactic 

acid production. 

5.4. Ensiling temperature and time 

Ensiling temperature and time had a greater influence on product yields than inoculation with 

LAB or CTec3 addition. Increasing ensiling temperature to 45 °C significantly improved 

selectivity towards lactic acid production. When biomass was ensiled at 45 °C with 40 g l -1 

CaCO3 only, both ethanol and acetic acid production were virtually eliminated. This may 

have been due to a reduction in the growth of mesophillic microorganisms that are 

responsible for production of alternative fermentation products and the decreased likelihood 

of contamination by non-endogenous species. It is likely that fewer microbial species 

endogenous to silage would have been able to tolerate the elevated temperature. Previous 

evidence suggests that microbial communities in high-temperature environments are often 

dominated by a few types of microorganisms, and are significantly less diverse than those in 

lower temperature environments (Li et al., 2015). This was supported by preliminary 

metagenomic data, which showed that when considering relative taxon abundance, bacterial 

diversity was considerably lower for biomass ensiled at 45 °C than at 37 °C. The decreased 
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diversity corresponded with dominance of the Pediococcus genus, which are 

homofermentatative LAB and so would have been responsible for resulting high lactic acid 

concentrations.  

 

Ensiling at elevated temperature may have benefits regarding optical purity of lactic acid, as 

during fermentation of non-sterile kitchen waste; increasing fermentation temperature from 

35 °C to 45 °C increased the ratio of L- lactic acid:D - lactic acid from 60:40 to 83:17 (Zhang 

et al., 2008). The same study also demonstrated that pH and fermentation time can also 

have an effect on optical purity. As optical purity is a key factor in determining the value of 

lactic acid for commercial application, it is worthwhile evaluating the effect that various 

ensiling conditions had on optical purity in addition to yield of lactic acid.  

 

Manipulation of ensiling temperature will undoubtedly be more difficult at commercial-scale 

than at laboratory scale, however rapid rises in temperature in the early stage of ensiling 

often naturally result in farm-scale silage reaching temperatures over 45 °C (Barnett, 1954). 

Silage temperature is affected by ambient temperature (Borreani et al., 2018) and type of silo 

used (Moisio and Heikonen, 1994). Therefore there is potential for manipulation of ensiling 

temperature at commercial scale based on location and season at which growth and ensiling 

are performed and based on silo design. 

 

Between experiments, there was considerable variation in the time required for maximum 

lactic acid yields to be achieved and for all sugar to be consumed, for the same ensiling 

treatments and conditions. For example, in Section 4.3. mean lactic acid concentration of 

19.8 mmol g-1 was reached after 1 day ensiling at 45 °C with 40 g l-1 CaCO3 and 3 x L. 

plantarum cell loading. Whereas in Section 4.4. for the same treatment, mean lactic acid 

concentration only reached 3.7 mmol g-1 after 1 day ensiling, with significant increases 

observed following 9 days ensiling. These results suggest that a longer time period is 

generally required for maximum lactic acid concentration to be reached during ensiling with 

40 g l-1 at 45 °C than ensiling at 37 °C. Performance of a time course experiment showed 

that maximum lactic acid yields were reached after approximately 30 hours ensiling, however 

fructose was not completely utilised until 48 hours. Ensiling time required for maximum lactic 

acid production is highly dependent on microbial composition in silage and is likely to be 

greatly influenced by ensiling scale; therefore it is difficult to make any recommendations as 

to optimal ensiling period without further research. On a commercial scale, optimal ensiling 

period should be based on continuous measurements of lactic acid concentration, to 

determine when lactic acid concentration remains stable and so has reached its maximum. 
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5.5. Cellulose degradation and effect of CTec3 

Although maximum theoretical yield was calculated (Section 4.1), it is important to consider 

that this is based on measured free sugar content of the particular batch of biomass. Initial 

free sugar concentration is likely to be variable between batches of biomass harvested from 

the same field due to the influence of environmental factors and potential differences in 

storage time and conditions. As maximum theoretical yield is based on free sugar content, it 

does not include any lactic acid produced from the fermentation of lignocellulose-derived 

sugars. It is not possible to determine the proportion of ensiling products that were produced 

from lignocellulose-derived sugars.  Lignocellulose utilisation can only be inferred from high 

product yields and significant cellulose degradation. 

 

Ensiling at 45 °C for 9 days produced similar effects on cellulose degradation as were seen 

for ensiling at 37 °C for 9 days with CTec3 addition. Therefore ensiling at elevated 

temperature may offer a more economical alternative to CTec3 addition for the degradation 

of cellulose. Despite 45 °C being nearer to the optimum temperature of CTec3 (50-55 °C), 

temperature made no significant difference to perecentage cellulose degradation following 9 

days ensiling with CTec3. This was likely to be due to the majority of hemicellulose, lignin 

and crystalline cellulose remaining insoluble without effective pre-treatment. 45 °C may have 

increased the rate of cellulose degradation by CTec3, however after 9 days ensiling all 

available hemicellulose and cellulose were still degraded. 

 

Previous studies identified ensiling as a form of pre-treatment. Chen, Sharma-Shivappa and 

Chen (2007) effectively evaluated the effect of pre-treatment by performing enzymatic 

hydrolysis for 72 hours following pre-treatment or no pre-treatment and measuring cellulose 

degradation. However, as the current ensiling method reflects simultaneous pre-treatment 

and enzymatic hydrolysis, it is difficult to demonstrate if ensiling functions as a pre-treatment. 

Based on the assumption that 1 day was sufficient for CTec3 to degrade available cellulose, 

results suggest that ensiling may have acted as a form of pre-treatment. If 1 day ensiling 

results were considered as cellulose degradation without pre-treatment and the following 8 

days ensiling was considered as potential pre-treatment, then increased cellulose 

degradation suggests that 8 days ensiling may have resulted in solubilisation of a proportion 

of lignocellulose. However, effectiveness of ensiling as pre-treatment under these conditions 

requires further investigation. 

 

Despite a significant increase in cellulose degradation at 45 °C and a decrease in other 

measured ensiling products at 45 °C compared to 37 °C, increases in lactic acid 

concentration were not proportional. This suggests that additional carbon resulting from 
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cellulose degradation, and carbon no longer being utilised for acetic acid and ethanol 

production, were being utilised by the microbial community for alternative purposes that were 

yet to be investigated. Nevertheless, results suggest that ensiling at 45 °C provides greater 

potential than ensiling at lower temperatures in terms of lignocellulose degradation and lactic 

acid yield and selectivity.  

5.6. Dry matter recovery  

Moisture content of biomass is a determining factor for both growth rate and minimum pH 

tolerance of fermenting microorganisms. Sweet sorghum is typically harvested below 

moisture contents of 65% to minimise leachate production (Grebrehanna et al., 2014), 

however average moisture content of pre-ensiled biomass (Section 4.1) was 73.4%. At lower 

dry matter content, microorganism growth rate is generally higher, and pH tolerance lower. 

Therefore dry matter content of harvested biomass may have improved lactic acid production 

rates and increased time taken to reach terminal pH (Buxton, Muck and Harrison, 2003). 

Although ensiling is an effective method of biomass preservation, average forage dry matter 

loss is still 6.2% following ensiling, although this can range from 0 – 28.6% (Goeser, Heuer 

and Crump, 2015). Following 1 day ensiling at 37 °C without additives there was a significant 

decrease in dry matter content from 26.6% to 21.1% (P = 0.0063). Dry matter loss after 1 

day ensiling at 45 °C was 0.91%, compared to 5.5% at 37 °C. This may have been a result of 

increased fermentation by LAB at 45 °C, as dry matter recovery is usually worse in yeast-

dominated fermentations than in LAB dominated fermentations. The minimal dry matter loss, 

which occurred during ensiling for lactic acid production, is a desirable property of silage that 

is to be used for animal feed. 

5.7. Silage as animal feed 

Application of silage as animal feed, following extraction of lactic acid for commercial use, 

would improve economic viability of the process and result in minimal waste production. 

Although dry matter content of silage may be suited for animal feed, there are a number of 

other properties that determine suitability of silage as animal feed, including nutritional quality 

and digestibility (Huhtanen, 1998). Undesirable microorganisms or metabolites may be 

detrimental to nutritional quality of silage. Others may be harmful to livestock or affect the 

safety of milk and other animal products for human consumption (Driehuis et al., 2018). 

Butyric acid has detrimental effects on milk yield and fertility of cattle (Andersson, 1988), 

however butyric acid is commonly produced during ensiling due to contamination by 

Clostridia (Kung and Shaver, 2001). Therefore gas chromatography should be carried out to 

confirm absence of butyric acid and other undesirable metabolites in silage. 
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5.8. Ensiling scale 

Despite similar total free sugar concentrations in initial biomass, rate of sugar consumption 

and acid or ethanol production was faster during ensiling in the current study than was 

reported in the previous study by Gallagher et al., (2018). In the current study all sugars were 

consumed following 1 day ensiling at 37 °C without additives. This was not the case for 

biomass ensiled at 30 °C in 8.9 L buckets, in which approximately 35% of sugar still 

remained after 48 hours ensiling. Slower sugar consumption may have been due to the lower 

temperature slowing microbial growth, and/or the effects of ensiling at a larger scale. 

Although previously, small-scale laboratory silos have been found to be representative of the 

fermentation products of farm-scale silos (Naoki and Yuji, 2008) there are still a number of 

factors to consider during commercial scale up. Larger scale silos will experience a greater 

depth and time dependent oxygen gradient (Kraut-Cohen et al., 2016). Therefore it will take 

longer to establish an anaerobic environment and microbial communities are likely to differ 

depending on spatial position within the silo. Furthermore, silage temperature is likely to be 

affected by commercial scale up as temperature is an environmental variable that is 

determined by exothermic fermentation reactions and the insulative properties of silage 

(Gallagher et al., 2018). 

5.9. Result variability 

Preliminary metagenomic data suggests that contamination occurred in the sample ensiled at 

45 °C for 9 days, for which lactic acid concentrations were significantly lower than other 

samples of the same treatment. Bacteria belonging to the Bacillus genus were present in the 

particular sample, which were not found to be present in any other ensiled biomass. As 

Bacillus are common soil bacteria it is likely that soil present in the pre-ensiled biomass 

sample resulted in growth of bacteria that are not normally endogenous to sweet sorghum 

biomass. Therefore a proportion of carbon will have been directed away from lactic acid 

fermentation for fermentation by Bacillus species. The growth of Bacillus species is a prime 

example of the variation that can occur during ensiling.  

  

Gallagher et al. identified a number of factors that may influence the in-situ microbial 

composition of ensiled material. Even for a single hybrid grown in one field, as used in this 

study, microbial composition is influenced by the heterogeneity of soil properties; localised 

crop pathogens, epiphytes and endophytes (Shakya et al., 2013) and pesticide residues. 

Due to these potential sources of variability, experimental design was based on a single 

factor method rather than a Design of Experiment approach. Although measures were taken 

to minimise sources of variability between experiments, results may still have been affected 

by difference during experimental set-up. For example; variability in ambient temperature 
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during silage preparation, differences in growth of inoculant and variation in storage 

conditions of biomass. 

 

Due to the considerable degree of variation in results between ensiling experiments 

conclusions were drawn based on comparisons within the same experiment only. The 

highest concentration of lactic acid from silage recorded during this study was 19.75       

mmol g-1, which was achieved following 1 day ensiling at 45 °C with addition of 40 g l -1 

CaCO3 and L. plantarum inoculation, although L. plantarum was determined later to not be 

an affecting factor. In subsequent ensiling experiments ensiling at 45 °C produced higher 

lactic acid concentrations than 37 °C following a sufficient ensiling period, but lactic acid 

concentration was still considerably lower than 19.75 mmol g -1. The greatest degree of 

variability was demonstrated by relative lactic acid concentrations at 37 °C and 45 °C for 

biomass ensiled with 40 g l-1 CaCO3 and L. plantarum inoculation. Results in Section 4.3. 

show that lactic acid concentration at 45 °C exceeded 37 °C after 1 day ensiling, whereas 

results in Section 4.4. show that lactic acid concentration at 37 °C exceeded 45 °C after 1 

day ensiling, although after 9 days ensiling this was no longer the case. These results 

demonstrate that due to temporal variability in microbial composition during ensiling, different 

conclusions can be drawn as to the effects of the same factor between ensiling experiments. 

Therefore experiments that produced key findings should be repeated over longer ensiling 

periods to ensure validity of results. Following confirmation of key findings and reproduction 

of high lactic acid yields, with different batches of biomass and varying experimental set-up, 

commercial scale up can begin to be considered.  

5.10. Recommendations for lactic acid production via ensiling 

Based on results of the series of ensiling experiments performed in this study, key 

recommendations for the optimisation of ensiling for lactic acid production from sweet 

sorghum are the addition of 40 g l-1 CaCO3 and an ensiling temperature of 45 °C, to improve 

lactic acid yields and selectivity, and enable potential lignocellulose degradation. From an 

economic viewpoint addition of CaCO3 is more viable than other additives, which were 

investigated (LAB and CTec3) during the study and an ensiling temperature of 45 °C may be 

achieved with little modification of current silos in sub-tropical climates. However, optical 

purity and methods of separation and purification of lactic acid from silage should first be 

evaluated before commercial scale-up is considered.  
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6. Conclusion 

Sweet sorghum provides potential as a feedstock for the simultaneous conversion of free 

sugars and lignocellulosic biomass to value-added products. Through a series of lab-scale 

ensiling experiments, this study identified suitable conditions and additives for the production 

of lactic acid from sweet sorghum biomass. Optimisation of the ensiling system resulted in a 

shift from initial ethanol dominated fermentation to lactic acid dominated fermentation. Under 

selected ensiling conditions, lactic acid yields neared or exceeded theoretical maximum from 

free sugars in biomass (17.4 mmol g-1). Evidence of lignocellulose degradation under these 

conditions demonstrates the potential of ensiling as a top-down, consortia-based CBP 

system for the conversion of lignocellulose to lactic acid and other value-added products.  

 

The project identified addition of CaCO3 as an effective method for increasing lactic acid 

production during ensiling, by buffering silage pH. Addition of 40 g l-1 CaCO3 demonstrated 

potential to increase lactic acid yields by 3.6 x compared to ensiling without CaCO3. Ensiling 

temperature and time were demonstrated to be key factors in determining ensiling product 

yields from sweet sorghum. 45 °C improved lactic acid selectivity compared to other 

investigated ensiling temperatures. However, due to the degree of variability between 

ensiling experiments, further investigation is required before accurate conclusions can be 

drawn as to the effects of ensiling temperature and time on lactic acid yields. Metagenomics 

based approaches will improve our knowledge of the silage microbial community, which will 

help to determine optimal conditions for maximum lactic acid production and may enable 

further lignocellulose degradation.  

 

Although this study demonstrates the potential for production of lactic acid via ensiling of 

sweet sorghum, observed variability related to biomass composition and ensiling scale is 

likely to affect commercial application. Further investigation at lab-scale is required to enable 

validation of conclusions drawn from individual ensiling experiments, and to reproduce 

achieved high lactic acid yields (19.8 mmol g-1), before commercial application can be 

considered. 
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Sjöström, E. (1993). Wood chemistry. San Diego: Academic Press. 

Skrede, G. (1983). Changes in Sucrose, Fructose and Glucose Content of Frozen 

Strawberries with Thawing. Journal of Food Science, 48(4), pp.1094-1096. 



 77 

Soccol, C., Costa, E., Letti, L., Karp, S., Woiciechowski, A. and Vandenberghe, L. (2017). 

Recent developments and innovations in solid state fermentation. Biotechnology Research 

and Innovation, 1(1), pp.52-71. 

Södergård, A. and Stolt, M. (2002). Properties of lactic acid based polymers and their 

correlation with composition. Progress in Polymer Science, 27(6), pp.1123-1163. 

Srivastava, A., Narayanan, N. and Roychoudhury, P. (2004). L (+) lactic acid fermentation 

and its product polymerization. Electronic Journal of Biotechnology, 7(2). 

Stevens, M., Wiersma, A., de Vos, W., Kuipers, O., Smid, E., Molenaar, D. and 

Kleerebezem, M. (2008). Improvement of Lactobacillus plantarum Aerobic Growth as 

Directed by Comprehensive Transcriptome Analysis. Applied and Environmental 

Microbiology, 74(15), pp.4776-4778. 

Streffer, F. (2014). Lignocellulose to Biogas and other Products. JSM Biotechnoloy & 

Biomedical Engineering, 2(1), p.1023. 

Tanaka, T., Hoshina, M., Tanabe, S., Sakai, K., Ohtsubo, S. and Taniguchi, M. (2006). 

Production of D-lactic acid from defatted rice bran by simultaneous saccharification and 

fermentation. Bioresource Technology, 97(2), pp.211-217. 

Taniguchi, M., Tokunaga, T., Horiuchi, K., Hoshino, K., Sakai, K. and Tanaka, T. (2004). 

Production of L-lactic acid from a mixture of xylose and glucose by co-cultivation of lactic 

acid bacteria. Applied Microbiology and Biotechnology, 66(2), pp.160-165. 

Tashiro, Y., Matsumoto, H., Miyamoto, H., Okugawa, Y., Pramod, P., Miyamoto, H. and 

Sakai, K. (2013). A novel production process for optically pure  L-lactic acid from kitchen 

refuse using a bacterial consortium at high temperatures. Bioresource Technology, 146, 

pp.672-681. 

Teresa Alegre, M., Carmen Rodríguez, M. and Mesas, J. (2004). Transformation of 

Lactobacillus plantarum by electroporation with in vitro modified plasmid DNA. FEMS 

Microbiology Letters, 241(1), pp.73-77. 

Teusink, B. and Smid, E. (2006). Modelling strategies for the industrial exploitation of lactic 

acid bacteria. Nature Reviews Microbiology, 4(1), pp.46-56. 



 78 

Tukey, J. (1949). Comparing Individual Means in the Analysis of Variance. Biometrics, 5(2), 

p.99. 

Upadhyaya, B., DeVeaux, L. and Christopher, L. (2014). Metabolic engineering as a tool for 

enhanced lactic acid production. Trends in Biotechnology, 32(12), pp.637-644. 

Vaidya, A., Pandey, R., Mudliar, S., Kumar, M., Chakrabarti, T. and Devotta, S. (2005). 

Production and Recovery of Lactic Acid for Polylactide—An Overview. Critical Reviews in 

Environmental Science and Technology, 35(5), pp.429-467. 

Van den Bosch, S., Schutyser, W., Vanholme, R., Driessen, T., Koelewijn, S., Renders, T., 

De Meester, B., Huijgen, W., Dehaen, W., Courtin, C., Lagrain, B., Boerjan, W. and Sels, B. 

(2015). Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers 

and dimers and processable carbohydrate pulps. Energy & Environmental Science, 8(6), 

pp.1748-1763. 

Van Soest, P. (1994). Nutritional ecology of the ruminant. Ithaca: Cornell University Press, 

p.217. 

Wang, C., Li, Q., Wang, D. and Xing, J. (2014). Improving the lactic acid production of 

Actinobacillus succinogenes by using a novel fermentation and separation integration 

system. Process Biochemistry, 49(8), pp.1245-1250. 

Wang, Y., Abdel-Rahman, M., Tashiro, Y., Xiao, Y., Zendo, T., Sakai, K. and Sonomoto, K. 

(2014). L-Lactic acid production by co-fermentation of cellobiose and xylose without carbon 

catabolite repression using Enterococcus mundtii QU 25. RSC Adv., 4(42), pp.22013-22021. 

Wang, Y., Meng, H., Cai, D., Wang, B., Qin, P., Wang, Z. and Tan, T. (2016). Improvement 

of L-lactic acid productivity from sweet sorghum juice by repeated batch fermentation 

coupled with membrane separation. Bioresource Technology, 211, pp.291-297. 

Wankat, P. (1988). Equilibrium staged separations. New York: Elsevier. 

Wee, Y., Yun, J., Park, D. and Ryu, H. (2004). Biotechnological production of L-lactic acid 

from wood hydrolyzate by batch fermentation of Enterococcus faecalis. Biotechnology 

Letters, 26(1), pp.71-74. 

Wilkinson, J., Bolsen, K. and Lin, C. (2003). Silage science and technology. Madison, 

Wisconsin: American Society of Agronomy, p.1. 



 79 

Witte, R. and Witte, J. (2009). Statistics, 9th Edition. Hoboken, NJ: John Wiley & Sons, 

p.409. 

Wyman, C. and Yang, B. (2008). Cellulosic biomass could help meet California's 

transportation fuel needs. California Agriculture, 63(4), pp.185-190. 

Yadav, A., Chaudhari, A. and Kothari, R. (2010). Bioconversion of renewable resources into 

lactic acid: an industrial view. Critical Reviews in Biotechnology, 31(1), pp.1-19. 

Yadav, R., Puniya, A. and Shukla, P. (2016). Probiotic Properties of Lactobacillus plantarum 

RYPR1 from an Indigenous Fermented Beverage Raabadi. Frontiers in Microbiology, 7. 

Yahaya, M., Kawai, M., Takahashi, J. and Matsuoka, S. (2002). The Effects of Different 

Moisture Content and Ensiling Time on Silo Degradation of Structural Carbohydrate of 

Orchard grass. Asian-Australasian Journal of Animal Sciences, 15(2), pp.213-217. 

Yang, S., Kataeva, I., Hamilton-Brehm, S., Engle, N., Tschaplinski, T., Doeppke, C., Davis, 

M., Westpheling, J. and Adams, M. (2009). Efficient Degradation of Lignocellulosic Plant 

Biomass, without Pretreatment, by the Thermophilic Anaerobe "Anaerocellum thermophilum" 

DSM 6725. Applied and Environmental Microbiology, 75(14), pp.4762-4769. 

Yankov, D., Molinier, J., Albet, J., Malmary, G. and Kyuchoukov, G. (2004). Lactic acid 

extraction from aqueous solutions with tri-n-octylamine dissolved in decanol and dodecane. 

Biochemical Engineering Journal, 21(1), pp.63-71. 

Ye, L., Hudari, M., Li, Z. and Wu, J. (2014). Simultaneous detoxification, saccharification and 

co-fermentation of oil palm empty fruit bunch hydrolysate for L-lactic acid production by 

Bacillus coagulans JI12. Biochemical Engineering Journal, 83, pp.16-21. 

Yi, X., Zhang, P., Sun, J., Tu, Y., Gao, Q., Zhang, J. and Bao, J. (2016). Engineering wild-

type robust Pediococcus acidilactici strain for high titer L- and D-lactic acid production from 

corn stover feedstock. Journal of Biotechnology, 217, pp.112-121. 

Yitbarek, M. and Tamir, B. (2014). Silage Additives: Review. Open Journal of Applied 

Sciences, 04(05), pp.258-274. 

Yoshida, S., Okano, K., Tanaka, T., Ogino, C. and Kondo, A. (2011). Homo-D-lactic acid 

production from mixed sugars using xylose-assimilating operon-integrated Lactobacillus 

plantarum. Applied Microbiology and Biotechnology, 92(1), pp.67-76. 



 80 

Zhang, B., He, P., Ye, N. and Shao, L. (2008). Enhanced isomer purity of lactic acid from the 

non-sterile fermentation of kitchen wastes. Bioresource Technology, 99(4), pp.855-862. 

Zhang, L., Li, X., Yong, Q., Yang, S., Ouyang, J. and Yu, S. (2016). Impacts of 

lignocellulose-derived inhibitors on L-lactic acid fermentation by Rhizopus oryzae. 

Bioresource Technology, 203, pp.173-180. 

Zhang, Y., Vadlani, P., Kumar, A., Hardwidge, P., Govind, R., Tanaka, T. and Kondo, A. 

(2015). Enhanced D-lactic acid production from renewable resources using engineered 

Lactobacillus plantarum. Applied Microbiology and Biotechnology, 100(1), pp.279-288. 

Zhao, K., Qiao, Q., Chu, D., Gu, H., Dao, T., Zhang, J. and Bao, J. (2013). Simultaneous 

saccharification and high titer lactic acid fermentation of corn stover using a newly isolated 

lactic acid bacterium Pediococcus acidilactici DQ2. Bioresource Technology, 135, pp.481-

489. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 81 

  (Biomass (g) / 500 g) x (3.75 / Measured OD600 of culture) x 

50 ml x Required cell loading 
Culture volume required   = 

Sample mass post-drying (g) + Average mass loss of controls (g)   

Sample mass pre-drying (g)  

x 100 

9. Appendix 
 
 

 
 

Equation 1. Equation to calculate culture volume required for desired LAB cell loading 

 

Total solids (%)  =  

Moisture content (%) = 100 – Total solids 

Equation 2. Equation to calculate pre- and post- ensiled sample moisture content 

 


