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Abstract  28 

Hybrid optimisation of multiple energy resources has been performed on a micro grid model of a hospital to investigate 29 

the capability of a standalone energy system and simultaneous mitigation of hospital waste. The main objectives of this 30 

study were to collect renewable energy resource data of a hybrid hospital, use the average amount of hospital waste 31 

from the literature and NASA surface meteorology in addition to the solar energy database from HOMER Pro software 32 

to construct a hybrid model for a conceptual hospital in the new green city in Saudi Arabia, NEOM. The hybrid model 33 

consisted of biogas Cofire and diesel generators, PV solar array and batteries. Simulations were performed to analyse 34 

the load requirements of a standalone hospital. The mechanism of energy storage was designed based on Tesla batteries. 35 

Then, the hybrid hospital model was tested with NEOM’s natural resources, load demand of 250 kWh/day and the 36 

average amount of daily hospital waste of 0.6 tons based on the literature data. This condition allows the smart hospital 37 

to be tested with real features. The outcome of the COE, NPC and the amount of reduction of carbon dioxide in the 38 

hybrid hospital were analysed. Many of the hybrid properties and constraints that define the hospital were adopted from 39 

previous literature concentrating on similar domains. The optimal solution of a hybrid micro grid consisted of biogas 40 

cofire, PV array, and batteries. Of the total load demand, 32.3% and 67.6% were produced by PV array and biogas cofire 41 

generators, respectively, together with eight Tesla PowerWall2.0 batteries. The cost of energy was 0.21 USD/kWh and 42 

the net present cost was 243,699.17 USD. In this study, we compared renewable energy with conventional energy and 43 

found that the optimal solution would be able to reduce carbon emission and diesel consumption by almost 84% and 44 

81%, respectively. The results were verified through a sensitivity study and compared with other studies.   45 

Nomenclature  46 

 

AC 

 

Alternative Current 

 

NREL 

 

National Renewable Energy Laboratory 

BioCo Biogas Cofire generator NASA National Aeronautics and Space 

Administration 

DG Diesel generator NPC Net Present Cost 

DC Direct Current PV PhotoVoltaic 

HOMER Pro Hybrid Optimisation Model for 

Electrical Renewable 

RF Renewable Fraction 

LCOE- COE Levelised Cost Of Energy GHG Greenhouse Gas 

STC Standard Test Conditions GHI Global Horizontal Irradiation 

USD United States Dollar   
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𝐶𝑐𝑎𝑝 Capital cost of grid extension in 

USD/year/km 

𝐶𝑤ℎ Battery capacity 

𝐸𝑑𝑒𝑚𝑎𝑛𝑑 Total annual electrical demand 

(primary plus deferrable) kWh/year 

𝐸𝐿 Average energy load per day in kWh/day 

𝐶𝑝𝑜𝑤𝑒𝑟  Cost of power from the grid extension 

in USD/km 

𝐴𝐷 Days of autonomy of battery 

𝑅𝑝𝑟𝑜𝑗 Project lifetime in years DOD Battery discharge depth 

𝑖 Real discount rate in % 𝜂𝑖𝑛𝑣 Efficiency of inverter 

𝐶 𝑅𝐹 Capital recovery factor 𝜂𝐵𝑎𝑡𝑡 Efficiency of battery 

𝐶𝑁𝑃𝐶  Total net present cost of the standalone 

power system (USD) 

𝐹0  Intercept coefficient of the generator’s fuel 

curve in  (L/hr/kw) 

 𝐶𝑜𝑚  

 

Operation and maintenance of grid 

extension in USD/year/km 

𝑌𝑔𝑒𝑛 Generator rated capacity in KW 

𝑚0̇  Flow rate of pure fossil fuel (kg/hr) 𝐹1 Slope of the generator’s fuel curve in 

(L/hr/kw) 

𝜌𝑓𝑜𝑠𝑠𝑖𝑙 Density of fossil fuel in (kg/L) 𝑃𝑔𝑒𝑛 Generator output power in KW 

COE Cost Of Electricity WHO World Health Organization 

 47 

Introduction 48 

The usage of waste has become a source of sustainable energy mainly because of the reduction in CO₂emissions [1]. 49 

Currently, waste-to-energy is considered to be one of the primary sources of energy that will reduce future CO₂ 50 

emissions [2, 3]. Using biomass as an energy source has socio-economic advantages, as it would allow the conversion 51 

of hospital disposals into energy without wastage. According to the Department of Energy, hospitals consume the second 52 

highest amount of energy compared to other infrastructures and due to the high energy demand, most of the hospitals’ 53 

energy tends to be produced from conventional energy resources [4]. The World Health Organization (WHO) states that 54 

the improper disposal of healthcare waste in landfills could pose a risk of drinking water contamination in landfill sites 55 

[5]. Consequently, there is a need for more efficient and effective waste disposal methods and alternative energy 56 

resources to tackle these issues. Therefore, using hospital waste as a source of energy is an optimal option to produce 57 

electricity and simultaneously mitigate the abovementioned issues. The importance is increased for developing countries 58 

such as Saudi Arabia, which invests in renewable energy sources by planning some novel green cities, such as NEOM. 59 

NEOM is a 475 billion USD megacity in Saudi Arabia that will be constructed on its border with Egypt. It will be 60 

centred at 28°13.2' north latitude, 34°53.3' east longitude, and will have an approximate area of 26,000 square meters to 61 
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serve a large population. Its energy is planned to be supplied from renewable sources such as solar power, biomass, or 62 

wind energy. However, one of the main users of the electrical energy is the hospitals, for which these solar plants need 63 

to have a sustainable supply of electricity, while a portion of this energy needs to be stored.  64 

 65 

Literature review 66 

The Sustainable Development Unit (SDU), which was founded in 2008 by the United Kingdom’s National Health 67 

Service (NHS), defined sustainable healthcare as “delivering high-quality care and improved public health without 68 

exhausting natural resources or causing severe ecological damage” [6]. Numerous approaches are reported in the 69 

literature to address this issue. McGain and Naylor (2014) conducted a systematic environmental review of hospital 70 

sustainability by investigating relevant articles over the period from 1900 – 2013 [7]. The authors were able to identify 71 

common research themes such as hospital design, energy consumption, and waste. They asserted that there was a lack 72 

of evidence in hospital sustainability when they assessed natural resources. Several researchers designed sustainable 73 

models to solve the environmental issue [8] so as to be applicable and achievable in the current era. Recently, it has 74 

been found that 85% of hospital waste is general waste (non-hazardous) whereas 15% is infectious waste (hazardous). 75 

Hazardous waste poses a particular radioactive, biological, physical, or chemical hazard to the environment [5]. In the 76 

last decade, some healthcare organisations have realised the consequences of health equipment on the environment [9]; 77 

as a result, they have updated their programmes to take environmental factors into consideration. According to the 78 

Environmental Protection Agency (EPA) in the United States (1974), a survey conducted by the University of Minnesota 79 

of 80 general hospitals revealed that the average amount of waste generated from a hospital was approximately 4 kg per 80 

bed per day [10]. Similarly, Al Zahrani et al. (2000) investigated the amount of waste generated from Saudi Arabia 81 

healthcare. A questionnaire was sent to 43 medical centres, and they found that the mean rate of hospital waste 82 

generation was 1.13± 0.96 kg/bed per day and 0.08± 0.08 kg per bed per visitor [11]. Although this study distinguished 83 

between the amount of waste produced by patients or visitors, the sample duration used to determine the amount of 84 

collected waste was insufficient. Another recent study by Malekahmadi et al. (2014) surveyed 114 hospitals to determine 85 

the status of healthcare waste management in Tehran; they found that the average waste per bed was around 3 kg/day 86 

[12]. This waste appears to be a considerable amount when multiplied by the number of patients. In several developed 87 

countries including the United Kingdom, bioenergy has been tied to government strategies in mitigating CO₂ emissions 88 

from transportation and electricity production [13]. Waste to energy schemes have been utilised extensively around the 89 
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world for both heating and power supply.  In the last decade, in Austria and Sweden, the use of biomass has multiplied 90 

six- and eight-fold, respectively, mainly because of positive impacts at federal and society levels [14, 15]. Also, it has 91 

been shown that biomass can generate 94% lower emissions than fossil fuels [16, 17].  92 

The impact of bio-fuel on the pollutants emitted and the overall thermal structure has been identified experimentally 93 

[18]. The experiment consists of biomass material such as wood, straw and others, combined with conventional coal. In 94 

this study, the significant impact and variation of biomass flame characteristics come from the physical and chemical 95 

components of the biomass used. Another study by Freiberg (2018) conducted a scoping review of the human health 96 

effects of using biomass to generate electricity [19]. This study concentrated on residential and occupational 97 

environments. They concluded that the accidental leakage of hydrogen sulphide in biomass plants tends to impact 98 

negatively on human health. Although biomass has certain limitations, it could be an essential component for reducing 99 

hospital waste. Due to these limitations, hybrid models for hospitals have to consider reducing its usage while increasing 100 

the use of other renewable energy sources. Olatomiwa (2016) asserts that a hybrid system could help in reducing fossil 101 

fuel consumption and CO₂emissions, by testing three types of renewable energy resources at three rural health clinics 102 

in Nigeria [20]. A hybrid microgrid model for St. Peter’s hospital on Likoma Island, Malawi was optimised with a load 103 

demand of 193 kWh/day [21]. Also, some studies were conducted in Italy which analysed the possible use of 104 

cogenerators in hospitals for district heating [22, 23]. The authors calculated the load needs for this hospital to manage 105 

electric demand, which has also been used as the input values for our study. 106 

 107 

Materials and methods  108 

The study begins by defining sustainability parameters for a healthcare centre (see Figure 1). The renewable energy 109 

resources were selected based on a combination of the local availability and reduction of hospital waste to form a hybrid 110 

micro grid. Possible solutions were sorted based on the selected optimisation variables and HOMER Optimizer™  [24]. 111 

This helped to identify the least cost-effective choices for the micro grid system. A sensitivity study was carried out to 112 

understand the effects of the main influential parameter on the changes in the optimal system. In this study, the electricity 113 

load requirements were captured based on an Italian reference hospital [25]. This building includes all the main 114 

departments such as operation theatres, diagnostics, intensive care unit (ICU), laboratories, ambulatories and 115 

administrative offices. Ascione et al. (2016) stated that the average annual demand load is approximately 200 kWh per 116 

day [25]. Similarly, a study conducted on the development of a co-generation system for the Malaysia Medical Centre 117 
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(UKMMC) building [22, 26] stated that the average load consumption was 250 kWh per day, and therefore, the load 118 

demand and sensitivity analysis were performed within these ranges. The used methodology for this study is shown in 119 

Figure 1. 120 

  121 

The seasonal and yearly load profiles were obtained from the HOMER Pro database for electricity consumption (see 122 

Figures 2 and 3). The highest monthly load consumption would be in July, which is equal to 28 kW for the assigned 123 

location. The average baseline and scaled loads are 165.59 and 250 kWh/day, distributed as peak values of 23.31 and 124 

35.2 KW respectively, with a = load factor of 0.3.  125 

 126 

 127 

 128 

 129 

Figure 2 Seasonal profile of the conceptual model in NEOM based 130 

Figure 1 Methodology flow chart 

Step 4

Optimal solution emission analysis

Step 3

Run HOMER PRO simulation & sensitivity 

Step 2

Identify the economic parameters

Step 1

Identify the hospital load and energy resources 
(biomass to alleviate waste, PV solar )

Sustainable hospital parameters

Environmental
(hospital 
waste)

Economic (profit) 
Social
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on 131 HOMER 

software 132 

 133 

 134 

Figure 3 Annual load profile at NEOM (NASA Surface Metrology and Solar Energy) 135 

The solar radiation in NEOM was calculated based on the geographical location of Saudi Arabia using NASA Surface 136 

meteorology and Solar Energy database. The average annual Global Horizontal Irradiation (GHI) for NEOM is 5.77 137 

KWh/m²/day (see Figure 4).  138 

Figure 4 Solar Global Horizontal Irradiance (GHI) in NEOM (From NASA Surface Meteorology and Solar Energy) 139 

Temperature data was also added as the input to the numerical model (see Figure 5). The air temperature and monthly 140 

average were collected over a 22 year period (July 1983 – June 2005).  141 

 142 

Figure 5 Monthly Average Temperature Data at NEOM (NASA Surface Meteorology and Solar Energy) 143 
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Electrical load and different types of renewable energy equipment were applied to the model (see Figure 6). 144 

Subsequently, this hybrid model simulated four scenarios for a sustainable hospital: grid, PV solar with batteries, biogas 145 

co-fire with batteries and finally all previously available systems, including the grid.  146 

 147 

 148 

Models were executed for the average hospital load consumption, which is approximately 250 kWh/day. PV panels 149 

were assembled in HOMER as a cell that generates DC voltages once exposed to solar irradiance, and the outcome 150 

power may be found from the equation (1) [27]:  151 

𝑃𝑝𝑣−𝑜𝑢𝑡 = 𝑃𝑝𝑣−𝑟𝑎𝑡𝑒𝑑 × 𝑓𝑝𝑣 (
𝐺

𝐺𝑟𝑒𝑓
) × [ 1 + 𝐾𝑇(𝑇𝑐 − 𝑇𝑟𝑒𝑓)]        Equation (1) 

where 𝑃𝑝𝑣−𝑟𝑎𝑡𝑒𝑑  is photovoltaic rated power and measured in kW. fpv is the factor of pv derating calculated in 152 

percentage, G and Gref (kW/m2) are the global solar irradiance incident on the photovoltaic surface and radiation, 153 

respectively. KT is the coefficient of PV module and Tc is panel temperature obtained by 𝑇𝑐 = 𝑇𝑎𝑚𝑏+(0.0256G). 𝑇𝑟𝑒𝑓 is 154 

panel temperature, which is a constant (25°C) based on Standard Test Conditions (STC).  155 

Figure 7 shows the PV electric output of the optimal solution for the whole year. This DMAP presented a PV production 156 

throughout the year. It is clear that PV production starts from approximately 7 a.m. and lasts until approximately 6 p.m. 157 

 158 

 

                 Figure 6 Schematic model of a hybrid hospital 
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 159 

 160 

The diesel generator and biomass separately are well-known, however, in a hybrid system, the combination of the two 161 

can reduce almost 50% of the generated pollution [28]. The initial capital and replacement costs are estimated to be 162 

150,000 Saudi Riyal (SR) (equal to 40,000 USD) for a 100 kW biogas co-fire, while the total operation and maintenance 163 

cost of the system is approximately SR 7.5 per hour (equal to 2 USD per hour). The biogas co-fire has a minimum load 164 

ratio of 25% and a lifetime of 15,000 hours. A generator consumes a mixture of biogas and fossil fuel. In each iteration, 165 

the software calculates the generator output requirement at the same time as the mass flow rates of diesel and biogas. 166 

The fuel curve uses equation (2) to obtain co-fire’s fuel consumption [27]: 167 

𝑚0̇ =  𝜌𝑓𝑜𝑠𝑠𝑖𝑙  (𝐹0 ∙  𝑌𝑔𝑒𝑛 + 𝐹1  ∙  𝑃𝑔𝑒𝑛)       Equation (2) 

where 𝑚0̇  (kg/hr) is the flow rate of pure fossil fuel, 𝜌𝑓𝑜𝑠𝑠𝑖𝑙  (kg/L) is the density of fossil fuel, 𝐹0  (L/hr/k) is the intercept 168 

coefficient of generator’s fuel, 𝑌𝑔𝑒𝑛 (kW) is the generator rated capacity, 𝐹1 (L/hr/kW) is the slope of the generator’s 169 

fuel curve, and 𝑃𝑔𝑒𝑛 (kW) is the generator’s output power. The output of renewable energy resources may fluctuate at a 170 

specific time because of the nature of the collected energy. Therefore, excess energy production should be stored to 171 

utilise when it is required. Franco et al. (2017) asserted that the storage system enhances the hospital, with a continuous 172 

supply in case of power shortage in addition to harmonising alternative energy sources [29]. The following equation (3) 173 

demonstrates the capacity of the storage battery [30] that was used for storing energy for the mentioned hospital. 174 

𝐶𝑤ℎ =
𝐸𝐿×𝐴𝐷

𝜂𝑖𝑛𝑣×𝜂𝐵𝑎𝑡𝑡×𝐷𝑂𝐷
                             Equation (3) 175 

Where 𝐶𝑤ℎis the battery capacity, 𝐸𝐿is the average energy load per day in kWh/day, 𝐴𝐷 is the number of autonomous 176 

days of the battery, DOD is the battery discharge depth, whereas 𝜂𝑖𝑛𝑣   and 𝜂𝐵𝑎𝑡𝑡 demonstrate the efficiency of the 177 

inverter and battery, respectively. In this hybrid system for our conceptual hospital model, lithium ion batteries of 13.5 178 

kWh, known as Tesla Powerwall 2.0, were used. The Tesla Powerwall 2.0 properties indicate that the battery has a 179 

                                              Figure 7 PV power output Data Map (DMap) 
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warranty of 10 years or a life-time of 5,000 cycles, with a round trip efficiency of 89%. The capital cost of the Tesla 180 

Powerwall 2.0 battery was estimated to be 6497.89 USD.  181 

In this study, the grid extension function has been considered to obtain the break-even grid extension distance. The 182 

break-even distance is defined as the distance from the grid when the total net present cost of the standalone system is 183 

equal to the total net present cost of the grid extension. This distance helps to identify optimal solutions when it is closer 184 

to either the standalone system or the grid. The break-even grid extension distance was calculated using the following 185 

equation (4): 186 

𝐷𝑔𝑟𝑖𝑑 =  
𝐶𝑁𝑃𝐶 .  𝐶𝑅𝐹(𝑖,𝑅𝑝𝑟𝑜𝑗)−𝐶𝑝𝑜𝑤𝑒𝑟 .𝐸𝑑𝑒𝑚𝑎𝑛𝑑

𝐶𝑐𝑎𝑝 .  𝐶𝑅𝐹(𝑖,𝑅𝑝𝑟𝑜𝑗 ) + 𝐶𝑜𝑚 
       Equation (4) 187 

where 𝐶𝑁𝑃𝐶  is the total net present cost of the standalone power system in USD, CRF is the capital recovery factor, i is 188 

real discount rate %, 𝑅𝑝𝑟𝑜𝑗 is project lifetime in years, 𝐶𝑝𝑜𝑤𝑒𝑟 is the cost of power from the grid extension in USD/km, 189 

𝐸𝑑𝑒𝑚𝑎𝑛𝑑 is the total annual electrical demand (primary plus deferrable) in kWh/year, 𝐶𝑐𝑎𝑝 is the capital cost of grid 190 

extension in USD/year/km, and 𝐶𝑜𝑚 is the operation and maintenance cost of grid extension in USD/year/km.  191 

For dispatching energy, the cycles charging strategy was applied by assuming that the generator works at its maximum 192 

capacity associated with the surplus power that charges the battery storage. The cost of energy (COE) is defined as the 193 

average cost per kWh of electrical energy provided by the system. COE was determined from the equation (5): 194 

𝐶𝑂𝐸 =
𝐶𝑎𝑛𝑛,𝑡𝑜𝑡−𝑐𝑏𝑜𝑖𝑙𝑒𝑟𝐻𝑠𝑒𝑟𝑣𝑒𝑑

𝐸𝑠𝑒𝑟𝑣𝑒𝑑
        Equation (5) 195 

where 𝐶𝑎𝑛𝑛,𝑡𝑜𝑡 is the total annual cost of the model in (USD/year), 𝑐𝑏𝑜𝑖𝑙𝑒𝑟 is the boiler marginal cost USD/kWh, 𝐻𝑠𝑒𝑟𝑣𝑒𝑑 196 

is the total thermal load served in kWh/year, and 𝐸𝑠𝑒𝑟𝑣𝑒𝑑 is the sum of electric load served by the hybrid model in 197 

kWh/year. This is considered as the major parameter in comparing the results after optimisation.  198 

Results and validation 199 

The optimal configuration models for NEOM were applied based on its location and the requirements of the model data. 200 

The components of the hybrid hospital were selected according to the availability of renewable resources. This software 201 

analysed an hourly simulation for every feasible system configuration to assess the operational factors, such as electricity 202 

production, grid extension, renewable fraction and fuel consumption. Renewable energy resources such as biogas cofire 203 

and diesel generator were examined. This investigation fulfils the load demand at the lowest NPC and subsequently, it 204 

presents the simulation results in order of optimal configurations and sensitivity analysis. Table 1 shows four optimal 205 
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configuration results for the hybrid hospital model. From these scenarios, it is clear that the optimal hybrid configuration 206 

for NEOM is Scenario 1, which is the combination of PV-Biogas Cofire-TeslaPW2.0, due to its lowest NPC among 207 

other scenarios. PV-DG-TeslaPW2.0 (Scenario 3) has a similar configuration, with the exception that biogas cofire is 208 

substituted for a diesel generator. Scenario 3 is considered to be the worst configuration due to its high fossil fuel 209 

consumption. In scenarios 1 and 3, biomass and diesel are the main sources of the hybrid model respectively, and both 210 

systems have a PV array as and generate a substantial amount of electricity. A total of 67.7% of the power supply is 211 

generated by biogas cofire or diesel generator and 32.3% from the PV array. In scenario 1, the fraction of renewable 212 

energy is almost four times greater than in scenario 3. Scenario 1 is less dependent on fossil fuel than scenario 3. The 213 

optimal solutions for a hybrid hospital is shown in Table 1. 214 

Table 1 Optimal solution results of hybrid hospital 215 

 216 

The optimal solution, scenario 1, is configured in this hybrid model by 18 kW PV, 100 kW biogas cofire, 8 batteries of 217 

TeslaPW2.0. with a COE of 0.21 USD/kWh and an NPC of 243699.17 USD. This optimal scenario, when compared to 218 

scenario 3, which is considered a conventional energy resource, mitigates the diesel consumption by almost 15,000 219 

(L/year). Zalengera (2015) optimised a hybrid micro grid model for St. Peter’s hospital on Likoma Island in Malawi 220 

with a load demand of 193 kWh/d [21]. In this study, it anticipated a COE of 0.524 USD per kWh for a PV-wind-battery 221 

system. This is double the cost of the results for NEOM’s hospital (at 0.21 USD per kWh). However, for the St. Peter’s 222 

hospital study, the interest rate was 10 percent, which is significantly higher than the 2 percent applicable for this study. 223 

Moreover, the diesel price was  2.3 USD/L, more expensive than the diesel price at NEOM hospital. The results of this 224 

simulation are then compared with the study by Rahman (2014), which optimises a hybrid model in Bangladesh with a 225 

Scenario System 

configuration 

PV 

(kW) 

BioCo 

(kW) 

DG100 

(kW) 

Battery     

Units 

TeslaPW 

COE 

(USD/kWh) 

NPC 

(USD) 

Initial    

capital 

(USD) 

RF 

(%) 

Total fuel 

(L/year) 

1 PV-bioCo-

TeslaPW2  

18.5 100 null 8 0.21 243699 147470 78.4 5,819 

2 BioCo-

TeslaPW2 

null 100 null 11 0.22 255322 111463 39.3 15,749 

3 PV-DG-Tesla 

PW2.0 

18.7 null 100 8 0.23 0.27 M 147941 22.5 20,905 

4 DG-Tesla 

PW2.0 

null null 100 11 0.24 0.28 M 111463 0 31,135 
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load demand of 50 kWh/day and predicted COE of 0.697 USD per kWh for a PV-wind-biogas cofire system [28]. Also, 226 

a similar pattern of results was obtained in a micro grid study for the community on St. Martin’s Island, Bangladesh 227 

with a load demand of 155 kWh/day [31]. This study found a COE of 0.40 USD per kWh for a PV-Biomass-Diesel 228 

generator-battery. This is double the price of the proposed model, which is estimated at 0.21 USD/kWh. This change is 229 

because of the use of two generators instead of using one as a dual generator. In addition to this, the diesel price is five 230 

times greater than the proposed system. The present study confirmed the findings regarding hybrid hospitals, verifying 231 

that using renewable energy produces similar results. Table 2 shows the output of the generator for all three scenarios. 232 

This table shows that the electrical production for scenarios 1 and 3 is almost 70,800 kWh/year, whereas for scenario 2 233 

it is around 109,500 kWh/year. In scenario 2 it is obviously high because of the system’s dependence on generators. 234 

Scenario 3 utilised diesel at about 21,000 L/year, and in scenario 2, when considering only biogas cofire, the fuel 235 

consumption dropped from 21,000 to about 15,000 L/year, whereas in the optimal solution, it was found that when the 236 

biogas generator was combined with the PV system, there was a dramatic drop from 21,000 to 5,819 L/year.  The 237 

following table shows the details of optimisation solutions in three possible scenarios (See Table 2).  238 

 239 

Table 2 Details of the optimisation solutions 240 

Generic 100kW Genset with/without Biogas 

Cofire 

Scenario 1 Scenario 2 Scenario 3 

 Electrical Summary 

Electrical Production (kWh/yr) 70,904 109,496 70,687 

Mean Electrical Output (kW) 65.4 89.3 65.5 

Minimum Electrical Output (kW) 29.8 63.1 32.9 

Maximum Electrical Output (kW) 95.2 100 95.2 

  
Statistics 

 

Hours of Operation (hours/year) 1,084 1,226 1,079 

Number of Starts (starts/year) 545 613 541 

Operational Life (year) 13.8 12.2 13.9 

Capacity Factor (%) 8.09 12.5 8.07 

Fixed Generation Cost (USD/hour) 4.75 4.75 5.00 

Marginal Generation Cost (USD/kWh) 0.0063 0.0063 0.032 

  
Fuel Summary 

Fuel Consumption (L/year) 5,819 15,749 20,905 
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Specific Fuel Consumption (L/kWh) 0.0821 0.144 0.296 

Fuel Energy Input (kWh/year) 218,636 318,814 205,704 

Mean Electrical Efficiency (%) 32.4 34.3 34.4 

Biomass Feedstock Consumption (ton/year) 151 153 null 

 Tesla PW 2.0 results 

& statistical data  

Number of Batteries 8 11 8 

Storage Wear Cost (USD/kWh) 0.10 0.10 0.10 

Nominal Capacity (kWh) 106 145 106 

Bus Voltage (V) 220 220 220 

Lifetime Throughput (kWh) 540,000 742,500 539,717 

Expected Life (year) 9.99 8.89 10 

Average Energy Cost (USD/kWh) 0.0052 0.0062 0.026 

Energy In (kWh/year) 57,265 88,413 57,150 

Energy Out (kWh/year) 51,019 78,758 50,917 

Storage Depletion (kWh/year) 56.6 74.5 56.6 

Losses (kWh/year) 6,302 9,730 6,290 

Annual Throughput (kWh/year) 54,080 83,483 53,972 

 Renewable Energy Summary 

Total Renewable Production Divided by Load (%) 94.3 61.7 37.3 

Total Renewable Production Divided by 

Generation (%) 

82.3 51.4 32.5 

One Minus Total Non-Renewable Production 

Divided by Load (%) 

22.3 -20 22.5 

 241 

 242 

Figure 8 shows the fuel consumption during the year for different scenarios. Scenario 1 has a low fuel consumption, 243 

while scenario 2 presents a higher fuel consumption compared scenario 1. Scenario 3, diesel generator-PV-Battery, 244 

consumes more fuel than the biogas cofire-PV-battery configuration used in scenario 1. 245 

 246 

 247 

 248 

 249 
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 250 

Scenario 1 

 

Scenario 2 

 

 

Scenario 3 

 

                                             Figure 8 Annual fuel consumption for each optimal scenario 251 

 252 

Discussions 253 

The highest load consumption will be in July due to the climate of NEOM, and therefore PV and BioCo make a trade-254 

off to achieve electricity demand. Electricity demand is proportional to the renewable energy factor, which harnesses 255 

renewable resources such as PV solar and biomass. Extra electricity is acquired when PV and biogas Co-fire output is 256 

greater than demand. Figure 9 presents the monthly average electricity production for each scenario. The average 257 

monthly electricity production for each scenario is illustrated in Figure 9.  258 

 259 

 260 

 261 
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 262 

Scenario 1                                 Average monthly electricity production  

 

 

Scenario 2                                Average monthly electricity production 

 

Scenario 3                                   Average monthly electricity production 

 

Figure 9 Average monthly electricity production for each scenario 263 

 264 

Scenario 1 (PV-BioCo-TeslaPW) and scenario 3 (PV-DG-TeslaPW) have similarities in system configuration, except 265 

that the main energy resources are Biogas Co-fire in scenario 1 and diesel generators in scenario 3. Therefore, it is 266 

essential to examine the economic influence of these main energy resources by comparing both scenarios. This 267 

comparison helps us to recognise the variation in the cost of renewable energy over 25 years. In order to verify the 268 

results, sensitivity analyses were performed to test the influence of input parameters on a hybrid hospital. To achieve 269 

this, the two most significant input parameters of the HOMER Pro model were selected to study the impact of the inputs 270 

on the cost of energy (COE) production. Electricity load and the average amount of biomass were varied by -30% and 271 

-50% respectively. The electricity load variation was examined for three scenarios, while the variation of biomass was 272 

examined only for an optimal solution, scenario 1, as this approach includes the specific configuration, i.e. biogas cofire. 273 

The variations of COE with changes in average available biomass is presented in Figure 10.  274 
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 275 

 276 

Figure 10 Variation of COE with changes in average available biomass 277 

Figure 10 shows the results of the sensitivity analysis for average available biomass. There is no significant change in 278 

COE when the amount of biomass increases from 10 to 50%. This constant value of COE seems to be when the biogas 279 

co-fire reached its maximum potential. Figure 11 shows the sensitivity analysis results of the electric load. For all three 280 

scenarios, it was observed that the increase in electric load leads to a gradual reduction in the cost of energy production. 281 

The outcome of each scenario was almost linear. The results are considered to be valid due to the fluctuation of solar 282 

irradiation GHI during the year. All three scenarios showed a relatively linear relation to electric load. Consequently, 283 

this suggested a linear relationship between the three scenarios when compared to each other. In Figure 11, the COE at 284 

varying electric load is shown.  285 

 286 

Figure 11 COE at varying electric load 287 
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Besides the COE, the annual pollutant emission of the three scenarios was also considered. It is therefore possible to 288 

compare the pollutant emission of conventional energy with renewable energy resources. These emissions consist of 289 

several greenhouse gases, such as carbon dioxide (CO₂), carbon monoxide (CO) and sulphur dioxide (SO₂). These have 290 

a significant impact on the environment and society. The conventional diesel generator alone produces 209, 1,424 and 291 

513 kg/year of carbon dioxide (CO₂), carbon monoxide (CO), and sulphur dioxide (SO₂) respectively, whereas the 292 

optimal configuration produces less pollutant gas than conventional energy by 84, 74 and 95% of CO₂, CO, and SO₂, 293 

respectively. Table 3 shows the mass of pollutant gases per year for each scenario.  294 

Table 3 Pollutant gases from each scenario (kg/year) 295 

System configuration  Carbon 

Dioxide (CO₂) 

Carbon 

Monoxide 

(CO) 

Unburned 

Hydrocarbons (UH) 

Particulate 

Matter (PM) 

Sulphur 

Dioxide 

(SO₂) 

Nitrogen Oxide 

(NO₂) 

PV-bioCo-TeslaPW2 

(Scenario1) 

34,234 374 15.1 1.5 26.9 29.9 

BioCo-TeslaPW2 

(Scenario2) 

60,406 554 22.4 2.22 39.9 44.3 

DG-PV-TeslaPW2.0 

(Scenario3) 

54,678 

 

372 15.1 1.49 134 29.8 

Other scenarios considered      

DG-Tesla PW2.0 81,437 554 22.4 2.22 200 44.3 

Biogas Cofire alone 188,220 1,424 57.6 5.7 103 114 

DG alone 209,263 1,424 57.6 5.7 513 114 

PV-TeslaPW2     0     0    0  0    0    0 

 296 

Conclusions 297 

This study examined a hybrid model consisting of PV, biogas cofire, diesel generator, and battery (TeslaPW) under an 298 

electric load of 250 kWh/day with three feasible scenarios. Most of the load is obtained from diesel and biogas cofire 299 

generators. The diesel generator consumes a lot of fuel in a hybrid micro grid when there is increased load demand. This 300 

is where much of the carbon dioxide is observed in the sensitivity analysis, meaning that there is a very small reduction 301 

of carbon dioxide in scenario 2, and no reduction in waste. The biogas cofire generator is the main component in scenario 302 

1, which combines biomass and diesel fuel to operate the same power capacity as a diesel generator. The biogas cofire 303 

generator consumes 81% less diesel fuel than the diesel generator, thus mitigating the hospital waste. When electricity 304 
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demand is 250 kWh/day, the hybrid hospital at NEOM consisting of PV-biogas cofire-TeslaPW (battery) shows an 305 

optimal solution, reducing the CO₂ emissions by almost 84%. Although the results have been validated, there are certain 306 

limitations to this study. The first is the lack of available data for electricity consumption in Saudi Arabia. This 307 

information was not accessible for use in comparative studies, therefore, the data from other hospitals were used as 308 

input. Also, for a reliable future study, further steps could be taken to integrate new systems into a hybrid hospital, which 309 

may alter the consequences. The key component that can be included in the analysis would be the solar track system. 310 

Solar trackers could increase solar output by up to 40% compared with an stationary array. The most important solar 311 

track system that may be included in the modelling of the solar array is the dual axis tracker, which is an essential solar 312 

tracker in the hybrid hospital. Moreover, now that a hybrid micro grid model of the hospital has been developed, new 313 

hospital models under various circumstances may be built to compare the alterations between them. In addition, using 314 

materials at low energy consumptions (using smart windows) [32], using systems to recover the heat [33] and designing 315 

mechanism to monitor the air pollutants in proximity of hospitals [34] are other possible methods to increase the 316 

sustainability of these structures. These alterations might include load demand and economic constraints or hospital 317 

hybrid configurations that have certain load related problems, which would alter their components’ resources. Analysing 318 

these comparisons could allow for a growing understanding of hospital-related energy issues. Furthermore, various load 319 

demand and technical constraints could be assessed to identify the alteration in the outcome. 320 
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