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ABSTRACT 

The mechanisms translating global circulation changes into rapid abrupt shifts in forest 

carbon capture in semi-arid biomes remain poorly understood. Here we report 

unprecedented multidecadal shifts in forest carbon uptake in semi-arid Mediterranean 

pine forests in Spain over 1950-2012. The averaged carbon sink reduction varies 

between 31-37%, and reaches values in the range of 50% in the most affected forest 

stands. Regime shifts in forest carbon uptake are associated with climatic early warning 

signals, decreased forest regional synchrony, and reduced long-term carbon sink 

resilience. We identify the mechanisms linked to ocean multidecadal variability that 

shape regime shifts in carbon capture. Firstly, we show that low frequency variations of 
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the surface temperature of the Atlantic Ocean induce shifts in the non-stationary effects 

of El Niño Southern Oscillation (ENSO) on regional forest carbon capture. Modelling 

evidence supports that the non-stationary effects of ENSO can be propagated from 

tropical areas to semi-arid Mediterranean biomes through atmospheric wave trains. 

Secondly, decadal changes of the Atlantic Multidecadal Oscillation (AMO) 

significantly alter sea-air heat exchanges, modifying in turn ocean vapour transport 

over land and land surface temperatures, and promoting sustained drought conditions in 

spring and summer that reduce forest carbon uptake. Thirdly, we show that lagged 

effects of AMO on the winter North Atlantic Oscillation (NAO) also contribute to the 

maintenance of long-term droughts. Finally, we show that the reported strong, negative 

effects of ocean surface temperature (AMO) on forest carbon uptake in the last decades 

are unprecedented over the last 150 years. Our results provide new, unreported 

explanations for carbon uptake shifts in these drought-prone forests and review the 

expected impacts of global warming on the profiled mechanisms. 

 

Introduction 

The quest to identify the diverse mechanisms driving abrupt shifts in the dynamics of 

climate affecting ecosystems has gained considerable scientific attention in recent 

decades (Lenton et al. 2008, Scheffer et al. 2009). Numerous empirical studies have 

reported abrupt regime shifts between contrasting persistent states of these ecosystems 

(Scheffer et al. 2009, Chen & Tung 2014). Several natural phenomena have been long 

identified as key drivers of rapid changes in the state of terrestrial ecosystems and in 

their carbon sink capacity, including changes in regional climate regimes. Multidecadal 

fluctuations in sea surface temperatures (SST), quantified by ocean variability indices 

(e.g. the Atlantic Multidecadal Oscillation (AMO), and the Pacific Decadal Oscillation 
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(PDO)), are important drivers of long-term changes in the trends of rainfall in tropical, 

semi-arid and extratropical areas of the globe (McCabe et al. 2004, Sutton & Hodson 

2005). Rapid shifts in SST can affect multiple ocean basins, forcing regime shifts in 

global atmospheric circulation patterns (Quan et al. 2004, Wang et al. 2013). Changes 

in SSTs also control inter-annual variability in the global terrestrial sink, through the 

propagation of temperature and rainfall anomalies (Bastos et al. 2013, Poulter et al. 

2014, Kim et al. 2017). However, the precise mechanisms connecting major changes in 

the thermal state of ocean basins and the carbon sink dynamics of forest ecosystems 

remain yet poorly understood. For example, we lack comprehensive descriptions of the 

multiple mechanisms linking long-term carbon sequestration by forests to multidecadal 

shifts in SSTs. Similarly, it has not been assessed whether transitions between the warm 

and cold ocean phases result in abrupt or gradual shifts in forest carbon uptake regimes, 

whether and how these shifts vary geographically and the diverse climatic mechanisms 

implied.  

Recent research indicates that semi-arid forests are key determinants of the variability 

in the carbon sink capacity of terrestrial ecosystems (Poulter et al. 2014). Semi-arid and 

dryland systems cover 45% of the Earth’s land surface, and recent assessments assert 

that over the last decades are becoming an increasingly important driver of the 

terrestrial carbon sink capacity of the Earth at interannual time scales (Poulter et al. 

2014, Ahlström et al. 2015). These biomes are distributed at the transitional edge 

between desert and temperate regions of the biosphere, and as a result their carbon sink 

activity could be severely disrupted during the next decades by global warming and the 

ongoing latitudinal expansion of the Hadley cells (Fu 2015, Lau & Kim 2015). In 

addition, global warming may possibly induce an increased frequency and severity of 

eastward propagating extreme El Niño events, and impact drought regimes in key semi-
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arid areas (Cai et al. 2015).  

Here we examine the occurrence of regime shifts in forest carbon uptake in the 

dominant dry coniferous forests of the Western Mediterranean Basin (Aleppo pine, 

Pinus halepensis Mill.), located in continental Spain. Detailed empirical descriptions of 

regime shifts in forest carbon uptake are currently lacking in this semi-arid region. 

Next, we provide empirical evidence for several mechanisms driving regime shifts in 

forest carbon uptake. The first mechanism examined is the operation of large-scale, 

non-stationary effects of El Niño Southern Oscillation (ENSO) events that are 

propagated from tropical to extratropical areas through atmospheric wave trains 

(López‐Parages & Rodríguez‐Fonseca 2012, López‐Parages et al. 2015, 2016). The 

ENSO is the strongest year-to-year climate fluctuation of the planet and it is tightly 

linked to interannual variations in carbon sink capacity of terrestrial ecosystems 

(Hashimoto et al. 2004). The propagation of the ENSO signal from tropical to 

extratropical areas can be strongly modulated by ocean multidecadal variability and this 

has not been considered in the analysis of forest carbon uptake regime shifts. To 

address this gap here we analyse how the interactions between the ENSO and the 

Atlantic Ocean Multidecadal Oscillation (AMO) could jointly drive regime shifts in 

forest carbon uptake. The second mechanism examines the effects of ocean 

multidecadal variability in SST on long-term trends of sea-air heat exchange, water 

vapour transport over land, sea level pressure and land temperature conditions. Changes 

in these climatic variables linked to ocean multidecadal states can induce sustained 

drought conditions over land and limit the carbon sink capacity of forests. Thirdly, we 

analyse whether lagged multidecadal variability in major atmospheric modes such as 

the North Atlantic Oscillation (NAO) significantly affects long-term drought events. 

The positive phase of AMO results in more frequent negative NAO events and blocking 
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episodes associated to extreme climate events (Häkkinen et al. 2011, Peings & 

Magnusdottir 2014). Moreover, lagged multidecadal links between AMO and NAO 

have been extensively documented, and may influence drought events and therefore 

forest ability to uptake carbon (Peings & Magnusdottir 2014, Li et al. 2013). 

To summarise, here we address the following research objectives: i) to provide a first 

description of coupled shifts in drought regimes and carbon uptake in semi-arid Aleppo 

pine forests in Spain, using combined climatic and dendrochronological time-series 

analyses spanning the last six decades (1950-2012); ii) to characterize the observed 

regime shifts using diverse statistical techniques including early-warning signal 

analyses; iii) to identify the teleconnections significantly associated with the reported 

regime shifts, quantifying the associated changes in the patterns of ocean water vapour 

transport over land, land temperature and sea level pressure; iv) to test whether the non-

stationary effects of ENSO mediated by ocean multidecadal variability determine the 

onset of regime shifts of forest carbon uptake; and v) to provide a unified framework 

for all the examined mechanisms, summarising the expected effects of global warming 

on the studied processes.  

 

Materials and Methods 

Climatic and forest data 

The study area comprised the Spanish Iberian Peninsula and it was subdivided into 

grids of 280×280, 140×140, and 70×70 km2 (Supplementary Fig. 1). Climatic data were 

obtained from the State Meteorology Agency (AEMET) during 1950-2012. We used 

the Standardised Precipitation Evapotranspiration Index (SPEI) to quantify droughts 

(Vicente-Serrano et al. 2010). A spatially averaged value of monthly SPEI was 
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calculated for each grid cell during the 1950-2012 period. The resulting data set was 

structured in a pool of 5191 SPEI grids, covering different time scales (3, 6, 9, 12, 18, 

24, and 36 months; Domingo-Marimón 2016). Monthly values of sea-level pressure 

(SLP), water vapor transport and temperature fields between 1950 to 2010 at 1 degree 

resolution were derived from ERA-20C Reanalysis (Poli et al. 2016). The yearly 

variation in gain of carbon stocks was quantified in a network of 20 Aleppo pine forests 

(Pinus halepensis Mill.) (Supplementary Fig. 1). Dendrochronological analyses and 

allometric equations were applied to calculate the variation in carbon stocks linked to 

tree growth in each of the forest stands for 1950-2012 (kg ha-1 y-1, Forest net carbon 

uptake hereafter [FCU], Montero et al. 2005). Note that this variable does not account 

for tree and soil respiration fluxes and therefore provides a proxy of the net primary 

productivity specifically linked to tree growth (Montero et al. 2005). Tree density and 

stand basal area were measured in each stand (Ribas, 2006, Camarero et al. 2015a). A 

variable number of trees (8-38) were randomly sampled for dendrochronological 

analyses in an area of 2 ha (Ribas, 2006). The selected trees were located at least 5-10 

m apart. We extracted 2-4 radial cores per tree at 1.3 m using a Pressler increment 

borer. Wood samples were sanded and visually cross-dated. Tree-ring widths were 

measured to the nearest 0.01 mm using a LINTAB measuring device (F. Rinntech, 

Germany), a binocular scope, and the programmes CATRAS and TSAP. The 

COFECHA software was used to assess the accuracy of the visually cross-dated 

samples. For each tree, we also measured the diameter at breast height (DBH, measured 

at 1.3 m), the stem height and the bark thickness to calculate the annual increase in 

basal area.  
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Description of regime shifts 

We first assessed the existence of unreported abrupt shifts in drought regimes and forest 

carbon uptake, analysing the time series of drought trends and dendrochronology data in 

the Iberian Peninsula (objective i). The SPEI allowed us to explore shifts in drought 

regimes at temporal scales ranging from 3 to 36 months during 1950-2012. SPEI and 

dendrochronological time series were analyzed applying spline fits (SAS Institute 

2012). To assess the effects of abrupt shifts in the drought regime on forest carbon 

storage, we subsequently examined the yearly increase in carbon stock in a large-scale 

network of 20 Aleppo pine forests during 1950-2012 (Supplementary Figure 1). This 

tree species was selected because it is the dominant native conifer in the eastern Iberian 

Peninsula and in the driest areas of the Western Mediterranean Basin. The selected 

stands represented the native geographical distribution of this taxon across the Iberian 

Peninsula, providing a regional assessment for this species (Supplementary Fig. 1). 

Regression tree analyses were applied to detect abrupt shifts in time series (De'ath & 

Fabricius 2000). We identified an optimal splitting point (i.e. time of shift) in the time 

series separating multiannual periods characterized by contrasting values in the 

analysed variable. The magnitude of the shift between two periods was quantified by 

the amount of the variance explained by the model and was therefore inversely 

proportional to the model-corrected Akaike Information Criterion (1/AICc). The 

splitting criterion was based on the LogWorth statistic (SAS Institute 2012). When a 

significant shift was detected in the regression tree and spline analyses, we applied a 

Tukey-Kramer analysis to test for significant differences in values between the two 

multiannual periods before and after the splitting point. For all forest stands, we 

computed the resistance, recovery and resilience indices for tree growth and analysed 

their trends (LLoret et al. 2011, Gazol et al. 2018).  In addition, these indices were 
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subsequently modified in a second step to more properly describe decadal trends. We 

computed the following indices of forest resilience (FCUR) and recovery capacity after 

a regime shift (FCURC), defined as follows: 

 

where  is the averaged forest net carbon uptake (kg ha-1 y-1) over a 5 year period 

before the regime shift in the numerator and over a variable number years after the 

regime shift in the denominator (t, ranging from 1 to 30 years). The recovery capacity 

after a regime shift was computed as follows: 

 

Finally, following previous works (Camarero et al. 2015a) we also computed a 

synchronicity index, measured as the averaged Pearson r coefficient between the 

forests stands. 

 

Early-warning signal analyses 

To characterise early-warning signals associated to the observed regime shifts, early-

warning signals were quantified using the earlywarnings R package (Dakos et al. 2012) 

using climatic data (objective ii). The analyses were restricted to the time period before 

the splitting point previously identified by the regression tree models. The functions 

generic_ews and qda_ews were used to estimate the following eight statistical moments 

within rolling windows along the time series: the autoregressive coefficient [ar(1)] of a 

first-order AR model fitted to the data, the standard deviation, skewness, kurtosis, the 

FCUR = 
X
_

FCU BEFORE (5years)

X
_

FCU AFTER (t years)

X
_

FCU

FCURC = 
FCUAFTER (year of the shift)

X
_

FCU AFTER (3 year rolling window)

−1
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coefficient of variation, the return rate of the data estimated as the 1-ar(1) coefficient, 

the density ratio of the power spectrum of the data estimated as the ratio of low to high 

frequencies, and the autocorrelation at the first lag of the data (Supplementary Table 1). 

The trends of these eight statistical moments were estimated by using the nonparametric 

Kendall tau correlation coefficient. The function sensitivity_ews was applied to plot the 

Kendall tau estimates and their p-values for the range of rolling-window sizes used, 

together with a histogram of the distributions of the statistic and its significance. The 

analyses were computed for a large range of window sizes (winsize parameter: 10, 

20,…50). We computed and plotted the power spectrum estimated by the spec.ar 

function for all frequencies within each rolling window. Positive feedback processes 

originating non-linear responses and early warning signals may occur in both climatic 

and ecological processes (Supplementary Fig. 2). Consequently, early-warning signals 

were assessed for climatic and forest variables (SPEI 3-12; FCU variables) and 

contrasted applying Tukey-Kramer tests.  

 

Teleconnection analyses 

To analyse the effects of teleconnections on drought and carbon uptake regime shifts 

(objective iii), we gathered data for the following teleconnection indices: the AMO, the 

Multivariate ENSO index (MEI), the North Atlantic Oscillation index (NAO), the 

Western Mediterranean Oscillation index (WeMOI), and the Arctic Oscillation (AO) 

index, the Pacific Decadal Oscillation (PDO) and the Eastern Atlantic Pattern (EA) (see 

supplementary materials for further details on data sources). Structural equation models 

(SEM) were applied to assess the relative influence of teleconnection indices on SPEI 

variability (objective iii) (R Development Core Team 2017). Alternative SEM models 

were compared and selected minimizing the AIC and the Bayesian Information 
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Criterion (BIC). The basic SEM model scheme selected is outlined in Supplementary 

Fig. 3. SEM models were complemented with multiple regression analyses (based on 

Ordinary Least Squares, OLS). Linear regression analyses of teleconnection indices 

were performed for SLP, water vapor transport, SPEI and mean air surface temperature 

to map the effects of teleconnection indices on atmospheric circulation patterns. 

Wavelet coherence analyses allowed the detection of similar periodicities in the 

fluctuations of teleconnection and SPEI time series and the estimation of their phase 

differences.  

 

Regime shifts and non-stationary interactions between ENSO and AMO  

We hypothesized that the multidecadal variation of the Atlantic SST measured by the 

AMO could trigger regime shifts in drought and, as a consequence, in net forest 

carbon capture linked to tree growth (FCU). The proposed mechanism is the operation 

of non-stationary effects of higher frequency teleconnection patterns (e.g. ENSO and 

other teleconnection indices) modulated by ocean multidecadal variation 

(López‐Parages & Rodríguez‐Fonseca 2012, López‐Parages et al. 2015, 2016). To assess 

whether non-stationary effects of ENSO mediated by ocean multidecadal variability 

(AMO) were determining the onset of regime shifts in drought and carbon uptake 

trends (objective iv) we tested two diagnostic predictions. Firstly, we documented the 

occurrence of spatiotemporal shifts in the non-stationary effects of MEI on drought 

(SPEI) (Prediction 1, P1). To test this prediction, we performed multiple regression 

modelling analyses (ordinary least squares, OLS) for subsets of consecutive 10-year 

time windows for each grid cell in the study region, allowing the detection and 
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mapping of non-stationary effects of ENSO. Complementarily, we also assessed the 

non-stationary effects observed for other teleconnections characterised by high 

frequency, interannual variability modes (NAO, WeMOI, EA, AO). Significant multiple 

regression estimates of the OLS models were subsequently mapped for each decade 

allowing the detection of spatial and temporal shifts in the effects of ENSO, NAO and 

high-frequency teleconnections on SPEI. Secondly, we analyzed whether rapid 

changes in the AMO during the regime shift period significantly predicted the changes 

in the non-stationary effects of the Multivariate ENSO index on net forest carbon 

capture associated with tree growth (FCU) (Prediction 2, P2). To assess this prediction, 

we performed rolling correlation analyses between forest carbon uptake (FCU, kg ha-1 

y-1) and the MEI index [rFCU-MEI correlation coefficients hereafter]. Rolling correlation 

analyses were calculated for each forest stand using the rollaplyr function in the 

package zoo (R Development Core Team 2017), obtaining the Pearson correlation 

coefficient in the cor function (stats package) and running the analyses for varying 

window width parameters (10, 15, 20, 25 years). The analyses of rFCU-MEI correlation 

coefficients were conducted for annual and monthly values of MEI. Furthermore, we 

analysed whether the AMO was significantly associated with the variation observed in 

the rFCU-MEI correlation coefficients. During regime shifts, we expected the 

observation of significantly negative relationships linking rFCU-MEI values and the 

AMO index, due to increased negative effects of ENSO on forest carbon uptake 

associated with a warmer AMO state. 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Testing for amplified effects of AMO during the last 150 years 

To analyse whether the reported negative effects of AMO on forest carbon uptake 

detected in 1950-2012 were unprecedented during the last 150 years, we extended 

the analyses to the 1850-2012 time period. We applied ordinary squares multiple 

regression models (OLS) analysing the effects of teleconnection indices on forest 

carbon uptake. The OLS models contrasted the observed effects of AMO on forest 

carbon capture for different consecutive time periods over the 1850-2012 series, and 

were repeated at different time period resolutions (decadal, bidecadal, 30 years 

[corresponding to AMO positive and negative periods], 60 years). For the 60-year 

resolution, we computed the observed AMO effects in the IPCC-AR5 reference period 

(1850-1899, P1) and in two subsequent time periods (P2: 1900-1959 and P3: 1960-

2012). Changes in the starting year of the analysed multidecadal periods did not 

qualitatively change the reported results. Results for decadal and bidecadal resolution 

are not shown. 

 

Testing complementary hypotheses 

Forest carbon uptake trends can be significantly affected by stand structure and past 

management practices (Pan et al. 2011, Coomes et al. 2014), by tree age, height and 

ontogenetic stage (Camarero et al. 2015b) and by the increase of post-industrial 

atmospheric CO2 concentrations (Camarero et al. 2015b, Keenan et al. 2016). To 

assess the effects of these complementary processes on the reported trends of forest 

carbon uptake the following variables were quantified: stand tree density, stand mean 
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diameter at breast height, stand mean tree height, the age of the sampled trees, and 

the annual increase of atmospheric concentrations of CO2 (see supplementary Table 

S2 for a detailed description). Following the methods proposed in previous works 

(Camarero et al. 2015b), we extracted the residual variation of forest carbon uptake 

not linked forest structure and age (resCincr). Subsequently, we tested whether this 

remaining variation was significantly associated to the examined teleconnections 

(AMO, MEI, AO, WeMOI, NAO) and to the variation of post-industrial atmospheric CO2 

applying multiple regression OLS analyses. 

 

Results 

Drought and forest carbon uptake regime shifts (objective i) 

Regression tree analyses identified a consistent shift in SPEI trends affecting the entire 

central-eastern Iberian Peninsula in 1980-1981 (Fig. 1). This abrupt shift was 

characterised by drier conditions from the 1980s onwards, and it was consistently 

detected in regression tree models across a wide range of SPEI temporal scales (3-36 

months) and across different scales of spatial grids (Supplementary Figs. 4-8). Average 

SPEI values consistently differed before (1950-1979) and after the abrupt shift 

(Supplementary Fig. 9a, Tukey-Kramer test p<0.0001). A different pattern of 

longitudinal variation of average SPEI values was observed before and after the 1980-

1981 shift – with the SPEI switching from increasing with longitude to decreasing with 

longitude, i.e. climate conditions were drier eastwards (towards the Mediterranean 

coast) after the shift (Supplementary Fig. 9b).  
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As found for SPEI, the trends in carbon stocks clearly shifted in 1980-1981 in 

18 of the 20 forests, changing from sustained positive gains to stable, non-significant 

trends (Fig. 2a, Supplementary Figs. 10-12). The trends in two cases reversed from 

significantly positive to significantly negative (Fig. 2a). Regression tree models based 

on the changes in forest carbon uptake identified significant shifts in 16 of 18 stands 

during 1978-1981 (Supplementary Table 3), in line with the shift in drought dynamics 

(Fig. 1). Before the regime shift, we observed a progressive significant increase in 

forest carbon uptake synchrony (Fig 2b, cubic polynomial fit, p<0.0001), followed by a 

significant reduction after the shift (p<0.0001, Supplementary Figure S13). For the 

whole period after the regime shift, synchrony values remained significantly lower 

relative to 1950-79 (T-K test, p<0.0001) and there was an increase of non-significant 

values (Supplementary Fig. S13). In a similar manner, the forest carbon uptake 

resilience index (FCUR) indicated a sustained reduction (31 - 37%) of the forest sink 

after the regime shift (Fig 2b, see Supplementary Table 4 for further details). Forests 

were also characterised by a limited recovery capacity, with most stands showing 

recovery rates of 10-17% respect to the minimum FCU level observed after the drought 

regime shift (Fig 2c, Supplementary table 5). In summary, all the results indicated a 

coherent abrupt large-scale shift in forest carbon uptake trends in this area and allowed 

testing for alternative large-scale drivers of these trends.  

 

Early-warning signal analyses (objective ii) 

Having identified abrupt shifts in forest and drought regimes, we examined whether 

they carried any early-warning signals. We assessed this by estimating changes in lag-1 

autocorrelation in the time series before the regime shift (Dakos et al., 2012, Camarero 

et al., 2015a). Abrupt shifts in drought regime in the eastern Iberian Peninsula were 
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preceded by an increase in autocorrelation only in SPEI (Fig 3a, Supplementary Fig. 

14). In contrast, non-significant AR-1 values were observed in FCU time series before 

the shift (Fig 3a). In line with these findings, SPEI AR-1 and the Kendall tau statistic 

quantifying autocorrelation trends were positively associated with the magnitude of the 

regime shift in the local SPEI time series (Fig. 3b, c). In other words, sites experiencing 

more abrupt shifts in SPEI values in 1980 (i.e. presenting higher values of R2 and 1/AIC 

in regression tree models) showed significantly higher Kendall tau and AR-1 values 

before the regime shift (i.e. in 1970-79). Overall, all the early-warning results indicated 

a major role of climatic variables as putative drivers of the reported shifts, highlighting 

the need of detailed analyses of teleconnections and climatic variables. 

 

Teleconnections associated with the reported regime shifts (objective iii) 

The models identified AMO as the strongest predictor of the variability in SPEI values 

(Fig. 3d, Supplementary Fig. 15, and Supplementary Table 6). Furthermore, the 

standardised coefficients of AMO on SPEI were robust predictors of the magnitude of 

the regime shift detected by the regression tree models in each grid cell (Fig. 3e). In 

addition, wavelet coherence analyses confirmed the observed significant links between 

the AMO index and the SPEI values, reporting significant associations at long time 

periods (>128 months) in cells characterised by strong shifts in drought regime 

(Supplementary Fig. 16). These results identified the AMO index as a significant 

predictor of the abrupt shifts in the drought regimes (Supplementary Table 6). 

Moreover, the values of the Kendall tau statistic quantifying autocorrelation trends 

were positively associated with the effect of the AMO on the drought indices (Fig. 3f). 

In the case of tree carbon sequestration models, we applied multiple regression OLS 

models and identified AMO as the best teleconnection index for predicting changes in 
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carbon stocks in the Aleppo pine stands. The models revealed a significantly stronger 

AMO signal for carbon-stock gains in northern stands (Supplementary Table 7).  

In order to understand the physical processes driving the correlations found, we applied 

regression analyses mapping the effects of AMO on ocean and land water vapour 

transport, sea level pressure, ocean surface temperature and land mean air temperature 

(Supplementary Fig. 17, see Methods). Positive AMO states were significantly 

associated with increased drought conditions across the Iberian Peninsula, spanning 

from January to October (Supplementary Fig. 17). Furthermore, analyses of the 

seasonal variation of SPEI after the regime shift reported a significant increase of 

drought impacts in the same seasonal time period (winter, spring and summer), which 

were in turn paralleled by a significant increase of AMO positive anomalies in spring 

and summer (Supplementary Fig. 18). Thus, changes in the annual dynamics of AMO 

and SPEI largely impacted the growing season of forests. 

Regime shifts and non-stationary interactions between ENSO and AMO (objective iv) 

The results suggested a key role of non-stationary effects of ENSO modulated by AMO 

and supported the two diagnostic predictions (P1 and P2). Firstly, multiple regression 

OLS models for the SPEI drought index for subsets of consecutive 10-year time 

windows allowed the detection of non-stationary effects of higher frequency 

teleconnections. The models detected changes in the non-stationary effects of the El 

Niño Southern Oscillation (MEI), promoting autumn rains in the 1970s and increased 

spring and summer drought conditions during the start of the regime shift, in the 1980s 

(Fig. 4a), being the former more marked in the south and western part of the Iberian 

Peninsula and the latter in the south and eastern part. Crucially, the spatial shifts in the 

effects of the models in the 1980s closely matched the spatial pattern reported for the 

drought patterns (Fig. 1). The models also highlighted a key role of non-stationary 
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effects of positive winter NAO phases (December, January) in the 1990s, showing a 

multidecadal pattern (Fig 4b). Of note, the NAO signal was significantly correlated 

with lagged AMO, and this correlation was maximised at a lag of 15 years (R2=0.16; 

p=0.0048), as reported in previous works (Li et al. 2013). In addition, we examined 

whether AMO was a significant predictor of the correlations between forest carbon 

uptake and ENSO (rFCU-MEI correlations) during the onset of the regime shift period 

(1980s). As predicted, in the 1980s we observed a significantly negative rFCU-MEI / 

AMO relationship in the stands affected by regime shifts (Fig. 5a). A shift to a warmer 

state of the AMO index in the 1980s was consistently associated to more negative 

Pearson correlation values, and the observed negative relationships were mostly 

significant from March to October (Fig. 5b-c). The analyses covering the 1850-2012 

period reported that the strong, negative effects of AMO in the 1980s were 

unprecedented over the last ~150 years (Supplementary Fig. S19, and Supplementary 

Table 8). While previous negative AMO phases [e.g. 1897-1930] were significantly 

associated to increased forest carbon uptake levels in the OLS models (Supplementary 

Table 8), strong linear effects of AMO were only detected in the regime shift period 

(i.e. in the 1980s [1963-1996 negative AMO phase], see Supplementary Fig. S19). 

 

Effects of forest stand structure, tree age and atmospheric CO2 

We observed that forest tree density, mean stand tree height and tree age explained a 

significant fraction of forest carbon uptake variation across sites (R2=0.27; p<0.0001, 

Supplementary Table 10). OLS models examining the residual variation after 

accounting for stand structure and tree age effects indicated that the reported effects of 

AMO were robust (Supplementary Table 11). Similarly, the results indicated a 

significant but small effect of increased atmospheric CO2 concentrations on forest 
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carbon uptake, which co-acted with significant negative effects of AMO 

(Supplementary Table 12). 

 

Discussion  

Our results describe previously unreported regime shifts in drought and carbon uptake 

across Iberian Aleppo pine forests (Figs. 1-2), and identify the climatic drivers implied 

(Figs. 3-6). This tree species is the most dominant conifer in semi-arid or dry lowland 

areas of the Western Mediterranean Basin and therefore it is of major ecological 

relevance in such drought-prone regions. The reported drought regime shifts strongly 

affect forest carbon uptake of these forests, showing a sustained multidecadal reduction 

of carbon sequestration. The averaged carbon sink reduction for all stands varies 

between 31-37%, but reaches values in the range of 50% in the most affected stands 

(Fig 2b). SEM analyses indicated that AMO is the key regulator of the observed trends, 

being in turn significantly associated to early warning indicators. The results indicate 

that AMO acts as a key modulator of different non-stationary mechanisms over 

analysed drought regime shift period. We suggest that the mechanisms operate 

sequentially, following this order: 1) the modulation by AMO of the effects of ENSO 

on drought and forest carbon uptake, acting over the 1970s-1980s (e.g. Figs. 4 and 5), 

which is a key mechanism because it determines the onset of the regime shift period; 2) 

a sustained negative effect of positive AMO phases on ocean moisture advection and 

water transport at the multidecadal scale, acting over the 1980s-2000s, and linked to a 

significant increase on spring and summer temperatures (Supplementary Fig. 17); and, 

lastly, 3) the lagged multidecadal variation of the NAO (relative to the AMO) that 

significantly affects drought indices in the 1990s. A synthetic diagram summarising 

these three mechanisms is provided in Fig. 6. 
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Referring to the first mechanism, our results support that non-stationary interactions 

between ocean multidecadal variability (AMO) and the ENSO determine the onset of 

abrupt shifts in forest carbon capture in the studied semi-arid forests. We propose that 

these non-stationary effects of ENSO in extratropical areas could be possibly linked to 

modified Rossby wave train activity (López‐Parages & Rodríguez‐Fonseca 2012, 

López‐Parages et al. 2015, 2016) (e.g. Supplementary Fig. 20). The abrupt, non-linear 

regime shift observed in the 1980s and its significant association with both AMO and 

ENSO suggest a key role for non-linear atmospheric responses specifically linked to the 

patterns of sea surface temperature (SST) associated with ENSO and AMO. Below, we 

review in detail the fundamental processes that may shape this mechanism.  

It is well known that AMO and ENSO describe large-scale patterns of SST and 

therefore influence air-sea heat exchanges. Increases in SST induce a net transfer of 

heat from the sea to the atmosphere and result in diabatic heating of the lower 

atmosphere (Bjerknes 1964, Gulev et al. 2013). Through these diabatic processes SST 

can in turn influence ocean-land advection and zonal winds, as well as the dynamics of 

the Walker and Hadley circulation cells (Wang 2002, Sutton and Dong 2012). All these 

fundamental air-sea exchanges may upscale affecting large geographic regions, 

modifying in this way atmospheric circulation dynamics and Rossby wave train 

dynamics, and shifting the geographic location of anticyclones and lows (Cassou et al. 

2005, López‐Parages & Rodríguez‐Fonseca 2012, Mariotti et al. 2012, López‐Parages 

et al. 2015, 2016, Sun et al. 2017).  

Previous works have shown that above determinate threshold values of SSTs non-linear 

trends in atmospheric responses and rainfall patterns have been consistently observed 

(Quan et al. 2004, Power et al. 2006, López-Parages et al. 2016). Crucially, the 
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available evidence supports that atmospheric Rossby wave trains can respond non-

linearly to changes in ocean thermal state (SST) and to ENSO events (Hoerling et al. 

2001, López-Parages et al. 2016). In other words, non-linear atmospheric effects linked 

to increased SST can shape Rossby wave train activity connecting major ocean basins 

and strongly affect rainfall trends in extratropical areas as the Iberian Peninsula (López-

Parages et al. 2016). More precisely, ENSO events typically generate a Tropical 

Northern Atlantic pattern (TNA) and induce two separate atmospheric wavetrains 

(centered respectively on the Pacific and Atlantic Oceans) (López-Parages et al. 2016, 

Rodríguez-Fonseca et al. 2016). Notably, in the case of ENSO events, the response to 

rainfall, sea level pressure and wind is often more linear in the tropics but can be 

strongly non-linear in the extratropics (Frauen et al. 2014).  

Recent works have applied atmospheric circulation models to explicitly simulate 

the interactions between ENSO events and ocean multidecadal thermal state (Frauen et 

al 2014, López-Parages et al. 2016). These works have implemented numerical 

experiments in models forced by idealized ENSO-AMO patterns (López-Parages et al. 

2016). The resulting simulations indicate that AMO and ENSO can jointly modulate the 

patterns of atmospheric Rossby wave trains, and significantly alter extratropical 

drought responses (Supplementary Fig. 20).  Under negative AMO phases (i.e. during 

the 1970s), the model simulations and observational data indicate enhanced Rossby 

wave train activity linked to a weakened jet in zones characterised by negative 

meridional thermal gradients (López-Parages et al 2015, Rodríguez-Fonseca et al. 

2016). Under negative AMO phases (i.e. during the 1970s), the model simulations and 

the observational data indicate enhanced Rossby wave train activity triggered by ENSO 

over the North Atlantic sector. This fact is related to a weakened jet in zones 

characterised by negative thermal gradients (López-Parages et al. 2015, Rodríguez-



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Fonseca et al. 2016). Thus, under cold North Atlantic SST conditions, the models 

indicate an enhanced wave activity triggered by ENSO and connecting the Pacific basin 

and the Atlantic European region (Supplementary Fig. 20). In these conditions, the 

ENSO-related wave activity flux (m2/s2) crossing the North Atlantic at upper 

troposphere (200 hPa) triggers in turn a deep low-pressure system over the British 

Islands, producing significantly increased rains in Northern Europe and significantly 

increased drought conditions in semi-arid Mediterranean areas (López-Parages et al. 

2015, 2016). Overall, the available modelling evidence and the observational results 

(Figs. 4 and 5, Supplementary Fig. 20) suggest an important role for modified Rossby 

wave trains associated with multidecadal ENSO-AMO variability, potentially effecting 

drought and forest carbon regime shifts.  

 

The results indicate that AMO has a large influence on long-term multidecadal drought 

and carbon uptake dynamics. AMO is significantly associated with increased spring 

and summer drought conditions at the multidecadal scale, affecting land temperatures, 

water vapour transport over land and standardised drought indicators (SPEI) 

(Supplementary Fig. 17). The observed effects of AMO on the climatic variables are 

mainly concentrated in the March-October period (Supplementary Figs. 17-18). These 

results add to previous studies documenting a pervasive influence of AMO on several 

components of the climatic system (reviewed in Supplementary Box 1a). Beyond the 

effects of AMO and SSTs on atmospheric Rossby wave train dynamics, diabatic 

processes linked to increased SSTs have multifaceted effects and influence multiple 

atmospheric phenomena. These effects are reviewed in Supplementary Box 1b and 

include the alteration of the Hadley and Walker cell size, shape and dynamics, the 

location and seasonal migration of the intertropical convergence zone (ICTZ) and the 
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tropical monsoon activity and its links to mid-latitude zones. The reviewed evidence 

supports that these co-acting processes may also strongly impact drought regimes.  

 

A remaining question is how these mechanisms might be currently affected by 

ongoing global warming and how they might evolve in the near future (see 

Supplementary Box 1c for a detailed discussion). The AMO is linked to the Atlantic 

multidecadal overturning thermohaline circulation (AMOC), which in turn currently 

stands as a major modulator of the responses of the earth system to global warming 

(Chen & Tung 2014, Hansen et al. 2016, Sgubin et al. 2017, Caesar et al. 2018, 

Thornalley et al 2018). Moreover, global warming may strongly interact with AMO in 

present day conditions and in future scenarios. For example, amplified ocean 

multidecadal oscillations have been reported in the last decades and related to global 

warming (Moore et al. 2017).  These amplified oscillations suggest a scenario in which 

global warming progressively increases the amplitude of AMO cycles in the next 

decades (Supplementary Fig. 21a). In line with these trends, less frequent and longer-

lived oscillations have also been reported for the Pacific Decadal Oscillation (PDO), 

producing a deepening of the ocean mixed layer (Boulton & Lenton 2015).  

 

In addition, global warming could also be promoting a progressive slowdown of the 

AMOC (Supplementary Fig. 21b). In fact, an unprecedented reduced AMOC state has 

been recently also discussed, presumably linked to global warming and increased 

Greenland ice sheet loss (Bamber et al. 2012, Robson et al. 2014, Rahmstorf et al. 

2015, Sgubin et al. 2017, Caesar et al. 2018, Thornalley et al. 2018). Besides, AMO 

and ENSO influence wildfire occurrence (Kitzberger et al. 2015). Therefore, amplified 
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AMO, changes in ENSO dynamics and global warming could jointly affect fire 

frequency in the next decades and impact forest carbon sinks (Supplementary Fig. 21c). 

In addition, Arctic climate amplification processes significantly interact with ocean 

multidecadal phases. For example, recent works indicate that Arctic warming has been 

enhanced by the current phase (PDO-, AMO+), leading to a reduction of the poleward 

temperature gradient and to reduced westerlies (Screen & Francis 2016, Tokinaga et al. 

2017, Su et al. 2017). Additional modelling evidence has forecasted strong interactions 

between AMOC, AMO and global warming in the next decades (Hansen et al. 2016, 

Sgubin et al. 2017).  

 

Global warming is also expected to impact Rossby wave trains (Supplementary Fig. 

21d). A significant impact of Arctic amplification processes on atmospheric Rossby 

wave trains is expected (Francis & Vavrus 2012, Coumou et al. 2015). Rising near-

surface air temperatures in the Arctic exceed mid latitude warming by a factor of at 

least two since the late 1990s (Francis et al. 2017). The amplification of Arctic 

temperatures by global warming typically promotes a reduced poleward temperature 

gradient and slower eastward progression of Rossby waves (i.e. weakened zonal winds 

and increased wave amplitude). Slower progression of waves in turn produces more 

persistent associated weather patterns in mid-latitudes, increasing the probability of 

extreme weather events (drought, flooding, cold spells, heat waves). ENSO dynamics 

might be also altered by global warming, possibly increasing the frequency and 

intensity of Eastward propagating ENSO events (Cai et al. 2015) (Supplementary Fig. 

21e). Other works indicate that global warming may also promote more persistent La 

Niña conditions (Mann et al. 2009, McPhaden et al. 2015) (Supplementary Fig. 21f). 

For example, palaeoclimatic evidence from the Medieval Climate Anomaly suggests 
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that increased radiative forcing can increase La Niña–like states (Mann et al. 2009, 

Marsicek et al. 2018). Global warming will also elevate tropical SSTs, which in turn 

will possibly induce a more elevated outflow of the rising branch of the Hadley cell, 

enhancing drought in semi-arid biomes at mid latitudes (Fu 2015, Lau & Kim 2015) 

(Supplementary Fig. 21g). Under warmer SSTs, the raising air reaches a more elevated 

tropopause, becoming dehydrated by colder temperatures, and drier air is produced 

when subsidising at mid-latitudes in semi-arid regions (Fu 2015, Lau & Kim 2015). 

Finally, global warming could progressively modify ocean-land interactions that 

intervene in the generation of drought periods and the advection of ocean humidity over 

land (Fu 2015, McPhaden 2015) (Supplementary Fig. 21h; Supplementary Box 2). In 

the context of increasing global warming, water vapor content over land may not 

increase fast enough relative to the rapid temperature warming, resulting in drier air 

masses in extensive continental areas of the globe (Sherwood & Fu 2014, Fu 2015). 

The relative balance between Arctic and Antarctic amplification could also alter 

globally ocean heat transport by AMOC, SST patterns, and impact global drought 

patterns (Supplementary Fig. 21i).  

 

Overall, there is robust evidence suggesting notable impacts of global warming on the 

major components analysed, including AMO, ENSO and atmospheric Rossby wave 

trains. Grey circles in Supplementary Fig. 21 synthesize the expected major impacts of 

global warming that could in turn affect regime shifts in drought and forest carbon 

uptake. The future dynamics of atmospheric Rossby wave trains and the associated 

drought regimes at mid-latitudes will depend on the relative strength of different global 

warming amplification processes at different latitudinal bands (Supplementary Fig. 

21a-i). For example, the co-occurrence of arctic positive feedbacks and tropical Hadley 
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cell amplification processes is expected. The relative strength of tropical, arctic and 

antarctic amplification processes, though, will ultimately shape the meridional 

temperature gradient at mid-latitudes, determining in this way long-term Rossby wave 

train dynamics, the frequency of blocking activity and drought regimes in semi-arid 

areas (Francis et al. 2017). Due to the strong links and interactions reported for all the 

components reviewed, a wide range of possible scenarios should be considered.  

 

Our results are consistent with previous studies of the responses of Aleppo pine 

to increased drought, which have extensively documented a reduction in growth and 

wood production as water availability decreases (Borghetti et al. 1998; De Luis et al. 

2007; Sarris et al., 2007; Camarero et al., 2010, Pasho et al. 2012, Gazol et al. 2017, 

Novak et al. 2016, Peña Gallardo et al. 2018) and with the effects of climatic oscillators 

on tree growth trends in this area (reviewed in Camarero et al. 2011; Pasho et al. 2011, 

St George 2014, Madrigal-González et al.  2017, Dorado-Liñán et al. 2017). Extending 

this previous evidence, our results highlight a critical importance of sustained, 

multidecadal negative effects of climatic teleconnections in forest carbon capture and 

resilience patterns (Fig. 2). We suggest that multiple and non-mutually exclusive 

mechanisms are jointly operating at different time scales shaping the reported trends on 

forest carbon capture, including the three analyzed climatic mechanisms (Fig. 6), but 

also lagged effects of soil hydrological and tree ecophysiological processes (Fig. 6). 

Referring to the ecophysiological processes, major negative effects of drought on the 

secondary growth of Aleppo pine have been mainly reported at a 8-12 month time scale 

after drought, but significant effects have been documented for longer time periods 

(lasting to 24-30 months; Pasho et al. 2011, Peña Gallardo et al. 2018). Experimental, 

xylogenesis and isotope studies indicate that wood formation and secondary growth are 
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significantly constrained by early summer water availability and associated with 

drought-induced shifts in the stomatic control of leaf conductance (Borghetti et al. 

1998, Ferrio et al. 2003, Gazol et al. 2017, Novak et al. 2016). Similarly, it is well 

documented in this species that climatic conditions during the growing season affect 

tree growth during the subsequent year (Sarris et al. 2007, Linares et al. 2010, Pasho et 

al. 2011). In line with these findings, Anderegg et al. (2015) also documented in a 

global comparative analysis of multiple forest types an incomplete forest growth 

recovery for 1 to 4 years after extreme drought, showing most prevalent negative 

effects in Pinaceae species, located in dry ecosystems, and in species with reduced 

hydraulic safety margins. On top of this, additional observational studies suggest that 

complex feedbacks between drought-induced defoliation, tree primary and secondary 

growth and carbon starvation might extend and lengthen tree recovery periods, limiting 

tree long-term resilience, and resulting in declining trends (e.g. Girard et al. 2009, 

Guada et al. 2016). Independently from these ecophysiological processes, intrinsically 

delayed responses of soil hydrological systems, affecting groundwater levels several 

months after the meteorological drought can also additionally contribute to the 

emergence of long-term tree responses (St George et al. 2014). The limited early 

warning signals, low recovery rates and resilience trends reported for Aleppo pine 

(Figs. 2, 3) are consistent with previous studies (Camarero et al. 2015a, Gazol et al. 

2018). Overall, despite the well-known importance of the reviewed ecophysiological 

processes shaping long-term responses of secondary growth, our analyses suggest a 

major contributing role of the reported climatic mechanisms on the reported regime 

shift (Fig. 4-6).  
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Previous studies of the dynamics of forest carbon uptake in the Iberian 

peninsula have mainly focused on the 1986-2008 time period, i.e. the decades covered 

by the Spanish Forest National Inventories. These studies have reported dominant 

effects on tree secondary growth of stand structure, plantation effects, tree height, and 

functional diversity (reviewed in Gómez-Aparicio et al. 2011, Vayreda et al. 2012, Coll 

et al. 2013, Ruiz-Benito et al. 2014), and significant but quantitatively less dominant 

effects of climatic variables (Vayreda et al. 2012, Coll et al. 2013). Our results identify 

a new ecological context dominated by strong, climate-induced multidecadal shifts in 

forest productivity, with important reductions in annual productivity at the decadal 

scale (31-37%) and significantly reduced resilience in Aleppo pine stands (Fig 2).   

To conclude, in this study we have identified the key role of the non-stationary 

interactions between AMO and ENSO events in driving abrupt climatic shifts in semi-

arid Aleppo pine forests, providing a new, unreported mechanism for carbon uptake 

shifts in these vulnerable forests. We have provided as well evidence for other co-

acting processes implied in the emergence of regime shifts in drought and forest carbon 

uptake, and outlined a framework integrating the expected effects of global warming in 

these mechanisms.  
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Figure captions 

 

FIGURE 1.  Drought-regime shifts. Observed shifts in monthly series of the Standard 

Precipitation Evapotranspiration Index (SPEI, 12-month window) at a grid resolution of 

280×280 km2 in the Spanish Iberian Peninsula. The year of a shift and the variance 

explained by the regression tree model are indicated. The splitting points obtained by 

the regression tree analyses for 1950-2012 are indicated by coloured vertical bars. Red 

bars indicate shifts characterized by R2 >0.20  and a Tukey-Kramey test p value 

<0.0001. Orange bars indicate significant shifts with regression tree 0.10<R2<0.20 and 

a T-K test p value <0.0001. Yellow bars indicate 0.01<R2<0.10 and a T-K test p value 

<0.0001. Green bars indicate a splitting point departing from the studied 1979 - 1981 

period. Positive and Negative SPEI values indicate wet and dry periods, respectively. 

(a-m) Monthly SPEI series are shown for each grid unit.  

 

FIGURE 2. Changes in carbon uptake by Mediterranean forests. (a) Carbon-uptake 

dynamics in 18 Aleppo pine forests situated in the northeastern Iberian Peninsula 

showing regime shifts in carbon uptake. Blue dots and lines represent the observed 

trends in carbon gain during the first three decades. Red dots and lines illustrate the 

observed dynamics after the 1980s climate shift. Significant linear trends are shown 

(ordinary least squares regression). Smoothed trends fitted by the cubic spline method 

are represented (λ values = 0.01 and 100). (b) Observed trends in forest carbon uptake 

shynchrony. A spline fit (black line) indicates the averaged r pearson trend observed for 

all forest stands (λ=100). The contour lines are quantile contours in 5% intervals (i.e. 

5% of the r pearson values are below the lowest (blue) contour, 10% are below the next 

contour, red contour lines indicate maximum point density). (c) Observed trends in the 
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forest carbon uptake resilience index after the 1980 regime shift. A spline fit (black 

line) indicates the mean FCUR trend observed for all forest stands (λ=100). FCUR is 

calculated using a reference period of 5 years before the shift. A smooth coloured 

surface illustrating the density distribution of FCUR values is provided. Red contour 

lines indicate maximum FCUR point density. The contour lines are quantile contours in 

5% intervals. (d) Observed trends in forest carbon uptake recovery capacity (FCURC). 

The thin dashed black line indicates the minimum FCU level observed the year of the 

regime shift. A spline fit (black line) indicates the averaged FCURC trend observed for 

all forest stands (λ=100). Red contour lines indicate maximum FCURC point density. 

 

FIGURE 3. Analyses of early-warning signals and structural equation models 

(SEM). (a) A comparison of the early-warning signals (AR-1) observed for SPEI 

variables and forest carbon uptake (kg ha-1 y-1). (b) Observed relationship between 

SPEI early-warning signals (AR-1) and regime shift strength (variance explained by 

regression tree models). (c) Relationship between the nonparametric Kendall tau 

correlation coefficient for the AR-1 moment (based on the SPEI 12-month time series 

during the 1950-1979 period) and the variance explained by the regression tree models 

(1/AICc). (d) Standardised coefficients in the SEM model for grid cell g (280×280 km2 

scale, Supplementary Fig. 1). Model-fitting parameters: χ2=3.04, p=0.36; BIC=-16.81. 

(e) Relationship between the standardised coefficients in the SEM models linking AMO 

and SPEI and the variation explained by the regression tree analyses (1/AICc). (f) 

Relationship between the nonparametric Kendall tau correlation coefficient and the 

standardised coefficients of the SEM connecting AMO and SPEI 12.  
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FIGURE 4. Changes in the non-stationary effects of the El Niño Southern 

Oscillation (ENSO) and the North Atlantic Oscillation (NAO) on the SPEI 

drought index. (a) Upper panel. Observed changes in the Atlantic Multidecadal 

oscillation (AMO) and the Multivariate ENSO Index (MEI) over 1950-2012, reporting 

a parallel shift in the vicinity of 1980. Low-frequency variability in the annual AMO 

and MEI index are illustrated (Spline fits, LambdaAMO=10, LambdaMEI=100). Lower 

panel: Observed variation in the number of months per year with significant effects 

(p<0.05) of the Multivariate ENSO index (MEI) on seasonal drought (SPEI, three 

month temporal scale). Red squares indicate significant negative effects associated with 

increased drought (increased number of months with significant drought effects). Blue 

squares indicate positive effects associated with increased autumn rains (p<0.05). (b) 

Observed low frequency changes in the monthly winter NAO index over 1950-2012. 

Trends for January are illustrated (Spline fit). The same trends were observed for 

December (not shown). Thick blue line: Lambda=10000. Thin blue line: 

Lambda=1000. Lower panel: Observed variation in the effects of winter NAO on 

drought (SPEI 3). Significant negative effects of NAO on SPEI (p<0.05) were detected 

on December and January. Red squares illustrate the detection of significant negative 

effects of monthly winter NAO states (December and January) on SPEI (p<0.05).  

 

FIGURE 5. Modulation induced by the Atlantic ocean multidecadal variability (AMO) 

on the correlations between ENSO and forest carbon uptake (FCU). (a) Observed 

negative correlations between Pearson correlation values (rFCU-MEI) and AMO in the 

18 Aleppo pine stands experiencing regime shift trends. Correlations were computed 

for all months, and the maximum correlation value observed is illustrated. *p<0.05, 

**p<0.01. (b) A summary of the observed variation of the strength of the modulation 
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by AMO (explained variance) and its monthly variation. The plot synthesises the 

observed relationships at 18 forest sites and for all the months of the year. A quadratic 

polynomial fit is shown. (c) Observed p values for the reported correlations in b. In b 

and c a smooth surface showing the density of data points is provided. Red contour 

colors indicate maximum point density. 

 

FIGURE 6. A diagram illustrating three mechanisms affecting drought trends and 

regime shifts in forest carbon uptake. Sea surface temperatures (SST) depend on 

positive/negative AMO phases and ENSO, and modulate the propagation of Rossby 

waves and the transport of water vapour and heat over land. AMO also has lagged 

effects on the dynamics of winter NAO, which in turn significantly affect drought 

severity and atmospheric blocking frequency leading to reduced forest carbon uptake. 
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