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Abstract 
 

Sexual selection is largely responsible for widespread sexual dimorphism. This 

includes extreme condition-dependent phenotypes that often characterise males, 

enhancing their sexual fitness because females prefer males with exaggerated traits. 

Females tend to be drabber and less frequently display their reproductive quality. 

While there are a number of classical explanations for this general pattern, it has only 

recently been suggested that sexual conflict could also be important, with females 

avoiding bright pigmentation and markers of their quality to avoid the costs of male 

sexual harassment but this idea has not been subjected to much testing.  In addition 

to effects on sexual behaviours and morphology, sexual selection can also affect life-

history strategies and in particular, aging. Aging, declines in fertility and increases in 

mortality with age, is widespread and sex differences in fertility declines and mortality 

increases with age are common, largely resulting from sexual selection. Much less is 

known about possible sex differences in functional senescence (i.e. how much and 

how quickly different traits lose function over age) and the role of sexual selection in 

causing different patterns of functional senescence. This thesis used insect models to 

investigate why sexual selection may not favour female signals of quality (Chapter 1) 

and whether the sexes differed in performance declines with age (Chapter 2).  I first 

tested if male harassment of high quality females reduces female fitness and found no 

male preference or increased harassment directed towards high-quality females in 

Drosophila simulans. I found that long-term harassment reduces lifespan but overall 

increases fecundity. However, short-term harassment decreases fecundity early in life. 

When exploring the role of sexual selection in driving diverse patterns of functional 
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senescence, I found that the sexes broadly age in similar patterns and for the most 

part follow similar patterns of functional decline as they age. Although the patterns in 

aging are similar, I find that traits lose function at different rates which is contrary to 

traditional aging theory of functional senescence. Jointly, this thesis highlights the 

different affects of sexual selection across taxa and how this is true even in closely 

related species like D. simulans and D. melanogaster. Results are discussed in 

relation to sexual selection and aging theory.  
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General introduction 

Sexual selection occurs due to reproductive competition between individuals of the 

same sex and species (Darwin, 1871; Andersson, 1994; Hosken & House, 2011). The 

two main mechanisms underlying sexual selection are usually male-male competition, 

where males compete for access to female ova, and female choice, where females 

pick from among competing males. Ultimately, these sex differences in behaviour arise 

because males tend to produce abundant, tiny, motile sperm whereas females 

produce fewer, larger, non-motile eggs (anisogamy).  

This asymmetry was highlighted by Bateman (1948) who suggested female fitness is 

typically limited by access to the resources needed to produce large costly gametes, 

whereas male fitness is typically limited by access to females. This leads to sex roles 

where females tend to be the sex which invests more heavily in offspring and are 

‘choosy’, while males often compete against rivals for access to females and are less 

choosy.  As a result, sexual selection acts more strongly on males to direct resources 

towards attracting females (Trivers, 1972). Females then choose amongst these 

‘showy’ males who compete between each other (male-male competition) for access 

to fertilize the female (female choice). Female preference can be driven by direct 

benefits (e.g. access to food, protection, parental care; Trivers, 1972) or through 

indirect benefits (genes) via the quality of their offspring (e.g. Kotiaho & Puurtinen, 

2007; Pomiankowski, 1988). 

It has recently been suggested that the general lack of sexual signals in females could 

be due to sexual conflict, where the sexes have different evolutionary optima for a 

shared trait or an interaction (Hosken et al., 2016). Specifically, females that invest in 

sexual display may suffer from high levels of male harassment which reduce their 
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fitness (Hosken et al., 2011). Previous explanations for lack of female signals have 

involved females needing to be more camouflaged compared to males (Wallace, 

1889) or costs of ornamentation reducing fecundity, and these would not be 

replenished through male-choice which in turn would overall reduce female fitness 

(Gwynne, 2001). Furthermore, and as described in the traditional models of sexual 

selection above, males have been thought to maximise their fitness by mating with all 

available mates. However, we do observe males choosing mates in nature even if only 

basic species level choice (Bonduriansky, 2001). Moreover, males do make 

reproductive decisions based on female traits like body size (Gage, 1998; Martin & 

Hosken, 2002). Recently, evidence from Drosophila melanogaster suggests that 

males exhibit preference for high-quality females when presented with a broad range 

of females of variable quality (Byrne & Rice, 2006; Edward & Chapman, 2012; Nandy 

et al., 2012). Additionally, there is evidence to suggest that due to this male choice, 

females of high-quality suffer reduced fecundity (Long et al., 2009) which can be 

mediated by the environment (Yun et al., 2017) and this may explain why females do 

not signal their quality. This is yet to be tested more widely in other species.   

Evidently sexual selection and sexual conflict can affect life-history traits. As 

highlighted above, the costs of male harassment can reduce female fecundity or 

lifespan. However, the effects of sexual selection on life-history evolution go beyond 

the direct costs of mating, and sexual selection does not just affect sexual interactions 

but can also impact aging by affecting optimal strategies of investment in reproduction 

over age (Archer & Hunt, 2015).  Aging is characterized by rising mortality, declining 

fertility and declines in physiological function with age over a lifespan of an organism 

(Baudisch & Vaupel, 2012). The evolutionary explanation for this phenomenon is that 

natural selection grows weaker over an organism’s lifetime (Haldane, 1942; Hamilton, 
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1966). As natural selection weakens, it allows for an accumulation of alleles with costly 

late-acting effects on fitness. These alleles may be mutations that have costly effects 

on fitness late in life but no effects on early life fitness (Medawar, 1952). These alleles 

may have costly pleiotropic effects on fitness late in life but positive effects on fitness 

early in life (Williams, 1957). Or they might be alleles that favour high investment in 

fitness traits early in life, but lower investment late in life (Kirkwood, 1977). The 

accumulation of late-acting alleles with costly fitness effects will promote the evolution 

of senescence (an increase in mortality risk and fertility decline) seen in many 

multicellular species once they reach sexual maturity (Hamilton, 1966). For a long 

time, it was believed that senescence was inevitable (Hamilton, 1966) but as more 

species are studied it is becoming clear that some species escape senescence and 

have constant mortality and fertility over age, or even show negative senescence, with 

increases in fertility and declines in mortality risk over age. Allocation theory, the trade-

offs that must occur when allocating limited resources to growth, maintenance, 

reproduction, and survival at difference time points in an organism’s life, provides a 

compelling and interesting explanation for this variation: fitness is maximised in 

different ways depending on the organism, resulting in different trajectories (Stearns, 

1989, Zera & Harshman, 2001). Despite our understanding of how natural selection is 

clearly at the centre of the process of aging, we are still trying to understand how 

sexual selection and sexual conflict can affect aging in terms of male and female life 

history traits. 

Aging research has typically focused on age-associated rises in mortality (actuarial 

senescence) rather than declining physical performance (functional senescence) 

(Nussey et al., 2013).  This means that changes in behavior and function over age are 

poorly understood (Petrosyan et al., 2014; Hassall et al., 2015; Anotaux et al., 2016). 
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Because functional senescence has been largely overlooked in aging research we do 

not understand why particular traits deteriorate at different rates both within and 

between individuals. If any single trait loses function before any other, then natural 

selection should counter this early decline (Williams, 1957). Again, this is not the case 

and traits have been observed to lose function at different rates in individuals (Herndon 

et al., 2002; Lailvaux et al., 2011; Nussey et al., 2009; Rivera-Gutierrez et al., 2012). 

Although it is unclear what factors shape these diverse patterns of decline one process 

that might be involved is sexual selection (Lailvaux et al., 2014). Very few studies have 

asked how variance in age-dependent strategies of reproductive success affects 

functional senescence across the sexes. However, traits often show sex-specific rates 

of functional decline over time (Bonduriansky et al., 2008). 

Here, I addressed both the lack of sexual signals in females and sexual selection 

effects on aging using insect models. In chapter 1 of the thesis I tested for the presence 

of male mate-choice in Drosophila simulans when males are presented with females 

that varied in quality. I also tested whether high-quality females were subject to greater 

harassment from males and whether this harassment resulted in reduced fitness - 

fecundity or lifespan. In chapter 2 of the thesis I tested for sex differences in the 

functional senescence of key physiological traits in Drosophila melanogaster. A 

General Discussion then follows to bring key findings together. 
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Chapter 1 

Male mate-choice and potential female fitness costs of male harassment in 

Drosophila simulans 

1.1 Introduction 

Extravagant male ornamentation and colouration is one of the most common patterns 

in nature, with exaggerated sexual traits tending to be much rarer in females (Darwin, 

1871; Anderson, 1994; Hosken, Alonzo & Wedell, 2016). This is because females tend 

to be the choosy sex and select males that compete to mate with them. Females are 

choosier because they make very few, large gametes (eggs) and this high per gamete 

investment means that females should ensure high quality males fertilize their ova. In 

contrast, males produce many tiny sperm and so male fitness is limited by how many 

ova then can fertilise. Accordingly males compete for access to females, using sexual 

signals to attract potential mates. Sexual signals tend to be costly, and hence high-

quality males tend to develop larger or more exaggerated signals that attract more 

females (Hosken & House, 2011).  However, in some species sex roles are reversed 

(i.e. males are the choosey sex and females compete and sexually signal), but even 

in taxa with standard sex roles, males may exert some mate choice. Put simply, even 

though females are generally the choosier sex this does not mean males mate 

indiscriminately, with evidence from a range of species indicating that males tend to 

prefer high-quality females as mates (Svensson & Petersson, 1988; Cote & Hunte, 

1989; Olsson, 1993; Kraak & Bakker, 1998; Amundsen & Forsgren, 2001; for review 

see Anderson, 1994). Nonetheless, females tend not to signal sexual quality in 

standard sex-role taxa. 
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There are several reasons females might not sexually signal as much as males 

(reviewed in Hosken et al., 2016). Crucially, male sexual harassment (repeated 

unsuccessful attempts to mate by males) of high-quality females may explain why it 

does not pay females to signal their quality (Hosken et al., 2016). In effect, if female 

quality was signalled, high-quality females could suffer increased harassment and 

reduced fitness, which may be selectively disadvantageous. For this to be true, males 

must make mate choices and females that are preferred by males must suffer reduced 

fitness. Evidence from Drosophila supports both of these assumptions (Long et al., 

2009). 

Foremost, there is clear evidence for male mate-choice in Drosophila, with male 

preference for high-quality females reported in two separate studies of D. 

melanogaster (Byrne & Rice, 2006, Edward & Chapman, 2012). However, only Byrne 

& Rice (2006) reported that male choosiness depended on male condition – with 

resource depleted males being choosier (also see Edward & Chapman, 2013). Other 

studies have reported that males were equally or more discriminating than females 

during pre-copulation courtship, as in both D. melanogaster and D. pseudoobsura 

where some females actively approaching males more than males approached 

females (Gowaty et al., 2002; Gowaty et al., 2003). Furthermore, it has also been 

reported that when males are sperm limited they often mate preferentially with younger 

and higher-quality females (Nandy et al., 2012). 

As well as male Drosophila being choosy, at least sometimes, it appears that being a 

preferred female can be costly. For example, in D. melanogaster, larger females are 

more fecund.  Larger females are subject to greater male sexual-attention and pay a 

cost for this increased male harassment in terms of reduced lifetime reproductive 
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success (LRS) (the number of offspring raised throughout an individual’s lifespan)  

(Long et al., 2009). Smaller, less attractive females can therefore achieve similar or 

greater lifetime fitness than their larger counterparts when continuously exposed to 

males because they have lower costs of harassment.  

Male mate-choice can therefore have costly consequences for female fitness. There 

are several possible mechanisms for this. For example, multiple experimental 

evolution studies have shown that male ejaculate components are toxic to females 

and these toxins can reduce female lifespan (Rice 1996; Wigby & Chapman, 2004). 

Evidence of male harm and male harassment targeting high-quality females extends 

beyond Drosophila. Coevolution of male and female weaponry (clasping and anti-

clasping morphologies) has been extensively observed in water striders where female 

resistance to aggressive male mating attempts increases the female’s chance of male 

harm and predation but larger females often experience less male harassment 

(Arnqvist & Rowe, 2002, Perry & Rowe, 2011).  Clearly males can choose mates and 

this choice can be costly for females. However, it is currently unclear just how common 

this is. 

Here, I tested whether male D. simulans preferentially target their courtship toward 

high-quality females and if there are fitness consequences for females as a result of 

any targeted male courtship.  I aimed to determine whether (i) Drosophila simulans 

males' court/harass larger, more fecund females (ii) whether harassment of preferred 

females might reduce female fitness (fecundity and lifespan). Drosophila simulans and 

Drosophila melanogaster share a recent common ancestor (estimated divergence of 

2 million years ago) and the comparison of the two is important for understanding of 

the evolutionary changes that may have occurred since their divergence (Capy, Pla & 
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David, 1993, 1994; Markow, 1996; Powell, 1997). Drosophila simulans has a 

polygamous mating system where both males and females mate multiple times 

(females directly increase their fitness by multiple mating. Taylor et al., 2008b), and 

where no parental care occurs (Powell, 1997). Sexual selection in D. simulans has 

been well studied, particularly for understanding female mate-choice.  In this taxon 

females base their mating decisions on male attractiveness, which is partly determined 

by cuticular hydrocarbon (CHC) bouquets (Sharma et al., 2010; Sharma et al., 2011; 

Ingleby et al., 2013b). Female choice is heritable and influenced by the environment, 

particularly temperature (Sharma et al., 2010; Ingleby et al., 2014), and is genetically 

correlated to male CHC attractiveness (Ingleby, Hunt & Hosken, 2013a). However, 

male mate-choice has received very little attention in D. simulans and while the 

mechanisms underpinning male mate-choice have been explored (Shahandeh et al., 

2018), the presence and adaptive consequences are yet to be thoroughly investigated. 

As a result, it is unclear if male mate-choice occurs and if so, what its consequences 

are for female fitness.  

1.2 Materials and methods 

1.2.1 Fly stocks 

 

The wild-type populations of D. simulans used in all male-female interaction assays 

were derived from iso-female lines collected in Australia in 2004. These have been 

maintained in large population cages (800 – 1000 flies per cage) with overlapping 

generations and harbour significant genetic and phenotypic variation for multiple 

behavioural and phenotypic traits (Taylor et al., 2007, 2008a; Wright et al., 2008). 

Ebony populations used in lifespan and fecundity assays were obtained from the 

Tucson stock centre and maintained as above for over 100 generations in large 
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population cages. Ebony is a recessive phenotypic body colour mutant with reduced 

fitness (Sondergaard, 1985). Flies were maintained on a Jazz Mix Medium (Fisher 

Scientific). All flies were maintained on 12/12 light/dark cycle in an incubator at 25°C. 

1.2.2 Manipulating female quality 

 

Female fecundity was our measure of quality, and high quality females hereafter refers 

to females that are more fecund (e.g. Parker et al., 1999, Gage, 1998). To generate 

high and low-quality females I used diet-larval-density manipulations to affect female 

size, which is a key predictor of female fecundity with larger females being more 

fecund (see Long et al., 2009). As this study is essentially a comparison of previous 

Drosophila melanogaster studies concerning male mate choice, I decided to follow 

female quality manipulations as closely as possible. Long et al 2009 found that both 

diet and larval manipulations heeded the best female size results which is supported 

by earlier studies of male mate choice in Drosophila melanogaster (Byrne & Rice, 

2006).  An apple juice-agar mix (50:50 distilled water to apple juice, 1 gram ajar: 100ml 

total liquid) was poured into petri dishes and was sprinkled with dried yeast. The dishes 

were then placed into stock population cages overnight. Eggs were then individually 

picked from these plates with an egg pick and cultured in vials from which experimental 

flies were collected. Food inside these vials was arranged so the volume was constant 

(12 ml), but nutrition varied, and fly density was also adjusted to generate low and 

high-quality environments that generate small low-quality females and larger high-

quality females. To produce large, high-quality females, 25 eggs were transferred to 

40ml vials containing 5ml of water agar (which is nutritionally empty) and 7 ml of 

commercially available food (Jazz mix). To produce small, low-quality females, 180 

eggs were added to vials containing 10 ml of water agar and 2 ml of Jazz Mix. All 
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males used were reared under standard conditions as described above. To confirm 

that I successfully manipulated body size, I used wing length as a measure of overall 

body size (Gilchrist & Partridge, 1999). This was measured with a Leica dissecting 

microscope connected to a PC imaging screen with SPOT basic software for imagine 

analysis. This manipulation consistently affected female body size (t-test: t = -16.726, 

df = 81.154, p < 0.0001), with females held at low density of high nutrient availability 

being larger than the females held at high density of low nutrient availability (Figure 

1.1 to observe size readings for large and small females).  

 

1.2.3 Male mate preferences 

 

I measured male preference for differential female quality when presented with a large 

and a small female and recorded all behavioural interactions.  All flies used in male 

harassment video assays were derived from the wild-type population described above. 

‘Mating arenas’ (10 x 8 x 11cm) used to house the flies during behavioural 

observations were designed such that flies had enough space for general movement 

and to display mating behaviours. These mating arenas were laser cut to a rectangular 

size and made from clear plastic so I could easily observe mating behaviours without 

disturbing the flies. The arena itself was made of 3 layers of individual plastic with the 

top layer cut so it could slide open and closed. A tiny hole was laser cut on the top 

surface where I could aspirate flies into the mating chambers. Mating assays were 

recorded using Chameleon3 1.3 MP Mono USB3 Vision (ON Semi PYTHON 1300) 

and Flea3 1.3 MP Mono USB3 Vision (VITA 1300) both fitted with Computar 

M3Z1228C-MP, 12 – 36mm Varifocal, Manual Iris Megapixel Lens and captured with 

StreamPix 6.5.0.0 (x64). These are speciality cameras which were small enough to be 
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hung above the mating arenas to record mating behaviours and not provide a ‘fish-

eyed’ view on the recorded video. The Computar lenses aided the ability to zoom in 

on an object with perfect clarity.  One large and one small female were aspirated into 

a mating chamber and a stock male (size was unmanipulated) was aspirated into the 

arena after females were given 2 minutes to settle. The assay began immediately after 

the male had been aspirated into the mating chamber. Each replicate was recorded 

for 10 minutes and the following behaviours recorded: first female approached by male 

(measured when male orientated himself to towards female for the first time) and male 

chasing female (measured when male is actively pursuing female), occurred). Mating 

assays were conducted at 17:00pm to 19:00pm to observe a greater level of female 

resistance to male attention as females are most receptive to mating in the morning, 

shortly after incubator lights come on.  

 

Figure 1.1 Manipulating female size. Mean (±SE) female size (wing size) of large and small 

individuals when our manipulating female size technique was implemented.  
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1.2.4 The direct costs of male harassment on female lifespan and fecundity  

 

To measure high and low-quality female lifespan and fecundity and how this was 

affected by male harassment I first conducted assays across a female’s lifespan. I 

used focal female flies derived from the wild-type and ebony cage populations 

described above. In each vial, one female was ebony and the other wildtype, but all 

experimental males were ebony mutants. This meant that I could determine maternity 

during subsequent offspring counts to assay female fitness. This is because ebony is 

a recessive mutation and so any ebony offspring must have an ebony mother and 

ebony father, while mating between ebony males and wild-type females will always 

produce wild-type offspring.  

In continuous harassment treatments, 3 ebony males were housed continuously in a 

single vial containing one high-quality (large) female and one low-quality (small) 

female. In a minimal harassment treatment female pairs (high and low-quality) were 

exposed to three ebony males every 5 days for 3 hours, this ensured that females did 

not become sperm depleted and suffered a fecundity cost, but equally should 

experience minimal levels of male harassment (see Taylor et al., 2008b). I had 120 

replicates, that were separated into two blocks where the wildtype female was of 

higher phenotypic quality (larger) and 120 replicates where ebony females were of 

higher phenotypic quality equally split across the two harassment levels. Fecundity 

was measured using offspring counts where females laid eggs for between 2 – 5 days 

(depending on treatment and stage in lifespan) and then moved onto fresh food 

medium to avoid overlapping generations. Offspring vials were monitored for eclosion 

and could develop for 10 days after first eclosion, where they were then counted. Once 

females died, offspring from their current vial were counted. The sum of female 
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offspring counts are our measure of lifetime reproductive success. Survival was 

monitored daily and lifespan was measured from the first day of eclosion to the day 

the female died.  

1.2.5    Short term fitness effects of male harassment  

 

The treatment above measures the direct effect of male harassment on female 

performance i.e. I assayed female fitness when they were in the presence of males. 

This means that any costs to female fitness could represent the immediate, direct 

interference caused by males and longer term, accumulated physiological damage 

that persists even in the absence of males. To better understand the costs of male 

harassment, I next tested whether exposure to males had long-lasting fitness costs 

even when males were absent, while also controlling for potential phenotypic bias 

during our lifespan assay where both wild-type and ebony flies were used in assays. 

To do this, I set up an assay identical to that described above but, wild-type flies were 

used exclusively (3 wildtype males house together with one large and one small 

female). Once an initial 10 days of harassment was completed, I housed the females 

individually in separate vials, and measured their fecundity for 15 days thereafter.  

1.3 Statistical analyses 
 

All analyses were conducted in R version 1.1.442 (R core development team 2018). 

For all models I assessed the significance of explanatory variables using backwards 

model simplification and terms were excluded if above threshold of p > 0.05. This is a 

standard statistical technique which can look for effects which otherwise could be 

obscured when power is reduced by the inclusion of non-significant terms. All 
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significant statistics are provided without non-signals terms inside models.  Degrees 

of freedom are reported for the full and reduced models. 

 

1.3.1 Male Preference  

 

To determine if males preferred large or small females, or if males harassed larger 

females more than small females, I used a generalized linear mixed-effects model 

(package: lme4) with a binomial error structure, with female first approached as the 

response variable, female size (large or small) as the explanatory variable and block 

as a random effect.  

1.3.2 Male harassment effects on fecundity 

 

I implemented a linear mixed model (package: lme4) with a Poisson error structure, 

with fecundity as the response variable and female size, genotype (ebony or wildtype) 

and harassment as the explanatory variables, and block (n=2) and vial ID (i.e. the vial 

that female pairs were housed in) as random effects.  

 

1.3.3 Male harassment effects on female lifespan 

 

I used a mixed effect cox model (package: coxme) with female age and censored as 

the survival object, female size, genotype and harassment as the explanatory 

variables, and block and vial as random effects.  

1.3.4 Initial female exposure to male harassment 
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I used a linear mixed model (package: lme4) with fecundity as the response variable, 

and female size, genotype and harassment as the explanatory variables, and block 

and vial as random effects.  

1.4 Results 
 

1.4.1 Do males prefer larger females and do larger females get more harassed? 

 

When first approaching females, males did not differentiate between large and small 

females (χ2
2,3 = 0.49; P = 0.48). To determine whether larger females were harassed 

more than smaller females I measured the amount of time females were chased by 

males. I found large and small females were not differentially chased by males (χ 2
2,3 

= 1.84; P = 0.18; Figure 2). 

 

 Figure 1.2. Time (seconds) male spent chasing large and small female. 

 

1.4.2 Does continual male harassment affect fecundity over lifespan in females of 

differential attractiveness/quality? 
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Male exposure had a significant effect on female fecundity (χ2
6,7 = 50.43; P < 0.001; 

Figure 3), with harassed females producing more offspring than non-harassed 

females. More so, I found the female size had a significant effect on our model (χ2
6,7 

= 22.21; P < 0.001), with larger females producing more offspring than smaller females 

irrespective of harassment treatment. The effect of size was consistent across 

treatments as there were no treatment by female size interactions (χ2
9,10 = 0.566; P = 

0.45).  

 

Figure 1.3 Effect of male harassment on female lifetime fecundity. Mean (±SE) lifetime fecundity 
(number of offspring produced) when large (high-fitness) and small (low-fitness) females are exposed 
to continuous harassment (blue line) and minimal non-harassment (red dotted line) of males. Harassed 
females produced significantly more offspring and larger females produced more offspring than smaller 
females irrespective of treatment. 
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1.4.3 Does continuous male harassment affect lifespan in females of differential 

attractiveness/quality? 

 

I found that harassment had a significant effect on lifespan (χ2
9 = 100.78; P < 0.001; 

figure 4) with harassed females living shorter lives than non-harassed females. I found 

no significant effect of size on lifespan, so manipulating female quality did not affect 

how long they lived (χ2
9 = 100.78; P = 0.33). Harassment had consistent effects on 

females, irrespective of their size. The effect of harassment is pronounced: females 

that are not harassed live on average 10 days longer than females that are harassed. 

 

Figure 1.4 Effect of male harassment on female lifespan. Mean (±SE) lifetime fecundity (number of 
offspring produced) when large (high-fitness) and small (low-fitness) females are exposed to continuous 
harassment (black shade) and minimal non-harassment (grey shade) of males. Harassed females live 
significantly shorter lives and size was found to have no effect. 
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1.4.4 Does initial harassment affect the fecundity in females of differential 

attractiveness/quality? 

 

I found that harassment had a significant effect on female fecundity (χ2
5,6 = 5.74; P = 

0.017; Figure 5), with harassed females producing fewer offspring than non-harassed 

females. More so, these effects did not depend on female size (χ2
5,6 = 3.32; P = 0.07) 

although larger females tended to produce more offspring than small females. 

 

Figure 1.5 The initial effect of male harassment on fecundity. Mean (±SE) lifetime fecundity 
(number of offspring produced) when large (high-fitness) and small (low-fitness) females are exposed 
to continuous harassment (black shade) and minimal non-harassment (grey shade) of males. Females 
had a 10 day exposure to males and then separated.  
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1.5 Discussion 
 

Generally, females are the choosier sex. However, males still exert some mate choice 

and, in some circumstances, can be choosier than females (Ah-King & Gowaty, 2016). 

When males exert choice, preferred females might be harassed so intensely that it 

reduces their fitness (Long et al., 2009; Hosken et al., 2016). Here, I tested if males 

exhibit preferences for high-quality female D. simulans and if male harassment of 

these females reduced their fitness (survival or fecundity). I found that males did not 

show any preferences for females on the basis of female quality, as measured by 

fecundity (size), and both high- and low- quality females were harassed equally. While 

harassment did reduce female lifespan and female fecundity early in life, long-term, 

harassment improved female LRS. This suggests that male D. simulans do not exhibit 

choice for high-quality females and the effects of male harassment are not entirely 

negative. 

1.5.1 Males did not prefer high-quality females 

 

Males are able to improve their fitness through multiple mating (Bateman, 1948) so 

males are expected to mate relatively indiscriminately. However, if high variation in 

female quality is present, males might increase their fitness by rejecting low-quality 

females and instead, trying to mate with high-quality females (Bonduriansky, 2001, 

Edward & Chapman, 2011). Here, there was pronounced variation in fitness between 

high and low-quality females: larger females were much more fecund than small 

females. Despite this, I did not find any signs of males preferring more fecund females. 

These results agree with classical evolutionary theory that suggests males should on 

average mate with any females that will accept them (Trivers, 1972). However, this 

result contrasts with multiple previous male mate-choice studies in Drosophila 
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melanogaster where authors found clear signs of male mate-choice in both virgin and 

mated males (Bryne & Rice, 2006; Edward & Chapman, 2012; Long et al., 2009; 

Nandy et al., 2012) and seems to be another example of the reproductive differences 

between these two closely related taxa (Taylor et al., 2009). 

The lack of choosiness I found may indicate that mating is not costly for the virgin 

males in this experiment, and that these males can readily re-mate. If males can 

remate readily, they do not need to choose between available females. Perhaps, had 

I tested sperm-limited or previously mated males I might have seen signs of male 

mate-choice as shown in previous studies (Byrne & Rice, 2006) as males will be 

resource depleted and mate choice might be more likely. Additionally, video 

behavioural analyses were conducted in the late afternoon/early evening when it is 

thought females are less receptive to mating. Males met with rejection by one female 

could immediately transfer their courtship activities to the other, that is, even if males 

had a preference for one female over the other, they may readily mate with a non-

preferred female if they are rapidly rejected by their preferred mate and accordingly, I 

may not have detected any preference 

1.5.2 Male harassment reduces female lifespan 

 

As males did not prefer high-quality females, it may be anticipated that both low and 

high-quality females experience similar effects of harassment (continuous exposure 

to males) on their fitness. Alternatively, high-quality females may be better able to 

tolerate harassment costs. I found that harassment was associated with reduced 

lifespan in both high and low-quality females. On average, harassment reduced female 

lifespan by 10 days. This result is in keeping with a previous D. simulans study (Taylor 

et al., 2008b), which found a decrease in female lifespan from continuous housing with 
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two males. More generally, prolonged male exposure and / or multiple mating often 

reduces female lifespan (e.g. Gay et al., 2009). Bateman et al., (2006) reported 

reduced female longevity in gryllid crickets (Gryllus bimaculatus) when housed with 

males. Crudgington & Siva-Jothy (2000) reported that multiple mating reduced female 

longevity via genital damage in the bean weevil (Callosobruchus maculatus). Reduced 

lifespan may reflect the direct damage caused by male mating (e.g. genital damage - 

Crudgington & Siva-Jothy 2000; toxins in the ejaculate – Eady et al., 2007) or 

harassment (injury during courtship), or that females invest heavily in energy trying to 

reject male courtship attempts. Irrespective of the mechanism, these results add to a 

body of data showing that males pursuing, assessing, rejecting and copulating can 

carry heavy fitness costs for females. 

1.5.3 Male harassment can improve female fecundity 

 

I measured the effects of harassment on females in two ways. Fecundity was either 

assayed in females exposed to continuous or minimal levels of male harassment 

throughout their lives, or in the absence of males after 10 days of continuous or 

minimal harassment early in life. In both assays, larger females were more fecund 

than small females and the effects of harassment on fecundity were similar for both 

large and small females. When females were exposed to harassment and then 

separated from males, I found that females from the continuous harassment treatment 

had lower fecundity than females from the minimal harassment treatment. This 

suggests that the costs of harassment are not just restricted to lifespan and extend to 

fertility. However, when females were exposed to harassment across their entire lives, 

females from the continuous harassment treatment lived shorter lives than females 
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from the minimal harassment treatment. Clearly, the effects of male harassment on 

female fecundity are more complicated than envisaged.  

Indeed, data on how continuous male exposure affects female fecundity are mixed. 

Taylor et al., (2008b) found that female fecundity in D. simulans was similar in females 

housed continuously with males and females given intermittent male exposure – these 

treatments are comparable to those I employed. In other species (e.g. seed beetles, 

bruchid beetles: Ronn et al., 2006; Gay et al., 2009) females housed continuously with 

males have lower lifetime egg production compared to females that were mated once 

and then isolated. Nonetheless, females often benefit from mating more than once. 

This might be because singly mated females become sperm limited or multiple mating 

allows females to exert cryptic female choice, picking the sperm of high-quality males. 

In support of this, Taylor et al., (2008b) showed that in D. simulans continuous male 

exposure improves female fecundity relative to females mated just once. Similar 

results have been found in D. melanogaster (Chapman et al., 1995: also see e.g. 

Savalli & Fox 1999). While these data suggest that not encountering enough males 

can reduce female fitness (i.e. sperm limitation), very high levels of exposure to males 

can also have a deleterious impact on female fitness. More so, recent research in D. 

melanogaster has shown that the environment can alter rates of sexual encounters 

which in turn impacts male harassment of high-fitness females and overall male harm 

can be reduced if the environment reduces male-female interactions (Yun et al., 2017). 

Two feasible explanations are feasible for why females that experienced continuous 

levels of harassment and were then separated had reduced fecundity, but females 

that experienced continuous levels of harassment across their entire lives did not 

experience reduced fecundity. Firstly, there may be a trade-off between lifespan and 

fecundity. This is because continuously harassed females lived significantly shorter 
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lives than minimally harassed females, but produced more offspring. The trade-off 

observed in our results is supported by a meta-analysis of 122 insects showing that 

females who were exposed to polyandry (increased male mating) had increased 

lifetime offspring production (Arnqvist & Nilsson, 2000). This was at the cost of reduced 

lifespan but direct benefits of multiple mating (increased offspring production) was as 

high as 30-70% - outweighing any negative effects on longevity. An alternative 

explanation is that females may pay an initial short-term cost to continuous levels of 

harassment as eager males persistently harassing them for mating’s. However, over 

an entire lifespan the female has greater offspring production due to constant 

opportunity to mate.  

In conclusion, I found no evidence to suggest male mate-choice is present in D 

simulans, or at least no choice for larger females. I also found no evidence for larger 

females paying a greater fitness cost due to male harassment than their smaller, 

lower-quality counterparts. These finding are interesting because in the closely related 

D. melanogaster the opposite is true. However, I found that females pay an initial short-

term reduction in fecundity when housed continuously with males. Furthermore, 

females live significantly shorter lives when housed continuously with males, but this 

is offset by their increased fecundity over their lifespans. Further research should 

investigate whether male resource dependence influences male mate-choice in D. 

simulans, and the rate of sperm depletion in male remating. 
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Chapter 2 
 

Sexual selection and functional senescence across the sexes in Drosophila 

melanogaster  

 

2.1 Introduction 
 

Aging is characterized by increased mortality risk and declining fertility over the life of 

an organism (Baudisch & Vaupel, 2012).  However, these demographic changes are 

often accompanied by deteriorating physiological performance.  For example, in 

humans aging is associated with declines in cognitive capacity (Bishop, Lu & Yankner, 

2010), muscle mass (Frontera, Zayas & Rodriguez, 2012) and immune function 

(Boraschi et al., 2013). Species like orb web spiders species; (Anotaux et al., 2016), 

red flour beetles (Tribolium castaneum) species; (Wexler et al., 2016) and fruit flies 

species; (Martin & Grotewiel, 2006) become less mobile as they approach the end of 

their lives.   

These functional declines can carry enormous fitness costs.  In animal populations, 

reduced performance late in life can diminish foraging efficiency (Anotaux et al., 2014) 

and increase vulnerability to predation (Wright et al., 2006), and so affect survival and 

reproductive success in the wild. In humans, functional performance late in life 

influences the happiness of the elderly (Angner et al., 2009).  Despite the social and 

ecological importance of understanding declining performance over age, aging 

research has typically focused on age-associated rises in mortality (actuarial 

senescence) rather than declining physical performance (functional senescence) 

(Nussey et al., 2013).  This means that changes in behaviour and function over age 
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are poorly understood (Petrosyan et al., 2014; Hassall et al., 2015; Anotaux et al., 

2016).  

Because functional senescence has been largely overlooked in aging research we do 

not understand why or even if particular traits deteriorate at different rates both within 

and between individuals.  Traditional evolutionary theory predicts that aging evolved 

as a result of natural selection growing weaker throughout life (Hamilton, 1966) and 

so if any single trait loses function before any other, then natural selection should 

counter this early decline (Williams, 1957).  This should mean that aging should entail 

a synchronized loss of function.  This is not the case however, and traits lose function 

at different rates in individuals in the laboratory (Herndon et al., 2002; Lailvaux et al., 

2011) and in the field (Nussey et al., 2009; Rivera-Gutierrez, Pinxten & Eens, 2012).  

Although it is unclear what factors shape these diverse patterns of decline, one 

process that might be involved is sexual selection (Lailvaux, Wilson & Kasumovic,  

2014).   

Sexual selection is the reproductive competition that occurs between members of the 

same sex and species, and tends to act asymmetrically, usually being stronger on 

males (Anderson, 1994).  Sexual selection might therefore affect how the sexes invest 

in survival versus reproduction throughout life (Bonduriansky et al., 2008).  For 

example, because reproduction frequently requires more time and energy investment 

from females, they are more likely to adopt a slow and steady strategy of reproductive 

effort (Bonduriansky et al., 2008).  In this case, patterns of actuarial, reproductive and 

functional senescence are likely to follow a pattern dictated by the progressive 

weakening of natural selection i.e. rising mortality risk, declining fertility and functional 

performance.  However, sexual selection can promote altogether different strategies 

of age-dependent reproductive investment in males.  If males maximize their fitness 
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by investing intensely in reproductive effort early in life to gain mates, even if this 

reduces their survival (Kokko, 1997), then males may be under selection for high early 

reproductive effort, followed by fast or severe actuarial and functional senescence.  

Male Australian field crickets (Teleogryllus commodus) adopt such a “live-fast-die-

young” life-history strategy where high quality males call intensely early in life to attract 

females but, as a result, die earlier than both low quality males and females (Hunt et 

al., 2004; also see Okada et al., 2011).   

Alternatively, males might invest more heavily in reproductive effort as they grow older, 

this may happen if reproductive success relies on a trait that takes time to develop or 

learn (e.g. large song repertoire, body mass).   If this translates into an age-dependent 

rise in reproductive success, selection may favour a longer life in males than females.  

Similarly, we might expect that traits that promote reproductive success late in life are 

under stronger selection in males than females.  This strategy is seen in male 

decorated field crickets (Gryllodes sigillatus), where males invest more intensely in 

reproductive effort as they age while females show age-associated declines in 

fecundity and in turn, die earlier than males (Archer et al., 2012).   

Very few studies have asked how variance in age-dependent strategies of 

reproductive success affects functional senescence across the sexes.  However, traits 

often show sex-specific rates of functional decline over time.  For example, in grey 

mouse lemurs, (Microcebus murinus) wild females are initially stronger than males but 

experience more rapid declines in strength such that the sexes are equally strong late 

in life (Hämäläinen et al., 2015).  In red flour beetles, declines in movement behaviours 

are steeper for males than females (Wexler et al., 2016).   Preliminary data collected 

in Drosophila simulans evolved under elevated or relaxed sexual selection suggest 

that sexual selection affects how quickly and how much different traits lose function in 
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either sex.  Unfortunately, our understanding of how sexual selection affects age-

dependent changes in function is incomplete due to a scarcity of studies quantifying 

sex-specific patterns of functional decline.   

To better understand how sexual selection might shape sex differences in functional 

senescence, I characterise age-dependent performance in male and female 

Drosophila melanogaster from the 15 isofemale lines originating from the Drosophila 

Genetic Reference Panel.  Because these are isogenetic lines, I test whether 1) there 

is genetic variation for the functional traits, 2) the sexes trade-off investment in 

particular traits differently, and 3) there are genetic correlations for these traits and, if 

so, characterise the direction of any correlations. 

 

2.2 Materials and methods 
 

2.2.1 Fly stocks 

 

The Drosophila Genetic Reference Panel (DGRP) (Mackay et al., 2012), consists of 

205 D. melanogaster lines initiated from gravid wild-type females caught in Raleigh, 

North Carolina and maintained by full-sib mating for over 20 generations.  I used 15 of 

these lines (ID = 28, 101, 136, 317, 360, 373, 382, 437, 443, 595, 703, 737, 765, 783, 

796), Flies were maintained at the University of Exeter, under a 12:12 Light/Dark cycle 

at 25°C, with non-overlapping generations. During line maintenance flies were 

anaesthetized with CO2.   

Experimental flies were collected as virgins and aspirated into individual 40 ml vials 

on their day of hatching with 8 ml of Jazz mix (Fisher Scientific, Loughborough, UK).  

Flies were checked every 48 hours to make sure that their food was free from mold or 
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bacterial growth; if vials were not sufficiently clean; flies were moved onto fresh food 

immediately.  All flies were aspirated into fresh tubes every six days irrespective of the 

condition of the vial.   

Flies used as mating partners to assess reproductive performance originate from the 

Dahomey stock caught in Raleigh, North Carolina.  Tester flies that were used as 

mates were collected as virgins and kept in groups in single sex vials with excess food.  

All mates were aged between three and six days old when they were paired with 

experimental animals. 

 

2.2.2 Sampling regime 

 

A challenge with assaying functional senescence is that if a trait is assayed too late in 

life (i.e. in the very oldest old members of a population) it may overestimate physical 

performance by assaying particularly high-quality individuals.  Conversely, if assay is 

performed too early then senescent declines may not be detected.  Ivanov et al., 

(2015) recorded lifespan in 25 virgin females for 197 DRGP lines, and for the lines 

used in the current study, median lifespan was 60 days (range: 33-78 days).  I 

therefore sampled at four-time steps: days 5, 15, 25 and 35 post hatching.  The final 

assay date exceeds (or is very close to) median lifespan in some experimental lines 

and so should reflect late life performance.  Additionally, three weeks is sufficient to 

detect the beginnings of functional decline in Drosophila (Gargano et al., 2005). 

However, 35 days old is less than median lifespan for most lines, which should 

minimise problems associated with selective disappearance, and be further reduced 

by using isolines.   
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A second challenge with measuring age-associated changes in function is that to really 

compare age-associated changes in multiple traits longitudinal data should be 

collected for a single cohort.  However, this is inappropriate for some of the traits I 

assayed. For example, negative geotaxis performance improves with repeated testing 

(Piazza et al., 2009) and repeated exposed to carbon dioxide can negatively affect 

mating behaviour (Barron, 2000).  I therefore assayed each trait in different sets of 5 

flies and use different flies in each time step (e.g. 5 males / females * trait * age class) 

to ensure innate age-associated changes in performance are not confounded by the 

effects of training or damage. 

 

2.2.3 Reproductive productivity   

 

Experimental flies were mated with virgins from our wildtype stock animals.  Each 

experimental male was housed with three virgin tester females, aged between three 

and six days old, that had been left overnight in 40ml mating vials containing surplus 

food.  Flies were then left for 48h, after which, females were transferred to a vial for 

oviposition (1B) for a further 48h, while males were removed and frozen.  Females 

were then moved to one more vial for a further 48h, such that their egg laying over 6 

days was recorded.  Oviposition vials were then incubated at the temperature from 

which their sire originated, and offspring were counted 8 days after the first day of 

offspring eclosion (see Taylor et al., 2008b).  The same method was applied to 

females, but females were paired for 48h with two males.   

2.2.4 Recovery from CO₂ anaesthesia 

 

The ability to recover from hypoxia is indicative of mitochondrial function (Coquin et 

al., 2008).  I used recovery from CO₂ anaesthesia to assay age-associated changes 
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in mitochondrial function.  I assayed 5 different flies of each sex in separate vials at 

each age class, from every inbred line (i.e. 5 flies x 2 sexes x 4 ages / line).  To assay 

CO₂ recovery time, flies were transferred into separate vials where they were exposed 

to CO₂ (1ltr / min) for thirty seconds.  The time until each fly stood upright was 

recorded.  All assays were recorded within two hours of lights going on in the incubator 

of the flies (i.e. 9 - 11 am) and the order that flies were assayed was determined using 

a random number generator function in Excel.   

2.2.5 Negative geotaxis  

 

Negative geotaxis (vertical climbing in response to shock) is a measure of motor ability 

that shows an age-dependent decline in Drosophila due to both reduced climbing 

speed and longer climb latency (Rhodenizer et al., 2008).  Once more, I assayed 5 

different flies in separate vials of each sex at each age class, from every inbred line 

(i.e. 5 flies x 2 sexes x 3 ages / line). Flies were aspirated into 15ml vials and then 

placed inside a wider vial attached via epoxy glue to a wooden board 2cm apart.  The 

wooden board was then raised 10cm and dropped, immediately infront of a cutting 

board marked every 5mm.  A camera (Sony HDR-CX405) was used to video every 

trial. This allowed us to record (1) the number of striations an individual climbed past 

(geotaxis distance) and (2) the time taken to reach the top most striation (geotaxis 

time).  Observations were stopped after two minutes if a fly did not begin climbing.  

Ten minutes later this assay was repeated and individual geotaxis distance and time 

taken for flies to pass all four striations were calculated from these two measurements.  
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2.3 Statistical analysis 
 

To analyse the effects of age on functional performance I used general linear models 

(package: glm) in R version 1.1.442 (R core development team 2018).  The response 

variable was the trait of interest and explanatory variables were sex (male or female), 

isoline (factor) and age (factor), and all interactions between them.  Significance was 

assessed via backwards model simplification and non-significant terms removed when 

they had a non-significant effect on model fit (P < 0.05).  This is a standard technique 

which can look for effects which otherwise could be obscured when power is reduced 

by the inclusion of non-significant terms. All significant statistics are provided without 

non-signals terms inside models.   Degrees of freedom are reported for the full and 

reduced models. 

 

2.3.1 Reproductive productivity 

 

To determine how productivity differs across the sexes, lines and age-classes, I used 

a general linear model, with a quasi-poisson error structure, with offspring numbers as 

the response variable, isoline, sex and age as explanatory variables. Because I found 

a significant interaction between isoline and sex on productivity, I analysed the sexes 

separately to better understand this interaction. 

2.3.2 Recovery from CO₂ anaesthesia 

 

To determine if an individual’s ability to recovery from CO2 differs between the sexes 

across age, I used a general linear model, with a quasi-poisson error structure, time 
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taken to recover from CO2 as the response variable, isoline, sex and age as 

explanatory variables. 

 

2.3.3 Negative geotaxis  

 

To enable analyses given the non-normal distribution of the negative geotaxis data 

(what was the distribution), I conducted derived variable analyses, where I created a 

single average value for each isoline in each age, sex category. I then used a Kruskal-

Wallis rank sum test to compare climbing ability in groups of different ages and sexes 

and then looked further into differences between groups by using a Dunn’s test. 

2.4 Results 
 

2.4.1 Reproductive productivity 

 

I found no significant three-way interaction between isoline, sex or age on reproductive 

effort (χ 2
245,263 = 1.44, P = 0.113). There was a marginal non-significant interaction 

between age and isoline (χ 2
287,263 = 1.51, P = 0.063), which suggests all genotypes 

show broadly similar age-dependent declines (Figure 1). There was no interaction 

between age and sex (χ2
287,289 = 2.49, P = 0.084) but there was a significant interaction 

between isoline and sex, suggesting genetic variation in how the sexes differ in 

productivity (χ 2
302,289 = 3.10, P = < 0.001). 

To better understand this interaction, analyses were run separately for males and 

females using an identical model structure. In females, there was a significant 

interaction between age and line, meaning that there were genetic differences in how 

female productivity declines over age (χ 2
132,111 = 1.92, P = 0.016). In males, there was 

no such interaction between line and age (χ 2
155,134 = 1. 29, P = 0.192) and lines did 
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not differ significantly in male productivity (χ 2
168,155 = 1. 56, P = 0.103) but, there was 

a strong effect of age (χ 2
157,155 = 47.71, P = <0.001). The model coefficient shows that 

this difference was driven by the large declines in male productivity at age 35 relative 

to earlier ages (t = -8.694, P = <0.001). 

 

Figure 1. The effect of age and sex on offspring production in females (Plot A) and males (Plot 

B). Blue line represents the mean (±SE) trend of offspring production across isolines. Grey lines 

represent each isoline trend of offspring production over age. 

 

2.4.2 Recovery from CO2 

 

The three-way interaction of line, sex and age did not significantly affect recovery time 

from CO2 (F = 1.31, df = 353, 376, P = 0.15). No significant interaction between age 

and sex, suggesting the sexes show a similar pattern of aging (F = 0.21, df = 378, 376, 

P = 0.81). There was a marginal non-significant interaction between line and sex on 

recovery time with sex differences similar across lines (F = 1.58, df = 391, 378, P = 
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0.09). Isolines showed different patterns of age dependent changes in trait expression 

as illustrated by a significant interaction between line and age (F = 1298.2, df = 391, 

415, P = < 0.001; Figure 2). Overall age did not significantly affect recovery from CO2. 

 

Figure 2. Recovery time (seconds) from CO2 over age across isolines. There was a significant 

interaction between isoline (genotype) and age on recovery time indicating there was genetic variation 

in how aging affected CO2 recovery. Each graph panel (A-L) represents a specific isoline and grey lines 

represent each specific isoline trend of recovery over age.  
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2.4.3 Negative geotaxis   

 

There is a strong difference between groups who differed in age and sex in ability to 

vertically climb following being knocked to the base of a vial (χ2 = 32.6, df = 5, P = < 

0.05; Figure 3). We performed a Dunn’s test to see which groups differed in geotaxis 

distance. The sexes show very similar patterns of decline over age in that, there are 

no differences in performance in age matched males and females (i.e. young males 

and young females show similar performance). The only sign of sex-differences in 

performance over age is that there is a significant difference between young and mid 

and old age females, but not between young and mid aged males. This probably 

reflects that there is greater variance in male performance in mid age (Table 1). 

  Mid Female Mid Male Old Female Old Male Young Female 

Mid Male 1.016586     
 0.1785     
Old Female 2.305674 1.328969    
 0.0226* 0.1254    
Old Male 1.84532 0.868615 -0.443607   
 0.0542 0.2063 0.3287   
Young Female -2.504868 -3.521455 -4.712274 -4.25192  
 0.0153* 0.0011* 0.0000* 0.0001*  
Young Male -1.053183 -2.069769 -3.31754 -2.857186 1.451685 

  0.1827 0.0361 0.0017* 0.0064* 0.1099 
Table1. Effect of age and sex on negative geotaxis between groups. Significant P values are 
highlighted in bold and have * symbol next to them. Values were only significant < 0.025. Young females 
differed from all groups. 
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Figure 3. The effect age and sex on ability to vertically climb (mm) in females (Plot A) and males 

(Plot B). Blue line represents the mean (±SE) trend of offspring production across isolines. Grey lines 

represent each specific isoline trend of Geotaxis Distance over age. 

 

2.5 Discussion 
 

Aging is the progressive decline in overall physiological performance that eventually 

leads to death (Arking, 1998). Aging is ultimately because natural selection grows 

weaker over an organism’s lifetime. However, sexual selection can produce different 

strategies of age-dependent reproductive investment and this in turn, can affect the 

strength of selection on male and female survival and performance over age 

(Bonduriansky et al., 2008). While sex differences in actuarial aging (i.e. how mortality 

risk changes over age) have been well studied (Baudisch & Vaupel, 2012; Nussey et 

al., 2013), our understanding of sex differences in functional senescence is far from 
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complete. As a result, less is known about possible sex differences in functional 

declines over age.  

Here, I attempted to partially fill this gap by testing for sex differences in age-

dependent senescence in three measures of physiological performance (i.e. in 

functional traits). I measured recovery from reproductive reproductivity, CO2 

anaesthesia and negative-geotaxis. When analysing the sexes together to look at the 

reproduction production over age, I found that females and males show broadly similar 

patterns of productivity declines over age and there is no genetic variation in patterns 

of senescence (i.e. isolines show similar patterns of change over age). However, both 

these results were only marginally non-significant and when I analysed the sexes 

separately to better understand the significant interaction between line and sex, it 

became clear that the effects of genotype on aging trajectories were not the same in 

males and females. In females, there was genetic variation in patterns of productivity 

decline but in males, all genotypes declined in a similar way over age. I also found no 

difference between males and females over age concerning an individual’s ability to 

recover from CO2 anaesthesia and isolines differed tremendously in their patterns of 

age-dependent recovery time. Finally, I also found clear signs of aging in geotaxis 

(vertical climbing response after shock) and while there was some modest variation in 

the severity of these declines over age across the sexes, this variation was weak. I 

now discuss each of these results in turn. 

2.5.1 Age-dependent reproductive productivity decline 

 

Reproductive productivity is central to an individual’s fitness (Betzig et al., 2012) and 

age-dependent declines in fertility are a hall-mark of aging (Kirkwood, 1977). However, 

sexual selection can promote sex differences in patterns of age-dependent 
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productivity that have knock on effects on functional senescence (Bonduriansky et al., 

2008). For example, typically, as individuals age reproductive productivity is predicted 

to decline, with few offspring produced by either sex near the end the lifespan (Snoke 

& Promislow, 2003). However, sexual selection might cause patterns of sex-specific 

fertility to differ across the sexes. For example, if male reproductive success relies on 

a trait that takes time to develop (e.g. large body size), reproductive success may 

increase in males (but not females) with age (Archer et al., 2012). Such sex-

differences in patterns of fertility, might lead to sex-differences in lifespan. For 

example, if males only gain fitness if they reach advanced ages, but females have 

reproductive success across their lives, stronger selection for a long life may be 

expected in males. In other words, although classical theories of aging predict 

declining patterns of reproductive effort over age (Hamilton, 1966), sexual selection 

might lead to sex differences in the tempo or trajectory of age-dependent fertility 

declines and these can have a pronounced effect on aging overall. This means that to 

understand sex-differences in aging, it is vital that we characterise sex-specific 

patterns of reproductive success.  

Here, I found that both sexes show signs of reproductive aging (i.e. productivity 

declines over age) but that these effects were broadly similar across the sexes. When 

analysing the sexes separately however, I found that the effects of genotype on age-

dependent productivity differed between males and females as there was genetic 

variation in patterns of aging in females but not males.  

Although, the interaction between age and sex were non-significant – they were 

marginally so, and a clear trend can be observed when visualizing the data and this 

shows a gradual decline in productivity with the lowest value being near the end of an 

individual’s lifespan.   However, although we might have expected males to decline 
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faster than females – they live fast and die young (Hamilton, 1966) – the data do not 

support this.  Additional testing with more statistical power is probably warranted and 

hence sex-specific effects cannot be ruled out. 

2.5.2 Sex and age effects on Negative geotaxis  

 

Aging is associated with a range of age-associated functional declines (Arking, 1998) 

and Drosophila has proved a valuable model for researching the genetic basis of 

locomotor impairments (Grotewiel et al., 2005).  In humans, age related locomotor 

impairments are particularly important in the elderly due to due to mortality and injury 

risk (Boyd et al., 2005; von Bonsdorff et al., 2006). Negative geotaxis has been shown 

in a multitude of studies to decline with age in Drosophila (Arking & Wells, 1990; Orr 

& Sohal, 1994; Benguria et al., 1996; Le Bourg & Minois, 1999; Minois et al., 2001; 

Cook-Wiens & Grotewiels, 2002; Kang et al., 2002; Goddeeris et al., 2003; Simon, 

Liang & Krantz, 2006). In fact, the age-related decline in geotaxis is so well recorded 

that research now tests whether this is due to decreased speed of vertical movement 

or latency increases, with some research suggesting the former resulting from a 

decrease in jumping speed (Rhodenizer et al., 2008). I found a very strong effect of 

age on geotaxis and some signs of sex-differences in patterns of decline over age. 

Sex-specific effects are consistent with previous research where differences in 

locomotor function between the sexes were also found (Fernandez et al., 1999). I 

found that young females differed from all other groups apart from young males (which 

would suggest strong sex differences in like for like comparison), with young females 

able to climb vertically quicker than other groups. This may be due to females tending 

to be larger than males, covering greater distance in fewer steps and therefore able to 

outperform males. However, in males, there was no significant difference between 
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young and middle aged males although young males did perform better than old males 

and old females. While this hints at sex-differences in male and female patterns of 

decline between young and middle age, this probably reflects that there was more 

variation in male performance in middle age than in female performance, obscuring 

differences between these age classes. Clearly, this trait shows pronounced patterns 

of age-dependent declines that are broadly similar across the sexes. I hypothesize 

that, one reason why I found little sex differences in decline in motor function over age 

is because locomotor function is a particularly important trait linked to survival and 

increases injury risk over age leading to potential mortality and so we would expect 

there to be strong selection on this trait to be maintained over age in both sexes.  

2.5.3 Age - sex interaction does not affect recovery time from CO2 

 

Carbon dioxide (CO2) anaesthesia is a common method for insect sorting in 

laboratories. There is much research showing effects of CO2 including altered 

physiological and motor function behaviours. For instance, Bartholomew et al., (2015) 

found that over five minutes of CO2 exposure led to D. melanogaster displaying 

climbing and flight behaviour deficits that lasted for days. Furthermore, D. 

melanogaster longevity is directly reduced by exposure to CO2 (Perron et al., 1972). 

Little is known in terms of sex differences over age in ability to recover from CO2 

anaesthesia. I found the interaction between age and sex did not affect recovery from 

CO2, meaning the sexes recover at similar rates as they age. However, a strong 

interaction between age and isoline was found showing genetic variation in aging 

responses. In fact, the variation in how recovery times changed over age was 

pronounced, with some lines even improving with age. This finding contrasts with 

traditional aging theory which predicts increases in physiological decline over age as 
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natural selection becomes weaker with age (Baudisch & Vaupel, 2012).  This may 

reflect selective disappearance, where we see improvements in trait expression over 

age because only the highest quality members of a cohort survive to reach old age. It 

may be that flies that performed poorly in this assay died earlier than flies that reached 

old age. Although the use of isolines should minimise the effects of selective 

disappearance, different traits often lose function at different rates even within clonal 

lines of individuals (e.g. Herndon et al., 2002). Therefore, it is not possible to rule out 

selective disappearance driving these results. Whatever the mechanism, there is 

clearly genetic variation in aging affect.  

In conclusion, I found that the sexes for the most part follow similar patterns of 

functional decline as they age. This may be due weak sexual selection effects and 

therefore patterns of age-dependent functional performance are relatively similar 

because natural selection is similar for males and females. Although the patterns in 

aging are similar, I find that traits lose function at different rates. In general, I find that 

individuals of both sexes decline in reproduction productivity and vertical climbing 

ability as they age but some individuals actually improve over age in their ability to 

recover from CO2 anaesthesia. There was also considerable genetic variation in CO2 

recovery and reproductive productive patterns of aging but not in geotaxis. 

Furthermore, I found a pronounced decline in reproduction productivity at age 35 in 

males but not in females. This is interesting as traditional aging theory predicts all 

functional traits to decline at a similar time and tempo over age. There is very little 

research on sex-specific functional senescence trait loss and even fewer on the 

genetic variation for these traits. Here, I show there is genetic variation in function 

senescence. Thus, the results add to a growing body of data showing variable 

functional decline within individuals over age.    
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3.1 General discussion 

The effects of sexual selection are many and broad, but the general awareness of its 

importance is only now being fully realised (Andersson, 1994; Hosken & House, 2011).  

This thesis is an investigation of some of the less explored impacts of sexual selection 

and explores a novel explanation for a widespread pattern in nature – why are 

elaborate sexual signals rarely found in females – and does sexual selection result in 

sex differences in functional senescence. 

The lack of sexual signals in females has traditionally been thought to be due to 

females being the choosier sex that invests more heavily in reproduction and males 

tend to compete for access to these females (Trivers, 1972; Hosken et al., 2016). 

Thus, female choice is often focused on as this method of sexual selection leads to a 

considerable amount of elaborate secondary sexual traits observed in males 

throughout the animal kingdom. However, males do make some mate choice 

decisions even if this choice is localised to the choice of the correct species or based 

on female body size as a function of increased fecundity (Bonduriansky, 2001). 

Moreover, even though females tend to be choosier than males this does not 

necessarily mean males are not choosy at all. Recent evidence in D. melanogaster 

suggests that the lack of female secondary signals is due to the increased sexual 

harassment these signals may bring and therefore reduce of female fitness (Long et 

al., 2009; Hosken et al., 2016). There are numerous recent reports of male mate-

choice in D. melanogaster (Byrne & Rice, 2006; Edward & Chapman, 2012; Nandy et 

al., 2012; Arbuthnott et al., 2017) suggesting that the sexual selection implications of 

mate choice in males and the impacts on females are more nuanced than traditionally 

thought.  
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In the first data chapter of this thesis, I aimed to test how widespread these recent 

findings of male mate-choice were and if females pay of a cost of increased 

attractiveness due to male harassment in closely related D. simulans. My main 

findings suggest there is no male mate-choice in D. simulans nor do high-quality 

females incur more harassment than low-quality females.  It may simply be that there 

is usually not enough variation in female quality for male mate-choice to evolve, or that 

finding any mate is so difficult in nature that indiscriminate mating by males has highest 

fitness returns. In any case, the findings of this chapter support a classical sex-role in 

D. simulans, where males are characterised as being far less choosy than females 

and mate indiscriminately 

In Chapter Two, I investigated potential sex-specific aging using D. melanogaster as 

a model.  Traditional aging theory predicts natural selection declines in strength over 

an organism’s lifetime (Hamilton, 1966). This causes selection to be weak on removing 

late-acting deleterious genes from a population and therefore an accumulation of 

these late-acting deleterious genes occur in the genome (Medawar, 1952). Research 

over the last two decades has suggested that sexual selection may be important for 

aging (Promislow, 2003; Graves, 2007; Bonduriansky et al., 2008; Archer & Hunt, 

2015). Sexual selection can drive differences in sex specific aging by favouring 

reproductive effort between females and males. For example, if reproductive effort 

increases with age, sexual selection may promote the evolution of longer lifespan 

(Botero et al., 2009). Sex specific aging across functional traits however, is far less 

understood and most aging research has focused on actuarial senescence (age-

associated rises in mortality) and there is much less known about functional 

senescence (declining physical performance) despite its vast ecological and social 

importance. 
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I attempted to bridge this knowledge gap by testing whether there are sex differences 

in age-dependent functional traits and whether there is genetic variation for aging in 

functional traits. I found that there is little evidence for sex differences in functional 

decline but traits tend to lose function at different rates. Furthermore, there was genetic 

variation in some of these declines. Thus, my findings contradict some classical theory 

but equally do not always support predictions of sexual selection and aging.  Clearly 

much more work needs to be done on this topic as the statistical power of some of my 

tests were fairly low. 

There are various outstanding questions after the completion of this thesis.  How wide-

spread is male harassment of high-quality females?  Work to date (this thesis and 

Long et al., 2009) suggest this is not even common in the D. melanogaster clade.  But 

male harassment of high-quality females happens frequently, how great is the effect 

relative to classical explanations for lack of female ornamentation and how big an 

affect would be needed to be biologically important?  How much does sexual selection 

affect functional senescence and does sexual conflict over trait values magnify any 

impacts?  And there are sure to be more questions than just these. Future studies 

would be wise to investigate if males vary their mate choice in Drosophila simulans 

when low on resources (sperm-limited, nutrient depleted etc.) as males are predicted 

to alter their mate preferences when mating becomes costly and high female variance 

in quality – we only investigated one of these variables.  

Jointly, the chapters highlight the different affects of sexual selection across taxa and 

this is true even in closely related species like D. simulans and D. melanogaster.  This 

is akin to what models of sexual selection predict: outcomes can be extremely 

contingent on starting conditions (Lande, 1981).  Clearly additional work needs to be 

undertaken to assess how sexual selection affects aging, a point raised by many 
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others, and perhaps Drosophila are not the right taxon in which to conduct this work 

despite being an extremely popular aging model.  After all they are largely sexually 

monomorphic, or at least do not display the stark   sex differences seen in animals like 

guppies or stalk-eyed flies.  Nonetheless, the work presented here is not without merit 

and can be seen as part of the initial steps towards a fully integrated understanding of 

sexual selection and its effects on aging and male and female traits. 
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