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ABSTRACT:  
 

Cardiovascular diseases (CVD) are the leading cause of non-communicable 

diseases worldwide, with the underlying atherosclerotic process originating in 

youth. Children and adolescents with CVD risk factors have impaired endothelial 

function, which is implicated in the process of atherosclerosis. Habitual sugar 

sweetened beverage (SSB) consumption is associated with the progression of 

CVD risk factors in youth, and adolescents consume the highest quantities of 

SSBs. Acute SSB consumption results in vascular dysfunction in adults, though 

the effects in youth are unknown. It is thought that exposure to CVD risk factors 

in youth may impair cerebrovascular reactivity (CVR), possibly having 

implications for future CVD risk. It is also unknown whether the types of sugar in 

SSBs have different consequences on vascular function. This thesis aimed to 

investigate the effect of sugar moiety on cerebrovascular function in adolescents, 

following consumption of a sugary drink and subsequent meal. Data on the 

reliability of CVR in a paediatric population was needed to first establish if this 

was a reliable measure of endothelial function. The purpose of this thesis was to: 

1) examine the within and between-day reliability of a breath-hold protocol to 

assess CVR in adolescents  2) examine the acute effect of sugar moiety 

(fructose, sucrose, glucose) on CVR and putative blood outcomes, and 3) 

examine the effects of SSB consumption on postprandial health in adolescents. 

Chapter 3 examined the reliability of a breath-hold protocol to assess CVR in 

youth, determined via transcranial Doppler ultrasonography of the middle 

cerebral artery (MCA). CVR was calculated as the percentage increase in MCAv 

mean following three breath-hold attempts. This outcome yielded acceptable 

levels of within and between-day reliability for use in multiple visit experiments to 

assess CVR in adolescents. Chapter 4 investigated the effect of sugar moiety on 

cerebrovascular function, measured through breath-hold induced CVR, in 

adolescents following SSB consumption and a subsequent challenge meal. This 

study found that the glucose and sucrose drinks resulted in elevated blood 

glucose levels compared to fructose and water. With consumption of fructose, 

elevations in uric acid were present, however the sugar moieties all presented 

similar increases in TAG concentrations following meal consumption. Despite 

these different metabolic responses, no significant impairments in CVR were 

present following the drink or challenge meal.  
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This thesis demonstrated that consumption of SSBs led to increases in glucose 

and uric acid concentrations, which have previously been shown to be 

atherogenic. This thesis also provided data on the reliability of CVR as a non-

invasive and easy to administer tool for measurement of endothelial function in 

youth. This is the first study to demonstrate that breath-hold induced CVR can be 

reliably measured in youth, as a practical, affordable and non-invasive method.  

These findings provide valuable data that will inform the implementation and 

analysis of a breath-hold protocol for reliable CVR assessment in youth in future 

research. Having established that CVR was reliable within and between-day, it 

was not possible to determine if it was sensitive to change, with no effects seen 

on CVR following acute SSB consumption. To build on these findings, future 

research should explore the acute and chronic effects of SSB consumption, with 

consideration of measuring a range of different vascular outcomes such as 

changes in peripheral microvascular and macrovascular functions. As this thesis 

did not include another measure of peripheral endothelial function, it is not certain 

whether endothelial function was impaired, or if CVR was not sensitive to change 

in the present study. In order to determine if CVR is sensitive to change, future 

investigation is needed with established measures of peripheral endothelial 

function (i.e. flow mediated dilation) alongside measures of CVR.  
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CHAPTER 1: Introduction and Literature Review  

 

This section provides insight into the prevalence, morbidity and mortality relating 

to cardiovascular disease (CVD) and its origins in youth. This is followed by an 

overview of the relationship between sugar intake and the development of CVD 

in youth, specifically detailing the relationship between sugar moiety (glucose, 

fructose and sucrose) and their effects on cardiometabolic health. Finally, this 

section will end with a critical examination of the evidence relating to the acute 

effects of sugar consumption on cardiovascular health in youth.   

Cardiovascular diseases 

In England, the National Health Service (NHS) spends an estimated £7.4 million 

on CVD related healthcare (Wilkins et al, 2017), with 22% of all premature deaths 

caused by CVD (BHF, 2017). Accordingly, CVD is an important topic for both 

research and development of interventions to reduce the prevalence of disease. 

Despite advances in prevention and treatment, CVD’s encompassing conditions 

such as heart attacks and strokes, remain the leading causes of non-

communicable deaths worldwide (WHO, 2011). CVDs are responsible for one 

third of deaths globally (17.5 million deaths a year) (Deaton et al., 2011), with this 

predicted to increase to 23.3 million deaths a year by 2030 (Mathers & Loncar, 

2006). This is attributable to the increased prevalence of risk factors for CVD, 

such as type 2 diabetes mellitus (T2DM), which more than doubles the risk of 

CVD occurrence (Sarwar et al., 2010). CVD risk factors are habits, behaviours or 

biological characteristics of an individual that precede a well-defined outcome of 

disease, predict that outcome, or are directly in the biological causal path. The 

Framingham Heart Study demonstrated that the presence and severity of known 

risk factors (see Table 1.1) can explain 75 to 90% of CVD events (Greenland et 
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al., 2003). As well as the increase in CVD risk factors and global CVD, the 

development of risk factors are increasingly occurring at younger ages. This is 

highlighted by evidence showing a growing number of children diagnosed with 

T2DM (Grundy et al., 1999), which was typically seen in individuals over the age 

of 35 years (WHO, 2016). Multiple epidemiological studies have also 

demonstrated an increase in the prevalence of obesity beginning in childhood, 

with at least 18% of 5 to 19 year olds diagnosed as overweight or obese (WHO, 

2016). This is of particular concern given the associations between obesity and 

CVD risk factors such as hypertension and dyslipidaemia beginning in childhood. 

Given the health and economic burden of CVD, the need for early intervention to 

reduce the occurrence and progression of CVD in youth is clearly important.   

Table 2.1. Table of risk factors known to be related to CVD and atherosclerosis 

progression from the American Heart Association (AHA) (Kavey et al., 2003). 

Evaluated Risk Factors of CVD  

Family History  

Age  

Gender 

Nutrition/Diet 

Physical Inactivity  

Smoking 

Hypertension  

Hyperlipidaemia  

Overweight/ Obesity  

Impaired glucose tolerance, insulin resistance and diabetes  

Inflammatory Markers  

Perinatal Factors  

 

Atherosclerosis is a slow, progressive, inflammatory disease with known origins 

in childhood, see Figure 1.1 (McGill et al., 2000). The process of atherosclerosis 

is a pre-requisite to overt CVD, initially characterised by dysfunction of the 

vascular endothelial lining. This creates a pro-atherogenic environment, leading 

to the infiltration of lipids, cholesterol and cellular debris, forming a fatty streak in 
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the artery. With continued progression, this forms a fibrous plaque which, in the 

process of lipid deposition and proliferation of smooth muscle, causes 

enlargement and calcification of fibrous plaques. This may lead to vessel 

occlusion or plaque rupture, promoting a thrombotic occlusion and, in doing so, 

clinically overt CVD (Cai & Harrison, 2000; Landmesser et al., 2004; McGill et al., 

2000). 

  

Figure 1.1. The progression of the atherosclerotic process. Reproduced from McGill et al., (2000). 

Paediatric origins of cardiovascular disease 

Whilst clinically overt CVD may not occur until the fifth decade of life, there is 

strong evidence that the process of atherosclerosis has its origins in youth (McGill 

et al., 2000). Evidence of the presence of atherosclerosis at a young age (15-34 

years) was identified in Korean and Vietnam war casualties in the Pathological 

Determinants of Atherosclerosis in Youth study (PDAY), demonstrating the 

presence of atherosclerosis measured at autopsy after accidental death (Strong 



14 
 

et al., 1999). This has been supported by additional autopsy data demonstrating 

the presence of atherosclerotic lesions and fatty streaks in the arteries of children 

and adolescents (Enos et al., 1953; Strong & McGill, 1962; Wissler & Strong, 

1998). More specifically, evidence has shown that 65% of 12-14 year olds have 

coronary atherosclerotic lesions, with a further 8% demonstrating advanced 

lesions (Stary, 1989), with the presence of fatty streaks in childhood associated 

with cardiovascular events in adulthood (Katz et al., 1976). 

Risk factor status and progression in youth 

Evidence shows that CVD risk factors tend to cluster in adolescence (Andersen 

et al., 2003), which are shown to track into adulthood (Andersen et al., 2004). 

Findings from Anderson et al (2004) show that adolescents with clustered CVD 

risk factors are six times more likely to have high risk factor status in adulthood. 

This is particularly important as evidence has shown that, although adult 

interventions can modify risk factor status, they do not eliminate the elevated CVD 

risk (McGill et al., 2008).  

It has been found that the presence of CVD risk factors in childhood are the 

strongest predictors of the adult atherosclerotic processes (Kavey et al., 2006), 

with evidence showing that established risk factors such as elevated serum 

lipoproteins and high blood pressure (BP), track from youth into later life (Clarke 

et al., 1978; Webber, et al., 1983).  Data from the Bogalusa Heart study of 

participants aged 6 to 30 years who died of accidents, suicides or homicides, 

identified that the progression of the atherosclerotic process was proportional to 

CVD risk factor status in youth (Berenson et al., 1992). Studies have also 

identified that elevated cholesterol levels in childhood are associated with a two-

fold higher rate of CVD mortality in adulthood (Schrott et al., 1979). The 
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Cardiovascular Risk in Young Finns study concluded that childhood obesity, 

elevated BP, smoking, physical inactivity and insulin resistance are the strongest 

predictors of adult CVD risk factor status and atherosclerosis progression 

(Juonala et al., 2013). 

Given the well-established paediatric origins of CVD, recent research has 

focussed on preventing or modifying risk factor status in youth, with particular 

interest in lifestyle and behaviour approaches, including physical activity and 

dietary interventions.  

Using transcranial Doppler ultrasonography as a measure of vascular 

function 

Measures of endothelial function are thought to be the earliest detectable 

manifestations of the atherosclerotic process (Juonala et al., 2004; Ross, 1999), 

and are associated with the presence of CVD risk factors (Celermajer et al., 

1992). Non-invasive ultrasound techniques examining arterial health and 

endothelial dysfunction have been shown to be prognostic of, and associated 

with, increased cardiovascular events (Fernhall & Agiovlasitis, 2008). The use of 

these techniques, including measures of carotid intima-media thickness (cIMT) 

and flow-mediated dilation (FMD), have become clinically important markers of 

atherosclerotic progression (Touboul et al., 2004) and are an independent 

predictor of future CVD in adolescents (Raitakari et al., 2003). The non-invasive 

and easy to administer protocol of endothelial function make this ideally suited 

for use in children and adolescents, where invasive procedures may be deemed 

unethical.  

Previous research examining endothelial function has predominantly focussed on 

FMD in the peripheral vasculature (Bond et al., 2015b; Bond et al., 2015c; 
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Hopkins et al., 2012), but in recent years there has been a growing interest in 

cerebrovascular function as a diagnostic and screening tool in both research and 

clinical settings (Ainslie & McManus, 2016). As the brain has a limited ability to 

store energy, the maintenance of adequate cerebral blood flow is integral for 

normal brain functioning and survival. 

Endothelial function of the cerebrovasculature can be determined via transcranial 

Doppler (TCD) ultrasonography, measuring the reactivity of the middle cerebral 

artery (MCA) to a hypo- or hyper- capnic stimulus. Cerebrovascular reactivity 

(CVR) refers to the ability to regulate cerebral blood flow in response to a 

vasoactive or vasodilatory stimulus. A hypercapnic stimulus causes the 

cerebrovascular vessels surrounding the MCA to dilate in response to changes 

in the partial pressure of carbon dioxide (CO2). The hypercapnic stimulus was 

originally presented by CO2 breathing (Kety & Schmidt, 1948), since this directly 

manipulates the concentration of CO2 the participant is breathing, and therefore 

arterial CO2 (PaCO2) concentration. However, a simplified, easy to administer 

and more affordable method of a breath-hold test has been introduced and 

significantly correlates (r=0.67, p<0.001) with CO2 induced CVR in adults (Markus 

& Harrison, 1992; Settakis et al., 2002). This method, used as a surrogate of CO2 

breathing, delivers a hypercapnic stimulus through a simple breath-hold, with the 

arterial partial pressure of CO2 (PaCO2) shown to contribute two thirds to the CVR 

response in adults, with one quarter attributed to increases in mean arterial 

pressure (MAP) (Przybylowski et al., 2003).  

Whether the validity of this measure holds true in a paediatric population has not 

been explored. Several studies in adolescents however, have demonstrated 

blunted CVR in patients with increased CVD risk factors following a breath-hold 

protocol (Páll et al., 2011; Lande et al., 2012), similarly to studies using CO2 
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breathing (Wong et al., 2011). This suggests that in paediatric groups, 

impairments in CVR using the breath-hold protocol have similar sensitivity to CVD 

risk and clinical outcomes to the CO2 breathing method. However, a possible 

limitation to the breath-hold test is the individual variability and ability to 

appropriately perform the test, introducing potential errors. Compared to CO2 

breathing, this method is more dependent on participant adherence, with factors 

such as a Valsalva manoeuvre and different breath-holding lengths potentially 

confounding CVR results (Urback et al., 2017; Wu et al., 2015). In order to control 

for these differences in breath-holding length the breath-hold index (BHI) is often 

employed as an outcome, as it normalises the CVR response to breath-hold 

length. However, equal breath-hold lengths do not lead to an equal increase in 

PaCO2, therefore this cannot be standardised, resulting in slightly different stimuli 

across and within participants. Importantly however, studies have found no mean 

differences in CVR values obtained from CO2 breathing compared to breath-hold 

methods, with the two methods strongly correlated in adults (r=0.67, p<0.001), 

despite these potential sources of error (Kastrup et al., 2001; Markus & Harrison, 

1992; Tancredi & Hoge., 2013). Evidence indicates that the breath-hold protocol 

is well tolerated in youth (Müller et al., 1995) though reliability data on this 

outcome in a paediatric population is needed to ensure that the protocol is 

appropriately adhered to, and ensure that any changes in CVR outcomes are not 

due to poor reproducibility of the protocol and its outcomes, in order that test 

validity is not compromised in a young population.  

The breath-hold method gives a measure of the reactivity of the MCA, with 

impairments from this test predictive of stroke and neurocognitive decline in 

adults (Serrador et al., 2005; Xie et al., 2006), as well as being established as an 

independent predictor of future CVD events (Markus & Cullinane, 2001). The use 



18 
 

of CVR assessment as a clinical marker is supported by observations that, even 

in youth, CVR is impaired in the presence of risk factors for CVD, such as 

hypertension and white coat hypertension (Lande et al., 2012; Settakis et al., 

2003). Furthermore, the use of CVR as an alternative measure of endothelial 

function is supported by findings demonstrating a common nitric oxide pathway 

in responses to systemic (FMD) and cerebrovascular (CVR) endothelial function 

(Ainslie et al., 2008; Lavi et al., 2006). FMD is a surrogate measure of coronary 

artery function (r=0.79, P<0.001) (Takase et al., 1998), shown to independently 

predict CVD events in populations at risk of CVD (Chan et al., 2003; Meyer et al., 

2006; Wang et al., 2009), as well as demonstrating prognostic value in 

asymptomatic groups (Rossi et al., 2008; Shechter et al., 2009). Recent evidence 

demonstrates that CVR may have additional prognostic value, since it provides a 

more direct measure of vascular function in the brain, associated with dementia, 

stroke (Silvestrini et al., 2000), Alzheimer’s disease (Keage et al., 2012) and 

cognitive decline (Wong, Evans, & Howe, 2016). 

Given the easy to administer and non-invasive nature of this breath-hold protocol, 

CVR has utility as a research tool in paediatric populations. Before this can be 

made possible, protocol methods need to be made explicitly clear as current adult 

studies are difficult to interpret due to differing methods of assessing breath-hold 

induced CVR. Furthermore, there are no data available on the reliability of 

determining CVR via the breath-hold test in a paediatric population. 

Physical Activity and Cardiovascular disease  

Intervention studies to date have primarily focussed on protection of CVD risk 

through physical activity (PA) engagement and improvements in dietary habits 

(Andersen et al., 2006). Evidence has shown that increases in PA reduce the 

clustering of traditional CVD risk factors in children and adolescents such as 
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insulin insensitivity, BP, glucose, triglycerides (TAG) and cholesterol levels, 

independently of sedentary time (Ekelund et al., 2012). Despite the strong 

evidence for PA promotion and efforts to increase participation, UK data shows 

that only one fifth of youth are meeting the current PA recommendations for 

health (Hallal et al., 2012), and that these levels decline from childhood into 

adolescence (Townsend et al., 2015). It would therefore seem that adolescents 

are not performing enough PA to protect themselves from risk factors of CVD. 

This, combined with poor dietary habits, could be having detrimental effects on 

their overall CVD risk profile, with the World Health Organisation (2011) stating 

that unhealthy diet and a lack of PA are the leading global risks to health. Given 

that efforts to increase PA in children have been unsuccessful (Metcalf et al., 

2012), investigation into nutritional interventions in this population is of clear 

importance.  

Diet and Cardiovascular disease   

The presence of CVD risk factors such as high BP, obesity and dyslipidaemia, 

have been associated with diet (Raitakari et al., 2003). Evidence shows that 

adolescents with a high-quality diet that is low in saturated fats, salt and added 

sugars have a lower risk of developing CVD risk factors and CVD in adulthood 

(Dahm et al., 2016). Impaired glucose tolerance, insulin resistance, increased BP 

and dyslipidaemia strongly predict the risk of CVD, T2DM and subclinical 

atherosclerosis in later adulthood, and are highly related to diet, independent of 

obesity (Yajnik et al., 2015). There is strong evidence on the importance of a 

healthy diet, with data demonstrating a reduction in CVD risk factors by one third 

when meeting dietary guidelines in youth (British Nutrition Foundation, 2016). 

Diet in youth is of particular importance given evidence that health and dietary 

behaviours established in early life track into adulthood (Kelder et al., 1994). This 
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occurs alongside the tracking of CVD risk factors from childhood to adulthood 

(Morrison et al., 2007). It would thus seem that interventions to promote healthy 

dietary behaviours should be established in youth.   

Dietary fat and dyslipidaemia:  

Dietary recommendations with regards to CVD prevention have historically 

focussed on the consumption of dietary fats, particularly saturated fats, because 

of their implication on TAG and cholesterol levels. Guidelines by the National 

Cholesterol Education Programme (NCEP) for normal and at-risk children 

recommend an intake of total fats be limited to 30% of total calories, with 

saturated fat limited to 7 to 10%. Following these guidelines has been shown to 

result in reductions in TAG levels in healthy adolescents and children (NCEP, 

1992). This is important as increased fasting TAG concentrations have been 

positively associated with elevated CVD risk (Austin et al., 1998). Although this 

may be a useful risk factor in the detection of CVD risk, postprandial measures 

have been suggested as a more powerful measure of CVD risk (Patsch et al., 

1992). In addition to this, postprandial TAG responses in adolescence is 

associated with CVD events in the fourth and fifth decades of life (Morrison et al., 

2009), with postprandial hyperlipidaemia promoting transient endothelial 

dysfunction and oxidative stress (Bae et al., 2001). Elevations in fasting and 

postprandial TAG levels have been traditionally linked to high intake of dietary 

fat, though recent evidence indicates that added sugars may have a role in 

elevating postprandial and fasting TAG concentrations, particularly following 

sugar sweetened beverage (SSB) consumption (Stanhope et al., 2015). More 

research into SSB consumption and the metabolic consequences may be of 

importance for postprandial health, which is shown to be associated with CVD 

risk (Burns et al., 2012; Morrison et al., 2009). 
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Sugar consumption:  

The consumption of SSBs has come under scrutiny for its potential role in CVD 

progression. SSBs include, but are not limited to, sodas, fruit juice, and sports 

and energy drinks. SSBs are comprised of different types of sugars, termed sugar 

moiety. The consumption of such drinks has increased in both the USA and 

Europe over the last three decades (Nielsen & Popkin, 2004). This is problematic, 

especially given that associations have been made with SSB intake and 

increased CVD risk factors present at levels far below current consumption levels 

in US children (Vos et al., 2017). Despite American Heart Association (AHA) 

statements to reduce the intake of added sugars, with recommendations that 

adolescents consume less than 25 g of added sugars a day, adolescents in 

England consume 210 g of SSBs daily (Public Health England, 2013-2014). 

Adolescents appear an important target group for interventions aiming to reduce 

SSB consumption, since they consume 60% more calories from SSBs than 

children (Public Health England, 2013-2014). In addition, these statistics are from 

dietary self-report data, and therefore estimates may be conservatively low in 

comparison to actual intake levels, since self-reported dietary assessments often 

underreport dietary intake (Freedman et al., 2014; Trumbo et al., 2002). Although 

this consumption problem of SSBs is predominantly in adolescence, this problem 

tracks from childhood to adulthood, with early introduction of added sugars in the 

diet of infants and toddlers thought to promote sweet taste preference later in life 

(Morrison et al., 2012). Therefore, SSBs likely establish a future dietary 

preference for sweet things in early life.  

Sugar intake and cardiovascular disease risk:  

It is well established that adolescents consume substantially more than the 

recommended guidelines for daily sugar intake (Reedy et al., 2014), 
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predominantly through SSBs. However, limited data are available regarding the 

effects of SSB consumption in these years on CVD risk factors (Chan et al., 

2014). Existing data demonstrates that increased habitual sugar intake is 

positively associated with increased risk factors such as adiposity, dyslipidaemia, 

elevated BP and diabetes in adolescents (Vos et al., 2017). Cross-sectional 

evidence has also demonstrated that each additional SSB consumed daily by 

youth is associated with a 5% increase in insulin resistance, a 0.2 mmHg increase 

in systolic BP, a 0.47 cm increase in waist circumference, a 0.9 percentile 

increase in BMI for age, and a 0.48 mg/dL decrease in high density lipoprotein 

cholesterol (HDL-C)  concentrations (Bremer et al., 2009).  

Habitual consumption of SSB induces frequent episodes of acute 

hyperglycaemia, which is associated with increased risk of CVD risk factors such 

as obesity, T2DM (Imamura et al., 2015) and development of the metabolic 

syndrome (Huang et al, 2014). Recent cross-sectional data suggests that 

increases in TAG and uric acid concentrations are also evident following 

consumption of SSBs, which are shown to be associated with increased CVD risk 

(Vos et al., 2017), as demonstrated in Figure 1.2.  
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Figure 1.2. Metabolism of SSB consumption demonstrating the differential mechanisms 
underlying fructose and glucose metabolism in the liver. Fructose metabolism depicted by the red 
arrows, differs from glucose (blue arrows) due to nearly complete hepatic extraction different 
enzyme and reactions for its initial metabolic steps. Fructose taken up by the liver can be oxidized 
to CO2 and then converted into lactate and glucose; glucose and lactate are subsequently either 
released into the circulation for extrahepatic metabolism or converted into hepatic glycogen or fat. 
The massive uptake and phosphorylation of fructose in the liver can lead to a large depletion of 
ATP to AMP and uric acid. AcetylCo-A = acetyl coenzyme A; ADP = adenosine diphosphate; 
AMP = adenosine monophosphate; ATP = adenosine triphosphate; diP = diphosphate; P = 
phosphate; TAG = triglyceride. 

 

Despite limited research on the metabolic consequences of SSB intake in youth, 

evidence from cross-sectional and longitudinal studies demonstrates lowered 
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TAG concentrations in children with low consumption of added sugars (Vos et al., 

2017).  Research has shown that fasting TAG concentrations in youth are related 

to future atherosclerosis (Raitakari et al., 2003), with postprandial TAG 

concentrations significantly associated with CVD events in the fourth and fifth 

decades of life (Morrison et al., 2009).  

Increases in uric acid may be associated with CVD risk, with evidence indicating 

a strong positive association between uric acid concentrations and systolic BP, 

independently of obesity (Jalal et al., 2015; Vos et al., 2017). Data in adolescents 

with a high habitual SSB intake have also demonstrated elevated uric acid levels 

and increased systolic BP (Nguyen et al., 2009). Data from the Bogalusa Heart 

study offers further evidence for the link between uric acid and CVD risk, 

demonstrating uric acid levels in youth are predictive of future hypertension in 

adulthood (Alper et al., 2005). 

 It is apparent that there is an association between SSB intake and some 

traditional CVD risk factors, however, there is a lack of evidence on the 

relationship between SSB intake and endothelial function.  

The role of different types of sugars  

A criticism of the limited existing literature on the effects of SSBs on endothelial 

function is that these have often focused solely on a glucose load. The main 

sugars in SSBs are sucrose or high fructose containing sugars. Sucrose is a 

disaccharide made of the monosaccharides glucose and fructose in equal 

proportion. These have unique metabolic pathways in the body and may therefore 

have different effects on endothelial function and CVD risk. 
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Glucose metabolism 

Repeated exposure to hyperglycaemia following glucose consumption has been 

implicated in the progression of endothelial dysfunction and CVD risk factors 

(Reusch & Wang, 2011). Acute hyperglycaemia as a result of an oral glucose 

tolerance test or consumption of a SSB has been associated with transient 

endothelial dysfunction due to increased oxidative stress and reduced nitric oxide 

bioavailability (Kawano et al., 1999; Tominaga et al., 1999). The high glycaemic 

load presented by glucose ingestion may lead to β-cell dysfunction and insulin 

resistance (Malik et al., 2010), also implicated in CVD progression. 

Fructose metabolism  

Fructose metabolism differs to glucose metabolism in two main ways: via 

complete hepatic extraction of fructose, and via different enzymatic reactions. 

Fructose is absorbed into the portal vein and is metabolised in the liver where it 

is converted into fructose-1-phosphate. Further metabolic reactions result in the 

production of glyceraldehyde, which is metabolised by many different pathways 

(seen in Figure 1.2), yielding end products of glucose, glycogen, CO2, lactate and 

fatty acids. This occurs independently of insulin secretion. These metabolic 

pathways result in production of hepatic TAG via very low-density lipoproteins 

(VLDL) from de novo lipogenesis (Malik & Hu, 2015). As a result of this, a high 

intake of fructose (generally accepted as 10-25% of total energy) can promote 

elevated fasting TAG concentrations, and significant increases in postprandial 

TAG, which is not seen following glucose ingestion (Stanhope et al., 2011). This 

may be detrimental to vascular health, with evidence linking postprandial 

hypertriglyceridemia with the atherosclerotic process (Hyson et al., 2003; Karpe, 

1999; Nordestgaard et al., 2007) resulting in impaired FMD in adults and children 

(Bae et al., 2001).  



26 
 

In addition to elevated TAG concentrations following fructose metabolism, the 

phosphorylation of fructose in the liver leads to increases in uric acid production. 

This is a result of ATP depletion, and has been shown to induce metabolic 

complications and promote an atherogenic environment (Malik & Hu, 2015). 

Fructose consumption may be associated with reduced endothelial function 

alongside increased CVD risk, through a reduction in endothelial nitric oxide 

bioavailability and increased inflammation, with elevated uric acid thought to be 

a contributing mechanism (Nakagawa et al., 2006; Roglans et al., 2007). 

Sucrose metabolism  

Sucrose is the most common form of dietary sugar and is referred to as “table 

sugar”. As a disaccharide, sucrose is digested into its component 

monosaccharides of both glucose and fructose via the enzyme sucrase, which 

are metabolised separately. These combined responses may together result in 

elevated blood glucose and insulin concentrations (from glucose metabolism), 

alongside elevated TAG and uric acid concentrations (from fructose metabolism). 

Therefore, it could be suggested that sucrose may have the most negative effect 

on cardiovascular function, through the combined consequences of glucose and 

fructose metabolism. This has not been previously investigated, and given the 

high quantities of sucrose consumption, clearly warrants research in this area.  

Critique of available studies on sugar sweetened beverage consumption 

Currently, there is no data on the effects of SSB consumption on CVR, though a 

recent meta-analysis has highlighted the effects of hyperglycaemia following SSB 

consumption on peripheral endothelial function. This review reported 

impairments in peripheral endothelial function based on 39 studies, hypothesised 

to be due to increased oxidative stress and reduced nitric oxide bioavailability 

(Loader et al., 2015). Only three of these studies, however, were conducted in a 
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paediatric population, with one study in adolescents with type 1 diabetes (Dye et 

al., 2012) and one study in obese adolescents (Dengel et al., 2007). Previous 

research in healthy adolescents is therefore limited to a single study investigating 

the effects of a 75 g glucose drink on endothelial function in healthy and 

overweight adolescents (Dengel et al., 2007). This study reported no effect of the 

glucose SSB on peripheral macrovascular function (FMD), though the dose and 

sugar provided are not representative of a commercially available SSB, typically 

containing 60 g of sucrose.  However, recent evidence in a rat model suggests 

that the type of sugar may have implications for acute changes in endothelial 

function, with negative effects on blood vessel function seen following fructose, 

but not glucose, ingestion (Sanguesa et al., 2017). Recent observations in 

humans support this, demonstrating increased fasting plasma insulin and 

glucose, as well as increased de novo lipogenesis and adiposity in individuals 

who habitually consumed fructose SSBs compared to subjects who consumed 

glucose SSBs (Stanhope et al., 2009). Research should therefore focus on 

investigating the acute effects of these different sugars to explore the relationship 

between SSB consumption and CVD risk. It is not known whether the combined 

or independent effects of these sugars alter CVD risk (Baena et al., 2016).  

Taken collectively, there is a paucity of data on the acute endothelial response 

following sugar consumption, and in particular, in healthy adolescents. This is 

important as the endothelial response to sugar consumption in healthy 

adolescents is not well established, and may differ from that observed in healthy 

adults. Furthermore, no studies exist examining the effects of SSB consumption 

on CVR, which is shown to share the same nitric-oxide dependent pathway as 

peripheral measures (Lavi et al., 2006).  
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Postprandial lipaemia following sugar sweetened beverage consumption  

In addition to the mechanisms of fructose metabolism having the potential to 

cause acute endothelial dysfunction, there is also evidence that fructose is 

responsible for an exaggerated postprandial lipaemic response following a high 

fat meal (Cohen & Schall, 1988). This is important given evidence that elevations 

in postprandial TAG concentrations in adolescents are associated with future 

CVD events and an increased CVD risk (Morrison et al., 2009). This offers one 

possible mechanism through which SSB consumption is related to CVD risk. 

Exaggerated postprandial hyperlipidaemia may result in transient endothelial 

dysfunction and oxidative stress, which if repeated frequently could contribute to 

chronic endothelial dysfunction.  

Thesis Aims  

There are three aims to this thesis. The first aim of this thesis is to examine the 

within and between-day reliability of the primary outcome, cerebrovascular 

reactivity. The experimental aims of this study are to investigate: 1) The acute 

impact of sugar moiety in SSBs (glucose, fructose, sucrose) on cerebrovascular 

function in adolescents, and 2) The impact of sugar moiety on postprandial 

cerebrovascular function and metabolic blood outcomes in adolescents.  

The following research questions and hypotheses will be addressed:  

1.) What is the best way to analyse and administer a breath-hold protocol for 

measures of CVR?   

2.) What is the within and between-day reliability of CVR via a breath-hold 

stimulus? It was hypothesised that there will be an appropriate level of 

reliability for measures of within and between-day CVR. 
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3.) What are the acute effects of sugar moiety on CVR and metabolic blood 

outcomes? It was hypothesised that different types of sugars found in 

SSBs (sucrose, fructose, glucose) will impair CVR when compared to 

water. 

4.) What are the postprandial effects of sugar moiety on CVR and metabolic 

blood outcomes? It was hypothesised that intake of fructose will result in 

an elevated postprandial lipaemic and uric acid response with impaired 

CVR. 
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CHAPTER 2: General Methods 

General experimental procedures  

Ethics and informed consent  

Ethics for this study was approved by the Sport and Health Sciences Ethics 

Committee (171206/B/07), University of Exeter, prior to the onset of data 

collection. All participants were provided with participant information sheets, 

outlining the study aims, experimental procedures, and potential benefits and 

risks of taking part in the study. Following this, participants and their parents were 

given a week-long period to ask any questions/clarify their understanding and 

decide if they wanted to take part in the study.  

As participants were minors under the age of 18, bespoke considerations 

included requirement for parents/guardians to fill in an informed consent form and 

participants to complete an assent form (Jago et al., 2011). Consent and assent 

forms highlighted participants’ right to withdraw from the study at any point 

without consequence. Participants were also required to fill out a health screening 

form with help of their guardians, and a contact details form. During all 

experimental procedures, health and safety guidelines established in the Sport 

and Health Science department were abided by and all researchers were 

Disclosure and Baring Service (DBS) checked, with two DBS checked adults 

present at all times throughout the experimental visits and driving of participants 

to and from the school. Emergency contact details were also kept on hand at all 

times and researchers were first aid trained.  

Participants 

Sample size for the study was estimated using G* Power (3.9.1.2) calculation, 

based upon a power of 80%, alpha level of 0.05, repeatability of peripheral 
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vascular function (FMD) of 0.78 (Bond et al., 2015) and a partial eta squared (ηp
2) 

effect size of 0.05 (moderate effect), a sample size of 32 participants was required 

for this study. This effect size was based on a moderate effect size which we 

have based directly upon previous research using measures of peripheral 

vascular function (Loader et al., 2015). This systematic review examining the 

effects of hyperglycaemia on vascular function (Loader et al, 2015) found a large 

effect size. However, this effect was predominantly based on a wide population 

of adult studies, with only three studies in adolescents, and only one study with 

healthy adolescents examining the effect of glucose on vascular function (Dengel 

et al. 2007). As adolescents are characterised by augmented vascular function 

compared to adults this study was powered to detect a moderate effect size.  

All participants were recruited from a local school in Devon. After initial discussion 

with the teachers describing the study requirements, potential participants were 

approached through an assembly talk to ~ 400 year nine students (aged 13-14 

years), outlining the study aims and procedures and what was required during 

participation in this project. After the assembly, students were given the 

opportunity to ask any further questions, and potential participants who were 

interested in taking part were provided with a study information pack (~100 

participants) and asked to discuss the project with their guardians. Of the 100 

information packs handed out, 31 packs were returned, indicating a desire to take 

part in the study. From these 31, three participants withdrew and four participants 

were excluded due to school behaviour issues, with a further two not included 

due to time restraints or no longer wanting to take part in the study. Adolescents 

who agreed to take part were asked to return all completed forms to a designated 

school contact. Following return of these forms, parents/guardians were then 

contacted to discuss any further questions and ensure they agreed to all study 
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procedures and arrangements. Participants were recruited onto the study if they 

were ostensibly healthy and aged between 12-15 years. Participants were 

excluded from the study if they had any known cardiometabolic diseases, such 

as diabetes, or contraindications to exercise, such as recent injury or illness, or 

the use of any supplement or medication known to influence blood vessel 

function, glucose or fat metabolism. Participants with food allergies to the test 

meal were also excluded from the study, as well as any participants who did not 

understand the protocol. 

Experimental overview 

All participants completed five visits to the laboratory in total, one preliminary 

familiarisation visit, and four subsequent experimental visits over a six-week 

period. Each visit was separated by approximately one week. On all visits to the 

laboratory, participants were instructed to attend the laboratory in a 12 hour 

fasted state, having not performed any vigorous exercise in the 24 hours 

preceding each experimental visit. The study followed a double-blinded, repeated 

measures design, in order to compare the effects of (1) glucose (GLU), (2) 

fructose (FRU), (3) Sucrose (SUC), on vascular function compared to a control 

condition of (4) Water (CON), both before and after a high fat, high sugar 

challenge meal. All sugar conditions were representative of the amount of sugar 

in a typical SSB containing 60 g of sugar (e.g. Coca-Cola®) mixed with 300 mL 

of water  

Visit 1: Preliminary measures 

Prior to the experimental visits, all participants completed a preliminary visit in 

order to familiarise them to the testing procedures and for measurement of 

descriptive variables including cardiorespiratory fitness and anthropometric 

measures.  



33 
 

Participants were collected from school and transported to the laboratory by car 

following a 12 hour overnight fast. Body mass (Hampel XWM-150K, Hampel 

Electronics Co. Taiwan) and stature (Seca stadiometer SEC-225, Seca, 

Hamburg, Germany) were measured to the nearest 0.1 kg and 0.1 cm, 

respectively, using standard procedures. Body mass index (BMI) was calculated 

using the following equation: 

Equation 1:  BMI =
weight (kg)

ℎ𝑒𝑖𝑔ℎ𝑡2 (𝑚2) 
  

Centiles for overweight and obesity thresholds were used to define body weight 

status (Cole, Bellizzi, Flegal, & Dietz, 2000). 

Percentage body fat was measured using the gold standard (Lowry & Tomiyama, 

2015) method of air displacement plethysmography (BodPod®, Body 

Composition System, Life Measurement Instruments, Concord, California, USA). 

Prior to testing, the system was calibrated following the manufacturer’s guidelines 

using a cylinder of known volume (49.887 L). Participants were required to wear 

a swimming costume and cap before being instructed to remain still in the 

chamber to calculate body volume. This measurement was taken twice and if the 

difference between the first two measures was more than ± 75 mL, a third 

measurement was taken. The mean of the two closest measurements was then 

used for calculating body density. Lung volume was estimated using age and sex 

specific prediction equations provided as part of the software, and used to 

estimate body composition using the Siri equation (Siri, 1993). Maturity status 

was determined for each participant by self-assessment of secondary sex 

characteristics according to the five stages of pubic hair development (Morris & 

Udry, 1980).  
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Following anthropometric measures, participants were habituated to the 

cerebrovascular measure and familiarised with all testing procedures. 

Participants were coached to perform a breath-hold on their preliminary visit as 

part of the CVR protocol, with the breath-hold following a normal inspiration. 

Participants were then required to complete a ramp incremental cycle test (Lode, 

Excaliber Sport, Groninger, The Netherlands) to exhaustion to determine their 

maximal oxygen consumption (V̇O2max) (Barker et al., 2011). Age- and sex- 

appropriate �̇�O2 max (Adegboye et al. 2011) cut points for increased 

cardiometabolic risk were used to define fitness and characterise the sample. The 

test consisted of 3 minutes of unloaded pedalling followed by an incremental 

ramp rate of 25 W.min-1, during which participants were required to maintain a 

cadence of 70-80 revolutions per minute (rpm). Exhaustion was defined as the 

point where participants experienced a drop in cadence below 60 rpm for 5 

consecutive seconds, despite strong verbal encouragement. Beat-to-beat heart 

rate was measured (Polar M400, Polar Electro, Finland) throughout the ramp test, 

with maximal heart rate taken as the peak heart rate obtained during the ramp 

test. Ventilation and gas exchange variables were monitored using a metabolic 

cart (MedGraphics, UK, Ltd), which was calibrated prior to each measurement 

using standard calibration gas (15.1% O2, 5% CO2) and a 3.0 L calibration syringe 

(Hans Rudolph, USA). Peak power output was defined as the highest work rate 

achieved during the ramp test. V̇O2peak was determined as the highest 10 second 

average in V̇O2 during the ramp test. Although no supramaximal verification test 

was used in the current study, the ramp test to exhaustion is known to provide a 

‘true’ V̇O2max measure in ~90% of adolescent participants in our laboratory 

(Barker et al., 2011).  
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Visit 2-5: Experimental visits 

An overview of the experimental protocol is given in Figure 2.1. Following a 12 

hour overnight fast, participants were collected from school and driven to the 

laboratory for 08:00 am. Participants rested in the supine position in a darkened 

and temperature-controlled room for 30 minutes before a baseline measurement 

of CVR was taken, and a fasting capillary blood sample collected. Following the 

first blood sample, participants were given 10 minutes to consume one of the 

drink conditions (GLU, FRU, SUC or CON). All sugar drinks consisted of 60 g of 

either GLU, SUC or FRU mixed with 300 mL of water, in order to replicate a 

commercially available SSB. The control condition involved consumption of 300 

mL of water. Blood samples for glucose and uric acid were taken at 30 minute 

intervals for the following two hours, with the final blood sample also analysed for 

TAG. Sixty minutes following drink consumption, CVR was reassessed. 120 

minutes following drink consumption, participants consumed a mixed meal 

tolerance test (MMTT, providing 60 g fat, 45 g of sugar, 1316 kcal), consisting of 

pizza (Chicago Town®, four cheese pizza) (310 g), ice cream (Essential 

Waitrose®, soft scoop vanilla ice cream) (125 g) and a chocolate pudding 

(Cadburys®, milk chocolate sticky puds) (95 g). The macronutrient composition 

of the MMTT has previously been shown to impair vascular function in 

adolescents (Bond et al., 2015c). Capillary blood samples were assessed at 60 

minute intervals during the three hour postprandial period for glucose and uric 

acid, with the final blood sample also analysed for TAG. Three hours following 

the MMTT, measures of CVR were repeated to coincide with the elevation in TAG 

and the fall in peripheral vascular function reported previously in adolescents 

(Bond et al., 2015c). Participants consumed no other food during the 

experimental visits and were required to remain inactive throughout.  
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Figure 2.1. Protocol schematic for the four experimental visits which participants completed. The 
single arrows represent collection of capillary blood samples for plasma glucose and uric acid. 
The double arrows represent addition blood samples for triglyceride. CVR = cerebrovascular 
reactivity; MMTT = mixed meal tolerance test; GLU = glucose, SUC = sucrose, FRU = fructose, 
CON = water.  

 

Experimental measures: 

Maturity status 

Maturity status was determined for each participant using self-assessment 

according to the five stages of development for secondary sex characteristics 

(Tanner, 1962). Following a verbal explanation, pubertal stage was determined 

via self-assessment of pubic hair development. This required participants to look 

at scientific drawings depicting five stages of development of pubic hair, and 

identify and circle the stage which best described their development. This self-

assessment method was chosen because of its simplicity and practicality, along 

with being used as a valid method in the paediatric literature, with correlations of 

≥0.6 with physicians observations (Morris & Udry, 1980). 

Blood outcomes 

For each capillary blood sample, ~ 600 µL of blood was collected into lithium-

heparin coated (TAG) and heparin-fluorine coated (glucose) Microvettes (CB 300 
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Tubes, Saerstedt, Ltd, Leicester, UK). All samples were centrifuged immediately 

at 13,000 g for 15 minutes. Plasma was then aliquoted and either stored at -80 

degrees Celsius for TAG analysis or analysed immediately from a single sample 

for glucose (YSI 2300 Stat Plus Glucose analyser, Yellow Springs, OH, USA). 

Plasma TAG was quantified in duplicate by enzymatic, calorimetric methods 

using an assay kit according to the manufacturer’s guidelines (Cayman Chemical 

Company, MI, USA). The coefficient of variation (CV) for the inter error assay 

plasma TAG was 5.8%. Uric acid was analysed in capillary whole blood from a 

single sample using a portable uric acid meter (UASure, Apex Biotechnology 

Corp., Hsinchu, Taiwan). The intra‐assay coefficients of variation (CVs) of the 

UASure® have been reported as 4.8% at UA levels of 5.8 mg/dl. The uric acid 

concentrations tested by this portable meter are strongly correlated with invasive 

venous sampling methods (r=0.87, P<0.001) (Kuo et al., 2002). The time points 

for the collection of each blood outcome are summarised in Table 2.1. 

Table 3.1. Capillary blood analysis for each experimental visit. 

 

Acute SSB 

observation MMTT observation  

Minutes 0 30 60 90 

120 

(0) 60 120 180 

Total 

samples 

Glucose X X X X X X X X 8 

Uric acid X X X X X X X X 8 

TAG X 
   

X 
  

X 3 

SSB = Sugar sweetened beverage; MMTT = Mixed meal tolerance test  

Cerebrovascular reactivity   

CVR was determined as the increase in cerebral blood flow velocity in the middle 

cerebral artery (MCA) by transcranial Doppler ultrasonography using a 2 MHz 

pulsed Doppler ultrasound system (DWL ®, Doppler-BoxTMX, Compumedics, 

Germany). Insonation of the MCA was initiated at a depth of ~ 50 mm, and then 
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optimised prior to locking the probe in place using a size adjustable headset for 

unilateral measurement of the MCA (DWL ®, DiaMon ®, Compumedics, 

Germany, GmbH). Attempts were made to ensure replication of the same 

insonation angle for within-day measurements. The headset was not kept on 

during within-day measurements as this resulted in movement and poorer 

replication of the angle of insonation. However, by keeping the same adjustments 

of the headset and attachment arm to the probe, and using an anatomical marker 

to mark the position of the probe, this resulted in improved replication of the same 

angle of insonation. Beat-by-beat mean blood flow velocity of the MCA 

(MCAvmean) was exported for analysis as the primary outcome. Participants wore 

a leak-free facemask (Hans Rudolph, Kansas City, USA) during the protocol to 

sample end-tidal CO2 (PETCO2) through a gas analyser (ADInstruments, Gas 

analyser, ML206, Colorado Springs, CO, USA). Beat-by-beat BP was 

continuously measured by finger plethysmography (Finometer PRO, 

Netherlands). All data were acquired continuously at 200 Hz using an analog-to-

digital converter (Powerlab; model - 8/30, ADInstruments, Colorado Springs, CO, 

USA) interfaced with a laptop computer. The input from the gas analyser was 

time shifted by minus 2 seconds to account for a time delay due to the length and 

diameter of the sample. Data were stored at 200 Hz for subsequent analysis 

using commercially available software (Lab Chart version 8, ADInstruments). 

Baseline MCAvmean readings were obtained over a one-minute period and then 

averaged. Participants then performed a maximal breath-hold for up to 30 

seconds following a normal inspiration. Participants were asked to avoid a 

Valsalva manoeuvre, with this protocol being practiced in visit 1 to coach 

participants how to perform the breath-hold. A one-minute recovery period 

followed the breath-hold. This whole protocol consisting of baseline-breath-hold-
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recovery (as seen in Figure 2.2) was repeated three times (Bright & Murphy, 

2013). The protocol to assess CVR lasted 7 minutes 30 seconds. CVR was 

determined as the greatest increase in mean MCAvmean in the 10 seconds 

following the breath-hold, expressed as the percentage increase from baseline 

MCAvmean, for each of the three breath-holds. CVR was then taken as an average 

of the CVR% for each of the three breath-hold attempts. MAP was recorded, and 

the change from baseline during the last five seconds of the breath-hold was 

calculated, to account for the presence of any Valsalva manoeuvre. This increase 

was analysed visually by two researchers, and if MAP was substantially elevated 

(>15 mmHg) following the breath-hold, this breath-hold was removed. The within-

day reliability of our CVR% was calculated using the data pre and post drink from 

the water condition and yielded a CV of 10.8%. Between-day reliability was 

calculated from the baseline scans of the different conditions, yielding a CV of 

15.3% (See Chapter 3). 

 

Figure 2.2. Cerebral blood flow of the middle cerebral artery (MCA) during one cycle of the breath-
hold protocol, demonstrating the increase in MCAv following maximal breath-hold following a 
normal inspiration. 

 

Beat by beat BP was monitored (Finometer PRO, Netherlands) throughout the 

breath-hold test. A BP cuff was placed on the finger (finger plethysmography) and 

held at chest height throughout recording during the cerebrovascular 

measurement. Brachial BP was measured to calibrate the Finometer fingertip BP 

measurement (Guelen et al., 2008), which has been validated in paediatric 

groups (Tanaka et al., 1994).  

Baseline MCAVmean Breath-hold  
Increase in MCAVmean 

post breath-hold   

Recovery 
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Statistical analyses:  

Statistical analyses were conducted using SPSS (version 25, Chicago, USA) and 

data are presented as a mean ± SD. Statistical significance was accepted at an 

alpha 0.05. For the experimental trials, analysis of baseline and peak MCAvmean, 

CVR, plasma TAG and glucose concentrations and blood uric acid 

concentrations were performed using a repeated measures ANOVA with 

condition (GLU, SUC, CON, FRU) and time (Baseline, Post Drink, Post meal) as 

the main effects. Total area under the curve (tAUC) and incremental area under 

the curve (iAUC) analyses were used to characterise metabolic outcomes of 

glucose and uric acid responses following both the drink and the MMTT. The 

tAUC and iAUC analyses were performed using the time point immediately before 

the drink for the acute response, and the time point immediately before the MMTT 

for the postprandial response. All AUC analyses were calculated using the 

trapezoid rule (GraphPad Prism, GraphPad Software, San Diego, CA) and mean 

differences between conditions analysed using one-way repeated measures 

ANOVA. Homogeneity of variance was determined using the Mauchly’s test of 

sphericity and the degrees of freedom were corrected using the Greenhouse-

Geisser correction if required. Effect Sizes for the ANOVA model were displayed 

as partial eta squared (ηp
2), and interpreted as <0.06 = small, 0.06-0.14 = 

moderate and ≥0.14 = large. In order to locate significant differences between 

conditions, post hoc analyses were run as pairwise comparisons between means 

and interpreted using the P value and standardised effect sizes (d) to document 

the magnitude of the effect using the following thresholds: small (0.2), moderate 

(0.5), and large (0.8) (Cohen, 1992).  

For the reliability trials, parameters of CVR (Baseline MCAv mean, CVR%, BHI, 

breath-hold duration, time to peak), MAP and End-tidal CO2 (PETCO2) were 
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initially analysed using a mixed model ANOVA with visit (between-day) or 

assessment (within-day) as the main effects. Effect Sizes for the ANOVA model 

were displayed as partial eta squared (ηp
2) using the previously stated thresholds. 

The reproducibility of these outcomes was explored using the typical error (TE), 

the typical error expressed as a coefficient of variation (CV) and Pearson’s 

correlation coefficient (r) or intra class correlation coefficient (ICC) (Hopkins, 

2000).  
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CHAPTER 3: The reliability of a breath-hold protocol to determine 

cerebrovascular reactivity of the middle cerebral artery in adolescents  

 

ABSTRACT  

Purpose: Impairments in cerebrovascular function are present in adolescents 

with cardiovascular disease risk factors. The breath-hold method is proposed as 

an easy to administer and non-invasive method of assessing CVR in youth, yet 

there are no data on the reliability of this outcome in a paediatric population. This 

study aimed to identify the within-day and between-day reliability of a breath-hold 

protocol to measure CVR in adolescents. Methods: Twenty-one 12-15 year olds 

visited the laboratory in a fasted state on two separate occasions, within a six 

week period. CVR was assessed non-invasively via a breath-hold protocol to 

quantify changes in MCA blood flow velocity via transcranial Doppler 

ultrasonography. For within-day reliability, participants repeated the breath-hold 

protocol 60 minutes later. CVR was then calculated in two ways for subsequent 

analyses; as the percentage increase in mean MCA velocity (MCAvmean) from 

baseline to peak following breath-hold, or as breath-hold index (BHI), where this 

value was normalised for breath-hold length. Results: The within and between-

day coefficients of variation for CVR outcomes were as follows:  Baseline MCAv: 

4.5% and 6.6%, peak MCAv: 5.8% and 7.6%, CVR%: 10.8% and 15.3%, BHI: 

14.0% and 12.5%, respectively. Conclusions: CVR assessed via a simple breath-

hold protocol can be reliably measured in adolescents, yielding similar within and 

between-day reliability. In the present study it was demonstrated that breath-hold 

length and CVR% were unrelated and therefore BHI was deemed an 

unnecessary analysis.   

Key words: endothelial function, reproducibility, transcranial Doppler 

ultrasonography, cerebral blood flow, adolescents 
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INTRODUCTION  

Although clinically overt CVD is not typically apparent until adulthood, the 

atherosclerotic manifestations of the disease processes originate in childhood 

(Stary, 1989). An impairment in endothelial function is a sentinel event in the 

progression of atherosclerosis and a prerequisite to structural changes to the 

vessel wall (Juonala et al., 2004). Consequently, the ability to non-invasively 

determine endothelial function in paediatric groups is important to develop 

strategies aimed at the primary prevention of CVD.  

Previous paediatric research has predominantly focussed on FMD as a measure 

of endothelial function in the peripheral vasculature (Bond et al., 2015; Hopkins 

et al., 2012). In recent adult and paediatric studies, however, there has been a 

growing interest in cerebrovascular in both research and clinical settings (Ainslie 

& McManus, 2016; Willie et al., 2011). CVR provides a direct measure of the 

cerebrovasculature, offering additional insight to peripheral measures, and 

shares a common nitric-oxide dependent pathway with systemic endothelial 

function (Ainslie et al., 2008; Lavi et al., 2006). CVR in adults is associated with 

Alzheimer’s disease (Keage et al., 2012), neurocognitive decline (Wong et al., 

2016), stroke (Silvestrini et al., 2000; Yonas et al., 1993) and independently 

predicts future CVD events in patients with CVD risk factors (Markus & Cullinane, 

2001). Impairments in CVR are present in youth with CVD risk factors, such as 

hypertension (Lande et al., 2012; Settakis et al., 2002) and white coat 

hypertension (Páll et al., 2011), supporting its sensitivity to risk factor status. 

Endothelial function of the cerebrovasculature can be determined via transcranial 

Doppler ultrasonography, measuring the reactivity of the MCA to a hypo/hyper-

capnic stimulus. CVR refers to the ability to regulate cerebral blood flow in 

response to a vasoactive or vasodilatory stimulus.  A hypercapnic stimulus 
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causes the cerebrovascular vessels surrounding the MCA to dilate in response 

to changes in the partial pressure of CO2. CO2 breathing was used as the original 

hypercapnic stimulus (Kety & Schmidt, 1948), however a more simplified, 

cheaper and easier to administer method of a breath-hold has been introduced. 

This method delivers a hypercapnic stimulus through a simple breath-hold, with 

changes in arterial CO2 concentrations shown to reflect two thirds of the CVR 

response in adults, with one quarter attributed to increases in mean arterial 

pressure (MAP) (Przybylowski et al., 2003). CVR determined from the breath-

hold test correlates highly (r=0.67, p<0.001) with CO2 induced CVR in adults 

(Markus & Harrison, 1992).  

Given the easy to administer and non-invasive protocol of the breath-hold, with 

clinical applications of CVR in early risk factor detection, this method may have 

merit for intervention studies in children and adolescents to assess CVR. Before 

this can be made possible, protocol methods need to be made explicitly clear as 

current adult studies are difficult to interpret due to differing methods of assessing 

breath-hold induced CVR. Furthermore, there are no data available on the 

reliability of determining CVR via the breath-hold test in a paediatric population. 

Breath-hold induced CVR is commonly assessed using the parameter of the 

breath-hold index (BHI) (Markus & Harrison, 1992; Müller et al., 1995). This index 

is defined as the maximum percentage increase in cerebral blood flow velocity 

divided by the breath-hold length. The BHI has been reported to have appropriate 

short-term reliability in some adult studies, with an intra class correlation 

coefficient of 0.41 to 0.50 (Totaro et al., 1999). However, its between-day (24 

hour) reliability is poor, with an intraclass correlation coefficient of 0.17 (Totaro et 

al., 1999). This questions the appropriateness of the BHI as a measure of CVR 

for studies involving multiple visits on separate days. Furthermore, no studies 
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have explored the relationship between breath-hold length and increase in 

MCAvmean, to determine the validity of normalising increases in MCAvmean to 

breath-hold length. There is a lack of detail on the reliability of factors related to 

the hypercapnic stimulus and breath-hold execution, such as the breath-hold 

length, partial pressures of CO2 (reflected as End-Tidal CO2 (PETCO2)) and BP 

during the breath-hold protocol. Consequently, it may be important to measure 

these factors to assess test compliance, to examine if changes are consistent 

between and within individuals, as differences have been shown to directly affect 

vessel reactivity (Willie et al., 2011). 

In addition to a lack of evidence examining the reliability of the breath-hold test 

as a measure of CVR in youth, previous work has also failed to identify the most 

reliable method of analysis of the MCAv response within a test protocol. There 

are discrepancies between studies in whether they report CVR as a BHI (Müller 

et al., 1995) or a CVR% (Settakis et al., 2002). In addition, there is a lack of 

standardisation in the number of breath-holds performed, ranging from six (Bright 

& Murphy, 2013) to two (Markus & Harrison, 1992), and it is often unclear how 

these are averaged. Many studies also fail to report when the peak MCAvmean is 

recorded following the breath-hold (Markus & Harrison, 1992; Przybylowski et al., 

2003), whilst others record the percentage increase during the breath-hold 

(Silvestrini et al., 2000). In order to determine how best to administer and analyse 

CVR, measures of within-test reliability are needed.  

The purpose of this study was to identify the within-test, and within and between-

day reliability of a CVR breath-hold protocol in an adolescent population 

consisting of three breath-hold attempts. This study will also identify the different 

analysis outcomes used in order to improve the reliability of the breath-hold test 
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to determine CVR in youth, and establish the most reliable method of analysis of 

CVR. 

METHODS   

Participants   

Twenty-one 12 to 15 year olds volunteered to take part in this study, with a mean 

± SD age, height and body weight of 14.4 ± 0.4 years, 164.5 ± 8.2 cm and 58.8 ± 

11.0 kg, respectively. Participant assent and parental consent were obtained prior 

to participation in the study, for which ethical approval was obtained from the 

University of Exeter Sport and Health Sciences Ethics committee (171206/B/07). 

These participants were recruited as part of the study in Chapter 4 with this 

chapter derived from the baseline and control day of this experiment. One 

participant was removed from analyses due to an inability to regularly perform the 

breath-holds without a Valsalva manoeuvre.  

Experimental procedures  

Participants visited the laboratory a total of three times, with visits two and three 

as experimental visits, separated by ~ 1 week. Visit one involved collection of 

participant descriptive data, as well as to provide a familiarisation to the testing 

procedures.  

Visit 1  

Participants were transported to the laboratory by car, following a 12 hour 

overnight fast. Body mass, stature, percentage body fat, maturity status and BMI 

status were measured as outlined in Chapter 2. 

Following anthropometric measures, participants then completed a maximal 

ramp-incremental test to exhaustion on an electronically braked cycle ergometer 

(Lode Excalibur Sport, Groningen, the Netherlands) to determine their peak 
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V̇O2peak. Age and sex specific V̇O2 cut points were used to characterise the sample 

for increased cardiometabolic risk (Adegboye et al. 2011).  

Visit 2 and 3  

Participants completed two experimental visits to the laboratory, separated by 

approximately one week, for assessment of CVR. The visits were a part of a 

larger trial in which four visits were completed in a randomised order, of which 

the control condition was used as the within-test and within-day reliability for the 

present study. With parental supervision, participants were asked to replicate 

their evening meal prior to each laboratory visit, and avoid any vigorous exercise 

during the 24 hours preceding each laboratory visit.  

Following a 12 hour overnight fast, participants were transported by car to the 

laboratory for 08:00 Participants then rested in a in a darkened and temperature-

controlled room in the supine position for 30 minutes prior to assessment of CVR. 

Subsequently, CVR was assessed as described in Chapter 2.  

To examine the within-day reliability of CVR, participants repeated these 

measures 60 minutes following their first assessment, after the consumption of 

300 mL of water. During this 60 minutes, participants consumed no food and were 

required to remain inactive throughout, permitted to sit at a desk and work, watch 

TV or play board games. Participants were allowed to drink water ad libitum 

during all visits. 

Assessment of cerebrovascular function 

CVR was assessed as described in Chapter 2. Data from the three breath-holds 

were used to identify the within-test reproducibility, and how to appropriately 

analyse the CVR outcome. Analysis of within-test outcomes from the three 
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breath-holds was used to inform the analysis of the within and between-day CVR 

analysis. 

End-Tidal CO2 (PETCO2) was measured following the breath-hold, as a surrogate 

measure of arterial partial pressures of CO2, to reflect the changes in CO2 at the 

end of the breath-hold. Participants were required to wear a leak-free facemask 

(Hans Ruolph, Kansas City, USA) during the protocol in order to sample PETCO2 

through a gas analyser, which was calibrated via known concentrations of O2 and 

CO2 (15.1%, 5.0%, respectively) (ADInstruments, Gas analyser, ML206, 

Colorado Springs, CO, USA). During the protocol, beat-by-beat BP was non-

invasively measured (Finometer PRO, Netherlands). MAP was recorded, and the 

change from baseline during the last five seconds of the breath-hold was 

calculated, to account for the presence of any Valsalva manoeuvre. This increase 

was analysed visually by two researchers, and if MAP was substantially elevated 

(>15 mmHg) following the breath-hold, this breath-hold was removed. 

Data analyses 

To explore changes in the ratio between MAP and MCAvmean, the cerebrovascular 

conductance index (CVCi) and cerebrovascular resistance index (CVRi) were 

calculated as follows:  

CVCi = MCAvmean/MAP 

CVRi = MAP/MCAvmean 

Where MCAvmean and MAP are taken as the average during the baseline 

preceding each breath-hold attempt. 

Statistical analyses were conducted using SPSS (version 25, Chicago, USA) and 

data are presented as a mean ± SD. Statistical significance was accepted at an 
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alpha 0.05. Parameters of CVR (Baseline and peak MCAvmean, CVR%, BHI, 

breath-hold duration, time to peak), MAP and PETCO2 were initially analysed 

using a mixed model ANOVA with visit (between-day) or assessment (within-day) 

as the main effects. For within-test data, the relationship between mean breath-

hold length and CVR% was explored using Pearson’s correlation. Effect sizes for 

the ANOVA model were displayed as partial eta squared (ηp
2), and interpreted as 

<0.06 = small, 0.06-0.14 = moderate and >0.14 = large effect size. For within-test 

analyses where three breath-holds were analysed, significant difference between 

breath-hold attempts were located using pairwise comparisons and interpreted 

using the P-value and standardised effect sizes (d) to document the magnitude 

of the effect using the following thresholds: <0.5 = small, <0.8 = moderate and 

≥0.8 = large (Cohen, 1992).  The reproducibility of these outcomes was explored 

using the typical error (TE), the TE expressed as a CV and intraclass correlation 

coefficient for within-test analyses, and Pearson’s correlation coefficient (r) for 

within and between-day analyses (Hopkins, 2000)  

RESULTS 

Participant characteristics 

Participant characteristics are presented in Table 3.1. The maturation status for 

boys (n = 11) and girls (n = 10) is as follows: (Stage 2: n=2, Stage 3: n=2, Stage 

4: n=15, Stage 5: n=2).  
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Table 3.1. Participant characteristics  

 Mean (± SD) Range 

Age (y) 14.3 (±0.4) 13.7-15.3 
Body Mass (kg) 55.1 (±11.0) 34.0-73.9 

Stature (cm) 164.5 (±8.2) 149.0-183.5 
BMI (kg/m2) 16.7 (±2.8) 11.2-22.2 
Body fat (%) 22.0 (±9.0) 6.9-36.2 
V̇O2 peak (L.min-1) 2.1 (±0.6) 0.5-3.4 
V̇O2 peak (mL.min-1.kg-1) 40 (±9) 10-51 

Fasting plasma TAG (mmol.L-1) 0.63 (±0.04)  0.19-1.46 

Fasting plasma glucose (mmol.L-1) 4.67 (±0.11)  2.14-6.27  

Fasting plasma uric acid (μmol.L-1) 5.28 (±0.14)  3.00-9.20  

Results expressed as mean ± SD. BMI, body mass index; V̇O2, oxygen uptake; TAG, triglyceride. 

Within-test reliability   

The within test reproducibility for parameters of interest are presented in Table 

3.2. Baseline MCAVmean declined across the three breath-holds (P=0.002, 

ηp²=0.29), with a significantly lower baseline MCAVmean in breath-hold 3 than 1 

(P=0.001, d=0.4) and 2 (P=0.034, d=0.2). Peak MCAVmean systematically declined 

across the three breath-holds, with breath-hold 3 lower than 1 and 2 (P<0.001, 

ηp²=0.27; 1 vs 3: P=0.003 d=0.3, 2 vs 3: P=0.02 d=0.2). No significant mean 

differences were apparent between breath-holds for all other outcomes (P>0.05, 

ηp²≤0.10). Significant correlations were observed between breath-holds for all 

outcomes except time to peak (0.64≤ r≤0.95) (p<0.01). Mean breath-hold 

duration was not significantly correlated with CVR% (r=0.35, P=0.13). The TE 

expressed as a CV for all other outcomes ranged from 3.2 to 119.7%. These 

outcomes informed the analysis of breath-hold data for within and between-day 

analysis, with it deemed appropriate to take an average of the three breath-hold 

attempts within the protocol.  
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Table 3.2. Within-test reliability for outcomes of interest.  

 Breath-hold 
Change in 

Mean 
 

Typical 
error 

CV 
(%) 

r 

Variable 1 2 3 (1-2) (2-3) P    

 
Baseline MCAvmean 
(cm/s) 
 

89.6 ± 14.9 86.9 ± 11.4 84.8 ± 12.5 * -2.7 -2.1 0.002 0.28 4.6 0.92 

Peak MCAvmean (cm/s) 130.5 ± 19.1 128.2 ± 17.6 124.5 ± 19.8 * -2.3 -3.7 0.003 0.25 3.2 0.95 

 
Recovery MCAv mean 
(cm/s) 
 

82.7 ± 13.2 81.11 ± 12.2 80.4 ± 11.2 -1.6 -0.8 0.14 0.28 3.9 0.93 

 
BH length (s) 
 

25.5 ± 4.8 26.0 ± 4.4 25.0 ± 5.3 0.5 -1.9 0.42 0.54 13.5 0.73 

Time to peak (s) 4.7 ±2.6 4.2 ± 2.9 3.9 ± 2.9 -0.5 -0.3 
 

0.67 
 

2.71 65.3 0.07 

CVR (% increase) 46.7 ± 12.0 47.5 ± 11.5 47.4 ± 14.5 0.8 -0.1 
 

0.88 
 

0.49 15.2 0.77 

 
BHI (s-1) 
 

1.88 ± 0.48 1.85 ± 0.43 1.94 ± 0.60 -0.1 0.1 0.62 0.62 16.2 0.64 

MAP baseline (mmHg) 81.47 ± 13.5 81.48 ± 14.8 81.47 ± 14.7 -0.01 -0.02 0.99 0.2 3.8 0.97 

 
MAP Δ during BH 
(mmHg) 
 

8.8 ± 8.6 9.9 ± 8.4 8.8 ± 8.6 1.2 -1.1 0.53 0.48 119.7 0.78 

MAP peak (mmHg) 97.34 ± 10.9 97.79 ± 11.30 99.20 ± 10.93 0.45 1.42 0.46 0.4 4.4 0.84 

 
End-Tidal CO2 

 
40 ± (3.9) 39.8 ± 3.8 40.5 ± 4.7 -0.2 0.7 0.44 0.41 4.1 0.85 

CVRi (mmHg cm s-1) 1.11 ± 0.2 0.96 ± 0.1 0.97 ± 0.2 -0.15 0.01 0.10 0.2 28.5 0.91 

CVCi (cm s-1mmHg2) 0.94 ± 0.2 1.10 ± 0.2 1.07 ± 0.2) 0.14 -0.03 0.10 0.2 28.5 0.91 

Data presented as mean ± SD. P-values indicate ANOVA main effect, with significant effects 
highlighted in bold. * indicates P<0.05 compared to other breath-holds. MCAVmean, mean middle 
cerebral artery velocity; BH, breath-hold; CVR, cerebrovascular reactivity; BHI, breath-hold index; 
MAP, mean arterial pressure, CO2, carbon dioxide.  

 

Within-day reliability 

The within-day reliability for parameters of interest are presented in Table 3.3. 

Between assessment 1 and 2, a significant decline in baseline (P=0.02, 

ηp²=0.24), peak (P=0.02, ηp²=0.24) and recovery (P=0.03, ηp²=0.22) MCAVmean 

was observed. PETCO2 also significantly declined between assessments (P=0.01, 

ηp²=0.30). No significant mean differences were apparent between assessments 
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1 and 2 for all other outcomes (P≥0.12, ηp²≤0.12). Significant correlations were 

observed between assessments 1 and 2 for all outcomes (0.71 < r < 0.92) (p< 

0.01). Typical error ranged from 2.1% to 14.0%, except for changes in MAP which 

had a CV of 150.7%.  

Table 3.3. Within-day reliability for outcomes of interest.  

Variable  Assessment 

1 

Assessment 

2 

Change in 

mean 

P value Typical 

error 

CV 

(%) 

r 

Baseline MCAvmean (cm/s) 85.9 ± 11.9 82.9 ± 13.7 -2.9 0.021 0.31 4.5 0.92 

Peak MCAvmean (cm/s) 126.8 ± 15.5 122.3 ± 21.0 -5.5 0.020 0.42 5.8 0.89 

Recovery MCAvmean (cm/s) 81.0 ± 11.6 77.7 ± 13.6 -3.3 0.027 0.38 5.7 0.89 

BH length (s) 25.2 ± 4.3 26.0 ± 4.2 0.8 0.21 0.46 8.1 0.79 

CVR (%) 47.3 ± 11.7 46.2 ±  10.4 -1.1 0.48 0.52 10.8 0.79 

BHI (s-1) 1.9 ± 0.5 1.8 ± 0.4 -0.1 0.12 0.69 14.0 0.71 

MAP baseline (mmHg) 81.5 ± 14.2 79.0 ± 12.1 -1.5 0.64 0.7 13.1 0.49 

MAP Δ during BH (mmHg) 10.0 ± 6.7 9.1 ± 7.5 0.5 0.77 1.09 150.7 0.74 

MAP peak (mmHg) 92.8 ± 16.0 91.2 ± 16.7 -1.9 0.58 0.9 14.8 0.57 

End-Tidal CO2 40.1 ± 3.9 39.3 ± 3.5 -0.2 0.01 0.24 2.1 0.95 

CVRi (mmHg cm s-1) 0.95 ± 0.2 0.98 ± 0.2 0.03 0.34 0.1 12.4 0.67 

CVCi (cm s-1mmHg2) 1.08 ± 0.2 1.06 ± 0.2 -0.11 0.65 0.3 30.6 0.72 

Bold indicates significant mean difference between assessment 1 and 2. Data presented as mean 
± SD. MCAVmean, mean middle cerebral artery velocity; BH, breath-hold; CVR, cerebrovascular 
reactivity; BHI, breath-hold index; MAP, mean arterial pressure, CO2, carbon dioxide.  

 

Between-day reliability  

The between-day reliability for parameters of interest are presented in Table 3.4. 

Significant mean differences were observed for BHI with a decline between 

assessments 1 and 2 (P=0.005, ηp²=0.34). No significant mean differences were 

apparent between assessments 1 and 2 for all other outcomes (P>0.11, 

ηp²≤0.12). Significant correlations were observed between assessments 1 and 2 

for all variables (0.48 < r < 0.83; p< 0.01) except CVRi and CVCi. Typical error 

expressed as a CV ranged from 3.7% to 15.3%, with changes in MAP having a 

CV of 100.2%. 
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Table 3.4. Between-day reliability for parameters of interest.  

Variable  Assessment 

1 

Assessment 

2 

Change in 

mean 

P value Typical error Typical error as 

CV (%) 

r 

Baseline MCAvmean (cm/s) 84.1 ± 14.7 87.1 ± 12.0 3.0 0.11 0.43 6.6 0.83 

Peak MCAvmean (cm/s) 125.9 ± 22.4 127.0 ± 17.5 1.1 0.73 0.50 7.6 0.78 

Recovery MCAvmean (cm/s) 78.2 ± 14.8 80.8 ± 11.6 2.7 0.16 5.98 7.5 0.82 

BH length (s) 24.2 ± 5.0 25.5 ± 4.6 1.3 0.11 0.51 11.5 0.74 

CVR (%) 49.4 ± 12.0 46.3 ± 12.0 -3.1 0.17 0.74 15.3 0.64 

BHI (s-1) 2.1 ± 0.5 1.9 ± 0.4 -0.2 0.005 0.61 12.5 0.74 

MAP baseline (mmHg) 82.0 ± 13.5 85.4 ± 7.2 3.4 0.30 1.0 15.2 0.11 

MAP Δ during BH (mmHg) 9.4 ± 9.4 8.0 ± 7.4 -1.5 0.45 6.20 100.2 0.48 

MAP peak (mmHg) 96.4 ± 41  98.1 ± 10.2 1.7 0.59 1.12 12.9 0.46 

End Tidal CO2 39.1 ± 2.6 39.6 ± 3.2 0.6 0.23 0.49 3.7 0.78 

CVRi (mmHg.cm-1) 1.0 ± 0.2 1.0 ± 0.2 0.0 0.96 0.1 16 0.35 

CVCi (cm s-1mmHg2) 1.0 ± 0.2 1.0 ± 0.2 0.0 0.72 0.2 16 0.39 

Bold indicates significant mean difference between assessment 1 and 2. Data presented as mean 
± SD. MCAVmean, mean middle cerebral artery velocity; BH, breath-hold; CVR, cerebrovascular 
reactivity; BHI, breath-hold index; MAP, mean arterial pressure, CO2, carbon dioxide.  
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DISCUSSION 

The main findings of this study were that using the percentage increase in 

MCAvmean in the 10 seconds following the breath-hold was reliable within the 

three breath-holds performed in the protocol. Therefore, it was deemed 

appropriate to average the score from the three breath-hold attempts. Using 

these analyses, CVR% yielded similar levels of reliability within-day (10.8%) and 

between-day (15.3%).  

Within-test 

The most widely used outcome of reporting breath-hold induced CVR as a BHI, 

yielded a CV of 16.2% for within-test reliability. This is in line with a within-test CV 

of 11.4% previously reported in adults (Alwatban et al., 2018). Nevertheless, 

there are concerns with its application (Urback et al., 2017), as the relationship 

between breath-hold length and the PaCO2 stimulus remains unclear, with the 

stimulus influenced by many other factors (Fierstra et al., 2013). This method was 

first employed to account for differences in breath-hold length and its possible 

influence on CVR (Markus & Harrison, 1992). This was considered to have merit 

in elderly patients who could not hold their breath for longer than 15 seconds 

(Settakis et al., 2002). The present study found that breath-hold length was not 

associated with the increase in MCAvmean (r=0.35, P=0.13), and therefore the 

normalisation of CVR% to breath-hold length appears unnecessary. This is in 

addition to evidence indicating that breath-hold length is not strongly related to 

changes in PaCO2 following a breath-hold (Sasse et al., 1996). Collectively, these 

data indicate that it is not necessary to normalise the MCA response to breath-

hold length, as it does not alter the vasoactive stimulus of increases in PaCO2.  

There is a lack of consistency in how previous studies have handled breath-hold 

data, and it is evident that standardisation of CVR is needed across the literature. 
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The time during the breath-hold protocol in which the increase in MCAvmean is 

taken is inconsistent between studies, with some using the 4 seconds following 

the breath-hold (Markus & Harrison, 1992), and others analysing the peak during 

the breath-hold (Alwatban et al., 2018). In addition, some studies take the 

increase in MCAVmean “immediately following” the breath-hold, though when this 

occurs has not been made clear (Settakis et al., 2002). The time taken to peak 

MCAvmean was variable between (4.1 ± 1.8 seconds) and within (CV = 65.3%) 

individuals in the present study. This finding indicates that using a predefined 

point of 4 seconds following the breath-hold is unlikely to capture the increase in 

MCAvmean consistently within and between individuals. This could therefore 

underestimate CVR. In the present study, peak MCAvmean always occurred in the 

10 seconds following the breath-hold, which informed our subsequent analyses 

for within and between-day outcomes, and is therefore recommended for use in 

future work in this population.   

It has not been made clear in previous studies whether breath-hold data are 

reported as an average across breath-holds, or whether the highest or lowest 

values have been reported or removed. In addition, it is not clear or consistent 

how many breath-holds are performed in study protocols with some reporting six 

breath-holds (Bright & Murphy, 2013) and others only two (Markus & Harrison, 

1992) or three breath-holds (van Niftrik et al., 2016), whilst other fail to report this 

(Alwatban et al., 2018). From the three breath-hold protocol used in the current 

study, baseline and peak MCAvmean systematically declined between breath-

holds. However, when CVR was expressed as a percentage increase, there was 

no significant difference across breath-holds, with breath-hold one to three being 

strongly correlated (r=0.77) with a within participant CV of 15.2%. It therefore 

seems appropriate to take an average of the three breath-holds for analysis, and 
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also suggests that one breath-hold may be sufficient if utilised in a time sensitive 

protocol. When analysed by these methods, the proposed outcome of CVR% 

yields a marginally higher level of reliability, shown through a lower CV, than the 

original BHI method (CV = 15.3% vs 16.2%). These initial findings informed 

subsequent within and between-day analyses.  

Within-day and between-day 

Evidence of within and between-day reliability of breath-hold-induced CVR 

protocols is essential when conducting intervention and observational 

experiments. In this study, similarly to the within-test reproducibility, there was a 

systematic decline in baseline and peak MCAvmean from assessments 1 to 2. This 

is in line with the decline observed in PETCO2, supporting suggestions that CVR 

is mostly related to changes in CO2 (Fisher et al., 2017). Previous literature has 

reported variation in MCAvmean due to variations in MAP (Demolis, 1993). 

However, in the present study measures of CVCi and CVRi demonstrated no 

differences between assessments both within and between-days. This suggests 

that, although there was a high individual variation in MAP, when baseline MAP 

was accounted for, MAP did not influence the MCAvmean response. This lends 

supports to the use of a breath-hold protocol as a measure of CO2-induced vessel 

reactivity. The one hour within-day variation of MCAvmean and PETCO2 highlights 

the time sensitivity of this measure and the importance of conducting measures 

at the same time of day to minimise variation. Despite this, CVR was not 

significantly different within-day and evidenced a CV of 10.8%. This indicates that 

the responsiveness of the vessel is not altered through the day despite different 

baseline MCAvmean. The reliability of CVR may be considered as acceptable when 

compared to the within-day CV following CO2 breathing tests in adults ranging 
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from 4.8 to 40.6% (Goode et al., 2009; Leontiev & Buxton., 2007; Tancredi et al., 

2015).  

In the present study, between-day variability of CVR% was 15.3%, with the 

between day tests significantly largely correlated with each other (r=0.64, 

P=0.002) (Mukaka, 2012). This is consistent with CVR data from CO2 breathing 

in adults, with a between-day intraclass CV of 0.73 (McDonnell et al., 2013). The 

magnitude of the change in MCAvmean following the breath-hold stimulus (34-

62%) is in line with previous reports of normal variation in a paediatric population 

between 40-69% (Settakis et al., 2002). 

Variability in CVR between and within days could be attributed to a number of 

potential sources of error in the breath-hold method. It is important that the 

breath-hold is completed following a normal inspiration, as to standardise the 

PaCO2 concentrations. It is also important to avoid a Valsalva manoeuvre 

throughout the protocol. For this reason, it is of interest to measure MAP 

simultaneously, to make attempts to assess compliance with the protocol and 

cooperation of the participant, particularly when working in a paediatric 

population. However, in this study and previous literature (Müller et al., 1995), it 

is evident that this protocol is well tolerated in youth. In the present study, MAP 

baseline and peak were reliable within a participant, both within (CV: 

Baseline=13.1% and Peak=14.8%) and between-day (CV: Baseline=15.2% and 

Peak=12.9%). However, the change in MAP during the breath-hold was highly 

variable with both within-day (CV=150.7%) and between-day (CV=100.1%). 

Although this variation is large, this is summative of the variation of MAP at both 

baseline and peak, and when expressed as a percentage this variability becomes 

amplified. Despite this seemingly large variation, there were no resultant changes 

in CVR, supporting these changes in MAP as being acceptable ranges and not 
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having an influence on the subsequent MCAvmean response. Measurement of 

both MAP and PETCO2 are of importance to ensure that any changes in CVR are 

attributable to changes in responsiveness in the blood vessel, and not breath-

hold execution. In the current study, PETCO2 was reliable within a participant, both 

within-day (CV=2.1%) and between-day (CV=3.7%), and therefore any influence 

on the variability on outcomes of CVR is unlikely to be from variability in PETCO2. 

Conclusions 

The present investigation sought to address the within-test reproducibility for the 

breath-hold protocol. Analyses revealed normalisation of the BHI was not 

statistically supported, as BH length and CVR% were unrelated in the present 

study. Within-test analyses indicated that CVR% was reproducible within a 

protocol, and thus it was deemed acceptable to average the outcome of the three 

breath-holds. Using these methods, this study addressed the within and between-

day reliability of a single protocol to non-invasively measure cerebrovascular 

function at the MCA. The present study demonstrated that, when CVR was 

expressed as a percentage increase in MCAvmean in the 10 seconds following the 

breath-hold, it was a reliable method of assessing CVR in adolescents. 

Importantly, this supports the use of this outcome in future studies investigating 

changes in CVR that utilise measures between and within visits. Future analyses, 

however, need to be conducted to establish whether this outcome of CVR% 

correlates with other measures of peripheral vascular function such as flow 

mediated dilation (FMD), and furthermore, the associations with clinical outcomes 

to support this as a valuable predictor of future health outcomes.   
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CHAPTER 4: The acute and postprandial effects of sugar moiety on 

cerebrovascular function in adolescents  

ABSTRACT:  

Introduction: The process of CVD may originate in youth, with evidence indicating 

an association between SSB consumption and progression of CVD risk factors. 

This study aimed to investigate the effect of sugar moiety on cerebrovascular 

function in adolescents following a sugary drink and subsequent meal. Methods: 

Twenty one adolescents (14.3 ± 0.4 years) performed four conditions in a 

randomised order, consuming the following drinks on separate visits: (1) glucose 

(GLU); (2) fructose (FRU); (3) sucrose (SUC); and (4) water (control; CON). 

Cerebrovascular reactivity (n=20) (CVR) was measured using the breath-hold 

test via transcranial Doppler ultrasonography at baseline and 60 minutes 

following drink consumption, and 180 minutes following a mixed meal tolerance 

test (MMTT: 60 g fat, 45 g sugar). Capillary blood samples for glucose, uric acid 

and TAG were taken throughout. Results: CVR did not differ between conditions 

(P=0.26, ηp
2=0.07) or across time (P=0.39, ηp

2=0.05). Blood analyses for TAG 

revealed no significant condition x time interaction (P=0.18, ηp
2=0.07), with TAG 

elevated in all conditions following meal consumption (P<0.01, d=2.0). Blood 

glucose had a significant condition x time interaction effect (P<0.001, ηp
2=0.59), 

with blood glucose significantly elevated in GLU compared to all conditions at all 

time points following drink consumption (P≤0.002, d ≥0.8). Post hoc analyses 

revealed that uric acid concentrations were elevated in FRU compared to all 

conditions 60 and 120 minutes following drink consumption (P≤0.02, d=0.7). 

Conclusion: No changes in CVR were present following SSB and MMTT 

consumption, despite sugar moiety resulting in different metabolic responses 

following SSB consumption. 
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Key words: sugar-sweetened beverage, endothelial function, cardiovascular 

health, acute, postprandial 

INTRODUCTION 

Although clinically overt CVD typically presents in adulthood, sub-clinical 

manifestations of the disease process occur in childhood (McGill et al., 2000), 

highlighting the importance of CVD risk factor modification in the first two decades 

of life. Children and adolescents who present with CVD risk factors have impaired 

endothelial function (Celermajer et al., 1992), which is a pre-requisite for 

structural changes to the vessel wall (Fernhall & Agiovlasitis, 2008). Previous 

studies examining endothelial function in youth have predominantly focused on 

peripheral arterial function via FMD (Celermajer et al., 1992). Recently, however, 

there has been growing interest in measuring cerebrovascular function, which 

has been shown to share the same nitric oxide-dependent pathway as FMD (Lavi 

et al., 2006). Evidence indicates that impairments in CVR are already seen in 

children who present CVD risk factors, such as hypertension  (Lande et al., 2012). 

These findings highlight that exposure to CVD risk factors in youth may have 

deleterious consequences on the cerebrovasculature, which may have 

implications for future cerebrovascular disease and stroke (Keage et al., 2012; 

Silvestrini et al., 2000; Wong et al., 2016; Yonas et al., 1993). 

The consumption of SSBs has received growing interest for their potential role in 

elevating CVD risk. Adolescents in the UK consume 60% more calories from 

SSBs than children, averaging 210 g of SSB intake per day (Public Health 

England, 2013-2014), exceeding the recommended maximum intake of 25 g of 

sugar per day. The consumption of SSBs is associated with increased CVD risk 

factors in youth, such as decreased insulin sensitivity (Basu et al., 2013), 
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hypertension (Chan et al., 2014a), dyslipidaemia (Vos et al., 2017) and future 

weight gain (Ludwig et al., 2001).  

The influence of SSBs on CVR is currently unknown, though there are data on 

peripheral arterial function (Lavi et al., 2006). Data from a meta-analysis of 39 

studies in healthy and diseased adults and paediatric groups demonstrated that 

hyperglycaemia following SSB consumption acutely impairs peripheral 

endothelial function, likely via increased oxidative stress and reduced nitric oxide 

bioavailability (Loader et al., 2015). Despite this finding, the three available 

studies in adolescents report no impairments in peripheral endothelial function 

following a glucose load in healthy or obese adolescents (Dengel et al., 2007), 

and adolescents with type 1 diabetes (Dye et al., 2012). However, a glucose load 

is not representative of typical SSBs, in which the main sugar is sucrose 

(constituting of equal parts glucose and fructose) or high fructose containing 

sugars. Unlike glucose, fructose is metabolised in the liver independently of 

insulin, which has been shown to increase de novo lipogenesis (Cohen & Schall, 

1988) and uric acid concentrations (Malik & Hu, 2015). The different metabolic 

fate of fructose may play an integral role in the detrimental effects of SSB 

consumption and CVD risk (Malik & Hu, 2015). The impacts of fructose 

consumption on vascular function are currently unknown, with no study 

measuring CVR following a fructose load.  It is also not known whether the 

combined or independent effects of these sugar moieties alter vascular function 

and CVD risk (Stanhope et al., 2009).  

A limitation of previous studies investigating the effects of SSB consumption on 

cardiometabolic health in adolescents is the absence of postprandial measures, 

which may be more insightful and representative of day to day living (Morrison et 

al., 2009).  Elevated TAG concentrations from de novo lipogenesis may increase 
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CVD risk, with evidence demonstrating that elevations in TAG coincide with acute 

impairments in peripheral endothelial function in youth (Bond et al., 2015a). 

Associations between TAG and future disease risk are supported by evidence 

showing that elevations in fasting and postprandial TAG in youth are an 

independent predictor of CVD outcomes later in life (Morrison et al., 2009). 

Furthermore, data demonstrates TAG as a strong CVD risk factor with 

postprandial TAG (and glucose concentrations) shown as more powerful 

predictors of CVD risk than fasting concentrations (Freiberg et al., 2008; Morrison 

et al., 2009). Elevated production of hepatic uric acid following fructose 

consumption may be associated with reduced endothelial function alongside 

increased CVD risk, through a reduction in endothelial nitric oxide bioavailability 

and increased inflammation (Nakagawa et al., 2006; Roglans et al., 2007). 

The primary aim of this study was to investigate the effects of sugar moiety 

(sucrose, glucose, and fructose) on CVR and blood markers of glucose, TAG and 

uric acid concentrations. A secondary aim was to investigate whether the 

consumption of different types of sugar found in SSBs influences CVR and 

postprandial metabolic outcomes following a MMTT.   

METHODOLOGY  

Participants 

Twenty one healthy 12 to 15-year old adolescents (11 males) took part in this 

study. Sample size was estimated based upon a power calculation (G*Power) 

based upon the primary outcome of CVR, and resulted in a sample size of 24 

participants to detect a power of 80% (ηp
2 =0.12; α =0.05). Participants were 

recruited from a local school in Devon, for which ethics approval was obtained 

from the Sport and Health Sciences Ethics Committee, University of Exeter 
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(171206/B/07). Exclusion criteria were any contraindications to exercise or use 

of any medication known to influence the study outcomes. Participants for this 

study were the same as those recruited in Chapter 3.  

Experimental procedures 

Participants completed a total of five visits to the laboratory over a six-week 

period, with each visit separated by approximately one week. Visit one was a 

preliminary visit, with visits 2-5 as experimental visits, completed in a randomised 

order. The four experimental visits consisted of a different drink to compare the 

effects of: (1) glucose (GLU); (2) fructose (FRU); (3) sucrose (SUC); and (4) water 

(control; CON) on CVR and metabolic outcomes of TAG, glucose and uric acid. 

Visit 1: Preliminary anthropometric and familiarisation visit  

Participants were collected from school and transported to the laboratory by car 

following a 12 hour overnight fast. Body mass, stature, percentage body fat, 

maturity status and BMI status were measured as outlined in Chapter 2. 

Following anthropometric measures, participants were familiarised with all testing 

procedures. Participants then completed a maximal ramp-incremental test to 

exhaustion on an electronically braked cycle ergometer (Lode Excalibur Sport, 

Groningen, the Netherlands) to determine their peak V̇O2peak as outlined in 

Chapter 2.  

Visits 2-5: Experimental visits  

An overview of the experimental protocol is illustrated in Figure 4.1. Following a 

12 hour overnight fast, participants were collected from school and driven to the 

laboratory for 08:00 am. Participants then completed all testing procedures as 



64 
 

outlined in Chapter 2 with measures of CVR taken 60 minutes post drink 

consumption and 180 minutes post meal consumption.  

 

Figure 4.1. Protocol schematic for the four experimental visits. The single arrows represent 
collection of capillary blood samples for plasma glucose and uric acid. The double arrows 
represent addition blood samples for plasma triglyceride. CVR = cerebrovascular reactivity; 
MMTT = mixed meal tolerance test; GLU = glucose, SUC = sucrose, FRU = fructose, CON = 
control (water).  

 

Cerebrovascular reactivity   

CVR was determined as the increase in cerebral blood flow velocity in the MCA 

by transcranial Doppler ultrasonography using a 2 MHz pulsed Doppler 

ultrasound system (DWL ®, Doppler-BoxTMX, Compumedics, Germany). CVR 

was assessed as outlined in Chapter 2.  

The within-day reliability of CVR% was calculated using the data pre and post 

drink from the water condition and yielded a CV of 10.8% (see Chapter 3). 

Between-day reliability was calculated from the baseline scans of visits two and 

three and demonstrated a CV of 15.3% (See Chapter 3). 

Blood outcomes 
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Collection of capillary blood samples and subsequent blood analyses were 

conducted as outlined in Chapter 2.  

Total area under the curve (tAUC) and incremental area under the curve (iAUC) 

analyses were used to characterise metabolic outcomes of glucose and uric acid 

responses following both the drink and the MMTT. The tAUC and iAUC analyses 

were performed using the time point immediately before the drink to for the acute 

response, and the time point immediately before the MMTT for the postprandial 

response. All AUC analyses were calculated using the trapezoid rule (GraphPad 

Prism, GraphPad Software, San Diego, CA).  

Statistical analyses  

Statistical analyses were conducted using SPSS (version 25, Chicago, USA) and 

data are presented as a mean ± SD. Analysis of baseline and peak MCAvmean, 

CVR, plasma TAG and glucose concentrations and blood uric acid 

concentrations were performed using a repeated measures ANOVA with 

condition (GLU, SUC, CON, FRU) and time (baseline, post drink, post meal) as 

the main effects. Differences in the AUC responses for glucose and uric acid 

following each drink condition were explored using one-way repeated measures 

ANOVA. Homogeneity of variance was determined using the Mauchly’s test of 

sphericity, with the Greenhouse-Geisser correction performed if required. Effect 

sizes for the ANOVA model were displayed as partial eta squared (ηp
2), and 

interpreted as <0.06 = small, <0.14 = moderate and ≥0.14 = large effect size. In 

order to locate significant differences between conditions, post hoc analyses 

were run as pairwise comparisons between means and interpreted using the P 

value and standardised effect sizes (d) to document the magnitude of the effect 

using the following thresholds: small (0.2), moderate (0.5), and large (0.8) 

(Cohen, 1992). Statistical significance was accepted at an alpha of P<0.05. 
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RESULTS 

Participant’s descriptive characteristics are as presented in Chapter 3 (see Table 

3.1). Pubertal status ranged from stage 2 to 5 (stage 2, n=2, stage 3: n=2 stage 

4: n=15, stage 5: n=2). Participants were all defined as normal weight according 

to BMI centile classifications. According to VO2max cut points 6 participants were 

classified as low fit (boys n=3), with the remaining (n=15) above the cut off for 

low fit. One participant was removed from the CVR analysis due to substantial 

Valsalva manoeuvre during the breath-hold protocol. Therefore, CVR data are 

presented with a sample of n=20. 

Cerebrovascular function 

Baseline and peak MCAvmean data and the CVR% response to the drink 

conditions and subsequent MMTT are shown in Table 3.5. Baseline MCAvmean 

did not differ between conditions (P=0.26, ηp
2=0.07). Similarly, peak MCAvmean 

following the breath-holds did not differ between conditions (P=0.27, ηp
2=0.07). 

There was a main effect of time for both baseline MCAvmean (P=0.016, ηp
2=0.23) 

and peak MCAvmean (P=0.02, ηp
2=0.24). Baseline MCAvmean was not significantly 

different from pre to post drink (P=0.2, d=0.1), but a decrease was evident from 

post drink to post MMTT (P=0.05 d=0.3). Peak MCAvmean significantly decreased 

pre to post drink (P=0.005, d=0.1) with no significant change from post drink to 

post MMTT (P=0.07, d=0.4). CVR% was not different between conditions 

(p=0.84, ηp
2=0.01) or time (p=0.39, ηp

2=0.05), and no condition by time interaction 

was present (p=0.82, ηp
2=0.02). 
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Table 4.5. Cerebrovascular function data at baseline and following drink 
conditions and subsequent meal consumption. 

  Baseline 
(0 minutes) 

Post drink   
(60 minutes) 

Post MMTT 
(300 minutes) 

Baseline MCAvmean 
(cm/s) 

Sucrose 86.1 (±12.0) 
 

86.9 (±13.9) 
 

82.2 (±9.9) 

 Fructose 86.6 (±12.3) 
 

83.0 (±10.0) 81.4 (±10.8) 

 Water 86.3 (±11.7) 
 

83.4 (±13.9) 80.7 (±10.2) 

 Glucose 84.7 (14.0) 86.8 (±13.0) 85.4 (±10.4) 

Peak MCAvmean (cm/s) Sucrose  126.5 (±21.6) 129.0 (±22.8) 121.5 (±18.3) 

 Fructose 125.9 (±16.0) 122.5 (±17.1) 118.5 (±16.0) 

 Water 125.6 (±15.8) 120.8 (±21.3) 118.1 (±17.7) 

 Glucose 124.0 (±18.7) 125.6 (±18.5) 122.1 (±16.4) 

CVR (%) Sucrose 47.3 (±11.4) 47.5 (±12.6) 44.5 (±11.6) 

 Fructose  45.6 (±10.8) 46.9 (±12.0) 45.3 (±9.4) 

 Water 46.3 (±11.0) 44.5 (±7.0) 44.2 (±9.2) 

 Glucose  46.5 (±8.4) 46.9 (±7.9) 44.8 (±9.6) 

Data presented as mean (±SD) for Baseline and Peak MCAv mean and CVR%. MCAv, 
Middle cerebral artery velocity; CVR, cerebrovascular reactivity; MMTT, mixed meal 
tolerance test.  

 

Blood outcomes 

Plasma TAG, plasma glucose and whole blood uric acid concentrations are 

shown in Figure 4.2. Plasma TAG was not significantly different between 

conditions (P=0.17 ηp
2=0.08), nor was there a significant condition by time 

interaction effect (Figure 4.2A, P=0.18 ηp
2=0.07). However, there was a 

significant effect of time (P<0.001 ηp
2=0.82), with no change from baseline to post 

drink (P=0.81, d=0.1), but an increase from post drink to post MMTT (P<0.01, 

d=2.0). 

There was a significant condition by time interaction for plasma glucose (Figure 

4.2B, p<0.001 ηp
2=0.59). Post hoc analyses revealed that plasma glucose was 

higher in GLU than all other conditions at all time points post drink (30–120 

minutes post drink consumption) (P≤0.002, d ≥0.8). Plasma glucose was higher 
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in SUC compared to FRU 30 minutes following drink consumption (P<0.001) and 

CON (P<0.001, d≥ 2.4). SUC remained higher than CON at 60 minutes post drink 

consumption (P=0.01, d=0.8). Following the MMTT, plasma glucose for FRU, 

GLU and SUC were significantly elevated from the CON condition for the 

following two hours (P<0.001, d≥0.6), with no significant differences at 3 hours 

following MMTT consumption between any conditions.  

The tAUC and iAUC for glucose are presented in Figure 4.3 for each condition 

following drink and meal consumption, separately. Post drink glucose tAUC 

(Figure 4.3A) was significantly greater following GLU (744 ± 64 mmol.L-1.120min) 

compared to CON, FRU and SUC (573 ± 40, 577 ± 60 and 664 ± 61 mmol.L-

1.120min, respectively, all P<0.01, ηp
2≥0.68). In addition, post drink glucose tAUC 

following SUC ingestion was significantly greater compared to CON and FRU 

(P<0.01). Post-drink iAUC (Figure 4.3B) was significantly lower following CON 

(20 ± 12 mmol.L-1.120min) compared to GLU (186 ± 90 mmol.L-1.120min), FRU 

(133 ± 76 mmol.L-1.min) and SUC (150 ± 99 mmol.L-1.120min, all P<0.01, 

ηp
2>0.48).  

Post meal tAUC for glucose (Figure 4.3C) was significantly greater following CON 

(1013 ± 76 mmol.L-1.180min) compared to GLU, FRU and SUC (961 ± 68, 951 ± 

70 and 946 ± 65 mmol.L-1.180min, respectively, all P<0.01, ηp
2>0.21). Post meal 

glucose iAUC (Figure 4.3D) was significantly lower following FRU (63 ± 61 

mmol.L-1.180min) compared to CON, GLU and SUC drink conditions (172 ± 105, 

132 ± 67 and 120 ± 66 mmol.L-1.180min, respectively, all P<0.01, ηp
2>0.27). 

There was a significant condition by time interaction for blood uric acid 

concentrations following drink and MMTT consumption (Figure 4.2C, p=0.03, 

ηp
2=0.10). Post hoc analyses revealed that uric acid was elevated in FRU 
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compared to all other conditions 60 and 120 minutes following FRU consumption 

(P≤0.02, d=0.7). Additionally, uric acid was greater in FRU compared to CON 30 

minutes (P=0.009, d=0.6) and 90 minutes (P=0.002, d=0.6) following drink 

consumption. An elevated response with FRU consumption was evident 

compared to GLU 180 mins following drink consumption (P<0.001, d=0.6), and 

180 minutes following MMTT (P=0.04, d=0.5). The FRU condition had a 

significantly elevated response compared to SUC 90 mins following drink 

consumption (P=0.003, d=0.6), and 60 and 120 minutes following MMTT (P≤0.01, 

d≥0.4). Figure 4.4 shows the total and incremental AUC for uric acid following the 

drink and MMTT in each condition. tAUC post drink and MMTT were not 

significantly different between conditions (P=0.11 and 0.10, respectively), neither 

was iAUC post drink (P=0.19) or post MMTT (P=0.32).  
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Figure 4.2. Plasma triacylglycerol (TAG) (A), plasma glucose (B) and uric acid (C) responses for 
each condition following drink consumption (0 min). Dashed line indicates mixed meal tolerance 

test. Data are shown as mean ± SD. 

▼ Sucrose Fructose ● Water □ Glucose  

a, P<0.05 GLU v SUC. b, P<0.05 GLU v FRU. c, P<0.05 GLU vs CON. d, P<0.05 SUC vs FRU. 
e, P<0.05 SUC vs CON. f, FRU vs CON  
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Figure 4.3. Total area under the curve (tAUC, A,C) and incremental area under the curve (iAUC, 
B,D) of plasma glucose following consumption of each different drink and subsequent MMTT. 
Data shown as mean ± SD. 

a, P<0.05 vs water. b, P<0.05 vs glucose. c, P<0.05 vs fructose. d, P<0.05 vs sucrose.  
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Figure 4.4. Total area under the curve (tAUC, A,C) and incremental area under the curve (iAUC, 
B,D) of blood uric acid following consumption of each different drink and subsequent MMTT. Data 
shown as mean ± SD. 
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DISCUSSION: 

The main finding of this study was that following consumption of 60 g of glucose, 

fructose or sucrose, CVR of the middle cerebral artery was preserved in a healthy 

adolescent population. CVR was also not influenced following a MMTT, despite 

elevations in TAG in all conditions, and elevations in uric acid following the 

fructose condition.  

In support of the rationale, looking at the independent and combined effect of 

sugar moieties, the metabolic responses (blood glucose and uric acid) 

significantly differed following SUC, GLU and FRU consumption in the present 

study.  Following the FRU condition, blood glucose concentration was not 

elevated and responded similarly to CON. The FRU condition produced an 

elevated uric acid response at all time points following drink consumption, 

however there were no observed differences between conditions for TAG levels, 

with similar increases following the MMTT in all conditions.  

Hyperglycaemia following SSB consumption, as presented by the GLU and SUC 

conditions in the present study, have been associated with impaired endothelial 

function in previous studies in healthy and clinical populations (Loader et al., 

2015). The systematic review of 39 studies found impaired peripheral 

macrovascular function in 30 studies, which may be attributed to increased 

oxidative stress and decreased nitric oxide bioavailability (Loader et al., 2015). In 

the present study, there were no effects on CVR following hyperglycaemia 

induced by SSB consumption (SUC or GLU). Although other studies have found 

impairments in endothelial function, these were present when measured using 

peripheral endothelial function (FMD) (Akbari et al., 1998; Kawano et al., 1999). 

It may be hypothesised that the contrasting results are due to this discrepancy in 

measurement of endothelial function. This is evidenced by data in an adolescent 
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population demonstrating impairments in FMD following a MMTT containing the 

same composition as the current study (Bond et al, 2015b). In the present study, 

however, there were no significant impairments in endothelial function measured 

by CVR following MMTT for any of the SSB drink conditions (SUC, FRU or 

GLUC), despite elevations in TAG. From this present investigation, it appears 

that the MCA endothelium in adolescents is preserved following the challenge 

presented by a high sugar and fat load.  

The systematic review by Loader et al. (2015) included three studies in a 

paediatric population, with only one study including healthy adolescents (Dengel 

et al., 2007). The authors reported no differences in endothelial function 

measured using FMD following a 75 g glucose load, similarly to results from the 

present study using CVR. This suggests that endothelial function following a 

sugar load in adolescents is protected compared to adults, whether measured via 

CVR or FMD. This supports evidence demonstrating associations between 

measures of FMD and CVR (Lavi et al., 2006). Discrepancies between the 

present study and conclusions from Loader et al. (2015) may be hypothesised to 

be due to the differences in population, with majority of evidence from the 

systematic review focussing on an adult population (36 of the 39 studies).  

There is conflicting evidence in the adult literature, with some studies reporting 

no effects of hyperglycaemia on endothelial function (Akbari et al., 1998; Kawano 

et al., 1999; Reed et al., 2004). Despite this, conclusions seem clear 

demonstrating acute impairments in endothelial function following SSB 

consumption in adults (Loader et al., 2015). In the present population, it was 

hypothesised that vascular function following SSB consumption declines over 

more prolonged periods and may not occur until later in life with repeated 

exposure to acute sugar loads. Therefore, this may need to be repeated over time 
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for any significant impairments in cerebrovascular function to be seen, reflective 

of a high habitual SSB intake. Evidence on the associations between habitual 

SSB consumption and cardiovascular health are clear, with  a meta-analysis from 

310,819 participants demonstrating that individuals in the highest quartile of SSB 

consumption (1-2 servings per day) had a 26% higher risk of developing T2DM 

than individuals in the lowest quartile (Malik et al., 2010). It is also know that 

individuals with T2DM have impaired vascular function (Shah & Urbina., 2017). 

This suggests that the metabolic responses observed in this study of 

hyperglycaemia and raised uric acid may be detrimental to health in adolescents, 

however it may be a cumulative effect over time rather than an acute response 

following one drink (60 g load) that impacts CVR. 

Evidence from the systematic review by Loader et al., (2015) highlights that 

individuals who express reduced endothelial function following SSB consumption 

may have at risk CVD profiles, due to habitual intake of SSBs or metabolic 

complications such as obesity, impaired glucose tolerance or hypertension. On 

review of the evidence, it seems a much clearer conclusion that studies 

performed in clinical populations with obesity (Kawano et al., 1999; Lavi et al., 

2009), Type 1  (Dye et al., 2012) and Type 2 (Ceriello et al., 2008) diabetes and 

hypertension (Zhang et al., 2012) consistently display impairments in endothelial 

function following hyperglycaemia from acute SSB ingestion. The sample in the 

present study were all normal weight (Cole et al., 2000), with fasting TAG below 

the 50th percentile (Tamir et al., 1981). Since the population were healthy and did 

not present early CVD risk factors, endothelial function would appear protected 

from acute dysfunction from hyperglycaemia or hyperuricemia in the present 

study.  This further highlights that discrepancies in findings may not be due to the 

age of the population, but the presence of clinical CVD risk factors and early 
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manifestations of disease, which are likely elevated with age and disease 

progression. This however, remains a speculation until this protocol is repeated 

in at risk teenagers. 

Previous studies have administered a glucose load, which is not representative 

of a SSB, which contains glucose and fructose in equal proportion. In the current 

study, the effect of fructose on CVR was similar to that of glucose, in that 

endothelial function was preserved. Fructose ingestion has been shown to 

contribute to increased CVD risk, associated with hepatic production of uric acid 

occurring within 30-60 minutes following oral ingestion (Stirpe et al., 1970). In the 

present study, uric acid concentrations were shown to be significantly elevated in 

the FRU condition, though this occurred in the absence of any changes in CVR. 

Post-drink and post-meal AUC responses for uric acid were not significantly 

different between drink conditions, suggesting the present study may not have 

delivered a large enough dose, or over a long enough time period, to influence 

CVR measured post meal and post drink. 

Any negative impacts of fructose (or sucrose) consumption on endothelial 

function could be more closely associated with fasting and postprandial TAG 

concentrations than uric acid (Rutledge & Adeli, 2007). In addition, negative 

health implications of SSBs may be related to habitual intake over longer periods 

of time, with previous research demonstrating elevated fasting TAG levels 

associated with a high chronic intake of fructose-rich SSBs in adolescents (Chan 

et al., 2014b). Other studies investigating the metabolic impacts of fructose have 

administered two week trials or longer (Bantle et al., 2000). Although these 

studies did not measure CVR, they support suggestions that the effects of 

fructose and the potential mechanism of SSB consumption influencing CVR is a 

cumulative effect over time, rather than an acute response following one drink. 
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This is reinforced by evidence that SSB intake increases the risk of CVD-related 

complications such as hypertension, dyslipidaemia, inflammation, stroke and 

diabetes (Malik & Hu, 2015) 

Considerations and limitations 

A key strength of the present study is the replication of a typical SSB, containing 

60 g of sucrose, providing ecological validity of the acute effects of SSB 

consumption. Furthermore, the present study compares the combined and 

independent effects of the sugars present in an SSB to determine which sugars 

influence CVR. The inclusion of a postprandial observation is of key importance 

in the present study, given that postprandial metabolic outcomes are more 

predictive of CVD risk than fasted concentrations (Morrison et al., 2009), as well 

as being representative of everyday life. This therefore provides insightful 

information and should be included in future research into the effects of SSB 

consumption. The present study also demonstrated a high level of reproducibility 

for the primary outcome of CVR for both within and between-day (See chapter 

3).    

However, it is important to consider the limitations of the present work. These 

include not accounting for participant’s habitual sugar intake, with many studies 

to date focussing on adverse health outcomes with habitual SSB intake (Chan et 

al., 2014a). However, the present study controlled for any acute effects of diet, 

through the replication of participant’s diet in the 24 hours preceding their 

experimental visits. The small sample size in the present study should be 

considered, with post-hoc power  analyses based on the observed effect sizes of 

0.12, and the repeatability of CVR, demonstrated that a sample size of 24 

participants was required to detect a power of 80% (ηp
2 =0.12) (α =0.05). The 
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lack of consideration of habitual PA is a further limitation of the present study. A 

further methodological concern in the present study is that CVR measurements 

were only taken at two-time points, with the post meal measurement three hours 

following meal consumption. This was based upon previous postprandial studies 

in adolescents demonstrating impairments in peripheral endothelial function three 

hours following a MMTT (Bond et al, 2015b), however, this remains an 

assumption of the present work with regards to CVR%. In addition, this 

measurement time point did not align with elevations in uric acid in the present 

study following FRU ingestion, which occurred in the first 30-60 minutes following 

drink consumption. Therefore, any acute impairments in CVR from elevated uric 

acid concentrations may have been missed in the present study. Future research 

is needed to investigate the time course of the response of SSB consumption on 

CVR. Other key areas that warrant future investigation include studies exploring 

which participant characteristics are predictive or associated with the response 

to an acute sugar load, to understand what sub-groups may present the greatest 

risk.  

Conclusions 

This study demonstrates that the metabolic responses following consumption of 

the three sugar moieties differ, with glucose and sucrose drinks resulting in 

elevated blood glucose levels compared to fructose and water. With consumption 

of fructose, elevations in uric acid were present, however, the sugar moieties all 

presented similar increases in TAG concentrations following MMTT consumption. 

Despite these different metabolic environments, which have previously been 

shown to be atherogenic (Gleissner et al., 2007; Kang et al., 2004; Morrison et 

al., 2009), no acute impairments in CVR were seen in the present study following 

the drink or MMTT. Nevertheless, evidence indicates that elevations in 
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postprandial glucose and TAG concentrations are still seen as independent risk 

factors for CVD (Nordestgaard et al., 2007; Zilversmit, 1979). Further 

investigation into SSB consumption is needed, focusing on dose-response 

relationships, time course of the cardiovascular effects following a SSB, and the 

important effects of chronic intake. 
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CHAPTER 5: Summary, Future Directions and Conclusions  
 

The aim of this thesis was to determine the within and between-day reliability of 

a breath-hold protocol for measures of CVR in adolescents. The second aim of 

this thesis was to investigate the acute and postprandial effects of sugar moiety 

(sucrose, glucose and fructose) on CVR and metabolic blood outcomes of TAG, 

uric acid and glucose. Due to the increase in investigations using CVR as a 

measure endothelial function, shown to be related to future disease risk (Keage 

et al., 2012; Silvestrini et al., 2000; Wong et al., 2016; Yonas et al., 1993), 

alongside an absence of data on the reliability of this outcome, this was essential 

to ensure that the experimental study utilised a measure with an acceptable level 

of reliability. To achieve this, two studies were undertaken:  

1) To assess the between and within-day reliability of a breath-hold protocol 

to non-invasively measure CVR. 

2) Investigate the acute and postprandial effect of sugar moiety on 

cerebrovascular function and metabolic outcomes. 

 

Summary of the present thesis 

Investigation into the acute effects of SSB consumption is of vital importance for 

preventative healthcare. This is of particular importance given the high intake of 

SSBs in adolescent populations (Public Health England 2013-14), paired with 

evidence that the presence of CVD risk factors in youth are the strongest 

predictors of the adult atherosclerotic processes (Juonala et al., 2004; Juonala et 

al., 2013; Kavey et al., 2006). This highlights the need for research into the acute 

and chronic effects of SSBs in order to firstly understand the impacts of SSB 

consumption on CVD risk, and subsequently make informed interventions and 
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recommendations that provide protective benefits against any adverse effects of 

SSB consumption, or that reduce their consumption. 

A key strength of the present thesis is the replication of a commercially available 

SSB containing 60 g of sucrose. This provides ecological validity on the acute 

effects of SSB consumption which adolescents frequently encounter. A limitation 

of the existing data in this population is that the majority of studies only examine 

the acute effects from a glucose load, which is not representative of a SSB. This 

current thesis therefore adds to existing literature by investigating both the 

independent and combined effects of sugar moiety on CVR and metabolic blood 

outcomes of uric acid, TAG and glucose. A further novelty of the present study, 

which previous literature may have overlooked, is the inclusion of a subsequent 

meal and follow-up observation. This provides additional ecological validity, with 

most of the day spent in the postprandial period, alongside evidence indicating 

that postprandial metabolic outcomes are more predictive of CVD risk than fasted 

measures (Morrison et al., 2009). 

This inclusion of a reliability study on the primary outcome of CVR in the present 

thesis offers a key strength to this thesis. Despite its clinical applications as a 

valid measure, with correlations between breath-hold induced CVR measures 

and the gold standard full range vasodilatory method (Ringelstein et al., 1988), 

the use of the breath-hold as a hypercapnic surrogate for CO2 breathing is still an 

emerging area of research. There are no methodological studies offering protocol 

guidelines, and few studies investigating the reliability of this outcome, with none 

conducted in adolescents. This thesis therefore addressed this by conducting a 

separate study examining the within-test and within and between-day reliability 

of this outcome. This provided evidence that the measures of endothelial function 

in the experimental chapter were reliable, and between and within-day 
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comparisons could be made to an appropriate level of reproducibility (See 

Chapter 3).  

In Chapter 3, the reliability of a breath-hold induced CVR protocol was assessed, 

focusing on within-test, and within and between-day measures of reliability for 

cerebrovascular outcomes. Within-test reliability data then informed the 

subsequent analyses of within and between-day CVR. Key findings from this 

were that the BHI, although originally used to account for differences in breath-

hold length (Markus & Harrison, 1992), was not associated with the subsequent 

increase in MCAvmean, and therefore was not justified as a necessary 

normalisation. Instead, CVR was expressed as a percentage increase from 

baseline to the peak velocity in the 10 seconds following the breath-hold in the 

present thesis (CVR%). Another finding from the present data was that there was 

no significant difference in CVR when expressed as a percentage between the 

three breath-hold attempts, and thus it was deemed appropriate to take an 

average of the three. From these findings, it would appear that performing one 

breath-hold attempt would be appropriate if used in a time sensitive protocol. The 

reliability of the within and between-day outcome of CVR was in line with that 

reported in the literature for similar endothelial function measures, providing 

important information for informing data analysis within these protocols to yield 

an appropriate level of reliability. These findings are important in providing 

researchers data on the reliability of this non-invasive measure for interpreting 

future experimental data and informing sample size calculations. Furthermore, 

the analyses provide information on the most reliable and appropriate methods 

of reporting breath-hold data, in order to prescribe consistent reporting methods 

across the literature, particularly in an adolescent population.  
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In Chapter 4, the findings demonstrated that the metabolic blood responses 

following consumption of the three sugar moieties was different, with glucose and 

sucrose drinks resulting in elevated blood glucose levels compared to fructose 

and water, in line with the study rationale. With consumption of fructose, 

elevations in uric acid were present, however the sugar moieties all presented 

similar increases in TAG concentrations following meal consumption. Despite 

these different metabolic challenges, no significant impairments in CVR were 

seen in the present study following the drink or MMTT in the sample of healthy 

adolescents. Having established that CVR% is a reliable tool of measurement in 

Chapter 3, Chapter 4 was unable to determine whether this outcome is sensitive 

to change. As this study did not include another measure of global endothelial 

function (i.e. FMD), it is not certain whether endothelial function did not change, 

or if CVR was not sensitive to change in the present study. Acute elevations in 

glucose and uric acid following drink consumption, however, may be associated 

with future disease risk factors, with elevations in uric acid concentrations 

associated with increased BP (Nguyen et al., 2009), and increases in glucose 

concentrations associated with impaired glucose tolerance and insulin resistance 

(Loader et al., 2017).  

Future implications/directions 

This thesis provides valuable data on the implementation and analysis of non-

invasive assessment of CVR in youth through the breath-hold test, for use in 

future studies. These methods are shown to have good levels of reliability both 

within and between-days in adolescents, and indicate that a single breath-hold 

can be utilised in time-sensitive protocols.  
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Given the pilot nature of the present study, the experimental findings from this 

thesis were primarily speculative and highlight important areas that warrant future 

investigation. These include examining the acute response to SSBs in 

adolescents who present CVD risk factors (such as obesity), to determine 

whether current CVD risk alters the acute response to a SSB. Given that 

participants in the present study may have been protected from impairments in 

CVR, due to a healthy cardiometabolic risk profile, highlighted by descriptive 

characteristics of their VO2max, body composition and fasting blood markers. In 

addition, studies investigating which participant characteristics are predictive or 

associated with the response to an acute sugar load presents an important area 

of future research, to understand what sub-groups may present the greatest risk. 

This includes characteristics such as age, pubertal status, sex, body composition 

and cardiorespiratory fitness. Furthermore, SSBs often include caffeine or 

stimulants, which may influence endothelial function, and should therefore be 

included in future research to identify the effect of a typical SSB on endothelial 

function. Investigation of chronic SSB consumption also warrants investigation, 

especially given clear evidence that habitual SSB intake increases the risk of 

CVD-related complications. A meta-analysis from 310,819 participants 

demonstrated individuals in the highest quartile of SSB consumption (1-2 

servings per day) had a 26% higher risk of developing diabetes than individuals 

in the lowest quantile (Malik et al., 2010). This suggests that the metabolic 

responses observed in this study of hyperglycaemia and raised uric acid may be 

detrimental to health in adolescents, however it may be a cumulative effect over 

time rather than an acute response following one drink. This highlights the need 

for future studies to investigate the effects of SSB consumption over larger doses 
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and prolonged periods of intake, to examine what effects these metabolic 

responses have on the vasculature over repeated episodes.  

A limitation of existing paediatric studies, and the present study, is that only 

macrovascular endothelial function of the large conduit arteries has been 

measured following an acute sugar load, with no studies investigating the effects 

on capillaries and arteriole beds via microvascular endothelial function. This may 

be of importance for future research into the consumption of SSBs in adolescent 

populations, as changes in microvascular function precede any changes in 

macrovascular function (Pinkney et al, 1997). Previous studies have 

demonstrated no associations between these measures of macro- and micro- 

vascular function (Dhindsa et al, 2008), and thus investigations into 

microcirculatory health should be carried out in future studies. Furthermore, in the 

present study, although CVR% was established as a reliable measure, it was not 

possible to identify if it is subject to change. In order to do this, future investigation 

is needed with established measures of endothelial function (i.e. FMD) alongside 

measures of CVR to identify if this outcome is sensitive to change. From our 

current findings we cannot discern whether there are effects on endothelial 

function following SSB consumption. This highlights the need for studies to 

investigate the responses to SSB consumption in other vascular beds to fully 

understand the effects of SSB consumption on CVD.  

Scientific investigations into the effects of sugar consumption are a continuing 

area of research. The merit of this thesis was to inform future research and 

implications for continued development of the literature on this area, given the 

high sugar consumption levels of adolescents in England, in addition to a lack of 

research. The present findings were therefore predominantly of a pilot study 
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nature, which is of huge importance for the progression of research in this area 

to develop.  
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Appendix 2: Health Screening Questionnaire  

HEALTH SCREEN FOR CHILD VOLUNTEERS (PARENTAL FORM)  
Name: …………………………………..  
It is important that volunteers participating in research studies are currently in good 
health and have had no significant medical problems in the past. This is:  
i) To ensure their own continuing well-being  

ii) To avoid the possibility of individual health issues confounding study outcomes  
 
Your answers to the questions in this questionnaire, on behalf of your child, are 
strictly confidential.  
Please complete this brief questionnaire to confirm your child’s fitness to 
participate:  
1. At present, does your child have any health problem for which they are:  

(a) On medication, prescribed or otherwise ……YES □ NO □  

(b) Attending a general practitioner …………… YES □ NO □  

(c) On a hospital waiting list …………………… YES □ NO □  
 
2. In the past two years, has your child had any illness that required them to:  

(a) Consult your family GP………………………... YES □ NO □  

(b) Attend a hospital outpatient department …… YES □ NO □  

(c) Be admitted to hospital……………………….. YES □ NO □  
 
3. Has your child ever had any of the following:  

(a) Convulsions/epilepsy …………………………. YES □ NO □  

(b) Asthma …………………………………………. YES □ NO □  

(c) Eczema …………………………………………. YES □ NO □  

(d) Diabetes ………………………………………... YES □ NO □  

(e) A blood disorder ……………………………….. YES □ NO □  

(f) Head injury ……………………………………... YES □ NO □  

(g) Digestive problems ……………………………. YES □ NO □  

(h) Heart problems ………………………………. YES □ NO □  
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(i) Lung problems ………………………………… YES □ NO □  

(j) Problems with bones or joints ……………….. YES □ NO □  

(k) Disturbance of balance/coordination ………... YES □ NO □  

(l) Numbness in hands or feet …………………... YES □ NO □  

(m)Disturbance of vision ………………………….. YES □ NO □  

(n) Ear/hearing problems …………………………. YES □ NO □  

(o) Thyroid problems ……………………………… YES □ NO □  

(p) Kidney or liver problems ……………………… YES □ NO □  

(q) Allergy to nuts ………………………………….. YES □ NO □  

(r) Eating disorder ………………………………… YES □ NO □  
 
4. Do you know of any other reason why your child should not engage in physical 
activity?  
 

YES □ NO □  
If YES to any question, please describe briefly (for example, to confirm the problem 
was/is short-lived, insignificant or well controlled).  
A member of our research team may contact you if we have any further questions.  
Thank you for your cooperation 
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Appendix 3: Parent/Guardian consent form 

 

 Sport and Health Sciences 
College of Life and Environmental 
Sciences 
 
St Luke’s Campus, Heavitree Road, Exeter, EX1 
2LU 
Telephone: +44 (0)1392 26 
Email: sshs-school-office@ex.ac.uk  
Web:  www. e x.ac .uk  

 

Study: To examine whether the consumption of different types of 
sugar (fructose, glucose and sucrose) impairs blood vessel health in 
adolescents when compared to the consumption of water. 

Researcher: Jodie Koep (MSc) 

Organisation: The University of Exeter 

Version: #2 14/01/18: reviewed by The University of Exeter ethics 
committee 

Participant Identification Number:    ID no.      

Informed consent form for parent/guardian  Please 

initial 

box 

I confirm that I have read and understand the 

information sheet version #2 14/01/2018 for the above 

study. I have had the opportunity to consider the 

information, ask questions and have had these 

answered satisfactorily. 

  

 

I understand that my child’s participation is voluntary 

and that I am free to withdraw them at any time, without 

giving any reason. 

  

 
I understand that any information given by me may be 
used in future reports, articles or presentations by the 
research team. 

  

 

I understand that my child’s name will not appear in any 

reports, articles or presentations.  
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I understand that my child will perform an incremental 

cycle tests to exhaustion on their first visit. 

 

I understand that my child will be required to drink three 

high sugar drinks or water on four separate occascions. 

 

  

Ultrasound will be used to determine changes in the 

width of the arm artery. A laser will also be placed onto 

the forearm to quantify skin blood flow. All of these 

techniques are routinely used with children for research 

purposes and are considered to be non-invasive. 

 

  

I can confirm the absence of any food allergies related 

to this study.  

 

I understand that ultrasound will be used to measure 

the speed of blood flow at the side of the head during a 

30 second breath hold and when performing 5 minutes 

of repetitive sitting and standing. 

 

 

 

I understand that my child will be asked to record 

dietary information and wear an accelerometer to 

measure their physical activity. My child will consume 

the same meal no later than 8:00 pm before each visit 

to the laboratory. 

 

I understand that my child will be required to assess 

their pubertal status according to five drawings of 

secondary sex characteristics. The purpose of this has 

been made clear to me. 
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I understand that on each of the four test visits five 

capillary blood samples will then be taken from the 

fingertip (<1 mL each time) in order to measure fat, 

sugar, insulin in the blood. 

 

I understand that on each of the four test visits my child 

will have to consume a meal provided consisting of a 

pizza, ice cream and chocolate pudding. My child will 

not have eaten beforehand 

 

  

 

 

 

I understand that on each visit my child 

will have their blood pressure measured 

by placing a cuff around their bicep 

which will be inflated during 

measurement.  

 

I agree for my child to take part in the 

above study. 

  

 

Name of 

Parent/Guardian 

 Date  Signature 

     

     

Name of Researcher  Date  Signature 
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Appendix 4: Example of information sheets handed to participants 

To examine whether the consumption of different types of sugar (fructose, 

glucose and sucrose) impairs blood vessel health in adolescents when 

compared to the consumption of water. 

Invitation and brief summary  

We would like to invite your child to take part in a research study into the effects 
of sugar sweetened drink consumption on blood vessel health in adolescents. 
Taking part in the study is entirely up to you and your child so before you decide, 
it is important for you to understand why the research is being done and what it 
will involve. Please take the time to read the following information and to discuss 
it with other people to decide whether you wish for your child to take part or not. 
Thank you for taking the time to read this information. Please be aware that 
participation in this study means that your child will be required to spend 
approximately five school days outside of school/the classroom. 

What’s involved?   

High sugar consumption in youth is linked with poor blood vessel and metabolic 

health and obesity. Worryingly, teenagers in the UK are known to consume 

eight times the recommended maximum amount of added sugar from sugary 

drinks alone. However, the effect of sugary drinks on blood vessel function in 

adolescents is poorly understood. This study will investigate the effect of 

different sugar types found in sugary drinks on blood vessel health. We will do 

this by using a range of non-invasive techniques (including the use of 

ultrasound) and also by taking a series of fingertip capillary blood samples (<1 

mL each) to measure the response to different sugary drinks. We will also see if 

sugary drink consumption influences the blood vessel response to a 

subsequent meal (Pizza, ice cream and a chocolate pudding).  

What would taking part involve?  

We have invited your child to take part because we are looking for healthy 
participants between the ages of 12-15 years old. We will be inviting 30-35 male 
and female participants to take part. If you would like your child to take part they 
will be asked to attend a laboratory at the University of Exeter’s St. Luke’s campus 
on five separate occasions. You will be asked to visit our laboratory in a group of 
two or three for all visit.  

Preliminary testing visit (visit 1) - This will take four hours. Having completed 
and handed in participant assent, parental consent, health screening and contact 
details forms, we will collect your child from school at 7.30 am and drive them to 

 
 
 
 

Sport and Health Sciences 
College of Life and 
Environmental Sciences 
 
St Luke’s Campus 
Heavitree Road 
Exeter 
Devon 
Telephone: +44 (0)1392 26 
Email: sshs-school-office@ex.ac.uk  
Web:  www. e x.ac .uk / s s hs  
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the University for their familiarisation visit. This visit will initially provide your child 
with an opportunity to discuss with the investigators any questions they may have 
regarding any aspect of the study’s objectives, procedures or results. 

If your child wishes to continue to take part, the rest of this visit will involve some 
preliminary measurements including, height, sitting height, body weight and body 
fat percentage (using a machine in which you sit inside a chamber). We will also 
take a resting measure of your child’s blood pressure. We will then familiarise 
your child with all testing procedures and what to expect on future visits, so that 
they can make sure that they would like to take part. This includes non-invasive 
measures of blood vessel function at three different sites; the arm, forearm and 
head. We will also demonstrate how we take small capillary blood samples from 
the fingertip as this will be done on future visits.  

After we have shown all the techniques, and providing that your child is still happy 
to take part, we will measure blood vessel function in the arm. This involves 
sticking a small laser probe to your child’s forearm, and scanning the large blood 
vessel in the bicep using ultrasound. We will then pump up a blood pressure cuff 
around the forearm of the same arm for 5 minutes. During this time, your child 
may experience pins and needles in their hand, but this is normal and short lived. 
We often use this technique for our research with teenagers, and it is well 
tolerated. Following this we will also measure blood vessel function within the 
head by placing a small ultrasound probe at the temple, and asking your child to 
hold their breath for 30 seconds. Blood vessel function at the head will also be 
measured during a 5-minute period where we ask your child to sit and stand 
repeatedly. 

Your child will then be asked to perform a cycling test to maximal effort cycle test. 
This test will feel like cycling up a hill as it gets steeper and steeper until your 
child can no longer carry on. It will only feel very hard at the end. During this cycle 
test your child will be wearing a heart rate monitor and a face mask in order to 
determine their aerobic fitness. We will also monitor blood flow to the head using 
the ultrasound probe at the temple as used above, monitoring your child 
throughout this time. 

After the exercise test, measures of blood vessel health in the arm and head will 
be repeated as above using non-invasive ultrasound. Measures of blood 
pressure will also be routinely assessed following the exercise bout.  

Before we drive your child back to school (at ~ 12.30 pm) they will be given an 
instruction pack for the remainder of the study. Your child will be required to;  

1. Wear an accelerometer (a small activity monitor which looks like a wrist 
watch) for 7 days prior to the first visit and then 2 days prior to each 
subsequent visit. They will hand this in to our research team during the 
subsequent visits.  

2. Record their food intake on the two days prior to each subsequent visit.  
3. Avoid any structured moderate or vigorous intensity physical activity (other 

than day to day tasks) for 48 hrs prior to their next visit. 
4. Refrain from eating or drinking anything apart from water after 8 pm the 

night before all laboratory visits. 
5. Take home a set of scientific drawings showing five stages of pubic hair 

development and circle the picture that best describes them. They will seal 
this in an envelope and return it to us on their next visit.  
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Trials 1-4 (visits 2, 3, 4, 5) - Each trial day will last from 8.00 am to 2.40 pm. As 
for visit 1, we will collect your child form school at 7.30 am having not had any 
breakfast. The following procedures will be included in these visits:  

 8 am - We will assess the health of your child’s blood vessels by scanning 
the artery in the arm and side of the head as described in visit 1. 

 9 am – Your child will then be given one of three sugary drinks or water (to 
act as a comparison), receiving a different one on each visit.  

 A small sample of blood (less than 1mL, or about the size of a pin head) 
will be taken from your child’s fingertip every 30 mins for the first 2 hours 
and then every hour following for the next 3 hours. 

 Hunger levels will be assessed requiring your child to report their hunger 
on a visual scale, 60 and 120 minutes after sugary drink consumption, and 
180 minutes after test meal consumption. 

 10 am - Blood vessel health will then be reassessed after 35-75 minutes. 
As well as measures of blood pressure.  

 11am – Your child will then be given a meal of a pizza, ice cream and a 
chocolate pudding. 

 During this time, we will discuss with your child aspects of sports science, 
medicine and nutrition. Your child will also be able to watch a film, play on 
the Playstation® or do some school work. 

 2 pm - Three hours after the breakfast we will measure your child’s blood 
vessel health and blood pressure. After this measurement, we will drive 
you child back to school for 3.30 pm.  

What are the possible benefits of taking part?  

The main benefits of the proposed research are educational and there will be 
limited personal benefit to your child. However, the results will increase our 
understanding of the risks associated with sugar intake and the different types of 
sugars found in sugary drinks.  The study will hopefully be enjoyable and 
interesting for your child and allow them to learn about exercise physiology and 
nutrition in a fun and interactive way. By taking part your child will get to spend 
time in a University Laboratory, and we will give you access to full fitness and 
nutrition assessment from our report. This study will give your child first-hand 
experience about what it’s like to be involved in science at a higher level. 

What are the possible disadvantages and risks of taking part?  

Blood sampling can cause some temporary discomfort if participants are not 
comfortable with blood. However, this technique is used extensively in 
physiological testing. The investigators are trained and experienced in all aspects 
of these procedures to ensure that they are performed safely and with the 
minimum possible discomfort.  

Does my child have to take part? 

Please remember that participation in this study is entirely voluntary. It is up to 
you and your child to discuss and decide whether you would like them to take 
part or not. If you decide for them to take part they free to leave the study at any 
time without giving a reason as to why they wish to do so.  

If you and your child do agree for them to participate in this study then please 
complete the following:  
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 Sign the parent/guardian consent form 

 Sign the child assent form 

 Complete the contact details form 

 Complete the health questionnaire  
Please return these documents to your child’s school in the brown envelope 
provided, so we can collect them. A member of the research team will then be in 
contact to arrange your child’s involvement in the study. You will also be given a 
copy of the forms and this information sheet for your own records. 

Are my results confidential? 

If you consent to take part in this study you have a right to privacy. Your child’s 
name will be linked to an ID number on a password protected database and only 
these IDs will be used as labels during blood and data analysis.  

What will happen to the results of this study? 

The results will increase our understanding of the risks associated with different 
types of sugars found in sugary drinks. We will aim to publish the findings as a 
masters by research project, in research journals and to present them at 
conferences in the UK or abroad. Your data will always remain anonymous and 
your name will not appear on any results. However, we will explain all your results 
of the study to you at the end if you would like to know them. 

Who has reviewed this study? 

All research activity at the University of Exeter is examined and approved by an 
ethics committee to protect your interests. This study has been approved by the 
Ethics Committee of Sport and Health Sciences, College of Life and 
Environmental Sciences, University of Exeter. 

Who is funding/sponsoring this study?  

This study will be funded by the University of Exeter. 

Contacts for further information 

 If you would like more information or if you have any further questions about the 
study please contact the investigators using the details below: 

 

Ms Jodie Koep   Dr Alan Barker  Dr Bert Bond  

Sport and Health Sciences Sport and Health Sciences Sport and Health Sciences  

Baring Court   Baring Court  Baring Court  

St. Lukes Campus St. Lukes Campus St Lukes Campus  

Exeter University Exeter University Exeter University  

EX12LU EX12LU EX12LU 

Tel: 07769226211 Tel: 01392 722766 Tel: 01392 724903 

Email: jlk205@exeter.ac.uk Email: 
A.R.Barker@exeter.ac.uk 

Email: B.Bond@exeter.ac.uk 


