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Abstract

Interval exchange transformations (IET) are bijective piecewise translations of an

interval divided into a finite partition of subintervals. Piecewise isometries (PWIs)

are generalizations of IETs to higher dimension where a region is split into a number

of convex sets and these are rearranged using isometries. Although PWIs are higher

dimensional generalizations of IETs, their generic dynamical properties seem to be

quite different. In this thesis we consider embeddings of IETs into PWIs in order to

understand their similarities and differences.

We investigate translated cone exchange transformations, a new family of piece-

wise isometries and renormalize its first return map to a subset of its partition. As

a consequence we show that the existence of an embedding of an interval exchange

transformation into a map of this family implies the existence of infinitely many

bounded invariant sets. We also prove the existence of infinitely many periodic is-

lands, accumulating on the real line, as well as non-ergodicity of our family of maps

close to the origin.

We derive some necessary conditions for existence of embeddings using combina-

torial, topological and measure theoretic properties of IETs. In particular, we prove

that continuous embeddings of minimal 2-IETs into orientation preserving PWIs are

necessarily trivial and that any 3-PWI has at most one non-trivially continuously

embedded minimal 3-IET with the same underlying permutation. Furthermore,

we introduce a family of 4-PWIs with apparent abundance of invariant nonsmooth

fractal curves supporting IETs, that limit to a trivial embedding of an IET.

Finally, we prove that almost every interval exchange transformation, with an

associated translation surface of genus g ≥ 2, can be non-trivially and isometrically

embedded into a family of piecewise isometries. In particular, this proves the ex-

istence of invariant curves for piecewise isometries, reminiscent of KAM curves for

area preserving maps, which are not unions of circle arcs or line segments.
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Chapter 1

Introduction

In 1888 the French mathematician Henri Poincaré submitted a famous memoir [47],

to the Acta Mathematica, for a prized competition in honour of King Oscar II of

Sweden and Norway. In his paper he made a remarkable contribution towards

the understanding of Hamiltonian systems with practical implications extending to

celestial mechanics, particularly, the stability of the solar system (see [28]). His

original work, however, contained a fundamental error which he would only later

correct. This gave rise to the first published example of chaotic behaviour in a

deterministic system, giving birth to the field of Dynamical Systems.

1.1 Dynamical systems, chaos and hyperbolicity

Although time evolving systems have been studied for hundreds of years, since math-

ematics was first used to model the dynamics of the surrounding natural phenomena,

it was in the 19th century that Poincaré pioneered the qualitative theory of ordi-

nary differential equations realizing for the first time that even simple deterministic

systems could give rise to very complex behaviour. It is the main endeavour of the

theory of dynamical systems, to formalize and explain this complexity.

A dynamical system is a formalization of a law describing the time evolution

of a point in an underlying space. Time can be considered continuous or discrete,

which leads to the description of different families of dynamical systems. In discrete

time a dynamical system, on a space X, is a map f : X → X. Hence, in this case,

the dynamical properties of a system can be studied by understanding the repeated

iteration of the map f .

Defining, measuring and understanding the mechanisms causing the emergence

of complex behaviour is central to the field of dynamical systems. The term chaos

is commonly used to describe such behaviour, but it actually encompasses a number

11



CHAPTER 1. INTRODUCTION

of different definitions. One of the most useful is called Devaney chaos.

Devaney’s definition of chaos [27]. Let (X, d) be a metric space. A map f :

X → X is said to be Devaney-chaotic on X if it satisfies the following conditions:

(1) Sensitive dependence on initial conditions: There exists a δ > 0 such that, for

any x ∈ X and ε > 0, there exist some y ∈ X satisfying d(x, y) < ε and m ∈ N such

that d(fm(x), fm(y)) > δ.

(2) Topological transitivity: For any pair of open sets U, V ⊂ X there exists an

m ∈ N such that fm(U) ∩ V 6= ∅.
(3) The set of periodic orbits is dense in X.

Other definitions include Lyapunov chaos (the existence of a positive Lyapunov

exponent) and topological chaos (positive topological entropy). In fact, Lyapunov

exponents measure the exponential rate of divergence of orbits of nearby points,

while topological entropy measures the asymptotic exponential growth rate of dis-

tinguishable orbits as iterations of a map tend to infinity.

The latter definitions are fitting tools to characterize hyperbolic dynamics. Infor-

mally, hyperbolicity in a smooth dynamical system is characterized by the existence

of expanding and contracting directions for its derivative. The presence of these di-

rections leads, as time evolves, to an exponential deviation between orbits of nearby

points. The resulting stretching and folding of the phase space gives rise to complex

long term behaviour in such systems.

1.2 Renormalization in dynamical systems

Hyperbolic dynamics may be, perhaps, the best studied sub-field of dynamical sys-

tems, however, is it possible to observe complex behaviour in non-hyperbolic sys-

tems, with both Lyapunov exponents and topological entropy equal to zero?

The answer is in fact, yes! In fact conditions (1) and (2) in the definition of

Devaney chaos do not imply the existence of any sort of hyperbolicity and indeed

there are such systems which still exhibit topological transitivity and sensitivity to

initial conditions. A natural question that arises is then what is the mechanism

causing the emerging complexity in such systems? To answer this question we

need to focus on the most powerful tool we have to study such dynamical systems:

renormalization.

Informally, renormalization is the study of the self-similarity of a system at

different spatial scales.

12



1.2. RENORMALIZATION IN DYNAMICAL SYSTEMS

Quoting Artur Avila on his survey [13] titled “Dynamics of Renormalization

Operators”:

“It is a remarkable characteristic of some classes of low-dimensional dy-

namical systems that their long time behaviour at a short spatial scale

is described by an induced dynamical system in the same class. The

renormalization operator that relates the original and the induced trans-

formations can then be iterated, and a basic theme is that certain features

(such as hyperbolicity, or the existence of an attractor) of the resulting

‘dynamics in parameter space’ impact the behaviour of the underlying

systems.”

Consider a family of dynamical systems F = {fµ : X → X} parametrized by

µ ∈ P , where P is called the parameter space of F . A renormalization scheme for

F is a decreasing chain of subsets of X,

X = Y0(µ) ⊃ Y1(µ) ⊃ Y2(µ) ⊃ ...,

together with a renormalization operator R : P → P such that the first return

map of a point in Yn+1(µ) under iteration by fRn(µ) : Yn(µ) → Yn(µ) is given by

fRn+1(µ) : Yn+1(µ)→ Yn+1(µ).

In general, renormalizable dynamical systems are not Lyapunov chaotic. The

reason for this is that after renormalization, each iteration corresponds to several

iterations of the original map. In this way if a Lyapunov exponent were positive,

it would increase after each successive induction and eventually diverge. Therefore

this cannot happen in a renormalizable system. In contrast with the dynamics of the

underlying renormalizable map, the renormalization dynamics itself tends to display

hyperbolicity, which allows for the use of strong techniques from ergodic theory to

aid in its study.

Renormalization can be a powerful tool in the study of nonlinear maps (see [13]),

such as diffeomorphisms of the circle [51], one-frequency Schrödinger cocycles [14]

and analytic unimodal maps [22]. It can also be a useful concept in the absence

of continuity of the map, indeed, an example of this is given by interval exchange

transformations.

An interval exchange transformation (IET) is a bijective piecewise order preserv-

ing isometry f of an interval I ⊂ R. Specifically I is partitioned into subintervals

{Iα}α∈A, indexed over a finite alphabet A of d ≥ 2 symbols, so that the restric-

tion of f to each subinterval is a translation. An IET f is determined by a vector

13



CHAPTER 1. INTRODUCTION

λ ∈ RA+, with coordinates λα determining the lengths of the subintervals Iα, and

a permutation π which describes the ordering of the subintervals before and after

applying f .

IETs were defined by Keane [37] and studied for instance in [4, 18, 29, 54, 55].

Masur and Veech [42, 54] established unique ergodicity of typical IETs while Avila

and Forni [15] showed that a typical IET is either weakly mixing or an irrational

rotation. It is known that IETs (and suspension flows over IETs with roof function

of bounded variation) are not strongly mixing [23, 36].

A translation surface (as defined in [15]), is a surface with a finite number of

conical singularities endowed with an atlas such that coordinate changes are given

by translations in R2. Given an IET it is possible to associate, via a suspension

construction, a translation surface, with genus only depending on the combinatorial

properties of the underlying IET (see [54]). Indeed these maps are deeply related

to geodesic flows on flat surfaces, Teichmüller flows in moduli spaces of Abelian

differentials and polygonal billiards [42].

Another important example of the power of renormalization in the absence of

non-linearity is that of Piecewise Isometries (PWIs), higher dimensional generaliza-

tions of IETs. The subject of this thesis is the study of the dynamics of PWIs with

emphasis on renormalization and their relation with IETs.

1.3 Background on interval exchange transforma-

tions

We recall some notions of the theory of interval exchange transformations following

[17], [53] and [56].

1.3.1 Definition

As in [17, 56], let A be an alphabet on d ≥ 2 symbols, and let I ⊂ R be an

interval having 0 as left endpoint. In what follows we use the notation RA ' Rd and

RA+ ' Rd
+. We choose a partition {Iα}α∈A of I into subintervals which we assume

to be closed on the left and open on the right. An interval exchange transformation

(IET) is a bijection of I defined by two data

(1) A vector λ = (λα)α∈A ∈ RA+ with coordinates corresponding to the lengths

of the subintervals, that is, for all α ∈ A, λα = |Iα|. We write I = I(λ) = [0, |λ|),
where |λ| = ∑α∈A λα.

14



1.3. BACKGROUND ON INTERVAL EXCHANGE TRANSFORMATIONS

Figure 1.1: An illustrative depiction of the action of a 5-IET, with
π0({A,B,C,D,E}) = {3, 1, 4, 2, 5} and π1({A,B,C,D,E}) = {5, 4, 3, 2, 1} on the
interval.

(2) A pair π =

(
π0

π1

)
of bijections πε : A → {1, ..., d}, ε = 0, 1, describing the

ordering of the subintervals Iα before and after the application of the map. This is

represented as

π =

(
α0

1 α0
2 ... α0

d

α1
1 α1

2 ... α1
d

)
.

We call π a permutation and identify it, at times, with its monodromy invariant

π̃ = π1 ◦ π−1
0 : {1, ...d} → {1, ...d}. We denote by S(A) the set of irreducible

permutations, that is π ∈ S(A) if and only if π̃({1, ..., k}) 6= {1, ..., k} for 1 ≤ k < d.

Define a linear map Ωπ : RA → RA by

(Ωπ(λ′))α∈A =
∑

π1(β)<π1(α)

λ′β −
∑

π0(β)<π0(α)

λ′β. (1.3.1)

Given a permutation π ∈ S(A) and λ ∈ RA+ the interval exchange transformation

associated with this data is the map fλ,π that rearranges Iα according to π, that is

fλ,π(x) = x+ υα, (1.3.2)

for any x ∈ Iα, where υα = (Ωπ(λ))α. We write f = fλ,π and also denote an IET by

the pair (I, fλ,π).

1.3.2 Rauzy induction

We will assume throughout the rest of this thesis that (λ, π) satisfies the infinite

distinct orbit condition (IDOC), first introduced by Keane in [37]. The pair (λ, π)

satisfies the IDOC if the orbits of the endpoints of the subintervals {Iα}α∈A are as

disjoint as possible

fnλ,π

 ∑
π0(ς)<π0(α)

λς

 6= ∑
π0(ς)<π0(β)

λς ,

15



CHAPTER 1. INTRODUCTION

for all n ≥ 1 and α, β ∈ A with π0(β) 6= 1. In particular the IDOC implies

minimality of fλ,π, that is, every orbit is dense in the interval.

We define Rauzy induction (also known as Rauzy-Veech induction) as in [56]. Let

(λ, π) ∈ RA+ ×S(A). For ε = 0, 1, denote by βε the last symbol in the expression of

πε, that is

βε = π−1
ε (d) = αεd. (1.3.3)

Assume the intervals Iβ0 and Iβ1 have different lengths. We say that (λ, π) is of type

0 if λβ0 > λβ1 and is of type 1 if λβ0 < λβ1 . The largest interval is called winner and

the smallest loser of (λ, π). Let I(1) be the interval obtained by removing the loser

from I(λ):

I(1) = [0, |λ| −min(|λβ0|, |λβ1|)}) . (1.3.4)

The first return map of fλ,π to the subinterval I(1) is again an IET, fλ(1),π(1) , where

the parameters (λ(1), π(1)) are defined as follows. If (λ, π) is of type 0 then

π(1) =

(
π

(1)
0

π
(1)
1

)
=

(
α0

1 ... α0
k−1 α0

k α0
k+1 ... ... β0

α1
1 ... α1

k−1 β0 β1 α1
k+1 ... α1

d−1

)
. (1.3.5)

where k ∈ {1, ..., d− 1} is defined by α1
k = β0, and λ(1) = (λ

(1)
α )α∈A, where

λ(1)
α = λα for α 6= β0, and λ

(1)
β0

= λβ0 − λβ1 .

If (λ, π) is of type 1 then

π(1) =

(
π

(1)
0

π
(1)
1

)
=

(
α0

1 ... α0
k−1 β1 β0 α0

k+1 ... α0
d−1

α1
1 ... α1

k−1 α1
k α1

k+1 ... ... β1

)
. (1.3.6)

where k ∈ {1, ..., d− 1} is defined by α0
k = β1, and λ(1) = (λ

(1)
α )α∈A, where

λ(1)
α = λα for α 6= β1, and λ

(1)
β1

= λβ1 − λβ0 . (1.3.7)

The map R : RA+ ×S(A) → RA+ ×S(A) defined by R(λ, π) = (λ(1), π(1)) is called

the Rauzy induction map.

The IDOC condition assures that the iterates Rn are defined for all n ≥ 0. We

denote

Rn(λ, π) = (λ(n), π(n)), (1.3.8)

with π(n) = ( π
(n)
0 π

(n)
1 )T . Furthermore we denote by βε,n the last symbol in the

expression of π
(n)
ε , by ε(n) the type of fλ(n),π(n) , by I(n) its domain and by {I(n)

α }α∈A
its partition in subintervals, for n ≥ 0. We also denote the translation vector of

fλ(n),π(n) by υ(n) = Ωπ(n)(λ(n)).

16



1.3. BACKGROUND ON INTERVAL EXCHANGE TRANSFORMATIONS

Figure 1.2: A schematic illustration of Rauzy-Veech induction on a 4-IET described
by a pair (λ, π) of type 0 (depicted on top), as λD > λA. In the bottom we can
see the IET, obtained by Rauzy-Veech induction, which is described by parameters
λ(1) = (λA, λB, λC , λD − λA) and π(1) given by (1.3.5).

1.3.3 Rauzy classes

The Rauzy class (see [56]) of a permutation π ∈ S(A), is the set R(π) of all

π(1) ∈ S(A) such that there exist λ, λ(1) ∈ RA+ and n ∈ N such that Rn(λ, π) =

(λ(1), π(1)). A Rauzy class R can be visualized in terms of a directed labelled graph,

the Rauzy graph (see [53]). Its vertices are in bijection with R and it is formed by

edges that connect permutations which are obtained one from another by (1.3.5)

and (1.3.6) labeled respectively by 0 or 1 according to the type of the induction. A

path % = (%1, ..., %n) is a sequence of compatible edges of the Rauzy graph, that is,

such that the starting vertex of %i+1 is the ending vertex of %i, i = 1, ..., n− 1. We

say a path is closed if the starting vertex of %1 is the ending vertex of %n. The set

of all paths in this graph is denoted by Π(R).

1.3.4 Rauzy cocycle

We define the Rauzy cocycle as in [17]. Let (X, µ) be a probability space. A linear

cocycle is a pair (T,A), where T : X → X and A : X → GL(p,R), viewed as

a linear skew-product (x, v) 7→ (T (x), A(x) · v) on X × Rp, p ∈ N. Notice that

(T,A)n = (T n, A(n)), where

A(n)(x) = A(T n−1(x)) · ... · A(x), n ≥ 0.

17



CHAPTER 1. INTRODUCTION

Figure 1.3: A schematic illustration of Rauzy-Veech induction on a 4-IET described
by a pair (λ, π) of type 1 (depicted on top), as λD > λA. In the bottom we can
see the IET, obtained by Rauzy-Veech induction, which is described by parameters
λ(1) = (λA − λD, λB, λC , λD) and π(1) given by (1.3.6).

In what follows, we use the notation SL(A,Z) ' SL(d,Z). Let ‖ ·‖ denote a matrix

norm on SL(A,Z). Let log+ y = max{log(y), 0} for any y > 0. If µ is an ergodic

probability measure for T and∫
X

log+ ‖A(x)‖dµ(x) < +∞,

we say (T,A) is a measurable cocycle.

Denote by Eαβ the elementary matrix (δiαδjβ)i≥1,j≤d and let R ⊆ S(A) be a

Rauzy class. To any given path % ∈ Π(R) we associate a matrix BP (%) ∈ SL(A,Z),

defined inductively as follows

i) If % is an edge labeled by 0, set BP (%) = 1d + Eβ1β0 , with 1d denoting the d × d
identity matrix;

ii) If % is an edge labeled by 1, set BP (%) = 1d + Eβ0β1 ;

iii) If % = (%1, ..., %n), set BP (%) = BP (%n)...BP (%1).

We denote by %(λ, π) ∈ Π(R(π)), the edge in the Rauzy graph starting at π

labeled by the type of (λ, π).

Define the function BR : RA+×R→ SL(A,Z) such that BR(λ, π) = BP (%(λ, π)).

The Rauzy cocycle is the linear cocycle over the Rauzy induction (R, BR) on RA+ ×

18



1.4. RENORMALIZATION IN PIECEWISE ISOMETRIES

R× RA. Note that (R, BR)n = (Rn, B
(n)
R ), where

B
(0)
R (λ, π) = 1d, B

(n)
R (λ, π) = BR(λ(n−1), π(n−1)) · ... ·BR(λ(1), π(1)) ·BR(λ, π),

(1.3.9)

for n ≥ 1, with (λ(n), π(n)) as in (1.3.8). Note that, we have

λ =
(
B

(n)
R (λ, π)

)∗
· λ(n),

for all n ≥ 0, where ∗ denotes the transpose operator.

We now stress an important property of the Rauzy cocycle (see [56]). For any

n ≥ 0 and x ∈ I(n), let rnλ,π(x) denote the first return time of x by fλ,π to I(n). Note

that rnλ,π(x) is constant on each I
(n)
α , for any α ∈ A. We write rnλ,π(I

(n)
α ) to mean

rnλ,π(x), for any x ∈ I(n)
α .

Each entry
(
B

(n)
R (λ, π)

)
α,β

of the matrix B
(n)
R (λ, π) counts the number of visits

of I
(n)
α to the interval Iβ up to the rnλ,π(I

(n)
α )-th iterate of fλ,π. That is for every

α, β ∈ A and every n ≥ 1,(
B

(n)
R (λ, π)

)
α,β

= card
{

0 ≤ j < rnλ,π(I(n)
α ) : fλ,π(I(n)

α ) ⊂ Iβ
}
.

1.4 Renormalization in piecewise isometries

One of the central problems in dynamical systems is to investigate renormalization of

certain classes of maps. In this thesis we study piecewise isometries with emphasis on

renormalization of a family of these maps and also use techniques from the theory of

renormalization of IETs to solve a problem in the dynamics of piecewise isometries.

Piecewise isometries (PWIs) are higher dimensional generalizations of one di-

mensional interval exchange transformations. Both IETs and PWIs arise in a num-

ber of applications. For example, PWIs in two dimension have been found in models

used for signal processing and digital filters [7, 25, 26, 38], for Hamiltonian systems

[49, 50], for printing processes [2] or for other types of geometric dynamics [48].

PWIs exhibit complex and diverse dynamical behaviour that is far less understood

than, and more sophisticated than that of IETs. There are many results that suggest

generic choices of parameters for IETs give ergodicity while many examples suggest

that this is rarely the case for PWIs in dimension two or more.

Piecewise isometries have been defined on higher dimensional spaces and Rie-

mannian manifolds (see [8, 33]). In this thesis we consider orientation preserving

planar piecewise isometries with respect to the standard euclidean metric, which
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we now define as follows. Let X be a subset of C and P = {Xα}α∈A be a finite

partition of X into convex sets (or atoms), that is
⋃
α∈AXα = X and Xα ∩Xβ = ∅

for α 6= β. Given a rotation vector θ ∈ TA (with TA denoting the torus RA/2πZA)

and a translation vector η ∈ CA, we say (X,T ) is a piecewise isometry if T is such

that

T (z) := Tα(z) = eiθαz + ηα, if z ∈ Xα, (1.4.1)

so that T is a piecewise isometric rotation or translation (see [30]).

PWIs occur naturally in the dynamics of Hamiltonian systems with periodic

kicks [41, 50] as well as outer billiards [48]. Many examples of PWIs have been

studied in recent years; for example, in [19], the authors studied a class of piece-

wise rotations on the square and numerically computed box-counting dimensions,

correlation dimensions and complexity of the symbolic language produced by the

system. Adler, Kitchens and Tresser [1] investigated a specific class of nonergodic

piecewise affine maps of the torus and gave a decomposition into three invariant

sets whose dynamics is very different. They showed that the map on one of these

invariant set is minimal, uniquely ergodic and an odometer; they also demonstrated

the existence of a full Lebesgue measure set of periodic points. In [40] the authors

studied the renormalizability of a one-parameter family of piecewise isometries of

a rhombus with a fixed rotational component. It was proved by Buzzi [20] that

piecewise isometries have zero topological entropy.

In general, for a given PWI it is helpful to define a partition of X into a regular

and an exceptional set [10]. If we consider the zero measure set given by the union E
of all preimages of the set of discontinuities D, then we say its closure E (which may

be of positive measure) is called the exceptional set for the map. The complement

of the exceptional set is called the regular set for the map and consists of disjoint

polygons or disks that are periodically coded by their itinerary through the atoms

of the PWI. As an example, in [1] the authors show, for a particular transformation

where the rotations are rational, that the regular set has full Lebesgue measure

and as a consequence, the exceptional set has zero Lebesgue measure. However

as highlighted in [8] there is numerical evidence that the exceptional set may have

positive Lebesgue measure for typical PWIs. In [34], the author shows that this is

the case for certain rectangle-exchange transformations.

Even when the exceptional set has positive Lebesgue measure, as noted in [10]

there is numerical evidence that Lebesgue measure on the exceptional set may not

be ergodic - there can be invariant curves that prevent trajectories from spreading

across the whole of the exceptional set. In the same paper, a planar PWI whose
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generating map is a permutation of four cones was investigated, and coexistence

of an infinite number of periodic components and of an uncountable number of

transitive components was proved. On these transitive components it was noted

that the dynamics is conjugate to a transitive interval exchange. In [5, 10], similar

maps were examined and the existence of a large number of these invariant curves,

apparently nowhere smooth, are investigated.

This suggests that renormalization in a general family of PWIs should be con-

nected to that of IETs. Although renormalization of IETs has been well studied

over the past years, renormalization of PWIs is still far from understood.

In [1] Adler, Kitchens and Tresser find renormalization operators for three ra-

tional rotation parameters for a non ergodic piecewise affine map of the Torus.

Lowenstein and Vivaldi [40] gave a computer assisted proof of the renormalization

of a family of piecewise isometries of a rhombus with one translation parameter

and a fixed rational rotation parameter. They show that recursive constructions

of first-return maps on an appropriate sub-domain produce a scaleddown replica of

this domain, but described by a parameter given by a renormalization operator, re-

lated to a map of generalised Lüroth type, a piecewise-affine version of Gauss map.

Their renormalization process is organized by a graph, particularly there are ten

distinct renormalization scenarios corresponding to as many closed circuits in this

graph. These results however rely on fixing the rotation component such that its

coefficients belong to a quadratic number field in order to perform computer assisted

calculations. Recently, Hooper [35] investigated a two dimensional parameter space

of polygon exchange maps, a family of PWIs with no rotation, invariant under a

renormalization operation, related to corner percolation and Truchet tillings, where

each map admits a return map affinely conjugate to a map in the same family. In

[3] the authors show how to construct minimal rectangle exchange maps, associated

to Pisot numbers, using a cut-and-project method and prove that these maps are

renormalizable. The maps described in these papers are PWIs with no rotational

component, exhibiting very particular behaviour among typical PWIs, making it

difficult to generalize their techniques.

In this thesis we study the dynamics of piecewise isometries using renormalization

techniques. In particular we introduce a new notion of renormalization to study a

class of PWIs called Translation Cone Exchange Transformations. We also introduce

the notion of embedding IETs into PWIs and use IET renormalization techniques

to establish the existence of invariant curves for PWIs which are not the union of

line segments or circle arcs.
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1.4.1 Translated cone exchange transformations

In Chapter 2 of this thesis, we introduce and renormalize a particular family of

PWIs - Translated Cone Exchange Transformations (TCEs).

Set ω = (ω1, ..., ωd) ∈W, where W is the open polytope defined by

W =

{
ω ∈ Rd

+ : 0 <
d∑
j=1

ωj < π

}
. (1.4.2)

Note that we have

ϑ =
π

2
− |ω|

2
, (1.4.3)

where |ω| is the `1 norm of ω.

To introduce the family of TCEs, consider a partition of the upper half plane H
into d+ 2 cones

P = {P0, P1, . . . , Pd, Pd+1},

where Pj = {z ∈ C : arg(z) ∈ Wj}, and Wj for j = 0, . . . , d+ 1 are defined as

Wj =


[0, ϑ), for j = 0,
[ϑ, ϑ+ ω1] , for j = 1,

(ϑ+
∑j−1

k=1 ωk, ϑ+
∑j

k=1 ωk], for j ∈ {2, ..., d},
(π − ϑ, π], for j = d+ 1.

We set ν = tan(ϑ). Note that ν depends on |ω|, and when necessary to stress

this dependence we write ν = ν(|ω|).
Denote the ray in H passing through the origin and with slope a ∈ R by

La = {z ∈ H : Im(z) = aRe(z)}. (1.4.4)

We denote by ∂P the union of the boundaries of the elements of the partition P
and by Lν and L−ν , respectively, the rays P0 ∩ P1 and Pd ∩ Pd+1.

Let G : H→ H be the following family of translation maps

G(z) =


z − 1, z ∈ P0,
z − η′, z ∈ Pj, j ∈ {1, ..., d},
z + η, z ∈ Pd+1,

depending on the parameters ϑ, η and η′ with ϑ > 0, η ∈ R+\Q and 0 < η′ < η.

Consider a permutation π ∈ S({1, ..., d}) with a monodromy invariant π̃, and

let θj(ω, π̃) be the angle associated to the monodromy invariant π̃ for the cone Pj

for j = 1, . . . , d. We have

θj(ω, π̃) =
∑

π̃(k)<π̃(j)

ωk −
∑
k<j

ωk. (1.4.5)
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Figure 1.4: On the left a partition P with d = 5. On the right the action of map E
on this partition with π̃(1) = 4, π̃(2) = 3, π̃ = 2 and π̃ = 1.

Let E : H→ H be the following family of maps

E(z) =

{
z, z ∈ P0 ∪ Pd+1,
zeiθj(ω,π̃), z ∈ Pj, j ∈ {1, ..., d},

depending on θj(ω, π̃). This map also depends on ω and ϑ as the partition elements

Pj depend on these parameters. Note that we have

ϑ+ arg (E(z)) = fω,π(arg(z)− ϑ),

for z ∈ Pj, j = 1, ..., d, where arg : C → [0, 2π) is the argument function. Hence E

exchanges these cones according to the monodromy invariant π̃.

From the translation and exchange families of maps we get our family of TCEs,

F : H→ H, given by

F (z) = G ◦ E(z).

The dynamics of F restricted to P0 is a translation to the left by 1 while the dy-

namics of F restricted to Pd+1 is a translation to the right by η, via the action

of the translation map G. The rest of the cones are all permuted, according to a

monodromy invariant π̃, by the exchange map E and horizontally translated by η′

by the translation map G.

Note that TCEs are cone isometry transformations for which the map induced by

projection onto the circle at infinity F̂ (see [11]) is invertible. F is defined on H ⊆ C,

partitioned into d+ 2 cones by P , hence it is a cone exchange transformation. F̂ is

an interval exchange transformation with interval partition given by {W0, ...,Wd+1}
and combinatorial data given by the bijection π̃′, where π̃′(0) = 0, π̃′(d+ 1) = d+ 1,

and π̃′(j) = π̃′(j), for j = 1, ..., d.

Let us introduce some notation. We define the central cone Pc of F as

Pc = P1 ∪ ... ∪ Pd,

the first hitting time of z ∈ H to Pc, as the map k : H→ N given by

k(z) = inf{n ≥ 1 : F n(z) ∈ Pc}, (1.4.6)
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and the first return map of z ∈ Pc to Pc, as the map Fc : Pc → Pc such that

Fc(z) = F k(z)(z). (1.4.7)

The typical notion of renormalization may not capture all possible self similar

behaviour in PWIs. TCEs apparently exhibit invariant regions on which the dy-

namics is self similar after rescaling. Thus, we say a TCE is renormalizable if Fc,

the first return map to Pc described above, is conjugated to itself by a scaling map.

1.4.2 Embedding interval exchange transformations into piece-
wise isometries

It is a general belief that the phase space of typical Hamiltonian systems is divided

into regions of regular and chaotic motion [21]. Area preserving maps which can be

obtained as Poincaré sections of Hamiltonian systems, exhibit this property as well,

with KAM curves splitting the domain into regions of chaotic and periodic dynamics

(see for instance [44]). A general and rigorous treatment of this has been however

missing.

PWIs, which are area preserving maps that have been studied as linear models

for the standard map (see [6]), can exhibit a similar phenomenon. Unlike IETs which

are typically ergodic, there is numerical evidence, as noted in [10], that Lebesgue

measure on the exceptional set is typically not ergodic in some families of PWIs -

there can be non-smooth invariant curves that prevent trajectories from spreading

across the whole of the exceptional set. These curves were first observed in [5] for

an isolated parameter and later found in [10] to be apparently abundant for a large

family of PWIs. For cases where the exceptional set is a union of annuli a small per-

turbation in the rotational parameters causes it to decompose into invariant curves

and periodic orbits, a phenomenon that is reminiscent of KAM curves. An under-

standing of these invariant curves would thus shed light on the ergodic properties

of PWIs and would be an important first step towards the study of the dynamical

behaviour shared by generic PWIs and systems which are modelled by these. A

proof of their existence however remained elusive for more than a decade.

The first progress was made in [9], where a planar PWI, with a rational rotation

vector, whose generating map is a permutation of four cones was investigated, and

the existence of an uncountable number of invariant polygonal curves on which the

dynamics is conjugate to a transitive interval exchange was proved. The methods

used however are based on calculations in a rational cyclotomic field and do not

generalize for typical choices of parameters.
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We relate the existence of invariant curves to the general problem of embedding

IET dynamics within PWIs, of which we give rigorous definitions.

An injective map γ : I → X is a piecewise continuous embedding of (I, f) into

(X,T ) if γ|Iα is a homeomorphism for each α ∈ A such that γ(Iα) ⊂ Xα and

γ ◦ f(x) = T ◦ γ(x), (1.4.8)

for all x ∈ I. In this case note that γ(I) ⊂ X is an invariant set for (X,T ).

If γ is a piecewise continuous embedding that is continuous on I, we say it is

a continuous embedding (or embedding when this does not cause any ambiguity).

Otherwise we say it is a discontinuous embedding.

We say γ is a differentiable embedding if it is a piecewise continuous embedding

and γ|Iα is continuously differentiable. We characterize certain differentiable em-

beddings as, in some sense, trivial. Given I ′ ⊆ I we say a map γ : I ′ → C is an arc

map if there exists ξ ∈ C, r, a > 0 and ϕ ∈ [0, 2π) such that for all x ∈ I ′,

γ(x) = rei(ax+ϕ) + ξ.

We say an embedding γ : I → C of an IET into a PWI is an arc embedding if there

exists a finite partition of I into subintervals such that the restriction of γ to each

subinterval is an arc map. We say an embedding γ of an IET into a PWI is a linear

embedding if γ is a piecewise linear map. Moreover an embedding is non-trivial if

it is not an arc embedding or a linear embedding. Figure 1.5 shows an illustration

of a non-trivial embedding.

From the definitions it is clear that the image γ(I) of an embedding is an invariant

curve for the underlying PWI and that if the embedding is non-trivial this curve

is not the union of line segments or circle arcs. For any IET it is straightforward

to construct a PWI in which it is trivially embedded. The same is not true for

non-trivial embeddings, for which results have been much scarcer.

1.5 Main Theorems

The main results of this thesis are the following. We consider first the family of

TCEs and then more general PWIs.

Translated cone exchange transformations. Recall, from (1.4.7), the def-

inition of Fc, the first return map under F to Pc. In Theorem A we renormalize

TCEs, in the sense defined in subsection 1.4.1, for all rotation parameters and for
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(a) (b)

Figure 1.5: An illustration of the action of a PWI T with rotation vector θ ≈
(4.85, 0.92, 1.31, 1.28) on its partition and on an invariant curve γ(I). The map γ,
estimated using technical tools from this chapter, is a non-trivial embedding of a self-
inducing IET associated to the monodromy invariant π̃(j) = 4− (j − 1), j = 1, ..., 4
and a translation vector of algebraic irrationals λ ≈ (0.43, 0.34, 0.12, 0.11).

infinitely many translational parameters. We show that for a set of parameters, the

first return map under a TCE to Pc, is self-similar by a scaling factor Φ2 where

Φ = (
√

5− 1)/2.

Theorem A For all ω ∈W, η = 1/(k+ Φ) and η′ = 1− kη with k ∈ N, there is an

open set U containing the origin such that F is renormalizable for all z ∈ U , that is

Fc(Φ
2z) = Φ2Fc(z). (1.5.1)

The proof of this theorem is centred around a one dimensional approach to the

study of these PWIs. In particular we define sequences coding information related

to the first return map of a given line contained in the cone Pc. We are able to relate

the renormalizability of a map of this family with the periodicity of these sequences

and indeed, for the parameters in the statement of the theorem, these are proved

to be periodic. As a consequence of this we show that for these parameters Fc is a

PWI with respect to a partition PFc of countably many atoms.

We say a collection of atoms B ⊆ P is a barrier for a PWI (T,P) if X\B is the

union of two disjoint connected components A1, A2 such that

A1 ∩ T (A2) = T (A1) ∩ A2 = ∅,

and for any P ∈ P such that P ⊆ Aj and T (P ) ∩ B ∩ Aj = ∅ then T (P ) ∩ B = ∅,
for j = 1, 2.

The first condition says that the image by T of a connected component Aj cannot

intersect the other component A3−j while the second condition guarantees that if
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the image by T of an atom in Aj does not intersect the boundary shared between

B and Aj then it does not intersect B.

Recall, from (1.4.4), the definition of La, a ∈ R.

For ω ∈ W, η = 1/(k + Φ) and η′ = 1 − kη, k ∈ N. We denote by A(η, η′) the

subset of W such that for all ω ∈ A(η, η′) there are d′ ≥ 2, λ ∈ Rd′
+, π ∈ S({1, ..., d′})

and a continuous embedding γ of fλ,π : I → I into Fc : Pc → Pc such that

i) the collection B = {P ∈ PFc : P ∩ γ(I) 6= ∅}, is a barrier for Fc,

ii) γ(0) ∈ L−ν and lima→|λ| γ(a) ∈ Lν ,
iii) γ(I) ⊂ Φ2U , where U is the open set from Theorem A.

Informally this is the set of parameters ω ∈W such that the associated map Fc

admits an embedding of an IET which image is strictly contained in atoms of the

partition of Fc which form a barrier. Condition ii) guarantees that the endpoints of

γ(I) are contained in the boundary of Pc, respectively in L−ν and Lν . Condition

iii) is a technical requirement guarantees the applicability of Theorem A to a useful

domain in the next theorem.

Although numerical experiments (see Section 3.4.3), support that the set A(η, η′)

should be non-empty for the parameters in consideration, it is not known whether

this is true. Indeed, this is related to one of the greatest open questions in the field:

whether typical families of PWIs support embeddings of IETs.

In the next theorem we show, as a consequence of renormalization of TCEs, that

the existence of one continuous embedding of an IET into a first return map Fc of

a TCE, satisfying the property that the image of the embedding is contained in a

barrier, implies the existence of infinitely many embeddings of the same IET into

Fc, as well as infinitely many bounded and forward invariant regions. This shows

in particular that if one non trivial embedding exists then the results from Chapter

3 for 2,3-PWIs do not generalize for PWIs with partitions with a higher number of

atoms. We prove that for ω ∈ A(η, η′) there are infinitely many sets, bounded away

from 0 and infinity, which are forward invariant by Fc and that there exist infinitely

many continuous embeddings of IETs into Fc.

Theorem B Let η = 1/(k + Φ), η′ = 1 − kη with k ∈ N and assume that A(η, η′)

is non-empty. For all ω ∈ A(η, η′),

i) There exist sets V1, V2, ..., which are forward invariant for Fc and y∗ > 0 such

that for all z ∈ Pc, satisfying 0 < Im(z) < y∗, there is an n ∈ N for which z ∈ Vn.
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(a) (b)

Figure 1.6: A schematic representation of the action of Fc on the cone Pc close to
the origin, for parameters π̃(1, 2) = (2, 1), ω = (0.5, π− 2.5), η = Φ and η′ = 1−Φ.
Fc is a PWI with respect to a partition of infinitely many atoms, which correspond
to the polygons depicted in the figure (A). In (B) the image of this partition by Fc
can be seen. Each curve in both figures corresponds to the orbit of a given point.
By Theorem A if the orbit remains close to the origin then there are infinitely many
replica of this orbit accumulating on the origin. It is still an open question whether
the closure of this orbit is the image of an embedding of an IET into Fc.

ii) For all n ∈ N there exist constants 0 < bn < bn such that for all z ∈ Vn and

k ∈ N,

bn < |F k(z)| < bn. (1.5.2)

iii) There exist infinitely many continuous embeddings of IETs into Fc.

The proof of Theorem B relies on the Jordan curve Theorem, and on the proper-

ties of the barrier containing the image of the embedding, to prove the existence of

one invariant set V1, and relies on the renormalizability of F , established in Theorem

A, to show that this implies the existence of infinitely many such sets.

This result, and the study of TCEs in general, gives a strong motivation to study

the existence of embeddings of IETs into PWIs which we develop in the following

two chapters.

Embeddings of IETs into PWIs. In Chapter 3 we establish necessary con-

ditions which PWIs must satisfy in order to support an embedding of an IET. As a

consequence we prove the following theorem.

Theorem C A minimal 2-IET has no non-trivial continuous embedding into a 2-

PWI.
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This is a surprising result, considering that numerical evidence supports the

existence of non-trivial embeddings of d-IETs into d-PWIs for d ≥ 4. We will later

see in Chapter 4 that this is indeed established. The proof of Theorem C reveals

that for d = 2 there are not enough parametric degrees of freedom to allow for this to

occur in this case. As another consequence of the techniques developed in Chapter

3 we also prove the following theorem.

Theorem D A 3-PWI has at most one non-trivially continuously embedded mini-

mal 3-IET with the same underlying permutation.

Once again this result contrasts with the numerical evidence for the case d = 4

which suggests that there can be an abundance of embeddings of IETs for the same

PWI.

The proofs of these Theorems C and D rely on the use combinatorial properties

of IETs to prove that in order for a PWI to realize a continuous embedding of an IET

with the same permutation, its parameters must satisfy a necessary condition: the

parametric connecting equation. Making use of a generalization of Rauzy-Veech in-

duction to PWIs this allows for arguments which give strong parametric restrictions

for PWIs supporting non-trivial embeddings of IETs.

In Chapter 4 we prove that a full measure set of IETs admit non-trivial embed-

dings into a class of PWIs thus also establishing the existence of invariant curves

for PWIs which are not unions of circle arcs or line segments.

Theorem E For almost every IET (I, fλ,π) satisfying g(R) ≥ 2, there exists a set

W ⊆ TA, of dimension g(R), such that for all θ ∈ W there is a family Fθ, of PWIs

with rotation vector θ, and a map γθ : I → C, which is a non-trivial and isometric

embedding of (I, fλ,π) into any (X,T ) ∈ Fθ. Furthermore γθ(I) is an invariant curve

for (X,T ) which is not the union of circle arcs or line segments.

To prove this result we inductively define, associated to a given IET, a sequence of

piecewise linear parametrized curves, which we call the breaking sequence, dependent

on a rotation vector θ ∈ TA. In particular for its construction we define the breaking

operator, which acts on piecewise linear maps from I to C by rotating particular

segments of their image by a given angle. The construction also involves the Rauzy

cocycle, an important tool in the theory of IET renormalization. We then show that

each element of the breaking sequence is a quasi-embedding (a rigorous notion defined

in Section 4.2) of the underlying IET into a certain sequence of piecewise isometric

maps related to Rauzy induction. Provided the breaking sequence converges to a
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topological embedding of the interval, this is enough to show that its limit is an

embedding of the underlying IET into a family of PWIs. Hence the following step

is to use tools from the theory of IET renormalization and measurable cocycles

such as Zorich cocycle [58] and Oseledets Theorem [45] to prove this is the case

for almost every (λ, π) and for θ contained in a submanifold of TA. After some

further parameter exclusion to guarantee that the embedding is non-trivial we finally

conclude the proof of Theorem E.

1.6 Organization

This thesis is organized as follows, in Chapter 2 we introduce and investigate the

dynamics of translated cone exchange transformations, introduced in Section 1.4.1.

We renormalize its first return map to a subset of its partition. As a consequence we

prove Theorems A and B. We also prove the existence of infinitely many periodic

islands, accumulating on the real line, as well as non-ergodicity of our family of

maps close to the origin.

In Chapter 3 we derive some necessary conditions for existence of continuous

and discontinuous embeddings of IETs into PWIs, using combinatorial, topological

and measure theoretic properties of IETs. We use some of these techniques to prove

Theorems C and D. We also introduce a family of 4-PWIs with apparent abundance

of invariant non-smooth curves supporting IETs, that limit to a trivial embedding

of an IET.

In Chapter 4 we introduce the breaking operator and breaking sequence of curves.

We prove that these curves are quasi-embedded into a family of PWIs and use tools

from the theory of IET renormalization to establish several resuts leading to the

proof of Theorem E.

Finally in Chapter 5 we present some concluding remarks and discuss possible

directions for future work.

The material in Chapter 3 has been published in Ergodic Theory and Dynamical

Systems [12].
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Chapter 2

Dynamics of Translated Cone
Exchange Transformations

In this chapter, we investigate translated cone exchange transformations and renor-

malize its first return map to a subset of its partition. As a consequence we show

that the existence of an embedding of an interval exchange transformation into a

map of this family implies the existence of infinitely many bounded invariant sets.

We also prove the existence of infinitely many periodic islands, accumulating on the

real line, as well as non-ergodicity of our family of maps close to the origin.

This chapter is organized as follows. In Section 2.1 we investigate a family of

maps related to IETs. In Section 2.2 we study the sequence of bifurcation points

and the bifurcation sequence for the family of maps introduced in the previous

section making use of the theory of continued fractions. In Section 2.3 we introduce

two sequences that we designate by dynamical sequences that will be an important

tool to prove our main theorems. We derive inductive formulas to compute these

sequences. In Section 2.4 we study the dynamics of the first return map to the

central cone Pc. Finally, in Sections 2.5 and 2.6 we prove theorems A and B.

2.1 Bifurcation points

Recall, from Section 1.4.1, the definition of Translated Cone Exchange Transforma-

tions (TCEs). In this section we study a specific family of maps g`, closely related

to IETs, on the interval I = [0, 1 + η] with η ∈ R+\Q. Orbits of points of the map

g` are connected to those of a TCE under certain conditions. Indeed the real part

of iterates, under a TCE, of a point outside the cone Pc can be described by iterates

of a point on the interval I under the map g`.

We will introduce the left and right bifurcation points and bifurcation sets for

this family of maps.
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CHAPTER 2. TRANSLATED CONE EXCHANGE TRANSFORMATIONS

Consider the interval I = [0, 1 + η] and the following family of maps

g`(x) =


x+ η, x ∈ I1(`)
x, x ∈ Ic(`)
x− 1, x ∈ I2(`).

(2.1.1)

with I1(`) = [0, 1], Ic(`) = (1, 1 + `) and I2(`) = [1 + `, 1 + η] and 0 ≤ ` < η. To

simplify notation we will only include the argument when it is necessary, otherwise

we just refer to these intervals as Ij, for j = 1, 2, c. Note that when ` = 0 we have

Ic = ∅ and we set I2(`) = (1, 1 + η] therefore

g0(x) =

{
x+ η, x ∈ [0, 1]

x− 1, x ∈ (1, 1 + η].

Recall k(z) as in (1.4.6). Given ϑ ∈ (0, π/2), consider the trapping region

Rη,ϑ = {z ∈ H\Pc : Re(z) + Im(z) cot(ϑ) ∈ [−1, η] and 2Im(z) cot(ϑ) ≤ η}. (2.1.2)

It is simple to see, by definition of F , that for any z ∈ Pc such that 2Im(F (z)) cot(ϑ) ≤
η, either F (z) ∈ Pc, or F (z) ∈ H\Pc, in which case we get

−1− Im(z) cot(ϑ) ≤ Re(F (z)) ≤ η − Im(z) cot(ϑ),

and thus F (z) ∈ Rη,ϑ.

In this way we may think Rη,ϑ as a region of C where orbits of points z ∈ Pc,
with sufficiently small imaginary part, are confined until they return to Pc.

The next lemma relates iterates of our family of maps F with iterates of g` for

some values of z.

Lemma 2.1.1 For any η > 0, ϑ ∈ (0, π/2) and z ∈ Rη,ϑ we have

F n(z) = s−1 ◦ gn2Im(z) cot(ϑ) ◦ s(Re(z)) + iIm(z), (2.1.3)

for all n ≤ k(z), where s(x) = x+ 1 + `/2.

Proof. As z ∈ Rη,ϑ we have z ∈ P0 ∩ Rη,ϑ or z ∈ Pd+1 ∩ Rη,ϑ. By the definitions

of P0 and Pd+1, in both cases we have Re(F (z)) = s−1 ◦ g2Im(z) cot(ϑ) ◦ s(Re(z)). It

is direct to see that for n ≤ k(z) we have F n(z) ∈ Rη,ϑ and thus repeating the

previous argument n times we get (2.1.3). �

We define the first hitting time of x to Ic(`) as the map n` : I → N given by

n`(x) = inf{n ≥ 1 : gn` (x) ∈ Ic(`)}, (2.1.4)
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and the first hitting map of x to Ic(`), as the map

r`(x) = g
n`(x)
` (x). (2.1.5)

For our next lemma we need also to consider the map

r′`(x) =

{
r`(x), x /∈ Ic(`),
x, x ∈ Ic(`).

(2.1.6)

Recall the first return to the central cone map Fc from (1.4.7).

Lemma 2.1.2 Let η ∈ R+\Q and 0 < ϑ < π
2
. If z ∈ Pc with 2Im(F (z)) cot(ϑ) ≤ η,

then

Fc(z) = s−1 ◦ r′2Im(F (z)) cot(ϑ) ◦ s(Re(F (z))) + iIm(F (z)). (2.1.7)

Proof. It is clear that if F (z) ∈ Pc, then we have (2.1.7), so we may assume

F (z) ∈ H\Pc and therefore F (z) ∈ Rη,ϑ. From Lemma 2.1.1 it follows that (2.1.3)

holds for all n ≤ k(F (z)). It is simple to see that

k(F (z)) = n2Im(F (z)) cot(ϑ)(Re(F (z))),

and thus by definition of r′` we get (2.1.7) as intended. �

Let η ∈ R+\Q and I = [0, 1 + η]. Let N ∈ N. Define

d−(N) =

{
1, if gn0 (1) > 1 for all 1 ≤ n ≤ N,

1−max1≤n≤N {gn0 (1) ≤ 1} , otherwise,

and

d+(N) =

{
η, if gn0 (1) < 1 for all 1 ≤ n ≤ N,

min1≤n≤N {gn0 (1) ≥ 1} − 1, otherwise.

We want now to investigate orbits by g0 of points which are in a small neigh-

bourhood of 1. We prove the next lemmas.

Lemma 2.1.3 Assume that η ∈ R+\Q.

i) If N ≥ 0 and 0 ≤ ` < d+(N), then for all 0 ≤ n ≤ N we have

gn0 (1− `) = gn0 (1)− `. (2.1.8)

ii) If N ≥ 2 and 0 ≤ ` ≤ d−(N), then for all 2 ≤ n ≤ N we have

gn0 (1 + `) = gn0 (1) + `. (2.1.9)
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Proof. To simplify notation we denote d+ = d+(N) and d− = d−(N). Let us prove

i) by induction on n. It is clear that (2.1.8) holds for n ∈ {0, 1}. We now assume

(2.1.8) holds for 1 ≤ n < N and we show it holds for n+ 1.

It follows from the definitions of d− and d+ that gn0 (1) /∈ (1 − d−, 1 + d+), for

1 ≤ n ≤ N , thus gn0 (1) ≤ 1− d− or gn0 (1) ≥ 1 + d+.

If gn0 (1) ≤ 1−d−, then as ` ≥ 0 and since we are assuming (2.1.8) holds for n we

have gn0 (1− `) ≤ 1− d−. Therefore gn0 (1− `) ∈ [0, 1] and since gn0 (1) ∈ [0, 1] we get

gn+1
0 (1− `) = gn+1

0 (1)− `.

If gn0 (1) ≥ 1 + d+, then as ` < d+ and since we are assuming (2.1.8) holds for n

we have gn0 (1− `) > 1. Therefore gn0 (1) ∈ (1, 1 + η] and thus

gn+1
0 (1− `) = gn0 (1)− `− 1.

Since gn0 (1) ∈ (1, 1 + η], we get that (2.1.8), holds for n+ 1 and we finish the proof

of i).

The proof of ii) is similar to the proof of i) so we omit it. �

Given ` > 0 and x ∈ I\[1, 1 + `], we define

d−(x, n`(x)) = 1− max
0≤n≤n`(x)

{gn0 (x) ≤ 1} . (2.1.10)

Lemma 2.1.4 Assume 0 < `′ < `, x ∈ I\[1, 1 + `] and x′ ∈ (x − (` − `′), x +

d−(x, n`(x))). Then for all n ≤ n`(x) we have

gn` (x)− gn`′(x′) = x− x′. (2.1.11)

Moreover, n`′(x
′) ≥ n`(x).

Proof. To simplify notation we denote d− = d−(x, n`(x)). We proceed by induction

on n. It is clear that (2.1.11) holds for n = 0. Now assume (2.1.11) holds for

n < n`(x) and we prove it for n+ 1 instead.

As n < n`(x) we have gn` (x) /∈ [1, 1 + `]. Since we are assuming (2.1.11) holds

for n, we get

gn`′(x
′) ∈ (gn` (x)− (`− `′), gn` (x) + d−).

If gn` (x) < 1, then gn` (x) ≤ 1− d− and thus gn`′(x
′) ∈ (1− d− − (`− `′), 1).

Otherwise, if gn` (x) > 1 + ` then gn`′(x
′) ∈ (1 + `′, 1 + ` + d−), thus we have

gn`′(x
′) ∈ Ij if and only if gn`′(x) ∈ Ij, for j = 0, 1 and gn`′(x

′) /∈ [1, 1 + `′]. Therefore

by (2.1.1) we get gn+1
` (x)− gn+1

`′ (x′) = x− x′. This proves (2.1.11) for n ≤ n`(x).
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Since gn`′(x
′) /∈ [1, 1 + `′] for n < n`(x) we have n`′(x

′) ≥ n`(x) and we finish our

proof. �

In the beginning of this section we defined the first hitting map of x to Ic(`),

as r`(x) = g
n`(x)
` (x), where n`(x) is the first hitting time of x to Ic(`). We want

now to investigate when is 1 + ` mapped to 1 under r`(x) and when is 1 mapped to

1 + `. Note that these are the endpoints of the central interval Ic(`). We define the

following points and sets.

We say ` is a right bifurcation point if r`(1 + `) = 1, ` is a left bifurcation point

if r`(1) = 1 + ` and ` is a bifurcation point if it is either a left or right bifurcation

point.

The left/right bifurcation sets are defined respectively as

ΛL = {0 < ` ≤ η : for all l < `, n`(1) < nl(1)},

and

ΛR = {0 < ` ≤ η : for all l < `, n`(1 + `) < nl(1 + l)}.

The main result of this section is the next theorem, relating bifurcation points

with the bifurcation sets.

Theorem 2.1.5 ` is a left (resp. right) bifurcation point if and only if ` ∈ ΛL (resp.

` ∈ ΛR). Furthermore, ` 7→ n`(1) and ` 7→ n`(1 + `) are decreasing functions of `

and the sets ΛR, ΛL are discrete with 0 as the only possible point of accumulation.

Proof.

First assume that r`(1) = 1 + ` and l < `. By the definitions of n` and r` we

have, for 1 ≤ n < n`(1), that either gn` (1) < 1 or gn` (1) > 1 + `. As l < `, by

(2.1.1) we have for 1 ≤ n < nl(1), gnl (1) < 1 or gnl (1) > 1 + l. Thus n`(1) ≤ nl(1)

and g
nl(1)
l (1) = g

n`(1)
` (1). Since g

n`(1)
` (1) = 1 + ` and 1 + ` > 1 + l this shows

g
nl(1)
l (1) > 1 + l and thus n`(1) < nl(1). This proves that if ` is a left bifurcation

point, then ` ∈ ΛL.

Now assume that r`(1) 6= 1+ `. As η is irrational we must have r`(1) ∈ (1, 1+ `),

therefore there is 0 < `′ < ` such that g
n`(1)
` (1) = 1 + `′.

We show, by induction on n, that for all l ∈ [`′, `] and 0 ≤ n ≤ n`(1)

gnl (1) = gn` (1). (2.1.12)

It is clear that (2.1.12) holds for n = 0. We assume it holds for n < n`(1) and we

prove it for n+ 1. As n < n`(1) we have gn` (1) /∈ (1, 1 + `), and since gnl (1) = gn` (1),
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this implies that gnl (1) /∈ (1, 1 + l), thus by (2.1.1) we have that (2.1.12) must hold

for n+ 1.

Since (2.1.12) holds for n = n`(1) we have g
n`(1)
l (1) = 1+`′ and thus n`(1) = nl(1)

for all l ∈ [`′, `].

Thus, there is l < ` such that n`(1) ≥ nl(1). This proves that ` is a left

bifurcation point if and only if ` ∈ ΛL. Note that it also shows that ` 7→ n`(1) is a

decreasing function of `.

By Lemma 2.1.4, for all l < ` and 0 ≤ n ≤ n`(1 + `) we have

gnl (1 + l) = gn` (1 + `)− (`− l). (2.1.13)

From which follows that g
n`(1+`)
l (1 + l) = g

n`(1+`)
` (1 + `)− (`− l). If r`(1 + `) = 1, as

r`(1 + `) = g
n`(1+`)
` (1 + `), this implies

g
n`(1+`)
l (1 + l) = 1− (`− l) /∈ Ic(l),

thus, n`(1 + `) < nl(1 + l). Then for all l < `, we have n`(1 + `) < nl(1 + l). This

proves that if ` is a right bifurcation point then ` ∈ ΛR,

If r`(1 + `) 6= 1, as η is irrational we must have r`(1 + `) ∈ (1, 1 + `), therefore

there is an 0 < `′ < ` such that g
n`(1+`)
` (1 + `′) = 1.

Now take l ∈ [`′, `). By (2.1.13) we get

g
n`(1+`)
l (1 + l) = 1 + l − `′ ∈ [1, 1 + l),

hence g
n`(1+`)
l (1 + l) ∈ Ic(l) and we have n`(1 + `) = nl(1 + l). Thus, there is a l < `

such that n`(1+`) ≥ nl(1+l). This proves that if ` ∈ ΛR then ` is a right bifurcation

point. This proves that ` is a right bifurcation point if and only if ` ∈ ΛR. Note

that it also shows that ` 7→ n`(1 + `) is a decreasing function of `.

Since ` 7→ n`(1) and ` 7→ n`(1 + `) are decreasing functions of ` and are also

integer valued functions this implies that the sets ΛL and ΛR are discrete and each

has at most one point of accumulation, which has to be 0. �

2.2 Bifurcation sequence

In this section we study the sequence of bifurcation points for the family gl (in

(2.1.1)). We will first recall some elements of the theory of continued fractions, and

compute the sequence of errors of the semiconvergents of η = 1/(k + Φ), where

Φ = (
√

5 − 1)/2 and k ∈ N. We will then relate the bifurcation sequence with the

theory of continued fractions by showing that this sequence is equal to the sequence

of errors of the semiconvergents of η.
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Throughout this section we assume that η ∈ (0, 1) is an irrational real number

with continued fraction expansion η = [0, η1, η2, ...]. Consider the sequence of its

convergents given by(
pn
qn

)
n≥0

, where
p0

q0

=
0

1
and

pn
qn

= [0, η1, ..., ηn].

For all n ≥ 0 it is well known that

pn+2 = pn + ηn+2pn+1,
qn+2 = qn + ηn+2qn+1.

(2.2.1)

Define the sequence of upper semiconvergents of η as(
p′n
q′n

)
n

= ([0, 1], ..., [0, η1], [0, η1, η2, 1], ..., [0, η1, η2, η3], ...).

which is the sequence of best rational approximations of η by above , this is, any

other fraction a
b
6= p′n

q′n
, with 1 ≤ b ≤ q′n, satisfies a− bη > p′n − q′nη (see for instance

[39]).

The sequence of errors of approximation of the upper semiconvergents smaller

than η is given by

Γ′n =
(
p′n+η1−1 − q′n+η1−1η

)
n
.

Analogously, we define the sequence of lower semiconvergents of η as(
p′′n
q′′n

)
n

= (0, [0, η1, 1], ..., [0, η1, η2], [0, η1, η2, η3, 1], ..., [0, η1, η2, η3, η4], ...).

which is the sequence of best rational approximations of η by below, this is, any

other fraction a
b
6= p′′n

q′′n
, with 1 ≤ b ≤ q′′n, satisfies bη − a > q′′nη − p′′n.

The sequence of errors of approximation of the lower semiconvergents is given

by

Γ′′n = (q′′nη − p′′n)n .

Note that Γ′ and Γ′′ are monotonic sequences of positive real numbers that converge

to 0. Finally, we define recursively the intercalation of Γ′n and Γ′′n as Γn given by

Γ0 = max(Γ′0,Γ
′′
0), Γn = max

(
(Γ′ ∪ Γ′′)\

n−1⋃
k=0

Γk

)
, n ≥ 1.

In the next lemma, we compute explicitly the sequences Γn, Γ′n and Γ′′n.

Lemma 2.2.1 Let Φ = (
√

5 − 1)/2, k ∈ N and η = 1/(k + Φ). For all n ≥ 0 we

have

Γ′n = ηΦ2n+1, (2.2.2)
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Γ′′n = ηΦ2n, (2.2.3)

and

Γn =

{
Γ′(n−1)/2, if n is odd,

Γ′′n/2, if n is even.
(2.2.4)

Proof. Let (Fn)n≥0, be the Fibonacci sequence, given by F0 = 0, F1 = 1 and

Fn = Fn−1 + Fn−2,

for n ≥ 2.

We begin by proving, by induction on n, that for all n ≥ 0,

ηΦ2n+1 = F2n+1 − (F2n+1k + F2n)η, (2.2.5)

and that for all n ≥ 1,

ηΦ2n = (F2nk + F2n−1)η − F2n. (2.2.6)

Clearly, (2.2.5) holds for n = 0 and (2.2.6) holds for n = 1. Assuming that (2.2.5)

holds for n, (2.2.6) holds for n+ 1 and using 1−Φ = Φ2, we get F2n+3 − (F2n+3k +

F2n+2)η = ηΦ2n+3. The proof of (2.2.6) is similar to the proof of (2.2.5) and so we

omit it.

Using the fact that (Fn)n≥0 is the Fibonacci sequence and some elementary

properties of continued fractions it can be easily proved by induction on n that

pn = Fn, qn = Fnk + Fn−1. (2.2.7)

Finally we show that (2.2.2) holds for all n ≥ 0. It is clear that Γ′0 = 1−kη = ηΦ

and Γ′′n = ηΦ2n for n = 0, 1. Hence (2.2.2) holds for n = 0, and (2.2.3) holds for

n = 0, 1.

Now assume (2.2.2) holds for all 0 ≤ n ≤ N and (2.2.3) for all 0 ≤ n ≤ N + 1.

We now prove that (2.2.2) holds for 0 ≤ n ≤ N+1 and (2.2.3) for all 0 ≤ n ≤ N+2.

We have Γ′′0 > Γ′0 > Γ′′1 > ... > Γ′′N > Γ′N > Γ′′N+1.

Thus, we have (2.2.4) for n ≤ 2(N + 1), also

p′′n = p2n, q′′n = q2n, (2.2.8)

for 1 ≤ n ≤ N + 1, and

p′n+η1−1 = p2n+1, q′n+η1−1 = q2n+1, (2.2.9)

for 0 ≤ n ≤ N .
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By (2.2.5) and (2.2.7), we get p2N+3− ηq2N+3 = ηΦ2N+3 > 0. Thus, from (2.2.8)

and (2.2.9) we have p′N+η1
= p2N+3, q

′
N+η1

= q2N+3 and we get Γ′N+1 = ηΦ2N+3. This

proves (2.2.2) for 0 ≤ n ≤ N + 1.

Now, by (2.2.6) and (2.2.7), ηq2N+4 − p2N+4 = ηΦ2N+4. Thus, from (2.2.8) and

(2.2.9) we have p′′N+2 = p2N+4, q′′N+2 = q2N+4 and we get Γ′′N+2 = ηΦ2N+4. This

proves now (2.2.3) for 0 ≤ n ≤ N + 2.

This completes our proof. �

Let

k′0 = η1 + 1, k′n = min{k ≥ 1 : g
k′n−1

0 (1) < gk0(1) < 1}, (2.2.10)

for all n ≥ 1, s′n = 1− gk′n0 (1), and consider the the sequence S ′ given by

S ′ = (s′n)n≥0.

We have k′n = min{k ≥ 1 : 1− s′n−1 < gk0(1− s′n−1) < 1}+ k′n−1. Also let

k′′1 = η1 + 2, k′′n = min{k ≥ 1 : 1 < gk0(1) < g
k′′n−1

0 (1)}, (2.2.11)

for all n ≥ 2, s′′0 = η and s′′n = g
k′′n
0 (1)− 1, for n ≥ 1. We define another sequence S ′′

as

S ′′ = (s′′n)n≥0,

Note that k′′n = min{k ≥ 1 : 1 < gk0(s′′n−1 +1) < s′′n−1 +1}+k′′n−1. We are interested in

studying the bifurcation sets ΛL and ΛR of g0. By Theorem 2.1.5 they are discrete

with 0 as the only possible point of accumulation, hence they can be regarded

as decreasing sequences, which we now define. Let the right bifurcation sequence

Λ′ = (Λ′n)n be given by

Λ′0 = max(ΛR), Λ′n = max

(
ΛR\

n−1⋃
k=0

Λ′k

)
, n ≥ 1,

the left bifurcation sequence Λ′′ = (Λ′′n)n by

Λ′′0 = max(ΛL), Λ′′n = max

(
ΛL\

n−1⋃
k=0

Λ′′k

)
, n ≥ 1,

and finally we define recursively the sequence of all bifurcation points of g0, Λn (it

follows from Theorem 2.1.5 that it is equal to the intercalation of Λ′ and Λ′′)

Λ0 = max(Λ′0,Λ
′′
0), Λn = max

(
(ΛR ∪ ΛL)\

n−1⋃
k=0

Λk

)
, n ≥ 1.

In the next lemma we relate the sequences s′n and s′′n with Λ′n and Λ′′n for all

n ≥ 0.
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Lemma 2.2.2 The sequences S ′, S ′′ are equal to Λ′,Λ′′, respectively.

Proof. We first prove by induction on n, that s′′n = Λ′′n, for all n ∈ N. It is clear that

s′′0 = η = Λ′′0. Assuming s′′n = Λ′′n, we have k′′n = min{k ≥ 1 : 1 < gk0(1) < 1 + Λ′′n},
and n` = k′′n+1, for all ` ∈ [s′′n+1,Λ

′′
n). This shows that s′′n+1 ≥ Λ′′n+1. As g

k′′n+1

0 (1) =

1 + s′′n+1, we get that s′′n+1 = Λ′′n+1. This proves that S ′′ is equal to Λ′′.

We now prove, by induction on n, that s′n = Λ′n, for all n ∈ N. It is clear

that s′0 = 1 − η1η = Λ′0, where η1 is the first coefficient in the continued fraction

expansion of η. Assume s′n = Λ′n. Let ` be a constant such that s′n+1 ≤ ` < s′n. Since

s′n = d−(k′n+1−1), ` < d−(k′n+1−1), where k′n+1−1 > k′0−1 ≥ 2 and with k = k′n+1,

by Lemma 2.1.3, we have g
k′n+1

0 (1 + `) = g0(g
k′n+1−1

0 (1) + `) for s′n+1 ≤ ` < s′n and

since g
k′n+1

0 (1) = 1− s′n+1 and η < 1, we have g
k′n+1−1

0 (1) = 1− η − s′n+1. Combining

these, we get

g
k′n+1

0 (1 + `) = 1− s′n+1 + `. (2.2.12)

By Lemma 2.1.3 we have gk0(1 + `) = gk0(1) + `, for all 1 < k < k′n+1. Note that

gk0(1) /∈ (g
k′n
0 (1), 1). Combining these we get gk0(1 + `) /∈ (1− s′n + `, 1 + `), and since

η is irrational and ` < s′n, this gives

gk0(1 + `) /∈ [1, 1 + `],

for all k < k′n+1. Thus from (2.2.12), we get that s′n+1 is the largest value ` can take

such that g
k′n+1

0 (1 + `) = 1. Since we have s′n = Λ′n, this proves that s′n+1 = Λ′n+1,

and so, that S ′ is equal to Λ′.

�

In the next theorem we relate the sequences of errors of upper/lower semicon-

vergents of η with the right/left bifurcation sequences of η.

Theorem 2.2.3 Assume η ∈ (0, 1) is an irrational number. The sequences Λ′ and

Λ′′ are equal to Γ′ and Γ′′, respectively. Moreover, the associated bifurcation sequence

Λ is equal to the sequence Γ of errors of the semiconvergents of η.

Proof. Let v : N× N→ N be given by

v(m,n) =


n, m ≤ 1,

η2 + η4 + ...+ ηm + n, m > 0 and m is even,

η3 + η5 + ...+ ηm + n, m > 1 and m is odd.

for m,n ∈ N.

Since η is irrational, this shows that we have⋃
m≥0 even

{v(m,n)}0≤n≤ηm+2
=

⋃
m≥1 odd

{v(m,n)}0≤n≤ηm+2
= N.
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From this we get that Γ′′k = Λ′′k and Γ′k = Λ′k for all k ∈ N if and only if for all even

m ≥ 0

Γ′′v(m,n) = Λ′′v(m,n),

for 0 ≤ n ≤ ηm+2, and

Γ′v(m+1,n) = Λ′v(m+1,n),

for 0 ≤ n ≤ ηm+3.

It is well known (see for instance [39]) that [0, η1, ..., ηm] = (npm + pm−1)/(nqm +

qm−1), for all m,n ∈ N. From this it follows that for all even m ≥ 0 we have

Γ′′v(m,n) = (qmη − pm)− n(pm+1 − qm+1η),

for 0 ≤ n ≤ ηm+2, and

Γ′v(m+1,n) = (pm+1 − qm+1η)− n(qm+2η − pm+2),

for 0 ≤ n ≤ ηm+3. Combining the four expressions above it follows that Γ′′k = Λ′′k
and Γ′k = Λ′k for all k ∈ N if and only if for all even m ≥ 0 we have

Λ′′v(m,n) = (qmη − pm)− n(pm+1 − qm+1η), (2.2.13)

for 0 ≤ n ≤ ηm+2, and

Λ′v(m+1,n) = (pm+1 − qm+1η)− n(qm+2η − pm+2), (2.2.14)

for 0 ≤ n ≤ ηm+3.

We now prove, by induction on m, that (2.2.13) and (2.2.14) hold for all even

m ≥ 0. Before, we prove by induction on n, that

Λ′′v(0,n) = (q0η − p0)− n(p1 − q1η), (2.2.15)

for 0 ≤ n ≤ η2.

We have v(0, 0) = 0, thus Λ′′v(0,0) = Λ′′0. Since s′′0 = η and (p0, q0) = (0, 1), by

Lemma 2.2.2 we have Λ′′0 = q0η − p0. Thus, (2.2.15) holds for n = 0. Now fix

n < ηm+2. We assume (2.2.15) holds for n and prove it for n+ 1 instead.

We have that (2.2.15) is equivalent to g
1+n(1+η1)
0 (1)−1 = η−n(1−η1η), therefore

since we are assuming (2.2.15) holds for n we get

g
1+(n+1)(1+η1)
0 (1)− 1 = g0(gη10 (1 + Λ′′v(0,n))). (2.2.16)

Recall the definition of d−. We have d−(N) = 1 − max1≤k≤N
{
gk0(1) ≤ 1

}
, for

any N ≥ 2. Note that d−(η1) = 1− (η1 − 1)η, therefore Λ′′v(0,n) ≤ d−(η1).
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Assume now that η1 ≥ 2. Applying Lemma 2.1.3 with ` = Λ′′v(0,n) and N = η1

we get gη10 (1 + Λ′′v(0,n)) = gη10 (1) + Λ′′v(0,n). Since 1− gη1+1
0 (1) = s′0, s′0 = 1− η1η and

η < 1 we have gη10 (1) = (η1 − 1)η. Combining this we get

gη10 (1 + Λ′′v(0,n)) = 1− η + (η1 − (n+ 1)(1− η1η)),

which combined with (2.2.16) gives

g
1+(n+1)(1+η1)
0 (1) = 1 + (η1 − (n+ 1)(1− η1η)), (2.2.17)

which is smaller than 1 + Λ′′v(0,n).

If η1 = 1 it is clear from (2.2.16) that we get (2.2.17) as well. Since Γ′′ is the

sequence of best rational approximations of η by below and we have Λ′′v(0,n) = Γ′′v(0,n)

and g
1+(n+1)(1+η1)
0 (1)− 1 = Γ′′v(0,n)+1, we must have

1 + (n+ 1)(1 + η1) = min{k ≥ 1 : 1 < gk0(1) < g
1+n(1+η1)
0 (1)},

and thus by Lemma 2.2.2 and (2.2.17) we have Λ′′v(0,n+1) = (q0η−p0)−(n+1)(p1−q1η).

This completes the proof that (2.2.15) holds for 0 ≤ n ≤ ηm+2.

In a similar way, it can be proved that

Λ′v(1,n) = (p1 − q1η)− n(q2η − p2),

for all 0 ≤ n ≤ η3, so we omit the proof.

We now assume that for 0 ≤ n ≤ ηm+2, we have

Λ′′v(m,n) = (qmη − pm)− n(pm+1 − qm+1η), (2.2.18)

and that for 0 ≤ n ≤ ηm+3, we have

Λ′v(m+1,n) = (pm+1 − qm+1η)− n(qm+2η − pm+2). (2.2.19)

and prove that we have

Λ′′v(m+2,n) = (qm+2η − pm+2)− n(pm+3 − qm+3η), (2.2.20)

for all 0 ≤ n ≤ ηm+4, and

Λ′v(m+3,n) = (pm+3 − qm+3η)− n(qm+4η − pm+4). (2.2.21)

for all 0 ≤ n ≤ ηm+5.

First we prove (2.2.20), by induction on n, for all n ≤ ηm+4 .
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Since v(m + 2, 0) = v(m, ηm+2), by (2.2.18) and (2.2.1), we get Λ′′v(m+2,0) =

qm+2η − pm+2. Thus, (2.2.20) holds for n = 0.

Fix n < ηm+4. We assume that (2.2.20) holds for n and prove it for n+1 instead.

Recall the definition of Λ′′. With K ′′(n) = pm+2 + qm+2 + n(pm+3 + qm+3), we have

that (2.2.20) is equivalent to g
K′′(n)
0 (1)− 1 = qm+2η − pm+2 − n(pm+3 − qm+3η), and

combining these we get

g
K′′(n+1)
0 (1) = g0(g

(pm+3+qm+3−1)
0 (1 + Λ′′v(m+2,n))). (2.2.22)

From (2.2.19) we get

Λ′v(m+1,n) = Γ′v(m+1,n),

for 0 ≤ n ≤ ηm+3. It follows from this identity and fact that the upper semi-

convergents of η are its best rational approximations by above, that v(m+1, ηm+3−1)

is the largest integer such that k′v(m+1,ηm+3−1) < qm+3+pm+3, where k′ is as in (2.2.10).

Recall the definition of d−. We have d−(N) = 1 −max1≤k≤N
{
gk0(1) ≤ 1

}
, for any

N ≥ 2, thus d−(qm+3 + pm+3 − 1) = s′ηm+3−1, and by Lemma 2.2.2, (2.2.19) and

(2.2.1) we get

d−(qm+3 + pm+3 − 1) = pm+3 − qm+3η + qm+2η − pm+2.

Therefore Λ′′v(m+2,n) < d−(qm+3 + pm+3 − 1). Applying Lemma 2.1.3 with ` =

Λ′′v(m+2,n) and N = pm+3 + qm+3 − 1 yields

g
pm+3+qm+3−1
0 (1 + Λ′′v(m+2,n)) = g

pm+3+qm+3−1
0 (1) + Λ′′v(m+2,n). (2.2.23)

By Lemma 2.2.2, (2.2.19) and (2.2.1) we have 1−gpm+3+qm+3

0 (1) = pm+3− qm+3η,

and since η < 1, we get

g
pm+3+qm+3

0 (1) = 1− η − (pm+3 − qm+3η).

Combining this identity with (2.2.22) and (2.2.23) we have

g
K′′(n+1)
0 (1) = g0(1− η − (pm+3 − qm+3η) + Λ′′v(m+2,n)),

and since (2.2.20) holds for n we get

g
K′′(n+1)
0 (1) = 1 + (qm+2η − pm+2)− (n+ 1)(pm+3 − qm+3η), (2.2.24)

which is smaller than 1 + Λ′′v(m+2,n).

Since Γ′′ is the sequence of best rational approximations of η by below and we

have Λ′′v(m+2,n) = Γ′′v(m+2,n) and g
K(n+1)
0 (1)− 1 = Γ′′v(m+2,n)+1, we must have

K ′′(n+ 1) = min{k ≥ 1 : 1 < gk0(1) < g
K′′(n)
0 (1)},
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and thus by Lemma 2.2.2 and (2.2.24) we have

Λ′′v(m+2,n+1) = (qm+2η − pm+2)− (n+ 1)(pm+3 − qm+3η).

This completes the proof that (2.2.20) holds for 0 ≤ n ≤ ηm+4.

We now prove (2.2.21) by induction on n, for all n ≤ ηm+5 .

Since v(m + 3, 0) = v(m + 1, ηm+3), by (2.2.1) and (2.2.19), we get Λ′v(m+3,0) =

pm+3 − qm+3η and so (2.2.21) holds for n = 0.

Fix n < ηm+5. We assume that (2.2.21) holds for n and prove it for n+1 instead.

Recall the definition of Λ′. With K ′(n) = pm+3 + qm+3 + n(pm+4 + qm+4), we

have that (2.2.21) is equivalent to 1− gK′(n)
0 (1) = pm+3− qm+3η− n(qm+4η− pm+4),

and we get

g
K′(n+1)
0 (1) = g0(g

(pm+4+qm+4−1)
0 (1− Λ′v(m+3,n))). (2.2.25)

From (2.2.20) we get Λ′′v(m+2,n) = Γ′′v(m+2,n), for 0 ≤ n ≤ ηm+4. It follows from this

identity and from the fact that the lower semi-convergents of η are its best rational

approximations by below, that v(m + 2, ηm+4 − 1) is the largest integer such that

k′′v(m+2,ηm+4−1) < qm+4 + pm+4, where k′′ is as in (2.2.11).

Recall the definition of d+. We have d+(N) = min1≤k≤N
{
gk0(1) ≥ 1

}
− 1, for

any N ≥ η1 + 1. Thus, d+(qm+4 + pm+4 − 1) = s′′ηm+4−1. By Lemma 2.2.2, (2.2.20)

and (2.2.1) we get d+(qm+4 + pm+4 − 1) = qm+4η − pm+4 + pm+3 − qm+3η. Therefore

Λ′v(m+3,n) < d+(qm+4 + pm+4− 1). Applying Lemma 2.1.3 with ` = 1−Λ′v(m+3,n) and

N = pm+4 + qm+4 − 1 we get

g
pm+4+qm+4−1
0 (1− Λ′v(m+3,n)) = g

pm+4+qm+4−1
0 (1)− Λ′v(m+3,n).

By Lemma 2.2.2, (2.2.20) and (2.2.1) we have g
pm+4+qm+4

0 (1)−1 = qm+4η−pm+4,

and since η < 1 we get

g
pm+4+qm+4

0 (1) = 1− η + (qm+4η − pm+4).

Combining the two above identities with (2.2.25) and since (2.2.21) holds for n

we get

g
K′(n+1)
0 (1) = 1− [(pm+3 − qm+3η)− (n+ 1)(qm+4η − pm+4)] , (2.2.26)

which is larger than 1− Λ′v(m+3,n).

Since Γ′ is the sequence of best rational approximations of η by above and we

have Λ′v(m+3,n) = Γ′v(m+3,n) and 1− gK′(n+1)
0 (1) = Γ′v(m+3,n)+1, we must have

K ′(n+ 1) = min{k ≥ 1 : g
K′(n)
0 (1) < gk0(1) < 1},
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and thus by Lemma 2.2.2 and (2.2.26) we have

Λ′v(m+3,n+1) = (pm+3 − qm+3η)− (n+ 1)(qm+4η − pm+4).

This completes the proof that (2.2.21) holds for 0 ≤ n ≤ ηm+5.

This proves (2.2.13) and (2.2.14) and therefore Λ′ is equal to the sequence Γ′ and

Λ′′ is equal to the sequence Γ′′. By definition of Λ and Γ, this implies that Γ = Λ as

well. This finishes our proof.

�

Recall, from (2.2.10) and (2.2.11), the definitions of k′ and k′′. Also recall our

definitions of first hitting time n`(x) of x to Ic(`), in (2.1.4), and the first hitting

map r`, in (2.1.5). We want now to relate these to Γ′ and Γ′′. This is done in the

next theorem.

Theorem 2.2.4 Let 0 < ` ≤ η and let n1, n2 ∈ N be such that Γ′n1+1 ≤ ` < Γ′n1
and

Γ′′n2+1 ≤ ` < Γ′′n2
. Then r`(1 + `) = 1 + `−Γ′n1+1 and r`(1) = 1 + Γ′′n2+1. Furthermore

n`(1 + `) = k′n1+1 and n`(1) = k′′n2+1.

Proof. We prove only that r`(1 + `) = 1 + `−Γ′n1+1. As the proof for the other case

is similar, we omit it.

By Theorem 2.2.3, we have Γ′ = Λ′, therefore Γ′n1+1 ≤ ` < Γ′n1
implies that

Λ′n1+1 ≤ ` < Λ′n1
. Also, combining Theorem 2.2.3 with Lemma 2.2.2, we have

S ′ = Γ′ and we get

g
k′n1+1

0 (1) = 1− Γ′n1+1. (2.2.27)

As kn1+1 > 2 and Γ′n1+1 ≤ d−(k′n1+1), applying Lemma 2.1.3 we get

g
k′n1+1

0 (1 + Γ′n1+1) = g
k′n1+1

0 (1) + Γ′n1+1.

From these two identities we get g
k′n1+1

0 (1+Γ′n1+1) = 1, thus nΓ′n1+1
(1+Γ′n1+1) = k′n1+1.

Therefore r`(1 + `) = g
k′n1+1

0 (1 + `).

As ` < d−(kn1+1−1) by Lemma 2.1.3, g
k′n1+1−1

0 (1+`) = g
k′n1+1−1

0 (1)+`. Applying

g0 on both sides and combining with (2.2.27), we get g
k′n1+1

0 (1 + `) = 1 + `− Γ′n1+1.

This finishes our proof. �

2.3 Dynamical sequences

In this section, we introduce the dynamical sequences (yn)n and (un)n. We define

these sequences abstractly, independently from any dynamical interpretation. These

will be an important tool in order to prove our main theorems and will be later
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(a) (b)

Figure 2.1: An illustration of the action of map Fc. The dashed line is Lµ′ and
the union of disjoint line segments is Fc(Lµ′). Also marked are the points zn =
(un − 1/2)`(yn) + iyn. (A) shows points zn such that the corresponding sequence
un(µ) satisfies un(µ) = un+1(µ) for all n ≥ 1. (B) shows points zn such that the
corresponding sequence un(µ) satisfies un(µ) = un+2(µ) for all n ≥ 0.

related to the dynamics of our family of maps. Indeed (yn) will be the sequence of

imaginary parts of the discontinuities of a map ρ (defined in the following section)

containing information related to the first return under our transformation F to

the central cone Pc , while (un) is the sequence of ratios of the horizontal jumps

produced by discontinuities of ρ relative to the cone width `(yn).

In this section we show inductive formulas to compute these sequences and prove

that for some choice of parameters (un)n is periodic with period at most 2.

Let

`(y) =
2y

ν
, (2.3.1)

and denote

C+
µ =

2µ

µ+ ν
, C−µ =

2µ

µ− ν . (2.3.2)

We now inductively define our sequences (yn)n∈N, (un)n∈N and (κn)n∈N depending

on the parameters ν > 0, |µ| > ν, η ∈ (0, 1)\Q and 0 < η′ < η. We will denote

these sequences by (yn(µ))n∈N, (un(µ))n∈N and (κn(µ))n∈N when it is important to

stress the dependence on the parameter µ.

Set

y0 = η′
µν

µ+ ν
. (2.3.3)

Note that as η′ > 0 we have y0 > 0. Since η is irrational, (Γ′′n) (see Section 2.2)

is an infinite sequence and converges to 0. Furthermore by the definitions of ` and

y0 we have `(y0) > 0. Thus there exists a smallest natural number κ0 such that
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Γ′′κ0 < `(y0). Set Υ0 = Γ′′κ0 and

u0 =
Υ0

`(y0)
.

For n ≥ 0 assume we defined yn, un, κn and Υn and that at least one of the

conditions yn > 0 or un = 1/C+
µ holds. Set

yn+1 =


(1− C+

µ un)yn, if un < 1/C+
µ ,

(1− C−µ (1− un))yn, if un > 1/C+
µ ,

0, if un = 1/C+
µ .

(2.3.4)

Since η is irrational, (Γ′n) and (Γ′′n) (see Section 2.2) are infinite sequences and

converge to 0, furthermore if un 6= 1/C+
µ , by (2.3.2) and (2.3.4) we have `(yn+1) >

0, thus there are integers k′ and k′′ such that Γ′k < `(yn+1) and Γ′′k < `(yn+1)

respectively. We set

κn+1 =


min{k ∈ N : Γ′′k < `(yn+1)}, if un < 1/C+

µ ,

min{k ∈ N : Γ′k < `(yn+1)}, if un > 1/C+
µ ,

κn, if un = 1/C+
µ .

If un ≤ 1/C+
µ set Υn+1 = Γ′′κn+1

, else if un > 1/C+
µ set

Υn+1 =


1, if `(yn+1) > 1,

1−
(

1 +
[

1−`(yn+1)
η

])
η, if Γ′0 < `(yn+1) ≤ 1,

Γ′κn+1
, if `(yn+1) < Γ′0,

(2.3.5)

where [·], denotes the integer part of a real number. Finally set

un+1 =



Υn+1

`(yn+1)
, if un < 1/C+

µ ,

1− Υn+1

`(yn+1)
, if un > 1/C+

µ ,

0, if un = 1/C+
µ .

(2.3.6)

The following lemma characterizes the sequence (yn)n∈N.

Lemma 2.3.1 Given ν > 0, |µ| > ν, η ∈ (0, 1)\Q and 0 < η′ < η, the sequence

(yn)n∈N with N = {n ∈ N : yn > 0} is strictly decreasing and it is either finite or

converges to 0.

Proof. If un < 1/C+
µ or un > 1/C+

µ then (1− C+
µ un) ∈ (0, 1) or (1− C−µ (1− un)) ∈

(0, 1), respectively, and by (2.3.4), yn+1 < yn. If un = 1/C+
µ then, by definition,
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yn+1 = 0 and thus n + 1 /∈ N. This shows that (yn)n∈N is strictly decreasing and

either N is finite or for all n ∈ N we have yn+1 < yn.

We now show that if yn > 0 we have yn → 0. Assume by contradiction that (yn)

does not converge to 0. Since it is strictly decreasing there must exist y′ > 0 such

that yn → y′. Since for all n ∈ N, un 6= 1/C+
µ , we must have that either un < 1/C+

µ

or un > 1/C+
µ for infinitely many values of n ∈ N.

Assume the first case holds. Then there is a subsequence (un(l))l∈N such that

un(l) < 1/C+
µ for all l ∈ N. Since yn → y′ we have in particular that

lim
l→+∞

yn(l)+1 = lim
l→+∞

yn(l) = y′

and by (2.3.4) yn(l)+1 = (1− C+
µ un(l))yn(l), thus, we must have 1− C+

µ un(l) → 1 and

therefore un(l) → 0. Hence by the definition of un and since `(yn(l))→ `(y′), we have

Γ′′κn(l)+1 → 0.

Since η is irrational, {Γ′′n} is an infinite sequence and converges to 0. Thus

there exists an unique natural number k′ such that Γ′′k′+1 < `(y′) ≤ Γ′′k′ , and by the

definition of κn we must have κn(l) → k′. Thus we get Γ′′k′+1 = 0, which implies that

η is rational which is a contradiction.

The proof is analogous if un > 1/C+
µ for infinitely many values of n ∈ N, hence

we omit it. �

Given n ∈ N and x ∈ R we introduce the following maps:

χn(x) =


x , if un < 1/C+

µ ,

1− x , if un > 1/C+
µ ,

1 , if un = 1/C+
µ ,

and ψn(x) =


C+
µ , if un < 1/C+

µ ,

C−µ , if un > 1/C+
µ ,

1 , if un = 1/C+
µ .

The next lemma, which follows direcly from combining the above expressions

with (2.3.4), (2.3.5) and (2.3.6), gives recursive expressions for yn and un.

Lemma 2.3.2 Given ν > 0 and µ ∈ R satisfying |µ| > ν, for all n ∈ N\{0} we

have

yn(µ) = (1− ψn−1χn−1(un−1(µ)))yn−1(µ).

Moreover if un−1(µ) 6= 1/C+
µ , we have

χn−1(un(µ)) =
Υn(µ)

Υn−1(µ)

χn−2(un−1(µ))

1− ψn−1χn−1(un−1(µ))
.

Next theorem provides, under some conditions on η and η′, a closed form expres-

sion for the sequence {un} and shows that it is periodic with period at most 2. We

will denote

µ̄ =
ν

Φ3
.
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Theorem 2.3.3 Assume ν > 0, η = 1/(k + Φ) and η′ = 1 − kη with k ∈ N. Let

µ ∈ R be such that |µ| ≥ ν. If |µ| > µ̄, then un(µ) = un+2(µ) for all n ≥ 0, in

particular

un(µ) =
1

C+
µ Φ

and `(yn(µ)) = C+
µ ηΦn+1, if n is even, (2.3.7)

and

un(µ) = 1− 1

C−µ Φ
and `(yn(µ)) = C−µ ηΦn+1, if n is odd. (2.3.8)

If |µ| ≤ µ̄, then un(µ) = un+1(µ) for all n ≥ 1. In particular, if −µ̄ < µ < −ν, then

for all n ≥ 1,

un(µ) = 1− Φ

C−µ
and `(yn(µ)) = C−µ ηΦ2n. (2.3.9)

If ν < µ < µ̄, then for all n ≥ 0,

un(µ) =
Φ

C+
µ

and `(yn(µ)) = C+
µ ηΦ2n+1. (2.3.10)

Proof.

Let us first investigate C+
µ and C−µ as in (2.3.2). It is clear that

1

Φ
< 2 < C−µ =

2µ

µ− ν <
2

1− Φ3
=

1

Φ2
,

where we used the fact that ∂C−µ /∂µ = −ν/(µ− ν) < 0, as long as ν > 0 and also

Φ2 = 1− Φ. Now, if µ < −µ̄ < −ν < 0 we have 1 < C−µ < 2 < 1/Φ2. Since µ < −µ̄
we get

µ < −µ̄ = − ν

Φ3
= − ν

2Φ− 1
,

which is equivalent to 2µΦ < µ− ν, and since µ < 0 we get C−µ > 2µ
(µ−ν)

> 1
Φ
.

Since C+
µ and C−µ are Hölder conjugate we have 1

1−Φ2 < C+
µ < 1

1−Φ
. Combining

this we get that if |µ| > µ̄, then

1

Φ
< C+

µ <
1

Φ2
,

1

Φ
< C−µ <

1

Φ2
. (2.3.11)

We now prove by induction on n that if |µ| > µ̄, we have (2.3.7) and (2.3.8) for

all n ≥ 0.

From (2.3.3) we have `(y0(µ)) = 2µ(1− kη)/(µ + ν). Since ηΦ = 1− kη we get

`(y0(µ)) = C+
µ ηΦ. For |µ| > µ̄ we get from (2.3.11) that

η < `(y0(µ)) < η/Φ ≤ 1.

Hence we have that κ0 = 0, and by Lemma 2.2.1 and (2.3.5) we get Υ0(µ) = Γ0 and

by definition of u0 we have

u0 =
Γ0

`(y0(µ))
=

Γ0ν

2y0

=
Γ0

2µη′
(µ+ ν) =

η

C+
µ η
′ =

1

C+
µ Φ

.
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Thus we get (2.3.7) for n = 0.

Since Φ < 1 and (2.3.7) holds for n = 0, we have u0(µ) > 1/C+
µ , hence by Lemma

2.3.2 we have

`(y1(µ)) = (1− C−µ (1− u0(µ)))`(y0(µ)). (2.3.12)

Simple computations show that

1− C−µ (1− u0(µ)) = 1− C−µ (1− η

C+
µ η
′ ) =

C−µ
C+
µ

Φ, (2.3.13)

where we used Hölder conjugacy of C+
µ and C−µ several times to simplify the expres-

sion. By (2.3.13) and (2.3.12) we have `(y1(µ)) =
C−µ
C+
µ

Φ`(y0(µ)) and since (2.3.7)

holds for n = 0, we get

`(y1(µ)) = C−µ ηΦ2. (2.3.14)

Now, by Lemma 2.3.2 we have

u1(µ) = 1− Υ1(µ)

η

u0(µ)

1− C−µ (1− u0(µ))
, (2.3.15)

and by (2.3.14) and (2.3.11), since |µ| > µ̄, we get ηΦ < `(y1(µ)) < η. This

together with Lemma 2.2.1 and (2.3.5) shows that Υ1(µ) = ηΦ, and from (2.3.13)

and (2.3.15) we get u1(µ) = 1− 1/(C−µ Φ). Together with (2.3.14) this shows (2.3.8)

holds for n = 1.

Let n ≥ 0 be an even number. We now assume that (2.3.7) holds for n, (2.3.8)

holds for n+ 1 and prove that (2.3.7) holds for n+ 2 and (2.3.8) holds for n+ 3.

Note that since we assume (2.3.7) holds for n and (2.3.8) for n + 1, by (2.3.11)

we have

ηΦn < `(yn(µ)) < ηΦn−1, ηΦn+1 < `(yn+1(µ)) < ηΦn. (2.3.16)

Since 1/Φ > 1 we have u1(µ) = 1 − 1
dΦ

< 1 − 1
C−µ

= 1
C+
µ
, thus un+1(µ) < 1/C+

µ ,

since we also have un(µ) > 1/C+
µ we get from Lemma 2.3.2 that

`(yn+2(µ)) = (1− C+
µ u1(µ))(1− C−µ (1− u0(µ)))`(yn(µ)). (2.3.17)

After a simple computation we have

1− C+
µ u1(µ) =

Φ

d− 1
=
C+
µ

C−µ
Φ. (2.3.18)

Combining (2.3.13), (2.3.17) and (2.3.18) we get

`(yn+2(µ)) = Φ2`(yn(µ)). (2.3.19)
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Since we assume (2.3.7) for n, we get from (2.3.19) that

ηΦn+2 < `(yn+2(µ)) < ηΦn+1. (2.3.20)

We now prove that (2.3.7) holds for n+2. Since (2.3.7) holds for n, from (2.3.19)

we get `(yn+2(µ)) = C+
µ ηΦn+3. To see that un+2(µ) = u0(µ) note that by Lemma

2.2.1, by the definition of Υn+1 and by (2.3.16) and (2.3.20), we have Υn+1(µ) = Γn+1

and Υn+2(µ) = Γn+2. Together with un(µ) > 1/C+
µ and un+1(µ) < 1/C+

µ , Lemma

2.3.2 implies

un+2(µ) =
Γn+2

Γn+1

1− un+1(µ)

1− C+
µ un+1(µ)

= Φ

1
C−µ Φ

1− C+
µ +

C+
µ

C−µ Φ

=
1

C+
µ Φ

.

Finally we prove that (2.3.8) holds for n+3. Since (2.3.8) holds for n+1 and (2.3.7)

holds for n+ 2, from (2.3.19) we get `(yn+3(µ)) = C−µ ηΦn+4. By (2.3.11) this gives

ηΦn+3 < `(yn+3(µ)) < ηΦn+2.

To see that un+3(µ) = u1(µ) note that the above inequalities, by Lemma 2.2.1 and

by the definition of Υn+1, we have Υn+3(µ) = Γn+3. Together un+1(µ) < 1/C+
µ and

un+2(µ) > 1/C+
µ , by Lemma 2.3.2 this gives

un+3(µ) = 1− Γn+3

Γn+2

un+2(µ)

1− C−µ (1− un+2(µ))
= 1− Φ

1
C+
µ Φ

1− C−µ (1− 1
C+
µ Φ

)
= 1− 1

C−µ Φ
.

Therefore if |µ| > µ̄, (2.3.7) and (2.3.8) holds for all n ≥ 0 and thus un(µ) = un+2(µ)

for all n ≥ 0.

We now prove that if −µ̄ < µ < −ν, we have

Φ < C−µ <
1

Φ
. (2.3.21)

Since η < 1 and C−µ > 1 the left inequality follows. Since µ > −µ̄ and C−−µ̄ = 1/Φ

we get C−µ < 1/Φ.

We now prove by induction on n that if −µ̄ < µ < −ν, we have (2.3.9) for all

n ≥ 1. From (2.3.3) and ηΦ = 1 − kη we get `(y0(µ)) = C+
µ ηΦ. Since µ < −ν, we

have Φ < `(y0(µ)) < +∞, hence κ0 = 0 and by Lemma 2.2.1 we get Υ0(µ) = Γ0.

Thus by Lemma 2.3.2 we have

u0(µ) =
1

C+
µ Φ

,

from which we get u0(µ) > 1/C+
µ , hence (2.3.12-2.3.15) hold. By (2.3.14) and

(2.3.21), since µ > −µ̄, we have ηΦ3 < `(y1(µ)) < ηΦ. This together with Lemma
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2.2.1 and by the definition of Υn+1 shows that Υ1(µ) = Γ3, and from (2.3.13) and

(2.3.15) we get u1(µ) = 1− Φ/C−µ . Hence (2.3.9) holds for n = 1. We now assume

that (2.3.9) holds for n and prove that (2.3.9) holds for n+ 1. Since Φ < 1 we have

1− Φ/C−µ > 1− 1/C−µ = 1/C+
µ , thus by Lemma 2.3.2,

`(yn+1(µ)) = (1− C−µ (1− u1(µ)))`(yn(µ)),

and as (2.3.9) holds for n, combining this with (2.3.21) we get

ηΦ2n+1 < `(yn(µ)) < ηΦ2n−1 and ηΦ2n+3 < `(yn+1(µ)) < ηΦ2n+1.

Therefore by Lemma 2.2.1 and by the definition of Υn+1, Υn(µ) = Γ2n+1 and

Υn+1(µ) = Γ2n+3. By Lemma 2.3.2 we get

1− un+1(µ) =
ηΦ2n+1

ηΦ2n−1

1− un(µ)

1− C−µ (1− un(µ))
= Φ2 1− un(µ)

Φ2
= 1− un(µ).

Therefore if −µ̄ < µ < −ν, then (2.3.9) holds for n ≥ 1 and thus un(µ) = un+1(µ)

for all n ≥ 1.

We now prove by induction on n that if ν < µ < µ̄, (2.3.10) holds for all n ≥ 0.

We have

C+
ν = 1 and C+

µ̄ =
2µ̄

µ̄+ ν
=

1

Φ
,

Since µ 7→ C+
µ is a continuous map for ν < µ < µ̄ this gives

1 < C+
µ <

1

Φ
. (2.3.22)

From (2.3.3) and ηΦ = 1− kη we get `(y0(µ)) = C+
µ ηΦ. Since µ < µ̄, from (2.3.22)

we get ηΦ < `(y0(µ)) < η.

Hence we also have ηΦ2 < `(y0(µ)) < η. Therefore by Lemma 2.2.1 κ0 = 0 and

we get Υ0(µ) = Γ2. Thus by Lemma 2.3.2 we have

u0 =
Γ0

`(y0(µ))
=

ηΦ2

C+
µ ηΦ

=
Φ

C+
µ

,

and thus (2.3.10) holds for n = 0. We now assume that (2.3.10) holds for n and

prove that (2.3.9) holds for n+ 1. Since un(µ) = u0(µ) < 1/C+
µ we have,

`(yn+1(µ)) = (1− C+
µ u0(µ))`(yn(µ)) = Φ2`(yn(µ)).

Since we assume (2.3.10) holds for n, then we have

`(yn(µ)) = C+
µ ηΦ2n+1.
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From these two identities, combined with (2.3.22), we get

ηΦ2n+2 < `(yn(µ)) < ηΦ2n and ηΦ2n+4 < `(yn+1(µ)) < ηΦ2n+2.

Therefore by Lemma 2.2.1 and by the definition of Υn+1 we have Υn(µ) = Γ2(n+1)

and Υn+1(µ) = Γ2(n+2). By Lemma 2.3.2 we get

un+1(µ) =
Γn+1

Γn

un(µ)

1− C+
µ un(µ)

=
ηΦ2n+2

ηΦ2n

Φ
C+
µ

1− Φ
=

Φ

C+
µ

Therefore if ν < µ < µ̄ then (2.3.10) holds for n ≥ 1 and thus if |µ| ≤ µ̄ then

un = un+1 for all n ≥ 1. This completes the proof. �

2.4 Dynamics of the first return map to the cen-

tral cone

In this section we introduce a map, denoted by ρ, containing information related to

the first return under our transformation F to the central cone Pc and we show how

it can be computed using tools from sections 2.2 and 2.3. This gives a dynamical

meaning to the sequences introduced in Section 2.3, (yn) is the sequence of imaginary

parts of the discontinuities of the map ρ, while (un) is the sequence of ratios of the

horizontal jumps produced by discontinuities of ρ relative to the cone width `(yn).

From Section 1.4.1 recall (1.4.3) and the definition of ν = tan(ϑ). Note that ν

depends on |ω|, and when necessary to stress this dependence we write ν = ν(|ω|).
Let µ′ ∈ R, be such that |µ′| > ν. Recall that we denote the upper-half plane of C
by H. With this notation we can write

Pc = {z ∈ H : −νRe(z) < Im(z) ∧ Im(z) > νRe(z)}.

Note that by (2.3.1), `(y) is the length of the line segment Pc∩{z ∈ H : Im(z) =

y}. From Section 1.4.1 recall (1.4.4). Particularly we denote by Lν and L−ν , re-

spectively, the lines P0 ∩ P1 and Pd ∩ Pd+1 and also a ray Lµ′ of slope µ′ lying on

Pc,
Lν = {z ∈ H : Im(z) = νRe(z)},
L−ν = {z ∈ H : Im(z) = −νRe(z)},
Lµ′ = {z ∈ H : Im(z) = µ′Re(z)}.

Let L′′S be the image of Lµ′ by F , denote its slope by µ and consider also the ray

Lµ of slope µ lying on Pc, this is:

Lµ = {z ∈ H : Im(z) = µRe(z)},
L′′S = {z ∈ H : Im(z) = µRe(z) +

(
1 +

µ

ν

)
y0},
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where y0 is as in (2.3.3).

Let Rθ be a rotation by an angle θ centred at the origin. If µ′ is such that Lµ′ is

contained in Pj, j = 1, ..., d then we have Lµ = Rθj(Lµ′), with θj = θj(ω, π̃), where

π̃ is the monodromy invariant associated to the TCE. Thus µ and µ′ are related by

the expression

µ′ =
µ− tan(θj)

1 + µ tan(θj)
.

or, equivalently,

µ =
µ′ + tan(θj)

1− µ′ tan(θj)
.

The image by F of a point z′ ∈ Lµ′ is a point z ∈ L′′S where

Im(z) = γ(µ, µ′)Im(z′), γ(µ, µ′) =

√(
1 +

1

µ′2

)
/

(
1 +

1

µ2

)
.

Note that by the definition of µ, since |µ′| > ν, we also have |µ| > ν. Now for

y > 0, let ξS(y) denote the point z ∈ Lµ′ , such that Im(F (z)) = y. This point is

unique and is given by z = (µ′−1 + i)γ(µ, µ′)−1y.

Recall the first return to the central cone map Fc from (1.4.7). Define the first

return of ξS(y) to Pc as the map ρ : R+ → Pc given by

ρ(y) = Fc(ξS(y)).

By the definition of Fc we have

Fc(z) = ρ(Im(F (z))),

for z ∈ Pc. Thus, the study of the map ρ and Fc are very closely related.

Let

D = {y > 0 : ρ is discontinuous at y}.
Theorem 2.4.2 relates the sequence {yn}n∈N with D, and characterizes the map ρ.

Recall our definitions of first hitting time n`(x) of x to Ic(`), in (2.1.4), and the

map r′`, in (2.1.6). Before stating and proving this theorem we need the following

lemma.

Lemma 2.4.1 i) Assume there is an n1 ∈ N and constants δ ≤ Γ′n1+1, ` and `′ such

that Γ′n1+1 ≤ ` < `′ < `+ δ ≤ Γ′n1
, then n`(1 + `′) = k′n1+1 and

r′`(1 + `′) = 1 + `′ − Γ′n1+1. (2.4.1)

ii) Assume there is an nd ∈ N and constants ` and `′ such that 0 < `′ ≤ Γ′′nd+1 ≤
` < Γ′′nd, then n`(1− `′) = k′′nd+1 and

r′`(1− `′) = 1− `′ + Γ′′nd+1. (2.4.2)
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Proof. We begin by proving i). First note that as 1 + `′ /∈ (1, 1 + `) we have

r′`(1 + `′) = r`(1 + `′). (2.4.3)

Also it is clear that for 1 ≤ n < n`′(1 + `′) we have gn0 (1 + `′) /∈ [1, 1 + `′], and since

` ≤ `′ this shows that gn0 (1 + `′) /∈ [1, 1 + `] as well. Thus n`(1 + `′) ≥ n`′(1 + `′).

Since Γ′n1+1 ≤ `′ < Γ′n1
, by Theorem 2.2.4 we have

g
n`′ (1+`′)
0 (1 + `′) = 1 + `′ − Γ′n1+1,

and as ` ≤ `′ ≤ ` + δ this implies that g
n`′ (1+`′)
0 (1 + `′) ∈ [1, 1 + `], thus n`(1 +

`′) = n`′(1 + `′) and from (2.4.3) we get (2.4.1). Since by Theorem 2.2.4 we have

n`′(1 + `′) = k′n1+1 this shows that n`(1 + `′) = k′n1+1 as well.

We now prove ii). Note that as 1− `′ < 1 we have

r′`(1− `′) = r`(1− `′). (2.4.4)

By the definition of d+, since `′ < ` we have `′ < d+(n`(1 − `′)), hence, by Lemma

2.1.3 we get

g
n`(1−`′)
0 (1− `′) = r`(1)− `′.

As Γ′′nd+1 ≤ ` < Γ′′nd we can apply Theorem 2.2.4 from whence we obtain

g
n`(1−`′)
0 (1− `′) = 1− `′ + Γ′′nd+1. (2.4.5)

As 0 < ` ≤ Γ′′nd+1 we get g
n`(1−`′)
0 (1 − `′) ∈ [1, 1 + `′], hence n`′(1 − `′) = n`(1 − `′)

which implies that r`(1− `′) = g
n`(1−`′)
0 (1− `′). Thus, combining (2.4.4) and (2.4.5)

we get (2.4.2). Since by Theorem 2.2.4 we have n`(1) = k′′nd+1 and combined with

(2.4.5) this proves that n`(1− `′) = k′′nd+1 as well. �

Theorem 2.4.2 Assume η ∈ (0, 1)\Q and |µ′| > ν > 0. Then ρ is a piecewise

affine map of slope µ−1. The set D is equal to the union of all points in the sequence

(yn)n∈N. Furthermore, for all n ∈ N; if ρ(yn) ∈ Lν, for yn+1 ≤ y < yn we have

ρ(y) = F k(ξS(yn))(ξS(y))−Υn, (2.4.6)

if ρ(yn) ∈ L−ν, for yn+1 ≤ y < yn we have

ρ(y) = F k(ξS(yn))(ξS(y)) + Υn. (2.4.7)

Also ρ(yn) ∈ Lν (resp. ρ(yn) ∈ L−ν) if and only if un−1 > 1/C+
µ (resp. un−1 <

1/C+
µ ).
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Proof. We begin by proving, by induction on n, that for all n ∈ N

card
{
D ∩ {y ∈ R+ : y > yn}

}
= n, (2.4.8)

ρ(yn) ∈ Lν ∪ L−ν and that for all y < yn, we have

k(ξS(y)) > k(ξS(yn)). (2.4.9)

For all n ∈ N, we prove that the map ρn : [0, yn)→ H such that

ρn(y) = F k(ξS(yn))(ξS(y)), (2.4.10)

is an affine map of slope µ−1. Furthermore, if ρ(yn) ∈ Lν (resp. ρ(yn) ∈ L−ν) then

for all y < yn we have

F k(ξS(y′))(ξS(y)) = ρn(y)−Υn (2.4.11)(
resp. F k(ξS(y′))(ξS(y)) = ρn(y) + Υn

)
, (2.4.12)

where y′ = yn+1 if n + 1 ∈ N and y′ = yn/2 otherwise. For yn+1 ≤ y < yn we have

(2.4.6) (resp. (2.4.7)).

We first show that for n = 0 we have (2.4.8), (2.4.9), ρ(y0) ∈ L−ν and that ρ0 is

an affine map of slope µ−1.

Note that for all y ≥ 0 we have

F (ξS(y)) = (µ−1 + i)y −
(

1

µ
+

1

ν

)
y0, (2.4.13)

which is an affine map of slope µ−1. By (2.3.3) we have that ρ(y0) ∈ L−ν and thus

y0 ∈ D.

As L′′S ∩ {z ∈ H : Im(z) > y0} ⊆ Pc, for y > y0 we have (2.4.8) and

ρ(y) = F (ξS(y)).

Thus by (2.4.13) we have that ρ0 is an affine map of slope µ−1. Note that for

y < y0 we have F (ξS(y)) ∈ Pd+1 and thus we have (2.4.9) as well.

It is clear that if u0 > 1/C+
µ (resp. u0 < 1/C+

µ ) then ρ(y1) ∈ Lν (resp. ρ(y1) ∈
L−ν). Now assume, for n ∈ N that ρ(yn) ∈ Lν (resp. ρ(yn) ∈ L−ν), un−1 > 1/C+

µ

(resp. un−1 < 1/C+
µ ), that (2.4.8) and (2.4.9) are true and ρn is an affine map

of slope µ−1. We show that (2.4.8) and (2.4.9) hold for n + 1. If ρ(yn) ∈ Lν

(resp. ρ(yn) ∈ L−ν) then for all y < yn we have (2.4.11) (resp. (2.4.12)) and for

56



2.4. DYNAMICS OF THE FIRST RETURN MAP TO THE CENTRAL CONE

yn+1 ≤ y < yn we have (2.4.6) (resp. (2.4.7)). In particular if yn+1 > 0 then ρn+1 is

an affine map of slope µ−1 and ρ(yn+1) ∈ Lν ∪ L−ν .
Assume that ρ(yn) ∈ Lν . We begin by proving that there is ỹ < yn such that for

ỹ ≤ y < yn we have ρ(y) = F k(ξS(ỹ))(ξS(y)) and (2.4.6).

Since ρn is an affine map of slope µ−1 and ρ(yn) ∈ Lν , for y < yn we have

ρn(y) = yn

(
1

ν
− 1

µ

)
+

1

µ
y + iy. (2.4.14)

We now consider that `(yn) ≤ Γ′0. As in the other case the proof is similar we

will omit it for brevity. By the definition of κn we have

Γ′κn < `(yn) ≤ Γ′κn−1. (2.4.15)

As Γ′0 ≤ η we get `(yn) ≤ η, hence by the definition of ` we get (2.1.7) for

z = ξS(y) and combining Lemma 2.1.2 with ρ(y) = Fc(ξS(y)), by (2.4.9) and (2.4.10)

we get

Re(ρ(y)) = s−1 ◦ r′`(y)

(
1 +

`(y)

2
+ Re(ρn(y))

)
. (2.4.16)

Recall the sequence (Υn)n∈N as in (2.3.5). Take 0 < δ′ < Υn and

ỹ = max

(
yn −

(
1

ν
− 1

µ

)−1

δ′,
νΥn

2

)
.

Note that we have ỹ < yn, since by (2.3.1) and (2.4.15), we have
νΓ′κn

2
< yn and as

|µ| > ν we also have (1/ν − 1/µ)−1 > 0.

We now show that for ỹ ≤ y < yn we have

Γ′κn ≤ `(y) <
`(y)

2
+ Re(ρn(y)) < `(y) + δ ≤ Γ′κn−1, (2.4.17)

with

δ = max(Γ′κn−1 − `(y),Γ′κn). (2.4.18)

First note that as y ≥ ỹ ≥ νΓ′κn we have Γ′κn ≤ `(y). As ρn(y) ∈ P0 we have

Re(ρn(y)) > `(y)/2 and thus `(y) < `(y)/2 + Re(ρn(y)).

By (2.4.14) and the definition of ` we have

`(y)

2
+ Re(ρn(y)) = `(y) +

(
1

ν
− 1

µ

)
(yn − y). (2.4.19)

As |µ| > ν we have (1/ν+1/µ) > 0, thus, as y < yn we get that `(y)/2+Re(ρn(y)) <

2yn/ν, which combined with (2.4.15) and (2.3.1) shows that

`(y)

2
+ Re(ρn(y)) < `(y) + (Γ′κn − `(y)).
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Since δ′ < Γ′κn we have y ≥ ỹ > yn − (1/ν − 1/µ)−1Γ′κn+1 and from (2.4.18) and

(2.4.19) we get
`(y)

2
+ Re(ρn(y)) < `(y) + δ.

Finally note that if `(y) > Γ′κn−1−Γ′κn then `(y)+δ = Γ′κn−1 and if `(y) ≤ Γ′κn−1−Γ′κn
then

`(y) + δ = `(y) + Γ′κn−1 ≤ Γ′κn−1.

This shows that (2.4.17) holds true.

Therefore the conditions for applying Lemma 2.4.1 i) are satisfied. With ` = `(y)

and `′ = `(y)/2 + Re(ρn(y)) we get

r′`(y)

(
1 +

`(y)

2
+ Re(ρn(y))

)
= 1 +

`(y)

2
+ Re(ρn(y))− Γ′κn ,

and n`(y)(1 + `(y)/2 + Re(ρn(y))) = k′κn , where n`(y) and r′`(y) are as in (2.1.4) and

(2.1.6) respectively.

Combining this with (2.4.16) and noting that Im(ρ(y)) = Im(ρn(y)) = y we

get (2.4.6) for y ∈ [ỹ, yn). Since k(ξS(y)) = n`(y)(1 + `(y)/2 + Re(ρn(y))) + 1 we

get that for y ∈ [ỹ, yn), k(ξS(y)) = k′κn + 1, and thus k(ξS(ỹ)) = k(ξS(y)) and

ρ(y) = F k(ξS(ỹ))(ξS(y)).

Denote

d− = d−
(

1 +
`(ỹ)

2
+ Re(F (ξS(ỹ))), n`(ỹ)

(
1 +

`(ỹ)

2
+ Re(F (ξS(ỹ)))

))
,

and let

∆(y, ỹ) =
`(y)

2
+ Re(F (ξS(y)))− `(ỹ)

2
− Re(F (ξS(ỹ))).

we will show that

F k(ξS(ỹ))(ξS(y)) = ρn(y)−Υn, (2.4.20)

for all y < yn.

Let us first prove (2.4.20) for all y < yn. Since it holds for y ∈ [ỹ, yn), we are left

to prove it for y < ỹ.

Note first that by (2.4.13), we have

∆(y, ỹ) =

(
1

ν
+

1

µ

)−1

(y − ỹ) < 0,

and since d− ≥ 0 we have ∆(y, ỹ) < d−. Combining this with (2.3.1), we get for

y < ỹ,

−(`(ỹ)− `(y)) < ∆(y, ỹ) < d−.
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From these inequalities and Lemma 2.1.4 we get that for n ≤ n`(ỹ)(1 + `(ỹ)/2 +

Re(F (ξS(ỹ))))

gn`(y)

(
1 +

`(y)

2
+ Re(F (ξS(y)))

)
= gn`(ỹ)

(
1 +

`(ỹ)

2
+ Re(F (ξS(ỹ)))

)
+ ∆(y, ỹ).

(2.4.21)

Recalling the definition of Rη,ϑ in (2.1.2) and also that

n`(ỹ)(1 + `(ỹ)/2 + Re(F (ξS(ỹ)))) = k(ξS(ỹ))− 1,

by Lemma 2.1.2 we have F (ξS(ỹ))) ∈ Rη,ϑ and

s−1 ◦ gk(ξS(ỹ))−1
`(ỹ)

(
1 +

`(ỹ)

2
+ Re(F (ξS(ỹ)))

)
= Re(ρ(ỹ)).

By Lemma 2.1.1, combining the previous identity with (2.4.21) gives

F k(ξS(ỹ))(ξS(y)) = Re(ρ(ỹ))− 1

µ
(ỹ − y) + iy,

and since (2.4.6) holds true for y = ỹ, by (2.4.14) we also have

Re(ρ(ỹ)) = yn

(
1

ν
− 1

µ

)
+

1

µ
ỹ − Γ′κn .

Combining the two expressions above and (2.4.14) we get F k(ξS(ỹ))(ξS(y)) = ρn(y)−
Γ′κn , which together with (2.3.5) gives (2.4.20) as intended.

We now prove that for all yn+1 ≤ y < yn,

k(ξS(y)) = k(ξS(ỹ)). (2.4.22)

By Lemma 2.1.4, n`(ỹ)(1+`(ỹ)/2+Re(F (ξS(ỹ)))) ≤ n`(y)(1+`(y)/2+Re(F (ξS(y)))),

for y ≤ ỹ, thus k(ξS(y)) ≥ k(ξS(ỹ)).

For all y ∈ [ỹ, yn), since k(ξS(y)) = k(ξS(ỹ)), to prove (2.4.22) for yn+1 ≤ y < yn

it is enough instead to show that

F k(ξS(ỹ))(ξS(y)) ∈ Pc. (2.4.23)

Begin by noting that by (2.4.20) we have

F k(ξS(ỹ))(ξS(y)) = yn

(
1

ν
− 1

µ

)
+

1

µ
y − Γ′κn + iy. (2.4.24)

Combining (2.3.2) with the definitions of yn+1, κn+1, Υn+1 and un+1, we get

yn+1 =



0 , yn =
(

1
ν
− 1

µ

)−1

Γ′κn ,

yn −
(

1
ν
− 1

µ

)−1

Γ′κn , yn >
(

1
ν
− 1

µ

)−1

Γ′κn ,(
1
ν

+ 1
µ

)−1

Γ′κn −
µ− ν
µ+ ν

yn , yn <
(

1
ν
− 1

µ

)−1

Γ′κn .

(2.4.25)
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It is clear from (2.4.25) and using |µ| > ν that yn+1 > 0 if yn 6= (1/ν−1/µ)−1Γ′κn
and yn+1 = 0 otherwise.

We consider the three separate cases in (2.4.25).

If yn = (1/ν−1/µ)−1Γ′κn , by (2.4.24) we have F k(ξS(ỹ))(ξS(y)) = y/µ+ iy, which,

since |µ| > ν proves (2.4.23).

If yn > (1/ν − 1/µ)−1Γ′κn it follows from (2.4.24) and |µ| > ν that −y/ν <

Re(F k(ξS(ỹ))(ξS(y))), also it follows from (2.4.24) that

Re(F k(ξS(ỹ))(ξS(y))) = (yn − y)

(
1

ν
− 1

µ

)
− Γ′κn +

1

ν
y,

and since y ≥ yn+1, we get from (2.4.25) that Re(F k(ξS(ỹ))(ξS(y))) ≤ y/ν, proving

(2.4.23) in this case.

Finally, if yn < (1/ν − 1/µ)−1Γ′κn , it follows from (2.4.24) and |µ| > ν that

Re(F k(ξS(ỹ))(ξS(y))) < y/ν, and from (2.4.24) that

Re(F k(ξS(ỹ))(ξS(y))) = yn

(
1

ν
− 1

µ

)
+ y

(
1

ν
+

1

µ

)
− Γ′κn −

1

ν
y.

Since y ≥ yn+1, we get from the above expression and (2.4.25) that

Re(F k(ξS(ỹ))(ξS(y))) ≥ −y/ν,

and thus (2.4.23).

This shows that for all yn+1 ≤ y < yn we have (2.4.22).

From (2.4.22) it follows that (2.4.8) holds for n+ 1. It also follows that

F k(ξS(ỹ))(ξS(y)) = F k(ξS(y′))(ξS(y)),

hence by (2.4.20) we have that (2.4.11) holds for all y < yn. Also from (2.4.22) it

follows that for all yn+1 ≤ y < yn, ρ(y) = F k(ξS(y′))(ξS(y)) and thus from (2.4.11) we

get (2.4.6) as well.

Finally note that if yn+1 > 0, then y′ = yn+1 and hence by (2.4.6) ρn+1 is an

affine map of slope µ−1. As ρ(yn) ∈ Lν we have un−1 > 1/C+
µ , hence by (2.4.25) and

the definitions of yn and un it is straightforward to check that ρ(yn+1) ∈ Lν (resp.

ρ(yn+1) ∈ L−ν) if and only if yn > (ν−1 − µ−1)
−1

Γ′κn (resp. yn < (ν−1 − µ−1)
−1

Γ′κn)

if and only if un > 1/C+
µ (resp. un < 1/C+

µ ).

The proof for the case ρ(yn) ∈ L−ν is similar to the previous one and so we omit

it.

By (2.4.6), (2.4.7) and (2.4.13) we get that ρ(y) is a an affine map of slope µ−1

for all yn+1 ≤ y < yn, n ∈ N, hence by Lemma 2.3.1 it is a picewise affine map in

[0, y0]. Also by Lemma 2.3.1 and (2.4.8) it follows that the set of discontinuities D
is equal to the union of all {yn}n∈N. �
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2.5 Proof of Theorems A and B

In this section we prove our main results, theorems A and B.

Set xn(µ) = Re(ρ(y−n (µ))). By Theorem 2.4.2 and by the definition of Υn, for all

n ∈ N, we have

ρ(y−n (µ)) =


yn(µ)

ν
−Υn(µ) + iyn(µ), ρ(yn(µ)) ∈ Lν ,

Υn(µ)− yn(µ)

ν
+ iyn(µ), ρ(yn(µ)) ∈ L−ν ,

which by the definitions of ` and un gives

un(µ) =
xn(µ)

`(yn(µ))
+

1

2
, for all n ∈ N. (2.5.1)

2.5.1 Proof of Theorem A

Let (yn(µ)) be the sequence associated to L′′S(µ). Recall that by (1.4.3) we have

ϑ = (π − |ω|)/2.

We begin by proving that there is a positive real number ȳ1 such that, for all µ

satisfying |µ| > tan(ϑ) = ν, we have y1(µ) ≥ ȳ1. Let ϕ, ϕ′ ∈ [ϑ, π − ϑ] be such that

µ = tan(ϕ) and µ′ = tan(ϕ′). (2.5.2)

Let Lµ′ ⊆ Pj, we define

γj(ϕ) = |cos(θj)− sin(θj) cot(ϕ)|−1 , (2.5.3)

and

γ′j(ϕ
′) = |cos(θj)− sin(θj) cot(ϕ′)| ,

where θj = θj(ω, π̃) and π̃ is the monodromy invariant associated to the TCE. By

the definition of µ′ we can see that

γ(µ, µ′) = γj(ϕ) = γ′j(ϕ
′). (2.5.4)

Recall from (2.3.3) that

y0(µ) = η′
µν

µ+ ν
.

Hence using (2.5.3), we have

y0(tan(ϕ))γj(ϕ)−1 = η′ν |cos(θj)|
∣∣∣∣1− tan(θj) cot(ϕ)

1 + ν cot(ϕ)

∣∣∣∣ . (2.5.5)

Let

ȳ0 = min
j∈{1,...,d}

{
inf
ϕ∈Wj

{y0(tan(ϕ))γj(ϕ)}
}
. (2.5.6)
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Fix j ∈ J = {1 ≤ j ≤ d : θj = π/2}. By (2.5.5), if ϕ 6= π/2, we have

y0(tan(ϕ))γj(ϕ) = η′ν

∣∣∣∣ cot(ϕ)

1 + ν cot(ϕ)

∣∣∣∣ > 0.

We now show that π/2 /∈ Wj. Assume that ϕ = π/2 ∈ Wj. Note that from the

definition of Lµ′ and (2.5.2) we get ϕ′ = ϕ− θj. Therefore, since θj = π/2, we have

ϕ′ = 0, which is impossible since ν = tan(ϑ) > 0 and ϕ′ ∈ [ϑ, π − ϑ]. Thus, we get

ȳ0 = min
j /∈J

{
inf
ϕ∈Wj

{y0(tan(ϕ))γj(ϕ)}
}
.

Now fix j ∈ {1, ..., d}. Since ϕ′ ∈ [ϑ, π − ϑ] we have ϕ′ > arctan(ν), and thus,

since ϕ′ = ϕ − θj, we have ϕ − θj > arctan(ν). Thus, ϕ is bounded away from θj

and this bound depends only on ν. Therefore tan(θj) 6= tan(ϕ) and thus there is

c̃(ν, j) > 0 such that

|1− tan(θj) cot(ϕ)| > c̃(ν, j).

Since ϕ ∈ [arctan(ν), π − arctan(ν)] we have |ν cot(ϕ) ≤ 1|, thus we also have

|1 + ν cot(ϕ)| ≤ 2. From this and the above inequality we get

η′ν |cos(θj)|
∣∣∣∣1− tan(θj) cot(ϕ)

1 + ν cot(ϕ)

∣∣∣∣ ≥ η′ν

2
c̃(ν, j) |cos(θj)| > 0.

Combining this with (2.5.5) and (2.5.6) we get

ȳ0 ≥ min
j∈{1,...,n}

{
1

2
c̃(ν, j) |cos(θj)|

}
> 0.

Thus, for all ν > 0, we have ȳ0 > 0.

Note that from (2.5.2) and the definitions of C+
µ and C−µ , we can write D(ϕ) =

C−µ /C
+
µ as a function of ϕ as

D(ϕ) =
1 + ν cot(ϕ)

1− ν cot(ϕ)
.

Define the interval Wϕ = [arctan(ν), π − arctan(µ̄)]. Note that D(ϕ) is a positive,

continuous and decreasing function of ϕ ∈ Wϕ. Since ϕ ≤ π − arctan(µ̄), we have

D(ϕ) ≥ 1 + ν(−Φ3/ν)

1− ν(−Φ3/ν)
=

1− Φ3

1 + Φ3
= Φ,

since Φ2 = 1− Φ. Thus we obtain

inf
ϕ∈Wϕ

D(ϕ) ≥ Φ. (2.5.7)
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It follows from Theorem 2.3.3 that y1 = y0C
−
µ Φ/C+

µ if µ ≥ −µ̄ and y1 = y0Φ2 if

µ < −µ̄. This implies that for all ϕ ∈ Wϕ, we have that

y1(tan(ϕ)) =

{
Φ2y0(tan(ϕ)), µ < µ̄,
D(ϕ)y0(tan(ϕ)) µ ≥ µ̄.

By (2.5.6) this gives

min
j∈{1,...,d}

{
inf
ϕ∈Wj

{y1(tan(ϕ))γj(ϕ)}
}
≥ min

(
Φ2, inf

ϕ∈Wϕ
D(ϕ)

)
ȳ0

Define ȳ1 = Φ2ȳ0. Note that since ȳ0 > 0, we have ȳ1 > 0 as well. From the

above inequality and (2.5.7) we get

y1(µ) ≥ min
j∈{1,...,d}

{
inf
ϕ∈Wj

{y1(tan(ϕ))γj(ϕ)}
}
≥ ȳ1. (2.5.8)

Define U = {z ∈ Pc : Im(z) < ȳ1}. We now prove (1.5.1) for z ∈ U . Let µ′

be such that z ∈ Lµ′ , then Φ2z ∈ Lµ′ , hence by the definition of γ(µ, µ′) and as

Fc(z) = ρ(Im(F (z))) we have

1

Φ2
Fc(Φ

2z) =
1

Φ2
ρ(γ(µ, µ′)yΦ2), (2.5.9)

Set y′ = γ(µ, µ′)y. From (2.5.4) and (2.5.8) we have

y1(µ) = γ(µ, µ′)γj(µ)−1y1(µ) ≥ γ(µ, µ′)ȳ1, (2.5.10)

for j such that (x, y) ∈ Pj. Since Im(ρ(y′)) = y′, by (2.5.9) and (2.5.10), to prove

(1.5.1) it is enough to prove that

Re(ρ(y′Φ2)) = Φ2Re(ρ(y′)), (2.5.11)

for y′ < y1(µ). We prove (2.5.11) for y′ < y1(µ). Recall that y1 = y1(µ). By (2.5.10),

there must be an n ≥ 1, such that

yn+1(µ) ≤ y′ < yn(µ). (2.5.12)

Recall from Theorem 2.4.2 that ρ(y′) is a piecewise affine map of constant slope µ−1

and it is continuous if y′ satisfies (2.5.12). From this we have

ρ(y′) = ρ(yn+1)− yn+1 − y′
µ

,

and combining this with (2.5.1) and by the definition of `, we have

Re(ρ(y′)) = (2un(µ)− 1)
yn+1(µ)

ν
− yn+1(µ)− y′

µ
. (2.5.13)
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Now multiplying (2.5.12) by Φ2 we get

yn+1(µ)Φ2 ≤ y′Φ2 < yn(µ)Φ2,

thus by Theorem 2.3.3 we have{
yn+2(µ) ≤ y′Φ2 < yn+1(µ) , if |µ| < µ̄
yn+3(µ) ≤ y′Φ2 < yn+2(µ) , if |µ| ≥ µ̄.

By a similar argument to the used to prove (2.5.1), from the above inequalities we

get

Re(ρ(y′Φ2)) =


(2un+1(µ)− 1)

yn+2(µ)

ν
− yn+2(µ)− y′Φ2

µ
, if |µ| < µ̄

(2un+2(µ)− 1)
yn+3(µ)

ν
− yn+3(µ)− y′Φ2

µ
, if |µ| ≥ µ̄,

applying Theorem 2.3.3 to this expression gives

Re(ρ(y′Φ2)) = (2un(µ)− 1)
yn+1(µ)Φ2

ν
− yn+1(µ)Φ2 − y′Φ2

µ
.

Comparing this identity with (2.5.13) we get (2.5.11). This completes our proof.

�

Recall our definition of first return map Fc of z ∈ Pc to the central cone Pc. Before

proving Theorem B we need the following result showing that in the conditions of

Theorem A, Fc is a PWI with respect to a partition of countably many atoms.

Theorem 2.5.1 For all ω ∈ W, η = 1/(k + Φ) and η′ = 1 − kη with k ∈ N, Fc is

a piecewise isometry with respect to a partition of countably many atoms.

Proof. We begin by noting that Fc is a PWI since it is the first return map under

F to Pc which is a union of elements of the partition of F . We now prove that the

partition of Fc has countably many atoms. Assume by contradiction that there is

N ∈ N, a partition {Qj}j∈{0,...,N−1} of Pc, and θj(ω, π̃), ηj for j ∈ {0, ..., N − 1} such

that

Fc(z) = eiθj(ω,π̃)z + ηj, z ∈ Qj.

By Theorem A there is an open set U of Pc, containing the origin, where Fc is

renormalizable. Consider the set U ′ = U\Φ2U and take j′ ∈ {0, ..., N − 1} such

that U ′ ∩ Pj′ 6= ∅. Since η and η′ are irrational numbers, we have that Fc(z) =

eiθj′ (ω,π̃)z + ηj′ for z ∈ U ′ ∩ Pj′ ,
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Define the sequence (Ũk)k≥0, where

Ũ0 = U ′ ∩ Pj′ and Ũk = Φ2(k−1)Ũ0\Φ2kŨ0, for k ≥ 1.

For every k ≥ 0 and all z ∈ Ũk we have that Φ−2kz ∈ Ũ0. Since Ũk ⊆ U , we can

renormalize Fc, k times to get

Fc(z) = Φ2kFc(Φ
−2kz) = eiθj′ (ω,π̃)z + Φ2kηj′ .

Since ηj′ 6= 0, Φ2kηj′ takes countably many different values, hence for each k

there must be a jk such that for z ∈ Ũk we have z ∈ Pjk and jk 6= jk′ for k 6= k′.

But jk ∈ {0, ..., N − 1} hence there must exist k′ 6= k′′ such that jk′ = jk′′ , which is

a contradiction. This finishes our proof. �

2.5.2 Proof of Theorem B

We begin by proving that Pc can be separated into two connected regions Cb and Cu,

which are forward invariant for Fc, such that Cb is bounded and Cu is unbounded.

By the proof of Theorem A there exists a y1 > 0 and an open set

U = {z ∈ Pc : Im(z) < y1}, (2.5.14)

such that we have (1.5.1) for all z ∈ U .

Since η = 1/(k + Φ) and η′ = 1 − kη with k ∈ N, by Theorem 2.5.1, Fc is

a PWI with respect to a partition of countably many atoms which we denote PFc .
Furthermore, since ω ∈ A(η, η′), there exist d′ ≥ 2, λ ∈ Rd′

+, π ∈ Sd′ and a continuous

embedding γ, of fλ,π : I → I into Fc : Pc → Pc, such that γ(I) ⊂ Φ2U , γ(0) ∈ L−ν ,
γ(|λ|) ∈ Lν and

B = {P ∈ PFc : P ∩ γ(I) 6= ∅},

is a barrier for Fc. Let

Lν = {z ∈ Lν : Im(z) ≤ Im(γ(|λ|))} , L−ν = {z ∈ L−ν : Im(z) ≤ Im(γ(0))} .

Since γ(|λ|) ∈ Lν and γ(0) ∈ L−ν we have that γ(|λ|) ∈ Lν and γ(0) ∈ L−ν re-

spectively. As γ is a homeomorphism of I, Lν∩γ(I) = γ(|λ|) and L−ν∩γ(I) = γ(0),

we have that J = Lν ∪L−ν ∪ γ(I) is homeomorphic to a circle, hence by the Jordan

curve Theorem C\J consists of two connected components, a bounded C ′b and an

unbounded C ′u.

Take Cb = C ′b ∩Pc and Cu = C ′u ∩Pc. We now show that for any P ∈ B we have

Fc(P ∩ Cu) ⊆ Cu and Fc(P ∩ Cb) ⊆ Cb.
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Let P ∈ B. Note that the restriction Fc|P of Fc to P is an orientation preserving

isometry. Furthermore since γ is a continuous embedding it is order preserving,

hence Fc|P∩γ(I) is order preserving as well. Thus it is possible to construct an

orientation preserving homeomorphism γ̃ : C → C such that γ̃|P = Fc|P . γ̃ must

map Cb into Cb and Cu into Cu. In particular if z ∈ P ∩Cu (resp. z ∈ P ∩Cb) then

Fc(z) = γ̃(z) ∈ Cu (resp. Cb).

We now show that Fc(Cu) ⊆ Cu. Note that since B is a barrier, Pc\B is the

union of two disjoint connected components Au, Ab. Since γ(I) ⊂ ⋃A∈B A, these

regions must be contained in Cu or Cb. Without loss of generality assume Au ⊆ Cu

and Ab ⊆ Cb.

Assume by contradiction that there is a z ∈ Cu such that Fc(z) /∈ Cu. Since for

any P ∈ B we have Fc(P ∩Cu) ⊆ Cu, we must have z ∈ Bu. Since B is a barrier we

have that Fc(z) /∈ Ab, thus we must have Fc(z) ∈ Cb\Ab. Let P ⊆ Au be the atom

of the partition PFc such that z ∈ P . Since Fc(z) ∈ Cb\Ab we have Fc(P ) ∩ B 6= ∅
and since B is a barrier this implies that Fc(P ) ∩ (B ∩ Au) 6= ∅.

As Bu ⊆ Cu we have that either Fc(P ) ∩ γ(I) 6= ∅ or Fc(P ) ∩ Cu 6= ∅. In the

later case, as Fc(z) ∈ Cb, Fc(P ) is connected and Cu and Cb are disjoint we have

that Fc(P ) ∩Cb ∩Cu 6= ∅ and hence Fc(P ) ∩ γ(I) 6= ∅ as well. As γ is bijective this

is only possible if A ∈ B which contradicts P ⊆ Au.

Similarly we can see that Fc(Cb) ⊆ Cb. We will omit this part for brevity of the

argument.

We now construct sets V1, V2, ..., which are forward invariant by Fc. We first

define a set V1 ⊆ U and show that Fc(V1) ⊆ V1.

Let γ′ = Φ−2γ, we show that γ′ : I → Φ−2γ(I) is a continuous embedding of

fλ,π into Fc. Since γ(I) ⊆ Φ2U , by Theorem A we have (1.5.1) for all z ∈ Φ−2γ(I).

Hence for all x ∈ I we have

Fc ◦ γ′(x) = Φ−2Fc ◦ γ(x).

Combining this with (1.4.8), which holds as γ is an embedding, we get

Fc ◦ γ′(x) = γ′ ◦ f(x),

for all x ∈ I.

As before γ′(I) separates Pc into two disjoint connected components, one bounded

C ′′b and other unbounded C ′′u . Take V1 = C ′′b ∩ Cu. Since γ′(I) ⊂ U we have

C ′′b ⊆ U and thus V1 ⊆ U . To see that V1 is forward invariant by Fc, note that if

z ∈ C ′′b , then Φ2z ∈ Cb and hence Fc(Φ
2z) ∈ Cb. Since C ′′b ⊆ U , by Theorem A
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we have Fc(z) ∈ Φ−2Cb ⊆ C ′′b . Thus Fc(C
′′
b ) ⊆ C ′′b and as Fc(Cu) ⊆ Cu we get that

Fc(V1) ⊆ V1 as intended.

Take Vn = Φ2(n−1)V1, for n ≥ 2. To see that Vn is forward invariant by Fc, take

z ∈ Vn, then Φ2(n−1)z ∈ V1 ⊆ U . Hence by Theorem A we have

Fc(z) = Φ2(n−1)Fc(Φ
−2(n−1)z),

and thus Fc(z) ∈ Vn.

We now prove that
+∞⋃
n=1

Vn = C ′′b \{0}. (2.5.15)

First we show, by induction on n, that for all n ≥ 1 we have

V1 ∪ ... ∪ Vn = C ′′b ∩ Φ2(n−1)Cu. (2.5.16)

It is simple to see that (2.5.16) holds for n = 1. We assume (2.5.16) holds for n and

show it holds for n+ 1. By (2.5.16) we get

V1 ∪ ... ∪ Vn+1 = (C ′′b ∩ Φ2(n−1)Cu) ∪ (Φ2nC ′′b ∩ Φ2nCu).

As Φ2nC ′′b = Φ2(n−1)Cb we have that

C ′′b = Φ2nC ′′b ∪ (C ′′b ∩ Φ2(n−1)Cu),

and as Φ2(n−1)Cu ⊆ Φ2nCu we have

Φ2nCu = Φ2nCu ∪ (C ′′b ∩ Φ2(n−1)Cu).

Combining the three expressions above we get that (2.5.16) is true for n + 1, as

intended.

Since γ(I) ⊆ Φ2U , we have that Pc\Φ2U ⊆ Cu, hence, by (2.5.14), if Im(z) >

y1Φ2 then z ∈ Cu. Similarly it can be seen that if Im(z) > y1Φ2n, then z ∈ CuΦ2(n−1).

Therefore, as Φ < 1, for all z ∈ Pc\{0}, there is an n ∈ N such that z ∈ Φ2(n−1)Cu.

Combining this with (2.5.16) we get (2.5.15).

We now show that there exists an m ∈ N such that Φ2mU ⊆ C ′′b . Let

y′ = inf
x∈I
{Im(γ(x))} .
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Note that as γ′ is an embedding we must have y′ > 0. Hence there must be an

m ∈ N such that y′ > y1Φ2m. Thus γ(I) ⊂ Pc\Φ2mU . As Pc\Φ2mU is unbounded

we must have Cu ⊆ Pc\Φ2mU and hence Φ2mU ⊆ C ′′b .

To conclude the proof of i), take y∗ = y1Φ2m. For any z ∈ Pc, such that

0 < Im(z) < y∗, by (2.5.14), as Φ2mU ⊆ C ′′b we have z ∈ C ′b\{0}. Hence by (2.5.15)

there must be a n ∈ N such that z ∈ Vn.

We now prove ii). We show that for all n ≥ 1 we have

Vn ⊆ Φ2(n−1)U\Φ2(m+n)U. (2.5.17)

Note that we have

Φ2mU ⊆ C ′′b ⊆ U,

therefore as Cb = Φ2C ′′b we get

Φ2(m+1)U ⊆ Cb ⊆ Φ2U,

hence Cu ⊆ Pc\Φ2(m+1)U and thus

C ′′b ∩ Cu ⊆ (Pc\Φ2(m+1)U) ∩ U.

Therefore V1 ⊆ U\Φ2(m+1)U . As Vn = Φ2nC ′′b ∩ Φ2nCu we get (2.5.17) as intended.

We now show that for any n ∈ N there exist constants 0 < bn < bn such that for

all z ∈ Vn and k ∈ N we have (1.5.2). Let

bn = y1Φ2(n+m) sin(ϑ), (2.5.18)

bn =
(∣∣1 + y1Φ2(n−1) cot(ϑ) csc(ϑ)

∣∣2 + y1
2Φ4(n−1) csc2(ϑ)

) 1
2
. (2.5.19)

As ϑ < π/2 it is straightforward to check that 0 < bn < bn.

We first show that |F k(z)| ≥ bn for all k ∈ N. Recall the definition of γ(µ, µ′).

For 1 ≤ k ≤ k(z) we have

Im(F k(z)) = γIm(z). (2.5.20)

Let j ∈ {1, ..., d} be such that z ∈ Pj, by (2.5.3) and (2.5.4) we have

γ =
sin(arg(z))

sin(arg(z)− θj)
,

as {arg(z), arg(z)− θj} ⊂ [ϑ, π − ϑ], this shows

sin(ϑ) ≤ γ ≤ csc(ϑ). (2.5.21)
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Combining (2.5.20) and (2.5.21) we get mink≤k(z) Im(F k(z)) ≥ sin(ϑ)Im(z). As z ∈
Vn, by (2.5.14) and (2.5.17) we have

y1Φ2(n+m) < Im(z) < y1Φ2(n−1). (2.5.22)

Combining the inequalities above we get

|F k(z)| ≥ min
k≤k(z)

Im(F k(z)) ≥ y1Φ2(n+m) sin(ϑ),

hence, by (2.5.18) we get that |F k(z)| ≥ bn for all k ≤ k(z). Since F k(z) = Fc(z) ∈
Vn this holds for all k ∈ N.

We now prove that |F k(z)| ≤ bn for all k ∈ N. Recall the definition of trapping

region in (2.1.2). If Im(F (z)) ≤ η/(2 cot(ϑ)), then F (z) ∈ Rη,ϑ and by Lemma

2.1.1, we get that for k ≤ k(z)

|Re(F k(z))| ≤ |1 + Im(F k(z)) cot(ϑ)|. (2.5.23)

If Im(F (z)) > η/(2 cot(ϑ)), we get

|η − Im(F (z)) cot(ϑ)| < |1 + Im(F (z)) cot(ϑ)|,

and combining this with the definition of F we get that (2.5.23) holds in this case

as well.

By (2.5.21), (2.5.20), (2.5.22) and noting that csc(ϑ) > 1, for 0 ≤ k ≤ k(z) we

have

|Im(F k(z))| ≤ csc(ϑ)y1Φ2(n−1).

Combining this with (2.5.23) we get

|Re(F k(z))| ≤ |1 + y1Φ2(n−1) cot(ϑ) csc(ϑ)|.

From the two inequalities above we obtain

|F k(z)| ≤
(∣∣1 + y1Φ2(n−1) cot(ϑ) csc(ϑ)

∣∣2 + y1
2Φ4(n−1) csc2(ϑ)

) 1
2
.

hence, by (2.5.19) we get that |F k(z)| ≤ bn for all k ≤ k(z). Since F k(z) = Fc(z) ∈
Vn this holds for all k ∈ N.

Finally we prove iii). Let γn(x) = Φ2nγ(x), for all x ∈ I. We show that for all

n ∈ N, γn is an embedding of fλ,π into Fc.

As γ is an embedding it is clear that γn : I → Φ2nγ(I) is a homeomorphism.

Since γ(I) ⊂ U we have that γn(I) ⊂ Φ2nU , hence by Theorem A we get

Fc ◦ γn(x) = Φ2nFc ◦ γ(x),
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for all x ∈ I. Since γn = Φ2nγ by (1.4.8) we also have

Φ2nFc ◦ γ(x) = γn ◦ fλ,π(x),

for all x ∈ I. Combining the identities above we get

Fc ◦ γn(x) = γn ◦ fλ,π(x),

for all x ∈ I, and hence γn is an embedding of fλ,π into Fc. �

2.6 Infinitely many periodic islands

and non-ergodicity

In this section we prove the existence of infinitely many periodic islands, accu-

mulating on the real line, as well as non-ergodicity of Translated Cone Exchange

Transformations (TCEs) close to the origin.

An horizontal periodic orbit is a periodic orbit O, such that there is an h ∈ R
for every zk ∈ O such that Im(zk) = h for all k ∈ N. We say h is the height of the

orbit. An horizontal periodic island is a periodic island that contains an horizontal

periodic orbit.

Recall the open polytope W defined in (1.4.2). Let R(π̃) denote the set of all

ω ∈W such that for some j ∈ {1, ..., d} we have∣∣∣∣∣∣
∑

π̃(k)>π̃(j)

ωk −
∑
k<j

ωk

∣∣∣∣∣∣ < ωj. (2.6.1)

Given a permutation π ∈ S({1, ..., d}) with monodromy invariant π̃, let JR(π̃)

be the set of all j ∈ {1, ..., d} such that (2.6.1) holds for some ω ∈W.

Define the sets ζ−(d) (resp. ζ+(d)) of all monodromy invariants π̃ : {1, ..., d} →
{1, ..., d} such that π̃({1, ..., k}) 6= {1, ..., k} for 1 ≤ k < d, there is a j′ ∈ JR(π̃) and a

j′′ ∈ {1, ..., d} such that j′ < j′′ and π̃(j′′) < π̃(j′) (resp. j′ > j′′ and π̃(j′′) > π̃(j′)).

Denote by ζ(d) their union ζ−(d) ∪ ζ+(d).

In this section we prove the following theorem, which states that there is a

non-empty open set of rotation parameters for which TCEs have infinitely many

horizontal periodic islands accumulating on the real line.

Theorem 2.6.1 Let π̃ ∈ ζ(d), η = 1/(k + Φ) and η′ = 1 − kη, for some k ∈ N.

There is a non-empty open set W ⊆ W ∩ R(π̃) such that for all ω ∈ W, F has

infinitely many horizontal periodic islands accumulating on the real line.
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As a result we get that for the same parameter set, TCEs are not ergodic in a

neighbourhood of the origin.

Theorem 2.6.2 Let π̃ ∈ ζ(d), ω ∈W ∩ R(π̃), η = 1/(k + Φ) and η′ = 1− kη, for

some k ∈ N. If U is an invariant set for Fc that contains a neighbourhood of the

origin then the restriction of Fc to U does not have a dense orbit. In particular F

is not ergodic with respect to Lebesgue measure.

We begin by proving Theorem 2.6.3, which states that periodic points of a TCE

are contained in periodically coded islands formed by unions of invariant circles.

We introduce reflective interval exchange transformations, relate them to TCEs

and prove Theorem 2.6.6 which shows that for a family of TCEs for every n ∈ N

such that un belongs to a certain interval IP (µj) there is a horizontal periodic orbit for

the TCE. The final part of the section contains the proof of Theorems 2.6.1 and 2.6.2.

We define the itinerary of a point z ∈ H, under F , to be i(z) = i0i1..., with

ik =


0, if F k(z) ∈ P0,

j, if F k(z) ∈ Pj, j = 1, ..., d,

d+ 1, if F k(z) ∈ Pd+1,

for k ∈ N. Given δ > 0, denote by Sδ(z), the circle of radius δ centred at z.

Let m′j(k) be the number of js in the k-th first symbols of the itinerary of p, for

j = 1, ..., d. In the next theorem we prove that for η irrational, every periodic orbit

that does not fall on the boundary of the partition must have a family of invariant

manifolds. These are unions of circles centred on the periodic point parametrized

by their radii.

Theorem 2.6.3 Let p ∈ H\⋃k
j′=0 F

−j′(∂P) be a periodic point of F of period k.

Assume η ∈ R+\Q . There exists ε > 0 such that for all 0 < δ < ε the union⋃k−1
r=0 S

δ(F r(p)) is an invariant set for F . The orbit of any z ∈ ⋃k−1
r=0 S

δ(F r(p)) is

dense on this set if and only if m′1(k)θ1(ω, π̃) + ...+m′d(k)θd(ω, π̃) ∈ π · R\Q.

Proof. We begin by showing that the itinerary of p contains at least one symbol in

{1, ..., d}. Assume by contradiction that i(p) is a periodic sequence of 0s and d+ 1s.

It is clear that

F k(p) = Fm′0(k)+m′d+1(k)(p) = z +m′d+1(k)η −m′0(k).

Since p is a periodic point of F of period k we have z = F k(z) = m′d+1(k)η−m′0(k)+z.

Therefore we get that η = m′0(k)/m′d+1(k) ∈ Q, contradicting the assumption that

η is irrational.
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Hence we can assume i0(p) ∈ {1, ..., d} without loss of generality, since we can

choose to start the periodic orbit at the first iterate that falls in Pj for some j =

1, ..., d. Since p ∈ H\⋃k
j′=0 F

−j′(∂P), then p belongs to some open cell Uk in the

k-th refinement of the partition. Since all points in this cell will share the first k

addresses in the itinerary, we have i0(p)...ik(p) = i0(z)...ik(z) for z ∈ Uk. Therefore

F k : Uk → C is such that

F k(z) = eiθ
′(ω,ϑ)z + t′(ω, ϑ, η, η′),

for some functions θ′ : [0, π)2 → [0, π) and t′ : [0, π)2 × R2
+ → R. Since F k(p) = p

we have

p =
t′(ω, ϑ, η, η′)

1− eiθ′(ω,ϑ)
.

From this it is easy to check that we can rewrite

F k(z) = eiθ
′
(z − p) + peiθ

′
+ t = eiθ

′
(z − p) + p,

and we get

|F k(z)− p| = |eiθ′(z − p) + p− p| = |z − p|. (2.6.2)

This implies that F k is invariant in the largest circle with center p contained in Uk.

Take ε > 0 such that Bε(p) ⊆ Uk. We now see that for l = 1, ..., k − 1 we have

F l(Bε(p)) = Bε(F
l(p)).

From (2.6.2) we have |F k(z)−p| = |z−p| < ε which implies that F k(z) ∈ Bε(p).

Therefore F k(Bε(p)) ⊆ Bε(p). This implies that for all r ∈ N, we have F rk(z) ∈
Bε(p), hence we also have for l = 1, ..., k − 1 that i(F l(z)) = i(F rk+l(z)). Therefore

every z ∈ Bε(p) has the same itinerary of p. It follows that Bε(F
l(p)) is also an

invariant set for F l, since we can repeat the above argument for l = 1, ..., k − 1 and

conclude F l(Bε(p)) = Bε(F
l(p)).

For any 0 < δ < ε we know that z ∈ Sδ(p) if and only if z = p + δeiν
′

for some

ν ′ ∈ [0, 2π). Since F k(z) = δei(θ
′+ν′) + p, we have F k(Sδ(p)) ⊆ Sδ(p). Therefore

F k(Sδ(p)) = Sδ(p), since the reverse inclusion is clear. We can repeat this argument

for l = 1, ..., k − 1 and conclude that F l(Sδ(p)) = Sδ(F l(p)) is an invariant set for

F l. Therefore
⋃k−1
r=0 S

δ(F r(p)) is an invariant set for F .

Finally we prove that the orbit of any z ∈ ⋃k−1
r=0 S

δ(F r(p)) is dense on this set if

and only if m′1(k)θ1(ω, π̃) + ...+m′d(k)θd(ω, π̃) ∈ π · R\Q. Note that

θ′(ω, ϑ) = m′1(k)θ1(ω, π̃) + ...+m′d(k)θd(ω, π̃).

We also have that F k acts as a rotation by an angle θ′ in Sδ(p), so the orbit of F k

is dense if and only if m′1(k)θ1(ω, π̃) + ...+m′d(k)θd(ω, π̃) ∈ π ·R\Q. The statement

for F follows by F l(Sδ(p)) = Sδ(F l(p)). �
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Recall the definition of interval exchange transformation (IET) in the Introduc-

tion. We will adopt this definition throughout the remainder of this chapter. Given

ω ∈ Rd
+, π̃ : {1, ..., d} → {1, ..., d}, we say an IET fω,π̃ is reflective if there is a point

x ∈ I such that fω,π(x) = |ω| − x. Where |ω| denotes the `1 norm of ω.

Recall, from the Introduction, that R(π̃) denotes the parameter region of all

ω ∈ Rd
+ such that for some j ∈ {1, ..., d} we have (2.6.1). The following lemma gives

an alternative characterization of this set.

Lemma 2.6.4 Let ω ∈ Rd
+ and π ∈ S({1, ..., d}). Then fω,π is reflective if and only

if ω ∈ R(π̃).

Proof. Consider the map f̃ : I → I such that f̃(x) = |ω| − fω,π(x), for x ∈ I.

By definition of this property, fω,π is reflective if and only if f̃ has a fixed point.

Note that for all j ∈ {1, ..., d} the restriction of f̃ to Ij is an orientation reversing

continuous bijection, hence f̃ has a fixed point if and only if there is a j ∈ {1, ..., d}
such that f̃(Ij) ∩ Ij 6= ∅. It is simple to see that this condition is satisfied if and

only if (2.6.1) holds. Thus fω,π is reflective if and only if ω ∈ R(π̃) as desired. �

Recall, from the Introduction, that given π ∈ S({1, ..., d}), JR(π̃) is the set of

all j ∈ {1, ..., d} such that (2.6.1) holds, for some ω ∈ Rd
+.

Given ω ∈W ∩R(π̃) and j ∈ JR(π̃) set

µj(ω, π̃) = tan

(
π + θj(ω, π̃)

2

)
. (2.6.3)

We omit, for simplicity, the arguments of µj(ω, π̃) when this does not cause ambi-

guity.

Lemma 2.6.5 Let π ∈ S({1, ..., d}), ω ∈W ∩ R(π̃), j ∈ JR(π̃) and µj(ω, π̃) as in

(2.6.3). We have L−µj ⊆ Pj and for all z ∈ L−µj we have Im(F (z)) = Im(z).

Proof. We begin by showing that there is a j ∈ {1, ..., d} and a ϕ ∈ Wj such that

fω,π(ϕ− ϑ) = π − ϑ− ϕ, (2.6.4)

with ϑ as in (1.4.3). Since ω ∈ R(π̃) we have that fω,π is a reflective IET, hence

there is a j ∈ {1, ..., d} and a ϕ′ ∈ Ij such that fω,π(ϕ′) = |ω| − ϕ′. Since |ω| =

π − 2ϑ, by taking ϕ = ϕ′ + ϑ we get (2.6.4). We show that for z ∈ Ltan(ϕ) we have

Im(F (z)) = Im(z). By the definition of the map E and by (1.4.5), for z ∈ Pc we

have

E(z) = |z| exp [i (ϑ+ fω,π(arg(z)− ϑ))] . (2.6.5)
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Figure 2.2: Periodic structures of the TCE with parameters d = 2, ω = (0.7, π−2.7),
π̃(1, 2) = (2, 1), η = Φ and η′ = Φ2. The lines represented are Lν and L−ν and the
differently coloured disks are periodic islands, formed by invariant circles, containing
periodic points z∗0 , z

∗
1 , ... . In light grey the first 104 iterates of the orbits of 320 points

can be seen.

In particular for z ∈ Ltan(ϕ), by the definition of F , (2.6.4) and (2.6.5) we have

F (z) = |z|ei(π−ϕ) − η′.

From (2.6.5) it follows that Im(z) = |z| sin(ϕ) = Im(F (z)). We now prove that

tan(ϕ) = −µj. By comparing the two identities above we get

ϕ =
π − θj(ω, π̃)

2
.

Therefore, by (2.6.5) the slope of L′′S is equal to tan(π−ϕ) which coincides with µj.

Thus tan(ϕ) = −µj, which completes the proof. �

Given ν > 0 and µ such |µ| > ν, let

P (µ) = {z ∈ Pc : −Im(z)

|µ| < Re(z) <
Im(z)

|µ| }.

Define the interval IP (µ) as

IP (µ) =

{ (
1/C−µ , 1/C

+
µ

)
, µ > ν,(

1/C+
µ , 1/C

−
µ

)
, µ < −ν.

The following theorem shows that a simple condition for the existence of a hori-

zontal periodic island, as defined in the Introduction, for a TCE. A visual depiction

of this can be seen in Figure 2.2.
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Theorem 2.6.6 Let π ∈ S({1, ..., d}), ω ∈ W ∩ R(π̃), j ∈ JR(π̃) and µj(ω, π̃) as

in (2.6.3). For every n ∈ N such that pn(µj) ∈ IP (µj), F has a horizontal periodic

orbit at height ŷn, for a certain yn+1(µj) < ŷn < yn(µj). If Lµ′j ∩ ∂P = ∅, then F

has an horizontal periodic island.

Proof. Since π ∈ S({1, ..., d} and ω ∈ W ∩ R(π̃), by Lemma 2.6.5 we have for

all z ∈ L−µj that Im(F (z)) = Im(z). Recall (2.5.1). We begin by proving that if

for some n ∈ N we have un(µj) ∈ IP (µj), then xn(µj) + iyn(µj) ∈ P (µj). By the

definition of ` and from (2.5.1) we have

un(µj) =
1

`(yn(µj))

(
yn(µj)

ν
+ xn(µj)

)
.

From this, we have xn(µj) + iyn(µj) ∈ P (µj), if and only if we have

1

2

(
1− ν

|µ|

)
< un(µj) <

1

2

(
1 +

ν

|µ|

)
.

By (2.3.2) it is direct to see that these inequalities are satisfied if and only if

un(µj) ∈ IP (µj).

We now prove that if un(µj) ∈ IP (µj), there is an ŷn satisfying

yn+1(µj) < ŷn < yn(µj), (2.6.6)

such that ξS(ŷn) is a horizontal periodic orbit of F at height ŷn.

We split the proof in two cases µj > ν and µj < −ν, but omit the µj < −ν case

as it is analogous to the other case.

Assume µj > ν. As for y > 0, ξS(y) ∈ L−µj we have Re(ξS(y)) = −y/µj,
moreover as un(µj) ∈ IP (µj) we have xn(µj) + iyn(µj) ∈ P (µj) and hence xn >

−yn/µj. Since xn(µj) = Re(ρ(y−n )) this shows that

Re(ξS(y−n )) < Re(ρ(y−n )).

As µj > ν and un(µj) ∈ IP (µj) we have un(µj) < 1/C+
µj

, hence by Theorem 2.4.2 we

get that ρ(yn+1) ∈ L−ν . As ξS(yn+1) ∈ int(Pc) we get

Re(ρ(yn+1)) < Re(ξS(yn+1)).

By Theorem 2.4.2, ρ(y) is an affine map for yn+1 ≤ y < yn and the map y 7→ ξS(y)

is also affine, in particular both maps are continuous for yn+1 ≤ y < yn. Therefore

by the two inequalities above, there must be a ŷn satisfying (2.6.6) such that

Re(ρ(ŷn)) = Re(ξS(ŷn)).
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As ξS(ŷn) ∈ L−µj , by Lemma 2.6.5 we have that

Im(ξS(ŷn)) = Im(F (ξS(ŷn))) = ŷn.

By Theorem 2.4.2, Im(ρ(ŷn)) = ŷn, hence by the two identities above we get that

ρ(ŷn) = ξS(ŷn). Thus by the definition of ρ, ξS(ŷn) is a periodic orbit for F . More-

over by Lemma 2.1.1 we have that the imaginary part of ξS(ŷn) remains constant,

and equal to ŷn, throughout its orbit, hence it is an horizontal periodic orbit for F .

Finally we show that if L−µj∩∂P = ∅, then F has a periodic island that contains

this periodic orbit. Since ξS(ŷn) ∈ L−µj and L−µj ∩ ∂P = ∅ we can apply Theorem

2.6.3 which shows that this orbit shadows a periodic island which is formed by the

union of infinitely many invariant circles. �

We now prove Theorems 2.6.1 and 2.6.2.

2.6.1 Proof of Theorem 2.6.1

We divide the proof in two cases π̃ ∈ ζ−(d) (resp. ζ+(d)) and prove that there is a

non-empty open set W− ⊆ W ∩ R(π̃) (resp. W+) such that for all ω ∈ W− (resp.

W+), F has infinitely many horizontal periodic islands accumulating on the origin.

Having proved this, taking W =W− ∪W+ gives the desired result.

We begin by considering the case π̃ ∈ ζ−(d). Given j ∈ JR(π̃), consider the set

Jζ−(j, π̃) = {j′′ ∈ {1, ..., d} : j < j′′ and π̃(j′′) < π̃(j′)} .

Since π̃ ∈ ζ−(d), we can take j′ ∈ JR(π̃) such that Jζ−(j′, π̃) 6= ∅ and take j′′ ∈
Jζ−(j′, π̃).

Let µj′(ω, π̃) be as in (2.6.3). Consider the set V− of all ω ∈ W ∩ R(π̃), such

that:

|ω| /∈
{

2π

n

}
n≥1

,
µj′(ω, π̃)

ν(|ω|) < −1 and
µj′(ω, π̃) + ν(|ω|)
µj′(ω, π̃)− ν(|ω|) < Φ. (2.6.7)

We now show that if |ω| /∈ {2π/n}n≥1, there is a δ > 0 such that for θj′(ω/|ω|, π̃) ∈
(1− δ, 1), we have (2.6.7).

Since the map r 7→ (r+ 1)/(r− 1) is continuous for all r ∈ R\{−1} and zero for

r = −1, there is an ε > 0, such that for all ω ∈ V− such that if:

µj′(ω, π̃)

ν(|ω|) ∈ (−1− ε,−1), (2.6.8)

then we have (2.6.7). By (2.6.3) we have

µj′(ω, π̃)

ν(|ω|) = tan

(
π + θj′(ω, π̃)

2

)
/ tan

(
π − |ω|

2

)
.
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Using linearity of ω 7→ θj′(ω, π̃) and simple trigonometric identities, from the above

identity, we get

µj′(ω, π̃)

ν(|ω|) = − cot

(
|ω|θj′(ω/|ω|, π̃)

2

)
tan

( |ω|
2

)
.

Since ω 7→ θj′(ω/|ω|, π̃) is independent of |ω| and we have |ω| /∈ {2π/n}n≥1, the map

θ 7→ − cot(|ω|θ/2) tan(|ω|/2) is continuous and therefore there is a δ > 0 such that

for θj′(ω/|ω|, π̃) ∈ (1− δ, 1), we have (2.6.8) and thus (2.6.7).

We now show that there is a nonempty open set W ′− ⊆ V−. To do this we

construct an open set W ′− such that for ω ∈ W ′− we have θj′(ω/|ω|, π̃) ∈ (1− δ, 1).

By (1.4.5) and (2.6.1), it suffices to show there is an ω̃ ∈ V− such that we have∑
π̃(k)<π̃(j′)

ω̃k −
∑
k<j′

ω̃k > |ω̃|(1− δ), (2.6.9)

∣∣∣∣∣∣
∑

π̃(k)>π̃(j′)

ω̃k −
∑
k<j′

ω̃k

∣∣∣∣∣∣ < ω̃j′ . (2.6.10)

Since the above inequalities are strict, we have that there is a neighbourhoodW ′− ⊆
V− of ω̃, such that both inequalities are true for all ω ∈ W ′−.

We now prove there is ω̃ ∈ V− satisfying (2.6.9) and (2.6.10). Assume first that

d = 2 and take ω̃ such that ω̃j′ = |ω̃|δ/2 and ω̃j′′ = |ω̃|(1−δ/2). Since j′′ ∈ Jζ−(j′, π̃),

we have j < j′′ and π̃(j′′) < π̃(j′), we have j′ = 1 and j′′ = 2, hence∑
π̃(k)<π̃(j′)

ω̃k −
∑
k<j′

ω̃k = |ω̃|(1− δ/2),

thus (2.6.9) holds. We also have∑
π̃(k)>π̃(j′)

ω̃k −
∑
k<j′

ω̃k = 0,

hence, since ω̃j′ > 0, we get (2.6.10) as well.

Now assume d > 2 and set ω̃ = (ω̃j)j=1,...,d, where

ω̃j =


|ω̃|δ/6, j = j′,

|ω̃|(1− δ/4), j = j′′,

|ω̃|δ
12(d− 2)

, j 6= j′, j′′.

(2.6.11)

We show that (2.6.9) is true for ω̃. Since j′′ ∈ Jζ−(j′, π̃) we have∑
k<j′

ω̃k +
∑

π̃(k)≥π̃(j′)

ω̃k ≤ 2|ω̃| − 2ω̃j′′ .
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By (2.6.11) we have 2|ω̃| − 2ω̃j′′ = |ω̃|δ/2, hence by the inequality above we have∑
k<j′

ω̃k +
∑

π̃(k)≥π̃(j′)

ω̃k < |ω̃|δ,

which is equivalent to (2.6.9).

We now show that (2.6.10) is true for ω̃. Since for k ∈ {j′, j′′} we have π̃(k) ≤
π̃(j′) and k > j′ we have∣∣∣∣∣∣

∑
π̃(k)>π̃(j′)

ω̃k −
∑
k<j′

ω̃k

∣∣∣∣∣∣ <
∑

k 6=j′,j′′
ω̃k.

By (2.6.11) we have ω̃j′ = |ω̃|δ/6 and
∑

k 6=j′,j′′ ω̃k = δ/12 hence by the inequality

above we have that (2.6.10) is true for ω̃.

We now prove that for ω ∈ W ′−, F has infinitely many horizontal periodic orbits

accumulating on the origin. By Theorem 2.6.6 it suffices to show that for infinitely

many n ∈ N we have un(µj′(ω, π̃)) ∈ IP (µj′ (ω,π̃)). Note that we have

C−µj′ (ω,π̃)

C+
µj′ (ω,π̃)

=
µj′(ω, π̃) + ν(|ω|)
µj′(ω, π̃)− ν(|ω|) ,

hence since ω ∈ W ′− ⊆ V− we have

C−µj′ (ω,π̃)

C+
µj′ (ω,π̃)

< Φ < 1. (2.6.12)

Assume first that −µ̄ < µj′ < −ν, with µ̄ = ν
Φ3 . Using Hölder conjugacy of C+

µj′

and C−µj′ it can be seen that (2.6.12) is equivalent to

1

C+
µj′

< 1− Φ

C−µj′
<

1

C−µj′
.

By Theorem 2.3.3 (2.3.9), for all n ≥ 1 we have that un(µj′) = 1−Φ/C−µj′ , hence by

the inequality above we get un(µj′) ∈ IP (µj′ )
for infinitely many n ∈ N. Now assume

µj′ ≤ −µ̄. It can be seen that (2.6.12) is equivalent to:

1

C+
µj′

<
1

C+
µj′

Φ
<

1

C−µj′
.

By Theorem 2.3.3 (2.3.7), for all even n ∈ N we have that un(µj′) = (C+
µj′

Φ)−1,

hence by the inequality above we get un(µj′) ∈ IP (µj′ )
for infinitely many n ∈ N.

We now show that there is a non-empty open set W− ⊆ W ∩ R(π̃) such that

for all ω ∈ W−, F has infinitely many horizontal periodic islands accumulating on
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the origin. By Theorem 2.6.6 it suffices to show that there is a non-empty open set

W− ⊆ W ′− such that for all ω ∈ W− we have Lµ′
j′ (ω,π̃) ∩ ∂P = ∅.

Consider the sets

Hk =

{
ω ∈W : |ω| − θj′(ω, π̃)− 2

∑
j≤k

ωj = 0

}
,

for k = 0, 1, ..., d. Note that we have Lµ′
j′ (ω,π̃) ∩ ∂P 6= ∅ if for some k ∈ {0, 1, ..., d}

we have

−µj′(ω, π̃) = tan

(
π − |ω|

2
+
∑
j≤k

ωj

)
.

By (2.6.3) and the two identities above it follows that we have Lµ′
j′ (ω,π̃) ∩ ∂P 6= ∅ if

and only if ω ∈ Hk for some k ∈ {0, 1, ..., d}.
Set W− = W ′−\

⋃d
k=0Hk. Since Hk are codimension 1 closed subsets of W, we

have thatW− is a non-empty open set and since for ω ∈ W− we have Lµ′
j′ (ω,π̃)∩∂P =

∅, F has infinitely many horizontal periodic islands accumulating on the origin.

We now consider the case π̃ ∈ ζ+(d). This case is mostly analogous to the

previous one, so for brevity we will only outline the proof.

Given j ∈ JR(π̃), consider the set

Jζ+(j, π̃) = {j′′ ∈ {1, ..., d} : j > j′′ and π̃(j′′) > π̃(j′)} .

Take j′ ∈ JR(π̃) such that Jζ+(j′, π̃) 6= ∅ and take j′′ ∈ Jζ+(j′, π̃).

Consider the set V+, of all ω ∈W ∩R(π̃), such that:

|ω| /∈
{

2π

n

}
n≥1

,
µj′(ω, π̃)

ν(|ω|) > 1 and
µj′(ω, π̃)− ν(|ω|)
µj′(ω, π̃) + ν(|ω|) < Φ.

By a similar argument to the previous case, if |ω| /∈ {2π/n}n≥1, there is a δ > 0

such that for θj′(ω/|ω|, π̃) ∈ (−1,−1 + δ), the expression above is satisfied.

To find a nonempty open set W ′+ ⊆ V− by (1.4.5) and (2.6.1), it suffices to show

there is an ω̃ ∈ V+ such that we have (2.6.10) and:∑
π̃(k)<π̃(j′)

ω̃k −
∑
k<j′

ω̃k < |ω̃|(−1 + δ).

Indeed it can be seen that both this inequality and (2.6.10) hold for the same choice

of ω̃ of the previous case.

We prove that for ω ∈ W ′+, F has infinitely many horizontal periodic orbits

accumulating on the origin. By Theorem 2.6.6 it suffices to show that for infinitely

many n ∈ N we have un(µj′(ω, π̃)) ∈ IP (µj′ (ω,π̃)). Note that we have

C+
µj′ (ω,π̃)

C−µj′ (ω,π̃)

=
µj′(ω, π̃)− ν(|ω|)
µj′(ω, π̃) + ν(|ω|) ,
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hence since ω ∈ W ′+ ⊆ V+ we have

C+
µj′ (ω,π̃)

C−µj′ (ω,π̃)

< Φ < 1. (2.6.13)

Assume first that ν < µj′ < µ̄. It can be seen that (2.6.13) is equivalent to

1

C−µj′
< 1− 1

C−µj′Φ
<

1

C+
µj′

.

By Theorem 2.3.3 (2.3.8), for all odd n we have that un(µj′) = 1− (C−µj′Φ)−1, hence

by the inequality above we get un(µj′) ∈ IP (µj′ )
for infinitely many n ∈ N. Now

assume µj′ ≥ µ̄. It can be seen that (2.6.13) is equivalent to:

1

C−µj′
<

Φ

C+
µj′

<
1

C+
µj′

.

By Theorem 2.3.3 (2.3.10), for all n ∈ N we have that un(µj′) = (C+
µj′

Φ)−1, hence

by the inequality above we get un(µj′) ∈ IP (µj′ )
for all n ∈ N.

SettingW+ =W ′+\
⋃d
k=0Hk, we get that for ω ∈ W+ we have Lµ′

j′ (ω,π̃)∩∂P = ∅,
hence by Theorem 2.6.6 F has infinitely many horizontal periodic islands at heights

which converge to 0, hence accumulating on the real line. �

2.6.2 Proof of Theorem 2.6.2

Let U be an invariant set for Fc that contains a neighbourhood of the origin. By

Theorem 2.6.1 it contains infinitely many periodic islands. Suppose there is a point

z ∈ U with a dense orbit in U . Then {F n
c (z)}n can get arbitrarily close to a periodic

point z′, this implies that for some m ∈ N, Fm
c (z) is contained in a periodic island.

Hence its orbit is contained in a circle thus contradicting the hypothesis that the

orbit of z is dense in U . �
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Chapter 3

Embeddings of Interval Exchange
Transformations into Piecewise
Isometries

Recall the definitions of Interval Exchange Transformation (IET) and Piecewise

Isometry (PWI) in the Introduction.

In this chapter, we discuss the general problem of embedding IET dynamics

within PWIs with a particular focus on the regularity of this embedding for two

dimensional PWIs. In particular, we consider conditions for this embedding to be

trivial or non-trivial. Our main results are as follows.

• In Theorem 3.2.4 we use combinatorial properties of IETs to prove that in

order for a PWI realize a continuous embedding of an IET with the same

permutation, its parameters must satisfy a necessary condition: the parametric

connecting equation (3.2.10).

• As a consequence of this, Theorem C, states that all continuous embeddings

of minimal 2-IETs are trivial and Theorem D asserts that a 3-PWI has at

most one non-trivially continuously embedded minimal 3-IET with the same

underlying permutation.

• Given an IET embedded into a PWI we use the derived tangent exchange

map (3.3.1) to prove Theorem 3.3.1, which gives a necessary condition on the

parameters of a PWI such that there is a continuous embedding of an IET

into that PWI.

We introduce a specific example F (3.4.3) of a translated cone exchange trans-

formation that has a trivially embedded IET on the boundary. Recalling Fc, a first

return map under F to a subset of the phase space Pc we observe invariant regions
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(a)

(b)

Figure 3.1: An illustration of the action of a piecewise isometry Fc (see (3.4.5)),
on the image of a non-trivial embedding Y =

⋃
α∈A Yα, with A = {0, 1, 2, 3} of a

minimal 4-IET. (A) An invariant set Y where each Yα, is contained in a polygon.
Points in each polygon are mapped isometrically by Fc to a subset of the region
{z ∈ C : 0.35 < Im(z) < 0.55}. (B) Image of Y and the polygons in (A) under Fc.

bounded by invariant curves (Figure 3.7) and perform numerical experiments to ver-

ify the conditions of Theorems 3.2.4 and 3.3.1. We introduce a PWI T ′ (see (3.4.1))

on 3 atoms that apparently exhibits a single invariant curve that is a non-trivial

embedding of a 3-IET into T ′. Using this we make specific conjectures about the

nature of non-trivial embeddings of IETs in PWIs.

This chapter is organized as follows. In Section 3.1 we consider possible embed-

dings of a transitive IET into a PWI, and make some definitions regarding their

regularity. We identify trivial cases of embedding as where the image of the embed-

ding is either a union of lines or of arcs of the same radius. Furthermore, we extend

the Rauzy-Veech induction for IETs to PWIs that admit continuous embeddings of

IETs. In Section 3.2 we introduce some combinatorial conditions on the embedding

of an IET into a PWI and state a necessary condition for existence of continuous em-

beddings. Using these techical tools, we prove that only trivial embeddings of 2-IETs

are possible and that a 3-PWI has at most one non-trivially continuous embedded

3-IET with the same underlying permutation. In Section 3.3 we turn to ergodic

properties of the embeddings and in Theorem 3.3.1 give a necessary condition for
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embedding in terms of average returns. In Section 3.4 we introduce concrete exam-

ples of PWIs and show numerical results. We introduce a PWI on 3 atoms, illustrate

some examples of orbits for this piecewise isometry and numerically estimate the

parameters of a 3-IET which is embedded into this PWI. We also introduce a partic-

ular planar translated cone exchange transformation illustrated in Figure 3.4. This

transformation has a trivially embedded 2-IET on a line that we call the baseline

and arbitrarily close to this baseline there are non-trivial rotations. The dynamics of

points close to this baseline is remarkably rich. In particular, numerical simulations

suggest that the baseline is an accumulation for non-smooth invariant curves that

are non-trivial embeddings of 4-IETs in the 4-PWI. We illustrate some examples

of orbits for this piecewise isometry and show numerical evidence for abundance of

periodic orbits for certain regions of the parameters. We show that the parameters

of this map satisfy the restrictions from Theorem 3.2.4. We numerically verify that

the condition from Theorem 3.3.1 is satisfied.

The material in this chapter has been published in Ergodic Theory and Dynamical

Systems [12].

3.1 Symbolic, topological and differentiable em-

beddings

In this section we introduce some definitions of various regularity properties that

characterize an embedding of an IET into a PWI. The weakest of these is a symbolic

embedding. Furthermore, we extend Rauzy-Veech induction for IETs to PWIs that

admit continuous embeddings of IETs.

Consider a d-IET (I, fλ,π) which we sometimes denote by (I, f) when parameters

are clear from context. For a point x ∈ I we define the itinerary or symbolic encoding

of x by the IET as

ι(x) = α0α1 . . . ∈ AN, (3.1.1)

where αk ∈ A is such that fk(x) ∈ Iα if and only if αk = α.

Similarly, suppose that (X,T ) is a d-PWI with atoms {Xα}α∈A. We define the

itinerary of a point z ∈ X by the PWI as

ι′(z) = α′0α
′
1... ⊂ AN (3.1.2)

where α′k ∈ A is such that T k(z) ∈ Xα if and only if α′k = α.

We now introduce some definitions that will be used throughout this chapter.
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An injective map γ : I → X is a symbolic embedding of (I, f) into (X,T ) if

γ(I) ⊂ X is an invariant set for (X,T ) and there is a labeling of the atoms such

that

ι′ ◦ γ(x) = ι(x) for all x ∈ I.

Recall, from the Introduction Section 1.4.2, the definitions of piecewise continu-

ous, continuous, differentiable, arc, linear, trivial and non-trivial embeddings.

Note that if (I, f) has a piecewise continuous embedding γ into (X,T ) then it is

also a symbolic embedding, but the converse does not necessarily hold (to see this,

note that γ(I) need not be closed if it is a disconnected union of disjoint orbits).

It follows immediately from the definitions of linear and arc embeddings that if

a piecewise continuous embedding of (I, f) by γ into (X,T ) is a linear embedding

then there are zα, vα ∈ C such that

γ|Iα(x) = zα + vαx, (3.1.3)

for all x ∈ I, while if it is an arc embedding, then there are ξα ∈ C, rα > 0 and

aα, ϕα ∈ R such that

γ|Iα(x) = ξα + rα exp[i(aαx+ ϕα)], (3.1.4)

for all x ∈ I.

The following lemma shows that there exist some basic relations for the param-

eters defining trivial embeddings which are automatically satisfied.

Lemma 3.1.1 For any d-IET (I, f) there exists a trivial continuous embedding

γ : I → X of (I, f) into a d-PWI (X,T ), which can be either a linear embedding or

an arc embedding. Suppose in addition that (I, f) is minimal. (a) If γ is a linear

embedding then |vα| is independent of α. (b) If γ is an arc embedding then rα and

aα are independent of α.

Proof. Assume without loss of generality that I ⊂ [0, π). Note that there exists a

linear embedding with rectangular atoms such that T (x+ iy) = f(x)+ iy, and there

exists an arc embedding such that T (reiθ) = reif(θ) .

We now prove (a) and (b). Fix x ∈ Iβ for some β ∈ A. Since (I, f) is minimal, for

all ς ∈ A\{β} there is aNς > 0 such that fNς (x) = x+υ ∈ Iς , with υ =
∑Nς−1

k=0 υαk(x).

We begin by proving (a). Assume that γ is a linear embedding of (I, f) into

(X,T ) as in (3.1.3). We show that |vβ| = |vς |. By (1.4.1), (1.4.8) and (3.1.3) we

have

eiθβ(zβ + vβx) + ηβ = zς + vς(x+ υ). (3.1.5)
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Differentiating (3.1.5) with respect to x gives eiθςvβ = vς , thus |vβ| = |vς |.
We now prove (b). Assume that γ is an arc embedding of (I, f) into (X,T )

as in (3.1.4). We show that aβ = aς and rβ = rς . Combining (1.4.8), (3.1.4) and

differentiating with respect to x we get

irβaβ exp[i(θβ + aβx+ bβ)] = irςaς exp[i(aςx+ aςυ + bς)],

and taking modulus gives

rβ|aβ| = rς |aς |, (3.1.6)

while the argument gives

θβ + aβx+ bβ = aςx+ aςυ + bς mod 2π. (3.1.7)

Note that (3.1.7) holds for any x ∈ f−Nς (Iς)∩Iβ. Since this set contains an interval,

(3.1.7) must hold for infinitely many values of x, hence we get aβ = aς . Together

with (3.1.6) this shows that rβ = rς , completing the proof. �

Recall from the definition of IET that a permutation π is a pair of bijections

πε : A → {1, ..., d}, ε = 0, 1.

Given an IET (I, fλ,π), consider the points

x0 = 0, xj =

j∑
k=1

λk, 1 ≤ j ≤ d. (3.1.8)

Note that I = [x0, xd) and that Iπ−1
0 (j) = [xj−1, xj) for 1 ≤ j ≤ d.

The next theorem allow us to characterize the existence of continuous or discon-

tinuous embeddings in terms of the preimages of interior discontinuities of f .

Theorem 3.1.2 Assume that (I, f) is a d-IET with intervals Iπ−1
0 (j) = [xj−1, xj)

for j = 1, . . . d. There exists a d-PWI (X,T ), such that (I, f) has a discontinuous

embedding into (X,T ) if and only if

f−1({x1, ..., xd−1}) ∩ {x0, ..., xd} 6= ∅.

Proof. Let I = Iπ−1
0 (1) ∪ ... ∪ Iπ−1

0 (d), with Ij = [xj−1, xj), j ∈ {1, ..., d}.
We begin by proving that if there is j′ ∈ {1, ..., d − 1} such that f−1(xj′) ∈

{x0, ..., xd}, then there exists a d-PWI (X,T ), such that (I, f) has a discontinuous

embedding into (X,T ).

By Lemma 3.1.1 there is a continuous embedding of (I, f) by γ′ into a d-PWI

(X ′, T ′) with Y ′ = γ(I) ⊂ X ′ invariant set for (X ′, T ′). Note that since this embed-

ding is trivial we can take X ′ to be a compact set. Therefore it has a finite diameter,

which we denote as |X ′|.
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Set Y ′
π−1
0 (j)

= Y ′ ∩X ′
π−1
0 (j)

for j = 1, ..., d and let

Xπ−1
0 (j) =

 X ′
π−1
0 (j)

, if j ≤ j′,

X ′
π−1
0 (j)

+ 2|X ′|, if j > j′,

with X = Xπ−1
0 (j) ∪ ... ∪Xπ−1

0 (j). Define the maps

Tπ−1
0 (j)(z) =

 T ′
π−1
0 (j)

(z), if j ≤ j′,

T ′
π−1
0 (j)

(z − 2|X ′|) + 2|X ′|, if j > j′.

If T (z) = Tπ−1
0 (j)(z), for z ∈ Xπ−1

0 (j), with j = 1, ..., d, then (X,T ) defines a d-PWI.

Define the function γ : I → X as

γ(x) =

{
γ′(x), x < xj′ ,

γ′(x) + 2|X ′|, x ≥ xj′ .

Set Y = γ(I). The map γ : I → Y is bijective and it is simple to check that (I, f)

has a piecewise continuous embedding by γ into (X,T ). Moreover, note that the

restriction of γ to Iπ−1
0 (j) is continuous for j = 1, ..., d, but γ has a discontinuity at

x = xj′ . Thus, the embedding is discontinuous.

Now assume there is no xj ∈ {x1, ..., xd−1} such that f−1(xj) ∈ {x0, ..., xd} and

there exists a d-PWI (X,T ), such that (I, f) has a discontinuous embedding by γ

into (X,T ).

Since the restriction of γ to Iπ−1
0 (j) is continuous for all j = 1, ..., d, the set of

discontinuities of γ must be contained in {x1, ..., xd−1}. Assume j′ ∈ {1, ..., d− 1} is

such that γ is discontinuous at xj′ . Let

zj′ = lim
x→x−

j′

γ(x), zj′ = lim
x→x+

j′

γ(x)

and l ∈ {1, ..., d} be such that xj′ ∈ f(Iπ−1
0 (l)). Set Y = γ(I) and Yπ−1

0 (j) = Xπ−1
0 (j)∩Y

for j = 1, ..., d. Then {zj′ , zj′} ⊂ T (Yπ−1
0 (l)). Since f−1(xj′) /∈ {x0, ..., xd}, we have

T−1({zj′ , zj′}) ∩ {γ(x0), ..., γ(xd)} = ∅.

Thus there must be an l′ ∈ {1, ..., d} such that {zj′ , zj′} ⊂ Yπ−1
0 (l′). Therefore the

restriction of γ′ to Iπ−1
0 (l′) must be discontinuous, contradicting γ being a piecewise

continuous embedding of (I, f) into (X,T ). This completes the proof. �

Recall Rauzy-Veech induction from the Introduction, Section 1.3.2. Particularly

recall (1.3.3), (1.3.4) and that we say that (λ, π) is of type 0 if λβ0 > λβ1 and is of
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type 1 if λβ0 < λβ1 . The largest interval is called winner and the smallest loser of

(λ, π).

We now extend Rauzy-Veech induction to PWIs which admit embeddings of

IETs as follows. Assume (I, fλ,π) has an embedding by γ into (X,T ). Define the

map S(T ) as the first return map under T to X∗, where

X∗ =

{ ⋃
α 6=β0 Xα ∪ (Xβ0 ∩ T (Xβ1)), if (λ, π) has type 0,⋃
α 6=β0 Xα, if (λ, π) has type 1.

Note that (X∗,S(T )) is again a d′-PWI since it is a first return map or a PWI

to a convex subset of X. However it is now possible that d′ 6= d. Denote by A′ an

alphabet with d′ symbols and denote by {X∗α′}α′∈A′ the partition of X∗. It is simple

to see that there is a collection of d symbols A ⊆ A′, possibly after relabeling, such

that X∗α′ ∩γ(I(1)) 6= ∅ if and only if α′ ∈ A. Define X ′ =
⋃
α∈AX

∗
α. Now, (X ′,S(T ))

is a d-PWI. We show, in the following theorem, that a continuous embedding of

(I, f) into (X,T ) also embeds (I ′,R(f)) into (X ′,S(T )).

Theorem 3.1.3 Assume that a d-IET (I, fλ,π), such that Iβ0 6= f(β1), has a con-

tinuous embedding by γ into a d-PWI (X,T ). Then (I ′,R(f)) has a continuous

embedding by γ into (X ′,S(T )).

Proof. We prove that for all x ∈ I ′ we have

γ ◦ fλ(1),π(1)(x) = S(T ) ◦ γ(x). (3.1.9)

Assume first that (λ, π) has type 0. Let I
(1)

π−1
0 (j)

= Iπ−1
0 (j) for j 6= d and I

(1)
β0

=

Iβ0\f(Iβ1). It is well known (see [56]) that

fλ(1),π(1)(x) =

 f 2(x), x ∈ I(1)
β1
,

f(x), x ∈ I(1)

π−1
0 (j)

, π−1
0 (j) 6= β1.

(3.1.10)

We now show that we have

S(T )(z) =

 T 2(z), z ∈ γ(I
(1)
β1

),

T (z), z ∈ γ(I
(1)

π−1
0 (j)

), π−1
0 (j) 6= β1.

(3.1.11)

Note that f(I
(1)

π−1
0 (j)

) ⊂ I(1), for π−1
0 (j) 6= β1. Thus, by (1.4.8) we have T (γ(I

(1)

π−1
0 (j)

)) ⊂
γ(I(1)), and we get (3.1.11) for z ∈ γ(I

(1)

π−1
0 (j)

) and π−1
0 (j) 6= β1.

Since f(I
(1)
β1

) = f(Iβ1) 6⊂ I(1) and f 2(I
(1)
β1

) ⊂ f(Iβ0) ⊂ I(1), by (1.4.8) we have

T (γ(I
(1)
β1

)) = T (γ(Iβ1)) 6⊂ γ(I(1)) and T 2(γ(I
(1)
β1

)) ⊂ T (γ(Iβ0)) ⊂ γ(I(1)), and thus

we have (3.1.11).
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Noting that x ∈ Iπ−1
0 (j) if and only if γ(x) ∈ γ(I

(1)

π−1
0 (j)

), for j = 1, ..., d, and

combining (1.4.8), (3.1.10) and (3.1.11) we get (3.1.9).

Assume now that (λ, π) has type 1. Let I
(1)

π−1
0 (j)

= Iπ−1
0 (j) for 1 ≤ j < π0(β1),

I
(1)
β1

= Iβ1\f−1(Iβ0), I
(1)

π−1
0 (π0(β1)+1)

= f−1(Iβ0) and I
(1)

π−1
0 (j)

= Iπ−1
0 (j−1) for π0(β1) + 1 <

j ≤ d. It is clear that

fλ(1),π(1)(x) =

 f 2(x), x ∈ I(1)

π−1
0 (π0(β1)+1)

,

f(x), x ∈ I(1)

π−1
0 (j)

, π0(j) 6= π0(β1) + 1.
(3.1.12)

By a similar argument it can be proved that

S(T )(z) =

 T 2(z), z ∈ γ(I
(1)

π−1
0 (π0(β1)+1)

),

T (z), z ∈ γ(I
(1)

π−1
0 (j)

), π0(j) 6= π0(β1) + 1.
(3.1.13)

Since x ∈ Iπ−1
0 (j) if and only if γ(x) ∈ γ(I

(1)

π−1
0 (j)

), for j = 1, ..., d, combining (1.4.8),

(3.1.12) and (3.1.13) we get (3.1.9). �

3.2 Connecting equations and embeddings of 2, 3-

interval exchange transformations

In this section we introduce, a graph for a given permutation. We use its combina-

torial and topological properties to obtain a necessary condition for the parameters

of a PWI to be a continuous embedding of an IET into a PWI described by the

same permutation.

We then prove that only trivial embeddings of 2-IETs are possible and that a

3-PWI has at most one non-trivially continuous embedded 3-IET with the same

underlying permutation.

Given (λ, π) ∈ RA+ × S(A), let fλ,π(x) : I → I be minimal IET with I =

Iπ−1
0 (1) ∪ ... ∪ Iπ−1

0 (d). As before we write at times f = fλ,π. Recall (1.3.2). Define

functions fj(x) = x + υπ−1
0 (j), for x ∈ Ī , and j = 1, ..., d, then f(x) = fj(x), for

x ∈ Iπ−1
0 (j).

We extend πε to O by setting πε(O) = 0, for ε = 0, 1 and define f0 as the

identity map in I. Recall from the Introduction that we denote by π̃ the monodromy

invariant π1 ◦ π−1
0 and hence with this extension we have π̃(0) = 0.

For j ∈ Z we write [j] = j mod d + 1. For xj with 0 ≤ j ≤ d as in (3.1.8) we

have the following

fπ̃−1([j])(x[π̃−1(j)−1]) = fπ̃−1([j−1])(xπ̃−1([j−1])), (3.2.1)
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where j = 0, ..., d. Note that as the domain of each map fj, j = 0, ..., d is the closed

interval Ī, the maps are defined at the endpoints xj.

We now define a directed graph Gπ in d + 1 vertices v0, ..., vd such that there is

an edge

vπ̃−1([i−1]) → vπ̃−1([j−1]) (3.2.2)

if π̃−1([j − 1]) = [π̃−1(i)− 1], with i, j ∈ {0, ..., d}.
The graph Gπ, as we will shortly see, identifies the end-points of adjacent intervals

after rearrangement by a d-IET with base permutation π. The next proposition

characterizes the topology of Gπ.

Proposition 3.2.1 Given a permutation π ∈ S(A), the directed graph Gπ is a

disjoint union of directed cyclic subgraphs.

Proof. Since Gπ is a finite graph, it has a finite number of connected components,

hence it suffices to prove that every connected component of Gπ is a cyclic graph.

Consider a vertex vq, with q ∈ {0, ..., d}. There is a unique i0 = [π̃(q) + 1] ∈
{0, ..., d}, such that π̃−1([i0 − 1]) = q. Define the map ψ : {0, ..., d} → {0, ..., d}
as ψ(n) = π̃([π̃−1([n − 1]) + 1]). Note that ψ is a bijection, hence i1 = ψ(i0) is the

unique i1 ∈ {0, ..., d} satisfying

π̃−1([i0 − 1]) = [π̃−1(i1)− 1].

Thus, there is an edge vq → vπ̃−1([i1−1]).

We now form a sequence (ik)k∈N where i0 = [π̃(q1) + 1] and ik = ψ(ik−1), for

k ≥ 1. Since ψ is a bijection between finite sets (ik)k∈N must be a periodic sequence.

If ψ has period d + 1, then Gπ is a cyclic graph. Otherwise, ψ has period p ≤ d.

This implies that the vertices vn, for n ∈ (ik)0,...,p−1 and the edges connecting them

form a connected and directed cyclic subgraph. Since the point q ∈ {0, ..., d} was

chosen without loss of generality, this shows that connected subgraphs of Gπ are

cycles. This completes the proof. �

Proposition 3.2.2 Let (I, f) be a d-IET with respect to an irreducible permutation

π. The directed graph Gπ has an edge vp → vq if and only if

xp = f−1
p ◦ fπ̃−1([π̃(p)+1])(xq). (3.2.3)

Proof. Let p = π̃−1([i − 1]) and q = π̃−1([j − 1]), for some i, j ∈ {0, ..., d}. From

(3.2.1) we have fπ̃−1([i])(x[π̃−1(i)−1]) = fπ̃−1([i−1])(xπ̃−1([i−1])), which is equivalent to

fπ̃−1([i])(xπ̃−1([j−1])) = fπ̃−1([i−1])(xπ̃−1([i−1])), (3.2.4)
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if and only if π̃−1([j − 1]) = [π̃−1(i) − 1], that is, if vp → vq. From (3.2.4) we get

(3.2.3), which completes the proof. �

Now assume (I, f) has a continuous embedding by γ into a d-PWI (X,T ) with

Y = γ(I) and Yπ−1
0 (j) = Xπ−1

0 (j) ∩Y , such that T (z) = Tπ−1
0 (j)(z), for z ∈ Yπ−1

0 (j), j =

1, .., d. with

Tπ−1
0 (j)(z) = e

iθ
π−1
0 (j)z + ηπ−1

0 (j), z ∈ C, j = 1, .., d. (3.2.5)

Define TO as the identity map in C. Let zj = γ(xj), for j = 0, ..., d. Equations

(3.2.1) are preserved under topological conjugacy and can be written for T as

Tπ−1
1 ([j])(z[π̃−1(j)−1]) = Tπ−1

1 ([j−1])(zπ̃−1([j−1])), j = 0, ..., d. (3.2.6)

We call (3.2.6) the connecting equations. The next corollary follows from Proposition

3.2.2 and from the topological conjugacy of (Y, T ) and (I, f).

Corollary 3.2.3 Assume a d-IET (I, f) has a continuous embedding by γ into a

d-PWI (X,T ). The directed graph Gπ has an edge vp → vq if and only if

zp = T−1

π−1
0 (p)

◦ Tπ−1
1 ([π̃(p)+1])(zq).

Let c0 ∈ {0, ..., d}. We define a connecting sequence (ck)k∈N for c0, with ck =

qk−1, where qk−1 is such that vck−1
→ vqk−1

. By Proposition 3.2.1, the connected

component of Gπ containing vc0 must be a directed cyclic graph. Thus, (ck)k∈N is a

well defined periodic sequence with period s(c0) ≤ d+ 1.

With σ : {0, ..., d} → {0, ..., d} such that,

σ(p) = [π̃−1(π̃(p) + 1))− 1],

it is simple to see by (3.2.2) that ck = σ(ck−1) and hence the number of distinct

orbits of σ is equal to the number of connected components of Gπ. The map σ was

first introduced by Veech in [54].

Recall that a translation surface (as defined in [15]), with genus g, is a surface

with a finite number κ of conical singularities endowed with an atlas such that

coordinate changes are given by translations in R2.

Recall the definition of Rauzy class in Section 1.3.3. Given an IET it is possi-

ble to associate, via a suspension construction, a translation surface, with g and κ

depending only on the Rauzy class of the permutation of the underlying IET (see

for instance [54]). It is known (see [56]) that the number of distinct orbits of σ

is constant on each Rauzy class and determines g and κ of the associated trans-

lation surface. In particular, for the hyperelliptic Rauzy class, that is the Rauzy
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class containing the permutation with monodromy invariant π̃(j) = d+ 1− j for all

j = 1, ..., d, σ has a single orbit if d is even and has two distinct orbits if d is odd.

We define the connecting map for c0 as

Cc0(z) = T−1

π−1
0 (c0)

◦ Tπ−1
1 ([π̃(c0)+1]) ◦ ... ◦ T−1

π−1
0 (cs(c0)−1)

◦ Tπ−1
1 ([π̃(cs(c0)−1)+1])(z), z ∈ C.

It follows from Corollary 3.2.3 that zc0 is a fixed point of Cc0 , thus, Cc0(zc0) = zc0 .

We have (
eiΘπ(c0) − 1

)
zc0 + Cc0(0) = 0, (3.2.7)

and

Θπ(c0) =

s(c0)−1∑
k=0

θπ−1
1 ([π̃(ck)+1]) − θπ−1

0 (ck).

Now (3.2.7) either imposes a restriction on γ, if Θπ(c0) 6= 0, by forcing

γ(xc0) =
(
1− eiΘπ(c0)

)−1 Cc0(0), (3.2.8)

or if Θπ(c0) = 0 it imposes a restriction on the parameters ηπ−1
0 (j), θπ−1

0 (j), j = 1, ..., d,

by

Cc0(0) = 0. (3.2.9)

Note that Cc0(0) can be seen as a sum where each term is ηj times a coefficient

depending only on θπ−1
0 (j), ..., θπ−1

0 (j).

Denote the coefficient of ηπ−1
0 (j) in Cc0(0) by rπ−1

0 (j)(θπ−1
0 (1), ..., θπ−1

0 (d)) for j =

1, ..., d. Note that by linearity in ηπ−1
0 (j), (3.2.9) can be written as

d∑
j=1

ηπ−1
0 (j)rπ−1

0 (j)(θπ−1
0 (1), ..., θπ−1

0 (d)) = 0. (3.2.10)

We call (3.2.10) the parametric connecting equation for c0.

In the following theorem we show that if Gπ is connected then the parameters of

the PWI satisfy the parametric connecting equation.

Theorem 3.2.4 Assume a d-IET (I, f) has a continuous embedding by γ into a

d-PWI (X,T ). If Gπ is a connected graph, then the parameters ηπ−1
0 (j), θπ−1

0 (j),

j = 1, ..., d satisfy the parametric connecting equation (3.2.10).

Proof. Since Gπ is a connected graph, by Proposition 3.2.1 it must be a directed

cyclic graph. The connecting sequence for c0 = 0 is well defined and has period
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d+ 1. Since the map n 7→ π̃−1([π̃(n) + 1]) is a bijection between finite sets we must

have

Θπ(0) =
d∑

k=0

θπ−1
1 ([π̃(ck)+1]) −

d∑
k=0

θπ−1
0 (ck) = 0.

Thus, there are functions rπ−1
0 (j)(θπ−1

0 (1), ..., θπ−1
0 (d)) for j = 1, ..., d, not identically 0,

satisfying (3.2.10). �

The following example shows two permutations, one for which the graph Gπ is

disconnected and a permutation that yields a connected Gπ and a parametric con-

necting equation that can in principle allow the existence of non-trivial embeddings.

Example 3.2.5 Consider a permutation π with monodromy invariant π̃ such that

π̃(1, 2, 3) = (2, 3, 1). It is simple to see, either by checking directly or by noting that

π is in the hyperelliptic Rauzy class for d = 3, that Gπ is not a connected graph. The

connecting sequence for 1 is constant and equal to 1, thus, from (3.2.7) we get

(e
i(θ

π−1
0 (2)

−θ
π−1
0 (1)

) − 1)γ(x1) + (ηπ−1
0 (2) − ηπ−1

0 (1))e
−iθ

π−1
0 (1) = 0. (3.2.11)

Consider the permutation with monodromy invariant π̃′ such that π̃′(1, 2, 3, 4) =

(4, 2, 1, 3). It is clear that in this case Gπ′ is a connected graph. Indeed π′ is in

the hyperelliptic Rauzy class for d = 4. The connecting sequence for 0 is p =

(0, 2, 3, 1, 4, ...) and we have the connecting map

C0(z) =T−1

π−1
0 (0)

◦ Tπ−1
0 (3) ◦ T−1

π−1
0 (2)

◦ Tπ−1
0 (4) ◦ T−1

π−1
0 (3)
◦

◦ Tπ−1
0 (2) ◦ T−1

π−1
0 (1)

◦ Tπ−1
0 (0) ◦ T−1

π−1
0 (4)

◦ Tπ−1
0 (1)(z).

From this we get the following parametric connecting equation

ηπ−1
0 (1)(e

−iθ
π−1
0 (1) − ei(θπ−1

0 (4)
−θ

π−1
0 (1)

)
) + ηπ−1

0 (2)(e
i(θ

π−1
0 (4)

−θ
π−1
0 (2)

) − ei(θπ−1
0 (3)

−θ
π−1
0 (2)

)
)+

ηπ−1
0 (3)(1− e

i(θ
π−1
0 (4)

−θ
π−1
0 (2)

)
) + ηπ−1

0 (4)(e
i(θ

π−1
0 (3)

−θ
π−1
0 (2)

) − e−iθπ−1
0 (1)) = 0.

(3.2.12)

In Section 3.4 we will discuss an example of a PWI satisfying (3.2.12). In partic-

ular we present some numerical results which suggest that there exist non-trivial

embeddings of d-IETs into d-PWIs, for d = 3 and d = 4.

In the remainder of this section we prove Theorem C, which states that there

are no non-trivial continuous embeddings of minimal 2-interval exchange transfor-

mations into orientation preserving planar PWIs and Theorem D which asserts that

a 3-PWI has at most one non-trivially continuously embedded minimal 3-IET with

the same underlying permutation.

92



3.2. CONNECTING EQUATIONS AND EMBEDDINGS OF 2, 3-IETS

3.2.1 Proof of Theorem C

Let (I, fλ,π) be a minimal 2-IET different from the identity with λ = {λπ−1
0 (1), λπ−1

0 (2)} ∈
R2

+. Assume there is a continuous embedding of (I, f) by γ into a 2-PWI (X,T )

with partition {Xπ−1
0 (1), Xπ−1

0 (2)}.
Set Y = γ(I) and Yπ−1

0 (j) = Y ∩Xπ−1
0 (j) for j = 1, 2. There are θπ−1

0 (j) ∈ [0, 2π)

and ηπ−1
0 (j) ∈ C, such that

Tπ−1
0 (j)(z) = e

iθ
π−1
0 (j)z + ηπ−1

0 (j), z ∈ C, j = 1, 2,

and the restriction of T to Y is given by

T (z) = Tπ−1
0 (j)(z), z ∈ Yπ−1

0 (j), j = 1, 2.

Since f is not the identity, π is a permutation with monodromy invariant π̃(1, 2) =

(2, 1) and Gπ is a connected graph, the connecting sequence for c0 = 0 is p =

(0, 1, 2, ...). This gives the connecting map

C0(z) = T−1

π−1
0 (0)

◦ Tπ−1
0 (2) ◦ T−1

π−1
0 (1)

◦ Tπ−1
0 (0) ◦ T−1

π−1
0 (2)

◦ Tπ−1
0 (1)(z).

By Theorem 3.2.4, the parameters ηπ−1
0 (1), ηπ−1

0 (2), θπ−1
0 (1), and θπ−1

0 (2) must satisfy

the parametric connecting equation, which can be written as

ηπ−1
0 (1)(e

−θ
π−1
0 (1) − eθπ−1

0 (2)
−θ

π−1
0 (1)) + ηπ−1

0 (2)(1− e
−θ

π−1
0 (1)) = 0. (3.2.13)

Multiplying by e
iθ
π−1
0 (1) , (3.2.13) becomes

ηπ−1
0 (2)(1− e

iθ
π−1
0 (1)) = ηπ−1

0 (1)(1− e
iθ
π−1
0 (2)). (3.2.14)

Since Tπ−1
0 (j) is not the identity map (3.2.14) is true if either both sides equal 0

or not.

In the case that both sides are equal to zero, we have the following cases:

i) If θπ−1
0 (1) = θπ−1

0 (2) = 0 mod 2π, then Tπ−1
0 (j)(z) = z + ηπ−1

0 (j), z ∈ Yπ−1
0 (j).

Since we are assuming that f is minimal and Y is compact it follows that T has

dense orbits. This implies that there is s ∈ R such that ηπ−1
0 (1) = sηπ−1

0 (2). For such

a transformation, invariant sets must be unions of lines. This implies that γ is a

trivial linear embedding.

ii) If ηπ−1
0 (1) = ηπ−1

0 (2) = 0, then Tπ−1
0 (j)(z) = e

iθ
π−1
0 (j)z, z ∈ Yπ−1

0 (j). Since we are

assuming that f is minimal, the orbits of T must be dense and in such a transfor-

mation, invariant sets must be unions of circle arcs. This implies that γ is a trivial

circle arc embedding.
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iii) Finally, if ηπ−1
0 (j) = 0 and θπ−1

0 (j) = 0 mod 2π, for j = 1 or 2 then Tπ−1
0 (j) is

equal to the identity and hence T can not be conjugated to a minimal IET.

In the case that both sides of equation (3.2.14) are different than 0, there must

exist η ∈ C such that ηπ−1
0 (j) = η(1− eiθπ−1

0 (j)), j = 1, 2. This implies

Tj(z) = (z − η)e
iθ
π−1
0 (j) + η

which is conjugate by L(z) = z + η, to the map

T̃ (z) = e
iθ
π−1
0 (j)z, z ∈ Yπ−1

0 (j) − η, j = 1, 2.

and thus γ is an arc embedding. This completes the proof. �

3.2.2 Proof of Theorem D

Given (λ, π) ∈ R3
+×S(A), assume there is a minimal 3-IET (I, fλ,π) which is contin-

uously embedded by γ into a 3-PWI (X,T ), with partition {Xπ−1
0 (1), Xπ−1

0 (2), Xπ−1
0 (3)}

and

T (z) = e
iθ
π−1
0 (j)z + ηπ−1

0 (j), z ∈ Xπ−1
0 (j).

Let Y = γ(I). We show that (I, fλ,π) and γ are either unique or that the embedding

is trivial.

Assume first that π is a permutation with monodromy invariant π̃(1, 2, 3) =

(2, 3, 1). Recall that this is the permutation π in Example 3.2.5. By (3.2.11) we

have |Θπ(j)| = |Θπ| = |θπ−1
0 (2) − θπ−1

0 (1)| for j = 0, ..., 3.

If Θπ = 0 then θπ−1
0 (1) = θπ−1

0 (2), and by (3.2.11) we get ηπ−1
0 (1) = ηπ−1

0 (2).

Consider the 2-IET (I, fλ′,π′), where λ′ = (λπ−1
0 (1) + λπ−1

0 (2), λπ−1
0 (3)) and π′ is the

permutation (12). Consider the 2-PWI (X,T ′), with base partition {X ′
π−1
0 (1)

, X ′
π−1
0 (2)
},

where X ′
π−1
0 (1)

= Xπ−1
0 (1) ∪Xπ−1

0 (2) and X ′
π−1
0 (2)

= Xπ−1
0 (3) and

T ′(z) = e
iθ′
π−1
0 (j)z + η′

π−1
0 (j)

, z ∈ X ′
π−1
0 (j)

,

with θ′
π−1
0 (1)

= θπ−1
0 (1), θ

′
π−1
0 (2)

= θπ−1
0 (3), η

′
π−1
0 (1)

= ηπ−1
0 (1) and η′

π−1
0 (2)

= ηπ−1
0 (3). It is

simple to see now that fλ′,π′ = fλ,π and T ′ = T , thus by Theorem C the embedding

of (I, fλ,π) must be trivial.

If Θπ 6= 0, (3.2.8) gives

γ(xj) =
(
1− eiΘπ(j)

)−1 Cj(0), j = 0, ..., 3. (3.2.15)

Since Cj(0) does not depend of λ, by (3.2.15) we have that for any λ′ ∈ R3
+, such

that (I, fλ′,π) is minimal, any continuous embedding γ′ into (X,T ) must satisfy
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γ′(x′j) = γ(xj). Since the restriction of T to Y must be invertible and every z ∈ Y
must have a dense orbit in Y this shows that λ′ = λ and γ′ = γ.

We omit the proof for π̃(1, 2, 3) = (3, 1, 2) as it can be done in a similar way to

the previous case.

Finally, assume that π has a monodromy invariant given by π̃(1, 2, 3) = (3, 2, 1).

Then Gπ is not a connected graph. The connecting sequence for 1 is equal to (1, 3, ...),

and from (3.2.7) we get

(exp
[
−i(θπ−1

0 (3) + θπ−1
0 (1) − θπ−1

0 (2))
]
− 1)γ(x1)+

e
−iθ

π−1
0 (1)

[
e
−iθ

π−1
0 (3)(ηπ−1

0 (2) − ηπ−1
0 (3))− ηπ−1

0 (1)

]
= 0.

(3.2.16)

We have |Θπ(j)| = |Θπ| = |θπ−1
0 (3) + θπ−1

0 (1) − θπ−1
0 (2)| for j = 0, ..., 3.

If Θπ = 0 then by (3.2.16) we get

θπ−1
0 (2) = θπ−1

0 (1) + θπ−1
0 (3), ηπ−1

0 (2) = ηπ−1
0 (1)e

iθ
π−1
0 (3) + ηπ−1

0 (3). (3.2.17)

Note that Iπ−1
0 (3) = fλ,π(Iπ−1

1 (3)) if and only if λπ−1
0 (1) = λπ−1

0 (3). In this case we

have that the restriction of fλ,π to Iπ−1
0 (2) is equal to the identity map. Since fλ,π

is minimal we must have Iπ−1
0 (3) 6= fλ,π(Iπ−1

1 (3)), thus by Theorem 3.1.3 there is a

continuous embedding of (I(1), fλ(1),π(1)) by γ into (X ′,S(T )).

We now prove that this embedding is trivial.

Assume that (λ, π) has type 1. Let Iπ−1
0 (j) be as in the proof of Theorem 3.1.3.

By (3.1.13) we have

S(T )(z) =


e
iθ
π−1
0 (1)z + ηπ−1

0 (1), z ∈ γ(I
(1)

(π
(1)
0 )−1(1)

),

e
i(θ

π−1
0 (1)

+θ
π−1
0 (3)

)
z + (ηπ−1

0 (1)e
iθ
π−1
0 (3) + ηπ−1

0 (3)), z ∈ γ(I
(1)

(π
(1)
0 )−1(2)

),

e
iθ
π−1
0 (2)z + ηπ−1

0 (2), z ∈ γ(I
(1)

(π
(1)
0 )−1(3)

).

(3.2.18)

Consider the 2-IET (I, fλ′′,π′′), with λ′′ = (λπ−1
0 (1)−λπ−1

0 (3), λπ−1
0 (2)+λπ−1

0 (3)), π̃
′′(1, 2) =

(2, 1), and the map T ′′ : γ(I(1))→ γ(I(1)) such that

T ′′(z) = e
iθ(π′′0 )−1(j)z + η(π′′0 )−1(j), z ∈ Y ′′(π′′0 )−1(j),

where Y ′′(π′′0 )−1(1) = γ(I
(1)

(π
(1)
0 )−1(1)

) and Y ′′(π′′0 )−1(2) = γ(I
(1)

(π
(1)
0 )−1(2)

∪ I(1)

(π
(1)
0 )−1(3)

). It is

simple to see now that fλ′′,π′′ = fλ(1),π(1) and by (3.2.17) and (3.2.18) we have

T ′′(z) = S(T (z)), for all z ∈ γ(I(1)). Therefore by Theorem C the embedding

of (I(1), fλ(1),π(1)) by γ into (X ′,S(T )) must be trivial. By (1.4.8) we have that

for x ∈ Iπ−1
0 (3) we have γ(x) = e

iθ
π−1
0 (1)γ(x − λπ−1

0 (2) − λπ−1
0 (3)) + ηπ−1

0 (1) thus the

embedding of (I, fλ,π) by γ into (X,T ) must be trivial as well.
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We omit the proof for the case when (λ, π) has type 0 as it can be done in a

similar case to the previous case.

Finally, if Θπ 6= 0, by (3.2.8), γ(xj) is determined by (3.2.15). Since Cj(0) does

not depend of λ, we have that for any λ′ ∈ R3
+, such that (I, fλ′,π) is minimal,

any continuous embedding γ′ into (X,T ) must satisfy γ′(x′j) = γ(xj). Since the

restriction of T to Y must be invertible and every z ∈ Y must have a dense orbit in

Y this shows that λ′ = λ and γ′ = γ. �

3.3 Ergodic condition for the existence of piece-

wise continuous embeddings

In this section we give a necessary condition for the existence of piecewise continuous

embeddings of uniquely ergodic IETs into planar PWIs.

Recall from Section 1.3.1 the definitions of IET let Iα and υα. Given a d-IET

(I, f), suppose we have a piecewise continuous embedding γ of this map into a

d-PWI (X,T ) and suppose that T (z) = Tα(z), for z ∈ Xα with Tα(z) = eiθαz + ηα.

Recall the definition of itinerary in (3.1.1). Let S1 = R/2πZ. For x ∈ I and

y ∈ S1 we define the tangent exchange map Ψ : I×S1 → I×S1 as the skew-product

given by

Ψ(x, y) = (f(x), y + θα0(x)). (3.3.1)

The dynamics of this map contains information on the angle of tangents of an

embedding when iterated by the underlying PWI. It will be the main technical tool

to prove Theorem 3.3.1.

For n ∈ N we have

Ψn(x, y) = (fn(x), y + C(n)(x)),

where C(·) : Z× I → S1 is the rotational cocycle for this embedding, given by

C(0)(x) = 0, C(n)(x) = θα0(x) + ...+ θα0(fn−1(x)) mod 2π,

for x ∈ I, n ≥ 0, and

C(n)(x) = −C(−n)(x) mod 2π,

for n < 0, where α0(x) is the piecewise constant map such that α0(x) = α when

x ∈ Iα. Informally, the rotational cocycle keeps track of the angle of a line passing

through a point γ(x) when iterated by T .

For x ∈ Iα we define the first return time of x by f to Iα as

nα(x) = inf{k ≥ 1 : fk(x) ∈ Iα}.
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IC × S1

(x3, 0)

IB × S1

(x2, 0)

IA × S1

(x1, 0)

(a)

Ψ(IA × S1)

(f(x1), θA)

Ψ(IC × S1)

(f(x3), θC)

Ψ(IB × S1)

(f(x2), θB)

(b)

Figure 3.2: A schematic representation of the action of a tangent exchange map
Ψ, as in (3.3.1), on a cylinder with π̃(1, 2, 3) = (3, 1, 2). (A) The partitioned space
I × S1 in three subcylinders Iα × S1. The xj are equal to

∑
π0(α)≤j λα respectively

for j = 1, 2, 3 and the points (xj, 0) are represented. (B) The action of the map Ψ
on I × S1 and on the points (xj, 0) which map to (fλ,π(xj), θπ−1

0 (j)) respectively for
j = 1, 2, 3.

If f is minimal, then nα(x) is finite. The first return map of x by f to Iα, f ′α : Iα → Iα

is then a well defined d-IET and is given by

f ′α(x) = fnα(x)(x), x ∈ Iα. (3.3.2)

For α ∈ A, we define the cocycle N
(·)
α : Z× Iα → Z as

N (0)
α (x) = 0, N (k)

α (x) = nα (x) + nα

(
f
′

α(x)
)

+ ...+ nα

(
f
′k−1
α (x)

)
,

for x ∈ Iα and k > 0. For n < 0 we set N
(k)
α (x) = −N (−k)

α (x).

Define the sequence (p(n))n≥1 by

p(1) = min{k ≥ 1 : fk(0) ∈ Iπ−1
0 (1)},

and

p(n) = min{k > p(n− 1) : fk(0) < fp(n−1)(0)}, n > 1.

Note that if f is minimal then fp(n)(0)→ 0, as n→ +∞. Let

mα(n) = card{fk(0) ∈ Iα : k ≤ n},

with n ∈ N, α ∈ A, and

kα = min
{
k ≥ 0 : fk(0) ∈ Iα

}
.
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Denote x′j = f
k
π−1
0 (j)(0), y′j = C

(k
π−1
0 (j)

)
(0). For n ∈ N and j = 1, ..., d, define the

sequences

cα(n) = y′π0(α) + C

(
N

(n)
α (x′

π0(α)
)+1

)
(x′π0(α)),

and

eα(n) =

mα(n)−1∑
k=0

exp[−icα(k)]. (3.3.3)

The sequence eα(p(n)) can be seen as a the displacement by rotation of a point

γ(x′π0(α)), up to the n-th return to Xα. The limit of eα(p(n)), when n→ +∞, need

not exist in general.

Consider, for α ∈ A, the limiting average of the sequence eα(p(n)),

ξα = lim
n→+∞

1

mα(p(n))
eα(p(n)). (3.3.4)

Note that this limit need not exist in general. By Weyl’s criterion if cα(n) is uni-

formly distributed mod 2π then ξα = 0. However this need not hold in general: a

numerical study, in Sections 3.4.1 and 3.4.3, presents a non-trivial example where

the ξα’s are non-zero. The following theorem shows that for a piecewise continu-

ous embedding of a uniquely ergodic (I, fλ,π), as long as the limit (3.3.4) is finite,

the condition (3.3.6) tells us that the average of displacements by rotation and by

translations, weighted by the lengths λα’s, must cancel out so that orbits remain

bounded.

Theorem 3.3.1 Assume that (I, fλ,π) is a uniquely ergodic d-IET that has a piece-

wise continuous embedding by γ into a d-PWI (X,T ) with X ⊆ C, where

T (z) = eiθαz + ηα, (3.3.5)

for z ∈ Xα and α ∈ A. If there are ξα ∈ C such that (3.3.4) holds, then∑
α∈A

(
ηα − γ(0)(1− eiθα)

)
ξαλα = 0, (3.3.6)

where we recall that λα denotes the length of the subinterval Iα, for α ∈ A.

Proof. We begin by proving that there is an orientation preserving PWI (X̃, T̃ ),

conjugated by a translation to (X,T ), such that (I, fλ,π) has a piecewise continuous

embedding by γ̃ into (X̃, T̃ ) with γ̃(0) = 0.

Let X̃ = {z ∈ C : z + γ(0) ∈ X}, and q : X → X̃ be such that q(z) = z − γ(0).

Let

T̃ (z) = q ◦ T ◦ q−1(z),

98



3.3. ERGODIC CONDITION FOR P.W. CONTINUOUS EMBEDDINGS

for z ∈ X̃. The homeomorphism γ̃ = q ◦ γ conjugates (I, f) to (γ̃(I), T̃ ), with

γ̃(I) ⊆ X̃ invariant for (X̃, T̃ ). Moreover, γ̃(0) = q(γ(0)) = 0. Note that we have

T̃ (z) = eiθ̃αz + η̃α,

for z ∈ X̃α, where X̃α = {z ∈ C : z+γ(0) ∈ Xα}, θ̃α = θα and η̃α = ηα−γ(0)(1−eiθα).

We now prove that

lim
n→+∞

∑
α∈A

η̃αeα(p(n)) = 0. (3.3.7)

Since (I, fλ,π) has a piecewise continuous embedding by γ̃ into (X̃, T̃ ), we have

γ̃(x+ υα) = eiθα γ̃(x) + η̃α, (3.3.8)

for x ∈ Iα, α ∈ A. Let Ỹ = γ̃(I), Ỹα = Ỹ ∩ X̃α and γ̃α : Iα → Ỹα be the restriction

of γ̃ to Iα. From (3.3.8) we get

γ̃α(x) = e−iθα(γ̃β(x+ υα)− η̃α),

where x ∈ f−1
λ,π(Iβ), and α, β ∈ A.

Recall the itinerary of x as in (3.1.1). It can be proved by induction that for

x ∈ I, n ∈ N we have

γ̃α0(x) = exp

[
−i

n−1∑
k=0

θαk

]
γ̃αn(fnλ,π(x))−

n−1∑
k=0

η̃αk exp

[
−i

k∑
l=0

θαl

]
, (3.3.9)

Since γ̃(0) = 0, taking x = 0 in (3.3.9) we get

exp

[
−i

n−1∑
k=0

θαk

]
γ̃αn(fnλ,π(0))−

n−1∑
k=0

η̃αk exp

[
−i

k∑
l=0

θαl

]
= 0, (3.3.10)

for n ∈ N.

Note that γ̃α : Iα → Ỹα is a homeomorphism for α ∈ A. By continuity of γ̃π−1
0 (1)

and (3.3.10)

∣∣∣γ̃π−1
0 (1)(f

p(n)
λ,π (0))− γ̃π−1

0 (1)(0)
∣∣∣ =

∣∣∣∣∣∣
p(n)−1∑
k=0

ηαk exp

[
−i

k∑
l=0

θαl

]∣∣∣∣∣∣ n→+∞−−−−→ 0. (3.3.11)

By (3.3.3), (3.3.11) is equivalent to (3.3.7).

We now show that ∑
α∈A

η̃αξαλα = 0. (3.3.12)
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Since (I, fλ,π) is uniquely ergodic with respect to Lebesgue measure,

lim
n→+∞

mα(p(n))

p(n)
=
λα
|I| , (3.3.13)

for α ∈ A.
Note that (3.3.4) is equivalent to

eα(p(n)) = mα(p(n))ξα + o(p(n)), α ∈ A. (3.3.14)

Combining (3.3.13) and (3.3.14) we have

eα(p(n)) = p(n)
mα(p(n))

p(n)

1

mα(p(n))
eα(p(n)) = (p(n) + o(p(n)))

λα
|I|ξα,

for α ∈ A, and we get∑
α∈A

η̃αeα(p(n)) =
∑
α∈A

(p(n) + o(p(n)))η̃αλαξα. (3.3.15)

Since (I, fλ,π) has a piecewise continuous embedding into (X,T ), (3.3.7) holds.

Thus (3.3.15) implies that

lim
n→+∞

∑
α∈A

(p(n) + o(p(n)))η̃αλαξα = 0,

which can only hold if (3.3.12) is true, as desired. Finally note that (3.3.12) is

equivalent to (3.3.6), and the proof is complete. �

Condition (3.3.4) is not simple to verify in general since cα(n) is determined by

two cocycles. However under some assumption on θα we can identify cα(n) with an

orbit of a point by interval exchange map and compute the ξα as spatial averages

using the ergodic theorem.

Corollary 3.3.2 Assume that (I, f) is a uniquely ergodic d-IET with a piecewise

continuous embedding by γ into a d-PWI (X,T ) as in (3.3.5). Let χIα denote the

characteristic function of Iα. If

θα =
2π

|I|υα, (3.3.16)

for α ∈ A, then∫
I

(∑
α∈A

(
ηα − γ(0)(1− eiθα)

)
χIα(f−1(x))

)
e−2πixdx = 0. (3.3.17)
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Proof. Let f ′α : Iα → Iα be as in (3.3.2). With fλ,π = f , by (3.3.16) we have

cα(n) =
2π

|I|fλ,π ◦ f
′n
α (x′π0(α)),

Since (I, fλ,π) is uniquely ergodic, it follows that (Iα, f
′
α) is also uniquely ergodic.

Thus, the ergodic theorem implies that

lim
n→+∞

1

mα(p(n))

mα(p(n))−1∑
k=0

exp

[
−2πi

|I| fλ,π ◦ f
′k
α (x′π0(α))

]
=

1

λα

∫
fλ,π(Iα)

exp [−2πix] dx,

(3.3.18)

for α ∈ A.
Let ξα = 1

λα

∫
fλ,π(Iα)

exp [−2πix] dx, for α ∈ A. Combined with (3.3.3) and

(3.3.18) we get

lim
n→+∞

1

mα(p(n))
eα(p(n)) = ξα,

for α ∈ A, and thus by Theorem 3.3.1 we must satisfy (3.3.6) which is equivalent to

(3.3.17). This completes the proof. �

3.4 Evidence of non-trivial embeddings of inter-

val exchange transformations into piecewise

isometries

In this section we present some numerical evidence of non-trivial continuous embed-

dings of IETs in PWIs. In order to do this we first define a PWI on 3 atoms that

apparently exhibits a single invariant curve that is the image of a non-trivial embed-

ding of a 3-IET. We also show some numerical evidence that a family of Translated

Cone Exchange Transformations apparently supports many non-trivial embeddings

of 4-IETs.

3.4.1 A piecewise isometry with an embedded three interval
exchange

We now present an example of a 3-PWI for which numerical evidence suggests the

existence of a non-trivial embedded 3-IET.

Let A = {1, 2, 3}, ω′ = 1.3, ϑ′ = 0.75, z′0 = 0, z′1 = 0, 0.215998 + i0.168125,

z′2 = 0.491520 + i0.051612, z′3 = 0.586452 and the convex sets

Q′1 = {z ∈ C : Im(eiω
′
(z − z′1)) < 0},

Q′2 = {z ∈ C : Im(e−iϑ
′
(z − z′2)) > 0 and Im(eiω

′
(z − z′1)) ≥ 0},

Q′3 = {z ∈ C : Im(e−iϑ
′
(z − z′2)) ≤ 0 and Im(eiω

′
(z − z′1)) ≥ 0}.
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(a) (b)

(c) (d)

Figure 3.3: An illustration of the action of the piecewise isometry T ′. (A) An
invariant set Y ′ and the partition {Q′α}α=1,2,3. (B) Image of Y ′ by T ′. (C) Orbits of
40 points, including z0, (ignoring a transient) under T ′ and the partition {Q′α}α=1,2,3.
(D) Image of the orbits and the partition in (C) by T ′.

Consider the PWI T ′ : C→ C such that

T ′(z) = eiθ
′
αz + η′α, z ∈ Q′α, (3.4.1)

for α = 1, 2, 3, where

θ′α =


4.460361, α = 1,

0.800153, α = 2,

0.995933, α = 3,

η′α =


z′3 − eiθ

′
1z′1, α = 1,

eiθ
′
3(z′3 − z′2)− eiθ′2z′1, α = 2,

eiθ
′
3z′2, α = 3,

(3.4.2)

and set Y ′ = {T ′n(z′0)}n∈N. These parameters are constructed according to certain

renormalization properties of the IET. Figure 3.3 shows the action of the map T ′,

in particular in Figure 3.3 (A) we can see Y ′ and in Figure 3.3 (B) its image by T ′.

Consider the family F3 of 3-IETs fλ,π′ : I → I given by subdividing the interval

into four intervals of lengths λ = (λ1, λ2, λ3) ∈ R3
+ with base permutation π′, with

π̃′(1, 2, 3) = (3, 2, 1).
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We can partition Y ′ by setting Y ′α = Y ′ ∩ Q′α, for α = 1, 2, 3. The length

l′α = Leb(Y ′α) of each Y ′α can be numerically estimated to be

l′1 = 0.3910666426, l′2 = 0.4553369973, l′3 = 0.1535963601.

Fix λ = (l′1, l
′
2, l
′
3) and consider the IET (I, fλ,π′) ∈ F3. Numerical evidence suggests

that there is a continuous embedding of (I, fλ,π′) into (C, T ′), by a map γ′ : I → Y ′

with Y ′ ⊆ C, such that γ′(0) = z′0. Note that Gπ′ is not a connected graph so

we are not in the conditions of Theorem 3.2.4. However by (3.4.2) it is simple to

check that (3.2.6) and (3.2.8) are satisfied. Indeed numerical verification shows that

ι′k(T
′(γ′(0))) = ιk(fλ,π′(0)) for all k ≤ 6 × 104, supporting that γ′ is a symbolic

embedding.

We can also verify numerically that the condition in Theorem 3.3.1 holds for this

case. We estimate ξ
′
α ' eα(p(8))

mα(p(8))
where ξ

′
1 ' −0.453 + 0.651i, ξ

′
2 ' 0.326 + 0.669i

and ξ
′
3 ' 0.417 + 0.679i. For these estimates we get∣∣∣∣∣∑

α∈A

η′αξ
′
αλα − γ′(0)

∑
α∈A

(1− eiθ′α)ξ
′
αλα

∣∣∣∣∣ ' 1.19× 10−5.

3.4.2 A planar piecewise isometry with four cones

Consider the following family of PWIs that include a linear embedding of a 2-IET

and, apparently an infinite number of non-trivial embeddings of 4-IETs.

For any ϑ ∈ (0, π
2
) and ω1 ∈ (0, π− 2ϑ) and η ∈ R+ we consider a partition of C

into four atoms
P0 = {z ∈ C : arg(z) ∈ [−ϑ, ϑ)} ∪ {0},
P1 = {z ∈ C : arg(z) ∈ [ϑ, ω1 + ϑ)},
P2 = {z ∈ C : arg(z) ∈ [ω1 + ϑ, π − ϑ)},
P3 = {z ∈ C : arg(z) ∈ [π − ϑ, 2π − ϑ)},

and define a map T : C→ C by T (z) = Tα(z), for z ∈ Pα, where

Fα(z) =


z − 1, z ∈ α = 0,

zei$1 − (1− η), z ∈ α = 1,

zei$2 − (1− η), z ∈ α = 2,

z + η, z ∈ α = 3,

(3.4.3)

and $1 = π − 2ϑ − ω1, $2 = −ω1. An example is illustrated in Figure 3.4. We

chose A = {0, 1, 2, 3} to label the atoms Pα for this map tho emphasize that this

is a Translated cone exchange transformation for parameters τ(1, 2) = (2, 1), ω =

(ω1, π − ω1 − 2ϑ), η = Φ and η′ = 1− Φ
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Figure 3.4: Schematic representation of a family of 4-PWIs F : C→ C with atoms
given by the four cones Pα, and three parameters: ω1, ϑ and η. The atoms P0 and P3

are translated by F while P1 and P2 are rotated about their vertices then translated.
The map on the baseline [−1, η) is a 2-IET.

We define the maximal invariant set for this map as X ⊂ C. Note that F

restricted to the real line reduces to a 2-IET on [−1, η) that equivalent to interchange

of intervals of length 1 and η. We refer to this as the baseline transformation.

This map is such that all vertices of atoms that touch the baseline are mapped

to the baseline. This means that although F is not invertible, it is locally bijective

near the base line. The middle cones P1 and P2 are swapped by two rotations and

after this, P1 and P2 are translated by −(1− η).

Recall the first return map to Pc = P1 ∪ P2, Fc : P1 ∪ P2 → P1 ∪ P2,

Fc(z) = F k(z)(z). (3.4.4)

where k(z) = inf{k ≥ 1 : F k(z) ∈ P1 ∪P2}. If η is irrational then every point enters

P1 ∪ P2 after a finite number of iterates, and hence in this case Fc can be used to

characterise all orbits of the map.

For typical choices of parameters ω1, ϑ and η it seems that the dynamics of

F defined by (3.4.3) (and hence of R) is very rich. Figure 3.5 (A) shows typi-

cal trajectories (after a transient), for two hundred randomly selected points and

(ω1, ϑ, η) = (0.5, 1,
√

5−1
2

). Details of some invariant sets are then shown in Figure

3.5 (B). These numerical simulations illustrate that (as expected [9, 10]) the map F

has an abundance of periodic islands for typical values of the parameters.

Figure 3.6 (A) shows the orbits of 5 points (ignoring a transient) under Fc, for

(ω1, ϑ, η) = (0.5, 1,
√

5−1
2

). Details of this are shown in Figure 3.6 (B) and (C) in the

areas [−0.04,−0.01]× [0.16, 0.21] and [−0.0016,−0.01]× [0.16, 0.165] respectively.

These figures show the diverse types of behaviour that can be found in the
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(a) (b)

Figure 3.5: (A) Orbits of 200 points (ignoring a transient) by F , for (ω1, ϑ, η) =

(0.5, 1,
√

5−1
2

). (B) Details of (A) in the area [−0.4, 0.4]× [0, 0.5]. The cone indicates
the location of P1 ∪ P2. In this and later figures, orbits of length 105 are generated
after removing a transient of 100 iterates. The maximal invariant set appears to
have a highly complex boundary, but it does appear to include a polygon containing
the baseline. The boxed region contains what seem to be many invariant non smooth
curves.

invariant sets of Fc (and hence F ). They show what seem to be non-trivial embedded

IETs as well as invariant sets of higher dimension. There are also periodic islands

to which the return map is a rotation.

Numerical results show that for some parameters we can observe non smooth

invariant curves for the dynamics of the map Fc as defined in equation (3.4.4).

These curves appear to have a dynamics similar to that of an interval exchange

transformation. These curves can bound invariant regions that exhibit quite complex

dynamics. We now construct one such region: set ω1 = 0.5, ϑ = 1, η =
√

5−1
2

and

η′ = 1− η. Consider the points

z0 = r0e
i(π−ϑ), z1 = r1e

i(π−ϑ),

with r0 = 0.470 and r1 = 0.503 and denote the orbit closures of these points as

Ξ′ and Ξ′′. These are contained in the boxed region in Figure 3.5 (B) and are also

represented in Figure 3.7 where it can be seen that both Ξ′ and Ξ′′ appear to be

non-trivial continuous embeddings of IETs. Now consider the sets

Q′L = {z ∈ C : arg(z) = π − ϑ and r0 ≤ |z| ≤ r1},

Q′R = {z ∈ C : arg(z) = ϑ and r0 ≤ |z| ≤ r1}.

If Ξ′ and Ξ′′ are invariant curves that are embeddings of IETs, then the set ∂Ξ =

Q′L∪Q′R∪Ξ′∪Ξ′′ is a Jordan curve. Denote by Ξ the closure of the region bounded

by ∂Ξ. Numerical investigations suggest that Ξ is an invariant region for Fc. Let
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(a)

(b) (c)

Figure 3.6: (A) Orbits of 5 points (ignoring a transient) under Fc, for (ω1, ϑ, η) =

(0.5, 1,
√

5−1
2

) in the area [−0.14, 0.14] × [0, 0.25]. (B) Details of (A) in the area
[−0.04,−0.01] × [0.16, 0.21]. (C) Details of (A) in the area [−0.0016,−0.01] ×
[0.16, 0.165]. Observe a complex pattern of periodic islands, the presence of non-
trivially embedded IETs as well as orbits with more complex structure.

Ξk = Qk ∩ Ξ, where

Q0 = {z ∈ C : Im(e−i(ω1+ϑ)(z + (2η − 1)eiω1)) > 0},
Q1 = {z ∈ C : Im(e−i(ω1+ϑ)(z + (2η − 1)eiω1)) ≤ 0 and Im(ei(ϑ−ω1)(z − (1− η)eiω1)) < 0},
Q2 = {z ∈ C : Im(ei(ϑ−ω1)(z − (1− η)eiω1)) ≥ 0 and Im(e−i(ω1+ϑ)z) > 0},
Q3 = {z ∈ C : Im(ze−i(ω1+ϑ)) ≤ 0}.

Using the property of the golden mean 1 − η = η2 it can be seen that Fc(z) =

(Fc)α(z), for z ∈ Ξα where

(Fc)α(z) =


zei$2 + η3, α = 0,
zei$2 − η4, α = 1,
zei$2 − η2, α = 2,
zei$1 + η3, α = 3.

(3.4.5)

The subsets Ξα, α = 0, ..., 3 and the action of Fc in this set are depicted in Figure

3.7. Note that that Fc acts isometrically on each Ξα, but since these sets are not
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(a)

(b)

Figure 3.7: (A) The presumably invariant region Ξ = Ξ0 ∪ Ξ1 ∪ Ξ2 ∪ Ξ3. (B) Image
of Ξ by Fc.

convex (Ξ, Fc) is not a 4-PWI, but it is simple to construct a 4-PWI (C, S) such that

Ξ is invariant under S and the restriction of S to Ξ is equal to Fc, by partitioning

C =
⋃
α∈AQα and setting S(z) = (Fc)α(z), for z ∈ Qα. One can verify that S

satisfies the parametric connecting equation (3.2.12), therefore satisfying a necessary

condition for the existence of an IET that can be continuously embedded by γ in

(C, S), with Y = γ(I) ⊆ Ξ also invariant under Fc.

3.4.3 A piecewise isometry with an embedded four interval
exchange

Finally, we show that the map Fc in (3.4.5) is an example of a 4-PWI for which

numerical evidence suggests the existence of a non-trivial embedded 4-IET.

Consider the family F4 of four-interval exchange maps fλ,π : I → I given by

subdividing the interval into four intervals of lengths λ = (λ1, λ2, λ3, λ4) ∈ R4
+ with

base permutation π with monodromy invariant satisfying π̃(1, 2, 3, 4) = (4, 2, 1, 3).
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Figure 3.8: First 105 points of the orbit of (0, 0), by the tangent exchange map Ψ
given by λ = (l0, l1, l2, l3), π̃(1, 2, 3, 4) = (4, 2, 1, 3), θα = $2, for α = 0, 1, 2 and
θ3 = $1. Observe the apparent lack of ergodicity as expected for a non-trivial
embedding.

Note that on the real axis Im(z) = 0 is a trivial embedding of the (degenerate)

four-interval exchange where λ = (η, 0, 0, 1). Let

Y = {F n
c (0.416i)}n∈N.

This defines an invariant set which is portrayed in Figure 3.1 that appears to be an

embedding of an IET. We can partition Y by setting Yα = Y ∩ Ξα, for α = 0, ...3.

The length or Lebesgue one dimensional measure lα = Leb(Yα) of each Yα can be

numerically estimated to be

l0 = 0.1217970148, l1 = 0.1329352086, l2 = 0.2008884081, l3 = 0.3550989199

Fix λ = (l0, l1, l2, l3) and consider the IET (I, fλ,π) ∈ F4. Numerical evidence

suggests that there is a continuous embedding of (I, fλ,π) into (C, S), by a map γ :

I → Y with Y ⊆ Ξ, such that γ(0) = r0e
iθ0 , with r0 = 0.47665, and θ0 = 0.68165π.

Indeed numerical verification shows that ι′kR(h(0)) = ιk(fλ,π(0)) for all k ≤ 105,

supporting that γ is a symbolic embedding.

We can also verify numerically that the condition in Theorem 3.3.1 holds for

this case. Estimating ξα ' eα(p(8))
mα(p(8))

where ξ0 ' 0.718 + 0.125i, ξ1 ' 0.538− 0.512i,

ξ2 ' 0.460− 0.438i and ξ3 ' 0.300− 0.562i. For these estimates we get∣∣∣∣∣∑
α∈A

ηαξαλα − γ(0)
∑
α∈A

(1− eiθα)ξαλα

∣∣∣∣∣ ' 6.30× 10−6,

where θα = $2, for α = 0, 1, 2 and θ3 = $1.
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Figure 3.8 shows 105 points of the orbit of (0, 0), by tangent exchange map

Ψ associated to S, which is consistent with the orbit being dense but not having

nonuniform distribution on the cylinder I × S1.

In this chapter, we discussed the general problem of embedding IET dynamics

within PWIs with a particular focus conditions for this embedding to be trivial or

non-trivial, leaving still open the question of whether a non-trivial embedding of an

IET into a PWI can exist at all. In the next chapter we answer this question by

establishing that almost every IET, with an associated translation surface of genus

g ≥ 2, can be non-trivially embedded in a family of PWIs.
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Chapter 4

Existence of non-trivial
embeddings of Interval Exchange
Transformations into Piecewise
Isometries

In Section 1.4.2 we introduced continuous embeddings of an IET into a PWI (a

curve γ satisfying (1.4.8), continuous on I). Then, on Section 2.5 we used them in

the proof of one of our main results, Theorem B. On Chapter 3 we derived necessary

conditions for the existence of embeddings. We proved that continuous embeddings

of minimal 2-IETs into orientation preserving PWIs are necessarily trivial and that

any 3-PWI has at most one non-trivially continuously embedded minimal 3-IET with

the same underlying permutation. We gave numerical evidence of the existence of

non-trivial embeddings of 3 and 4-IETs into PWIs, however we did not provide a

rigorous proof.

In this chapter we prove that a full measure set of IETs admit non-trivial em-

beddings into a class of PWIs thus also establishing the existence of invariant curves

for PWIs which are not unions of circle arcs or line segments.

This chapter is organized as follows. We start by introducing a sequence of

piecewise linear curves determined by parameters (λ, π) ∈ RA+ ×S(A) and θ ∈ TA.

These curves are related to the Rauzy induction (recall Section 1.3.2) of the IET

parametrized by the same parameters (λ, π). We prove several technical lemmas

which lead to the proof that each curve in the breaking sequence is quasi-embedded

in a certain PWI. Finally we use tools from the theory of IET renormalization to

prove key results which lead to the proof of Theorem E.
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4.1 Breaking sequence

In this section we define the breaking sequence, a sequence of curves associated to

IET parameters (λ, π) ∈ RA+ × S(A) and a rotational parameter θ ∈ TA via the

breaking operator, an operator acting on the space of piecewise linear curves. We

then relate the dynamics of a breaking sequence and that of the underlying IET.

Given ` > 0 we denote by PL(`) the class of continuous piecewise linear maps

γ : [0, `)→ C such that all x in the domain of differentiability of γ, satisfy |γ(x)′| = 1.

Note that for any γ ∈ PL(`), its image γ([0, `)) has an arc length equal to `.

We say that a sequence of mutually disjoint intervals (Jn)n is an ordered sequence

of disjoint intervals if whenever m < m′, we have x < x′ for all x ∈ Jm and x′ ∈ Jm′ .
Moreover, given a collection of mutually disjoint intervals J , we say an ordered

sequence of intervals {Jn} is an ordering of J if for all J ∈ J there is a unique m

such that Jm = J . Note that if J is a finite collection then it has a unique ordering.

We now define the breaking operator, which acts on PL(`). Given a sequence

of subintervals of [0, `), it takes a curve and rotates, by a fixed angle, the pieces

corresponding to these subintervals. This is represented in Figure 4.1.

Consider a map γ ∈ PL(`), a real number ϕ ∈ [−π, π), and an ordered sequence

of disjoint intervals J = (Jk)0≤k≤r−1 of equal length ∆ ∈ (0, `/r). We write Jk =

[yk, yk + ∆) ⊂ R, where yk + ∆ ≤ yk+1 and k ∈ {0, ..., r − 1}.
Let B([0, `),C) denote the space of bounded maps from [0, `) to C. We define

the breaking operator Br(ϕ, J) : PL(`)→ B([0, `),C) as

Br(ϕ, J) · γ(x) =


γ(x), x ∈ [0, y0),

γ(x) · eiϕ + εk(ϕ, J), x ∈ [yk, yk + ∆),

γ(x) + εk(ϕ, J), x ∈ [yk + ∆, yk+1),

(4.1.1)

for k ∈ {0, ..., r − 1}, where yr = `,

ε0 = γ(x0)(1− eiϕ), εk = γ(yk)(1− eiϕ) + εk−1, (4.1.2)

and also

ε0 = (γ(y0)− γ(y0 + ∆))(1− eiϕ), εk = εk − γ(yk + ∆)(1− eiϕ). (4.1.3)

The above expressions for εk and εk are constructed in a way so that the action

of the breaking operator preserves the continuity of a curve. Indeed in our next

lemma we show that for all ` > 0 and ϕ ∈ [−π, π), Br(ϕ, J) maps PL(`) into a

subset of PL(`).
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(a) (b)

Figure 4.1: An illustrative representation of the action of the operator Br on a
piecewise linear curve γ : I → C. In (a) we can observe γ(I). The dashed segments
correspond to the images by γ of segments from an ordered sequence of disjoint
intervals J = (Jn)n=0,1,2; (b) shows the image Br(ϕ, J) · γ(I) , with ϕ = π/4. Note
how the breaking operator acts by only rotating the segments γ(Jn) by ϕ while
keeping the transformed curve continuous.

Lemma 4.1.1 If ` > 0, γ ∈ PL(`), ϕ ∈ [−π, π) and J is an ordered sequence of

disjoint subintervals of [0, `) with length ∆ > 0, then Br(ϕ, J)(PL(`)) ⊆ PL(`).

Proof.

Let γ ∈ PL(`). It is clear that Br(ϕ, J) ·γ is piecewise linear and continuous. In

particular, it is semi-differentiable, that is, it admits both left and right derivatives

for every point. Denote by ∂− and ∂+ its left and right derivative, respectively.

Given x ∈ (0, `) we have

|∂− (Br(ϕ, J) · γ) (x)| = |∂+ (Br(ϕ, J) · γ) (x)| = |∂+γ(x)|.

Since γ ∈ PL(`), |∂+γ
′(x)| = 1 and hence, if Br(ϕ, J) · γ is differentiable at x we

must have | (Br(ϕ, J) · γ)′ (x)| = 1. This finishes our proof.

�

We will later need the estimate in the next lemma.

Lemma 4.1.2 Let ` > 0, γ ∈ PL(`), ϕ ∈ [−π, π), ∆ < ` be a positive constant and

J be an ordered sequence of disjoint intervals of length ∆. For all k ∈ N we have

max (|εk|, |εk|) ≤ 2` sin
∣∣∣ϕ
2

∣∣∣ .
Proof. Let r be the number of subintervals in J and J = ([yk, yk + ∆))0≤k<r.

By inserting (4.1.3) in (4.1.2) it is clear that, for any 1 ≤ k < r, we have

εk = (γ(yk)− γ(yk−1 + ∆))(1− eiϕ) + εk−1,
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and applying the triangle inequality we get, for any 1 ≤ k < r, that

|εk| ≤ |1− eiϕ|
[
|γ(yk)|+

k−1∑
l=0

|γ(yl)− γ(yl + ∆)|
]
.

As |1− eiϕ| = | sin(ϕ/2)|, yk ≤ `− (r− k)∆ and |γ(yl)− γ(yl + ∆)| ≤ γ([yk, yk +

∆)) ≤ ∆ we get as r∆ ≤ `

|εk| ≤ 2` sin
∣∣∣ϕ
2

∣∣∣ .
It is also clear from (4.1.2) and (4.1.3) applying the triangle inequality that for

any 1 ≤ k < r we have

|εk| ≤ |1− eiϕ|
k∑
l=0

|γ(yl)− γ(yl + ∆)|,

and in a similar way as before we can prove that |εk| ≤ k∆ sin |ϕ/2| ≤ ` sin
∣∣ϕ

2

∣∣ .
�

Recall we say an ordered sequence of intervals {Jn} is an ordering of a collection

of mutually disjoint intervals J , if for all J ∈ J there is a unique m such that

Jm = J .

Also recall the definition of IET and notation introduced in Section 1.3.1. The

n-th iterate of the Rauzy induction map R : RA+ ×S(A) → RA+ ×S(A) is defined

for any n ≥ 0 and is denoted by

Rn(λ, π) = (λ(n), π(n)),

with π(n) = ( π
(n)
0 π

(n)
1 )T . Furthermore we denote by βε,n the last symbol in the

expression of π
(n)
ε , by ε(n) the type of fλ(n),π(n) , by I(n) its domain and by {I(n)

α }α∈A
its partition in subintervals, for n ≥ 0. Also recall that rnλ,π(I

(n)
α ) denotes the first

return time of any x ∈ I(n)
α by fλ,π to I(n).

Given (λ, π) ∈ RA+ ×S(A), consider the collection of sets

J (n) =
{
fkλ,π

(
I(n−1)\I(n)

)}
0≤k<r(n−1)

, (4.1.4)

where r(n− 1) = rn−1
λ,π

(
I

(n−1)
β0,n−1

)
and

βε,m =
(
π(m)
ε

)−1
(d).

It is clear that for all n ≥ 1, r(n − 1) is equal to the smallest r ≥ 1 such that

fkλ,π(I(n−1)\I(n)) ⊂ I(n). We denote the ordering of J (n) by J (n) = (J
(n)
k )0≤k<r(n−1),

for all n ≥ 1.
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Let ZA ' Zd and TA ' Td be the d-dimensional torus RA/2πZA. Furthermore,

let p : RA → TA be the natural projection,

p(v) = ((v)α mod 2π)α∈A , for all v ∈ RA.

We sometimes use the notation p(v) = v mod 2π.

Recall the definition of Rauzy cocycle in Section 1.3.4. We introduce the projec-

tion of the Rauzy cocycle on TA as the application BTA : RA+ ×R× TA → TA such

that BTA(λ, π) · θ = p(BR(λ, π) · v) , for any (λ, π) ∈ RA+ ×R, n ≥ 0 and θ ∈ TA,

with v ∈ p−1(θ). Note that, as BR is an integral cocycle, for any v, v′ ∈ p−1(θ) we

have p(BR(λ, π) · v) = p(BR(λ, π) · v′) and thus the map BTA is well defined. We

also use the notation

B
(n)

TA (λ, π) · θ = B
(n)
R (λ, π) · v mod 2π, (4.1.5)

for any n ≥ 0 and θ ∈ TA, with v ∈ p−1(θ).

Given θ ∈ TA let

θ(0) = θ, θ(n) = B
(n)

TA (λ, π) · θ. (4.1.6)

We define the breaking sequence as a sequence of piecewise linear curves (γ
(n)
θ (x))n ∈

PL(`), such that

γ
(0)
θ (x) = x,

γ
(n)
θ (x) = Br

(
θ

(n−1)
β1,n−1

, J (n)
)
· γ(n−1)

θ (x),
(4.1.7)

for all x ∈ [0, |λ|) and n ≥ 1.

Each map in the breaking sequence is a curve parametrized by its arclength and

is obtained by successively applying the breaking operator with angles θ
(n−1)
β1,n−1

and

segments J (n). Note that the number of these segments will increase while their

lengths will decrease as n → +∞. In this way this sequence of curves is related

both to the IET fλ,π and to a PWI with rotation vector θ. A representation of a

breaking sequence of curves can be observed in Figure 4.2.

Denote by Θλ,π the set of all θ ∈ TA such that for all n ≥ 0, γ
(n)
θ : I → C is an

injective map. Throughout the rest of this section we will consider γ(n) = γ
(n)
θ with

θ ∈ Θλ,π.

The monodromy invariant of the permutation π(m) is the bijection

π̃(m) : {1, · · · , d} → {1, · · · , d},
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(a) (b)

(c) (d)

Figure 4.2: A representation of 4 curves in the breaking sequence (γ
(n)
θ )n≥0 as-

sociated to parameters λ ≈ (0.43, 0.34, 0.12, 0.11), a permutation π = (π0, π1),
with π0(A,B,C,D) = (1, 2, 3, 4) and π1(A,B,C,D) = (4, 3, 2, 1) and θ ≈
(3.872, 5.110, 0.531, 0.553). Each figure is the image of the interval I, by a map
γ(n), composed with a rotation which assures that both endpoints lie on the Real
axis. Each of the differently shaded segments correspond respectively, from left
to right, to γ(n)(Iα), α = A,B,C,D. In (a), (b), (c) and (d) we can see γ(n)(I)
respectively for n = 1, 5, 10, 35.

such that π̃(m) = π
(m)
1 ◦ (π

(m)
0 )−1. We denote its inverse by π̂(m) = π

(m)
0 ◦ (π

(m)
1 )−1.

We write
x

(m)
ε,j =

∑
π
(m)
ε (α)≤j λ

(m)
α , (4.1.8)

for ε = 0, 1, where x
(m)
0,j denotes the j-th endpoint of the partition associated to

to fλ(m),π(m) , this is {I(m)
α }α∈A, and x

(m)
1,j denotes the j-th endpoint of the image of

this partition by fλ(m),π(m) . Furthermore we denote their image by γ(n) as γn,mε,j =

γ(n)
(
x

(m)
ε,j

)
.

We may now define points ξn,mj ∈ C recursively as follows

ξn,md = γn,m0,d ,

ξn,mj = exp

{
iθ

(m)

(π
(m)
1 )−1(j+1)

}(
γn,m

0,π̂(m)(j+1)−1
− γn,m

0,π̂(m)(j+1)

)
+ ξn,mj+1 .

(4.1.9)

For all α ∈ A, n ∈ N, 0 ≤ m ≤ n and z ∈ C, we define a map,

T̂ (n,m)
α (z) = eiθ

(m)
α

(
z − γn,m

0,π
(m)
0 (α)

)
+ ξn,m

π
(m)
1 (α)

. (4.1.10)

The isometries T̂
(n,m)
α act on the segments γ(n)(I

(m)
α ) by rearranging their order

according to the permutation π(m), via rotations by angles θ
(m)
α . The right endpoint

γn,m
0,π̂(m)(d)

of the segment γ(n)(I
(m)
β1,m

) is mapped to the right endpoint ξn,md of γ(n)(I(m)).
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For j < d, the right endpoint γn,m
0,π̂(m)(j)

of γ(n)(I
(m)

π̂(m)(j)
) is mapped to the left endpoint

ξn,mj of the image by T̂
(n,m)

π̂(m)(j+1)
of γ(n)(I

(m)

π̂(m)(j+1)
). In this way, the union over α ∈ A,

of all T̂
(n,m)
α (γ(n)(I

(m)
α )) is a continuous curve which a priori may not coincide with

γ(n)(I(m)).

We also define inductively a map T
(n,m)
α as follows:

T (n,n)
α (z) = T̂ (n,n)

α (z). (4.1.11)

For z ∈ C, 0 < m ≤ n, if ε(m− 1) = 0 then

T (n,m−1)
α (z) =

T
(n,m)
α (z), α 6= β1,m−1,(
T

(n,m)
β0,m−1

)−1

◦ T (n,m)
α (z), α = β1,m−1,

(4.1.12)

if ε(m− 1) = 1 then

T (n,m−1)
α (z) =

T
(n,m)
α (z), α 6= β0,m−1,

T
(n,m)
α ◦

(
T

(n,m)
β1,m−1

)−1

(z), α = β0,m−1.
(4.1.13)

Finally, we define a map T (n,m) : γ(n)
(
I(m)

)
→ C by

T (n,m)(z) = T (n,m)
α (z), z ∈ γ(n)

(
I(m)
α

)
.

To understand the inductive procedure used to define T (n,m), consider first the

map fλ(m),π(m),α : R → R such that fλ(m),π(m),α(x) = x + υ
(m)
α . If θ = 0, by the

definition of breaking sequence, γ
(n)
θ (x) = x, for all x ∈ I and n ≥ 0. Consequently,

we have γn,mε,j = x
(m)
ε,j , ξn,mj = x

(m)
1,j and thus, for all z ∈ C, we have

T̂ (n,m)
α (z) = fλ(m),π(m),α(Re(z)) + iIm(z).

For 0 < m ≤ n and ε(m− 1) = 0, (4.1.12) gives

fλ(m−1),π(m−1),α(Re(z)) =

fλ(m),π(m),α(Re(z)), α 6= β1,m−1,

f−1
λ(m),π(m),β0,m−1

◦ fλ(m),π(m),α(Re(z)), α = β1,m−1,

and as fλ(m),π(m)(x) = fλ(m),π(m),α(x), when x ∈ I(m)
α , these identities can be easily

verified to be equivalent to Rauzy induction in this case. An analogous set of

identities can also be obtained for the case ε(m − 1) = 1. Also note that for this

example we have T̂
(n,m)
α = T

(n,m)
α . This is no coincidence and indeed later we will

prove that this identity holds in general. In this way (4.1.12) and (4.1.13) are

a generalization of Rauzy induction and hence (T (n,m))n≥0 is a sequence of maps

defined on γ(n)(I(m)) which preserves this inductive structure.
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For the remainder of this section we prove several lemmas which serve as technical

tools for our next section where we explore the relation between T̂
(n,m)
α , T

(n,m)
α , γ(n)

and fλ(m),π(m) . The following lemma gives useful expressions for compositions of

T̂
(n,m)
α which are related to the inductive procedure used to define T

(n,m)
α .

Lemma 4.1.3 For all n ≥ 1, 0 < m ≤ n and z ∈ C if ε(m− 1) = 0 then(
T̂

(n,m)
β0,m−1

)−1

◦ T̂ (n,m)
β1,m−1

(z) = e
iθ

(m−1)
β1,m−1

(
z − γn,m−1

0,π̂(m−1)(d)−1

)
+ γn,m−1

1,d−1 .

and if ε(m− 1) = 1 then

T̂
(n,m)
β0,m−1

◦
(
T̂

(n,m)
β1,m−1

)−1

(z) = e
iθ

(m−1)
β0,m−1

(
z − γn,m−1

0,d−1

)
+ ξn,m

π̃(m−1)(d)−1
.

Proof. Assume first ε(m − 1) = 0. It is clear that π
(m−1)
0 = π

(m)
0 , π

(m)
1 (β1,m−1) =

π
(m)
1 (β0,m) + 1 and we get

ξn,m
π
(m)
1 (β1,m−1)

− ξn,m
π
(m)
1 (β0,m−1)

= e
iθ

(m)
β1,m−1

(
γn,m

0,π̂(m−1)(d)
− γn,m

0,π̂(m−1)(d)−1

)
. (4.1.14)

directly from the definition of ξn,mj with j = π
(m)
1 (β0,m).

From (4.1.6) we can write

θ(m)
α =

{
θ

(m−1)
α , α 6= β1,m−1,

θ
(m−1)
β1,m−1

+ θ
(m−1)
β0,m−1

, α = β1,m−1,
(4.1.15)

Now, since for any j < d we have γn,m−1
0,j = γn,m0,j , from the above relations using

(4.1.10) we prove our lemma in this case.

Now assume ε(m − 1) = 1. It is cleat that π
(m−1)
1 = π

(m)
1 and π

(m)
0 (β1,m−1) =

π
(m)
0 (β0,m−1) − 1. With j = π̃(m−1)(d) − 1, it is straightforward from the definition

of ξn,mj that

ξn,m
π̃(m−1)(d)−1

= e
iθ

(m)
β0,m−1

(
γn,m

0,π
(m)
0 (β1,m−1)

− γn,m
0,π

(m)
0 (β0,m−1)

)
+ ξn,m

π̃(m−1)(d)
. (4.1.16)

By (1.3.7) and (4.1.8) we have

γn,m−1
0,j =

{
γn,m0,j , 0 ≤ j < π̂(m)(d),

γn,m0,j+1, π̂(m)(d) ≤ j < d,
(4.1.17)

which in particular, by (4.1.9) gives γn,m−1
0,d−1 = ξn,md . Also, by (4.1.6) we have

θ(m)
α =

{
θ

(m−1)
α , α 6= β0,m−1,

θ
(m−1)
β0,m−1

+ θ
(m−1)
β1,m−1

, α = β0,m−1,
(4.1.18)
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The second statement in the lemma follows from combining this with (4.1.16)

using the definition of T̂
(n,m)
α .

�

Before proving our next lemma, note that we can write (1.3.5) as

π̂(m−1)(j) =


π̂(m)(π̃(m)(d) + 1), j = d,

π̂(m)(j + 1), π̃(m−1)(d) < j < d,

π̂(m)(j), j ≤ π̃(m)(d).

(4.1.19)

The proofs of our next two lemmas consist of simple computations using our

formulas and definitions. We highlight the main steps but do not present exhaustive

proofs.

Lemma 4.1.4 Let n ≥ 1 and 0 < m ≤ n. If ε(m − 1) = 0 and ξn,m−1
d−1 = γn,m−1

1,d−1 ,

then

T̂ (n,m−1)
α (z) = T̂ (n,m)

α (z). (4.1.20)

for all z ∈ C and α ∈ A\{β1,m−1}.

Proof.

For π̃(m)(d) < j < d, from the definition of π̂(m−1) and since γn,m−1
0,j = γn,m0,j we

can write

γn,m−1

0,π̂(m−1)(j)
− γn,m−1

0,π̂(m−1)(j)
= γn,m

0,π̂(m)(j+1)−1
− γn,m

0,π̂(m)(j+1)
.

Since π
(m−1)
0 = π

(m)
0 ,

(
π

(m−1)
1

)−1

(j) =
(
π

(m)
1

)−1

(j + 1), and as j < d, using

(4.1.15) we get

θ
(m−1)(
π
(m−1)
1

)−1
(j)

= θ
(m)(
π
(m)
1

)−1
(j+1)

.

As ξn,m−1
d−1 = γn,m−1

1,d−1 and γn,m−1
1,d−1 = γn,m0,d , the two expressions above give for π̃(m)(d) ≤

j < d

ξn,m−1
j = ξn,mj+1 . (4.1.21)

Now assume α ∈ A is such that π
(m)
1 (α) > π̃(m)(d) + 1. By (4.1.21) we get

ξn,m
π
(m)
1 (α)

= ξn,m−1

π
(m)
1 (α)−1

, and since by (1.3.5), we have π
(m−1)
1 (α) = π

(m)
1 (α) − 1, this

gives

ξn,m
π
(m)
1 (α)

= ξn,m−1

π
(m−1)
1 (α)

.

Since γn,m−1
0,j = γn,m0,j the proof of the lemma in this case follows from the definition

of ξn,mj and T̂ n,mα .
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Note that π
(m−1)
1 (β0,m−1) = π

(m)
1 (β1,m−1) and thus it follows from (4.1.21) that

ξn,m−1

π
(m−1)
1 (β0,m−1)

= ξn,m
π
(m)
1 (β1,m−1)

. By (4.1.14) we get

ξn,m−1

π
(m−1)
1 (β0,m−1)

− ξn,m
π
(m)
1 (β0,m−1)

= e
iθ

(m)
β1,m−1

(
γn,m

0,π̂(m−1)(d)
− γn,m

0,π̂(m−1)(d)−1

)
. (4.1.22)

Since ξn,m−1
d−1 = γn,m−1

1,d−1 , we have

γn,m−1
0,d − γn,m−1

1,d−1 = e
iθ

(m−1)
β1,m−1

(
γn,m−1

0,π̂(m−1)(d)
− γn,m−1

0,π̂(m−1)(d)−1

)
, (4.1.23)

which combined with (4.1.15) and (4.1.22), using the fact that γn,m−1
1,d−1 = γn,m0,d ,

γn,m−1
0,j = γn,m0,j , when j < d and the definition of ξn,mj proves the lemma for

α = β0,m−1.

From (4.1.15), (4.1.19) and (4.1.23), as π
(m)
1 (β1,m−1) = π

(m)
1 (β0,m)+1 and γn,m0,d =

γn,m−1
1,d−1 , a trivial computation gives

ξn,m
π̃(m)(d)+1

= e
iθ

(m)
β0,m

(
γn,m−1

0,d − γn,m0,d

)
+ ξn,m

π̃(m)(d)
.

By (4.1.19), (4.1.21) and from the definition of ξn,m−1

π̃(m)(d)−1
we get

ξn,m−1

π̃(m)(d)−1
= e

iθ
(m−1)
β0,m

(
γn,m−1

0,d−1 − γn,m−1
0,d

)
+ ξn,m

π̃(m)(d)+1
.

Combining this with (4.1.15), (4.1.19) and noting that γn,m0,d−1 = γn,m−1
0,d−1 , the relation

ξn,m−1

π̃(m)(d)−1
= ξn,m

π̃(m)(d)−1
.

simply follows from the definition of ξn,mj for j = π̃(m)(d)− 1.

We now prove by induction on j that

ξn,m−1
j = ξn,mj . (4.1.24)

for 1 ≤ j < π̃(m)(d).

Since π
(m−1)
0 = π

(m)
0 , we get by (4.1.19) that (π

(m−1)
1 )−1(j) = (π

(m)
1 )−1(j), and as

j < d, by (4.1.15) we have

θ
(m−1)(
π
(m−1)
1

)−1
(j)

= θ
(m)(
π
(m)
1

)−1
(j)
, (4.1.25)

Combined with (4.1.19) this gives

ξn,m−1
j−1 = exp

{
iθ

(m)

(π
(m)
1 )−1(j)

}(
γn,m

0,π̂(m)(j)−1
− γn,m

0,π̂(m)(j)

)
+ ξn,mj ,
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which, as ξn,m−1
j = ξn,mj , by (4.1.9) shows that ξn,m−1

j−1 = ξn,mj−1 , proving (4.1.24).

Now assume α ∈ A is such that π
(m)
1 (α) < π̃(m)(d). From (4.1.24), since

π
(m−1)
1 (α) = π

(m)
1 (α) we get ξn,m−1

π
(m−1)
1 (α)

= ξn,m
π
(m)
1 (α)

. This, combined with (4.1.25)

and the definition of T̂
(n,m)
α , proves our statement for π

(m)
1 (α) < π̃(m)(d).

Since π
(m)
1 (β0,m−1) = π̃(m)(d) and since we proved (4.1.20) for α = β0,m−1

and π
(m)
1 (α) > π̃(m)(d) + 1, we get (4.1.20), for all π

(m)
1 (α) 6= π̃(m)(d) + 1. As

π
(m)
1 (β1,m−1) = π

(m)
1 (β0,m) + 1 and π

(m)
1 (β1,m) = π̃(m)(d) + 1 we have (4.1.20) for all

α ∈ A\{β1,m−1}. �

Note that by (1.3.6) we can write

π̂(m−1)(j) =


π̂(m)(j)− 1, π̂(m)(j) > π̂(m)(d) + 1,

d, π̂(m)(j) = π̂(m)(d) + 1,

π̂(m)(j), π̂(m)(j) < π̂(m)(d) + 1.

(4.1.26)

The following lemma provides a result similar to that of Lemma 4.1.4, but for

the case ε(m− 1) = 1. The main difference, compared to the previous case, comes

from the fact that ξn,m−1
d−1 does not, beforehand, coincide with γn,m−1

1,d−1 , although we

will later establish this equality.

Lemma 4.1.5 Let n ≥ 1 and 0 < m ≤ n. If ε(m− 1) = 1 and ξn,m−1
d−1 = ξn,md−1, then

for all z ∈ C and α ∈ A\{β0,m−1, β1,m−1} we have

T̂ (n,m−1)
α (z) = T̂ (n,m)

α (z). (4.1.27)

and

T̂
(n,m−1)
β0,m−1

(z) = T̂
(n,m)
β0,m−1

◦
(
T̂

(n,m)
β1,m−1

)−1

(z). (4.1.28)

Proof.

By (4.1.17) and (4.1.26), for all j such that π̂(m)(j) /∈ {π̂(m)(d), π̂(m)(d) + 1}, we

get

γn,m−1

0,π̂(m−1)(j)
= γn,m

0,π̂(m)(j)
, (4.1.29)

similarly, γn,m−1

0,π̂(m−1)(j)−1
= γn,m

0,π̂(m)(j)−1
. In particular, for any j /∈ {π̃(m)(π̂(m)(d)+1), d}

we have

γn,m−1

0,π̂(m−1)(j)−1
− γn,m−1

0,π̂(m−1)(j)
= γn,m

0,π̂(m)(j)−1
− γn,m

0,π̂(m)(j)
. (4.1.30)

As π
(m−1)
1 = π

(m)
1 and by (4.1.18), for all j < d we have

θ
(m−1)

(π
(m−1)
1 )−1(j)

= θ
(m)

(π
(m)
1 )−1(j)

. (4.1.31)
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We now prove, by induction on j, that

ξn,m−1
j = ξn,mj . (4.1.32)

for π̃(m−1)(d) ≤ j < d.

We have ξn,m−1
d−1 = ξn,md−1. Take π̃(m−1)(d) < j < d. As π̃(m)(π̂(m)(d) + 1) =

π̃(m−1)(d), we have that j /∈ {π̃(m)(π̂(m)(d) + 1), d}, hence by (4.1.30) and (4.1.31)

we get ξn,m−1
j−1 = ξn,mj−1 . This shows that for any π̃(m−1)(d) ≤ j < d, (4.1.32) holds.

By (4.1.17) and (4.1.26) we have γn,m−1

0,π̂(m−1)(d)
= γn,m

0,π̂(m)(d)+1
and γn,m−1

0,π̂(m−1)(d)−1
=

γn,m
0,π̂(m)(d)−1

, thus by (4.1.9) we get

ξn,m−1
d−1 = e

iθ
(m−1)
β1,m−1

(
γn,m

0,π̂(m)(d)−1
− γn,m

0,π̂(m)(d)+1

)
+ γn,m−1

0,d ,

since ξn,m−1
d−1 = ξn,md−1 and ξn,md = γn,m−1

0,d−1 , by combining this with the definition of ξn,md−1

and (4.1.31) we get

γn,m−1
0,d−1 − γn,m−1

0,d = e
iθ

(m−1)
β1,m−1

(
γn,m

0,π̂(m)(d)
− γn,m

0,π̂(m)(d)+1

)
. (4.1.33)

By (4.1.9), with j = π̃(m−1)(d)− 1, we have

ξn,m−1

π̃(m−1)(d)−1
= e

iθ
(m−1)
β0,m−1

(
γn,m−1

0,d−1 − γn,m−1
0,d

)
+ ξn,m−1

π̃(m−1)(d)
,

which by and (4.1.18), (4.1.32) and (4.1.33) gives

ξn,m−1

π̃(m−1)(d)−1
= e

iθ
(m)
β0,m−1

(
γn,m

0,π̂(m)(d)
− γn,m

0,π̂(m)(d)+1

)
+ ξn,m

π̃(m−1)(d)
,

and as, by (4.1.26), π̃(m−1)(d) = π̃(m)(π̂(m)(d) + 1), combined with (4.1.9) this shows

that ξn,m−1

π̃(m−1)(d)−1
= ξn,m

π̃(m−1)(d)−1
.

Now assume, by induction in j, that for some j < π̃(m−1)(d) we have ξn,m−1
j =

ξn,mj . It is straightforward to see, by definition of ξn,mj , (4.1.30) and (4.1.31) that

ξn,m−1
j−1 = ξn,mj−1 . Since we had proved before that (4.1.32) holds for π̃(m−1)(d) ≤ j < d,

this shows that (4.1.32) is true for all j < d.

Now, consider α ∈ A\{β0,m−1, β1,m−1}. By taking j = π
(m)
1 (α) we get j /∈

{π̃(m)(π̂(m)(d) + 1), d} and by (4.1.29) we obtain γn,m−1

0,π
(m−1)
0 (α)

= γn,m
0,π

(m)
0 (α)

, and thus by

(4.1.31), (4.1.32) and (4.1.10) we get (4.1.27).

By (4.1.10), for all z ∈ C, we get

T̂
(n,m)
β0,m−1

◦
(
T̂

(n,m)
β1,m−1

)−1

(z) = ξn,m
π
(m)
1 (β0,m−1)

+

e
iθ

(m)
β0,m−1

[
e
−iθ(m)

β1,m−1

(
z − ξn,m

π
(m)
1 (β1,m−1)

)
+ γn,m

0,π
(m)
0 (β1,m−1)

− γn,m
0,π

(m)
0 (β0,m−1)

]
,
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which by Lemma 4.1.3 gives

T̂
(n,m)
β0,m−1

◦
(
T̂

(n,m)
β1,m−1

)−1

(z) = e
iθ

(m−1)
β0,m−1

(
z − γn,m−1

0,d−1

)
+ ξn,m

0,π̃(m−1)(d)−1
,

combined with (4.1.32) and (4.1.9) for j = π̃(m−1)(d)− 1, this gives

T̂
(n,m)
β0,m−1

◦
(
T̂

(n,m)
β1,m−1

)−1

(z) = e
iθ

(m−1)
β0,m−1

(
z − γn,m−1

0,d

)
+ ξn,m

0,π̃(m−1)(d)
.

By (4.1.10) this shows that (4.1.28) holds. �

Consider now J = (Jk)0≤k<r, with r ∈ N, an ordered sequence of disjoint subin-

tervals of I. Let I ′ be a subinterval of I, we denote

J ∩ I ′ = {Jk ∩ I ′ : Jk ∩ I ′ 6= ∅}0≤k<r.

Recall we denote by J (n+1) the ordering of
{
fkλ,π

(
I(n)\I(n+1)

)}
0≤k<r(n)

, where r(n) =

rnλ,π

(
I

(n)
β0,n

)
.

Given n ∈ N we define a sequence (k(m))0≤m≤n+1 of indices of J (n+1) as follows.

Set k(n + 1) = 0. For 0 ≤ m < n + 1 let k(m) be equal to the number of disjoint

subintervals in J (n+1) ∩ I(m). It is clear we have

J (n+1) ∩ (I(m−1)\I(m)) = (Jk)k(m)≤k<k(m−1),

for 0 < m ≤ n+ 1.

Denote by β(m) = β1−ε(m),m that is, the loser of (λ(m), π(m)). In the following

two lemmas we give a description of J (n+1) that will later be used. We believe that

these are elementary results however we could not find them in the literature and

thus we present a proof.

Lemma 4.1.6 For all n ≥ 0, 0 < m ≤ n + 1 and 0 ≤ k < r(m − 1), if Jk ∩
(I(m−1)\I(m)) 6= ∅ then Jk ⊆ I(m−1)\I(m).

Proof. Assume, by contradiction, that there is a Jk = J ′ktJ ′′k ∈ J (n+1) such that J ′k∩
(I(m−1)\I(m)) = ∅ and J ′′k ⊆ I(m−1)\I(m). Take l ≥ 0 such that f−lλ,π(J ′k) ⊆ I(n)\I(n+1).

It is simple to check, given two points x′ ∈ f−lλ,π(J ′k) and x′′ ∈ I
(n)
β0,n
\f−lλ,π(J ′k), that

rnλ,π(x′) 6= rnλ,π(x′′), which, as I(n)\I(n+1) ⊆ I
(n)
β0,n

contradicts the fact that rnλ,π is

constant on I
(n)
β0,n

. �

Lemma 4.1.7 For all n ≥ 0 we have

J (n+1) ∩ (I(n)\I(n+1)) = (I(n)\I(n+1)),
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furthermore for all 0 < m ≤ n we have

J (n+1) ∩ (I(m−1)\I(m)) = fλ(m−1),π(m−1)

(
J (n+1) ∩ I(m)

β(m−1)

)
. (4.1.34)

In particular there exists a k′(m) > 0 such that for all k(m) ≤ k < k(m − 1) we

have

Jk = fλ(m−1),π(m−1)

(
Jk−k′(m)

)
. (4.1.35)

Proof. Note that we have J0 = I(n)\I(n+1) from whence the first statement follows.

Assume that J (n+1) ∩ I(m−1)\I(m) 6= ∅, as otherwise the result holds trivially,

and take Jk ∈ J (n+1) such that Jk ∩ (I(m−1)\I(m)) 6= ∅. By Lemma 4.1.6 we have

Jk ⊆ I(m−1)\I(m) and thus it follows from the definition of J (n+1) that there is

an l ≥ 1 such that f l
λ(m−1),π(m−1)(I

(n)\I(n+1)) = Jk. Furthermore the pre-image by

fλ(m−1),π(m−1) of Jk is contained in I
(m)
β(m−1) and it is a term Jk′ , with k′ < k, in the

sequence J (n+1). The difference k′(m) = k − k′ is independent of the choice of

Jk, from which (4.1.35) follows. Observing that J (n+1) ∩ I(m)
β(m−1) = (Jk)k∈K , with

K = {k(m) − k′(m), ..., k(m − 1) − k′(m)}, and combining this with (4.1.35) we

obtain (4.1.34), thus completing the proof. �

4.2 Existence of a quasi-embedding

In this section we introduce the notion of quasi-embedding and use it to relate the

dynamics of fλ(m),π(m) with that of T (n,m) for any n ≥ 0 and 0 ≤ m ≤ n. Recall that

γ(n) = γ
(n)
θ with θ ∈ Θλ,π, where γ

(n)
θ is as in (4.1.7).

We say that fλ(m),π(m) is quasi-embedded into T (n,m), or that γ(n) is a quasi-

embedding of fλ(m),π(m) into T (n,m), for x ∈ I ′ ⊆ I if

T (n,m)(γ(n)(x)) = γ(n)(fλ(m),π(m)(x)). (4.2.1)

Intuitively this means that T (n,m) and fλ(m),π(m) are nearly topologically conjugate,

the conjugacy failing only for points in I\I ′.
The following theorem establishes that T

(n,m)
α = T̂

(n,m)
α and that γ(n) is a quasi-

embedding of fλ(m),π(m) into T (n,m) except for points in a subinterval which decreases

with n.

Theorem 4.2.1 For all n ≥ 0 and 0 ≤ m ≤ n, γ(n) is a quasi-embedding of

fλ(m),π(m) into T (n,m) for x ∈ I(m)\f−1
λ(m),π(m)

(
I(n)
)
. Furthermore for all α ∈ A and

z ∈ C we have

T (n,m)
α (z) = T̂ (n,m)

α (z). (4.2.2)
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(a) (b)

(c) (d)

Figure 4.3: A representation of curves in the breaking sequence (γ
(n)
θ )n≥0 associ-

ated to parameters λ ≈ (0.222, 0.343, 0.377, 0.058), a permutation π = (π0, π1),
with π0(A,B,C,D) = (1, 2, 3, 4) and π1(A,B,C,D) = (4, 3, 2, 1) and θ ≈
(0.905, 5.501, 0.169, 0.067).

Figures (a) and (c) show respectively the curves γ
(10)
θ (I) and γ

(35)
θ (I). Each of the

differently shaded segments correspond respectively, from left to right, to γ(n)(Iα),
α = A,B,C,D, n = 10, 35. Also note that the segment, under the braces in figure
(a), corresponds to γ

(10)
θ (I(10)).

Figures (b) and (d) show respectively the curves γ
(10)
θ (fλ,π(I)) and γ

(35)
θ (fλ,π(I)).

Each of the differently shaded segments correspond respectively, from left to right,
to γ(n)(fλ,π(Iα)), α = D,C,B,A, n = 10, 35.
By comparing figures (a) and (b) note that for any I ′ ⊆ I γ(10)(fλ,π(I ′)) can be
obtained from applying the piecewise isometry T (10,0) to γ(10)(I ′) as long as I ′ ∩
f−1
λ,π(I(10)) = ∅, in agreement with Theorem 4.2.1. A similar fact is true for figures

(c) and (d), however since f−1
λ,π(I(35)) is small in this case, it is no longer apparent

that the conjugacy fails for points in f−1
λ,π(I(35)).

A visual representation of this result can be found in Figure 4.3. Throughout the

rest of this section we prove several lemmas that will later be used in the proof of

Theorem 4.2.1 in Section 4.2.1.

Our next lemma is a particular case of Theorem 4.2.1 where n ≥ 1 and m = n−1.

We study separately the cases ε(m− 1) = 0 and the cases ε(m− 1) = 1 as it can be

seen from (4.1.12) and (4.1.13) that the expressions for T
(n,m)
α are different in these

two cases.

Lemma 4.2.2 Let n ≥ 1 and α ∈ A. Then γ(n) is a quasi-embedding of fλ(n−1),π(n−1)

into T (n,n−1) for x ∈ I(n−1)\f−1
λ(n−1),π(n−1)

(
I(n)
)
. Furthermore for all z ∈ C we have

T (n,n−1)
α (z) = T̂ (n,n−1)

α (z). (4.2.3)
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Proof.

We distinguish the cases ε(n− 1) = 0 and ε(n− 1) = 1.

Given n ≥ 1 assume ε(n − 1) = 0 . Lemma 4.1.3 for m = n combined with

(4.1.12) gives

T
(n,n−1)
β1,n−1

(z) = e
iθ

(n−1)
β1,n−1

(
z − γn,n−1

0,π̂(n−1)(d)−1

)
+ γn,n−1

1,d−1 . (4.2.4)

for all z ∈ C.

By Lemma 4.1.7, J (n) = (I(n−1)\I(n)). Let x ∈ I(n−1)
β1,n−1

\f−1
λ(n−1),π(n−1)(I

(n)). Since

we have fλ(n−1),π(n−1)(x) ∈ I(n−1)\I(n), it follows from our definitions of breaking

operator and breaking sequence that

γ(n)(fλ(n−1),π(n−1)(x)) = fλ(n−1),π(n−1)(x)e
iθ

(n−1)
β1,n−1 + |I(n)|(1− eiθ

(n−1)
β1,n−1 ), (4.2.5)

since x
(n−1)
1,d−1 = |I(n)|, γn,n−1

0,π̂(n−1)(d)−1
= x

(n−1)

0,π̂(n−1)(d)−1
as γ(n)(x) = x and |I(n)| = γn,n−1

1,d−1 ,

this gives

γ(n)(fλ(n−1),π(n−1)(x))− eiθ
(n−1)
β1,n−1γ(n)(x) = γn,n−1

1,d−1 − e
iθ

(n−1)
β1,n−1γn,n−1

0,π̂(n−1)(d)−1
. (4.2.6)

As I
(n−1)
α \f−1

λ(n−1),π(n−1)(I
(n)) = ∅ for α 6= β1,n−1, (4.2.4) together with (4.2.6) gives

T (n,n−1)(γ(n)(x)) = γ(n)(fλ(n−1),π(n−1)(x)),

which proves that the map γ(n) is a quasi-embedding of fλ(n−1),π(n−1) into T (n,n−1) for

x ∈ I(n−1)
α \f−1

λ(n−1),π(n−1)

(
I(n)
)
.

By continuity of fλ(n−1),π(n−1) in I
(n−1)
β1,n−1

= [x
(n−1)

0,π̂(n−1)(d)−1
, x

(n−1)

0,π̂(n−1)(d)
) and from

(4.2.6) we get

γn,n−1
1,d−1 − e

iθ
(n−1)
β1,n−1γn,n−1

0,π̂(n−1)(d)−1
= γn,n−1

1,d − eiθ
(n−1)
β1,n−1γn,n−1

0,π̂(n−1)(d)
,

which combined with (4.2.4), (4.1.9) and (4.1.10) gives (4.2.3) for α = β1,n−1.

Since ξn,n−1
d−1 = γn,n−1

1,d−1 , by Lemma 4.1.4 we prove the second statement in our

lemma for all α ∈ A.

Now assume ε(n − 1) = 1. It follows directly from our definitions of T̂
(n,m)
α (z),

T
(n,n)
α (z) and ξn,mj using (4.1.13) that

T
(n,n−1)
β1,n−1

(z) = e
iθ

(n−1)
β1,n−1

(
z − γn,n

0,π̂(n)(d)

)
+ γn,n1,d , (4.2.7)

for all z ∈ C. Again, in this case we also have J (n) = {I(n−1)\I(n)} and we can use

(4.2.5) as before which since θ
(n−1)
β1,n−1

= θ
(n)
β1,n

, γn,n1,d = x
(n)
1,d and γn,n

0,π̂(n)(d)
= x

(n)

0,π̂(n)(d)
,

gives

γ(n)(fλ(n−1),π(n−1)(x))− eiθ
(n−1)
β1,n−1γ(n)(x) = γn,n1,d − e

iθ
(n−1)
β1,n−1γn,n

0,π̂(n)(d)
, (4.2.8)
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for all x ∈ I(n−1)
β1,n−1

\f−1
λ(n−1),π(n−1)(I

(n)). As I
(n−1)
α \f−1

λ(n−1),π(n−1)(I
(n)) = ∅ for α 6= β1,n−1,

combining (4.2.7) and (4.2.8) we prove the first statement in the lemma.

By continuity of fλ(n−1),π(n−1) in I
(n−1)
β1,n−1

= [x
(n−1)

0,π̂(n−1)(d)−1
, xn−1

0,π̂(n−1)(d)
) and from

(4.2.8) we can relate the image by γ(n) of the d-th endpoint of the partitions as-

sociated to fλ(n−1),π(n−1) and fλ(n),π(n) as follows

γn,n−1
1,d − eiθ

(n−1)
β1,n−1γn,n−1

0,π̂(n−1)(d)
= γn,n1,d − e

iθ
(n−1)
β1,n−1γn,n

0,π̂(n)(d)
.

As γn,n−1
1,d = ξn,n−1

d , this together with (4.2.7) and (4.1.10), proves (4.2.3) for α =

β1,n−1. Using the definition of ξn,mj this can be rewritten as

ξn,n−1
d−1 = e

iθ
(n−1)
β1,n−1

(
γn,n−1

0,π̂(n−1)(d)−1
− γn,n

0,π̂(n)(d)

)
+ ξn,nd ,

and since γn,n−1

0,π̂(n−1)(d)−1
= γn,n

0,π̂(n)(d)−1
, by (4.1.9) and (4.1.18) we get that ξn,n−1

d−1 = ξn,nd−1.

Hence by Lemma 4.1.5, (4.1.10), (4.1.11) and (4.1.13) we prove the second statement

in the lemma for all α ∈ A.

�

Recall we denote by J (n+1) the ordering of
{
fkλ,π

(
I(n)\I(n+1)

)}
0≤k<r(n)

, where

r(n) = rnλ,π

(
I

(n)
β0,n

)
. Given 0 < m ≤ n + 1, by Lemma 4.1.7 there exist 0 < k(m) <

k(m− 1) such that

J (n+1) ∩ (I(m−1)\I(m)) = (Jk)k(m)≤k<k(m−1),

and there exists k′(m) > 0 such that

Jk = fλ(m−1),π(m−1)(Jk−k′(m)).

In particular we have the following relations

[x
(m)
0,d , yk(m)) = fλ(m−1),π(m−1)

(
[f−1
λ(m−1),π(m−1)(x

(m)
0,d ), yk(m)−k′(m))

)
, (4.2.9)

[yk(m+1)−1 + ∆, x
(m−1)
0,d ) = fλ(m−1),π(m−1)

(
[yk(m+1)−1−k′(m), x

(m−1)

0,π̂(m−1)(d)
)
)
, (4.2.10)

recalling we denote Jk = [yk, yk + ∆), for all k(m) ≤ k < k(m+ 1) we have

Jk = fλ(m−1),π(m−1)

(
[yk(m)−k′(m), yk(m)−k′(m) + ∆)

)
, (4.2.11)

and denoting J ′k = [yk + ∆, yk+1), for all k(m) ≤ k < k(m+ 1)− 1 we get

J ′k = fλ(m−1),π(m−1)

(
[yk(m)−k′(m) + ∆, yk(m)+1−k′(m))

)
. (4.2.12)

With the assumptions that T
(n,m−1)
α = T̂

(n,m−1)
α and that γ(n) and γ(n+1) are

quasi-embeddings of fλ(m−1),π(m−1) respectively into T (n,m−1) for all x ∈ I(m−1)\
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f−1
λ(m−1),π(m−1)

(
I(n)
)

and into T (n+1,m−1) for some point in I
(m)
β1,m−1

, in the next two

lemmas we extend the quasi-embedding γ(n+1) for points in a larger subinterval of

I
(m)
β1,m−1

. With the hypothesis that (4.2.1) holds for some y ∈ J ′k−k′(m)−1, the first

lemma extends this quasi-embedding for points x ∈ J ′k−k′(m)−1 such that x > y,

while the second provides a similar extension for points in Jk−k′(m).

Lemma 4.2.3 Given n ≥ 0 and 0 < m ≤ n + 1 assume that γ(n) is a quasi-

embedding of fλ(m−1),π(m−1) into T (n,m−1) for x ∈ I(m−1)\f−1
λ(m−1),π(m−1)

(
I(n)
)
, that for

all α ∈ A and z ∈ C,

T (n,m−1)
α (z) = T̂ (n,m−1)

α (z). (4.2.13)

and that with x̂ = f−1
λ(m−1),π(m−1)(x

(m)
0,d ) we have

T
(n+1,m−1)
β1,m−1

(z) = e
iθ

(m−1)
β1,m−1 (z − γ(n+1)(x̂)) + γ(n+1)(fλ(m−1),π(m−1)(x̂)). (4.2.14)

Furthermore for k(m) ≤ k ≤ k(m + 1) assume that γ(n+1) is a quasi-embedding

of fλ(m−1),π(m−1) into T (n+1,m−1) for y ∈ I(m−1)
β1,m−1

∩ J ′k−k′(m)−1.

If yk < x
(m−1)
0,d , then γ(n+1) is a quasi-embedding of fλ(m−1),π(m−1) into T (n+1,m−1)

for all x ∈ [y, yk−k′(m)]. If yk ≥ x
(m−1)
0,d then γ(n+1) is a quasi-embedding for x ∈

[y, x
(m−1)
0,d ).

Proof. As x ∈ I(m−1)
β1,m−1

, by (4.2.9), (4.2.10) and (4.2.12) we have fλ(m−1),π(m−1)(x) ∈
[fλ(m−1),π(m−1)(y), yk], thus by (4.1.1), (4.1.7) and continuity of γ(n+1) we get

γ(n+1)(fλ(m−1),π(m−1)(x)) = γ(n)(fλ(m−1),π(m−1)(x)) + εk−1.

Since γ(n) is a quasi-embedding of fλ(m−1),π(m−1) into T (n,m−1) for x ∈ [y, yk−k′(m)] we

have

γ(n)(fλ(m−1),π(m−1)(x)) = T (n,m−1)(γ(n)(x)).

Combining these two formulas and using (4.2.13) we obtain

γ(n+1)(fλ(m−1),π(m−1)(x)) = e
iθ

(m−1)
β1,m−1 (γ(n)(x)− γ(n)(y)) + γ(n)(fλ(m−1),π(m−1)(y)) + εk−1.

Finally, using the definitions of breaking operator and breaking sequence one gets

γ(n+1)(fλ(m−1),π(m−1)(x)) = e
iθ

(m−1)
β1,m−1 (γ(n+1)(x)− γ(n+1)(y)) + γ(n+1)(fλ(m−1),π(m−1)(y)).

(4.2.15)

Since γ(n+1) is a quasi-embedding of fλ(m−1),π(m−1) into T (n+1,m−1) for y ∈ I(m−1)
β1,m−1

∩
J ′k−k′(m)−1 we have

γ(n+1)(fλ(m−1),π(m−1)(y)) = T (n+1,m−1)(γ(n+1)(y)),
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which combined with (4.2.14) gives that for any z ∈ C,

T
(n+1,m−1)
β1,m−1

(z) = e
iθ

(m−1)
β1,m−1 (z − γ(n+1)(y)) + γ(n+1)(fλ(m−1),π(m−1)(y)).

Combined with (4.2.15), we get

γ(n+1)(fλ(m−1),π(m−1)(x)) = T (n+1,m−1)(γ(n+1)(x)). (4.2.16)

for all x ∈ [y, yk−k′(m)] and therefore γ(n+1) is a quasi-embedding of fλ(m−1),π(m−1)

into T (n+1,m−1) in this interval. Moreover, it can be proved in a similar way that if

yk ≥ x
(m−1)
0,d , then (4.2.16) holds for all x ∈ [y, x

(m−1)
0,d ). �

Lemma 4.2.4 Given n ≥ 0 and 0 < m ≤ n + 1 assume that γ(n) is a quasi-

embedding of fλ(m−1),π(m−1) into T (n,m−1) for x ∈ I(m−1)\f−1
λ(m−1),π(m−1)

(
I(n)
)
, that for

all α ∈ A, z ∈ C we have (4.2.13), and that with x̂ = f−1
λ(m−1),π(m−1)(x

(m)
0,d ) we have

(4.2.14).

Furthermore for k(m) ≤ k ≤ k(m+1)−1 assume that γ(n+1) is a quasi-embedding

of fλ(m−1),π(m−1) into T (n+1,m−1) for y ∈ Jk−k′(m).

If yk+∆ 6= x
(m−1)
0,d then γ(n+1) is a quasi-embedding of fλ(m−1),π(m−1) into T (n+1,m−1)

for x ∈ [y, yk−k′(m) + ∆]. If yk + ∆ = x
(m−1)
0,d , then γ(n+1) is a quasi-embedding for

x ∈ [y, x
(m−1)
0,d ).

Proof.

Assume first that yk+∆ 6= x
(m−1)
0,d and take x ∈ [y, yk−k′(m)+∆]. As (I(m−1)\I(m))∩

Jk 6= ∅, by Lemma 4.1.6 we must have yk + ∆ < x
(m−1)
0,d and thus x ∈ I(m−1)

β1,m−1
. By

(4.2.11) we have fλ(m−1),π(m−1)(x) ∈ [fλ(m−1),π(m−1)(y), yk+∆], hence by (4.1.1), (4.1.7)

and continuity of γ(n+1) we get

γ(n+1)(fλ(m−1),π(m−1)(x)) = γ(n)(fλ(m−1),π(m−1)(x))e
iθ

(n)
β1,n + εk.

As [y, yk−k′(m) + ∆] ⊆ I(m−1)\f−1
λ(m−1),π(m−1)

(
I(n)
)
, we have that γ(n) is a quasi-

embedding of fλ(m−1),π(m−1) into T (n,m−1) for x ∈ [y, yk−k′(m) + ∆] from whence we

have

γ(n)(fλ(m−1),π(m−1)(x)) = T (n,m−1)(γ(n)(x)).

Combining these two formulas and using (4.2.13) we obtain

γ(n+1)(fλ(m−1),π(m−1)(x)) =[
e
iθ

(m−1)
β1,m−1 (γ(n)(x)− γ(n)(y)) + γ(n)(fλ(m−1),π(m−1)(y))

]
e
iθ

(n)
β1,n + εk.

As before, using the definitions of breaking operator and breaking sequence one gets

(4.2.15). We omit the conclusion of the proof as it is completely analogous to that

of Lemma 4.2.3. �
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4.2.1 Proof of Theorem 4.2.1

We now prove Theorem 4.2.1. The proof is structured as follows. The theorem holds

trivially in the case n ≥ 0 and from Lemma 4.2.2 in the case n ≥ 1 and m = n− 1.

Next we assume, by induction on m, that given a fixed n ≥ 1, the theorem is true

for T (n,m), with 0 ≤ m ≤ n and also for T (n+1,m), with 0 < m ≤ n+ 1 and we prove

it for T (n+1,m−1).

We prove that fλ(m−1),π(m−1) is quasi-embedded, by γ(n+1), into T (n+1,m−1) in

I
(m−1)
β1,m−1

\f−1
λ(m−1),π(m−1)(I

(n+1)) by induction in k, considering separate subintervals of

J (n+1). In particular, we apply Lemmas 4.2.3 and 4.2.4 in an alternate way to extend

the quasi-embedding throughout the interval. It follows that our theorem is true for

x ∈ I(m−1)
β1,m−1

\f−1
λ(m−1),π(m−1)(I

(n+1)).

To prove it is true for I
(m−1)
α \f−1

λ(m−1),π(m−1)(I
(n+1)), with α 6= β1,m−1, we separate

the two cases ε(m− 1) = 0 and ε(m− 1) = 1.

Proof.

Both statements in our theorem are trivial to prove for n ≥ 0 and m = n, as

I
(m)
α \f−1

λ(m),π(m)

(
I(n)
)

= ∅. For m = n − 1, both statements follow directly from

Lemma 4.2.2.

Given n ≥ 0, we now assume the following.

(H1). For all 0 ≤ m′ ≤ n and α ∈ A that γ(n) is a quasi-embedding of fλ(m′),π(m′)

into T (n,m′) for x ∈ I(m′)\f−1

λ(m
′),π(m′)

(
I(n)
)
, and that for all z ∈ C,

T (n,m′)
α (z) = T̂ (n,m′)

α (z).

(H2). Given 0 < m ≤ n + 1, we also assume that for all α ∈ A that γ(n+1) is a

quasi-embedding of fλ(m),π(m) into T (n+1,m) for x ∈ I(m)\f−1
λ(m),π(m)

(
I(n+1)

)
, and that

for z ∈ C,

T (n+1,m)
α (z) = T̂ (n+1,m)

α (z). (4.2.17)

We need to relate the breaking sequence at the (m− 1)-step of the Rauzy induction

with our map T
(n+1,m−1)
α .

Case 1. Fix α = β1,m−1. The Rauzy induction is either of type 1 or type 0

and we have βε,m = (π
(m)
ε )−1(d). We prove now that γ(n+1) is a quasi-embedding of

fλ(m−1),π(m−1) into T (n+1,m−1) for all x ∈ I(m−1)
α \f−1

λ(m−1),π(m−1)(I
(n+1)) that is

γ(n+1)(fλ(m−1),π(m−1)(x)) = T (n+1,m−1)(γ(n+1)(x)). (4.2.18)
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Step 1. We begin by showing that we have (4.2.14), with x̂ = f−1
λ(m−1),π(m−1)(x

(m)
0,d ).

Assume first that ε(m− 1) = 0. From (4.1.12) and (4.2.17), we have

T (n+1,m−1)
α (z) =

(
T̂

(n+1,m)
β0,m−1

)−1

◦ T̂ (n+1,m)
α (z),

for all z ∈ C. By definition of T
(n+1,m−1)
α and Lemma 4.1.3 we get (4.2.14).

Assume now that ε(m − 1) = 1. In this case, we have fλ(m−1),π(m−1)(x) =

fλ(m),π(m)(x) for x ∈ I
(m)
α . In particular, if x ∈ I

(m)
α \f−1

λ(m),π(m)(I
(n+1)), then x ∈

I
(m)
α \f−1

λ(m−1),π(m−1)(I
(n+1)) as well.

By (H2) and (4.1.18) we get

ξn+1,m

π
(m)
1 (α)

− eiθ(m)
α γn+1,m

0,π
(m)
0 (α)

= γ(n+1)
(
fλ(m−1),π(m−1)(x)

)
− eiθ(m−1)

α γ(n+1)(x), (4.2.19)

for all x ∈ I(m)
α \f−1

λ(m−1),π(m−1)(I
(n+1)). By (4.1.13) and (4.2.17) we have T

(n+1,m−1)
α =

T̂
(n+1,m)
α , hence by (4.2.19), (4.1.10) we get (4.2.18) for x ∈ I(m)

α \f−1
λ(m−1),π(m−1)(I

(n+1)).

Since γ(n+1) is a continuous map and fλ(m−1),π(m−1) is continuous at x̂, we get

(4.2.18) for x = x̂. Since T
(n+1,m−1)
α = T̂

(n+1,m)
α , (4.2.14) holds as well.

Step 2. Recall we denote by J (n+1) the ordering of
{
fkλ,π

(
I(n)\I(n+1)

)}
0≤k<r(n)

and that we have the relations (4.2.9)-(4.2.12).

By Lemma 4.1.6, Jk(m)−1 ⊆ I(m) and Jk(m) ⊆ I(m−1)\I(m). Thus, either yk(m)−1 +

∆ ≤ x
(m)
0,d < yk(m) or x

(m)
0,d = yk(m).

Assuming first that yk(m)−1 + ∆ ≤ x
(m)
0,d < yk(m), from (4.2.14) we get that γ(n+1)

is a quasi-embedding of fλ(m−1),π(m−1) into T n+1,m−1 for y = f−1
λ(m−1),π(m−1)(x

(m)
0,d ), that

is

γ(n+1)(fλ(m−1),π(m−1)(y)) = T (n+1,m−1)(γ(n+1)(y)). (4.2.20)

Since we are assuming (H1) we can apply Lemma 4.2.3, and thus we have (4.2.18) ei-

ther for all x ∈ I(m−1)
α if yk(m) = x

(m−1)
0,d , or for all x ∈ [f−1

λ(m−1),π(m−1)(x
(m)
0,d ), yk(m)−k′(m)]

if yk(m) < x
(m−1)
0,d . In particular we have (4.2.20) with y = yk(m)−k′(m).

Now assume that x
(m)
0,d = yk(m). By (4.2.14) we also have (4.2.20) with y =

yk(m)−k′(m). Therefore by Lemma 4.2.3 we have (4.2.18) either for all x ∈ I(m−1)
α if

yk(m) + ∆ = x
(m−1)
0,d , or for all x ∈ [f−1

λ(m−1),π(m−1)(x
(m)
0,d ), yk(m)−k′(m) + ∆] if yk(m) + ∆ <

x
(m−1)
0,d .

Step 3. Now assume, by induction on k, for k(m) + 1 ≤ k ≤ k(m+ 1), and with

yk−1+∆ < x
(m−1)
0,d , that γ(n+1) is a quasi-embedding of fλ(m−1),π(m−1) into T n+1,m−1 for

all x ∈ [f−1
λ(m−1),π(m−1)(x

(m)
0,d ), yk−k′(m)−1 + ∆]. In particular we have (4.2.20) with y =

yk−k′(m)−1+∆. Thus by Lemma 4.2.3 we have (4.2.18) either for all x ∈ I(m−1)
α if yk ≥

131



CHAPTER 4. EXISTENCE OF NON-TRIVIAL EMBEDDINGS OF IETS

x
(m−1)
0,d , or for all x ∈ [f−1

λ(m−1),π(m−1)(x
(m)
0,d ), yk−k′(m)] if yk < x

(m−1)
0,d . In particular we get

that γ(n+1) is a quasi-embedding of fλ(m−1),π(m−1) into T n+1,m−1 for y = yk−k′(m). Since

we are assuming (H1) we can apply Lemma 4.2.4 and thus we have (4.2.18) either

for all x ∈ I(m−1)
α if yk+∆ = x

(m−1)
0,d , or for all x ∈ [f−1

λ(m−1),π(m−1)(x
(m)
0,d ), yk−k′(m)+∆] if

yk 6= x
(m−1)
0,d . Since f−1

λ(m−1),π(m−1)([x
(m)
0,d , x

(m−1)
0,d )) = I

(m−1)
α ∩ f−1

λ(m−1),π(m−1)(I
(m−1)
β0,m−1

), this

shows that we have (4.2.18) for all x ∈ I(m−1)
α ∩ f−1

λ(m−1),π(m−1)(I
(m−1)
β0,m−1

). In particular

if ε(m − 1) = 0, this shows that γ(n+1) is a quasi-embedding of fλ(m−1),π(m−1) into

T n+1,m−1 for all x ∈ I(m−1)
α . If ε(m−1) = 1, since f−1

λ(m−1),π(m−1)(I
(m−1)
β0,m−1

) = I
(m−1)
α \I(m)

α

and we already proved that (4.2.18) holds for all x ∈ I(m)
α \f−1

λ(m−1),π(m−1)(I
(n+1)), this

shows that it is true for all x ∈ I(m−1)
α \f−1

λ(m−1),π(m−1)(I
(n+1)).

Step 4. Combining (4.2.18) and (4.2.14), for any x ∈ I(m−1)
α \f−1

λ(m−1),π(m−1)(I
(n+1))

and z ∈ C replacing x = x
(m−1)

0,π̂(m−1)(d) − δ and taking δ → 0+, we get

T (n+1,m−1)
α (z) = eiθ

(m−1)
α

(
z − γn+1,m−1

0,π̂(m−1)(d)

)
+ γn+1,m−1

0,d , (4.2.21)

and this can be written as

T
(n+1,m−1)
β1,m−1

(z) = T̂
(n+1,m−1)
β1,m−1

(z).

In the next cases we establish a relation between T
(n+1,m−1)
α , when α 6= β1,m−1

and the breaking sequence at the step n+ 1.

Note first that since we are assuming that γ(n+1) is a quasi-embedding of fλ(m),π(m)

into T (n+1,m) for x ∈ I(m)
α \f−1

λ(m),π(m)

(
I(n+1)

)
it follows that for these values of x we

have

T (n+1,m)(γ(n+1)(x)) = γ(n+1)(fλ(m),π(m)(x)). (4.2.22)

Case 2. Set α 6= β1,m−1 and ε(m − 1) = 0. Since f−1
λ(m−1),π(m−1)(x

(m)
0,d ) =

x
(m−1)

0,π̂(m−1)(d)−1
, by (4.2.14) we get

T
(n+1,m−1)
β1,m−1

(z) = e
iθ

(m−1)
β1,m−1

(
z − γn+1,m−1

0,π̂(m−1)(d)−1

)
+ γn+1,m−1

0,d−1 ,

which by (4.2.21) and (4.1.9) shows that ξn+1,m−1
d−1 = γn+1,m−1

1,d−1 . Hence by Lemma

4.1.4 we get that T
(n+1,m−1)
α = T̂

(n+1,m−1)
α .

By (4.1.12) and (4.2.17) we get that T
(n+1,m−1)
α = T

(n+1,m)
α and by (4.2.22) we

get

T (n+1,m−1)
α (γ(n+1)(x)) = γ(n+1)(fλ(m),π(m)(x)),

132



4.2. EXISTENCE OF A QUASI-EMBEDDING

for x ∈ I
(m)
α \f−1

λ(m),π(m)(I
(n+1)). Since fλ(m−1),π(m−1)(x) = fλ(m),π(m)(x), for x ∈ I

(m)
α ,

we get

T (n+1,m−1)
α (γ(n+1)(x)) = γ(n+1)(fλ(m−1),π(m−1)(x)), (4.2.23)

for all x ∈ I(m)
α \f−1

λ(m−1),π(m−1)(I
(n+1)). In particular, for α 6= β0,m−1 we get (4.2.23)

for x ∈ I(m−1)
α \f−1

λ(m−1),π(m−1)(I
(n+1)).

Now take α = β0,m−1 and x ∈ (I
(m−1)
α \I(m)

α )\f−1
λ(m−1),π(m−1)(I

(n+1)).

Since f−1
λ(m−1),π(m−1)(x) ∈ I(m−1)

β1,m−1
, we get by (4.2.18),

γn+1(x) = T
(n+1,m−1)
β1,m−1

(γ(n+1)(f−1
λ(m−1),π(m−1)(x)))

and since x ∈ I(m−1)
α , by (4.1.12) this gives

T (n+1,m−1)
α (γ(n+1)(x)) = T

(n+1,m)
β1,m−1

(γ(n+1)(f−1
λ(m−1),π(m−1)(x))).

As I
(m)
β1,m−1

= I
(m−1)
β1,m−1

and f 2
λ(m−1),π(m−1)(x

′) = fλ(m),π(m)(x′), for x′ ∈ Iβ1,m−1 , we get

that f−1
λ(m−1),π(m−1)(x) ∈ I

(m−1)
β1,m−1

\f−1
λ(m),π(m)(I

(n+1)) and f−1
λ(m−1),π(m−1)(x) = f−1

λ(m),π(m) ◦
fλ(m−1),π(m−1)(x), thus by (4.2.22) we get (4.2.23) for x ∈ I(m−1)

α \f−1
λ(m−1),π(m−1)(I

(n+1)).

Case 3. Now assume ε(m− 1) = 1 and α 6= β1,m−1. By (4.1.13) and (4.2.17) we

have T
(n+1,m−1)
β1,m−1

= T̂
(n+1,m)
β1,m−1

, and combining this with (4.1.18) and (4.1.10) we get

T
(n+1,m−1)
β1,m−1

(z) = e
iθ

(m−1)
β1,m−1 (z − γn+1,m

0,π̂(m)(d)
) + ξn+1,m

d ,

for any z ∈ C. As γn+1,m−1
1,d = ξn+1,m−1

d , from (4.2.21) we get

ξn+1,m−1
d − eiθ

(m−1)
β1,m−1γn+1,m−1

0,π̂(m−1)(d)
= ξn+1,m

d − eiθ
(m−1)
β1,m−1γn+1,m

0,π̂(m−1)(d)
,

which by (4.1.9) with j = d− 1, gives

ξn+1,m−1
d−1 = e

iθ
(m−1)
β1,m−1

(
γn+1,m−1

0,π̂(m−1)(d)−1
− γn+1,m

0,π̂(m−1)(d)

)
+ ξn+1,m

d .

Recalling (4.1.29) we have γn+1,m−1

0,π̂(m−1)(d)−1
= γn+1,m

0,π̂(m)(d)−1
and again by (4.1.9) we get

that ξn+1,m−1
d−1 = ξn+1,m

d−1 . Thus, by Lemma 4.1.5, (4.1.10),(4.1.11) and (4.1.13) we

obtain T
(n+1,m−1)
α = T̂

(n+1,m−1)
α .

By a reasoning analogous to the case ε(m− 1) = 0, we have that (4.2.23) is true

for all x ∈ I(m)
α \f−1

λ(m−1),π(m−1)(I
(n+1)). In particular, for α 6= β0,m−1 we get (4.2.23)

for all x ∈ I(m−1)
α \f−1

λ(m−1),π(m−1)(I
(n+1)).

Now take α = β0,m−1 and x ∈ I(m−1)
α \f−1

λ(m−1),π(m−1)(I
(n+1)).
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Since f−1
λ(m−1),π(m−1)(x) ∈ I(m−1)

β1,m−1
, we get by (4.2.18) and (4.1.13),

γn+1(x) = T
(n+1,m−1)
β1,m−1

(γ(n+1)(f−1
λ(m−1),π(m−1)(x)))

and since x ∈ I(m−1)
α , by (4.1.13) this gives

T (n+1,m−1)
α (γ(n+1)(x)) = T (n+1,m)

α (γ(n+1)(f−1
λ(m−1),π(m−1)(x))).

As f−1
λ(m−1),π(m−1)(I

(m−1)
α ) = I

(m−1)
α and f 2

λ(m−1),π(m−1)(x
′) = fλ(m),π(m)(x′), for x′ ∈ Iα,

we get that f−1
λ(m−1),π(m−1)(x) ∈ I(m−1)

α \f−1
λ(m),π(m)(I

(n+1)) and that

f−1
λ(m−1),π(m−1)(x) = f−1

λ(m),π(m) ◦ fλ(m−1),π(m−1)(x),

thus by (4.2.22) we get (4.2.23) for x ∈ I(m−1)
α \f−1

λ(m−1),π(m−1)(I
(n+1)).

Conclusion. We proved that for all z ∈ C,

T (n+1,m−1)
α (z) = T̂ (n+1,m−1)

α (z),

and from (4.2.23) we get for all α ∈ A that γ(n+1) is a quasi-embedding of fλ(m−1),π(m−1)

into T (n+1,m−1) for x ∈ I(m−1)\f−1
λ(m−1),π(m−1)

(
I(n+1)

)
. Thus for all 0 ≤ m ≤ n + 1

and α ∈ A we have that (4.2.17) and (4.2.22) hold and therefore γ(n+1) is a quasi-

embedding of fλ(m),π(m) into T (n+1,m) for x ∈ I(m)\f−1
λ(m),π(m)

(
I(n+1)

)
.

This shows that for all n ≥ 0, 0 ≤ m ≤ n and α ∈ A that γ(n) is a quasi-

embedding of fλ(m),π(m) into T (n,m) for x ∈ I(m)\f−1
λ(m),π(m)

(
I(n)
)

and for all z ∈ C we

have (4.2.2). This finishes our proof.

�

4.3 Existence of embeddings of interval exchange

transformations into piecewise isometries

In this section we prove the existence of non-trivial embeddings of IETs into PWIs.

Recall the definition of the breaking sequence of curves γ
(n)
θ with θ ∈ Θλ,π, in

(4.1.7). We introduce the family Fθ of PWIs which are θ-adapted to an IET (λ, π)

and show that when γ
(n)
θ converges to a topological embedding γθ, then the latter

is an isometric embedding of (I, fλ,π) into any θ-adapted PWI. We recall some

classical notions of the theory of IETs, in particular the Zorich cocycle and the

characterization of its Oseledets flags and associated Lyapunov spectrum, as well as

the translation surface of genus g(R) associated to an IET.
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We introduce a submanifold W δ
[λ],π of the torus TA related to the Oseledets flags

of the Zorich cocycle for the underlying IET and determine a bound for the sequence

θ(n) when θ ∈ W δ
[λ],π. This result together with Theorem 4.3.1 are the key ingredients

in the proof that for a full measure set of IETs, if θ ∈ W δ
[λ],π, then γ

(n)
θ converges

to a Lipschitz map γθ, which is an isometric embedding of (I, fλ,π) into any θ-

adapted PWI. The resulting embedding may, however, be trivial. Thus we define a

submanifold Wδ
[λ],π ⊂ W δ

[λ],π which we show, has full measure when g(R) ≥ 2, for

which the embedding γθ is guaranteed to be non-trivial.

Given (λ, π) ∈ RA+ ×S(A), recall we denote by Θλ,π the set of all θ ∈ TA such

that for all n ≥ 0, γ
(n)
θ : I → C is an injective map. Let Θ′λ,π denote the set of all

θ ∈ Θλ,π for which there exists a topological embedding γθ : I → C such that for all

x ∈ I,

γθ(x) = lim
n→+∞

γ
(n)
θ (x).

Furthermore, given θ ∈ Θ′λ,π, we say that a PWI T : X → X together with a

partition {Xα}α∈A is θ-adapted to (λ, π) if for all α ∈ A,

i) Xα ⊇ γθ(Iα) ;

ii) with xj = x
(0)
0,j , and

Tα(z) = eiθα
(
z − γθ(xπ0(α)−1)

)
+ γθ

(
fλ,π(xπ0(α)−1)

)
, (4.3.1)

for all z ∈ C, we have T (z) = Tα(z), for all z ∈ Xα.

We denote the family of PWIs which are θ-adapted to (λ, π) by Fθ.

Recall that we say there is a embedding of an IET (I, fλ,π) into a PWI (X,T ) if

there exists a topological embedding γ : I → C such that for all x ∈ I,

γ ◦ fλ,π(x) = T ◦ γ(x).

Given x ∈ I, consider a family Π(x) of points 0 = t0 < t1 < ... < tN = x. Given

θ ∈ Θ′λ,π define a map Lθ : I → R+ by

Lθ(x) = sup
(t0,...,tN )∈Π(x)

N−1∑
j=0

|γθ(tj+1)− γθ(tj)| .

We say a map γθ is an isometric embedding of an IET (I, fλ,π) into a PWI (X,T ) if

it is an embedding and Lθ(x) = x for all x ∈ I.

The following theorem states that when γ
(n)
θ converges to a topological embed-

ding γθ it is also an isometric embedding of (I, fλ,π) into any PWI which is θ-adapted
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to (λ, π). The proof follows from estimates related to the facts that the restriction of

any PWI in Fθ to γθ(I) can be approximated by the map T (n,0) with increasing pre-

cision as n→ +∞, and that Theorem 4.2.1 guarantees that γn is a quasi-embedding

of fλ,π into T (n,0) for points in I\f−1
λ,π(I(n)) which implies that the conjugacy between

these two maps only fails to hold for points in an interval which is decreasing with

n.

Theorem 4.3.1 Let (λ, π) ∈ RA+ ×S(A), θ ∈ Θ′λ,π and (X,T ) be a PWI θ-adapted

to (λ, π). Then γθ is an isometric embedding of (I, fλ,π) into (X,T ).

Proof. For any map g : I → C denote ‖g‖∞ = supx∈I |g(x)|.
As fλ,π is a bijective map we have

‖γθ ◦ fλ,π − γ(n)
θ ◦ fλ,π‖∞ = ‖γθ − γ(n)

θ ‖∞,

which as θ ∈ Θ′λ,π, shows that

lim
n→+∞

‖γθ ◦ fλ,π − γ(n)
θ ◦ fλ,π‖∞ = 0. (4.3.2)

From (4.1.10) and Theorem 4.2.1, for any α ∈ A and x ∈ I we have

T (n,0)
α (γ

(n)
θ (x)) = eiθα

(
γ

(n)
θ (x)− γn,00,π0(α)−1

)
+ γn,01,π1(α)−1,

and by (4.3.1) applying the triangle inequality we get

‖T (n,0)
α ◦ γ(n)

θ − Tα ◦ γθ‖∞ ≤
‖γ(n)

θ − γθ‖∞ + |γθ(xπ0(α)−1)− γn,00,π0(α)−1|+ |γ
n,0
1,π1(α)−1 − γθ

(
fλ,π(xπ0(α)−1)

)
|,

which, as θ ∈ Θ′λ,π, shows that

lim
n→+∞

‖T (n,0) ◦ γ(n)
θ − T ◦ γθ‖∞ = 0. (4.3.3)

By Theorem 4.2.1, γ(n) is a quasi-embedding of fλ,π into T (n,0) for all x ∈
I\f−1

λ,π(I(n)) and thus we have

γ(n) (fλ,π(x)) = T (n,0)
(
γ(n)(x)

)
,

in particular this gives

‖γ(n) ◦ fλ,π − T (n,0) ◦ γ(n)‖∞ ≤ sup
x∈f−1

λ,π(I(n))

∣∣γ(n) (fλ,π(x))− T (n,0)
(
γ(n)(x)

)∣∣ .
For a sufficiently large N > 0 we have f−1

λ,π(I(n)) ⊆ Iπ−1
1 (1), whenever n > N .
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As T (n,0)(γ
(n)
θ (x

(n)

π̂(n)(1)
)) = x

(n)
1 ∈ I(n) and since T

(n,0)

π−1
1 (1)

is an isometry, we get that

sup
x∈f−1

λ,π(I(n))

∣∣T (n,0)
(
γ(n)(x)

)∣∣ ≤ 2|I(n)|.

Since supx∈f−1
λ,π(I(n))

∣∣γ(n) (fλ,π(x))
∣∣ ≤ |I(n)| and |I(n)| → 0 as n → +∞, this shows

that

lim
n→+∞

‖γ(n) ◦ fλ,π − T (n,0) ◦ γ(n)‖∞ = 0. (4.3.4)

By the triangle inequality we have

‖γθ ◦ fλ,π − T ◦ γθ‖∞ ≤
‖γθ ◦ fλ,π − γ(n)

θ ◦ fλ,π‖∞ + ‖γ(n) ◦ fλ,π − T (n,0) ◦ γ(n)‖∞ + ‖T (n,0) ◦ γ(n)
θ − T ◦ γθ‖∞.

Taking the limit as n→ +∞ and by (4.3.2), (4.3.3) and (4.3.4) we get

γθ ◦ fλ,π(x) = T ◦ γθ(x),

for all x ∈ I, which proves that γθ is an embedding of (I, fλ,π) into (X,T ).

Finally, given x ∈ I, consider 0 = t0 < t1 < ... < tN = x. For all n ≥ 0,

γ
(n)
θ ∈ PL(|I|) from which follows that

∣∣∣γ(n)
θ (tj+1)− γ(n)

θ (tj)
∣∣∣ = |tj+1 − tj|, for any

j = 0, ..., N − 1. Hence, as θ ∈ Θ′λ,π, we get

x =
N−1∑
j=0

∣∣∣γ(n)
θ (tj+1)− γ(n)

θ (tj)
∣∣∣→ N−1∑

j=0

|γθ(tj+1)− γθ(tj)| , as n→ +∞,

which shows that Lθ(x) = x finishing our proof. �

Following [15, 17], let PA+ = P(RA+) ' PA+ denote the projectivization of RA+. Let

R ⊆ S(A) be a Rauzy class. SinceR commutes with dilations on RA+ it projectivizes

to a map RR : PA+ ×R → PA+ ×R called the Rauzy renormalization map which is

defined in the complement of countably many hyperplanes. Moreover we have that

if [λ] = [λ′], then BR(λ′, π) = BR(λ, π) for any π ∈ R, hence the application

([λ], π) 7→ BR([λ], π) is well defined. We refer to this cocycle as the Rauzy cocycle

as well.

An induction scheme S : RA+×R→ RA+×R is an acceleration of Rauzy induction

if there exists an integral application m : RA+ × R → Z+, such that for every

(λ, π) ∈ RA+ ×R we have m(aλ, π) = m(λ, π) for all a > 0 and

S(λ, π) = Rm(λ,π)(λ, π).

It is immediate to see that S also commutes with dilations on RA+ and hence it

projectivizes to a map SR : PA+ × R → PA+ × R which we call an acceleration of
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Rauzy renormalization. Moreover we have that if A : PA+ ×R→ SL(A,Z) defines a

cocycle over S, then its projectivization ([λ], π)→ A([λ], π) is well defined.

A flag, on an N -dimensional vector space F , is a decreasing family of vector

subspaces {F j}j=1,...,k+1, with k ≤ N ,

F = F 1 ) F 2 ) ... ) F k ) {0} = F k+1.

The flag is said to be complete if k = N and dimF j = N + 1− j, for all j = 1, ..., N .

The following well known result follows from Oseledets Theorem [45].

Theorem 4.3.2 Let R ⊆ S(A) be a Rauzy class, SR : PA+ × R → PA+ × R be an

acceleration of Rauzy renormalization which is measurable with respect to an ergodic

measure mR and let A : PA+ ×R→ SL(A,Z) be a mR-measurable cocycle over SR.

There exist κ(R) ∈ N, real numbers ν1(R) > ... > νκ(R)(R) and for mR-almost

every ([λ], π) ∈ PA+×R there exists a flag RA = V 1
[λ],π ) ... ) V

κ(R)
[λ],π ) {0} = V

κ(R)+1
[λ],π

such that A([λ], π) · V j
[λ],π = V j

SR([λ],π) and

lim
n→+∞

1

n
log ‖A(n)([λ], π) · v‖ = νj(R),

for all v ∈ V j
[λ],π\V

j+1
[λ],π, j = 1, ..., κ(R).

The spaces V j
[λ],π are called Oseledets subspaces and the numbers νj(R) are called

the Lyapunov exponents of the cocycle. The integer dimV j
[λ],π − dimV j+1

[λ],π is called

the multiplicity of the Lyapunov exponent νj(R) and it is constant in a full measure

set. The Lyapunov spectrum of the cocycle is the set of its Lyapunov exponents

counted with multiplicity.

In [54], Veech proved that Rauzy renormalization admits an absolutely continu-

ous ergodic measure. This measure, however is not finite and thus the Rauzy cocycle

is not measurable with respect to it.

In [58] Zorich defined an acceleration of Rauzy induction as follows. Given

(λ, π) ∈ RA+ × S(A), let n(λ, π) denote the smallest n ∈ N such that ε(n) 6= ε(0)

and set

Z(λ, π) = Rn(λ,π)(λ, π).

The map Z is called Zorich induction and it projectivizes to a map ZR : PA+×R→
PA+ ×R called Zorich renormalization.

Theorem 4.3.3 ([58]) Let R ⊂ S(A) be a Rauzy class. Then ZR : PA+ × R →
PA+ × R admits a unique ergodic absolutely continuous probability measure µR. Its

density is positive and analytic.
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Define the matrix function BZ : RA ×R→ SL(A,Z) by

BZ(λ, π) = BR(λ(n(λ,π)−1), π(n(λ,π)−1)) · ... ·BR(λ(1), π(1)) ·BR(λ, π).

The Zorich cocycle is the linear cocycle over the Zorich induction (Z, BZ) on

RA+ × R × RA. Its projectivization (ZR, BZ) is well defined and also called Zorich

cocycle.

Let ‖ · ‖ denote a matrix norm on SL(A,Z) and let ‖A‖0 = max{‖A‖, ‖A‖−1}
for any A ∈ SL(A,Z). Recall we denote log+ y = max{log(y), 0} for any y > 0.

Theorem 4.3.4 ([58]) Let R ⊂ S(A) be a Rauzy class. Then∫
PA+×R

log+ ‖BZ‖0dµR < +∞.

In particular BZ is a measurable cocycle with respect to µR.

Recall the linear map Ωπ in (1.3.1). Let Hπ be the image subspace of Ωπ, that

is, Hπ = Ωπ(RA). From [15, 55] it follows that

BR(λ, π) ·Hπ = Hπ(1) , (4.3.5)

from which follows that dimHπ only depends on the Rauzy class R ⊂ S(A) of π.

A translation surface (as defined in [15]), is a surface with a finite number of

conical singularities endowed with an atlas such that coordinate changes are given

by translations in R2. Given (λ, π) ∈ RA+ ×R it is possible (see for instance [54]) to

associate, via a suspension construction, a translation surface, with genus g(R) ≥ 1

and κ singularities depending only on R. Moreover dimHπ = 2g(R).

By (4.3.5), it is immediate to see that Hπ is an invariant subspace for both

Rauzy and Zorich cocycles. Hence we can consider restrictions BR([λ], π)|Hπ and

BZ([λ], π)|Hπ as integral cocycles over RR and ZR respectively, which we call re-

stricted Rauzy and Zorich cocycles. To simplify the notation we, at times, write

BR([λ], π) and BZ([λ], π) instead of BR([λ], π)|Hπ and BZ([λ], π)|Hπ .

As a consequence of theorems 4.3.2 and 4.3.4, for any Rauzy class R ⊂ S(A)

there exist k(R) ∈ N such that for µR-almost every ([λ], π) ∈ PA+ ×R there exists

a flag of Oseledets subspaces Hπ = F 1
[λ],π ) ... ) F

k(R)
[λ],π ) {0} = F

k(R)+1
[λ],π with an

associated Lyapunov spectrum

ϑ1(R) > ... > ϑk(R)(R).

In [58] it is shown that k(R) ≤ 2g(R) and that ϑj(R) = −ϑk(R)+1−j(R), for

all j = 1, ..., k(R). In [16] the authors proved that the Lyapunov spectrum of
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the restricted Zorich cocycle is simple on every Rauzy class, that is, all Lyapunov

exponents have multiplicity 1. Consequently, the spectral properties of the restricted

Zorich cocycle can be summarized as follows.

Theorem 4.3.5 Let R ⊂ S(A) be a Rauzy class. There exist Lyapunov exponents,

ϑ1(R) > ... > ϑg(R)(R) > 0 > ϑg(R)+1(R) = −ϑg(R)(R) > ... > ϑ2g(R)(R) = −ϑ1(R),

and, for µR-almost every ([λ], π) ∈ PA+ ×R, there exists a complete flag

Hπ = F 1
[λ],π ) ... ) F

2g(R)
[λ],π ) {0} = F

2g(R)+1
[λ],π ,

such that BZ([λ], π)|Hπ · F j
[λ],π = F j

ZR([λ],π). For all v ∈ F j
[λ],π\F

j+1
[λ],π, j = 1, ..., 2g(R),

lim
n→+∞

1

n
log ‖BZ([λ], π)|Hπ · v‖ = ϑj(R).

We say ([λ], π) ∈ PA+×R is generic if ([λ], π) is in the full measure set of PA+×R

from Theorem 4.3.5.

Let ‖ · ‖1 : SL(A,Z)→ R+ be the norm,

‖A‖1 =
∑
α∈A

∑
β∈A

|Aαβ|.

Denote by Leb the Lebesgue measure in PA+ and by cR the counting measure

in a Rauzy class R. The following theorem is a restatement of a result by Marmi,

Moussa and Yoccoz [43] and gives a bound for the growth of the Zorich cocycle for

a full measure set of ([λ], π). The proof can be found in Section 4.7 in [43].

Theorem 4.3.6 ([43]) For Leb × cR-almost every ([λ], π) ∈ PA+ × R and ε′ > 0,

there exists Cε′ > 0 such that for any m ≥ 0,

‖BZ (ZmR ([λ], π)) ‖1 < Cε′‖B(m)
Z ([λ], π) ‖ε′1

Given ([λ], π) ∈ PA+ × R and m ≥ 0, denote the sum of the m first Zorich

acceleration times by

sm([λ], π) =
∑
k<m

n(ZkR([λ], π)).

So far the choice of vector norm ‖ · ‖ has not been relevant as Theorem 4.3.2

does not depend on any particular choice. However in what follows we consider ‖ · ‖
to be the euclidean norm.

In the following lemma we combine estimates from theorems 4.3.5 and 4.3.6

to obtain an important bound for the growth of the Rauzy cocycle, restricted to

F
g(R)+1
[λ],π \{0}, for a full measure set of parameters.
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Lemma 4.3.7 For Leb × cR-almost every ([λ], π) ∈ PA+ × R, there exists K ≥ 1

such that for all v ∈ F g(R)+1
[λ],π \{0} we have

+∞∑
n=0

‖B(n)
R ([λ], π) · v‖ < K‖v‖. (4.3.6)

Proof.

By Theorem 4.3.5, for µR-almost every ([λ], π) ∈ PA+ × R and any 0 < η < 1

there exists Kη > 0 such that for every m ≥ 0,

‖B(m)
Z ([λ], π) ‖1 < Kηe

η−1ϑ1(R)m

As, by Theorem 4.3.4, µR has positive density, this also holds for Leb × cR-a.e.

([λ], π) ∈ PA+ ×R. Combined with Theorem 4.3.6, for ε′ = 1
4
η2ϑg(R)(R)/ϑ1(R), this

gives

‖BZ (ZmR ([λ], π)) ‖1 < KηCε′e
1
4
ηϑg(R)(R)m, (4.3.7)

for Leb× cR-a.e. ([λ], π) ∈ PA+ ×R.

By Theorem 4.3.5 we also get that for Leb × cR-a.e. ([λ], π) ∈ PA+ × R there

exists K ′η > 0, such that, for any v ∈ F g(R)+1
[λ],π \{0} we have

‖B(m)
Z ([λ], π) · v‖ < K ′ηe

−ηϑg(R)(R)m‖v‖. (4.3.8)

Let Eη denote the set of ([λ], π) ∈ PA+ ×R for which there exists K ′′η > 0 such that

‖BZ (ZmR ([λ], π)) ‖2
1 · ‖B(m)

Z ([λ], π) · v‖ < K ′′η e
− 1

2
ηϑg(R)(R)m‖v‖, (4.3.9)

for all v ∈ F g(R)+1
[λ],π \{0} and m ≥ 0. By combining (4.3.7) and (4.3.8) we get that Eη

is a set of full Leb× cR measure.

Now, fix 0 < η < 1 and ([λ], π) ∈ Eη. For n ≥ 0, let

M(n) = max {m ≥ 0 : sm([λ], π) ≤ n} .

Also, given positive integers k1 < k2 we denote

B
(k1,k2)
R ([λ], π) = BR([λ(k2)], π(k2)) ·BR([λ(k2−1)], π(k2−1)) · ... ·BR([λ(k1)], π(k1)).

We have

‖B(n)
R ([λ], π) · v‖ ≤ max

sM(n)([λ],π)≤k<n

∥∥∥∥B(sM(n)([λ],π),k)
R ([λ], π) ·B(M(n))

Z ([λ], π) · v
∥∥∥∥ .

(4.3.10)
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It is clear that we have

max
sM(n)([λ],π)≤k<n

∥∥∥∥B(sM(n)([λ],π),k)
R ([λ], π)

∥∥∥∥
1

≤
∥∥∥BZ

(
ZM(n)
R ([λ], π)

)∥∥∥
1
,

hence, from (4.3.10), for all n ≥ 0 we get

‖B(n)
R ([λ], π) · v‖ ≤ ‖BZ(ZM(n)

R ([λ], π))‖1 · ‖B(M(n))
Z ([λ], π) · v‖,

which combined with the fact that for all m ≥ 0 we have

n(ZmR ([λ], π)) ≤ ‖BZ (ZmR ([λ], π)) ‖1,

gives

+∞∑
n=0

‖B(n)
R ([λ], π) · v‖ ≤

+∞∑
m=0

‖BZ (ZmR ([λ], π)) ‖2
1 · ‖B(m)

Z ([λ], π) · v‖.

This, combined with (4.3.9), which holds since ([λ], π) ∈ Eη, shows that by taking

K = max{K ′′η (1− e−1/2ηϑg(R)(R))−1, 1} we get (4.3.6) as intended. �

Recalling (4.1.5) note that for any λ, λ′ ∈ RA+ such that [λ] = [λ′] we have

BTA(λ, π) = BTA(λ′, π) and thus BTA(λ, π) admits a projectivization which we de-

note BTA([λ], π) and also call projection of the Rauzy cocycle on TA.

Recall that p : RA → TA is the natural projection,

p(v) = ((v)α mod 2π)α∈A , for all v ∈ RA.

The flat torus is the torus TA viewed as a Riemannian manifold equipped with

the flat Riemannian metric, this is, the pushforward under p of the euclidean metric

in RA. The flat Riemannian metric induces a distance on the torus dTA : TA×TA →
R+ such that

dTA(θ, θ′) = inf
{
‖v − v′‖ : v ∈ p−1(θ), v′ ∈ p−1(θ′)

}
,

for any θ, θ′ ∈ TA.

Given δ > 0 and a generic ([λ], π) ∈ PA+ ×R, let

Eδ
[λ],π =

{
v ∈ F g(R)+1

[λ],π \{0} : ‖v‖ < δ
}
,

and let W δ
[λ],π = p

(
Eδ

[λ],π

)
.

Recall (4.1.6), which given θ ∈ TA defines a sequence (θ(n))n≥0 on TA which is

used to construct the breaking sequence (γ
(n)
θ )n≥0. The following lemma states that

for a full measure set of ([λ], π), and for sufficiently small δ > 0, and all θ ∈ W δ
[λ],π

the sum of all dTA(θ(n), 0) is bounded.
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Lemma 4.3.8 For Leb× cR-almost every ([λ], π) ∈ PA+×R, there exists K ≥ 1 and

δ > 0 such that for all θ ∈ W δ
[λ],π we have

+∞∑
n=0

dTA(θ(n), 0) < KdTA(θ, 0). (4.3.11)

Proof. By Lemma 4.3.7, for Leb × cR-a.e. ([λ], π) ∈ PA+ × R, there exists K > 1

such that for all v ∈ Eδ
[λ],π, with δ = π ·K−1, for all n ≥ 0 we have

‖B(n)
R ([λ], π) · v‖ < π,

Moreover, is is clear that if ‖v‖ < π we have dTA(p(v), 0) = ‖v‖, thus, for all

n ≥ 0 we have

dTA
(
p
(
B

(n)
R ([λ], π) · v

)
, 0
)

=
∥∥∥B(n)

R ([λ], π) · v
∥∥∥ , (4.3.12)

Also note that as δ ≤ π, the restriction p|Eδ
[λ],π

: Eδ
[λ],π → W δ

[λ],π is a bijection and thus

p−1(θ) ∩ Eδ
[λ],π contains a single point which we denote by p−1

δ (θ). Take θ ∈ W δ
[λ],π.

It is clear by (4.1.5) that we have

B
(n)

TA ([λ], π) · θ = p
(
B

(n)
R ([λ], π) · p−1

δ (θ)
)
,

which combined with (4.3.12) yields dTA(B
(n)

TA ([λ], π) · θ, 0) = ‖B(n)
R ([λ], π) · p−1

δ (θ)‖,
for all n ≥ 0. By (4.1.6) and Lemma 4.3.7 this gives (4.3.11) finishing our proof. �

We say a map γ : I → C is Lipschitz if {(Re(γ(x)), Im(γ(x))) : x ∈ I} is the

graph of a Lipschitz map. The following theorem shows that for a generic ([λ], π)

and sufficiently small δ > 0, when θ ∈ W δ
[λ],π the sequence γ

(n)
θ converges to a a

Lipschitz map γθ which is an isometric embedding of (I, fλ,π) into any PWI that is

θ-adapted to (λ, π).

Theorem 4.3.9 For Leb× cR-almost every ([λ], π) ∈ PA+ ×R, there exists a δ > 0

such that for all θ ∈ W δ
[λ],π there exists a Lipschitz map γθ : I → C, which is an

isometric embedding of (I, fλ,π) into any PWI that is θ-adapted to (λ, π).

Proof. Consider the space C(I,C) of continuous maps from the interval I, to C.

Note that this is a Banach space for the supremum norm ‖.‖∞. We also have

that γ
(n)
θ ∈ C(I,C) for all n ≥ 0, since γ

(0)
θ is continuous and, by Lemma 4.1.1,

Br
(
θ

(n−1)
β1,n−1

, J (n)
)
· C(I,C) ⊆ C(I,C).

Take any ϕ ∈ (0, π/2). By Lemma 4.3.8, there exists a set E ⊆ PA+ × R of

full Leb × cR measure such that for every ([λ], π) ∈ E , there exists K ≥ 1 and

0 < δ < ϕK−1 such that for all θ ∈ W δ
[λ],π we have (4.3.11).
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Take ([λ], π) ∈ E and θ ∈ W δ
[λ],π. For all x ∈ I we have∣∣∣γ(n+1)

θ (x)− γ(n)
θ (x)

∣∣∣ =
∣∣∣Br

(
θ

(n)
β1,n

, J (n+1)
)
· γ(n)

θ (x)− γ(n)
θ (x)

∣∣∣ .
Denoting, as in (4.1.4), by r(n) the number of intervals of J (n+1), by (4.1.1) this

gives ∣∣∣γ(n+1)
θ (x)− γ(n)

θ (x)
∣∣∣ ≤ max

k<r(n)
{|εk|, |εk|}+ sup

x∈I
|γ(n)
θ (x)(1− eiθ

(n)
β1,n )|.

Since

sup
x∈I

∣∣∣∣γ(n)
θ (x)(1− eiθ

(n)
β1,n )

∣∣∣∣ ≤ 2|λ| sin
(
θ

(n)
β1,n

/2
)
,

by Lemma 4.1.2 we get∣∣∣γ(n+1)
θ (x)− γ(n)

θ (x)
∣∣∣ ≤ 4|λ| sin

(
θ

(n)
β1,n

/2
)
.

Therefore, as θ
(n)
β1,n
≤ dTA(θ(n), 0) there exists C > 0 such that for all n ≥ 0,∣∣∣γ(n+1)

θ (x)− γ(n)
θ (x)

∣∣∣ ≤ C|λ|dTA(θ(n), 0).

Now take m, n ∈ N such that m > n. Note that we have

‖γ(m)
θ − γ(n)

θ ‖∞ ≤
m−n−1∑
k=0

‖γ(m−k)
θ − γ(m−k−1)

θ ‖∞,

and therefore

‖γ(m)
θ − γ(n)

θ ‖∞ ≤ C|λ|
m−1∑
k=n

dTA(θ(k), 0), (4.3.13)

From (4.3.11) by taking a sufficiently large N > 0 and considering N < n < m the

righthand side of (4.3.13) can be made arbitrarily small. Thus {γ(n)
θ }n≥0 is a Cauchy

sequence in C(I,C) and therefore it must converge to a unique limit γθ ∈ C(I,C).

As for all n ≥ 0, γ
(n)
θ ∈ C(I,C), by (4.1.7) it is simple to see that for any x, y ∈ I,

x 6= y, we have ∣∣∣Im(γ
(n)
θ (x))− Im(γ

(n)
θ (y))

∣∣∣∣∣∣Re(γ
(n)
θ (x))− Re(γ

(n)
θ (y))

∣∣∣ ≤ tan

(
+∞∑
n=1

θ
(n−1)
β1,n−1

)
.

For any map γ : I → C, its Lipschitz constant L(γ) is given by

L(γ) = sup
x,y∈I, x6=y

|Im(γ(x))− Im(γ(y))|
|Re(γ(x))− Re(γ(y))| .
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Hence, in particular we get,

arctan(L(γ
(n)
θ )) ≤

+∞∑
n=0

dTA(θ(n), 0),

which, as δ < ϕK−1, by (4.3.11) gives arctan(L(γ
(n)
θ )) ≤ ϕ. Clearly L(γθ) ≤

supn≥0 L(γ
(n)
θ ), and as ϕ < π/2 this shows that L(γθ) < +∞ and thus γθ is a

Lipschitz map. In particular it is continuous and injective and thus a topological

embedding.

This proves that W δ
[λ],π ⊆ Θ′λ,π and therefore by Theorem 4.3.1, for any θ ∈ W δ

[λ],π,

γθ is an isometric embedding of (I, fλ,π) into any PWI that is θ-adapted to (λ, π).

�

Recall from Chapter 3, that we can extend Rauzy-Veech induction to PWIs

which admit embeddings of IETs as follows. Assume (I, fλ,π) has an embedding by

γθ into (X,T ). Define the map S(T ) as the first return map under T to X∗, where

X∗ =

{ ⋃
α 6=β0 Xα ∪ (Xβ0 ∩ T (Xβ1)), if (λ, π) has type 0,⋃
α 6=β0 Xα, if (λ, π) has type 1.

It is clear that (X∗,S(T )) is again a d′-PWI, with possibly d′ 6= d. Denote by A′ an

alphabet with d′ symbols and denote by {X∗α′}α′∈A′ the partition of X∗. It is simple

to see that there is a collection of d symbols A ⊆ A′, possibly after relabeling, such

that X∗α′ ∩ γθ(I(1)) 6= ∅ if and only if α′ ∈ A. Define X ′ =
⋃
α∈AX

∗
α.

Now, (X ′,S(T )) is θ(1)-adapted to (λ(1), π(1)) and, by Theorem 3.1.3 in Chapter

3, the restriction of γθ to I(1) is an embedding of (I(1), fλ(1),π(1)) into (X ′,S(T )).

It is thus possible to iterate this procedure by setting (X(0),S(0)(T )) = (X,T ),

and
(
X(n),S(n)(T )

)
=
(
(X(n−1))′,S(S(n−1)(T ))

)
for n ≥ 1. The following lemma

easily follows from Theorem 4.3.1.

Lemma 4.3.10 Let (λ, π) ∈ RA+ × R, θ ∈ Θ′λ,π and (X,T ) be a PWI θ-adapted

to (λ, π). Then for all n ≥ 0, (X(n),S(n)(T )) is θ(n)-adapted to (λ(n), π(n)) and the

restriction of γθ to I(n) is an embedding of (I(n), fλ(n),π(n)) into (X(n),S(n)(T )).

Given a generic ([λ], π) ∈ PA+ × R and δ > 0 note that W δ
[λ],π defines a g(R)-

dimensional submanifold embedded in the torus TA. Pulling back the flat metric by

the embedding map it is possible to construct a g(R)-volume form and thus define

a positive measure mg(R) on W δ
[λ],π.

Denote the projection on TA of the Oseledets subspace F
2g(R)
[λ],π by W SS

[λ],π =

p
(
F

2g(R)
[λ],π

)
. Note that W SS

[λ],π is a 1-dimensional submanifold embedded in TA.
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For any n ≥ 0 and θ ∈ TA let B
(−n)

TA ([λ], π) ·θ =
{
θ′ ∈ TA : B

(n)

TA ([λ], π) · θ′ = θ
}
.

Consider

Wδ
[λ],π = W δ

[λ],π\
(
W SS

[λ],π ∪
+∞⋃
n=0

B
(−n)

TA ([λ], π) · 0
)
.

Recall the definitions of arc, linear and non-trivial embeddings in the Intro-

duction. The following theorem establishes that for any Rauzy class R such that

g(R) ≥ 2 and for a full measure set of ([λ], π) ∈ PA+ × R, when θ ∈ Wδ
[λ],π for

sufficiently small δ > 0, γθ is a non-trivial isometric embedding of (I, fλ,π) into any

PWI (X,T ) that is θ-adapted to (λ, π). Since (I, fλ,π) is topologically conjugated

to the restriction of (X,T ) to the image of the embedding γθ(I) we have that the

latter map is one-to-one and therefore γθ(I) is an invariant set for (X,T ). Moreover

γθ(I) is a curve which is not a union of line segments or circle arcs. Thus, Theorem

E follows directly from our next result.

Theorem 4.3.11 For any Rauzy class R satisfying g(R) ≥ 2 and Leb× cR-almost

every ([λ], π) ∈ PA+ × R, there exists δ > 0 such that Wδ
[λ],π is a set of full mg(R)-

measure in W δ
[λ],π and for all θ ∈ Wδ

[λ],π there exists a Lipschitz map γθ : I → C,

which is a non-trivial isometric embedding of (I, fλ,π) into any PWI that is θ-adapted

to (λ, π).

Proof.

As for any δ > 0 we have Wδ
[λ],π ⊆ W δ

[λ],π, by Theorem 4.3.9 for Leb× cR-almost

every ([λ], π) ∈ PA+ ×R, there exists δ > 0 such that for all θ ∈ Wδ
[λ],π there exists

a Lipschitz map γθ : I → C, which is an isometric embedding of (I, fλ,π) into any

PWI that is θ-adapted to (λ, π).

Note that
⋃+∞
n=0B

(−n)

TA ([λ], π)·0 is a countable set, dim(W SS
[λ],π) = 1 and dim(W δ

[λ],π) =

g(π). Thus, when g(R) ≥ 2 we have that Wδ
[λ],π is a set of full mg(R)-measure in

W δ
[λ],π.

For θ ∈ Wδ
[λ],π, assume by contradiction that γθ is an arc embedding of (I, fλ,π)

into a PWI (X,T ) that is θ-adapted to (λ, π). There exists x′ > 0 such that the

restriction of γθ to [0, x′) is an arc map. Moreover, there exists an N ∈ N such that

for all n ≥ N we have I(n) ⊆ [0, x′). As γθ is an isometric embedding and γθ(0) = 0,

there is an r > 0 and a ϕ ∈ [0, 2π) such that for all x ∈ I(n) we have

γθ(x) = r(ei(r
−1x+ϕ) − eiϕ). (4.3.14)

By Lemma 4.3.10, for any n ≥ N , (X(n),S(n)(T )) is a PWI θ(n)-adapted to

(λ(n), π(n)) and the restriction of γθ to I(n) is an isometric embedding of (I(n), fλ(n),π(n))
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into (X(n),S(n)(T )). Hence we have

γθ(fλ(n),π(n)(x)) = eiθ
(n)
α

(
γθ(x)− γθ

(
x

(n)

π
(n)
0 (α)−1

))
+ γθ

(
fλ(n),π(n)

(
x

(n)

π
(n)
0 (α)−1

))
,

(4.3.15)

for all α ∈ A, any x ∈ I(n)
α and any n ≥ N .

Recall that we denote υ(n) = Ωπ(n)(λ(n)). Let M > 0 be such that for all m ≥M

we have sm([λ], π) > N . From (4.3.14), (4.3.15) and (1.3.2) we have

θ(sm([λ]π)) = p
(
r−1υ(sm([λ],π))

)
. (4.3.16)

By the proof of Theorem 4.3.9 we have δ < π and thus, the restriction p|Eδ
[λ],π

:

Eδ
[λ],π → W δ

[λ],π is a bijection and thus p−1(θ) ∩ Eδ
[λ],π contains a single point which

we denote by p−1
δ (θ). As θ ∈ Wδ

[λ],π, by (4.3.16) we get

υ(sm([λ],π)) = B
(m)
Z ([λ], π) · p−1

δ (θ). (4.3.17)

By the results in [57] Section 5.3, it is known that F
2g(R)
[λ],π is equal to the linear span

of {υ(0)} in RA and thus by (4.3.17) and Theorem 4.3.5 we get that p−1
δ (θ) ∈ F 2g(R)

[λ],π

and consequently θ ∈ W SS
[λ],π which contradicts our assumption θ ∈ Wδ

[λ],π. Therefore

γθ is not an arc embedding.

Now, for θ ∈ Wδ
[λ],π, assume by contradiction that γθ is a linear embedding

of (I, fλ,π) into a PWI (X,T ) that is θ-adapted to (λ, π). As γθ is an isometric

embedding and γθ(0) = 0 for a sufficiently large N ∈ N there is ϕ ∈ [0, 2π) such

that

γθ(x) = eiϕx, (4.3.18)

for all x ∈ I(N).

By Lemma 4.3.10, (X(N),S(N)(T )) is a PWI θ(N)-adapted to (λ(N), π(N)) and

the restriction of γθ to I(N) is an isometric embedding of (I(N), fλ(N),π(N)) into

(X(N),S(N)(T )). Hence we have (4.3.15) which combined with (4.3.18) shows that

θ(N) = 0. Therefore θ ∈ ⋃+∞
n=0B

(−n)

TA (λ, π) · 0, which contradicts θ ∈ Wδ
[λ],π. Thus γθ

is not a linear embedding.

This proves that γθ is a non-trivial isometric embedding of (I, fλ,π) into (X,T ).

�
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Chapter 5

Concluding remarks

In Chapter 2 we introduced Translated Cone Exchange Transformations and found

in Theorem A that they are renormalizable for all rotational parameters and for

countably many translational parameters. This was the first time a renormalization

scheme was found to work for generic rotations, however as a tradeoff it has a

limited scope with respect to the remaining parameters. A natural way forward is

to generalize the techniques developed to a wider class of algebraic parameters.

We have highlighted that embeddings of IETs into PWIs present a number of

subtle and mathematically rich problems associated with the regularity or otherwise

of these embeddings.

In Theorem B we showed, as a consequence of Theorem A, that the existence

of an embedding of a IET into a Translated Cone Exchange Transformation, which

is contained in a barrier, results in the existence of infinitely many embeddings as

well as the existence of invariant bounded regions. However we do not provide a

proof that such an embedding may be contained in a barrier. Numerical evidence

suggests that this is reasonable to expect and, in fact, it is our expectation that the

techniques from Chapter 4 can be adapted to show that this is indeed the case.

In Chapter 3, Theorem C shows that there are no non-trivial continuous em-

beddings of a minimal d-IET into a d-PWI, for d = 2, while Theorem 3.3.1 gives a

condition for the existence of a piecewise continuous embedding. For d = 4 there

are PWIs that seem to have an abundance of non-trivial embeddings of d-IETs. It

seems to be much harder to find a 3-PWI that exhibits non-trivial embeddings of

3-IETs and to do so requires much parametric fine tuning, a fact that is justified by

Theorem D which shows that any 3-PWI has at most one non-trivially continuously

embedded minimal 3-IET with the same underlying permutation. We suspect that

typical non-trivial embeddings have a tangent exchange map that is minimal but

149



CHAPTER 5. CONCLUDING REMARKS

not ergodic.

The region Ξ discussed in Section 3.4 seems to contain periodic islands, embed-

ded IETs and other invariant sets that are neither. It is a challenge to describe

these other invariant sets in a coherent way. Regarding the IETs embedded in Ξ we

conjecture that all minimal nearby IETs in F4 are continuously (or at least symbol-

ically) embedded.

In Chapter 4 we proved that a full measure set of IETs admit non-trivial embed-

dings into a class of PWIs, by using techniques from the theory of IET renormal-

ization and measurable cocycles. In particular we prove the existence of invariant

curves for PWIs which are not unions of circle arcs or line segments, solving a long-

standing conjecture in the field. This novel technique allows the use of tools, from

the theory of IETs, to study dynamics of PWIs from this class. Note that for 2-

IETs we necessarily have g(R) = 1 and indeed Theorem C shows that the condition

g(R) ≥ 2, in the statement of Theorem E, is in fact sharp. Also note that Theorem

E does not establish the existence of embeddings of 3-IETs into 3-PWIs, as in this

case we necessarily have g(R) = 1 as well. Although this does not follow directly

from our results, the techniques developed in Chapter 4, coupled with the fact that

the Zorich cocycle has a non-trivial central Oseledets space in this case, present a

natural path to possibly establish this in the future.

The results from this thesis open up a number of interesting lines of enquiry:

• Are there non-trivial embeddings of 3-IETs into 3-PWIs? The necessary con-

dition g(R) ≥ 2 in the statement of Theorem E implies that this result only

applies to IETs with d ≥ 4. Is it possible to generalize these techniques to

prove the existence of a wider class of embeddings?

• How can the symmetries exhibited by these invariant curves be explained by

the renormalization dynamics of the underlying IET?

• For a given IET (I, f), what is the structure of the PWIs that carry continuous

embeddings of (I, f), and how can the regularity of the continuous embeddings

be characterised within this class?

• If an IET has a non trivial embedding into a PWI, must its rotation parameters

be irrationals? How does this relate to the behaviour of the rotational cocycle?

• For a given PWI, what are the arithmetic properties and structure of the IETs
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(I, f) that are embedded within this PWI? Moreover, what is the structure of

parametrizations of d-PWIs that embed the same given IET?

• How can these techniques be used to understand rational orbits in the neigh-

bourhood of an embedding?

Particularly, developing on the last point, a natural line of investigation that

opens up is to use these techniques to determine, in a large family of PWIs with

non-zero rotational parameters, the existence of PWIs which exceptional sets have

positive Lebesgue measure.

One of the central problems in dynamical systems theory is to investigate their

measure theoretic properies. Although IETs have been well studied over the past

years, the measure theoretic properties of PWIs are still far from understood.

In [32] Goetz studied a piecewise rotation with two atoms, with an exceptional set

resembling a Sierpinsky gasket and shows that it has zero Lebesgue measure. Adler,

Kitchens and Tresser [1] showed for a particular transformation where the rotations

are rational that the regular set has full Lebesgue measure and, as a consequence,

the exceptional set has zero Lebesgue measure. In [24] Cheung, Goetz and Quas

studied a simple family of piecewise isometries of the plane parameterized by an

angle parameter. They investigate the periodic islands around a particular family

of periodic orbits and demonstrate that, for all angle parameters that are irrational

multiples of π, the islands have asymptotic density in the plane of 3 log 2− π2/8.

Poggiaspalla [46] studied a class of renormalizable PWIs associated to primitive

substitutions and computed the Hausdorff dimension of an invariant set, contained

in the exceptional set, as a ratio − log(Λ)/ log(λ), where Λ is the largest eigenvalue

of the substitution’s incidence matrix and λ is the renormalization scaling factor.

Recently, Hooper [35] investigated a family of polygon exchange maps, with no rota-

tional parameters, invariant under a renormalization operation, related to Truchet

tillings. He shows that for almost all parameters, the polygon exchange map has

the property that almost every point is periodic. However, there is a dense set of

irrational parameters for which this fails. By choosing parameters carefully, the

measure of non-periodic points can be made arbitrarily close to full measure.

The above described papers made progress in understanding the exceptional

set in particular families of PWIs. However these results are mostly dependent on

particular choices of rotational parameters with convenient arithmetic properties.

The results in [46] concern a possibly more general family of PWIs however with

strong restrictions regarding its symbolic dynamics.

However, now that the existence of embeddings of IETs into PWIs is established
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this suggests a new approach to this problem. Particularly this provides tools to

study the Lebesgue measure of the regular set of a PWI in a neighbourhood of a non-

trivial embedding of an IET and also to investigate stability under perturbations

of an embedding of an IET into a PWI. Together, these investigations may give

global information regarding the abundance of embeddings of IETs in a given PWI

from a generic family, in this manner giving bounds for the Lebesgue measure of the

exceptional set of typical PWIs from this family.
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