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ABSTRACT
Tuberculosis poses a global health risk and Brazil is among the top 20 countries by absolute mortality.
However, this epidemiological burden is masked by under-reporting, which impairs planning for effective
intervention. We present a comprehensive investigation and application of a Bayesian hierarchical approach
to modeling and correcting under-reporting in tuberculosis counts, a general problem arising in observa-
tional count data. The framework is applicable to fully under-reported data, relying only on an informative
prior distribution for the mean reporting rate to supplement the partial information in the data. Covariates
are used to inform both the true count-generating process and the under-reporting mechanism, while also
allowing for complex spatio-temporal structures. We present several sensitivity analyses based on simula-
tion experiments to aid the elicitation of the prior distribution for the mean reporting rate and decisions
relating to the inclusion of covariates. Both prior and posterior predictive model checking are presented, as
well as a critical evaluation of the approach. Supplementary materials for this article, including a standard-
ized description of the materials available for reproducing the work, are available as an online supplement.
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1. Introduction

In a variety of fields, such as epidemiology and natural hazards,
count data arise which may not be a full representation of
the quantity of interest. In many cases, the counts are under-
reported: the recorded value is less than the true value, some-
times substantially. Quite often, this is due to the observation
process being flawed, for instance failing to reach some indi-
viduals in a population at risk from infectious disease such as
tuberculosis or TB, which is the motivating application here. It
is then a missing data challenge and from a statistical point of
view, a prediction problem.

The TB surveillance system in Brazil is responsible for detect-
ing disease occurrence and for providing information about its
patterns and trends. The notification of TB is mandatory and
the data are available in the Notifiable Diseases Information
System (SINAN), which provides information about the disease
at national, state, municipal, and other regional levels. Despite
the high spatial coverage of SINAN, the system is not able
to report all TB cases. Using inventory studies (World Health
Organization 2012), the overall TB detection rate for Brazil was
estimated as 91%, 84%, and 87% for the years 2012–2014 (World
Health Organization 2017).

Under-reporting is an issue because it can lead to biased
statistical inference, and therefore poorly informed decisions.
This bias will affect parameter estimates, predictions and
associated uncertainty. Conventional approaches to quantifying
risk, for instance by estimating the spatio-temporal disease rate
per unit population, are liable to under-estimate the risk if
under-reporting is not allowed for. This has serious societal
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implications—an estimated 7300 deaths were caused by TB
in Brazil in 2016 (World Health Organization 2017), and this
epidemiological burden is masked by under-reporting, which
impairs planning of public policies for timely and effective
intervention. An alternative system to improve the detection
rate has been the active search for cases, especially in high-
risk groups, including homeless and incarcerated people.
However, these activities require local resources, resulting in
databases with different detection rates depending on the socio-
economic characteristics and the management capacity of the
municipalities. It is therefore crucial to estimate and quantify
the uncertainty of the detection rates on a finer scale, to allow
better informed decisions about the distribution of resources.

In this article, we investigate a general framework for correct-
ing under-reporting, suitable to a wide range of spatio-temporal
count data, and apply it to counts of TB cases in Brazil. All
counts can be potentially assumed under-reported (unlike other
approaches) so that the severity of under-reporting is estimated
and potentially informed by available covariates that relate to the
under-reporting mechanism. The model is implemented in the
Bayesian framework which allows great flexibility and leads to
complete predictive distributions for the true counts, therefore
quantifying the uncertainty in correcting the under-reporting.

The article is structured as follows: Section 2 discusses
approaches to modeling under-reporting, including the hierar-
chical framework we will ultimately use, as well as how we seek
to resolve the incompleteness of the information provided by the
data. Section 3 presents the application to Brazilian TB data, as
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well as some simulation experiments designed to investigate the
sensitivity of the model’s ability to quantify uncertainty. Further
simulation experiments can be found in the appendix, which
address issues such as the sensitivity of the model to the strength
of under-reporting covariates. Finally, Section 4 presents a
critical evaluation of our approach, particularly compared to
existing methods.

2. Background

Let yi,t,s be the number of events (e.g., TB cases) occurring in
units of space s ∈ S, time t ∈ T and any other grouping
structures i that the counts might be aggregated into. If yi,t,s is
believed to have been perfectly observed, the counts are con-
ventionally modeled by an appropriate conditional distribution
p(yi,t,s | θ), usually either Poisson or Negative Binomial. Here, θ
represents random effects allowing for various dependency and
grouping structures (e.g., space and time), as well as parameters
associated with relevant covariates. Inference is then based on
the conditional likelihood function (assuming independence in
the yi,t,s given θ):

p(y | θ) =
∏
i,t,s

p(yi,t,s | θ). (1)

Under-reporting is conceptually a form of unintentional
missing data (Gelman et al. 2014, chap. 8) where, in some or
potentially all cases, we have not observed the actual number of
events yi,t,s. Instead, we have observed under-reported counts
zi,t,s, which represent lower bounds of yi,t,s. This implies that
using Equation (1) for all observed counts, under-reported
or otherwise, will lead to biased inference. Rather, we should
acknowledge the uncertainty caused by the missing yi,t,s, whilst
incorporating the partial information provided by the recorded
counts zi,t,s. More generally, the data collection mechanism
should be included in the analysis and this is especially true
for missing data problems. A conceptual framework for this
(Gelman et al. 2014, chap. 8) is one where both the completely
observed (true) data and the mechanism determining which
of them are missing are given probability models. Relating
this more specifically to under-reporting, an indicator random
variable Ii,t,s is introduced, to index the data into fully observed
or under-reported. In what follows, we review approaches to
under-reporting that can be broadly classified into ones that
treat Ii,t,s as known, and ones that treat it as latent and therefore
attempt to model it.

2.1. Censored Likelihood

A common approach to correcting under-reporting is to base
inference on the censored likelihood. This is the product of the
evaluation of Equation (1) for the fully observed (uncensored)
counts yi,t,s and the joint probability of the missing yi,t,s exceed-
ing or equaling the recorded (censored) counts zi,t,s:

p(y | z, θ) =
∏

Ii,t,s=1
p(yi,t,s | θ)

∏
Ii,t,s=0

p(yi,t,s ≥ zi,t,s | θ). (2)

In this framework, the indicator Ii,t,s for which data are under-
reported is binary (where Ii,t,s = 1 when zi,t,s=yi,t,s). The

strength of this approach is that all of the observed counts
contribute to the inference and, by accounting for the under-
reporting in the model design, a more reliable inference on θ

is possible. However, information on which counts are under-
reported is not always readily available, introducing the chal-
lenge of having to determine or estimate this classification.

The approach in Bailey et al. (2005) accounts for under-
reporting in counts of leprosy cases in the Brazilian region of
Olinda, to arrive at a more accurate estimate of leprosy preva-
lence. They use prior knowledge on the relationship between
leprosy occurrence rate and a measure of social deprivation
to decide the values of Ii,t,s a priori: A fixed value of social
deprivation is chosen as a threshold, above which observations
are deemed to be under-reported. However, the choice of this
threshold is subjective and not always obvious. The approach
can in principle be extended to include estimation of the thresh-
old, however in many cases, the threshold model may be a poor
description of the under-reporting mechanism which could, for
example, be related to more than one covariate.

Oliveira, Loschi, and Assunção (2017) presented an alterna-
tive to this approach, which treats the binary under-reporting
indicator Ii,t,s as unobserved and therefore random. The classi-
fication of the data is characterized by Ii,t,s ∼ Bernoulli(πi,t,s),
such that πi,t,s is the probability of any data point suffering from
under-reporting, which is potentially informed by covariates.
Although a more general approach in the sense of modeling
the under-reporting classification, like any other censored likeli-
hood method it lacks a way of quantifying the severity of under-
reporting. This makes it unsuitable for our TB application,
where we would like to learn about the under-reporting rate on a
micro-regional level. Moreover, the predictive inference for the
unobserved yi,t,s is limited, amounting to

p(yi,t,s | zi,t,s, θ) = p(yi,t,s | yi,t,s ≥ zi,t,s, θ). (3)

This is because the recorded counts zi,t,s are treated as con-
stants, as opposed to random quantities arising jointly from the
yi,t,s process and the under-reporting process. Therefore, the
severity of under-reporting does not contribute to the predictive
inference.

2.2. Hierarchical Count Framework

A potentially more flexible approach is to consider the under-
reporting indicator variable Ii,t,s as continuous in the range
[0, 1], to be interpreted as the proportion of true counts that
have been reported. This way, the severity of under-reporting is
quantified and estimated when Ii,t,s is assumed unknown. One
way of achieving this is a hierarchical framework consisting
of a Binomial model for the recorded counts zi,t,s and a latent
Poisson model for the true counts yi,t,s. This approach, often
called the Poisson-Logistic (Winkelmann and Zimmermann
1993) or Pogit model, has been used across a variety of fields
including economics (Winkelmann 2008, 1996), criminology
(Moreno and Girón 1998), natural hazards (Stoner 2018) and
epidemiology (Greer, Stamey, and Young 2011; Dvorzak and
Wagner 2016; Shaweno et al. 2017). The observed count zi,t,s is
assumed a Binomial realization out of an unobserved total (true)
count yi,t,s. The basic form of the model (extended in Section 3
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to include spatial random effects) is given by

zi,t,s | yi,t,s ∼ Binomial(πi,t,s, yi,t,s), (4)

log
(

πi,t,s
1 − πi,t,s

)
= β0 +

J∑
j=1

βjw
(j)
i,t,s, (5)

yi,t,s ∼ Poisson(λi,t,s), (6)

log
(
λi,t,s

) = α0 +
K∑

k=1
αkx(k)

i,t,s. (7)

All the data can be assumed to be (potentially) under-
reported by treating yi,t,s as a latent Poisson variable in a hier-
archical Binomial model for zi,t,s. Assuming that all individual
occurrences have equal chance of being independently reported,
πi,t,s can be interpreted as the probability that each occurrence
is reported, and is effectively the aforementioned indicator vari-
able Ii,t,s. Relevant under-reporting covariates W = {w(j)

i,t,s} (e.g.
related to TB detection), enter the model through the linear pre-
dictor in the logistic transformation of πi,t,s. This allows infer-
ence on the severity of under-reporting and what it relates to.

The true counts yi,t,s are modeled as a latent Poisson variable
with mean λi,t,s, characterized (at the log-scale) as a linear
combination of covariates X = {x(k)} associated with the
process giving rise to the counts. These are the covariates we
would like to capture the effect of, or are known to influence
yi,t,s, including offsets such as population counts. In modeling
TB incidence these include social deprivation indicators at a
particular location. It is assumed that W and X are composed of
different variables so that the w(k)

i,t,s are unrelated to the process
generating the counts.

Vectors α = (α0, . . . , αK) and β = (β0, . . . , βJ) are param-
eters to be estimated. Using mean-centered covariates (column
means of X and W are zero) implies that α0 and β0 are respec-
tively interpreted as the mean of yi,t,s on the log scale, and the
mean reporting rate on the logistic scale, when the covariates are
at their means. The framework allows the inclusion of random
effects in both Equations (5) and (7). Random effects allow
for overdispersion in count models (Agresti 2002, chap. 12),
and their inclusion here may be desirable to introduce extra
variation and thus flexibility in the model for the true counts,
including capturing effects from unobserved covariates. Alter-
natively, yi,t,s can be NegBin(λi,t,s, θ): a Negative Binomial with
mean λi,t,s and dispersion parameter θ (Winkelmann 1998).
Moreover, some of the coefficients αk could be assumed random
to further increase model flexibility.

Considering the true counts as a latent variable aids in
mitigating bias in estimating α from under-reported data.
The model is straightforward to implement in the conditional
form (Equations (4)–(7)), by sampling yi,t,s using Markov chain
Monte Carlo (MCMC). However, doing so will likely result
in slow-mixing MCMC chains that must be run for a large
number of iterations to achieve a desired effective sample
size. Conveniently, the following two results are achieved by
integration and use of Bayes’ rule:

zi,t,s ∼ Poisson(πi,t,sλi,t,s), (8)
yi,t,s − zi,t,s ∼ Poisson((1 − πi,t,s)λi,t,s). (9)

If yi,t,s ∼ NegBin(λi,t,s, θ), then zi,t,s ∼ NegBin(πi,t,sλi,t,s, θ).
The consequence of this is that the model in Equation (8)
is much more efficient in terms of effective sample size per
second, while samples of y can be generated using Monte Carlo
simulation of Equation (9). This also means that a complete
predictive inference on the true counts yi,t,s is possible, deriving
information jointly from the mean rate of yi,t,s, the reporting
probability πi,t,s and the recorded counts zi,t,s.

However, Equation (8) suggests that the same observed
counts zi,t,s could arise from either a high λi,t,s value combined
with a low πi,t,s, or vice versa, so that the likelihood function
of zi,t,s is constant over the level curves of πi,t,sλi,t,s. This means
that, in the absence of any completely reported observations,
there is a lack of identifiability between the two intercepts
α0 and β0. Additionally, as illustrated in Appendix A.3, the
framework cannot automatically identify whether a given
covariate is associated with the under-reporting or the count
generating process. This means that care must be taken when
deciding which part of the model a covariate belongs in.
Nonidentifiability for models where the mean is a product of
an exponential and logistic term is discussed in greater detail by
Papadopoulos and Silva (2012), with discussion more specific
to under-reporting in Papadopoulos and Silva (2008).

To conduct meaningful inference on the true counts yi,t,s,
the partial information in the data must be supplemented with
extra information to differentiate between under-reporting and
the true incidence rate. One potential source of information is
to utilize a set of completely reported observations alongside
the potentially under-reported observations, an approach used
by Dvorzak and Wagner (2016) and Stamey, Young, and Boese
(2006). For these counts, the reporting probability πi,t,s (and
hence the indicator variable Ii,t,s) is known a priori to equal 1.
In practice, this can be implemented by replacing (5) with

πi,t,s = ci,t,s + (1 − ci,t,s) exp
{

ηi,t,s
1 + ηi,t,s

}
. (10)

Here, ci,t,s is an indicator variable, where ci,t,s = 1 when zi,t,s
is completely reported (πi,t,s = 1) and 0 otherwise (πi,t,s is
unknown), and ηi,t,s is the right-hand side of Equation (5). For
some applications, however, such as historical counts of natural
hazards (Stoner 2018), it is often impractical and even impos-
sible to obtain completely observed data. For the application
to Brazilian TB data in Section 3, complete counts of cases are
not available on a micro-regional level. An alternative source of
information (Moreno and Girón 1998) is to employ informative
prior distributions to differentiate between πi,t,s and λi,t,s, which
is the approach we adopt in modeling TB. In Appendix A.1, we
examine the effects of either source of information on prediction
uncertainty using simulation experiments.

Recently, Shaweno et al. (2017) applied a version of this
framework to TB data in Ethiopia, without any data identified as
completely observed. However, vague uniform priors are used
for regression coefficients, including the intercepts α0 and β0.
Because of this ambiguity as to whether in practice it is necessary
to use an informative prior distribution, we also conduct a
thorough investigation of the sensitivity of the framework to the
choice of prior distributions using simulated data, in Section 3.1.

In summary, the strengths of the hierarchical count frame-
work over the more traditional censored likelihood approach are
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that it allows both for varying severity of under-reporting across
data points and for a more complete predictive inference on the
true counts.

3. Model Application

Let yt,s and zt,s denote, respectively, the true and recorded counts
of TB cases in micro region s ∈ {1, . . . , 557} (spanning all of
Brazil), and year t ∈ {2012, 2013, 2014}. Figure 1 illustrates
the recorded TB incidence rate. A spatial structure is apparent,
with generally higher TB rates in the north-west than in the
south-east. Some of this variability may be attributed to spatial
covariates affecting TB incidence. In particular, high-risk popu-
lations include poorly integrated groups due to poverty-related
issues, such as homelessness and incarceration. To allow for this,
various social deprivation indicators for each micro-region were
considered as covariates. These were x(1)

s = unemployment (the
proportion of economically active adults without employment);
x(2)

s = urbanization (the proportion of people living in an urban
setting); x(3)

s = density (the mean number of people living per
room in a dwelling); and x(4)

s = indigenous (the proportion of
the population made up by indigenous groups).

Furthermore, the covariate us = treatment timeliness (the
proportion of TB cases for which treatment begins within
one day) was considered in the characterization of the under-
reporting mechanism. Having already controlled for social
deprivation through x(j)

s , us acts as a proxy for how well a local
TB surveillance program is resource. The model is specified
(conditionally on random effects) as follows:

zt,s | yt,s, γt,s ∼ Binomial
(
πs, yt,s

)
, (11)

log
(

πs
1 − πs

)
= β0 + g(us) + γt,s, (12)

yt,s|φs, θs ∼ Poisson(λt,s), (13)

log
(
λt,s

) = log(Pt,s) + a0 + f1(x(1)
s ) + f2(x(2)

s )

+ f3(x(3)
s ) + f4(x(4)

s ) + φs + θs. (14)

Functions g(·), f1(·), . . . , f4(·) are orthogonal polynomials of
degrees 3, 2, 2, 2, and 1, respectively. Compared to raw polyno-
mials, these reduce multiple-collinearity between the monomial
terms (Kennedy and Gentle 1980), and were set up using the
“poly” function in R (R Core Team 2018). The polynomials
are defined such that f (x) = 0 when x = x̄, so that (at
the logistic scale) β0 is the mean reporting rate for a region
with mean treatment timeliness. The term log(Pt,s), where Pt,s
is population, is an offset to allow for varying population and
ensure the covariates act on the incidence rate.

Additive effects from a spatially unstructured random effect
θs and a spatially structured one, φs are assumed to capture any
residual spatial variation in the incidence of TB. An intrinsic
Gaussian conditional autoregressive (ICAR) model (Besag,
York, and Mollié 1991) was assumed for φs, with variance
parameter ν2, to capture dependence between neighboring
micro-regions. Here, a neighbor of s was defined as any s′ �= s
sharing a geographical boundary with s. The N(0, σ 2) effect
θs was included to afford extra spatial residual variability. An
additional unstructured N(0, ε2) effect γt,s was included in

Figure 1. Total new TB cases for each mainland micro region of Brazil, over the years
2012–2014, per 100,000 inhabitants.

the model for the reporting rate (12), to allow for the effect
of potential unobserved covariates on the detection rate of TB,
as well as the case that us may only be a proxy for the appropriate
(true) under-reporting covariate.

The prior distribution for α0 was assumed N(−8, 1), chosen
by using prior predictive checking to reflect our belief that very
high values (such as over 1 million) for the total number of
cases are unlikely. The priors for αj (j = 1, . . . , 7) and βk
(k = 1, 2, 3) were specified as N(0, 102), which were chosen
to be relatively noninformative. Finally, the priors for variance
parameters σ , ν and ε were specified as zero-truncated N(0, 1),
to reflect the belief that low variance values are more likely
than higher ones, but that these effects are likely to capture
at least some of the variance. As discussed in Section 2.2, in
the absence of any completely reported TB counts, we must
specify an informative prior distribution for β0 to supplement
the partial information in the data. As an aid in doing so, we
investigate the sensitivity of the model to this prior through
simulation experiments presented in the following subsection.

All models were implemented using NIMBLE (de Valpine
et al. 2017), a facility for flexible implementations of MCMC
models in conjunction with R (R Core Team 2018). Specifically,
we made use of the Automated Factor Slice Sampler (AFSS)
which can be an efficient way of sampling vectors of highly
correlated parameters (Tibbits et al. 2014), such as α0 and β0.
The associated code and data are provided as supplementary
material.

3.1. Simulation experiments

For the simulation study, we consider counts which vary in space
in the following way:

zs|ys ∼ Binomial(πs, ys), (15)
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Figure 2. Scatterplots of simulated data, showing the process covariate xs against the true counts ys (left), the under-reporting covariate ws against ys (center) and ws
against the recorded counts zs (right).

log
(

πs
1 − πs

)
= β0 + β1ws, (16)

ys|φs ∼ Poisson(λs), (17)
log (λs) = α0 + α1xs + φs (18)

with β0 = 0, β1 = 2, α0 = 4, α1 = 1 and ν = 0.5. A total of
s = 1, . . . , 100 data points were simulated with both covariates
xs and ws being sampled from a Unif(−1, 1) distribution. The
ICAR(ν2) spatial effect φs was simulated over a regular 10x10
lattice. Figure 2 shows the simulated data. Note there are clear
positive relationships between xs and ys, and between ws and zs,
while there is no clear relationship between ws and ys. One goal
for this simulation is to investigate the sensitivity of the model to
the specification of the Gaussian prior distribution for β0. This
was achieved by repeatedly applying the model whilst varying
the mean and standard deviation for this prior. The prior for α0
was N(0, 102), with all other priors the same as in the TB model.

To make the experiment more realistic, we mimic the case
where the true under-reporting covariate ws is not available, and
instead we only have access to (proxy) covariates vs,2, . . . , vs,6.
These are simulated such that they have decreasing correlation
with ws. As the variation in πs is no longer fully captured by
vs,2, . . . , vs,6, we include a random quantity γs ∼ N(0, ε2) in
(16).

An important aspect of model performance to consider is
the proportion of true counts that lie in their corresponding
95% posterior prediction intervals (PIs), known as the cover-
age. In the context of nonidentifiability, we would expect the
coverage to remain high as long as the true value of β0 is not
extreme with respect to its prior. Figure 3 shows the coverage
when the covariate vs,3 (correlation 0.6 with ws) is used (which
incidentally has a similar correlation value with the recorded
counts as treatment timeliness in the TB data). The plot suggests
that the model is able to quantify uncertainty well, as long as
a strong prior distribution is not specified well away from the
true value (lower corners). The inclusion of γs implies that using
a “weaker” under-reporting covariate should have little impact
on coverage (the PIs of ys would simply widen). Indeed, more
detailed results in Appendix A.2 show that mean coverage did
not change systematically when weakening the covariate.

As an illustrative example of model performance, Figure 4
shows various results based on simulated data using vs,3 as the
under-reporting covariate, and a N(0.6, 0.62) prior for β0. This

Figure 3. Coverage of the 95% PIs for ys , when the under-reporting covariate vs,3,
which has a theoretical correlation of 0.6 with the true covariate ws , is used.

represents the case where the prior distribution overestimates
the reporting probability but not to an extreme extent. The top
left and central plots show posterior densities for α0 and α1,
indicating substantial learning of these parameters compared to
the flat priors also shown. The top right plot compares the mean
predicted spatial effects to their corresponding true values, sug-
gesting these are captured well. The lower-left plot shows the
posterior for β0 has shifted in the direction of the true value.
This illustrates that, at least in this idealized setting, the model
is not entirely at the mercy of the accuracy of this prior, despite
nonidentifiability. The bottom central plot shows the mean pre-
dicted effect of the imperfect covariate vs,3 on the reporting
probability, with associated 95% credible interval (CrI). The
effect is quite uncertain, reflecting the relative weakness of the
covariate. Finally, the lower-right plot shows the lower (blue)
and upper (green) limits of the 95% PIs for ys, suggesting that the
model is able to systematically predict well the true unobserved
counts.

This sensitivity analysis is by no means exhaustive, but it does
appear to suggest that the model with no completely observed
values is robust in terms of quantifying uncertainty, as long as
the practitioner specifies a prior for β0 that is informative but
not too strong. With this in mind, we return to the task of spec-
ifying this prior distribution for the TB model. The information
available are WHO inventory study-derived estimates (World
Health Organization 2012) of the overall TB detection rate in
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Figure 4. The top-left, top-central and lower-left plots show density estimates of prior (black) and posterior (colored) samples for parameters α0, α1 and β0, respectively,
with vertical lines representing their true values. The top-right plot shows the mean predicted spatial effect (φs) against the true values. The lower-central plot shows the
predicted relationship (solid line) between the under-reporting covariate vs,3 and the reporting probability πs , with associated 95% CrI. The lower-right plot shows the
lower (blue) and upper (green) limits of the 95% PIs for the true counts ys .

Brazil for 2012–2014. The 2017 point estimates for these years,
with associated 95% confidence intervals were 91% (78%,100%),
84% (73%,99%), and 87% (75%,100%) (World Health Organi-
zation 2017). Normal distributions were used to approximate
each rate at the logistic level. We inferred mean and standard
deviation parameter values by attempting to match the quoted
point estimates and confidence intervals. The mean of the three
rates is most variable when they are positively correlated, so
to account for this we simulated and sorted into ascending
order samples from each approximate distribution, before com-
puting the mean of each sample of three rates. This resulted
in a distribution which was approximately N(2, 0.42). Figure 3
suggests that the mean of this prior can only be slightly wrong
(less than 0.5 away) before coverage begins to drop below ideal
levels (95%). For this reason, and because the incorporation of
the WHO uncertainty is only approximate, we opt for a more
conservative standard deviation of 0.6, which allows the mean to
deviate more from the truth before PIs become less trustworthy.

3.2. Model Checking

As well as inspecting trace plots of MCMC samples, convergence
was assessed by computing the potential scale reduction factor
(PSRF) for each parameter (Brooks and Gelman 1998), which
compares the between-chain and within-chain variances. If the
chains have not converged, the between-chain variance should
exceed the within-chain variance and the PSRF will be substan-
tially greater than 1. Using different initial values and random
number seeds for each chain gives the best assurance that the
chains have converged to the whole posterior, rather than a
local mode. Four chains were used, each ran for a total of 800K
iterations. After discarding 400K iterations as burn-in, the PSRF
was computed as less than 1.05 for all regression coefficients and
variance parameters. These were deemed sufficiently close to 1
to indicate convergence.
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Figure 5. Scatterplot of differences between the lower (blue) and upper (green)
limits of the 95% PIs of z̃t,s and the observed values zt,s .

A natural way of assessing whether the model fits the data
well is to conduct posterior predictive model checking (Gelman
et al. 2014, chap. 6). More specifically, one can look at the dis-
crepancy between the data z and posterior predictive replicates
of this data from the fitted model. Define the posterior predictive
distribution for a replicate z̃t,s, of observed number of TB cases
zt,s, as p(z̃t,s | z). The question is then whether the actual
observation zt,s is an extreme value with respect to p(z̃t,s | z)
and if so, this indicates poor model performance.

Figure 5 shows a scatterplot of the difference between the
lower (blue) and upper (green) limits of the 95% posterior PIs
of z̃t,s and the corresponding observed values zt,s. The PIs are
symmetrically centered on the observed values, suggesting that
the model has no systematic issue (under or over-prediction)
with fitting observed values. The coverage of the 95% PIs was
approximately 99.6%.
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Figure 6. Prior (top row) and posterior (bottom row) predictive distributions of the sample mean (left column), sample variance (central column) and the log-mean squared
error from the recorded counts zi,t,s (right column), of the replicates z̃t,s . Observed statistics are plotted as vertical lines.

Figure 7. Posterior mean predictions (solid lines) of the effects of unemployment, indigenous, density and urbanization on the rate of TB incidence, with associated 95%
CrIs.

Furthermore, we can assess whether summary statistics of
the original data are captured well by the model through the
replicates. Given this is count data, we want to ensure that
both the sample mean and variance are captured well. As the
prior distributions used for regression coefficients were quite
broad, it is important to also assess whether substantial learning
has occurred, with respect to both the predictive error of the
observed counts zt,s and the distributions of these statistics.
Otherwise, it is possible that the data are well captured in the

posterior predictions because they were contained within the
prior predictions.

The left and central columns of Figure 6 show the prior (top)
and posterior (bottom) predictive distributions of the sample
mean and variance. The corresponding observed quantities are
in the bulk suggesting that the prior and posterior models
capture these well. The posterior predictive distributions are far
more precise, indicating that the uncertainty in the parameters
has been reduced significantly by the data. This is emphasized



8 O. STONER, T. ECONOMOU, AND G. DRUMMOND MARQUES DA SILVA

by the right column, which compares the posterior and prior
predictive distributions of the mean squared difference between
each z̃t,s and zt,s. The mean-squared error is several orders of
magnitude smaller in the posterior model, implying far greater
prediction accuracy.

3.3. Results

The effect of unemployment on λt,s is shown in the upper-left
panel of Figure 7, indicating a strong (based on the width of
the 95% CrIs) positive relationship with TB incidence. This is
likely because areas with high unemployment often also have
high rates of homelessness and incarceration, two important
risk factors for TB. The range of this effect is approximately
0.8 on the log scale, suggesting incidence rate is over twice
as high in micro-regions with high unemployment (>15%),
compared to areas with low unemployment (<5%). The lower-
left panel shows that urbanized proportion is also strongly
positively related to TB incidence. The range of this effect
is also approximately 0.8, meaning that highly urbanized
(>90%) micro-regions are predicted to have over double the
TB incidence of micro-regions with low urbanization (<40%).
This could be due to the increased population density of highly
urbanized areas, which may promote the spread of the disease.
The effect of dwelling density is less pronounced: the polynomial
increases monotonically for most of the range covered by the
data (x(3)

s <1), before decreasing for higher values. This suggests
that TB incidence is actually lower in micro-regions with the
highest levels of dwelling density. Alternatively, it may be that
further under-reporting of TB is present in such areas, which is
not being captured by this model. Data at these upper values are
quite sparse, as reflected by widening of the 95% CrIs. Finally,
the lower-right panel of Figure 7 shows the effect of indigenous
proportion. Recall that this relationship was constrained to be
linear in Equation (14) and the 95% CrI on the slope suggests
the effect is strongly positive.

Figure 8 illustrates the predicted residual spatial variability in
the TB incidence rate (φs +θs). There is substantial clustering of
negative values in the center of Brazil, surrounding the states
of Goiás and Tocantins, while there is clustering of positive
values in the North West, including the Amazon rainforest.
Interestingly, this seems to align well with estimates of the
spatial distribution of human development index (HDI) (see for
instance Atlas (2013)), where high estimates of HDI coincide
with low values from the spatial effect. This could indicates that
there exist other effects of human development on TB incidence,
such as health-care infrastructure, which are not captured by
the covariates. Several big cities, including Rio de Janeiro and
São Paulo appear to buck this trend, with positive spatial effects
despite relatively high HDI estimates, which could be due to the
effect of features unique to big cities, such as high population
density, which are not included in the model. The effect of
the spatially structured φs is visible by the clustering of similar
colors and we found it dominated the unstructured effect θs,
explaining a predicted 94% of their combined variation. The
range of values of the combined effect is not dissimilar to the
effects of any of the individual covariates, implying that the
covariates are driving most of the variability in the true counts
yt,s.

Figure 8. Combination of structured spatial effect φs and unstructured effect θs .

Figure 9. Posterior mean predicted effect of treatment timeliness on the reporting
probability of TB, with associated 95% CrI.

Figure 10. Bar plot showing, for each year, the recorded total number of TB cases in
Brazil, as well as the 5%, 50%, and 95% quantiles of the predicted true total number
of TB cases.

Figure 9 shows a clear, monotonically increasing (estimated)
relationship between treatment timeliness and the probability
of reporting πt,s. The 95% CrI does not incorporate a horizontal
line, which would imply no relationship. Overall, micro-regions
with very low timeliness (<10%) have approximately two-thirds
the reporting probability of ones with very high timeliness
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(>90%), indicating a clear disparity in the performance of the
surveillance programs.

Finally, Figure 10 shows, for each year, the total observed
TB count, alongside the 5%, 50%, and 95% quantiles of the
predicted true total number of unreported cases. The plot sug-
gests that potentially tens of thousand of cases went unreported
each year. Combined with the results seen in Figure 9, this
presents a strong case for providing additional resources to
the surveillance programs in those micro-regions with lower
values of treatment timeliness. The R code and data needed to
reproduce these results are provided as supplementary material.

4. Discussion

A flexible modeling framework for analyzing potentially under-
reported count data was presented. This approach can accom-
modate a situation where all the data are potentially under-
reported, by using informative priors on model parameters
which are easily interpretable. It also readily allows for random
effects for both the disease incidence process and the under-
reporting process, something which simulation experiments
revealed alleviates the use of proxy covariates to determine
under-reporting rates. It was applied to correcting under-
reporting in TB incidence in Brazil using well-established
MCMC software, incorporating a spatially structured model
which highlights its flexibility. Simulation experiments were
conducted to investigate prior sensitivity and to provide a guide
for choosing a prior distribution for the mean reporting rate.

Naturally, care should be taken. Indeed, it is likely that a
different prior distribution for β0 in the TB application might
result in different inference on the under-reporting rate, and
consequently the corrected counts. The simulation experiments
indicated that if the specified prior information on the overall
under-reporting rate turns out to be wildly different from the
truth, then the corrected counts will also likely be inaccurate.
Therefore, particular attention should be paid to the elicitation
of this prior information, such that the prior uncertainty is fully
quantified and reflected in predictive inference. Further simula-
tion experiments also highlighted the risk posed by incorrectly
classifying covariates as either belonging in the under-reporting
mechanism or the model of the true count. In many cases, strong
prior information about this classification may be available,
so we suggest future research is directed at combining prior
uncertainty with methods such as Bayesian model averaging.
This could more rigorously quantify the uncertainty associated
with this classification and its effect on the predictive inference
for the corrected counts.

The subjective nature of the solution to completely under-
reported data is not unique; in Bailey et al. (2005) for example,
a different choice of threshold for the variable used to identify
under-reported counts could have lead to different predictions.
Only the usage of a validation study (e.g., Stamey, Young, and
Boese (2006)) could be considered a less subjective approach
depending on the quality, quantity and experimental design
of collecting the validation data. In many cases, however, the
elicitation of an informative prior distribution for one parameter
is simply a more feasible solution. In the application to TB, an
existing estimate from the WHO of the overall reporting rate

in Brazil was available, from which a prior distribution was
derived.

The framework investigated here has two key advantages
over the approaches based on censored likelihood discussed
in Section 2.1. First, modeling the severity of under-reporting,
through the reporting probability, presents the opportunity to
reduce under-reporting in the future, by informing decision-
making about where additional resources for surveillance
programs would be most effective. Second, by modeling the
under-reported counts, a more complete predictive inference on
corrected counts is made available, informed by the reporting
probability, the rate of the count-generating process and the
recorded count. The results in Section 3, for instance, provide
predictions of the under-reporting rate at a micro-regional level,
meaning that resources could be intelligently applied to the
worst-performing areas.

Appendix A: Further Simulation Experiments

A.1. Informative Prior Versus Completely Observed Counts

In Section 2, we discussed the need to supplement the lack of informa-
tion in the data, in order to distinguish between the under-reporting
rate and incidence rate. This is done by either providing an informative
prior distribution for β0, the mean reporting rate at the logistic scale, or
by utilizing some completely reported counts, or both. In this experi-
ment, we investigate the effect of varying the strength of the informative
prior and the number of completely observed counts, on predictive
uncertainty.

The model was applied to simulated data, as in Section 3.1, using
different values for the prior standard deviation, to reflect varying levels
of prior certainty about the reporting rate, and including completely
reported counts for varying proportions of the data. Predictive uncer-
tainty was quantified using the logarithm of the mean-squared error of
ys, computed for each posterior sample, which we summarize using the
mean. Figure A.1 shows how this uncertainty varies with prior variabil-
ity in β0 and the number of completely reported counts. The left-most
column shows that predictive uncertainty decreases with increasing
prior precision when there are no completely reported counts. In this
case, practitioners must trade-off predictive uncertainty with the risk
of systematic bias posed by specifying an overly strong prior away
from the true value, seen in Section 3.1. While predictive uncertainty
does decrease with increasing prior strength, we can also see that it

Figure A.1. Mean values of the posterior predictive log-mean squared errors for
each modeling scenario.
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Figure A.2. Scatterplots comparing covariates vs,2, . . . , vs,6 to the reporting probability πs .

Figure A.3. Scatterplots comparing the correlation of the under-reporting covariate used, from the set vs,1, . . . , vs,6, to 95% PI coverage for the true counts ys (left), the
mean error of log (λs) (center) and the square root of the mean squared error of log (λs) (right).

decreases more substantially by increasing the proportion of counts
which are known to be completely reported. This implies that the use
of completely observed counts is worthwhile, if possible.

A.2. Strength of Under-reporting Covariate

In Section 3.1, we varied the strength of relationship between the
under-reporting covariate and the true under-reporting covariate. Fig-
ure A.2 shows the relationship between the different “proxy” covariates
and the reporting probability πs. This section presents the effect of
using these proxies instead of the true under-reporting covariate ws.

While the full results can be found in the Supplementary Material,
the three plots in Figure A.3 summarize the effect that varying the
strength of this covariate has on the performance of the model, using
locally weighted scatterplot smoothing (LOESS). The left plot shows
the 95% PI coverage. As discussed in Section 3.1, coverage should not
decrease with covariate strength, and indeed there is very little evidence
of any change. The central plot shows the mean error of log (λs). Again,
the plot shows little evidence that this changes with covariate strength,
which is reassuring as it suggests that using a weaker covariate does not
necessarily introduce any systematic bias. Finally, the right plot shows

a substantial effect of covariate strength on the predictive accuracy
of log (λs), with stronger covariates translating to higher predictive
accuracy, which is expected.

This experiment suggests that gains in predictive accuracy can
be achieved by using covariates that are only proxies of the under-
reporting process, compared to not including them, without necessarily
introducing bias. However, this relies on those covariates being cor-
rectly identified as being related to the under-reporting mechanism.
The following section illustrates the risks associated with this classi-
fication.

A.3. Classification of Covariates

In the application to TB data, the classification of covariates into those
that relate to the under-reporting mechanism and those related to
the true count-generating process was relatively straightforward. In
general, this can be more challenging and in this section we present
the effects of incorrectly classifying covariates.

The experiment begins by using simulated data from the model in
Section 3.1, with the exception of an additional unstructured random
effect in the model for λ. The prior distributions are the same, with
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Figure A.4. Scatterplots comparing the true simulated counts ys to the median predicted counts from the model where the covariates are classified correctly (left) and
incorrectly (right), and the model where the covariates are not included (center).

a N(0, 0.62) prior on β0. In the first instance, the model is correctly
informed that covariate xs belongs in the model for λs and ws belongs
in the model for πs. In the second instance, these are swapped. For
comparison, the model is also applied with no covariates included.

Figure A.4 shows scatterplots for each case, comparing median
predicted values for ys to their corresponding true values. The left plot
shows that when the covariates are correctly classified, the model is able
to detect the unobserved ys values very well. When the covariates are
incorrectly classified (right), the model performs very poorly. In fact,
in this case the model performs even worse than a model where no
covariates are included and the only random effects are relied upon to
improve predictions (center).

This experiment highlights the sensitivity of the framework to the
classification of covariates, which represents an informative choice. In
our view, if there is substantial doubt about whether a covariate likely
relates to the under-reporting mechanism or to the true count process,
it may be wiser to not include it in the model, which in this experiment
results in better predictive performance.
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