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 43 

The Paris Agreement(PA2105) PA aims to address the gap between existing climate 44 

policies and policies consistent with ‘holding the increase in global average temperature 45 

to well below 2°C’. The feasibility of meeting the target has been questioned both in 46 

terms of the possible requirement for negative emissions(Anderson2016), and ongoing 47 

debate on the sensitivity of the climate-carbon cycle system(Friedlingstein2013). Using a 48 

sequence of ensembles of a fully dynamic three-dimensional climate-carbon cycle model, 49 

forced by emissions from an integrated assessment model of regional-level climate 50 

policy, economy, and technological transformation, we show that a reasonable 51 

interpretation of the PA is still technically achievable. Specifically, limiting peak 52 

(decadal) warming to less than 1.70°C, or end-century warming to less than 1.54°C, 53 

occurs in 50% of our simulations in a policy scenario without net negative emissions or 54 

excessive stringency in any policy domain. We evaluate two mitigation scenarios, with 55 

200GTC and 307GTC post-2017 emissions, quantifying spatio-temporal variability of 56 

warming, precipitation, ocean acidification and marine productivity. Under rapid 57 

decarbonisation decadal variability dominates the mean response in critical regions, 58 

with profound implications for decision making, demanding impact methodologies that 59 

address non-linear spatio-temporal responses. Ignoring carbon-cycle feedback 60 

uncertainties (explaining 47% of peak warming uncertainty) becomes unreasonable 61 

under strong mitigation.  62 

 63 
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A widely-held misconception is that given ~1°C warming to-date, and considering committed 64 

warming concealed by ocean thermal inertia, the 1.5°C target of the Paris 65 

Agreement(PA2015) is already impossible. However, it is cumulative emissions that define 66 

peak warming(Allen2009). When carbon emissions cease, terrestrial and marine sinks are 67 

projected to draw down atmospheric CO2, approximately cancelling the lagging warming. 68 

While the sign of this “zero emissions commitment” is uncertain, its contribution can be 69 

neglected for low CO2 scenarios(Ehlert2017). Therefore, at least when considering CO2 70 

emissions in isolation, the 1.5°C target will remain physically achievable until the point that 71 

it has been crossed. The physical achievability of the Paris target has been demonstrated in a 72 

complex carbon cycle model with a simplified atmosphere(Steinacher2013) and updated 73 

recently using a simple carbon cycle model forced by a modified RCP2.6 74 

scenario(Millar2017) and by policy-driven scenarios with substantial reliance on negative 75 

emissions technology(Rogelj2018). Here, we demonstrate that the target is achievable using a 76 

fully-dynamic three-dimensional climate-carbon cycle model forced with emissions from a 77 

detailed set of sectorally and regionally specific mitigation policies without net negative 78 

emissions(Pollitt2018).  79 

 80 

We use the intermediate-complexity three-dimensional Earth system model PLASIM-GENIE 81 

(Holden2016), a model with similar ocean, atmosphere and carbon cycle dynamics to full 82 

complexity models, but with simpler parameterisations and lower spatial resolution. The 83 

model will not produce the full range of small-scale variability in high-complexity models, 84 

but it has the computational efficiency to allow a comprehensive treatment of uncertainties 85 

cognizant, for instance, of ongoing discussions on the state dependency of climate sensitivity 86 

(Geoffroy2013, Gregory2015) and ocean heat uptake efficacy (Winton2010). We evaluate 87 

climate-carbon cycle uncertainty using a 69-member history-matched ensemble 88 



 4

(Williamson2013) designed from 940 training simulations (see methods). The ensemble 89 

climate sensitivity is 2.6 to 4.5°C (90% confidence), which compares to 1.9 to 4.5°C in 90 

CMIP5(IPCCAR5). The transient climate response is 1.1 to 1.8°C, 1.2 to 2.4°C in 91 

CMIP5(IPCCAR5). Ensemble ocean heat uptake (1965 to 2004) is 207 to 330 ZJ, 182 to 363 92 

ZJ (1970 to 2010) in IPCC(IPCCAR5). 93 

 94 

We validate the history-matched ensemble in Table 1A, by comparison with the CMIP5 95 

multi-model ensembles forced by Representative Concentration Pathway (RCP) 2.6 96 

(mitigation scenario) and RCP8.5 (‘business-as-usual’ scenario) (Meinshausen2011). Under 97 

RCP8.5, the PLASIM-GENIE end-century CO2 concentration, global warming and Atlantic 98 

Meridional Overturning Circulation (AMOC) strength(IPCCAR5,Cheng2013) are 99 

remarkably consistent with the CMIP5 ensemble, illustrating that uncertainties in transient 100 

climate sensitivity, carbon cycle sensitivity and AMOC stability capture the spread of high 101 

complexity models. Mean surface pH is also well represented, the significantly lower 102 

uncertainty in CMIP5 pH(Bopp2013) arises because these particular CMIP5 simulations 103 

were concentration forced. Overstated impacts in marine productivity are apparent relative to 104 

CMIP5(Bopp2013), but there is significant overlap in the highly uncertain distributions. 105 

Under RCP2.6 forcing, there is a less complete analysis of CMIP5 outputs. The PLASIM-106 

GENIE ensemble understates the mean warming in RCP2.6 by 0.3°C relative to CMIP5, 107 

under-estimating the warmest ensemble members (Table 1A). We therefore apply 0.3°C to 108 

bias-correct warming estimates in the rapid decarbonisation scenarios (Table 1B). 109 

 110 

Our future simulations are forced with emissions from policy scenarios of the simulation-111 

based integrated assessment model E3ME-FTT-GENIE(Mercure2018a). The E3ME 112 

macroeconomic model differs fundamentally from the equilibrium models more usually used 113 
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to assess climate policy by representing realistic (non-optimal) behaviour based on empirical 114 

relationships, and by relaxing the constraint of a fixed money supply. Investment in 115 

renewables therefore can in principle generate economic stimulus, for instance through 116 

increased employment(PollittMercure2017). Furthermore, the framework is suited to flexible 117 

application of a range of policy implementations that are not limited to a carbon tax, 118 

including regulations, subsidies, focussed taxation policies and public procurement. The 119 

model contains a bottom-up representation of technological diffusion in multiple-sectors 120 

(FTT) and is connected to a climate-carbon cycle model (GENIE) with a single-layer 121 

atmosphere. We consider three scenarios: 1) Current policy CP(Mercure2018a,b), 2) 122 

2P0C(Mercure2018a,b), rapid decarbonisation policies to avoid 2°C peak warming with 75% 123 

confidence (according to GENIE) and 3) 1P5C(Pollitt2018), representing our most optimistic 124 

set of policy assumptions, avoiding 1.5°C peak warming with 50% confidence.  125 

 126 

Time series for the PLASIM-GENIE ensembles forced with the three policy scenarios are 127 

illustrated in Fig 1, and ensemble distributions are summarised in Table 1B. Note that the 128 

time series of ensemble median values do not correspond to fixed simulations, thus the 129 

distribution of peak decadal warming (Table 1B) show slightly higher values as individual 130 

trajectories cross owing to decadal variability. Steady-state decadal variability of mean 131 

surface temperature in PLASIM-GENIE is ±0.08°C (one standard deviation). 132 

 133 

Small differences in assumptions can make significant differences to cumulative emissions 134 

budgets under strong mitigation, noting that 0.1°C incremental warming is equivalent to 135 

~50GTC(Allen2009). Here, we consider both maximum and end-century change, as the 136 

former is most relevant for impact assessment and most consistent with the text of the Paris 137 

Agreement, with change expressed relative to a preindustrial (1856-1885) baseline taken 138 
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from ensembles of 1805-2105 AD transient simulations. RCP2.6 non-CO2 forcing is applied 139 

for both mitigation scenarios, and RCP8.5 non-CO2 forcing for the current-policy scenario.  140 

 141 

Bias-corrected median peak warming estimates (Table 1B) are 1.82°C (2P0C) and 1.70°C 142 

(1P5C), and 2100 estimates are 1.71°C and 1.54°C. Correlations suggest an increasing 143 

relative contribution of carbon-cycle processes to warming under rapid decarbonisation 144 

(Table S1). The response of the maximum value of Atlantic meridional overturning 145 

circulation (AMOC) in the mitigation scenarios is notable. The simulated expected peak 146 

weakening to 84% of preindustrial (Table 1B) arises from natural variability (steady-state 147 

decadal variability is 0.9Sv); the median response through the Century is steady (Fig1). 148 

However, in one 1P5C and two 2P0C simulations the AMOC reduces to ~50% of its present-149 

day strength. We therefore cannot rule out significant AMOC weakening under mitigation, 150 

but note the suggestion of a reduction in the probability of this unlikely event under 151 

accelerated decarbonisation. 152 

 153 

We now consider the mean climate-change patterns for a range of impact-relevant climate 154 

stressors: decadal DJF surface air temperature (Fig 2A), decadal JJA precipitation (Fig 3A), 155 

annual surface ocean acidity (Fig 4A) and annual marine primary productivity (Fig 4D). 156 

Patterns are 1P5C ensemble averages of (2090 minus 1990) change, expressed per 1°C mean 157 

ensemble warming. The mean patterns of changes of temperature and precipitation are 158 

broadly consistent with CMIP5 projections. Changes in pH (Fig 4A) result from increased 159 

concentrations of dissolved CO2 and the associated reduction in carbonate ion concentrations 160 

approximately uniform across the surface ocean, except in the Arctic where amplified CO2 161 

uptake is apparent under melting sea ice(Yamamoto2012). This pattern is robust, explaining 162 

more than 95% of the variability in the ensemble (quantified through singular vector 163 
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decomposition); a similar robust pattern of acidification was found in CMIP5 (Bopp2013). 164 

Changes in primary productivity (Fig 4D) are dominated by large reductions of up to ~10% 165 

per °C of warming that are simulated in the Equatorial Pacific. Significant reductions are also 166 

simulated in mid-latitude Pacific and Indian oceans, and in the Equatorial and high-latitude 167 

Atlantic. Despite the simplified ecosystem model(Ridgwell2007), the patterns and 168 

magnitudes of productivity change are consistent with CMIP5 analysis; in RCP8.5, decreases 169 

of up to 30-50% are simulated in these regions(Bopp2013), attributed to increased ocean 170 

stratification and slowed circulation, with consequent reductions in nutrient 171 

supply(Steinacher2010). Increases in productivity are apparent in the Arctic and in parts of 172 

the Southern and Indian Oceans, here likely attributable to increased nutrient 173 

supply(Rykaczewski2010). In stark contrast to pH, the pattern of productivity change 174 

explains only 20% of ensemble variability. 175 

 176 

The ensemble-projections are now used to quantify spatio-temporal uncertainty by evaluating 177 

the adequacy of the approximations made in “pattern scaling”(Santner1990), a widely used 178 

approach to estimating climate fields for impacts evaluation. In pattern scaling an average 179 

climate response is calculated, typically as a multi-decadal average pattern of change. The 180 

pattern, normalised per °C global mean warming, is then scaled as appropriate for scenarios 181 

of interest. The strengths and limitations of pattern scaling, including modified approaches, 182 

have recently been reviewed(Tebaldi2014). It is known to be less accurate under strong 183 

mitigation(Wu2010). 184 

 185 

Figures 2B, 3B, 4B and 4E plot the normalised mean field difference (1P5C – CP), capturing 186 

non-linear scenario-dependent feedbacks, and examining the pattern-scaling approximation 187 

of a scenario-invariant pattern. The temperature pattern differences reveal modest changes, 188 
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for instance in the northern Atlantic, where the stronger AMOC leads to relatively warmer 189 

temperatures under mitigation. The largest precipitation pattern differences are associated 190 

with the Indian and SE Asian monsoons. The magnitudes of pH change patterns are very 191 

different in the two scenarios, approximately -0.1pH unit per °C under current policy and -192 

0.03 per °C for rapid decarbonisation. This difference reflects the different response times of 193 

pH and temperature to changing CO2. The 2090 temperature is influenced by cumulative 194 

excess CO2 but the surface pH in 2090 is determined by 2090 CO2 with no significant lag; 195 

mitigation acts at the timescale of natural CO2 sinks to reduce acidification impacts on the 196 

surface ocean. In contrast, the patterns of change of marine productivity in the two scenarios 197 

are spatially different, with amplified relative reductions in the Atlantic, Indian and Southern 198 

Oceans, and a reduced relative reduction in the Equatorial Pacific. 199 

 200 

The most important error when using pattern scaling arises from the neglect of variability. 201 

This emerges from two distinct sources, the neglect of model uncertainty and the neglect of 202 

natural variability, both of which alter the pattern of change itself. It is well established that 203 

natural variability, which has a magnitude that differs with location, is a critical limiting 204 

factor for the accuracy of climate projections and impact evaluation(Deser2012). If we 205 

assume that the spread of climate model outputs encompasses possible reality, then model 206 

error can be estimated by applying the patterns from different climate models to test 207 

robustness of the impacts that result. However, internal variability is generally not 208 

considered, and pattern scaling impacts are derived from climate means. Under strong 209 

mitigation we argue this neglect may be inappropriate. The signal-noise ratio in strong 210 

mitigation scenarios is of order one and, for instance, decadal variability will be a significant 211 

contributor to the uncertainty in determining peak (~2050 AD) climate change. 212 

 213 
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In the final columns of Figs 2, 3 and 4, each 1P5C simulation anomaly field is normalised by 214 

its respective warming, and the RMS ensemble variability about the 1P5C scenario mean is 215 

plotted. For the climate fields (Figs 2 and 3), comparison of variability about the mean fields 216 

30-year averages (predominantly parametric uncertainty) and 10-year averages (internal and 217 

parametric uncertainty) relative to a 30-year baseline, indicates that the two sources of 218 

variability are comparable in amplitude. For the ocean impact fields (Fig 4) the variability is 219 

derived from annual averages. In all fields, the uncertainties in the patterns (1P5C - CP) are 220 

dominated by the variability about the pattern (right panels). The uncertainties often dominate 221 

even the mean response. For instance, in parts of the Arctic, RMS uncertainty of ~3°C per °C 222 

warming compares to a mean signal of ~3°C (Fig 2, Table S2), while RMS uncertainty of 223 

precipitation is comparable to the mean signal in monsoon regions (Fig3, Table S2). 224 

Simulations forced by current-policy emissions are associated with significantly lower 225 

fractional uncertainty (Table S2), reflecting an increased signal-noise ratio, and 226 

demonstrating that the assumptions of pattern scaling are well justified under high-emission 227 

scenarios. 228 

 229 

The implications of our findings for policy-making are important: if policy and market-based 230 

responses to climate change are sufficient to uphold the level of ambition of the Paris 231 

Agreement, climate change impacts could still be of large amplitude in sensitive regions such 232 

as the Arctic. However, in these scenarios, uncertainties from model error and internal 233 

variability can dominate expected mean patterns. Consequently, we argue that a paradigm 234 

shift in impacts evaluation is now essential to support decision making. Estimates based on 235 

mean patterns of change will be insufficient. Instead, statistical methodologies developed to 236 

address non-linear spatio-temporal feedbacks(Holden2015) will need to be extended to high-237 

complexity models. Holding the increase in (multi-decadal) global average temperature 238 
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above pre-industrial to 1.5 °C appears still to be possible, but results in a world where the 239 

superposition of climate change onto natural variability is key to understanding impacts on 240 

inter alia ecosystems, biodiversity, ice sheets and permafrost stability. 241 

 242 
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Tables 370 
 371 

 372 
B Current policies 2P0C policies 1P5C policies 

Peak decadal warming (°C) (2.54, 3.12, 4.18, 5.17, 5.47) (1.09, 1.19, 1.52, 1.95, 2.02) (1.04, 1.11, 1.40, 1.74, 1.85) 

Peak annual CO2 (ppm) (649, 703, 863, 996, 1048) (394, 405, 446, 485, 493) (381, 391, 429, 458, 468) 

Min decadal AMOC (%) (33, 44, 68, 80, 87) (43, 76, 83, 90, 95) (51, 74, 84, 90, 94) 

Max annual surf acidification (pH) (-0.50, -0.47, -0.39, -0.31, -0.27) (-0.22, -0.19, -0.15, -0.12, -0.10) (-0.19, -0.17, -0.14, -0.10, -0.09) 

2100 decadal warming (°C) (2.54, 3.12, 4.18, 5.17, 5.47) (0.73, 1.10, 1.41, 1.81, 1.87) (0.63, 0.97, 1.24, 1.61, 1.67) 

2105 annual CO2 (ppm) (649, 703, 863, 996, 1048) (371, 382, 415, 445, 453) (357, 367, 394, 416, 427) 

2100 decadal AMOC (%) (33, 45, 69, 83, 91) (43, 79, 90, 102, 104) (52, 82, 92, 101, 107) 

2105 annual surf acidification (pH) (-0.50, -0.47, -0.39, -0.31, -0.27) (-0.19, -0.17, -0.13, -0.10, -0.09) (-0.16, -0.15, -0.11, -0.09, -0.08) 

2105 annual productivity (%) (-33.7, -24.3, -13.8, -4.6, -3.5) (-9.5, -5.0, -3.0, -1.1, -0.8) (-5.7, -4.1, -2.2, -0.7, -0.1) 

Bias corrected peak warming (°C)  (1.39, 1.49, 1.82, 2.25, 2.32) (1.34, 1.41, 1.70, 2.04, 2.15) 

Bias corrected 2100 warming (°C)  ((1.03, 1.40, 1.71, 2.11, 2.17) (0.93, 1.27, 1.54, 1.91, 1.97) 

 373 
Table 1: A) PLASIM-GENIE validation against multi-model ensembles of 374 
Representative Concentration Pathways. Data are expressed as 2090-1990 decadal 375 
anomalies except for CO2 which is 2100 concentration and PLASIM-GENIE productivity 376 
which is 2105-2005 anomaly. The 1990 PLASIM-GENIE baselines are 30-year averages 377 
(1976-2005) except for ocean pH and productivity (where annual averages are used for all 378 
analysis). Ensembles are summarised as mean ± 1 standard deviation (5th and 95th 379 
percentiles), except for CMIP5 CO2 and AMOC where the bracketed ranges represent 11-380 
member and 10-member ensemble spreads respectively. B) PLASIM-GENIE summary 381 
confidence intervals of the E3ME-FTT-GENIE-1 scenarios. Minima, 5th percentile, 382 
median, 95th percentile and maxima of the 69-member ensembles. Warming, AMOC and 383 
acidification are expressed relative to a 30-year average baseline centred on 1870. 384 
Productivity is 2105-2005 anomaly. The 0.3°C bias correction under strong mitigations is 385 
implied by the RCP2.6 CMIP5 comparison (Table 1A).  386 
 387 
 388 
 389 
 390 
 391 
 392 
 393 
  394 

A RCP2.6 RCP8.5 

 CMIP5 PLASIM-GENIE CMIP5 PLASIM-GENIE 

Warming (°C) 1.0 ± 0.4 (0.3, 1.7) 0.7 ± 0.2 (0.4, 1.0) 3.7 ± 0.7 (2.6, 4.8) 3.6 ± 0.6 (2.6, 4.4) 

CO2 (ppm)  402 ± 19 (373, 429) 985 ± 97 (794, 1142) 1010 ± 110 (829, 1185) 

AMOC (% change)  -6 ± 10 (-17, 4) (-60, -15) -32 ± 12 (-54, -16) 

Surface pH (pH) -0.07 ± 0.001 -0.04 ± 0.01 (-0.069, -0.028) -0.33 ± 0.003 -0.33 ± 0.04 (-0.41, -0.27) 

Productivity (%) -2.0 ± 4.1 -2.7 ± 1.2 (-4.8, -1.2) -8.6 ± 7.9 -15.1 ± 4.1 (-21.7, -7.43) 
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 395 
 396 
 397 
Figure 1: Summary time series of the 69-member Current-Policy, 2P0C and 1P5C 398 
E3ME-FTT-GENIE emissions-forced PLASIM-GENIE ensembles.  399 
 400 
  401 
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 402 
 403 
Figure 2: December-January-February surface air temperature scaling patterns and 404 
uncertainty. Scaling patterns are 1P5C and CP ensemble means (2086-2095 minus 1976-405 
2005, °C) normalised per 1°C warming. Ensemble variability is calculated by normalising 406 
each ensemble member per 1°C warming and calculating the RMS difference with respect to 407 
the mean pattern (A). Variability is derived for both (C)10-year (2086-2095) and (D) 30-year 408 
(2076-2105) patterns to help isolate the contributions of decadal variability and parametric 409 
uncertainty. 410 
 411 
 412 
 413 
 414 
  415 
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 416 
 417 
Figure 3: June-July-August precipitation scaling patterns and uncertainty. Scaling 418 
patterns are 1P5C and CP ensemble means (2086-2095 minus 1976-2005, mm/day) 419 
normalised per 1°C warming. Ensemble variability is calculated by normalising each 420 
ensemble member per 1°C warming and calculating the RMS difference with respect to the 421 
mean pattern (A). Variability is derived for both (C)10-year (2086-2095) and (D) 30-year 422 
(2076-2105) patterns to help isolate the contributions of decadal variability and parametric 423 
uncertainty. 424 
  425 
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 426 

 427 
 428 
 429 
Figure 4: Ocean stressor scaling patterns and uncertainty. Top: surface pH, pH units per 430 
°C warming. Bottom: marine productivity, fractional change per °C warming. Scaling 431 
patterns (left) are 1P5C ensemble means (2105-2005), and 1P5C - CP scaling pattern 432 
difference (centre). Ensemble variability is calculated by normalising each ensemble member 433 
per 1°C warming and calculating the RMS difference with respect to the appropriate mean 434 
pattern. All data are annually averaged. 435 
 436 
 437 
 438 
 439 
 440 
 441 
 442 
 443 
 444 
 445 
 446 
 447 
 448 
 449 
 450 
 451 
 452 

453 
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Methods 454 
 455 

PLASIM-GENIE is a coupling of the intermediate-complexity spectral atmosphere model 456 

PLASIM (Fraedrich2012) to the Grid-Enabled Integrated Earth system model GENIE 457 

(Lenton2006). The coupling and climatology are described in detail in (Holden2016). 458 

PLASIM-GENIE is not flux corrected; the moisture flux correction required in the original 459 

tuning (Holden2016) was removed during the history-matching calibration (see below). We 460 

here apply PLASIM-GENIE with carbon-coupled biosphere modules BIOGEM and ENTS, 461 

described in (Lenton2006) for the energy-moisture balance atmosphere configuration. We 462 

apply BIOGEM with the default Michaelis-Menton phosphate-limited productivity scheme 463 

(Ridgwell2007). The carbon-cycle model has been extensively validated through model inter-464 

comparisons (Zickfeld2013, Joos2013). 465 

 466 

Important neglects of the PLASIM-GENIE carbon cycle are anthropogenic land-use change, 467 

peat and permafrost. These omissions tend to overstate the terrestrial carbon sink (by 468 

overstating natural forest) and they neglect potentially significant terrestrial sources (from 469 

peat and permafrost). We note that the history-matching calibration is designed to subsume 470 

such structural deficiencies (here, for instance, into CO2 fertilization and soil respiration). 471 

 472 

 PLASIM-GENIE is freely available. Please contact the authors for information. 473 

 474 

Atmosphere-ocean gearing. PLASIM-GENIE simulates approximately 2.5 years per CPU 475 

hour, so that 2,000-year spin-ups take one month of computing. In order to enable the 476 

exploration of parameter space, the implementation of an atmosphere-ocean gearing approach 477 

was required. The spin-up simulation time is determined by the ocean timescale, but the 478 

simulation speed of the model is determined by the atmosphere, which uses approximately 479 
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99% of the CPU demands of the physical model. In gearing mode, applied only to 480 

equilibrium spin-ups, the model alternates between a conventionally coupled mode (for 1 481 

year) and a fixed-atmosphere mode (for 9 years), reducing spin-up CPU time by an order of 482 

magnitude. During the conventional coupling mode, atmosphere-ocean coupling variables are 483 

accumulated and saved as daily averages. These variables comprise energy fluxes, moisture 484 

fluxes and wind stresses. During the fixed atmosphere phase, the atmospheric variables are 485 

kept constant and these daily averaged fluxes are applied to the ocean. Latent heat, sensible 486 

heat and longwave radiation ocean heat loss are recalculated at every atmosphere time step 487 

during the fixed atmosphere phase, when energy conservation is therefore not imposed. This 488 

is necessary for numerical convergence because these fluxes depend upon ocean temperature, 489 

which evolves during the fixed atmosphere phase. Evaporation is not recalculated during the 490 

fixed atmosphere phase in order to ensure moisture conservation. AO-geared spin-up states 491 

are consistent with the standard model, as demonstrated by smooth spun-on historical 492 

transient simulations in all ensemble members, though we note that rapid (sub-decadal) and 493 

modest (a few Sv) AMOC adjustments are seen in some simulations, arising from different 494 

inter-annual variability. 495 

 496 

Experimental design. Each model configuration was spun-up with a 2,000-year AO-geared 497 

quasi-equilibrium preindustrial simulation, with atmospheric CO2 relaxed to 278ppm. 498 

Simulations were continued as emissions-forced historical transient simulations (AO-gearing 499 

off, CO2 freely evolving). Historical forcing (1805 to 2005) comprised anthropogenic CO2 500 

emissions and non-CO2 radiative forcing. Fossil fuel, cement and gas flaring emissions were 501 

prescribed from CMIP5 (https://cmip.llnl.gov/cmip5/forcing.html) and were combined with 502 

ISAM C-N land-use change emissions (Jani2013) from the HYDE land-use dataset 503 

(Ramankutty2007). Non-CO2 forcing data was taken from Meinshausen et al (2011) 504 
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implemented in PLASIM-GENIE as effective CO2. Future (2005-2105) emissions were taken 505 

from the E3ME-FTT-GENIE scenarios, scaled by 9.82/8.62, to match estimated 2015 total 506 

emissions (Jackson2015), accounting for sources not represented in E3ME. Future land use 507 

change emissions and non-CO2 radiative forcing were taken from RCP2.6 (1P5C and 2P0C 508 

scenarios) and RCP8.5 (CP scenario). 509 

 510 

History-matched ensemble 511 

Carefully designed ensembles of simulations are central to our approach to quantifying Earth 512 

system uncertainties. We applied a ‘history matching’ calibration strategy (Craig1997, 513 

Williamson2013), sampling throughout high-dimensional model input space to identify 514 

model configurations that are capable of producing reasonable simulations in the PLASIM-515 

GENIE Earth system model, and then running the plausible configurations forward to 516 

characterise uncertainty about the future. Each configuration is required only to provide a 517 

‘plausible’ simulation (Edwards2011), thereby avoiding the introduction of bias through 518 

over-fitting (Williamson2017). A configuration is ruled out only if it is inconsistent with an 519 

observation, allowing for the imperfections of both model and data. Thus, the history 520 

matching philosophy generates simulations that encompass the full range of realistic 521 

dynamical feedbacks (Holden2010).   522 

 523 

In PLASIM-GENIE, identifying large numbers of history-matched configurations would be 524 

prohibitively demanding computationally. We render the problem tractable by using 525 

emulators (Sacks1989) to search throughout model input space. The emulators are trained on 526 

a sequence of preliminary ensembles amounting to 1.9 million years of climate simulation in 527 

total (940 completed simulations). The process produced 69 model variants, each validated 528 

by simulation, having considered hundreds of millions of randomly sampled parameter 529 
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configurations in the emulator. The final models all adequately simulate ten key global-scale 530 

observational targets including surface air temperature, vegetation and soil carbon, Atlantic, 531 

Pacific and Southern Ocean circulation measures, dissolved O2 and calcium carbonate flux, 532 

and transient temperature and CO2 changes (Table S4). 533 

 534 

For the purposes of the history matching, the simulator (here applied to the preindustrial spin-535 

up state) can be considered as a function that maps from 32 input parameters (Table S3) to 536 

the eight different outputs (Table S4). Our aim is to infer the input values that lead to outputs 537 

within the plausible climate ranges as defined in Table S4. It is not possible to naively 538 

explore the simulator output over the full input parameter ranges by repeatedly evaluating the 539 

simulator, as for example, just doing one evaluation in each corner of the input space would 540 

require 232 ≈ 109 model evaluations. Instead, we build emulators (O’Hagan2006, Sacks1989) 541 

that mimic the simulator response surface, and allow us to predict its value for any input. An 542 

initial large exploratory analysis was performed, motivated by the iterated waves approach 543 

(Williamson2017). Starting from a 100-member maximin latin hypercube ensemble, 544 

sequential series of 100-member ensembles were performed, probing regions of likely 545 

plausible space by using stepwise-selected linear regression models that were continually 546 

refitted as simulations completed. This produced 940 completed simulations that we used to 547 

train the final history match. Part of the motivation for the exploratory ensemble was to 548 

develop a general understanding of the range of model responses. Most notably it enabled us 549 

to identify regions of parameter space that satisfied the plausibility constraints without flux 550 

correction so that the associated parameter (APM, Table S3) could be fixed at zero for the 551 

final history match. 552 

 553 
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For the final history match, a variety of emulation approaches were considered, including 554 

stepwise regression, the LASSO (Tibshirani1996) which is a regularized version of linear 555 

regression, and Gaussian process regression with a combination of different mean and 556 

covariance functions (Rasmussen2004). To determine the optimal approach for each of the 557 

eight outputs, we split the data into test and training datasets and evaluated the emulators' 558 

predictive performance (RMSE, statistical coverage), repeating the process 10 times to get an 559 

average performance. The optimised emulators were used to find input values that are 560 

expected to give plausible simulations (i.e. within tabulated ranges for all emulator-filtered 561 

metrics, Table S4), to generate a sample of design points which encapsulate the uncertainty 562 

about future climate. We used an approximate Bayesian computation type approach 563 

(Marin2012), using rejection sampling to sample parameters from the prior distribution and 564 

evaluating the probability of these values leading to plausible outputs, to generate a large 565 

number of plausible future climates, considering hundreds of millions of emulator 566 

evaluations. A final 200-member candidate ensemble for the future transient simulations was 567 

then chosen using a ‘greedy’ design, adding points to maximize a criterion that combined the 568 

probability the simulation would be plausible (according to the emulator), and the distance of 569 

candidate points to the other points already in the design, so as to ensure design points fully 570 

span the 32-dimensional plausible input space.  571 

 572 

The 200 history-matched parameter sets were applied to PLASIM-GENIE, and 183 were 573 

accepted as giving plausible preindustrial climates in the simulator. These were spun on 574 

through the industrial period (1805 to 2005) with emissions and non-CO2 radiative forcing. 575 

Sixty-nine simulations were selected as also having plausible climate sensitivity (2005 -1870 576 

warming between 0.6 and 1.0K) and carbon cycle (2005 CO2 in the range 355 to 403ppm). 577 

These 69 model configurations were applied in the future transient ensembles. 578 



 26

 579 

It is instructive to compare history matching with the Bayesian approach to probabilistic 580 

calibration. In an ideal world, where we knew the appropriate likelihood (weighting) 581 

function, had a perfect simulator, sensible priors, and unlimited computational resource, then 582 

Bayesian inference is often the most appropriate approach for parameter estimation. History 583 

matching has been developed(Craig1997) as a philosophical (but closely related) alternative 584 

to Bayes that overcomes some of the difficulties that arise when doing inference with 585 

complex models, e.g., when we are not fully confident in our choice of likelihood, prior 586 

distributions, or lack a detailed (and informative) description of the model discrepancy. In 587 

history matching we do not weight simulations, instead we reject parameter values that lead 588 

to clearly implausible simulations, where implausibility is judged by relatively simple metrics 589 

relating the simulator output to the data, whilst taking into account the sources of error. 590 

Despite these simplifying assumptions, history-matched posteriors are not necessarily less 591 

reliable than Bayesian posteriors, because the subjective choices (particularly in the 592 

likelihood) are greatly simplified allowing us to think more carefully about each component, 593 

and as a consequence, the approach is also more transparent and easier to understand. In 594 

addition to using a history matching, we also use emulation to make the exploration 595 

of the input space more efficient. We do not have the computational resource (given the 596 

expense of the simulator) to adequately explore input space by direct sampling of the 597 

simulator, and so we use emulation to rule out regions where the model fails badly (i.e., its 598 

predictions are implausible). The emulator allows us to interpolate between parameter sets, 599 

enabling us extract more value from our simulated ensemble. 600 

 601 

These problems (computational cost, unknown likelihood) make fully Bayesian approaches 602 

difficult for parameter estimation for climate models. However, it is possible to use an 603 
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approach that approximates a Bayesian calibration. For example, Steinacher2013 took an 604 

approach that approximates a Bayesian probabilistic approach by generating an ensemble of 605 

5,000 simulations with a 19-parameter latin hypercube design. The 5,000 parameter sets were 606 

then probability-weighted on the basis of these simulations using 26 observational 607 

constraints, and this weighting was subsequently applied to future emissions scenarios to get 608 

a distribution over future climate. They constructed a pseudo-likelihood relating simulator 609 

output to data, which averages across and weights the importance of each different data 610 

source, many of which were time series or spatial fields, using a nested structure.  Whilst this 611 

has the potential to extract more information from the data than history matching can, 612 

creating an ad hoc likelihood in this way is potentially prone to error and makes it hard to 613 

keep track of the multitude of assumptions needed to form the pseudo-likelihood function. 614 

Likelihood based inference is notoriously sensitive to mis-specification, and so small changes 615 

in this complex likelihood could potentially lead to large changes in the conclusions. 616 

Moreover, it is difficult to understand the consequences of any given pseudo-likelihood, 617 

making it hard to judge scientifically any single choice. It should also be noted that even in 618 

our conservative history matching approach (which only fit the models to 8 data summaries 619 

rather than to multiple spatial fields), randomly selected parameter sets rarely satisfied the 620 

history matching constraints. In our calibration, the constraints ruled out more than 99.99% 621 

of the input space as implausible. This suggests that the Steinacher2013 approach of 622 

randomly sampling 5,000 points across the input space would have been insufficient to find 623 

the best regions of parameter space, though we note that weighting would serve to favour the 624 

best amongst these. 625 

 626 
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In total, 1140 spin-up simulations (2000 years each) were performed with the geared model 627 

and 345 transient simulations (300 years each) with the standard model, representing 628 

approximately 15 CPU years of computing. 629 

 630 

Decarbonisation policies to meet 1.5°C and 2°C 631 

The E3ME-FTT-GENIE modelling framework and the particular policy scenarios used here 632 

have been described in detail in elsewhere(Mercure2018a,Mercure2018b,Pollitt2018), below 633 

we give a summary of the policy choices taken as inputs to the modelling framework in 634 

deriving the emissions scenarios used here as input to PLASIM-GENIE. Three scenarios are 635 

used: a current-policy baseline, a scenario in which there is an 75% chance of limiting peak 636 

warming to 2°C and a scenario in which there is a 50% chance of limiting peak warming to 637 

1.5°C. 638 

 639 

The model baseline is consistent with the IEA’s ‘Current Policies’ scenario (IEA, 2015). The 640 

baseline can broadly be considered as a continuation of current trends; existing policy 641 

remains in place and has some lagged effects that continue into the projection period, but 642 

there is no additional policy stimulus. Most policy instruments in the baseline are implicitly 643 

accounted for through the data itself (e.g. diffusion trends). 644 

 645 

The 1.5°C and 2°C scenarios are designed as sets of policies that are added to the baseline 646 

case. In almost all countries, these policies encapsulate the measures put forward in the 647 

INDCs that were submitted to the Paris COP and complement them with other measures in 648 

order to scale up the level of ambition of decarbonisation. The scenarios are designed from a 649 

‘bottom-up’ perspective. Essentially, policies are added across the full range of economic 650 
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sectors sequentially until the targets are met. The 1.5°C scenario includes all the measures in 651 

the 2°C scenario, plus additional ones, as described below. 652 

  653 

Many of the policies are specific to particular sectors, but two economy-wide policies are 654 

implemented: 655 

• The first measure is an economy-wide programme of energy efficiency. Our 2°C 656 

scenario assumes that the programmes are in line with the IEA’s analysis (IEA, 657 

2014c) for a 450ppm scenario (excluding houses, which are treated separately, see 658 

below). They are further scaled up 25% for the 1.5°C scenario. 659 

• The second measure is a carbon tax that is applied equally across the world. The 660 

carbon tax rates rise to $310.2/tCO2 and $96.4/tCO2 by 2030 in the 1.5°C and 2°C 661 

scenarios respectively, and $886.3/tCO2 and $274.8/tCO2 by 2050. The carbon taxes 662 

are applied to all industrial sectors, but not to road transport nor households, where 663 

separate rates are levied (since these sectors are likely to, or already have, their own 664 

specific carbon or energy tax rates). 665 

 666 

Building on Mercure et al (2016), the following power sector policies were added to both 667 

scenarios: 668 

• Feed-in-Tariffs - 100% of the difference between the levelised cost for wind and solar 669 

and a fixed value of $80/MWh is paid by the grid to promote renewable uptake. 670 

• Direct renewables subsidies – in most cases 50-60%, to provide an incentive to 671 

increase uptake, across a range of technologies (this is in addition to feed-in-tariffs). 672 

The subsidies gradually decrease over time and are phased out by 2050. 673 

• In several countries there are immediate mandates to prevent the construction of new 674 

coal capacity.  675 
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 676 

In addition, it is assumed that electricity storage technologies advance up to 2050 such that 677 

the requirement for back-up flexible generation capacity (e.g. oil and gas peaking plants) is 678 

limited. 679 

 680 

Combinations of policies are used to incentivise the adoption of vehicles with lower 681 

emissions (Mercure et al 2018b) in both scenarios. The list includes:  682 

• fuel efficiency regulations of new liquid fuel vehicles 683 

• a phase out of older models with lower efficiency 684 

• kick-start programmes for electric vehicles where they are not available (by public 685 

authorities or private institutions, e.g. municipality vehicles and taxis) 686 

• a tax of $150/gCO2/km (2015 prices), to incentivise vehicle choice 687 

• a fuel tax (increasing from $0.10 in 2018 to $1.00 per litre of fuel in 2050, 2015 688 

prices) to curb the total amount of driving 689 

• increasing/introducing biofuel mandates between current values to between 10% and 690 

30% (40% in Brazil) in 2050, different for every country, extrapolating IEA 691 

projections (IEA 2014b) for the 2°C scenario, and to 97% in the 1.5°C scenario 692 

 693 

Aviation is assumed to switch to biofuels gradually over the period 2020-2050 (faster in the 694 

1.5°C scenario), but total bioenergy consumption remains within 150 EJ/yr. 695 

 696 

The following policies were applied to homes in both scenarios: 697 

• taxes on the residential use of fossil fuels, applied in Annex I and OPEC countries: 698 

starting at an equivalent of $110/tCO2 (2015 values) and linearly increasing to 699 

$240/tCO2 in 2030, constant at 2030 levels afterwards 700 



 31

• direct capital subsidies on renewable heating systems, applied globally: -40% on the 701 

purchase and installation of heat pumps, solar thermal systems and modern biomass 702 

boilers, phased out between 2030 and 2050 703 

• kick-start programmes for renewable heating systems where they are not available, 704 

for a limited time period of five years (e.g. installations in publicly owned housing 705 

stock) 706 

 707 

In some industrial sectors in East and South East Asia, a further mandate was added to 708 

electrify sectors that are currently dependent on coal (only in the 1.5°C scenario). Emissions 709 

from industrial processes are modelled as fixed in relation to real production levels from the 710 

relevant sector. In the baseline scenario, no efficiency improvements are assumed. In the 2°C 711 

and 1.5°C scenarios it is assumed that the production efficiency of process emissions 712 

improves by 3% a year over the projection period. Land-use change emissions are calculated 713 

in GENIE, with LUC assumed to follow RCP2.6 in the mitigation scenarios and RCP8.5 in 714 

the current policy baseline. 715 

 716 
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Supplementary information 789 
 790 
 CO2 AMOC Ocean 

Dissolved 
inorganic 
carbon 

Vegetation 
and soil 
carbon 

Land 
surface 
albedo 

Ocean 
heat 
below 
39m 

1P5C scenario 
Warming 47% 0% 21% 24% 4% 59% 
CO2  1% 61% 67% 0% 34% 
CP scenario 
Warming 32% 17% 12% 15% 7% 69% 
CO2  8% 61% 80% 5% 36% 
 791 
Table S1: R2 Coefficient of determination between selected ensemble output metrics, all 792 
expressed as peak future change relative to a 2006-2015 baseline. 793 
 794 
 795 
 796 
 1P5C scenario CP scenario 
 Maximum 

expected change 
Maximum 
variability 

Maximum 
expected change 

Maximum  
variability 

DJF SAT (°C) 3.8 3.7 3.7 1.2 

JJA SAT (°C) 2.8 2.9 3.0 1.1 

DJF pptn (mm/day) 0.8 2.1 1.3 0.8 

JJA pptn  (mm/day) 2.5 2.4 3.5 1.3 

Surface pH (pH units) -0.12 0.06 -0.15 0.04 

Marine productivity (%) -14 41 -14 12 

 797 
Table S2: Maximum change per 1°C warming (c.f. Figs 2A, 3A, 4A, 4D) and maximum 798 
variability per 1°C warming (c.f. Figs 2C, 3C, 4C, 4F) for 1P5K and CP scenarios.  799 
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 800 
 801 
 802 
Module Parameter Description Units Min Max Prior 
PLASIM TDISSD Horizontal diffusivity of divergence days 0.01 10 LOG 
 TDISSZ Horizontal diffusivity of vorticity days 0.01 10 LOG 
 TDISST Horizontal diffusivity of temperature days 0.01 10 LOG 
 TDISSQ Horizontal diffusivity of moisture days 0.01 10 LOG 
 VDIFF Vertical diffusivity m 10 1000 LOG 
 TWSR1 Short wave clouds (visible)  0.01 0.5 LOG 
 TWSR2 Short wave clouds (infrared)  0.01 0.5 LOG 
 ACLLWR Long wave clouds m-2g-1 0.01 5 LOG 
 TH2OC Long wave water vapour  0.01 0.1 LOG 
 RCRITMIN Minimum relative critical humidity  0.7 1.0 LIN 
 GAMMA Evaporation of precipitation   0.001 0.05 LOG 
 ALBSM Equator-pole ocean albedo difference  0.2 0.6 LIN 
 ALBIS Ice sheet albedo  0.8 0.9 LIN1 
 APM Atlantic-Pacific moisture flux adjustment Sv 0.0 0.32 LIN2 
GOLDSTEIN OHD Isopycnal diffusivity m2s-1 500 5000 LOG 
 OVD Reference diapycnal diffusivity m2s-1 2e-5 2e-4 LOG 
 ODC Inverse ocean drag days 1 3 LIN 
 SCF Wind stress scaling  2 4 LIN 
 OP1 Power law for diapycnal diffusivity profile  0.5 1.5 LIN 
BIOGEM PMX Maximum PO4 uptake mol kg-1 yr-1 5e-7 5e-5 LOG 
 PHS PO4 half-saturation concentration mol kg-1 5e-8 5e-6 LOG 
 PRP Initial proportion POC export as recalcitrant fraction  0.01 0.1 LIN 
 PRD e-folding remineralisation depth of non-recalcitrant POC m 100 1000 LIN 
 PRC Initial proportion CaCO3 export as recalcitrant fraction  0.1 1.0 LIN 
 CRD e-folding remineralisation depth of non-recalcitrant CaCO3 m 300 3000 LIN 
 RRS Rain ratio scalar  0.01 0.1 LIN 
 TCP Thermodynamic calcification rate power  0.2 2.0 LIN 
 ASG Air-sea gas exchange parameter  0.3 0.5 LIN 
ENTS VFC Fractional vegetation dependence on carbon density  m2 kgC−1  0.1 1.0 LIN 
 VBP Base rate of photosynthesis  kgC m−2 yr−1 3.0 7.0 LIN 
 LLR Leaf litter rate yr-1 0.075 0.26 LIN 
 SRT Soil respiration temperature dependence K 197 241 LIN 
 VPC CO2 fertilization Michaelis-Menton half-saturation ppm 29 725 LOG3 

 803 
Table S3: Prior distributions for PLASIM-GENIE varied parameters (uniform between 804 
ranges in log/linear space as stated). Notes. 1) ALBIS ice sheet albedo was fixed at 0.8 in the 805 
final ensemble. 2) APM was fixed at zero in the final ensemble (no flux correction). 3) VPC 806 
was not constrained by the emulator filtering as this parameter has no effect in the 807 
preindustrial spin up state. The final calibration step, selecting 69 simulations that satisfy 808 
present-day plausibility after the historical transient was primarily an exercise to calibrate the 809 
VPC parameter. Prior distributions are discussed and derived from Holden et al (2010, 2013a, 810 
2013b, 2014 and 2016).  811 
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 812 
 813 
Table S4: History-matching (Approximate Bayesian Computation) acceptance ranges. 814 
Acceptable simulation ranges are broadened relative to observational error, thereby 815 
acknowledging model error and avoiding over-tuning. Note: tests to minimise PMOC and 816 
maximise ACC were applied to the emulator filtering in order to favour strong ACC and 817 
minimal north Pacific intermediate water formation. 818 
  819 

  Observations Acceptance ranges 

Emulated history match filters 
Global average surface air temperature (°C) ~14 

Jones et al (1990) 
11 to 17 

Global vegetation carbon (GtC) 450 to 650 
Bondeau et al (2007) 

300 to 800 

Global soil carbon (GtC) 850 to 2400 
Bondeau et al (2007)

750 to 2500 

Maximum Atlantic Overturning (Sv) ~19 
Kanzow et al (2010) 

10 to 30 

Maximum Pacific Overturning (Sv)  
 

<15 (see note) 

Atlantic Circumpolar Current (Sv) 140 ± 6 
Ganachaud and Wunsch (2000) 

>50 (see note) 

Global ocean averaged dissolved O2 (μmol kg-1) ~170 
Konkright et al (2002) 

130 to 210 

Global deep ocean CaCO3 flux (GT CaCO3-C yr-1) ~0.4 
(Feely et at (2004) 

0.2 to 0.8 

Transient simulation history match filters 
(1866-1875) to (1996-2005) warming (°C) ~0.78 

IPCC 2013 SPM 
0.6 to 1.0 

Atmospheric CO2 in 2005 (ppm) 378 
Keeling et al (2005) 

353 to 403 
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