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Several major economies rely heavily on fossil-fuel production and exports, yet current low-carbon 

technology diffusion, energy efficiency and climate policy may be substantially reducing global demand 

for fossil fuels.1-4 This trend is inconsistent with observed investment in new fossil-fuel ventures1,2, which 

could become stranded as a result. Here we use an integrated global economy-environment simulation 

model to study the macroeconomic impact of stranded fossil-fuel assets (SFFA). Our analysis suggests 

that part of the SFFA would occur as a result of an already ongoing technological trajectory, irrespective 

of whether new climate policies are adopted or not; the loss would be amplified if new climate policies 

to reach the 2°C target are adopted and/or if low-cost producers (some OPEC countries) maintain their 

level of production (‘sell-out’) despite declining demand; the magnitude of the loss from SFFA may 

amount to a discounted global wealth loss of $1-4tn; and there are clear distributional impacts, with 

winners (e.g. net importers such as China or the EU) and losers (e.g. Russia, the US or Canada, which 

could see their fossil-fuel industries nearly shut down), although the two effects would largely offset each 

other at the level of aggregate global GDP.   

The Paris Agreement aims to limit the increase in global average temperature to ‘well below 2°C above 

pre-industrial levels’5. This requires that a fraction of existing reserves of fossil fuels and production 

capacity remain unused, hence becoming stranded fossil-fuel assets (SFFA)6-10. Where investors 
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assume that these reserves will be commercialised, the stocks of listed fossil-fuel companies may be 

over-valued. This gives rise to a ‘carbon bubble’, which has been emphasised or downplayed by 

reference to the credibility of climate policy8,9,11-14. Here, we show that climate policy is not the only driver 

of stranding. Stranding results from an ongoing technological transition, which remains robust even if 

major fossil-fuel producers (e.g. US) refrain from adopting climate mitigation policies. Such refusal would 

only aggravate the macroeconomic impact on producers because of their increased exposure to 

stranding as global demand decreases, potentially amplified by a likely asset sell-out by lower-cost 

fossil-fuel producers and new climate policies. For importing countries, a scenario that leads to stranding 

has moderate positive effects on GDP and employment levels. Our conclusions support the existence 

of a carbon bubble which, if not deflated early, could lead to a discounted global wealth loss of between 

$1-4tn, a loss comparable to the 2007 financial crisis. Further economic damage from a potential bubble 

burst could be avoided by decarbonising early. 

The existence of a carbon bubble has been questioned on grounds of credibility or timing of climate 

policies11,12. That would explain investors’ relative confidence in fossil-fuel stocks11,12 and the projected 

increase in fossil-fuel prices until 20402. Yet, there is evidence that climate mitigation policies may 

intensify in the future. A report covering 99 countries concludes that over 75% of global emissions are 

subject to an economy-wide emissions-reduction or climate policy scheme15. Moreover, the ratification 

of the Paris Agreement and its reaffirmation at COP-22 have added momentum to climate action despite 

the position of the new US administration16. Furthermore, low fossil-fuel prices may reflect the intention 

of producer countries to ‘sell-out’ their assets, i.e. to maintain or increase their level of production despite 

declining demand for fossil-fuel assets.17 But that is not all. 

Irrespective of whether new climate policies are adopted or not, global demand growth for fossil fuels is 

already slowing down in the current technological transition1,2. The question then is whether under the 

current pace of low-carbon technology diffusion, fossil-fuel assets are bound to become stranded due 

to the trajectories in renewable energy deployment, transport fuel efficiency and transport electrification. 

Indeed, the technological transition currently underway has major implications for the value of fossil 



fuels, due to investment and policy decisions made in the past. Faced with SFFA of potentially massive 

proportions, the financial sector’s response to the low-carbon transition will largely determine whether 

the carbon bubble burst will prompt a 2008-like crisis11,12,14,18. 

We use a simulation-based integrated energy-economy-carbon-cycle-climate model, E3ME-FTT-

GENIE (see Methods and see Suppl. Table 1) to calculate the macroeconomic implications of future 

SFFA. Integrated assessment models (IAMs) generally rely on general equilibrium methods and 

systems optimisation25-27. Such models struggle to represent the effects of imperfect information and 

foresight for real-world agents and investors. By contrast, a dynamic simulation-based model relying on 

empirical data on socio-economic and technology diffusion trajectories can better serve this purpose 

(see Suppl. Note 1). In this method, investments in new technology and the interactional effects of 

changing social preferences generate 'momentum' for technology diffusion that can be quantitatively 

estimated for specific policy sets. Our model, E3ME-FTT-GENIE, is currently the only such simulation-

based IAM that couples the macroeconomy, energy and the environment covering the entire global 

energy and transport systems with detailed sectoral and geographical resolution19,28,29.  

We study and compare three main scenarios (see Table 1 and Methods for scenario details): fuel use 

from the International Energy Agency (IEA) ‘new policies scenario’, which we call ‘IEA expectations’ 

(IEA) to reflect the influence of the IEA’s projections on the formation of investor and policy-maker 

expectations as to future demand (see Fig 1a,b for electricity generation and transport); our own E3ME-

FTT ‘Technology Diffusion Trajectory’ (TDT) projection with energy demand derived from our 

technology diffusion modelling in the power21, road transport23, buildings and other sectors under the 

ongoing technological trajectory (Fig 1c,d); and a projection, which we call ‘2°C’ scenario, under a 

chosen set of policies that achieve 75% probability of remaining below 2°C (Fig 1e,f, see Suppl. Fig. 1 

for climate modelling), while keeping the use of bioenergy below 95 EJ/y and thereby limiting excessive 

land-use change30. Only the TDT and 2°C scenarios rely on FTT technology diffusion modelling. 

Unlike the ‘IEA expectations’ scenario, our ‘Technology Diffusion Trajectory’ scenario captures 

technology diffusion phenomena by relying on historical data and projecting it into the future. 



Significantly, historical data implicitly includes the effects of past policies and investment decisions. On 

that basis, the ‘Technology Diffusion Trajectory’ scenario reflects higher energy efficiency and leads to 

lower demand. Liquid fossil-fuel use in transport peaks in both our ‘Technology Diffusion Trajectory’ and 

the ‘2°C’ scenarios before 2050 (Fig 1, Fig. 2a, for sectoral fuel use and emissions, see Suppl. Fig. 2). 

Solar energy partially displaces the use of coal and natural gas for power generation. Based on recent 

diffusion data (see Methods and Suppl. Table 1), our model suggests that a low-carbon transition is 

already underway in both sectors. Our sensitivity analysis (Suppl. Note 2 and Suppl. Table 3) confirms 

that these results are robust and driven by historical data rather than by exogenous modelling 

assumptions. 

Significantly, the lower demand for fossil fuels leads to substantial SFFA, whether 2°C policies are 

adopted or not (Fig. 2a). For individual countries, the effects vary depending on regional marginal costs 

of fossil-fuel production, with concentration of production in OPEC countries where costs are lower (Fig 

2b). Regions with higher marginal costs experience a steep decline in production (e.g. Russia), or lose 

almost their entire oil and gas industry (e.g. Canada, US).  

The magnitude of the loss depends on a variety of factors. Our analysis suggests that the behaviour of 

low-cost producers and/or the adoption of 2°C policies can lead to an amplification of the loss (see Table 

1 and Supp. Table 2). The magnitude of the loss may indeed be amplified if low-cost producers decide 

to increase their production relative to reserves ratio to outplay other asset owners and minimise their 

losses (‘selling out’, a detailed definition is given in the Methods and Suppl. Note 3)  (Fig 2c,d). Slowing 

or peaking demand leads to fossil-fuel prices peaking (without sell-out) or immediately declining (with 

sell-out). In the ‘2°C’ scenario, fossil-fuel markets substantially shrink and the prices fall abruptly 

between 2020-2030, a potentially disastrous scenario with substantial wealth losses to asset owners 

(investors, companies) but not to consumer countries. This result highlights the important strategic 

implications of decarbonisation for the EU, China and India (consumers) as compared to the US, 

Canada or Russia (producers).  



At the global level, it is possible to quantify the potential loss in value of fossil-fuel assets (see Suppl. 

Notes 4). If we assume that investment in fossil fuels in the present day continues based on:  questioning 

commitments to policy; the return expectations derived from the ‘IEA expectations’ projection; and the 

assets’ rigid lifespan with expected returns until 2035. And then if, contrary to investors’ expectations, 

policies to achieve the 2°C target are adopted, and low-cost producers sell-out their assets, then 

approximately $12tn (in 2016 USD, which amounts to $4tn present value when discounted with a 10% 

corporate rate) of financial value could vanish off their balance sheets globally in the form of stranded 

assets (see Supp. Table 2). This is over 15% of global GDP in 2016 ($75tn). This quantification arises 

from pairing the ‘IEA expectations’ scenario with the ‘2°C’ scenario with ‘sell-out’. If instead of the ‘IEA 

expectations’, we pair our own baseline (the ‘Technology Diffusion Trajectory’ scenario) with the ‘2°C’ 

scenario under the sell-out assumption, the total value loss from SFFA is approximately $9tn (in 2016 

USD) ($3tn with 10% discount rate) (see Supp. Table 2). Our quantification is broadly consistent with 

recent financial exposure estimates calculated at a regional and country level for the EU and the US14 

(detailed explanation in Suppl. Note 4). Note that a 10% discount rate represents an investment horizon 

of about 10-15 years, and that fossil-fuel ventures have lifetimes ranging between 2 (shale oil) and 50 

(pipelines) years (oil wells: 15-30 years; oil tankers: 20-30 years; coal mines: > 50 years). For reference, 

the subprime mortgage market value loss that took place following the 2007-8 financial crisis was around 

$0.25tn, leading to global stock market capitalisation decline of about $25tn18. 

Regarding the impact of SFFA on GDP and employment, Figure 2e,f shows the change in GDP and 

employment between our ‘Technology Diffusion Trajectory’ without sell-out and ‘2°C’ scenarios, with 

sell-out, for several major economies/groups. The low-carbon transition generates a modest GDP and 

employment increase in regions with limited exposure to fossil-fuel production (e.g. Germany and most 

EU countries, and Japan). This is due to a reduction of the trade imbalance arising from fossil-fuel 

imports, and higher employment arising from new investment in low-carbon technologies. The 

improvement occurs despite the general increase of energy prices and hence costs for energy-intensive 

industries28,29. Meanwhile, fossil-fuel exporters experience a steep decline in their output and 



employment, due to the near shutdown of their fossil-fuel industry. These patterns emerge alongside a 

<1% overall impact of the transition on global GDP (<1% GDP change), indicating that impacts are 

primarily distributional, with clear winners (e.g. the EU and China) and losers (e.g. US and Canada, but 

also Russia and OPEC countries). 

In both the ‘Technology Diffusion Trajectory’ and ‘2°C’ scenarios, a substantial fraction of the global 

fossil-fuel industry eventually becomes stranded. In reality, these impacts should be felt in two 

independent ways (see Suppl. Note 4): through wealth losses and value of fossil-fuel companies and 

their shareholders, and through macroeconomic change (GDP and employment losses in the fossil-fuel 

industry, structural change) leaving winners and losers. Figure 3a compares cumulative GDP changes 

with the cumulative 2016 value of SFFA between the present and 2035. Due to different country-reliance 

on the fossil-fuel industry, impacts have different magnitudes and directions (see Suppl. Note 5).  

Reducing fossil-fuel demand generates an overall positive effect for the EU and China and a negative 

one for Canada and the US. Figure 3b,c shows, however, that since impacts on the Canadian and US 

economies primarily depend on decisions taken in the rest of the World, the US is worse off if it continues 

to promote fossil fuel production and consumption than if it moves away from them. This is due to the 

way global fossil-fuel prices are formed. If the rest of the world reduces fossil-fuel consumption and 

there is a sell-out, then lower fuel prices will make much US production non-viable, regardless of its own 

policy, meaning that its assets become stranded. If the US promotes a fossil fuel-intensive economy, 

then the situation becomes worse, as it ends up importing this fuel from low-cost producers in the Middle 

East, while it forgoes the benefits of investment in low-carbon technology (for other countries, see Suppl. 

Fig. 3, Suppl. Table 8 and Suppl. Note 5). 

Importantly, the macroeconomic impacts of SFFA on producer countries are primarily determined by 

climate mitigation decisions taken by the sum of consuming countries (e.g. China or the EU), and thus 

a single country, however large, cannot alter this trajectory on its own. Also, critically, this finding 

contradicts the conventional assumption that global climate action is accurately described by the 

prisoner’s dilemma game, which would allow a country to free-ride. But an exposed country can mitigate 



the impact of stranding by divesting from fossil fuels, as an insurance policy against what the rest of the 

world does. What remains to be known, however, is the degree to which SFFAs impose a risk to regional 

and global financial stability. 

  



 

Figure 1 | Projections of future energy use for power generation and transport. a-b) Global IEA 

fuel demand in the ‘IEA expectations’ scenario. c-f) Technology composition in electricity generation 

(c,e) and road transport (d,f) in our ‘Technology Diffusion Trajectory’ (c-d) and ‘2°C’ scenarios (e-f).  

IEA fuel demand is taken from [2]. Dashed lines refer to our ‘Technology Diffusion Trajectory’ scenario 

for comparison. 

  

50

100

150

200

250

300
IEA Expectations

Biomass

Hydro
Other Renewables

Oil
Nuclear

Coal

Gas

Technology Diffusion Trajectory 2°C policy scenario

20
00

20
10

20
20

20
30

20
40

150

0

25

50

75

100

125

Oil

Nat. Gas
Electricity
Biofuels

20
10

20
20

20
30

20
40

20
50

20
10

20
20

20
30

20
40

20
50

Petrol & 
Diesel

EV

Gas

Petrol & 
Diesel

EV

Gas

BECCS

 Coal CCS

IE
A 

Pr
im

ar
y 

en
er

gy
 fo

r p
ow

er
 (E

J)
IE

A 
Pr

im
ar

y 
en

er
gy

 fo
r t

ra
ns

po
rt 

(E
J)

Nuclear
Oil
Coal
Coal + CCS
IGCC 
IGCC + CCS
CCGT
CCGT + CCS

Solid Biomass
S Biomass CCS
BIGCC
BIGCC + CCS
Biogas
Biogas + CCS
Tidal
Large Hydro

Onshore wind
Offshore wind
Solar PV
CSP
Geothermal
Wave

FTT:Transport TechnologiesFTT:Power Technologies
Petrol Econ
Petrol Mid
Petrol Lux
Pet Adv Econ
Pet Adv Mid
Pet Adv Lux
Diesel Econ
Diesel Mid
Diesel Lux

Diesel Adv Econ
Diesel Adv Mid
Diesel Adv Lux

CNG Econ
CNG Econ
CNG Lux

Hybrid Econ
Hybrid Mid
Hybrid Lux

EV Econ
EV Mid
EV Lux
2-wheelers <125cc
2-wheelers >125cc
EV 2-wheelers Econ
EV 2-wheelers Lux

CCS = Carbon Capture & Storage
CC = Combined cycle
IGCC = Integrated gasification CC
CCGT = CC Gas Turbine

BIGCC = Biomass IGCC
PV = photovoltaic
CSP = concentrated solar power

Petrol = Gasoline
CNG = Compressed Natural Gas

EV = Electric Vehicle
Adv = Higher efficiency combustion

a)

b)

c)

d)

e)

f)
35

10

20

30

40

50

0

5

10

15

20

25

30

E3
M

E-
FT

T 
Po

w
er

 G
en

er
at

io
n 

(P
W

h/
y)

E3
M

E-
FT

T 
Tr

av
el

 (T
pk

m
/y

)

35

10

20

30

40

50

0

5

10

15

20

25

30

E3
M

E-
FT

T 
Po

w
er

 G
en

er
at

io
n 

(P
W

h/
y)

E3
M

E-
FT

T 
Tr

av
el

 (T
pk

m
/y

)



 

Figure 2 | Change in fossil-fuel asset value and production across countries, and in 

macroeconomic indicators. a) Global production of fossil fuels, for the ‘IEA expectations’ (IEA) 

scenario, our ‘Technology Diffusion Trajectory’ scenario (TDT), and our ‘2°C’ policies scenario. b) 

Change in total fossil-fuel production, between the ‘2°C policies’ and our ‘Technology Diffusion 

Trajectory’ scenarios. c-d) Marginal costs of fossil fuels in the same three scenarios, without sell-out (c) 

and with sell-out (d). e-f) Changes in GDP and employment between the ‘2°C policies’ sell-out scenario 

and our ‘Technology Diffusion Trajectory’ scenario without sell-out (negative means a loss). The width 

of traces represents maximum uncertainty generated by varying technology parameters (see Suppl. 

Table 3). OPEC excludes Saudi Arabia for higher detail. Macro impacts for Canada feature higher levels 

of economic uncertainty (not shown), as such high impacts could be mitigated in reality by various 

policies such as deficit spending by the government; however, we exclude studying deficit spending 

here for simplicity of interpretation (we assume balanced budgets).  



 

Figure 3 | SFFA losses and impacts across countries. a) Discounted cumulated fossil-fuel value loss 

to 2035 for oil, gas and coal, and GDP changes up to 2035, between the 2°C sell-out scenario and the 

‘IEA expectations’ scenario (see Suppl. Table 2 and Suppl. Fig. 4 for other scenarios and aggregation 

methods). Negative bars indicate losses. Error bars represent maximum uncertainty on total SFFA 

generated by varying technology parameters (see Suppl Table 3, Suppl. Table 4 provides a breakdown 

for individual fuels). b) Percent change in GDP between the 2°C sell-out scenario and our ‘Technology 

Diffusion Trajectory’ non-sell-out scenario (solid lines), and between the 2°C sell-out scenario with a US’ 

withdrawal from climate policy and the same (dashed lines). c) Same for labour force employment 

change.  

  



Table 1 | Scenarios and models 
Sect
or  Power 

generation 
Road 

Transport 
Household 

heating 
Other 

transport Industry Rest 

Model FTT FTT FTT E3ME E3ME E3ME 

Sc
en

ar
io

 

IEA expectations Energy sector not modelled, replaced by fuel use data taken from IEA  

Technology 
Diffusion 
Trajectory 

No  
sell-out 

CO2P, FiT, 
Reg 

Implicit in 
data 

Implicit in 
data 

Implicit in 
data 

Implicit in 
data 

Implicit in 
data 

Sell-out Same, with exogenous assumptions over fossil fuel production (prod./reserve ratio) 

2°C 
No  

sell-out 

CO2P, 
Sub, FiT, 

Reg,  
K-S 

FT, RT, 
BioM, 

Reg, K-S 
FT, Sub CO2P, Reg CO2P, Reg CO2P, Reg 

Sell-out Same, with exogenous assumptions over fossil fuel production (prod./reserve ratio) 
Abbreviations: CO2P = Carbon Price, FiT = Feed-in Tariff, Sub = Capital cost subsidies, RT = registration carbon tax, 

Reg = Regulations, K-S = Kick-start program 
Notes: Policy details available in the Methods. For carbon prices, sell-out assumptions and a sell-out sensitivity 

analysis, see Suppl. Figs. 5-6. For key model characteristics, see Methods, Suppl. Table 1 and Suppl. 
Note 1. For sensitivity analyses on key technology parameters, see Suppl. Note 2, Suppl. Tables 3-4 and 
Suppl. Fig. 8. Suppl. Table 5 and Suppl. Fig. 7-11 compare our scenarios to others in the literature. Suppl. 
Table 6 compares GENIE outputs with other models. For fossil fuel prices see Suppl Table 7. For sectoral 
impacts, see Suppl. Note 5 and Suppl. Table 8. The ‘IEA expectations’ scenario corresponds to the World 
Energy Outlook’s ‘New Policies Scenario’ [2]. Detailed policies can be obtained from the Suppl. Data. 
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Methods 
 
Detailed scenario definitions 

‘IEA Expectations’: In this scenario, we replace our energy model (FTT and E3ME estimations) by 

exogenous fuel use data from the IEA’s ‘new policies’ scenario31. We derive macroeconomic variables 

from the evolution of a fixed energy system (FTT is turned off). We use our fossil-fuel resource depletion 

model in order to estimate changes in the marginal cost of production of fossil fuels. This enables us to 

calculate fossil-fuel asset values. Given that this scenario does not make use of our technology 

projections with FTT, we use this scenario with the interpretation that it represents the expectations of 

investors, who do not fully realise the state of change of technology, in particular electric vehicles and 

renewables that, as we argue in the text, is taking place.  

‘Technology Diffusion Trajectory’: In this scenario, we use the three FTT diffusion models and our own 

E3ME energy sector model (see Suppl. Table 1) to estimate changes in fuel use due to the diffusion of 

new technologies. This is the baseline of the E3ME-FTT-GENIE model, which differs substantially from 

the IEA’s. We interpret this scenario as that which, we argue, is likely to be realised instead of the ‘IEA 

expectations’, according to the current technological trajectory observed in historical data that 

parameterise our models, if no climate policies are adopted. Policies are not specified explicitly, but 

instead, are implicitly taken into consideration through the data. 

‘2°C’: In this scenario, we choose a set of policies that achieves 75% chance of not exceeding 2°C of 

peak warming, according to the GENIE model, itself validated with respect to CMIP5 models (see Suppl. 

Fig 1). We estimate the diffusion of new low-carbon technologies and evolution of the energy sector 

under these policies using E3ME-FTT. Policies (e.g. subsidies, taxes, regulations) are specified 

explicitly. 

‘Sell-out’ versions of all scenarios: In both the ‘Technology Diffusion Trajectory’ and the ‘2°C’ scenarios, 

the issue of the sell-out of fossil fuel resources by low-cost producers is a real but not inevitable 

possibility. We therefore present both ‘sell-out’ and ‘non-sell-out’ versions for each scenario. The ‘sell-



out’ is defined by increasing production to reserve ratios of producer countries, which concentrates 

production to OPEC and other low-cost production areas. Meanwhile, in the ‘non-sell-out’ scenarios, 

these ratios are constant, as they have been until recently22. These assumptions are exogenous (see 

Suppl. Note 3). SFFAs are given for all combinations in Suppl. Table 2. 

Policy assumptions for achieving a 2°C target 

The set of policies that we use to reach the Paris targets constitutes one of many possible sets that 

could theoretically reach the targets. They achieve emissions reductions consistent with a 75% 

probability of reaching the 2°C target, and include the following: 

Multiple sectors: CO2 pricing is used to incentivise technological change across sectors in E3ME-FTT. 

One price/tax is defined exogenously, in nominal USD, at every year for every country, shown in Suppl. 

Figure 5A. This policy applies to power generation and all heavy industry sectors (oil & gas, metals, 

cement, paper, etc). It is not applied to households nor to road transport. 

Electricity generation: Combinations of policies are used to efficiently decarbonise electricity generation, 

following earlier work21. These involve CO2 pricing (above) to incentivise technological change away 

from fossil-fuel generators, subsidies to some renewables (biomass, geothermal, CCS) and nuclear to 

level the playing field, feed-in tariffs for wind and solar-based technologies, and regulations to phase 

out the use of coal-based generators (none newly built). In some countries (foremost USA, China, India), 

a kick-start program for CCS and bioenergy with CCS is implemented to accelerate its uptake. All new 

policies are introduced in or after 2020.  

Road transport: Combinations of policies are used to incentivise the adoption of vehicles with lower 

emissions, following earlier work23. This includes (1) fuel efficiency regulations for new liquid fuel 

vehicles; (2) a phase-out of older models with lower efficiency; (3) kick-start procurement programmes 

for electric vehicles where they are not available (by public authorities or private institutions, e.g. 

municipality vehicles and taxis); (4) a tax starting at 50$/(gCO2/km) (2012 values) to incentivise vehicle 

choice; (5) a fuel tax (increasing from 0.10$ per litre of fuel in 2018 to 1.00$, in 2050, 2012 prices) to 



curb the total amount of driving; (6) biofuel mandates that increase between current values to between 

10% and 30% (40% in Brazil) in 2050, different for every country, extrapolating IEA projections32. 

Industrial sectors: Fuel efficiency policy and regulations are used, requiring firms to invest in more 

recent, higher efficiency production capital and processes, beyond what is delivered by the carbon price. 

These measures are publicly funded, following the IEA’s 450ppm scenario assumptions32. Further 

regulations are used that ban newly built coal-based processes (e.g. boilers) in all sectors. 

Buildings: For households, we assume a tax on the residential use of fossil fuels (starting at 60$/tCO2 

in 2020, linearly increasing by 6$/tCO2 per year, 2016 prices), and subsidies on modern renewable 

heating technologies (starting at -25% in 2020, gradual phase-out after 2030). Commercial buildings 

increase energy efficiency rates, following the assumptions in the IEA’s 450ppm scenario32.  

The Simulation-based Integrated Assessment model 

E3ME-FTT-GENIE is an integrated assessment simulation model that comprises a model of the global 

economy and energy sector (E3ME), three subcomponents for modelling technological change with 

higher detail than E3ME (the FTT family), a global model of fossil-fuel supply, and an integrated model 

of the carbon cycle and climate system (GENIE). E3ME, FTT and the fossil supply model are hard-

linked in the same computer simulation, while GENIE is run separately, connected to the former group 

by soft-coupling (transferring data). A peer-reviewed description of the model with fully detailed 

equations is available with open access19; key model codes and datasets can be obtained upon request 

to the authors. 

The E3ME model 

E3ME is a highly disaggregated demand-led global macroeconometric model20,33-35 based on Post-

Keynesian foundations29,35,36, which implies a non-equilibrium simulation framework (see Suppl. Table 

1). It assumes that commercial banks lend according to bank reserves, which are created on-demand 

by the central bank36-38. This means that increased demand for technologies and intermediate products 

in the process of decarbonisation is financed (at least in part) by bank loans, and spare production 



capacity in the economy, as well as existing unemployment, lead to possible output boosts during major 

building periods and slumps during debt repayment periods29. In the jargon of the field, while 

Computable General Equilibrium (CGE) models normally ‘crowd-out’ finance (additional investment in 

a given asset class implies a compensating reduction in investment in other asset classes), E3ME 

assumes a full availability of finance through credit creation by banks (additional investment in one 

sector does not require cancelling investment elsewhere, see [29] for a discussion). Note that E3ME 

does not feature an explicit representation of the sectoral detail of the financial sector (it is not stock-

flow consistent) or model financial contagion; however, it features endogenous money through its 

investment equations, which is necessary and sufficient for this paper. 

E3ME has 43 sectors of production, 22 users of fuels, 12 fuels, and 59 regions. It uses a chosen set of 

28 econometric relationships (incl. employment, trade, prices, investment, household consumption, 

energy demand) regressed over a corresponding high dimension dataset covering the past 45 years, 

and extrapolates these econometric relationships self-consistently up to 2050. E3ME includes 

endogenous technological change in the form of technology progress indicators in each industrial sector 

and fuel user, providing the source of endogenous growth. It is not an equilibrium model; it is path 

dependent and demand-led in the Keynesian sense. E3ME has been used in numerous policy analyses 

and impact assessments, for the European Commission and elsewhere internationally (for example, 

see [39-41]). Recent discussions of the implications on results of the choice of an economic model for 

assessing the impacts of energy and climate policies are given in [29,35]. Previously, such debates have 

often concerned simpler types of IAMs (e.g. DICE)42-44, while newer debates are emerging that address 

issues of framing and philosophy of science45,46. Recent empirical studies appear to find no evidence 

for crowding-out in the finance of innovation, from the perspective of access to finance47,48. E3ME has 

been validated against historical data by reproducing history between 1972 and 2006, based on the 

normal regression parameters49. 

 

The FTT model 



Technology diffusion is not well described by time series econometrics, as it involves non-linear diffusion 

dynamics (S-shaped diffusion50). To improve our resolution of technological change in the fossil-fuel 

intensive sectors of electricity and transport, we use the Future Technology Transformations (FTT) 

family of sectoral evolutionary bottom-up models of technological change dynamically integrated to 

E3ME19,21,23,51. FTT projects existing low-carbon technology diffusion trajectories based on 

observationally determined preferences of heterogenous consumers and investors using a diffusion 

algorithm.  

FTT models market share exchanges between competing technologies in the power, road transport and 

household heating sectors based on technology ‘fitness’ to consumer/investor preferences. Agents have 

probabilistically distributed preferences calibrated on cross-sectional market datasets23,51,52. Choices are 

evaluated using chains of binary logits, weighted by their market share. The diffusion patterns of 

technologies are functions of their own market share and those of others, which reproduces standard 

observed S-shaped diffusion profiles (a so-called evolutionary replicator dynamics equation, or Lotka-

Volterra competition equation53-55). FTT does not use optimisation algorithms and it is a time-step path-

dependent simulation model (see Suppl. Table 1). 

It is crucial to note that FTT projects the evolution of technology in the future by extending the current 

technological trajectory with a diffusion algorithm calibrated on recent history. The key property of FTT, 

strong path-dependence (or strong auto-correlation in time), typically found in technology 

transitions,50,56,57 is given to the model by two features. (1) Technologies with larger market shares have 

a proportionally greater propensity to increase their market share, until they reach market domination. 

This is a key stylised feature of the diffusion of innovations50,57,58. (2) Continuity of the technological 

trajectory at the transition year from historical data to the projection (2013 ± 3-5 years) is obtained by 

empirically determining cost factors (denoted g, see below and Suppl. Fig. 8). Since the diffusion of 

innovations typically evolves continuously, there should not be a change of trajectory at the transition 

from history to projection. By ensuring that this is so, we obtain a baseline trajectory in which some new 

low-carbon technologies (e.g. Hybrid and Electric Vehicles, solar PV) already diffuse to non-negligible 



or substantial market shares, and some traditional vehicle types decline (e.g. small motorcycles in 

China). This baseline (the ‘Technology Diffusion Trajectory’ scenario) includes current policies implicitly 

in the data, i.e. they are not specified explicitly. The introduction of additional policy, in later years, results 

in further gradual changes to the technological trajectory, typically after 2025, differences that become 

further from the baseline along the simulation time span. Sensitivity analysis (Suppl. Table 3) shows 

that these trajectories are robust under substantial changes of all relevant technological parameters. 

The g factors are determined in the following way. Historical databases were carefully constructed by 

the authors by combining various data sources (transport and household heating, see Suppl. Table 1) 

or taken from IEA statistics (power generation). The g values are added to the respective levelised cost 

that is compared among options by hypothetical (heterogenous) agents in the model.23,52 One and only 

one set of g values ensures that the first 3-5 years of projected diffusion features the same trajectory 

(time-derivative of market shares) as the last 3-5 years of historical data from the starting date of the 

various simulations (2012 for transport, 2013 for power, 2015 for heat, see Suppl. Fig. 8 for an example). 

This is the sole purpose of g. The interpretation of g is a sum of all pecuniary or non-pecuniary cost 

factors not explicitly defined in the model, which includes agent preferences and existing incentives from 

current policy frameworks, as well as implicit valuations of non-pecuniary factors such as (for vehicles) 

engine power, comfort, status, etc. While the heterogeneity of agents is explicitly specified in FTT cost 

data and handled by the model (through empirical cost distributions, see for example [52]), g are constant 

scalar values (i.e. not distributed or time-dependent). As is the case for any parameter determined with 

historical data, the further we model in the future, the less reliable the g are but, just as with regression 

parameters, they do represent our best current knowledge as inferred from history. 

 

 

The fossil-fuel supply model 



The supply of oil, coal and gas, in primary form, is modelled using a dynamical resource depletion 

algorithm22. It is equivalent in function and theory to that recently used by McGlade & Ekins6. Cost 

distributions of non-renewable resources are used, based on an extensive survey of global fossil 

reserves and resources22. The algorithm is then used to evaluate how resources are depleted, and how 

their marginal cost changes as the demand changes (i.e. which is the most costly extraction venture, 

given extraction rates for all other extraction sites in production, supplying demand). As reserves are 

consumed and/or demand increases, fossil resources previously considered uneconomic, come online, 

requesting price increases. Meanwhile, when demand slumps, the most costly extraction ventures are 

first to shut down production (e.g. deep offshore, oil sands). The data are disaggregated geographically 

following the E3ME regional classification. 

The model assumes that the marginal cost sets the price, thus excluding effects on the price by events 

such as armed conflicts, processing bottlenecks (e.g. refineries coming online and offline) and time 

delays associated to new projects coming online. While fossil-fuel price changes may not always 

immediately follow changes in the marginal cost in reality, differences are cyclical (due to the ability of 

firms to cross-subsidise and produce at a loss for a limited time) and the long-term trend is robust. Taxes 

and duties on fuels, which differ in every region of the world, are not included in Fig. 2 of the main paper, 

nor in the calculation of SFFA. E3ME includes end-user fuel prices from the IEA database, including 

taxes. The source for energy price data is the IEA. In the scenarios we do not explicitly include the 

phase-out of fossil fuel subsidies but the carbon price, when applied to fuels, effectively turns the 

subsidies into taxes. It is noted that some of the largest fuel subsidies are in countries that are energy 

exporters and that reducing or removing the subsidies would help support public budgets (although it 

increases pressure on households). End-user prices are updated during the simulation to reflect 

changes in fossil-fuel marginal costs from the fossil fuel supply model; however end-user prices are not 

used in the calculation of SFFA. Behavioural assumptions over production decisions have important 

impacts in this sub-model, described further below.  

The GENIE model 



GENIE is a global climate-carbon cycle model, applied in the configuration of [24], comprising the 

GOLDSTEIN 3-D ocean coupled to a 2-D energy-moisture balance atmosphere, with models of sea ice, 

the ENTSML terrestrial carbon storage and land-use change (LUC), BIOGEM ocean biogeochemistry, 

weathering and SEDGEM sediment modules59-62. Resolution is 10°×5° on average with 16 depth levels 

in the ocean. To provide probabilistic projections, we perform ensembles of simulations using an 86-

member set that varies 28 model parameters and is constrained to give plausible post-industrial climate 

and CO2 concentrations63. Simulations are continued from 850 to 2005 AD historical transients64. Post-

2005 CO2 emissions are from E3ME, scaled by 9.82/8.62, to match estimated total emissions65, 

accounting for sources not represented in E3ME, and extrapolated to zero at 2079. For the 2C scenario, 

non-CO2 trace gas radiative forcing and LUC maps are taken from RCP2.666. For the purposes of 

validation, the GENIE ensemble has been forced with the RCP scenarios and these simulations are 

compared with the CMIP5 and AR5 EMIC ensembles in Suppl. Table 6. 

In the 2°C scenario, median peak warming relative to 2005 is 1.00°C, with 10% and 90% percentiles of 

0.74°C and 1.45°C. Corresponding values for peak CO2 concentration are 457, 437 and 479 ppm. Total 

warming from 1850–1900 to 2003–2012 is estimated as 0.78±0.06°C67, giving median peak warming 

relative to preindustrial levels of 1.78°C. Ensemble distributions of warming and CO2 are plotted in 

Suppl. Figure 1. Oscillations are associated with reorganizations of ocean circulation or snow-albedo 

feedbacks rendered visible by the lack of chaotic variability in the simplified atmosphere. 

It could be questioned why such a detailed climate model is needed in this analysis. One key aspect of 

our analysis is the quantification of additional SFFA that arise due to climate policy. For this 

quantification to be meaningful, it is also necessary to quantify the climate and carbon cycle uncertainties 

that are associated with these policies (here a 75% probability of avoiding 2°C warming). Rapid 

decarbonisation pathways lie outside of the RCP framework, so that our physically based climate-carbon 

cycle model is a more appropriate and robust tool than e.g. an emulator under extrapolation. 
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Suppl. Note 1 | Differences between E3ME-FTT-GENIE and other models 
Since it is a simulation model, and because the economic model is demand-led based on Post-
Keynesian theory, E3ME-FTT-GENIE produces results that contrast with those from other detailed 
sectoral IAMs applied to climate change issues1,2. This is due to the model’s non-equilibrium formalism, 
which represents finance and money creation3,4, while equilibrium models used in most of the climate 
change literature do not represent money or banking. Including money and banking is important, 
because the financial system generates booms and recessions, such as that which took place in 2008. 
In demand-led models, production is not determined directly by the quantity of production capital 
available, but by the demand for products, and thus capital and labour can become stranded in particular 
situations.  
Although E3ME is a sectoral model consistent with Post-Keynesian theory, it does not feature a detailed 
stock-flow model of finance or a model of financial contagion. Such features would be useful but are not 
crucial for the present study, which focuses on sectoral impacts, not financial stability. Stock-flow 
consistent Post-Keynesian models connected to climate modules exist5,6; however, none to date have 
the sectoral detail required in the present study. Meanwhile, attempts are being made to add the financial 
sector to equilibrium models, notably with the model GEM-E3-FIT (see [3]).   
In conventional equilibrium models, capital resources are equal to total saving year on year. If capital 
resources are used to fund low-carbon technology, this requires either higher savings or results in the 
same quantity of capital resources being taken away from other productive sectors of the economy; both 
of these automatically lead to the GDP losses associated with climate mitigation action. This leads 
economists to frame climate mitigation as a prisoner’s dilemma involving free-riders. Conversely, in the 
same models, if a sector loses output due to economic change (e.g. the fossil-fuel sector), the capital 
from this sector becomes free and immediately re-allocated to other sectors instead of being lost, 
compensating GDP even though the affected countries suffer the shutdown of a sector, the loss of 
machinery and rises in unemployment. We argue that in reality, the capital is not re-used for other 
purposes, but instead it is written off. Therefore, we argue, the assumption of capital re-allocation in 
these models artificially reduces the distributional impacts of climate mitigation, a problem that has 
mostly escaped attention, while it exclusively leads to GDP loss when climate policy is adopted. 
Equilibrium models also often assume full employment of the working age population, which has a 
similar effect. 
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In non-equilibrium models such as E3ME-FTT-GENIE, neither of these two equilibrium-enforced effects 
take place. This is due to the fact that investment decisions are not directly constrained by saving 
decisions, as the balance is accounted for by changes in aggregate debt (borrowing or debt repayment), 
consistent with modern accounts of the monetary and financial systems7-9. This implies that in E3ME-
FTT-GENIE, while there is no free-rider problem that arises with climate mitigation (climate action can 
lead to increases in investment, GDP and employment, without prior rises in saving), distributional 
impacts across sectors and regions are more pronounced (capital and labour can be stranded), in 
comparison to models that do not represent money, finance or details of the labour market. 
We acknowledge work that has been done in other models concerning joining up top-down 
macroeconomic modelling to bottom-up technology modelling. Notably, many models were improved in 
this respect in the 2006 project entitled ‘Endogenous Technological Change And The Economics Of 
Atmospheric Stabilisation’,10 and in 2010, ‘The Economics Of Low Stabilization’.2 More recently, other 
model comparisons have been carried out11-13. While highly valuable, these representations are, 
however, not sufficiently sophisticated to generate the type of insights presented in this paper. 
Differences between E3ME-FTT-GENIE and the IEA’s World Energy Model 
We compare E3ME-FTT results with those of the IEA ‘World Energy Outlook’ (WEO) featured in Figure 
1 of the main text, attempting to explain the differences. The IEA uses its flagship ‘World Energy Model’ 
(WEM) to create WEO forecasts14. Two key differences between that and E3ME-FTT are important to 
mention: (1) WEM does not model S-shaped non-linear technology diffusion, but uses multinomial logits 
instead, implying a standard representative agent with complete information, and (2) WEM uses 
exogenous GDP growth assumptions, on which energy demand projections rely. Since numerical 
assumptions in WEM are not given by the IEA for us to compare against ours, we base our explanation 
of outcome differences on model structure. We note that the energy component of E3ME-FTT is based 
on the same IEA energy balances data.  
Point (1) implies that WEM models technology diffusion solely based on cost considerations, and is thus 
analogous to a standard cost-optimisation model without behavioural information. For instance, in its 
sub-component Momo for road transport, the diffusion of light-duty vehicles by technology type is not 
non-linear (as in self-reinforcing S-shaped diffusion) but instead technology choice relies linearly on cost 
data. This implies that changes in the state of diffusion only happen when relative prices change: if 
relative technology costs do not change over time, an active evolving policy is necessary (e.g. an 
increasing carbon price). Thus without policy, no diffusion takes place by construction, while in FTT, on-
going diffusion processes exist even without policy, which are accelerated by climate policy.  
Point (2) implies that since its total production is fixed, sectoral production in WEM can only respond to 
price changes but not to demand changes, as demand for energy end-use services is modelled based 
on these exogenous GDP growth assumptions. However, price changes themselves will also be partly 
fixed by the resulting relatively rigid sectoral output. Therefore, energy demand changes originate almost 
exclusively from technological change, not from the economy. For instance, when the demand in WEM 
for fossil fuels declines, but intermediate demand for equipment and products for investment in the fossil-
fuel and heavy industry sectors does not change, this artificially mitigates intermediate demand 
reductions for energy substantially, which would be observed if sectoral output was modelled 
endogenously. This is a substantial source of SFFA in the present work, as sectoral output is fully 
endogenous, providing a more complete representation of the sources of change in energy demand.  
These two points result in energy demand projections in the WEO to be partly determined exogenously 
through fixed GDP assumptions, partly through insufficiently sophisticated representations of 
technology diffusion. Although it responds to climate policy through price signals, total energy demand 
growth in the WEO is independent from many important endogenous factors such that SFFA cannot be 
observed in WEM.  
 
Suppl. Note 2 | Sensitivity analysis for the technological trajectory 



Sensitivity analyses were carried out to test the stability and robustness of scenarios with substantial 
changes to key technology parameters. The exercise was carried out for power generation and road 
transport, which together contribute 41% of current fuel use. Results are shown in Suppl. Tables 3 and 
4. The parameters chosen are those that we expect will generate the largest changes to SFFA values. 
Changes are in percent for costs, and in added percentage points for rates. The parameters tested for 
power generation are (i) the capital costs of renewables (REN, ±20%), (ii) learning rates (±5 percentage 
points) and (iii) industry discount rates (±5 percentage points). For transport, the parameters are (iv) the 
prices of electric vehicles (EV, ±20%), (v) non-pecuniary costs (±20%), (vi) learning rates (±5 percentage 
points), (vii) consumer discount rates (±10 percentage points) and (viii) the fuel efficiency of new fossil 
fuel vehicles (±20%). We report the resulting changes, in % change over the same scenario without 
variation (i.e. (ΔS# − ΔS%)/ΔS#), on the shares of renewables, of photovoltaic (PV), of EVs, of advanced 
efficiency combustion vehicles including hybrids (ADV) and conventional fossil fuel vehicles (FF), as 
well as changes in the value of fossil fuel assets for each fuel type and global GDP, discounted by 10% 
and cumulated to 2050.  
The justification for these variations is as follows: (i) 20% is the maximum systematic error on mean 
capital costs we consider possible at one STD (the model, with its distributed cost formulation, already 
considers that around 30-40% of non-systematic cost variations exist, depending on the technology). 
(ii) power sector learning rates used range between 1% and 17%,15 with a mean of 6%; variations cannot 
be more than 5-6 percentage points. (iii) Real world power sector discount rates are usually between 
5% and 10%, depending on institutions16,17; systematic variations cannot exceed 5 percentage points. 
(iv) 20% is the maximum systematic errors on mean capital costs we consider possible at one STD (the 
model assumes distributed prices with STDs of 50%-80% of the mean for cars; EVs have lower price 
variations of 30% due to a lower number of models available). (v) Variations on non-pecuniary costs are 
reflections of systematic error on vehicle costs, and thus the same argument as (iv) applies. (vi) learning 
rates used are between 1% and 10% with mean of 5%; variations cannot exceed 5 percentage points. 
(vii) the consumer discount rate is 15%. In the literature, they span from 5% to 40% depending on the 
study design and assumptions18,19; thus at most 10 percentage points variations are possible. (viii) We 
use manufacturer fuel economy values, which are based on a standard driving cycle, adjusted to match 
total IEA fuel use for road transport. The driving cycle may not accurately represent driver behaviour 
leading to underestimation of around 30% in fuel use. We consider at most 20% systematic error 
possible at 1 STD.  
We do not carry out directly sensitivities on fossil-fuel prices for the reason that these are not exogenous 
but endogenous variables in the model (there are no fossil-fuel price assumptions in E3ME-FTT); 
instead, fossil-fuel prices uncertainties can be caused by other exogenous assumptions such as the 
assumed reserve to production ratios chosen by producer countries. The sell-out itself is a process that 
results from such choices. SI Fig. 6 shows the impact of changing these values by 50%; this leads to 
changes on fossil-fuel prices of the order of 1% (coal), 5% (oil) 50% (gas). Fossil-fuel price variations 
could be caused by other factors such as armed conflict and other unexpected supply bottlenecks; 
however, we make the explicit assumption that this does not happen for simplicity of interpretation. 
Policy sources of uncertainty on SFFA are covered by SI Table 2. Fossil fuel prices are reported in 
Suppl. Table 7. 
We do not allow varying the availability of technologies in the FTT models, for the following reason. FTT 
technologies are all, without exception, currently sold in markets (as evidenced by our historical data). 
Changing their availability would represent questioning reality if we remove them, while substantially 
increasing their future uptake beyond what can be achieved by modelling policy violates our diffusion 
modelling premise.  
We observe that changes in our sensitivity analysis are relatively small in all cases. While changes in 
the technological shares can be of up to 16% (‘2°C’ scenario) and 60% (‘Technology Diffusion 
Trajectory’), this generates changes to fossil fuel asset values of at most 11%. In terms of technology 
shares, we observe that the ‘Technology Diffusion Trajectory’ scenario is more prone to change, for 



changes in technology parameters, than the ‘2°C’ scenario, and this is explained by the fact that policy 
constrains more strongly outcomes in the ‘2°C’ scenario. 
The largest impacts on fossil fuel asset values observed take place with changes of industry discount 
rates in power generation, which prompts substitution between coal and gas (thus exchanging coal and 
gas SFFAs) and, since gas has a higher price per energy content, impacts on asset values do not cancel 
out. Non-pecuniary (perceived) costs also affect oil asset values, as well as the fuel efficiency of 
combustion vehicles.  
We combine the impacts using a root mean square. The interpretation for this is that if the uncertainty 
over technological parameters corresponded to the variations introduced here were independent and 
normally distributed, the resulting error propagation would be calculated in this way. If all such variations 
took place simultaneously, at most 15% uncertainty would be generated on fossil fuel asset values for 
each scenario. Since uncertainty could take place in both scenarios simultaneously, and that we 
calculate SFFAs using differences, at most 21% uncertainty would be generated. Although we do not 
know the real uncertainty over these parameters, experience with data tells us that these variations are 
reasonable. We conclude that for the policy scenarios considered, uncertainty on asset values is less 
than 21%, and therefore these scenarios are robust against variations of technology parameters. To 
estimate the maximum and minimum plausible variations in SFFA under combined variations of input 
parameters we performed two additional runs, which we used to generate the uncertainty bounds of 
Figures 2-3 of the main text. To achieve this, we used all parameter variations that generate increases 
in SFFA under the assumptions in Suppl. Table 3 in one model run, and all parameter variations that 
lead to lower SFFA in another, which we used as upper and lower uncertainty bounds.  
It must be noted that our model is a diffusion model. In other models, if the model design involves 
searching the configuration space for the lowest cost configurations, and points in modelled time are 
not strongly dependent on past values, small changes in capital costs, discount rates or learning rates 
can generate relatively large differences in optimal technology configuration. This can be interpreted as 
modelling agents with perfect information and infinite access to technology. This is not what we do, 
which explains the relatively modest sensitivities obtained.  
Here, the starting diffusion trajectory is constrained by the trajectory observed in recent historical data. 
The data constrain what near future configurations can be, which thus cannot radically change even for 
relatively large changes in parameters. Diffusion has, by definition, strong path-dependence and 
momentum in time and, by 2035, outcomes cannot be radically different from the present.  
Similarly, altering the set of available technologies does not make much difference in FTT, for the 
following reason. Altering the ‘menu’ involves introducing new technologies (as stated above, we do not 
consider removing FTT technologies), with small market shares. Hypothetical new technologies with 
small shares take longer than until 2035 to diffuse to any significant degree, even if they possessed 
extremely attractive features (e.g. low cost) or policy support, only due to diffusion dynamics (unless a 
substantial public procurement program was assumed). In other words, 2035 is most likely too early for 
any new technology not modelled in FTT to radically change the landscape. This is a well known feature 
of the diffusion process, which, due to path-dependence, is rigid and contingent on history. This is 
supported by a whole body of literature on technological transitions20-24. Thus, the range of technological 
developments that one can observe in a diffusion model is more restricted than in models with weaker 
path-dependence. 
 
Suppl. Note 3 | Assumptions of fossil asset owner behaviour 
The representation of fossil asset owner behaviour in the fossil resource depletion algorithm25 comes in 
the form of a rate of depletion expressed as a production to reserve ratio (in y-1, see Suppl. Figure 5 B), 
a parameter defined for each year in each fossil-fuel producing E3ME region (see below). Fossil 
commodity prices are taken as global, while production and consumption are assumed to interact within 
a global pool. In each cost range, production is proportional to the local depletion rate times the amount 



of reserves remaining in that range, and the sum across all cost ranges determines total production in 
each region, while global production is equal to global demand. The marginal cost that matches global 
supply to global demand is searched for through iteration of the equations at each E3ME-FTT time step. 
Following the standard definition, reserves are fossil fuels in the ground considered economic to extract, 
while resources cover all known fossil-fuel deposits, thus not necessarily economic. Economic viability 
is largely determined by comparing extraction costs to commodity prices. In situations of increasing or 
constant demand, as reserves are gradually consumed, prompting commodity prices to increase, the 
model assumes that quantities of nearly competitive resources are re-classified as reserves; their 
extraction begins, and their marginal cost sets the price. When demand declines, it is possible that some 
high-cost reserves are taken out of production and re-classified as resources, allowing a downward 
commodity price movement. Reserves in each cost range are extracted at the same rate regionally 
defined. The starting rate is empirically defined based on historical data25, representing a combination 
of asset owner choices and technical rates of extraction. If lower cost producers increase their quota, 
they force higher cost producers to reduce theirs.  Thus, if producers in regions operating predominantly 
in low-cost ranges (e.g. OPEC) so desire, they can increase their production to reserve ratio to undercut 
producers with higher costs in order to grab market share, i.e. extract their reserves faster in relation to 
the rate at which the price allows them to re-classify resources as reserves, effectively selling out their 
low-cost reserves instead of speculating on future prices. This could happen if low-cost producers begin 
to expect that future sales may be limited, in contrast to their past behaviour in which they expected 
sales to last indefinitely and reserved part of their product to sell at higher future prices26.  
Here, in the ‘non-sell-out’ scenarios, we assume constant production to reserve ratios, using those 
determined in earlier work25 (their inverse equates to 44, 62 and 122 years for oil, gas and coal). A 
particular set of deviations of these parameters is what we call ‘sell-out’ scenarios, where we assume 
increasing ratios for low-cost producer countries (in particular Saudi Arabia and other OPEC countries), 
as shown in Suppl. Figure 5B. The particular values used were chosen such that production 
concentrates substantially towards OPEC (we assume that this is the purpose of decisions made in 
OPEC countries in order not to decrease their fossil-fuel income); a wide range of such values leads to 
similar outcomes, as shown in Suppl. Fig 6; reducing by 50% our chosen deviations in production to 
reserve ratios in all countries impact total cumulated SFFA and GDP by 8% (oil), <0.1% (coal), 29% 
(gas), 14% (total) and 15% (GDP). 
 
Suppl. Note 4 | Contrasting wealth loss and output loss 
Wealth losses (stocks of value of assets on firms’ or individuals’ balance sheets) are not the same as 
output losses (flows of value added, e.g. GDP loss). When a bubble bursts, assets suddenly lose their 
value. These losses appear on the balance sheets of firms, but do not necessarily imply loss of output 
for the economy. However, a common reaction of financial institutions is to substantially cut lending 
when they face substantially altered balance sheets9,27. This restricts investment, which leads to output 
loss in the real economy, in comparison to a scenario where banks continue lending. The cumulative 
impact of the latter effect can be much larger than the initial wealth loss, as was observed during the 
2008 subprime mortgage crisis, since constraints on lending are likely to spill over to activities outside 
the sector in which the crisis originated27. 
Meanwhile, output loss can take place without any such financial effects, simply due to structural change 
in the economy, such as with the fossil-fuel extraction sector shutting down due to insufficient demand.  
We distinguish two effects here: (1) disruptions to the finance of other non-fossil-fuel related activities 
(the fossil-fuel bubble bursting), caused by panic on financial markets resulting from the impact of a 
sudden loss of fossil-fuel wealth on balance sheets, and (2) the real economy impacts of significantly 
down-sizing the fossil-fuel sector.  
In (1), losses to output due to restrictions of lending by financial institutions could be large or small, 
depending on whether the bubble is deflated calmly (early diversification of investment) or bursts 



suddenly, and whether warnings are heeded and investment in fossil-fuel assets is avoided as much as 
possible. A sudden burst could lead to worldwide loss of output outside the fossil-fuel sector, as 
happened recently with the financial crisis. We do not quantify this effect in this study because there is 
no widely accepted way to quantitatively predict these phenomena at this scale, as the true dynamics 
of these financial contagion effects at the global scale are not fully known.  
In (2), structural change leads to loss of output in fossil-fuel producer countries and gains to fossil-fuel 
importer countries, with worldwide changes in GDP that roughly cancel out to below 1% change (i.e. 
distributional effects). These effects are included since they can be modelled in detail in E3ME-FTT. A 
dramatic bubble burst (1) would aggravate (2) into a financial crisis and recession. The consequence is 
that our projections of the degree of loss represent a minimum, which could be intensified, depending 
on the degree of financial disruption and the pace of financial contagion. 
Wealth losses for different scenarios and investment horizons 
Wealth losses in scenarios of stranded fossil-fuel assets originate from the process of investments being 
made based on expectations of higher returns than turn out to occur subsequently. Here, we consider 
various scenarios combining different asset owner behaviour and decarbonisation policy. The results 
are given in Suppl. Table 2, which shows, as rows, the scenarios expected by investors, and as columns, 
the scenarios that turn out to be realised. These values are consistent with recent exposure estimates28 
(see below), the latter now starting to be taken into consideration by banks in their decisions29. 
The interpretation is as follows. We take a scenario in which we assume an investment horizon year of 
2035, and assume that investment is made in the present or near future, expecting return until the 
horizon date, based on subjective price projections by investors. We assume that investment costs are 
sunk, and return depends on whether the ventures turn out to be profitable. If the price and quantity sold 
turn out different than the projection, the wealth loss is the expected demand times the expected price 
minus the realised demand times the realised price over the simulation time span until the horizon year. 
Assets changing hands between the present and the horizon year make little difference to the outcomes; 
once someone has invested in fossil-fuel capital (e.g. pipelines, tankers, oil extraction equipment, 
drilling), subsequently selling the venture does not change the total value of the loss (although it may 
change who makes the loss). The key assumption is that the quantity of fossil-fuel assets expected to 
be burned is locked in once bets are placed and, if demand turns out less than committed supply, assets 
become stranded and the value invested is lost.  
For example, we assume that investors take 2035 as a horizon and invest all capital needed for fossil-
fuel production up to this date in the present, expecting returns based on demand and prices given in 
IEA projections30. They subsequently find, over later years, that the Paris Agreement is becoming fully 
implemented worldwide, that OPEC countries refuse to reduce their production substantially, and that 
therefore prices and demand are significantly lower than expected when investment decisions were 
initially made. Resources initially invested in extraction equipment (e.g. Arctic, deep offshore, tar sands) 
is lost since the assets expected to be extracted from the ground will never be burned (and new 
pipelines, tankers etc are never used). Companies may go bankrupt if their cashflows decline 
significantly, as they may default on bank loans, even if their production continues and is sold at low 
prices.  
Different investment horizons yield different results, but do not generate additional insights. Instead, one 
may wish to consider SFFA values discounted at different rates (Suppl. Table 2) to represent the 
investment horizon on the basis that investors take bets on expected future discounted income. Since 
knowing what investors think is not possible, we provide a number of possible investor expectation 
scenarios, against the same set of realised scenarios, in matrix form. For example, if one considers that 
the selling-out by OPEC members is already committed and taken into account by investors, one may 
assume the ‘IEA expectations’ or ‘Technology Diffusion Trajectory’ scenario with sell-out, and contrast 
it against a ‘2°C’ sell-out scenario, and observe the SFFA losses that arise then. In most scenarios, 
SFFA losses are comparable or larger than the initial 2007-8 sub-prime mortgage crisis loss27. The 



magnitude and direction of cumulated global GDP loss is highly dependent on the way remaining fossil-
fuel production is distributed across the globe. 
Our results are consistent, in a loose sense, with recent estimates of financial exposure for the EU and 
the USA. Battiston et al.28 estimate around $1.7tn of value at risk when considering the fossil-fuel sector 
only. In our work, for the EU and the USA combined, we obtain $1.2tn (discounted) and $3.3tn 
(undiscounted) of total SFFA. The comparison can only be made loosely, since the values do not have 
the exact same meaning; while we calculate loss of income on sales of fossil fuels, Battiston et al. 
calculate the sum of the value at risk of assets of listed companies (loans, equity, etc). We do not know 
what investors expect as return, while the asset value plus return should in many cases be higher than 
the values they report. Nevertheless, we consider our values to be in the correct range, when 
considering their results. 
Our results, however, are not quite consistent with Dietz et al.31 Since the methodology and 
interpretation of the results differ substantially, they should not be compared. Dietz et al. use exogenous 
GDP growth as a proxy for climate Value at Risk, using Nordhaus’ model DICE32, and no real 
representation of the energy system, but they include climate damages as a probability distribution. In 
DICE, GDP decreases by assumption proportionally to abatement measures and damages32.  In this 
formulation, investment devoted to abatement is by definition unproductive, and impacts on GDP of 
stringent climate policy can, by construction, only be negative (see the ‘crowding out’ issue discussed 
above). In contrast, while E3ME does not include climate damages, and therefore has no representation 
of ‘fat-tailed’ extreme events distributions, it provides a detailed sectoral account of abatement, 
investment, trade, and the impacts of these on output (for instance, positive employment impacts of 
building and deploying renewables). Since the quantity of money is endogenous, resources invested in 
mitigation do not require cancelling out resources invested in other parts of the economy (i.e. aggregate 
debt growth can increase GDP). Therefore, the overall impact on GDP of stringent climate policy can 
be positive in some countries and negative in others, by substantial amounts that in the case described 
here, cancel out to less than 1% in aggregate. To some degree, our results are driven by changes in 
trade, such that some regions’ losses come alongside other regions’ gains (as total exports equals total 
imports globally). The analyses are thus not really comparable. 
 
Suppl. Note 5 | Impacts of investment and fossil-fuel prices on the macroeconomy 
Fossil energy commodities are accounted for in E3ME’s national accounting system, while energy prices 
are updated every year as they change. Declines in exports for producing regions lead in the model to 
reduced activity in the oil and gas or mining sectors and other sectors in their supply chains (through 
input-output tables), which can generate unemployment, and generally reduce regional GDP. Changes 
in fossil-fuel or electricity prices influence competitiveness but also investment in every sector, 
particularly energy intensive ones. Sectoral and regional details are given in Suppl. Table 8. More 
detailed data can be forwarded by the authors on request.  
Selling carbon permits/allowances can generate significant income for the public sector. We take the 
assumption that this income is re-used by government for reducing income taxes. This contributes 
significantly to boosting industrial competitiveness. Governments cannot indefinitely accumulate this 
income, and thus will eventually spend it by funding new programmes. Changing the way in which it is 
spent does not change the results significantly33. It is possible, however, that some governments use 
this income to reduce deficits or repay debt; we assume here that this doesn’t happen, as this subject 
is outside of the scope of our study. In our model, this would lead to a reduction of GDP that is 
independent from the effects presented here. 
E3ME is demand-led, and therefore resources invested in one project do not require cancelling out 
resources invested in other parts of the macro-economy, as is the case in other models3. Thus 
investment-intensive scenarios tend to increase GDP and employment in the short term as activity grows 
in construction and other sectors related through input-output tables. This explains the emergence of 
growth related to building low-carbon infrastructure and equipment. The response of governments to 



falling economic activity due to loss of fossil fuel production would, in many cases, most likely involve 
deficit spending to mitigate large impacts on GDP and employment, notably in the USA and Canada. 
Here, we assume balanced government budgets instead and thus do not allow for this possibility, for 
clarity of the paper. In short, we do not allow changes in public debt, but we do allow changes in private 
debt. 
Regional macroeconomic losses do not strongly depend on where fossil-fuel industry headquarters or 
shareholders are situated (often in Europe, e.g. Shell and BP), but rather, on where the activities of 
these companies take place (the Middle-East, Africa, Canada, etc), since this is where most of the 
investment takes place. Wealth losses by fossil-fuel firms and price falls affect their ability to (1) retain 
profit and (2) leverage banking and equity finance, both of which affect their ability to invest in new 
projects. These effects could have financial implications sensitive to the location of firms' headquarters 
but, as discussed above, we do not model losses in wealth (and their impacts on leveraging ability) but 
concentrate on losses in output. When new projects are cancelled, it is predominantly at the extraction 
location that the loss of employment and wage spending takes place and therefore here we neglect 
effects related to the geographical location of shareholders and firm headquarters. 
Modelling fossil fuel markets and trade 
Following the broader structure of the E3ME model, trade in fossil fuels is modelled using a demand-
driven approach. First, econometrically estimated regional final demand is aggregated to the global 
level, and then the necessary global supply to meet this demand is allocated across regions according 
to their production costs, following the dynamics of our fossil-fuel supply model, where the marginal cost 
that matches global supply is sought, generating endogenous prices. We do not estimate trade on a 
bilateral basis (as we do for other products) since fossil fuels are commoditised products which violates 
the Armington assumption of differentiated production that underpins the modelling of trade in other 
sectors.34 It is instead assumed that the available supplies are matched to demands in an efficient 
manner with transportation costs minimised. 
E3ME includes end-user fuel prices including taxes, and these values are updated to reflect changes in 
fossil-fuel marginal costs from the fossil-fuel supply model; however end-user prices are not used in the 
calculation of SFFA. Fossil-fuel commodity prices used in the calculation of SFFA are obtained by 
adjusting calculated marginal costs for 2016 to the 2016 oil price (obtained from Bloomberg), and this 
scaling factor is maintained for subsequent years. 
Sectoral economic impacts 
Suppl. Table 8 provides sectoral and regional breakdowns of GDP and employment figures. The largest 
negative economic impacts occur in countries that are expensive producers of fossil fuels (e.g. Canada 
and the US). In these countries, even a small permanent drop in fuel prices can leave some fossil-fuel 
assets stranded, which has several important consequences for their national economies. First there is 
the direct effect of reduced production in the energy sector itself, with secondary effects from the loss 
of high-paid jobs and reductions in energy-sector investment activity. The loss of tax receipts (e.g. 
royalties) can be just as important, however, as these revenues are often used to fund public services 
and social programmes. The modelling assumes that government budgets are balanced so a loss of tax 
receipts implies a reduction in spending. Countries such as Canada therefore see reduced fuel exports, 
reductions in energy-sector investment, falling government expenditure and multiplier-based effects on 
household expenditure. 
  



Supplementary Figures and Tables 
 
Suppl. Table 1 | Methods summary 

Model Data and key mechanisms Refs 

Fossil fuel 
module 

Main algorithm ∆𝑛(𝐶, 𝑡) = 𝜈	𝑛(𝐶, 𝑡)𝑓(𝑃 − 𝐶), 𝐶 =cost, 
Find price P such that ∫∆n(C, t)dC = 𝐷𝑒𝑚𝑎𝑛𝑑(𝑃) 

𝑛(𝐶, 𝑡) = cost distribution 
𝜈 =	production to reserve ratio 

[25] 

Data sources WEC, BGR, IEA, ETSAP, BP and other reports [25,35] 

FTT 

Main algorithm 

Diffusion: ∆𝑆> = ∑ 𝑆>𝑆@A𝐴>@𝐹>@ − 𝐴@>𝐹@>D∆𝑡@ ,  
 

Binary logit: 𝐹>@ = E1 + exp KLMNOMPLQPOQRMQ
ST
P%

, 

𝑆> =	Market share of option i 
𝐴>@ = Building and turnover rates	
𝜎>@ = Agent heterogeneity 
𝛾> =	Non-pecuniary costs 

[36-40] 

Data sources 
FTT:Power:  
FTT:Transport:  
FTT:Heat: 

IEA Energy Balances, IEA technology costs 
Eurostat, manufacturer websites, Marklines 
ODYSSEE, IEA, Agencies, academic papers 

[16,17] 
[41] 
[37,42] 

E3ME Main algorithm 

Linear co-integration econometric equations, with error-correction method 
[1] Demand = f(income, prices, interest rates, inflation, pop. age structure) 
[2] Investment = f(output, prices, wages, interest rates, spare capacity) 
[3] Bilateral trade = f(prices, tech. progress) 
[4] Prices = f(costs, import prices, tech. progress) 
[5] Employment = f(output, wages, tech. progress, working hours) 
[6] Prod. capacity = f(expected growth, tech. progress, population) 
[7] Energy demand = f(output, prices, investment, R&D) 

[43] 
[4,33, 
44-48] 

Data sources Eurostat, OECD, Prodcom, World Bank, IEA, National statistics offices   

GENIE Main algorithm 

Atmospheric temperature field: 2D Energy-moisture balance dependent on net 
radiative forcing 𝑅(𝑡) 
𝑇Y(𝑥, 𝑡) 	= 	𝑓%(𝑇[(𝑥, 𝑡), 𝐼(𝑥, 𝑡), 𝐶Y(𝑡), 𝐶](𝑥, 𝑡), 𝑅(𝑡)), 
Ocean temperature field: 3D Frictional-geostrophic ocean 
𝑇[(𝑥, 𝑡) 	= 	𝑓#(𝑇Y(𝑥, 𝑡), 𝐼(𝑥, 𝑡), 𝑅(𝑡)), 
Atmospheric carbon timeseries, depends on emissions timeseries 𝐸(𝑡)  
𝐶Y(𝑡) 	= 	𝑓_(𝑇[(𝑥, 𝑡), 𝐼(𝑥, 𝑡), 𝐶[(𝑥, 𝑡), 𝐶](𝑥, 𝑡), 𝐸(𝑡)), 
Land carbon cycle: ENTS, depends on land-use change time series 𝐿(𝑡)  
𝐶](𝑥, 𝑡) 	= 	𝑓a(𝑇Y(𝑥, 𝑡), 𝐶Y(𝑥, 𝑡), 𝐿(𝑡)), 
Ocean carbon cycle: BIOGEM 
𝐶[(𝑥, 𝑡) 	= 	𝑓b(𝑇[(𝑥, 𝑡), 𝐼(𝑥, 𝑡), 𝐶Y(𝑥, 𝑡)), 
Sea-ice state  
𝐼(𝑥, 𝑡) 	= 	𝑓c(𝑇[(𝑥, 𝑡), 𝑇Y(𝑥, 𝑡)). 

 
[49] 
 
[49] 
 
[50] 
 
[51,52] 
 
[50,53] 
 
[49] 
 

Data sources Data - validation against CMIP5 modelling output (see Suppl. Table 6)  
  



 
 

 
Suppl. Figure 1 | Climate impacts of the 2°C policies scenario. Concentrations (top panels). 
Global average temperature change (bottom panels). The bottom row shows model variations 
indicating 75% probability of not exceeding 2°C. Green lines indicate ensemble medians.  

  



Suppl. Table 2 | Possible 2035 cumulative global total values of stranded fossil-fuel assets by 
fuel type and GDP changes, in trillions of 2016 USD ($tn), for relevant pairs of scenarios. 

 
 IEA Sell-out TDT TDT Sell-out 2°C 2°C Sell-out 

 

 0% 5% 10% 0% 5% 10% 0% 5% 10% 0% 5% 10% 0% 5% 10% 

IE
A 

Coal 0.0 0.0 0.0 -0.1 -0.1 0.0 -0.1 -0.1 0.0 1.0 0.6 0.3 1.0 0.6 0.3 

Oil 2.2 1.3 0.8 1.4 0.7 0.4 3.3 1.8 1.1 5.7 3.1 1.8 8.2 4.5 2.7 

Gas 1.5 0.9 0.5 1.4 0.8 0.5 2.8 1.6 1.0 1.6 0.9 0.5 3.2 1.8 1.1 

Tot 3.7 2.2 1.4 2.7 1.5 0.8 5.9 3.3 2.0 8.3 4.5 2.7 12.4 6.9 4.1 

GDP 24 13 7.7 -13 -8.3 -5.9 6.8 2.4 0.4 -17 -11 -8.3 -7.8 -6.0 -4.8 

IE
A 

Se
ll-

ou
t 

Coal    -0.1 -0.1 0.0 -0.1 -0.1 -0.1 0.9 0.5 0.3 0.9 0.5 0.3 

Oil    -0.8 -0.6 -0.5 1.1 0.5 0.2 3.6 1.8 1.0 6.0 3.3 1.9 

Gas    -0.1 -0.1 0.0 1.2 0.7 0.4 0.1 0.0 0.0 1.7 0.9 0.5 

Tot    -1.0 -0.7 -0.6 2.2 1.1 0.6 4.6 2.4 1.3 8.7 4.7 2.7 

GDP    -37 -21 -14 -17 -11 -7.3 -41 -25 -16.0 -32 -19 -13 

TD
T 

Coal       0.0 0.0 0.0 1.0 0.6 0.4 1.0 0.6 0.4 

Oil       1.9 1.1 0.7 4.4 2.4 1.5 6.8 3.8 2.3 

Gas       1.3 0.8 0.5 0.2 0.1 0.0 1.8 1.0 0.6 

Tot       3.2 1.9 1.2 5.6 3.1 1.8 9.7 5.4 3.3 

GDP       20 11 6.2 -3.9 -3.1 -2.4 5.0 2.3 1.1 

TD
T 

Se
ll-

ou
t 

Coal          1.1 0.6 0.4 1.1 0.6 0.4 

Oil          2.5 1.3 0.8 4.9 2.7 1.6 

Gas          -1.2 -0.7 -0.5 0.5 0.2 0.1 

Tot          2.4 1.2 0.7 6.5 3.6 2.1 

GDP          -24 -14 -8.6 -15 -8.3 -5.1 

2°
C

 

Coal             0.0 0.0 0.0 

Oil             2.5 1.4 0.9 

Gas             1.6 0.9 0.6 

Tot             4.1 2.3 1.4 

GDP             8.9 5.4 3.5 

Notes: Numbers relate to loss incurred due to investors investing based on expectations of one scenario 
(rows) and facing another in reality afterwards (columns). Negative values refer to gains. Values are 
cumulated between 2016 and 2035, expressed in constant 2016 USD discounted with 0% 
(undiscounted), 5% and 10% rates. TDT refers to the ‘Technology Diffusion Trajectory’ E3ME-FTT 
scenario, IEA to the ‘IEA expectations’ scenario, while 2°C refers to our ‘2°C’ scenario, based on E3ME-
FTT, that achieves emissions reductions consistent with 75% probability of not exceeding 2°C of global 
warming. Colouring is a guide to the eye to indicate scenarios that have highest amounts of stranded 
assets (in red). The black boxes identify the three carbon bubble scenarios discussed in the main text. 
 



 
Suppl. Figure 2 | Global demand for fossil fuels. Coal, middle distillates (petrol and diesel) and 
natural gas by E3ME fuel user, followed by global fuel combustion and industrial emissions. These 
are given for a baseline involving fuel demand from the IEA (9) (first column), fuel demand fully 
endogenously determined by E3ME-FTT under the ‘Technology Diffusion Trajectory’ (second 
column), and an E3ME-FTT scenario with global emissions consistent with a 75% chance of not 
exceeding 2°C of warming (third column). Dashed lines refer to the ‘IEA expectations’ scenario for 
comparison. 
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Suppl. Figure 3 | Macroeconomic impacts of regional withdrawals from the Paris Agreement. 
GDP (top 8 panels) and employment (bottom 8 panels), for the normal non-sell-out case (top rows) 
and the sell-out case (bottom rows). The solid lines refer to the 2°C policies scenario compared to the 
Technology Diffusion Trajectory baseline with all countries respecting the Paris Agreement, while the 
dashed lines refer to equivalent withdrawal scenarios. 
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Suppl. Figure 4 | Cumulative gains/losses for different horizons. Undiscounted cumulated SFFA 
losses and changes in GDP up to 2035 (top) and 2050 (bottom) between the ‘2°C’ sell-out scenario 
and the ‘IEA expectations’ scenario. Error bars represent maximum uncertainty generated by varying 
technology parameters (see SI Tables 3-4). 

 
  

-12

-10

-8

-6

-4

-2

0

2

4

6

8

-20

-15

-10

-5

0

5

10

15

20

2035 Horizon, undiscounted

EU U
SA

Ja
pa

n

C
an

ad
a

Au
st

ra
lia

R
us

si
a

C
hi

na

In
di

a

Br
az

il

O
th

er
 L

at
in

 A
m

er
ic

a

O
PE

C

R
es

t o
f w

or
ld

Sa
ud

i A
ra

bi
a

N
ig

er
ia

So
ut

h 
Af

ric
a

R
es

t o
f A

fri
ca

Af
ric

a 
O

PE
C

C
um

ul
at

iv
e 

ga
in

s/
lo

ss
es

 in
 2

03
5 

(2
01

6 
$t

n)

2050 Horizon, undiscounted

EU U
SA

Ja
pa

n

C
an

ad
a

Au
st

ra
lia

R
us

si
a

C
hi

na

In
di

a

Br
az

il

O
th

er
 L

at
in

 A
m

er
ic

a

O
PE

C

R
es

t o
f w

or
ld

Sa
ud

i A
ra

bi
a

N
ig

er
ia

So
ut

h 
Af

ric
a

R
es

t o
f A

fri
ca

Af
ric

a 
O

PE
C

C
um

ul
at

iv
e 

ga
in

s/
lo

ss
es

 in
 2

05
0 

(2
01

6 
$t

n)

Cumulative GDP Change
Value of stranded oil
Value of stranded coal
Value of stranded gas



 
Suppl. Figure 5 | Carbon price and production/reserve assumptions. A) Carbon price 
assumptions for each scenario, in nominal terms (including inflation). In our ‘Technology Diffusion 
Trajectory’ scenario, the carbon price only applies to the EU. In the ‘policies for ‘2°C’ scenario, all 
countries adopt a form of carbon pricing or taxing. A single price globally was used with different 
implementation dates indicated. In real terms, this carbon price means different values in different 
regions (due to different inflation rates), of the order of 200USD/tCO2. B) Assumptions for the selling-
out behaviour of fossil-fuel producers, expressed in reserve to production ratios (i.e. years left of 
reserves at current production), without sell-out (dashed lines) and with sell-out (coloured lines), 
chosen as values that lead to production concentration in the Middle-East (other countries not shown). 
Here, OPEC includes Saudi Arabia. 
 
 

 
Suppl. Figure 6 | Effect of production to reserve ratio. A) Sensitivity test on fuel prices by halving 
the value of the deviation of the sell-out production to reserve ratio parameter given in Fig S5 B (dashed 
lines) in comparison to the ‘policies for 2°C’ sell-out scenario. B) Impact on GDP in this sensitivity test. 
OPEC excludes Saudi Arabia for higher detail. Impacts on total cumulated SFFA and GDP values are 
of less than 15%.   
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Suppl. Table 3 | Sensitivity analysis on technology parameters. 
 Sensitivity parameters % Change technology shares % Change discounted SFFA & GDP 

 FTT Baseline Var REN PV EV ADV FF Oil  Gas Coal  Tot  GDP  

Po
w

er
 G

en
er

at
io

n REN capital costs +20% -7.85 -15.5 0.00 0.00 0.00 -0.04 0.21 1.87 0.15 -0.01 

REN capital costs -20% 6.90 9.16 0.00 0.00 0.00 0.04 -0.04 -1.95 -0.11 0.01 

REN learning +5pp 5.44 16.8 0.00 0.00 0.00 0.03 0.01 -0.85 -0.03 0.00 

REN learning -5pp -6.47 -27.1 0.00 0.00 0.00 -0.05 0.05 0.79 0.03 -0.01 

Discount rate +5pp -2.86 58.7 0.00 0.00 0.00 0.37 11.2 -3.80 3.22 0.38 

Discount rate -5pp 14.3 -16.2 0.00 0.00 0.00 -0.12 -9.08 -0.11 -2.70 -0.19 

R
oa

d 
Tr

an
sp

or
t 

Perceived costs +20% 0.12 0.31 -5.47 0.66 1.11 2.24 -0.10 0.01 1.43 0.06 

Perceived costs  -20% 4.25 -13.0 -33.1 -2.94 18.5 -2.52 0.44 0.16 -1.50 0.44 

Learning rates +5pp -0.03 -0.10 3.49 3.53 -7.41 -0.90 0.63 0.04 -0.40 -0.01 

Learning rates -5pp -0.03 -0.15 -10.1 -2.93 9.10 1.13 -0.36 0.24 0.64 0.11 

Discount rate  +10pp -0.02 0.00 6.94 0.04 -2.90 -0.80 0.10 0.01 -0.49 -0.01 

Discount rate  -10pp 0.06 0.16 -8.98 0.16 3.39 0.90 -0.09 0.00 0.55 0.02 

EV costs +20% -0.08 -0.59 -9.49 1.74 0.93 0.11 -0.03 -0.03 0.06 -0.01 

EV costs -20% 0.04 0.55 8.44 -1.56 -0.80 -0.10 0.03 0.03 -0.05 0.01 

ADV Fuel Efficiency +20% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ADV Fuel Efficiency -20% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 Combined model run upper -18.19 5.96 -20.92 -7.18 27.10 3.67 12.13 -0.49 5.74 0.54 

 Combined model run lower  19.19 -10.34 0.09 11.48 -26.95  -3.20 -8.69 -1.49 -4.60 -0.29 

 Root mean square 20.3 72.3 39.1 5.97 22.4 3.89 14.4 4.83 4.80 0.64 
 2°C scenario Var REN PV EV ADV FF Oil  Gas Coal  Tot  GDP  

Po
w

er
 G

en
er

at
io

n  REN capital costs +20% -0.07 4.88 0.00 0.00 0.00 0.00 1.41 -1.56 0.41 0.00 

REN capital costs -20% -0.06 -6.19 0.00 0.00 0.00 0.00 -1.29 1.81 -0.35 0.00 

REN learning +5pp 0.18 -5.75 0.00 0.00 0.00 0.03 -0.89 1.57 -0.21 0.03 

REN learning -5pp -0.43 4.30 0.00 0.00 0.00 -0.02 0.76 -1.24 0.19 -0.02 

Discount rate +5pp -3.03 7.60 0.00 0.00 0.00 0.22 10.5 -6.38 3.35 0.22 

Discount rate -5pp 3.84 -10.4 0.00 0.00 0.00 -0.02 -10.8 5.24 -3.36 -0.02 

R
oa

d 
Tr

an
sp

or
t 

Perceived costs +20% 0.01 -0.23 -2.35 1.07 9.30 1.91 0.26 -0.01 1.28 0.00 

Perceived costs  -20% -0.27 -4.17 12.1 -8.00 -16.2 -3.21 0.05 0.04 -1.99 0.11 

Learning rates +5pp -0.01 0.10 1.37 -0.02 -6.71 0.08 0.02 0.00 0.06 0.00 

Learning rates -5pp -0.12 -0.19 4.53 -7.98 7.14 -0.36 -0.17 0.02 -0.28 0.01 

Discount rate  +10pp -0.20 -0.23 12.9 -12.1 -3.75 -1.03 -0.21 0.04 -0.71 0.01 

Discount rate  -10pp 0.10 0.31 -11.8 9.89 5.34 1.07 0.18 -0.03 0.73 -0.01 

EV costs +20% 0.02 0.05 -2.46 1.13 0.09 0.07 -0.02 0.00 0.00 0.00 

EV costs -20% -0.01 -0.03 2.85 -1.24 -0.14 -0.06 0.02 0.01 -0.03 0.00 

ADV Fuel Efficiency +20% -0.03 0.13 -0.59 0.41 -4.03 3.34 -0.06 -0.01 2.08 -0.03 

ADV Fuel Efficiency -20% 0.03 -0.12 0.81 -0.52 5.43 -3.35 0.08 0.01 -2.08 0.03 

 Combined in model run upper -3.30 11.15 -12.55 8.12 18.78 2.78 12.91 -5.52 5.56 0.27 

 Combined in model run lower  3.54 -16.73 11.67 -13.68 10.33  -1.34 -11.0 4.82 -4.08 -0.10 

 Root mean square 6.39 26.9 22.3 19.4 23.1 6.73 15.2 13.9 6.33 0.25 

 Scenarios combined 21.3 77.1 45.0 20.3 32.2 7.77 20.9 14.7 7.94 0.69 

Abbreviations: REN = shares of renewables + nuclear, PV = shares of solar photovoltaic, EV = shares 
of electric vehicles, ADV = shares of future higher efficiency combustion vehicles, FF = shares of 
conventional combustion vehicles (in 2050). SFFA and GDP are discounted and cumulated to 2050. 
Note that ‘pp’ refers to percentage points. Combined model runs combine parameters above in single 
model runs with several variations, while root mean squares combine runs with individual variations. 



Suppl. Table 4 | Uncertainty ranges for regional SFFA and GDP changes, in 2016bn$, based on 
the sensitivity analysis given in Suppl. Table 3, corresponding to error bars in Fig. 3 and Suppl. Fig. 4. 
Values in coloured boxes are SFFA values, numbers to the right are matching uncertainty ranges. 
Columns denoted with ‘+’ and ‘-’ refer to maxima and minima of uncertainty ranges. 

 2035 horizon, Discounted 10% 
Country Oil Coal Gas Total GDP Oil + Oil - Coal+ Coal - Gas + Gas - Total+ Total - GDP + GDP - 
EU 68.2 19.3 103.5 190.9 -1368 1.6 -3.3 0.9 -0.7 15.4 -19.3 -15.9 20.5 22.4 -93.2 
USA 525.7 186.6 250.5 962.7 3298 18.7 -34.6 15.6 -13.8 56.5 -83.2 -61.1 91.4 -1491 591.0 
Japan -0.1 0.1 -0.3 -0.3 -458.5 0.0 0.0 0.0 0.0 0.1 -0.1 -0.1 0.1 36.4 -45.9 
Canada 324.6 5.2 47.0 376.8 1739.1 11.5 -20.8 0.4 -0.4 13.1 -18.0 -17.4 27.5 -208.7 144.8 
Australia -4.8 26.3 -9.2 12.2 -379.5 0.7 -1.6 5.1 -4.6 29.8 -37.9 -30.2 38.3 -116.9 54.3 
Russia 276.1 66.3 178.6 521.0 -130.7 7.6 -16.2 7.1 -6.3 106.1 -94.2 -106.6 95.9 -20.2 5.7 
China 81.4 18.9 167.1 267.4 -2987 2.1 -4.1 2.3 -2.0 40.1 -60.3 -40.2 60.5 -679.6 366.1 
India 11.1 6.3 7.4 24.7 -1248 0.3 -0.7 0.7 -0.7 4.0 -4.4 -4.1 4.6 1.8 -25.5 
Brazil 37.2 0.1 23.3 60.5 -103.9 2.0 -4.4 0.0 0.0 5.4 -8.3 -5.8 9.4 8.6 -10.6 
LAM 327.6 0.2 16.4 344.2 -299.5 12.0 -24.0 0.1 -0.1 19.4 -18.4 -22.8 30.2 60.4 -83.8 
OPEC 298.3 1.3 30.6 330.3 -577.3 27.0 -70.3 0.1 -0.1 148.4 -116.1 -150.8 135.7 -37.8 47.0 
ROW 238.7 6.2 15.1 260.1 -328.5 6.2 -13.2 0.8 -0.7 45.4 -36.9 -45.8 39.2 -60.0 21.7 
Saudi 172.3 0.0 6.3 178.7 -63.0 15.0 -38.8 0.0 0.0 17.0 -13.7 -22.6 41.2 -31.7 18.5 
Nigeria 71.8 0.1 1.4 73.2 -136.3 1.9 -4.8 0.0 0.0 12.3 -9.6 -12.5 10.7 13.8 -14.4 
S Africa 0.1 0.6 42.2 42.9 -177.3 0.0 0.0 0.1 -0.1 7.9 -13.2 -7.9 13.2 -3.2 2.5 
R Africa 123.5 1.3 7.8 132.6 73.9 3.2 -6.9 0.2 -0.1 9.2 -8.2 -9.7 10.8 5.7 -27.1 
A OPEC 101.3 0.0 45.0 146.3 19.2 2.7 -6.9 0.0 0.0 22.3 -24.5 -22.5 25.5 -1.6 0.1 
 2035 Horizon, Undiscounted 

Country Oil Coal Gas Total GDP Oil + Oil - Coal+ Coal- Gas + Gas - Total+ Total - GDP + GDP - 
EU 191.1 50.4 284.4 525.9 -3448.4 2.4 -6.3 1.9 -1.8 32.6 -39.4 -33.3 41.5 3.9 -385.2 
USA 1506.4 518.3 749.3 2774.0 10800 27.4 -58.0 36.1 -36.1 113.9 -169.1 -122.6 182.4 -2974 806.1 
Japan -0.1 0.4 -0.6 -0.3 -1285.5 0.0 0.0 0.1 -0.1 0.2 -0.2 -0.2 0.2 75.7 -115.2 
Canada 918.7 14.4 140.6 1073.6 5016.3 16.9 -34.0 1.0 -1.0 27.0 -37.8 -31.9 50.8 -425.0 269.8 
Australia 1.3 84.3 29.0 114.7 -705.9 1.1 -3.4 12.4 -12.7 67.4 -84.7 -68.6 85.7 -249.7 87.7 
Russia 771.4 187.9 518.5 1477.8 -301.2 11.5 -32.9 16.8 -17.1 286.7 -237.6 -287.5 240.5 -53.1 39.8 
China 227.7 54.2 489.5 771.3 -6668.4 3.1 -7.6 5.4 -5.5 77.8 -125.4 -78.0 125.7 -1350 400.3 
India 33.1 17.9 23.1 74.1 -3020.3 0.5 -1.6 1.8 -1.8 10.0 -10.4 -10.1 10.6 25.5 -27.7 
Brazil 116.2 0.3 68.2 184.7 -219.6 3.0 -9.4 0.1 -0.1 10.6 -17.2 -11.0 19.6 13.3 -37.6 
LAM 940.7 0.7 56.5 997.8 -888.6 17.9 -44.8 0.2 -0.2 51.9 -46.0 -54.9 64.2 158.3 -202.9 
OPEC 1185.2 3.7 153.2 1342.1 -1205.2 42.6 -170.5 0.3 -0.3 424.6 -315.3 -426.7 358.5 -161.0 176.3 
ROW 649.5 17.7 43.9 711.1 -1155.7 9.3 -27.1 1.8 -1.9 131.2 -101.0 -131.5 104.6 -258.5 163.1 
Saudi 672.1 0.0 25.6 697.7 30.8 23.6 -93.6 0.0 0.0 48.1 -36.6 -53.6 100.5 -91.7 44.8 
Nigeria 198.4 0.2 4.0 202.6 -424.9 3.0 -11.1 0.0 0.0 36.2 -26.8 -36.3 29.0 35.5 -33.2 
S Africa 0.3 1.8 121.2 123.4 -490.4 0.0 0.0 0.2 -0.2 14.4 -27.3 -14.4 27.3 -4.9 4.5 
R Africa 336.2 3.6 22.7 362.5 46.3 4.9 -14.3 0.4 -0.4 25.7 -21.5 -26.2 25.8 12.3 -63.4 
A OPEC 280.8 0.0 129.5 410.3 69.8 4.3 -16.3 0.0 0.0 56.4 -58.8 -56.5 61.0 -4.3 -0.6 
 2050 horizon, Undiscounted 

Country Oil Coal Gas Total GDP Oil + Oil - Coal+ Coal- Gas + Gas - Total+ Total - GDP + GDP - 
EU 524.6 122.7 895.2 1542.5 -10275 3.0 -7.5 2.8 -3.0 42.7 -54.0 -43.7 56.1 201.0 -189.6 
USA 4402.1 1375.0 2771.0 8548.1 18359 29.7 -62.3 58.4 -65.6 146.7 -220.1 -163.4 236.1 -2667 1252.5 
Japan 0.3 1.1 -0.6 0.8 -3944.6 0.0 0.0 0.1 -0.1 0.4 -0.5 -0.5 0.5 150.9 -249.0 
Canada 2580.0 38.2 489.7 3107.9 11897 17.3 -34.8 1.6 -1.8 35.1 -50.5 -39.2 61.3 -452.0 275.7 
Australia 61.7 255.9 344.2 661.7 -893.1 1.7 -4.4 22.8 -26.4 97.7 -130.1 -101.2 132.1 -305.4 153.1 
Russia 2217.7 511.1 2054.8 4783.7 -445.5 15.5 -40.4 29.4 -33.6 487.0 -517.1 -488.4 519.5 -226.4 300.8 
China 640.7 148.3 1639.9 2428.9 -18060 3.8 -8.9 9.8 -11.3 91.4 -150.6 -92.2 151.2 -1683 244.9 
India 96.9 49.1 92.5 238.6 -9210.9 0.7 -2.1 3.2 -3.8 16.0 -19.1 -16.5 19.5 77.3 -964.3 
Brazil 386.4 1.0 234.6 621.9 -1607.4 4.7 -12.5 0.1 -0.1 12.8 -21.1 -13.7 24.5 7.1 -164.2 
LAM 2812.3 2.3 285.8 3100.3 -3404.5 22.8 -53.5 0.3 -0.3 91.2 -101.3 -94.0 114.6 277.7 -323.4 
OPEC 5094.9 9.9 1294.3 6399.1 -806.5 84.0 -245.2 0.5 -0.6 774.9 -802.7 -779.5 839.3 -529.5 581.4 
ROW 1819.6 48.0 346.5 2214.0 -5455.4 13.2 -34.3 3.5 -4.1 252.8 -271.1 -253.2 273.3 -1049 1493.3 
Saudi 2840.7 0.0 175.8 3016.5 1792.9 46.1 -134.1 0.0 0.0 87.2 -91.1 -98.7 162.1 -229.3 160.2 
Nigeria 580.2 0.4 69.4 650.0 -1670.6 5.3 -15.4 0.0 0.0 70.6 -74.8 -70.8 76.4 42.6 -69.7 
S Africa 0.9 4.9 400.9 406.7 -1838.4 0.0 0.0 0.3 -0.4 14.6 -29.2 -14.6 29.2 -25.4 31.7 
R Africa 938.7 9.7 116.2 1064.6 -1048.6 6.9 -18.1 0.7 -0.8 48.3 -53.2 -48.8 56.2 43.5 -44.8 
A OPEC 827.9 0.0 493.5 1321.4 408.6 7.8 -22.8 0.0 0.0 96.0 -115.9 -96.3 118.1 -6.1 0.2 



 
Suppl. Figure 7 | Comparison with IPCC. This work’s fossil energy supply displayed on top of the 
IPCC AR5 ensembles. Dark purple curves are scenarios of which cumulative emissions are greater 
than 1300 GtCO2 (355 GtC), while yellow curves are below, where 1300 GtCO2 is considered to 
approximately match 50% chance of remaining below 2°C.54 Data obtained from the AR5 scenario 
database at tntcat.iiasa.ac.at/AR5DB/ . 

 

 
Suppl. Figure 8 | Empirical determination of non-pecuniary costs. Comparison of FTT model 
outputs, taking private passenger transport as an example, to show the role of the g factors 
representing non-pecuniary costs. Dashed lines are model outputs with g = 0, solid lines are model 
outputs with g factors minimising the difference in trajectory (slope difference) between historical data 
(left of the vertical dashed line) and the FTT simulation (right of the vertical dashed line). All 
technologies in every region were assessed visually by the authors. The g factors are interpreted as 
all costs not explicitly specified in the FTT formulation. Lux, Mid and Econ refer to engine size or 
power vehicle class, EV stands for electric vehicles, 2-wh stands for two-wheelers39. Other vehicle 
types in the model are not shown for clarity of presentation. 
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Suppl. Table 5 | Comparison of the main scenarios presented in this paper with other modelling 
exercises. Cumulative production of fossil fuels in the ‘IEA expectations’, ‘Technology Diffusion 
Trajectory’ and ‘2ºC’ scenarios, compared with equivalent values presented in Bauer et al.13 (top table) 
and McGlade & Ekins55 (bottom table). The cumulative revenues from fossil fuels in the same period 
are compared with the scenarios presented in [13] (middle table). The comparison includes the scenarios 
presented in McGlade & Ekins55 using the model TIAM-UCL, and the different models and values 
presented in Bauer et al.13. Note that to be consistent with these sources, revenue values are cumulated 
and discounted starting from 2011, and therefore are not directly comparable with those in Suppl. Table 
2, which are discounted starting in 2017. 

Cumulative production (our paper) and consumption of fossil fuels between 2011-2050 [ZJ] 

   Oil Natural Gas Coal 
   min max min max min max 

Th
is

 
w

or
k 

2°C 5.9 5.4 3.8 
Tech. Diff. Trajectory 7.0 5.9 8.2 
IEA Expectations 7.9 6.6 7.8 

Ba
ue

r e
t a

l. 
[13

] 

450-e values 6.4 8.8 3.8 7.8 2.4 7.7 
450-e models IMAGE DNE21 WITCH REMIND REMIND GCAM 
550-e values 6.5 9.7 5.0 9.1 4.4 8.6 

550-e models MERGE-
ETL MESSAGE WITCH REMIND REMIND IMACLIM 

NoPol Values 7.0 10.8 5.5 9.2 7.8 17.8 

NoPol models MERGE-
ETL IMACLIM IMACLIM REMIND MESSAGE IMACLIM 

M
cG

la
de

 &
 

Ek
in

s 
[55

] 2degC Values 6.2 7.2 5.5 7.0 2.2 3.7 
2degC sub-scenario OILLOW DEMHIGH FFCHIGH DEMHIGH NOCCS FFCHIGH 
3degC 7.6 6.4 7.1 
5degC 8.1 6.2 8.7 

 

              

Cumulative revenues from fossil fuels between 2011-2050 [US$ trillion NPV 2010 discounted at 5%] 

   Oil Natural Gas Coal 
   min max min max min max 

Th
is

 
w

or
k 

2°C 13.8 7.2 1.0 
Tech. Diff. Trajectory 16.8 7.7 1.7 
IEA Expectations 18.5 8.7 1.6 

Ba
ue

r e
t a

l. 
[13

] 

450-e values 14.2 68.9 8.8 41.0 2.1 9.3 
450-e models MESSAGE DNE21 GCAM DNE21 REMIND POLES 
550-e values 16.6 73.4 8.9 41.1 3.3 11.3 
550-e models MESSAGE DNE21 GCAM DNE21 REMIND DNE21 
NoPol Values  18.5 74.4 9.1 39.5 5.9 20.7 
NoPol models  MESSAGE DNE21 GCAM DNE21 GCAM DNE21 

 



 
Suppl. Figure 9 | Comparison of E3ME-FTT primary fossil-fuel demand to other IAMs, cumulated 
over the 2011-2050 period. Comparison of E3ME-FTT scenarios of this work to the AR5 ensemble of 
model results from 11 models, including TIAM-UCL used by McGlade & Ekins55, showing model 
results for various model comparison projects and studies (indicated in each panel). The vertical lines 
are guides to the eye indicating the total fossil fuel demand from the scenarios of this work. Data 
obtained from the AR5 scenario database at tntcat.iiasa.ac.at/AR5DB/. 
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Suppl. Table 6 | Comparison of GENIE with other models. GENIE-1 global mean warming (2090-
2005) compared to CMIP556 and EMIC AR5 inter-comparison57. AR5 and CMIP5 warming is 2081-
2100 mean relative to the 1985-2005 baseline. Data are ensemble median (5%, 95% confidence) 
(GENIE-1) and ensemble mean (minimum, maximum) (EMIC AR5 and CMIP5). 

 GENIE-1 EMIC AR5 CMIP5 
RCP2.6 0.9 (0.6, 1.5) 1.0 (0.6, 1.4) 1.0 (0.0, 2.0) 
RCP4.5 1.7 (1.2, 2.6) 1.7 (0.9, 2.4) 1.8 (1.0, 2.8) 
RCP6.0 2.2 (1.7, 3.2) 2.1 (1.1, 2.8) 2.3 (1.5, 3.2) 
RCP8.5 3.4 (2.7, 4.9) 3.1 (1.6, 4.1) 3.7 (2.5, 5.0) 

 
 
 
Suppl. Table 7 | Fossil fuel prices by scenario (2016$/bbl) 

 Oil   Coal   Gas   
Scenario 2016 2035 2050 2016 2035 2050 2016 2035 2050 
IEA 35.5 39.5 42.1 3.3 3.4 3.6 20.4 24.3 26.9 
IEA SO 34.7 33.9 33.3 3.3 3.4 3.4 19.7 19.2 18.7 
TDT 35.5 37.1 34.9 3.3 3.5 3.6 20.3 22.9 25.3 
TDT SO 34.7 30.6 20.2 3.3 3.4 3.5 19.6 17.0 18.1 
2°C 35.5 29.6 19.6 3.3 2.9 2.9 20.4 22.0 22.3 
2°C SO 34.6 19.8 14.0 3.3 2.9 2.8 19.7 13.2 6.9 
n0 test 35.0 24.1 16.4 3.3 2.9 2.8 20.0 18.9 15.5 
TDT + 35.8 38.1 36.7 3.3 3.5 3.6 20.8 23.8 26.4 
TDT - 35.4 36.4 34.0 3.3 3.4 3.6 19.8 22.1 24.4 
2°C + 35.7 30.3 20.2 3.3 2.9 2.8 20.9 22.9 23.4 
2°C - 35.4 29.4 19.0 3.3 3.0 2.9 19.9 20.6 20.4 
2°C SO + 34.9 20.2 14.2 3.3 2.8 2.7 20.3 16.3 8.3 
2°C SO - 34.5 19.8 13.9 3.3 2.9 2.8 19.2 9.7 5.9 

Notes: ‘n0 test’ stands for the sensitivity test on the reserve to production ratio (Suppl. Fig. 6). ‘+’ and ‘-’ 
stand for the combined sensitivity tests given in Suppl. Tables 3-4, while ‘SO’ stands for sell-out 
scenarios. Prices are obtained by scaling 2016 marginal costs from this model to 2016 fossil fuel 
prices, and are used to determine SFFA losses. 
  



 

 
Suppl. Figure 10 | Comparison of E3ME-FTT fossil-fuel revenues to other IAMs, cumulated over 
the 2011-2050 period. Comparison of E3ME-FTT scenarios of this work to those in Bauer et. al.13 Data 
obtained from the author. 
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Suppl. Figure 11 | Comparison of E3ME-FTT primary fossil-fuel demand to other IAMs, 
cumulated over the 2011-2050 period. Comparison of E3ME-FTT scenarios of this work and that in 
Bauer et al.13 and McGlade & Ekins55 Data obtained from the author.  
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Suppl. Table 8 | Sectoral impacts of SFFAs in chosen regions and sectors  

 IEA expectations to 2ºC sellout Tech. Diff. Trajectory to 2ºC sellout 

Global 2035 2050 2035 2050 

% change in Prod. Empl. Prod. Empl. Prod. Empl. Prod. Empl. 

Agriculture 0.7 0.6 1.2 0.4 0.5 0.5 0.7 0.4 

Extraction 
sectors -9.9 -10.0 -7.1 -6.9 -9.5 -9.7 -6.8 -6.5 

Basic 
manufacturing -0.6 0.9 0.8 1.1 -0.3 0.8 0.9 1.0 

Advanced 
manufacturing -0.2 1.7 1.3 1.2 -0.2 1.7 1.1 0.9 

Utilities -2.1 1.3 -3.2 -4.7 -2.1 1.3 -3.4 -4.8 

Construction 0.3 0.9 2.8 2.4 0.3 1.0 2.7 2.2 

Distribution and 
retail -0.7 0.6 1.1 1.4 -0.7 0.7 0.9 1.0 

Transport and 
communications -0.3 1.1 2.0 1.6 -1.0 0.8 0.4 0.9 

Business 
services 0.4 0.3 1.8 0.8 -0.2 0.2 0.9 0.6 

Public services -1.8 -1.2 -1.3 -0.9 -1.9 -1.3 -1.5 -1.1 

All sectors -0.5 0.4 0.9 0.7 -0.7 0.3 0.5 0.5 
 

 IEA expectations to 2ºC sellout Tech. Diff. Trajectory to 2ºC sellout 

EU 2035 2050 2035 2050 

% change in Prod. Empl. Prod. Empl. Prod. Empl. Prod. Empl. 

Agriculture 2.7 0.1 8.5 -0.6 2.3 0.2 4.9 -0.3 

Extraction 
sectors -10.1 -6.0 -5.7 -3.0 -10.0 -5.5 -6.2 -3.4 

Basic 
manufacturing 0.7 -0.2 1.7 -0.5 0.6 -0.1 1.2 -0.5 

Advanced 
manufacturing 0.7 0.3 2.7 1.0 0.1 0.0 1.8 0.7 

Utilities 0.7 0.1 1.1 0.1 0.6 0.2 0.8 0.2 

Construction 1.2 0.2 2.8 0.5 0.8 0.1 2.3 0.4 

Distribution and 
retail -7.3 -6.9 -6.5 -6.2 -7.5 -6.9 -7.4 -6.5 

Transport and 
communications 1.2 0.5 1.7 0.3 1.1 0.4 1.7 0.3 

Business 
services 0.9 0.4 2.1 0.4 0.6 0.4 1.4 0.3 

Public services 1.6 0.6 2.4 0.9 1.3 0.5 1.2 0.3 

All sectors 0.8 0.4 1.9 0.7 0.6 0.3 1.2 0.5 



 IEA expectations to 2ºC sellout Tech. Diff. Trajectory to 2ºC sellout 

US 2035 2050 2035 2050 

% change in Prod. Empl. Prod. Empl. Prod. Empl. Prod. Empl. 

Agriculture -0.3 0.0 4.7 0.0 -3.3 0.0 -2.7 0.0 

Extraction 
sectors -50.6 -16.2 -45.2 -21.8 -49.1 -14.8 -42.3 -16.8 

Basic 
manufacturing -7.0 -0.5 -2.1 9.7 -6.6 -1.1 -1.6 9.3 

Advanced 
manufacturing -8.6 0.7 0.1 2.9 -11.5 0.7 -3.6 2.7 

Utilities -8.0 -7.2 -11.3 -9.5 -7.9 -6.8 -11.2 -8.8 

Construction -6.3 -8.3 -1.7 -0.9 -7.1 -9.3 -2.8 -2.1 

Distribution and 
retail -5.4 0.0 -0.3 0.8 -6.4 -0.4 -1.6 0.1 

Transport and 
communications -3.0 0.5 0.6 2.9 -4.8 0.0 -2.0 2.1 

Business 
services -1.6 -1.2 1.5 0.2 -3.5 -1.8 -1.5 -0.5 

Public services -3.5 -2.9 -2.3 -2.0 -3.6 -2.8 -2.3 -1.9 

All sectors -4.6 -1.7 -1.0 0.0 -5.7 -1.9 -2.5 -0.3 

 

 IEA expectations to 2ºC sellout Tech. Diff. Trajectory to 2ºC sellout 

Canada 2035 2050 2035 2050 

% change in Prod. Empl. Prod. Empl. Prod. Empl. Prod. Empl. 

Agriculture -8.5 1.2 0.9 -6.3 -9.3 1.5 -0.7 -5.8 

Extraction 
sectors -81.9 -74.0 -81.0 -76.6 -81.3 -73.1 -80.5 -75.9 

Basic 
manufacturing -8.1 -2.7 -6.4 -1.2 -8.0 -2.9 -6.0 -1.6 

Advanced 
manufacturing -4.8 -2.8 -3.4 -3.0 -4.6 -2.6 -3.2 -2.7 

Utilities -4.5 -4.5 -8.0 -8.1 -4.0 -4.3 -7.8 -8.0 

Construction -10.6 -7.8 -5.7 -5.3 -10.1 -7.4 -5.6 -5.2 

Distribution and 
retail -17.2 -9.6 -14.2 -8.3 -16.5 -9.2 -14.0 -8.2 

Transport and 
communications -13.6 -6.6 -13.1 0.3 -13.2 -6.4 -13.2 -0.4 

Business 
services -15.2 -5.6 -13.4 -6.9 -14.7 -5.4 -13.7 -6.8 

Public services -20.3 -20.3 -19.3 -19.2 -19.6 -19.6 -18.9 -18.9 

All sectors -16.1 -9.4 -13.6 -8.3 -15.6 -9.1 -13.4 -8.2 



 IEA expectations to 2ºC sellout Tech. Diff. Trajectory to 2ºC sellout 

China 2035 2050 2035 2050 

% change in Prod. Empl. Prod. Empl. Prod. Empl. Prod. Empl. 

Agriculture 2.0 0.1 4.5 0.2 2.0 0.1 3.6 0.2 

Extraction 
sectors -21.4 -33.6 -10.5 -19.6 -21.1 -33.1 -10.0 -18.9 

Basic 
manufacturing 0.5 0.7 2.0 0.5 0.7 0.8 1.4 0.4 

Advanced 
manufacturing 0.1 -0.2 1.4 0.8 0.8 0.1 1.4 0.6 

Utilities 0.8 0.6 1.2 0.9 1.2 0.9 1.2 0.9 

Construction 0.8 0.7 3.7 1.2 1.2 0.8 3.9 0.6 

Distribution and 
retail 1.6 2.7 5.6 5.1 2.3 3.3 5.5 4.7 

Transport and 
communications 1.4 1.3 5.7 3.2 1.6 1.4 4.7 2.8 

Business 
services 1.1 0.1 2.6 0.2 1.6 0.1 2.5 0.1 

Public services 0.2 0.2 0.4 0.3 0.2 0.2 0.4 0.3 

All sectors 0.3 0.3 2.2 1.0 0.6 0.4 1.9 0.9 

 

 IEA expectations to 2ºC sellout Tech. Diff. Trajectory to 2ºC sellout 

India 2035 2050 2035 2050 

% change in Prod. Empl. Prod. Empl. Prod. Empl. Prod. Empl. 

Agriculture 0.9 0.4 0.5 -0.8 0.8 0.2 0.0 -0.7 

Extraction 
sectors -18.2 -11.4 12.7 -22.9 -15.8 -11.1 11.8 -22.6 

Basic 
manufacturing -10.5 1.0 -11.6 0.6 -4.5 1.1 -1.0 0.7 

Advanced 
manufacturing -4.0 3.1 3.9 2.1 -1.9 3.2 4.5 1.6 

Utilities -4.2 -4.1 26.7 25.2 -4.4 -4.2 26.1 24.7 

Construction 1.3 1.8 3.9 3.1 1.5 2.1 3.8 2.9 

Distribution and 
retail 0.4 -0.4 15.1 3.5 0.5 -0.5 5.5 1.1 

Transport and 
communications 4.0 3.3 5.7 3.1 2.4 2.3 1.3 0.7 

Business 
services 0.6 0.1 3.4 0.5 0.4 0.2 1.8 0.4 

Public services 0.2 0.2 0.7 0.7 0.1 0.1 0.2 0.3 

All sectors -1.1 0.6 2.1 1.0 -0.2 0.5 2.1 0.5 



 IEA expectations to 2ºC sellout Tech. Diff. Trajectory to 2ºC sellout 

Russia 2035 2050 2035 2050 

% change in Prod. Empl. Prod. Empl. Prod. Empl. Prod. Empl. 

Agriculture -0.5 1.4 -1.2 1.1 -0.4 1.2 -1.4 0.2 

Extraction 
sectors -18.4 -37.2 -24.2 -45.0 -18.1 -37.0 -24.0 -45.0 

Basic 
manufacturing -1.0 0.0 -1.7 -0.6 -1.0 0.0 -1.6 -0.9 

Advanced 
manufacturing -1.2 0.8 -1.1 0.2 -0.8 0.7 -0.3 0.4 

Utilities -10.4 -10.9 -13.5 -14.4 -10.3 -10.8 -13.6 -14.5 

Construction 0.1 -0.3 0.7 1.3 0.5 0.1 1.1 1.0 

Distribution and 
retail -1.2 0.1 -1.2 -0.4 -0.9 0.1 -1.0 -0.3 

Transport and 
communications -0.2 -0.2 -0.6 -0.1 -0.1 -0.2 -0.5 -0.1 

Business 
services 0.6 -0.3 1.4 0.6 0.8 -0.3 1.5 0.5 

Public services -5.9 -4.6 -10.1 -8.3 -5.8 -4.5 -10.1 -8.3 

All sectors -2.3 -1.3 -2.8 -2.2 -2.1 -1.3 -2.6 -2.3 

 

 IEA expectations to 2ºC sellout Tech. Diff. Trajectory to 2ºC sellout 

OPEC 2035 2050 2035 2050 

% change in Prod. Empl. Prod. Empl. Prod. Empl. Prod. Empl. 

Agriculture -0.6 -0.2 -0.9 -0.1 -1.2 -0.2 -1.7 -0.1 

Extraction 
sectors 7.8 3.2 2.4 0.9 7.9 3.3 2.5 0.9 

Basic 
manufacturing -2.2 0.4 -3.3 0.8 -1.7 0.1 -1.8 0.2 

Advanced 
manufacturing 0.0 0.1 0.1 0.2 -0.9 -0.1 -0.8 -0.1 

Utilities -3.7 -11.7 -4.1 -16.7 -4.0 -12.4 -4.3 -17.3 

Construction -1.5 -0.7 0.3 0.1 -1.8 -0.8 -0.2 0.0 

Distribution and 
retail -2.3 -0.5 -4.6 -0.9 -1.3 -0.1 -3.6 -0.4 

Transport and 
communications 0.6 0.4 0.5 0.6 0.0 0.4 -0.7 0.5 

Business 
services 0.1 0.2 -0.1 -0.2 -0.5 0.2 -1.0 -0.4 

Public services -15.6 -17.5 -13.1 -10.8 -15.8 -17.7 -13.6 -11.3 

All sectors -1.7 -2.5 -2.3 -1.6 -1.9 -2.5 -2.7 -1.7 
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